* script-sections.cc (Script_sections::find_memory_region): Check
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49 public:
50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
54 start_(start),
55 length_(length),
56 current_offset_(0),
57 vma_sections_(),
58 lma_sections_(),
59 last_section_(NULL)
60 { }
61
62 // Return the name of this region.
63 const std::string&
64 name() const
65 { return this->name_; }
66
67 // Return the start address of this region.
68 Expression*
69 start_address() const
70 { return this->start_; }
71
72 // Return the length of this region.
73 Expression*
74 length() const
75 { return this->length_; }
76
77 // Print the region (when debugging).
78 void
79 print(FILE*) const;
80
81 // Return true if <name,namelen> matches this region.
82 bool
83 name_match(const char* name, size_t namelen)
84 {
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
87 }
88
89 Expression*
90 get_current_address() const
91 {
92 return
93 script_exp_binary_add(this->start_,
94 script_exp_integer(this->current_offset_));
95 }
96
97 void
98 increment_offset(std::string section_name, uint64_t amount,
99 const Symbol_table* symtab, const Layout* layout)
100 {
101 this->current_offset_ += amount;
102
103 if (this->current_offset_
104 > this->length_->eval(symtab, layout, false))
105 gold_error(_("section %s overflows end of region %s"),
106 section_name.c_str(), this->name_.c_str());
107 }
108
109 // Returns true iff there is room left in this region
110 // for AMOUNT more bytes of data.
111 bool
112 has_room_for(const Symbol_table* symtab, const Layout* layout,
113 uint64_t amount) const
114 {
115 return (this->current_offset_ + amount
116 < this->length_->eval(symtab, layout, false));
117 }
118
119 // Return true if the provided section flags
120 // are compatible with this region's attributes.
121 bool
122 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
123
124 void
125 add_section(Output_section_definition* sec, bool vma)
126 {
127 if (vma)
128 this->vma_sections_.push_back(sec);
129 else
130 this->lma_sections_.push_back(sec);
131 }
132
133 typedef std::vector<Output_section_definition*> Section_list;
134
135 // Return the start of the list of sections
136 // whose VMAs are taken from this region.
137 Section_list::const_iterator
138 get_vma_section_list_start() const
139 { return this->vma_sections_.begin(); }
140
141 // Return the start of the list of sections
142 // whose LMAs are taken from this region.
143 Section_list::const_iterator
144 get_lma_section_list_start() const
145 { return this->lma_sections_.begin(); }
146
147 // Return the end of the list of sections
148 // whose VMAs are taken from this region.
149 Section_list::const_iterator
150 get_vma_section_list_end() const
151 { return this->vma_sections_.end(); }
152
153 // Return the end of the list of sections
154 // whose LMAs are taken from this region.
155 Section_list::const_iterator
156 get_lma_section_list_end() const
157 { return this->lma_sections_.end(); }
158
159 Output_section_definition*
160 get_last_section() const
161 { return this->last_section_; }
162
163 void
164 set_last_section(Output_section_definition* sec)
165 { this->last_section_ = sec; }
166
167 private:
168
169 std::string name_;
170 unsigned int attributes_;
171 Expression* start_;
172 Expression* length_;
173 // The offset to the next free byte in the region.
174 // Note - for compatibility with GNU LD we only maintain one offset
175 // regardless of whether the region is being used for VMA values,
176 // LMA values, or both.
177 uint64_t current_offset_;
178 // A list of sections whose VMAs are set inside this region.
179 Section_list vma_sections_;
180 // A list of sections whose LMAs are set inside this region.
181 Section_list lma_sections_;
182 // The latest section to make use of this region.
183 Output_section_definition* last_section_;
184 };
185
186 // Return true if the provided section flags
187 // are compatible with this region's attributes.
188
189 bool
190 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
191 elfcpp::Elf_Xword type) const
192 {
193 unsigned int attrs = this->attributes_;
194
195 // No attributes means that this region is not compatible with anything.
196 if (attrs == 0)
197 return false;
198
199 bool match = true;
200 do
201 {
202 switch (attrs & - attrs)
203 {
204 case MEM_EXECUTABLE:
205 if ((flags & elfcpp::SHF_EXECINSTR) == 0)
206 match = false;
207 break;
208
209 case MEM_WRITEABLE:
210 if ((flags & elfcpp::SHF_WRITE) == 0)
211 match = false;
212 break;
213
214 case MEM_READABLE:
215 // All sections are presumed readable.
216 break;
217
218 case MEM_ALLOCATABLE:
219 if ((flags & elfcpp::SHF_ALLOC) == 0)
220 match = false;
221 break;
222
223 case MEM_INITIALIZED:
224 if ((type & elfcpp::SHT_NOBITS) != 0)
225 match = false;
226 break;
227 }
228 attrs &= ~ (attrs & - attrs);
229 }
230 while (attrs != 0);
231
232 return match;
233 }
234
235 // Print a memory region.
236
237 void
238 Memory_region::print(FILE* f) const
239 {
240 fprintf(f, " %s", this->name_.c_str());
241
242 unsigned int attrs = this->attributes_;
243 if (attrs != 0)
244 {
245 fprintf(f, " (");
246 do
247 {
248 switch (attrs & - attrs)
249 {
250 case MEM_EXECUTABLE: fputc('x', f); break;
251 case MEM_WRITEABLE: fputc('w', f); break;
252 case MEM_READABLE: fputc('r', f); break;
253 case MEM_ALLOCATABLE: fputc('a', f); break;
254 case MEM_INITIALIZED: fputc('i', f); break;
255 default:
256 gold_unreachable();
257 }
258 attrs &= ~ (attrs & - attrs);
259 }
260 while (attrs != 0);
261 fputc(')', f);
262 }
263
264 fprintf(f, " : origin = ");
265 this->start_->print(f);
266 fprintf(f, ", length = ");
267 this->length_->print(f);
268 fprintf(f, "\n");
269 }
270
271 // Manage orphan sections. This is intended to be largely compatible
272 // with the GNU linker. The Linux kernel implicitly relies on
273 // something similar to the GNU linker's orphan placement. We
274 // originally used a simpler scheme here, but it caused the kernel
275 // build to fail, and was also rather inefficient.
276
277 class Orphan_section_placement
278 {
279 private:
280 typedef Script_sections::Elements_iterator Elements_iterator;
281
282 public:
283 Orphan_section_placement();
284
285 // Handle an output section during initialization of this mapping.
286 void
287 output_section_init(const std::string& name, Output_section*,
288 Elements_iterator location);
289
290 // Initialize the last location.
291 void
292 last_init(Elements_iterator location);
293
294 // Set *PWHERE to the address of an iterator pointing to the
295 // location to use for an orphan section. Return true if the
296 // iterator has a value, false otherwise.
297 bool
298 find_place(Output_section*, Elements_iterator** pwhere);
299
300 // Return the iterator being used for sections at the very end of
301 // the linker script.
302 Elements_iterator
303 last_place() const;
304
305 private:
306 // The places that we specifically recognize. This list is copied
307 // from the GNU linker.
308 enum Place_index
309 {
310 PLACE_TEXT,
311 PLACE_RODATA,
312 PLACE_DATA,
313 PLACE_TLS,
314 PLACE_TLS_BSS,
315 PLACE_BSS,
316 PLACE_REL,
317 PLACE_INTERP,
318 PLACE_NONALLOC,
319 PLACE_LAST,
320 PLACE_MAX
321 };
322
323 // The information we keep for a specific place.
324 struct Place
325 {
326 // The name of sections for this place.
327 const char* name;
328 // Whether we have a location for this place.
329 bool have_location;
330 // The iterator for this place.
331 Elements_iterator location;
332 };
333
334 // Initialize one place element.
335 void
336 initialize_place(Place_index, const char*);
337
338 // The places.
339 Place places_[PLACE_MAX];
340 // True if this is the first call to output_section_init.
341 bool first_init_;
342 };
343
344 // Initialize Orphan_section_placement.
345
346 Orphan_section_placement::Orphan_section_placement()
347 : first_init_(true)
348 {
349 this->initialize_place(PLACE_TEXT, ".text");
350 this->initialize_place(PLACE_RODATA, ".rodata");
351 this->initialize_place(PLACE_DATA, ".data");
352 this->initialize_place(PLACE_TLS, NULL);
353 this->initialize_place(PLACE_TLS_BSS, NULL);
354 this->initialize_place(PLACE_BSS, ".bss");
355 this->initialize_place(PLACE_REL, NULL);
356 this->initialize_place(PLACE_INTERP, ".interp");
357 this->initialize_place(PLACE_NONALLOC, NULL);
358 this->initialize_place(PLACE_LAST, NULL);
359 }
360
361 // Initialize one place element.
362
363 void
364 Orphan_section_placement::initialize_place(Place_index index, const char* name)
365 {
366 this->places_[index].name = name;
367 this->places_[index].have_location = false;
368 }
369
370 // While initializing the Orphan_section_placement information, this
371 // is called once for each output section named in the linker script.
372 // If we found an output section during the link, it will be passed in
373 // OS.
374
375 void
376 Orphan_section_placement::output_section_init(const std::string& name,
377 Output_section* os,
378 Elements_iterator location)
379 {
380 bool first_init = this->first_init_;
381 this->first_init_ = false;
382
383 for (int i = 0; i < PLACE_MAX; ++i)
384 {
385 if (this->places_[i].name != NULL && this->places_[i].name == name)
386 {
387 if (this->places_[i].have_location)
388 {
389 // We have already seen a section with this name.
390 return;
391 }
392
393 this->places_[i].location = location;
394 this->places_[i].have_location = true;
395
396 // If we just found the .bss section, restart the search for
397 // an unallocated section. This follows the GNU linker's
398 // behaviour.
399 if (i == PLACE_BSS)
400 this->places_[PLACE_NONALLOC].have_location = false;
401
402 return;
403 }
404 }
405
406 // Relocation sections.
407 if (!this->places_[PLACE_REL].have_location
408 && os != NULL
409 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
410 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
411 {
412 this->places_[PLACE_REL].location = location;
413 this->places_[PLACE_REL].have_location = true;
414 }
415
416 // We find the location for unallocated sections by finding the
417 // first debugging or comment section after the BSS section (if
418 // there is one).
419 if (!this->places_[PLACE_NONALLOC].have_location
420 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
421 {
422 // We add orphan sections after the location in PLACES_. We
423 // want to store unallocated sections before LOCATION. If this
424 // is the very first section, we can't use it.
425 if (!first_init)
426 {
427 --location;
428 this->places_[PLACE_NONALLOC].location = location;
429 this->places_[PLACE_NONALLOC].have_location = true;
430 }
431 }
432 }
433
434 // Initialize the last location.
435
436 void
437 Orphan_section_placement::last_init(Elements_iterator location)
438 {
439 this->places_[PLACE_LAST].location = location;
440 this->places_[PLACE_LAST].have_location = true;
441 }
442
443 // Set *PWHERE to the address of an iterator pointing to the location
444 // to use for an orphan section. Return true if the iterator has a
445 // value, false otherwise.
446
447 bool
448 Orphan_section_placement::find_place(Output_section* os,
449 Elements_iterator** pwhere)
450 {
451 // Figure out where OS should go. This is based on the GNU linker
452 // code. FIXME: The GNU linker handles small data sections
453 // specially, but we don't.
454 elfcpp::Elf_Word type = os->type();
455 elfcpp::Elf_Xword flags = os->flags();
456 Place_index index;
457 if ((flags & elfcpp::SHF_ALLOC) == 0
458 && !Layout::is_debug_info_section(os->name()))
459 index = PLACE_NONALLOC;
460 else if ((flags & elfcpp::SHF_ALLOC) == 0)
461 index = PLACE_LAST;
462 else if (type == elfcpp::SHT_NOTE)
463 index = PLACE_INTERP;
464 else if ((flags & elfcpp::SHF_TLS) != 0)
465 {
466 if (type == elfcpp::SHT_NOBITS)
467 index = PLACE_TLS_BSS;
468 else
469 index = PLACE_TLS;
470 }
471 else if (type == elfcpp::SHT_NOBITS)
472 index = PLACE_BSS;
473 else if ((flags & elfcpp::SHF_WRITE) != 0)
474 index = PLACE_DATA;
475 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
476 index = PLACE_REL;
477 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
478 index = PLACE_RODATA;
479 else
480 index = PLACE_TEXT;
481
482 // If we don't have a location yet, try to find one based on a
483 // plausible ordering of sections.
484 if (!this->places_[index].have_location)
485 {
486 Place_index follow;
487 switch (index)
488 {
489 default:
490 follow = PLACE_MAX;
491 break;
492 case PLACE_RODATA:
493 follow = PLACE_TEXT;
494 break;
495 case PLACE_BSS:
496 follow = PLACE_DATA;
497 break;
498 case PLACE_REL:
499 follow = PLACE_TEXT;
500 break;
501 case PLACE_INTERP:
502 follow = PLACE_TEXT;
503 break;
504 case PLACE_TLS:
505 follow = PLACE_DATA;
506 break;
507 case PLACE_TLS_BSS:
508 follow = PLACE_TLS;
509 if (!this->places_[PLACE_TLS].have_location)
510 follow = PLACE_DATA;
511 break;
512 }
513 if (follow != PLACE_MAX && this->places_[follow].have_location)
514 {
515 // Set the location of INDEX to the location of FOLLOW. The
516 // location of INDEX will then be incremented by the caller,
517 // so anything in INDEX will continue to be after anything
518 // in FOLLOW.
519 this->places_[index].location = this->places_[follow].location;
520 this->places_[index].have_location = true;
521 }
522 }
523
524 *pwhere = &this->places_[index].location;
525 bool ret = this->places_[index].have_location;
526
527 // The caller will set the location.
528 this->places_[index].have_location = true;
529
530 return ret;
531 }
532
533 // Return the iterator being used for sections at the very end of the
534 // linker script.
535
536 Orphan_section_placement::Elements_iterator
537 Orphan_section_placement::last_place() const
538 {
539 gold_assert(this->places_[PLACE_LAST].have_location);
540 return this->places_[PLACE_LAST].location;
541 }
542
543 // An element in a SECTIONS clause.
544
545 class Sections_element
546 {
547 public:
548 Sections_element()
549 { }
550
551 virtual ~Sections_element()
552 { }
553
554 // Return whether an output section is relro.
555 virtual bool
556 is_relro() const
557 { return false; }
558
559 // Record that an output section is relro.
560 virtual void
561 set_is_relro()
562 { }
563
564 // Create any required output sections. The only real
565 // implementation is in Output_section_definition.
566 virtual void
567 create_sections(Layout*)
568 { }
569
570 // Add any symbol being defined to the symbol table.
571 virtual void
572 add_symbols_to_table(Symbol_table*)
573 { }
574
575 // Finalize symbols and check assertions.
576 virtual void
577 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
578 { }
579
580 // Return the output section name to use for an input file name and
581 // section name. This only real implementation is in
582 // Output_section_definition.
583 virtual const char*
584 output_section_name(const char*, const char*, Output_section***,
585 Script_sections::Section_type*)
586 { return NULL; }
587
588 // Initialize OSP with an output section.
589 virtual void
590 orphan_section_init(Orphan_section_placement*,
591 Script_sections::Elements_iterator)
592 { }
593
594 // Set section addresses. This includes applying assignments if the
595 // the expression is an absolute value.
596 virtual void
597 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
598 uint64_t*)
599 { }
600
601 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
602 // this section is constrained, and the input sections do not match,
603 // return the constraint, and set *POSD.
604 virtual Section_constraint
605 check_constraint(Output_section_definition**)
606 { return CONSTRAINT_NONE; }
607
608 // See if this is the alternate output section for a constrained
609 // output section. If it is, transfer the Output_section and return
610 // true. Otherwise return false.
611 virtual bool
612 alternate_constraint(Output_section_definition*, Section_constraint)
613 { return false; }
614
615 // Get the list of segments to use for an allocated section when
616 // using a PHDRS clause. If this is an allocated section, return
617 // the Output_section, and set *PHDRS_LIST (the first parameter) to
618 // the list of PHDRS to which it should be attached. If the PHDRS
619 // were not specified, don't change *PHDRS_LIST. When not returning
620 // NULL, set *ORPHAN (the second parameter) according to whether
621 // this is an orphan section--one that is not mentioned in the
622 // linker script.
623 virtual Output_section*
624 allocate_to_segment(String_list**, bool*)
625 { return NULL; }
626
627 // Look for an output section by name and return the address, the
628 // load address, the alignment, and the size. This is used when an
629 // expression refers to an output section which was not actually
630 // created. This returns true if the section was found, false
631 // otherwise. The only real definition is for
632 // Output_section_definition.
633 virtual bool
634 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
635 uint64_t*) const
636 { return false; }
637
638 // Return the associated Output_section if there is one.
639 virtual Output_section*
640 get_output_section() const
641 { return NULL; }
642
643 // Set the section's memory regions.
644 virtual void
645 set_memory_region(Memory_region*, bool)
646 { gold_error(_("Attempt to set a memory region for a non-output section")); }
647
648 // Print the element for debugging purposes.
649 virtual void
650 print(FILE* f) const = 0;
651 };
652
653 // An assignment in a SECTIONS clause outside of an output section.
654
655 class Sections_element_assignment : public Sections_element
656 {
657 public:
658 Sections_element_assignment(const char* name, size_t namelen,
659 Expression* val, bool provide, bool hidden)
660 : assignment_(name, namelen, false, val, provide, hidden)
661 { }
662
663 // Add the symbol to the symbol table.
664 void
665 add_symbols_to_table(Symbol_table* symtab)
666 { this->assignment_.add_to_table(symtab); }
667
668 // Finalize the symbol.
669 void
670 finalize_symbols(Symbol_table* symtab, const Layout* layout,
671 uint64_t* dot_value)
672 {
673 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
674 }
675
676 // Set the section address. There is no section here, but if the
677 // value is absolute, we set the symbol. This permits us to use
678 // absolute symbols when setting dot.
679 void
680 set_section_addresses(Symbol_table* symtab, Layout* layout,
681 uint64_t* dot_value, uint64_t*, uint64_t*)
682 {
683 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
684 }
685
686 // Print for debugging.
687 void
688 print(FILE* f) const
689 {
690 fprintf(f, " ");
691 this->assignment_.print(f);
692 }
693
694 private:
695 Symbol_assignment assignment_;
696 };
697
698 // An assignment to the dot symbol in a SECTIONS clause outside of an
699 // output section.
700
701 class Sections_element_dot_assignment : public Sections_element
702 {
703 public:
704 Sections_element_dot_assignment(Expression* val)
705 : val_(val)
706 { }
707
708 // Finalize the symbol.
709 void
710 finalize_symbols(Symbol_table* symtab, const Layout* layout,
711 uint64_t* dot_value)
712 {
713 // We ignore the section of the result because outside of an
714 // output section definition the dot symbol is always considered
715 // to be absolute.
716 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
717 NULL, NULL, NULL);
718 }
719
720 // Update the dot symbol while setting section addresses.
721 void
722 set_section_addresses(Symbol_table* symtab, Layout* layout,
723 uint64_t* dot_value, uint64_t* dot_alignment,
724 uint64_t* load_address)
725 {
726 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
727 NULL, NULL, dot_alignment);
728 *load_address = *dot_value;
729 }
730
731 // Print for debugging.
732 void
733 print(FILE* f) const
734 {
735 fprintf(f, " . = ");
736 this->val_->print(f);
737 fprintf(f, "\n");
738 }
739
740 private:
741 Expression* val_;
742 };
743
744 // An assertion in a SECTIONS clause outside of an output section.
745
746 class Sections_element_assertion : public Sections_element
747 {
748 public:
749 Sections_element_assertion(Expression* check, const char* message,
750 size_t messagelen)
751 : assertion_(check, message, messagelen)
752 { }
753
754 // Check the assertion.
755 void
756 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
757 { this->assertion_.check(symtab, layout); }
758
759 // Print for debugging.
760 void
761 print(FILE* f) const
762 {
763 fprintf(f, " ");
764 this->assertion_.print(f);
765 }
766
767 private:
768 Script_assertion assertion_;
769 };
770
771 // An element in an output section in a SECTIONS clause.
772
773 class Output_section_element
774 {
775 public:
776 // A list of input sections.
777 typedef std::list<Output_section::Input_section> Input_section_list;
778
779 Output_section_element()
780 { }
781
782 virtual ~Output_section_element()
783 { }
784
785 // Return whether this element requires an output section to exist.
786 virtual bool
787 needs_output_section() const
788 { return false; }
789
790 // Add any symbol being defined to the symbol table.
791 virtual void
792 add_symbols_to_table(Symbol_table*)
793 { }
794
795 // Finalize symbols and check assertions.
796 virtual void
797 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
798 { }
799
800 // Return whether this element matches FILE_NAME and SECTION_NAME.
801 // The only real implementation is in Output_section_element_input.
802 virtual bool
803 match_name(const char*, const char*) const
804 { return false; }
805
806 // Set section addresses. This includes applying assignments if the
807 // the expression is an absolute value.
808 virtual void
809 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
810 uint64_t*, uint64_t*, Output_section**, std::string*,
811 Input_section_list*)
812 { }
813
814 // Print the element for debugging purposes.
815 virtual void
816 print(FILE* f) const = 0;
817
818 protected:
819 // Return a fill string that is LENGTH bytes long, filling it with
820 // FILL.
821 std::string
822 get_fill_string(const std::string* fill, section_size_type length) const;
823 };
824
825 std::string
826 Output_section_element::get_fill_string(const std::string* fill,
827 section_size_type length) const
828 {
829 std::string this_fill;
830 this_fill.reserve(length);
831 while (this_fill.length() + fill->length() <= length)
832 this_fill += *fill;
833 if (this_fill.length() < length)
834 this_fill.append(*fill, 0, length - this_fill.length());
835 return this_fill;
836 }
837
838 // A symbol assignment in an output section.
839
840 class Output_section_element_assignment : public Output_section_element
841 {
842 public:
843 Output_section_element_assignment(const char* name, size_t namelen,
844 Expression* val, bool provide,
845 bool hidden)
846 : assignment_(name, namelen, false, val, provide, hidden)
847 { }
848
849 // Add the symbol to the symbol table.
850 void
851 add_symbols_to_table(Symbol_table* symtab)
852 { this->assignment_.add_to_table(symtab); }
853
854 // Finalize the symbol.
855 void
856 finalize_symbols(Symbol_table* symtab, const Layout* layout,
857 uint64_t* dot_value, Output_section** dot_section)
858 {
859 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
860 *dot_section);
861 }
862
863 // Set the section address. There is no section here, but if the
864 // value is absolute, we set the symbol. This permits us to use
865 // absolute symbols when setting dot.
866 void
867 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
868 uint64_t, uint64_t* dot_value, uint64_t*,
869 Output_section**, std::string*, Input_section_list*)
870 {
871 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
872 }
873
874 // Print for debugging.
875 void
876 print(FILE* f) const
877 {
878 fprintf(f, " ");
879 this->assignment_.print(f);
880 }
881
882 private:
883 Symbol_assignment assignment_;
884 };
885
886 // An assignment to the dot symbol in an output section.
887
888 class Output_section_element_dot_assignment : public Output_section_element
889 {
890 public:
891 Output_section_element_dot_assignment(Expression* val)
892 : val_(val)
893 { }
894
895 // Finalize the symbol.
896 void
897 finalize_symbols(Symbol_table* symtab, const Layout* layout,
898 uint64_t* dot_value, Output_section** dot_section)
899 {
900 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
901 *dot_section, dot_section, NULL);
902 }
903
904 // Update the dot symbol while setting section addresses.
905 void
906 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
907 uint64_t, uint64_t* dot_value, uint64_t*,
908 Output_section**, std::string*, Input_section_list*);
909
910 // Print for debugging.
911 void
912 print(FILE* f) const
913 {
914 fprintf(f, " . = ");
915 this->val_->print(f);
916 fprintf(f, "\n");
917 }
918
919 private:
920 Expression* val_;
921 };
922
923 // Update the dot symbol while setting section addresses.
924
925 void
926 Output_section_element_dot_assignment::set_section_addresses(
927 Symbol_table* symtab,
928 Layout* layout,
929 Output_section* output_section,
930 uint64_t,
931 uint64_t* dot_value,
932 uint64_t* dot_alignment,
933 Output_section** dot_section,
934 std::string* fill,
935 Input_section_list*)
936 {
937 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
938 *dot_value, *dot_section,
939 dot_section, dot_alignment);
940 if (next_dot < *dot_value)
941 gold_error(_("dot may not move backward"));
942 if (next_dot > *dot_value && output_section != NULL)
943 {
944 section_size_type length = convert_to_section_size_type(next_dot
945 - *dot_value);
946 Output_section_data* posd;
947 if (fill->empty())
948 posd = new Output_data_zero_fill(length, 0);
949 else
950 {
951 std::string this_fill = this->get_fill_string(fill, length);
952 posd = new Output_data_const(this_fill, 0);
953 }
954 output_section->add_output_section_data(posd);
955 layout->new_output_section_data_from_script(posd);
956 }
957 *dot_value = next_dot;
958 }
959
960 // An assertion in an output section.
961
962 class Output_section_element_assertion : public Output_section_element
963 {
964 public:
965 Output_section_element_assertion(Expression* check, const char* message,
966 size_t messagelen)
967 : assertion_(check, message, messagelen)
968 { }
969
970 void
971 print(FILE* f) const
972 {
973 fprintf(f, " ");
974 this->assertion_.print(f);
975 }
976
977 private:
978 Script_assertion assertion_;
979 };
980
981 // We use a special instance of Output_section_data to handle BYTE,
982 // SHORT, etc. This permits forward references to symbols in the
983 // expressions.
984
985 class Output_data_expression : public Output_section_data
986 {
987 public:
988 Output_data_expression(int size, bool is_signed, Expression* val,
989 const Symbol_table* symtab, const Layout* layout,
990 uint64_t dot_value, Output_section* dot_section)
991 : Output_section_data(size, 0, true),
992 is_signed_(is_signed), val_(val), symtab_(symtab),
993 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
994 { }
995
996 protected:
997 // Write the data to the output file.
998 void
999 do_write(Output_file*);
1000
1001 // Write the data to a buffer.
1002 void
1003 do_write_to_buffer(unsigned char*);
1004
1005 // Write to a map file.
1006 void
1007 do_print_to_mapfile(Mapfile* mapfile) const
1008 { mapfile->print_output_data(this, _("** expression")); }
1009
1010 private:
1011 template<bool big_endian>
1012 void
1013 endian_write_to_buffer(uint64_t, unsigned char*);
1014
1015 bool is_signed_;
1016 Expression* val_;
1017 const Symbol_table* symtab_;
1018 const Layout* layout_;
1019 uint64_t dot_value_;
1020 Output_section* dot_section_;
1021 };
1022
1023 // Write the data element to the output file.
1024
1025 void
1026 Output_data_expression::do_write(Output_file* of)
1027 {
1028 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1029 this->write_to_buffer(view);
1030 of->write_output_view(this->offset(), this->data_size(), view);
1031 }
1032
1033 // Write the data element to a buffer.
1034
1035 void
1036 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1037 {
1038 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1039 true, this->dot_value_,
1040 this->dot_section_, NULL, NULL);
1041
1042 if (parameters->target().is_big_endian())
1043 this->endian_write_to_buffer<true>(val, buf);
1044 else
1045 this->endian_write_to_buffer<false>(val, buf);
1046 }
1047
1048 template<bool big_endian>
1049 void
1050 Output_data_expression::endian_write_to_buffer(uint64_t val,
1051 unsigned char* buf)
1052 {
1053 switch (this->data_size())
1054 {
1055 case 1:
1056 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1057 break;
1058 case 2:
1059 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1060 break;
1061 case 4:
1062 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1063 break;
1064 case 8:
1065 if (parameters->target().get_size() == 32)
1066 {
1067 val &= 0xffffffff;
1068 if (this->is_signed_ && (val & 0x80000000) != 0)
1069 val |= 0xffffffff00000000LL;
1070 }
1071 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1072 break;
1073 default:
1074 gold_unreachable();
1075 }
1076 }
1077
1078 // A data item in an output section.
1079
1080 class Output_section_element_data : public Output_section_element
1081 {
1082 public:
1083 Output_section_element_data(int size, bool is_signed, Expression* val)
1084 : size_(size), is_signed_(is_signed), val_(val)
1085 { }
1086
1087 // If there is a data item, then we must create an output section.
1088 bool
1089 needs_output_section() const
1090 { return true; }
1091
1092 // Finalize symbols--we just need to update dot.
1093 void
1094 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1095 Output_section**)
1096 { *dot_value += this->size_; }
1097
1098 // Store the value in the section.
1099 void
1100 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1101 uint64_t* dot_value, uint64_t*, Output_section**,
1102 std::string*, Input_section_list*);
1103
1104 // Print for debugging.
1105 void
1106 print(FILE*) const;
1107
1108 private:
1109 // The size in bytes.
1110 int size_;
1111 // Whether the value is signed.
1112 bool is_signed_;
1113 // The value.
1114 Expression* val_;
1115 };
1116
1117 // Store the value in the section.
1118
1119 void
1120 Output_section_element_data::set_section_addresses(
1121 Symbol_table* symtab,
1122 Layout* layout,
1123 Output_section* os,
1124 uint64_t,
1125 uint64_t* dot_value,
1126 uint64_t*,
1127 Output_section** dot_section,
1128 std::string*,
1129 Input_section_list*)
1130 {
1131 gold_assert(os != NULL);
1132 Output_data_expression* expression =
1133 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1134 symtab, layout, *dot_value, *dot_section);
1135 os->add_output_section_data(expression);
1136 layout->new_output_section_data_from_script(expression);
1137 *dot_value += this->size_;
1138 }
1139
1140 // Print for debugging.
1141
1142 void
1143 Output_section_element_data::print(FILE* f) const
1144 {
1145 const char* s;
1146 switch (this->size_)
1147 {
1148 case 1:
1149 s = "BYTE";
1150 break;
1151 case 2:
1152 s = "SHORT";
1153 break;
1154 case 4:
1155 s = "LONG";
1156 break;
1157 case 8:
1158 if (this->is_signed_)
1159 s = "SQUAD";
1160 else
1161 s = "QUAD";
1162 break;
1163 default:
1164 gold_unreachable();
1165 }
1166 fprintf(f, " %s(", s);
1167 this->val_->print(f);
1168 fprintf(f, ")\n");
1169 }
1170
1171 // A fill value setting in an output section.
1172
1173 class Output_section_element_fill : public Output_section_element
1174 {
1175 public:
1176 Output_section_element_fill(Expression* val)
1177 : val_(val)
1178 { }
1179
1180 // Update the fill value while setting section addresses.
1181 void
1182 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1183 uint64_t, uint64_t* dot_value, uint64_t*,
1184 Output_section** dot_section,
1185 std::string* fill, Input_section_list*)
1186 {
1187 Output_section* fill_section;
1188 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1189 *dot_value, *dot_section,
1190 &fill_section, NULL);
1191 if (fill_section != NULL)
1192 gold_warning(_("fill value is not absolute"));
1193 // FIXME: The GNU linker supports fill values of arbitrary length.
1194 unsigned char fill_buff[4];
1195 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1196 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1197 }
1198
1199 // Print for debugging.
1200 void
1201 print(FILE* f) const
1202 {
1203 fprintf(f, " FILL(");
1204 this->val_->print(f);
1205 fprintf(f, ")\n");
1206 }
1207
1208 private:
1209 // The new fill value.
1210 Expression* val_;
1211 };
1212
1213 // An input section specification in an output section
1214
1215 class Output_section_element_input : public Output_section_element
1216 {
1217 public:
1218 Output_section_element_input(const Input_section_spec* spec, bool keep);
1219
1220 // Finalize symbols--just update the value of the dot symbol.
1221 void
1222 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1223 Output_section** dot_section)
1224 {
1225 *dot_value = this->final_dot_value_;
1226 *dot_section = this->final_dot_section_;
1227 }
1228
1229 // See whether we match FILE_NAME and SECTION_NAME as an input
1230 // section.
1231 bool
1232 match_name(const char* file_name, const char* section_name) const;
1233
1234 // Set the section address.
1235 void
1236 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1237 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1238 Output_section**, std::string* fill,
1239 Input_section_list*);
1240
1241 // Print for debugging.
1242 void
1243 print(FILE* f) const;
1244
1245 private:
1246 // An input section pattern.
1247 struct Input_section_pattern
1248 {
1249 std::string pattern;
1250 bool pattern_is_wildcard;
1251 Sort_wildcard sort;
1252
1253 Input_section_pattern(const char* patterna, size_t patternlena,
1254 Sort_wildcard sorta)
1255 : pattern(patterna, patternlena),
1256 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1257 sort(sorta)
1258 { }
1259 };
1260
1261 typedef std::vector<Input_section_pattern> Input_section_patterns;
1262
1263 // Filename_exclusions is a pair of filename pattern and a bool
1264 // indicating whether the filename is a wildcard.
1265 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1266
1267 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1268 // indicates whether this is a wildcard pattern.
1269 static inline bool
1270 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1271 {
1272 return (is_wildcard_pattern
1273 ? fnmatch(pattern, string, 0) == 0
1274 : strcmp(string, pattern) == 0);
1275 }
1276
1277 // See if we match a file name.
1278 bool
1279 match_file_name(const char* file_name) const;
1280
1281 // The file name pattern. If this is the empty string, we match all
1282 // files.
1283 std::string filename_pattern_;
1284 // Whether the file name pattern is a wildcard.
1285 bool filename_is_wildcard_;
1286 // How the file names should be sorted. This may only be
1287 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1288 Sort_wildcard filename_sort_;
1289 // The list of file names to exclude.
1290 Filename_exclusions filename_exclusions_;
1291 // The list of input section patterns.
1292 Input_section_patterns input_section_patterns_;
1293 // Whether to keep this section when garbage collecting.
1294 bool keep_;
1295 // The value of dot after including all matching sections.
1296 uint64_t final_dot_value_;
1297 // The section where dot is defined after including all matching
1298 // sections.
1299 Output_section* final_dot_section_;
1300 };
1301
1302 // Construct Output_section_element_input. The parser records strings
1303 // as pointers into a copy of the script file, which will go away when
1304 // parsing is complete. We make sure they are in std::string objects.
1305
1306 Output_section_element_input::Output_section_element_input(
1307 const Input_section_spec* spec,
1308 bool keep)
1309 : filename_pattern_(),
1310 filename_is_wildcard_(false),
1311 filename_sort_(spec->file.sort),
1312 filename_exclusions_(),
1313 input_section_patterns_(),
1314 keep_(keep),
1315 final_dot_value_(0),
1316 final_dot_section_(NULL)
1317 {
1318 // The filename pattern "*" is common, and matches all files. Turn
1319 // it into the empty string.
1320 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1321 this->filename_pattern_.assign(spec->file.name.value,
1322 spec->file.name.length);
1323 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1324
1325 if (spec->input_sections.exclude != NULL)
1326 {
1327 for (String_list::const_iterator p =
1328 spec->input_sections.exclude->begin();
1329 p != spec->input_sections.exclude->end();
1330 ++p)
1331 {
1332 bool is_wildcard = is_wildcard_string((*p).c_str());
1333 this->filename_exclusions_.push_back(std::make_pair(*p,
1334 is_wildcard));
1335 }
1336 }
1337
1338 if (spec->input_sections.sections != NULL)
1339 {
1340 Input_section_patterns& isp(this->input_section_patterns_);
1341 for (String_sort_list::const_iterator p =
1342 spec->input_sections.sections->begin();
1343 p != spec->input_sections.sections->end();
1344 ++p)
1345 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1346 p->sort));
1347 }
1348 }
1349
1350 // See whether we match FILE_NAME.
1351
1352 bool
1353 Output_section_element_input::match_file_name(const char* file_name) const
1354 {
1355 if (!this->filename_pattern_.empty())
1356 {
1357 // If we were called with no filename, we refuse to match a
1358 // pattern which requires a file name.
1359 if (file_name == NULL)
1360 return false;
1361
1362 if (!match(file_name, this->filename_pattern_.c_str(),
1363 this->filename_is_wildcard_))
1364 return false;
1365 }
1366
1367 if (file_name != NULL)
1368 {
1369 // Now we have to see whether FILE_NAME matches one of the
1370 // exclusion patterns, if any.
1371 for (Filename_exclusions::const_iterator p =
1372 this->filename_exclusions_.begin();
1373 p != this->filename_exclusions_.end();
1374 ++p)
1375 {
1376 if (match(file_name, p->first.c_str(), p->second))
1377 return false;
1378 }
1379 }
1380
1381 return true;
1382 }
1383
1384 // See whether we match FILE_NAME and SECTION_NAME.
1385
1386 bool
1387 Output_section_element_input::match_name(const char* file_name,
1388 const char* section_name) const
1389 {
1390 if (!this->match_file_name(file_name))
1391 return false;
1392
1393 // If there are no section name patterns, then we match.
1394 if (this->input_section_patterns_.empty())
1395 return true;
1396
1397 // See whether we match the section name patterns.
1398 for (Input_section_patterns::const_iterator p =
1399 this->input_section_patterns_.begin();
1400 p != this->input_section_patterns_.end();
1401 ++p)
1402 {
1403 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1404 return true;
1405 }
1406
1407 // We didn't match any section names, so we didn't match.
1408 return false;
1409 }
1410
1411 // Information we use to sort the input sections.
1412
1413 class Input_section_info
1414 {
1415 public:
1416 Input_section_info(const Output_section::Input_section& input_section)
1417 : input_section_(input_section), section_name_(),
1418 size_(0), addralign_(1)
1419 { }
1420
1421 // Return the simple input section.
1422 const Output_section::Input_section&
1423 input_section() const
1424 { return this->input_section_; }
1425
1426 // Return the object.
1427 Relobj*
1428 relobj() const
1429 { return this->input_section_.relobj(); }
1430
1431 // Return the section index.
1432 unsigned int
1433 shndx()
1434 { return this->input_section_.shndx(); }
1435
1436 // Return the section name.
1437 const std::string&
1438 section_name() const
1439 { return this->section_name_; }
1440
1441 // Set the section name.
1442 void
1443 set_section_name(const std::string name)
1444 { this->section_name_ = name; }
1445
1446 // Return the section size.
1447 uint64_t
1448 size() const
1449 { return this->size_; }
1450
1451 // Set the section size.
1452 void
1453 set_size(uint64_t size)
1454 { this->size_ = size; }
1455
1456 // Return the address alignment.
1457 uint64_t
1458 addralign() const
1459 { return this->addralign_; }
1460
1461 // Set the address alignment.
1462 void
1463 set_addralign(uint64_t addralign)
1464 { this->addralign_ = addralign; }
1465
1466 private:
1467 // Input section, can be a relaxed section.
1468 Output_section::Input_section input_section_;
1469 // Name of the section.
1470 std::string section_name_;
1471 // Section size.
1472 uint64_t size_;
1473 // Address alignment.
1474 uint64_t addralign_;
1475 };
1476
1477 // A class to sort the input sections.
1478
1479 class Input_section_sorter
1480 {
1481 public:
1482 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1483 : filename_sort_(filename_sort), section_sort_(section_sort)
1484 { }
1485
1486 bool
1487 operator()(const Input_section_info&, const Input_section_info&) const;
1488
1489 private:
1490 Sort_wildcard filename_sort_;
1491 Sort_wildcard section_sort_;
1492 };
1493
1494 bool
1495 Input_section_sorter::operator()(const Input_section_info& isi1,
1496 const Input_section_info& isi2) const
1497 {
1498 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1499 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1500 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1501 && isi1.addralign() == isi2.addralign()))
1502 {
1503 if (isi1.section_name() != isi2.section_name())
1504 return isi1.section_name() < isi2.section_name();
1505 }
1506 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1507 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1508 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1509 {
1510 if (isi1.addralign() != isi2.addralign())
1511 return isi1.addralign() < isi2.addralign();
1512 }
1513 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1514 {
1515 if (isi1.relobj()->name() != isi2.relobj()->name())
1516 return (isi1.relobj()->name() < isi2.relobj()->name());
1517 }
1518
1519 // Otherwise we leave them in the same order.
1520 return false;
1521 }
1522
1523 // Set the section address. Look in INPUT_SECTIONS for sections which
1524 // match this spec, sort them as specified, and add them to the output
1525 // section.
1526
1527 void
1528 Output_section_element_input::set_section_addresses(
1529 Symbol_table*,
1530 Layout* layout,
1531 Output_section* output_section,
1532 uint64_t subalign,
1533 uint64_t* dot_value,
1534 uint64_t*,
1535 Output_section** dot_section,
1536 std::string* fill,
1537 Input_section_list* input_sections)
1538 {
1539 // We build a list of sections which match each
1540 // Input_section_pattern.
1541
1542 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1543 size_t input_pattern_count = this->input_section_patterns_.size();
1544 if (input_pattern_count == 0)
1545 input_pattern_count = 1;
1546 Matching_sections matching_sections(input_pattern_count);
1547
1548 // Look through the list of sections for this output section. Add
1549 // each one which matches to one of the elements of
1550 // MATCHING_SECTIONS.
1551
1552 Input_section_list::iterator p = input_sections->begin();
1553 while (p != input_sections->end())
1554 {
1555 Relobj* relobj = p->relobj();
1556 unsigned int shndx = p->shndx();
1557 Input_section_info isi(*p);
1558
1559 // Calling section_name and section_addralign is not very
1560 // efficient.
1561
1562 // Lock the object so that we can get information about the
1563 // section. This is OK since we know we are single-threaded
1564 // here.
1565 {
1566 const Task* task = reinterpret_cast<const Task*>(-1);
1567 Task_lock_obj<Object> tl(task, relobj);
1568
1569 isi.set_section_name(relobj->section_name(shndx));
1570 if (p->is_relaxed_input_section())
1571 {
1572 // We use current data size because relaxed section sizes may not
1573 // have finalized yet.
1574 isi.set_size(p->relaxed_input_section()->current_data_size());
1575 isi.set_addralign(p->relaxed_input_section()->addralign());
1576 }
1577 else
1578 {
1579 isi.set_size(relobj->section_size(shndx));
1580 isi.set_addralign(relobj->section_addralign(shndx));
1581 }
1582 }
1583
1584 if (!this->match_file_name(relobj->name().c_str()))
1585 ++p;
1586 else if (this->input_section_patterns_.empty())
1587 {
1588 matching_sections[0].push_back(isi);
1589 p = input_sections->erase(p);
1590 }
1591 else
1592 {
1593 size_t i;
1594 for (i = 0; i < input_pattern_count; ++i)
1595 {
1596 const Input_section_pattern&
1597 isp(this->input_section_patterns_[i]);
1598 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1599 isp.pattern_is_wildcard))
1600 break;
1601 }
1602
1603 if (i >= this->input_section_patterns_.size())
1604 ++p;
1605 else
1606 {
1607 matching_sections[i].push_back(isi);
1608 p = input_sections->erase(p);
1609 }
1610 }
1611 }
1612
1613 // Look through MATCHING_SECTIONS. Sort each one as specified,
1614 // using a stable sort so that we get the default order when
1615 // sections are otherwise equal. Add each input section to the
1616 // output section.
1617
1618 uint64_t dot = *dot_value;
1619 for (size_t i = 0; i < input_pattern_count; ++i)
1620 {
1621 if (matching_sections[i].empty())
1622 continue;
1623
1624 gold_assert(output_section != NULL);
1625
1626 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1627 if (isp.sort != SORT_WILDCARD_NONE
1628 || this->filename_sort_ != SORT_WILDCARD_NONE)
1629 std::stable_sort(matching_sections[i].begin(),
1630 matching_sections[i].end(),
1631 Input_section_sorter(this->filename_sort_,
1632 isp.sort));
1633
1634 for (std::vector<Input_section_info>::const_iterator p =
1635 matching_sections[i].begin();
1636 p != matching_sections[i].end();
1637 ++p)
1638 {
1639 // Override the original address alignment if SUBALIGN is specified
1640 // and is greater than the original alignment. We need to make a
1641 // copy of the input section to modify the alignment.
1642 Output_section::Input_section sis(p->input_section());
1643
1644 uint64_t this_subalign = sis.addralign();
1645 if (!sis.is_input_section())
1646 sis.output_section_data()->finalize_data_size();
1647 uint64_t data_size = sis.data_size();
1648 if (this_subalign < subalign)
1649 {
1650 this_subalign = subalign;
1651 sis.set_addralign(subalign);
1652 }
1653
1654 uint64_t address = align_address(dot, this_subalign);
1655
1656 if (address > dot && !fill->empty())
1657 {
1658 section_size_type length =
1659 convert_to_section_size_type(address - dot);
1660 std::string this_fill = this->get_fill_string(fill, length);
1661 Output_section_data* posd = new Output_data_const(this_fill, 0);
1662 output_section->add_output_section_data(posd);
1663 layout->new_output_section_data_from_script(posd);
1664 }
1665
1666 output_section->add_script_input_section(sis);
1667 dot = address + data_size;
1668 }
1669 }
1670
1671 // An SHF_TLS/SHT_NOBITS section does not take up any
1672 // address space.
1673 if (output_section == NULL
1674 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1675 || output_section->type() != elfcpp::SHT_NOBITS)
1676 *dot_value = dot;
1677
1678 this->final_dot_value_ = *dot_value;
1679 this->final_dot_section_ = *dot_section;
1680 }
1681
1682 // Print for debugging.
1683
1684 void
1685 Output_section_element_input::print(FILE* f) const
1686 {
1687 fprintf(f, " ");
1688
1689 if (this->keep_)
1690 fprintf(f, "KEEP(");
1691
1692 if (!this->filename_pattern_.empty())
1693 {
1694 bool need_close_paren = false;
1695 switch (this->filename_sort_)
1696 {
1697 case SORT_WILDCARD_NONE:
1698 break;
1699 case SORT_WILDCARD_BY_NAME:
1700 fprintf(f, "SORT_BY_NAME(");
1701 need_close_paren = true;
1702 break;
1703 default:
1704 gold_unreachable();
1705 }
1706
1707 fprintf(f, "%s", this->filename_pattern_.c_str());
1708
1709 if (need_close_paren)
1710 fprintf(f, ")");
1711 }
1712
1713 if (!this->input_section_patterns_.empty()
1714 || !this->filename_exclusions_.empty())
1715 {
1716 fprintf(f, "(");
1717
1718 bool need_space = false;
1719 if (!this->filename_exclusions_.empty())
1720 {
1721 fprintf(f, "EXCLUDE_FILE(");
1722 bool need_comma = false;
1723 for (Filename_exclusions::const_iterator p =
1724 this->filename_exclusions_.begin();
1725 p != this->filename_exclusions_.end();
1726 ++p)
1727 {
1728 if (need_comma)
1729 fprintf(f, ", ");
1730 fprintf(f, "%s", p->first.c_str());
1731 need_comma = true;
1732 }
1733 fprintf(f, ")");
1734 need_space = true;
1735 }
1736
1737 for (Input_section_patterns::const_iterator p =
1738 this->input_section_patterns_.begin();
1739 p != this->input_section_patterns_.end();
1740 ++p)
1741 {
1742 if (need_space)
1743 fprintf(f, " ");
1744
1745 int close_parens = 0;
1746 switch (p->sort)
1747 {
1748 case SORT_WILDCARD_NONE:
1749 break;
1750 case SORT_WILDCARD_BY_NAME:
1751 fprintf(f, "SORT_BY_NAME(");
1752 close_parens = 1;
1753 break;
1754 case SORT_WILDCARD_BY_ALIGNMENT:
1755 fprintf(f, "SORT_BY_ALIGNMENT(");
1756 close_parens = 1;
1757 break;
1758 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1759 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1760 close_parens = 2;
1761 break;
1762 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1763 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1764 close_parens = 2;
1765 break;
1766 default:
1767 gold_unreachable();
1768 }
1769
1770 fprintf(f, "%s", p->pattern.c_str());
1771
1772 for (int i = 0; i < close_parens; ++i)
1773 fprintf(f, ")");
1774
1775 need_space = true;
1776 }
1777
1778 fprintf(f, ")");
1779 }
1780
1781 if (this->keep_)
1782 fprintf(f, ")");
1783
1784 fprintf(f, "\n");
1785 }
1786
1787 // An output section.
1788
1789 class Output_section_definition : public Sections_element
1790 {
1791 public:
1792 typedef Output_section_element::Input_section_list Input_section_list;
1793
1794 Output_section_definition(const char* name, size_t namelen,
1795 const Parser_output_section_header* header);
1796
1797 // Finish the output section with the information in the trailer.
1798 void
1799 finish(const Parser_output_section_trailer* trailer);
1800
1801 // Add a symbol to be defined.
1802 void
1803 add_symbol_assignment(const char* name, size_t length, Expression* value,
1804 bool provide, bool hidden);
1805
1806 // Add an assignment to the special dot symbol.
1807 void
1808 add_dot_assignment(Expression* value);
1809
1810 // Add an assertion.
1811 void
1812 add_assertion(Expression* check, const char* message, size_t messagelen);
1813
1814 // Add a data item to the current output section.
1815 void
1816 add_data(int size, bool is_signed, Expression* val);
1817
1818 // Add a setting for the fill value.
1819 void
1820 add_fill(Expression* val);
1821
1822 // Add an input section specification.
1823 void
1824 add_input_section(const Input_section_spec* spec, bool keep);
1825
1826 // Return whether the output section is relro.
1827 bool
1828 is_relro() const
1829 { return this->is_relro_; }
1830
1831 // Record that the output section is relro.
1832 void
1833 set_is_relro()
1834 { this->is_relro_ = true; }
1835
1836 // Create any required output sections.
1837 void
1838 create_sections(Layout*);
1839
1840 // Add any symbols being defined to the symbol table.
1841 void
1842 add_symbols_to_table(Symbol_table* symtab);
1843
1844 // Finalize symbols and check assertions.
1845 void
1846 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1847
1848 // Return the output section name to use for an input file name and
1849 // section name.
1850 const char*
1851 output_section_name(const char* file_name, const char* section_name,
1852 Output_section***, Script_sections::Section_type*);
1853
1854 // Initialize OSP with an output section.
1855 void
1856 orphan_section_init(Orphan_section_placement* osp,
1857 Script_sections::Elements_iterator p)
1858 { osp->output_section_init(this->name_, this->output_section_, p); }
1859
1860 // Set the section address.
1861 void
1862 set_section_addresses(Symbol_table* symtab, Layout* layout,
1863 uint64_t* dot_value, uint64_t*,
1864 uint64_t* load_address);
1865
1866 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1867 // this section is constrained, and the input sections do not match,
1868 // return the constraint, and set *POSD.
1869 Section_constraint
1870 check_constraint(Output_section_definition** posd);
1871
1872 // See if this is the alternate output section for a constrained
1873 // output section. If it is, transfer the Output_section and return
1874 // true. Otherwise return false.
1875 bool
1876 alternate_constraint(Output_section_definition*, Section_constraint);
1877
1878 // Get the list of segments to use for an allocated section when
1879 // using a PHDRS clause.
1880 Output_section*
1881 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1882
1883 // Look for an output section by name and return the address, the
1884 // load address, the alignment, and the size. This is used when an
1885 // expression refers to an output section which was not actually
1886 // created. This returns true if the section was found, false
1887 // otherwise.
1888 bool
1889 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1890 uint64_t*) const;
1891
1892 // Return the associated Output_section if there is one.
1893 Output_section*
1894 get_output_section() const
1895 { return this->output_section_; }
1896
1897 // Print the contents to the FILE. This is for debugging.
1898 void
1899 print(FILE*) const;
1900
1901 // Return the output section type if specified or Script_sections::ST_NONE.
1902 Script_sections::Section_type
1903 section_type() const;
1904
1905 // Store the memory region to use.
1906 void
1907 set_memory_region(Memory_region*, bool set_vma);
1908
1909 void
1910 set_section_vma(Expression* address)
1911 { this->address_ = address; }
1912
1913 void
1914 set_section_lma(Expression* address)
1915 { this->load_address_ = address; }
1916
1917 const std::string&
1918 get_section_name() const
1919 { return this->name_; }
1920
1921 private:
1922 static const char*
1923 script_section_type_name(Script_section_type);
1924
1925 typedef std::vector<Output_section_element*> Output_section_elements;
1926
1927 // The output section name.
1928 std::string name_;
1929 // The address. This may be NULL.
1930 Expression* address_;
1931 // The load address. This may be NULL.
1932 Expression* load_address_;
1933 // The alignment. This may be NULL.
1934 Expression* align_;
1935 // The input section alignment. This may be NULL.
1936 Expression* subalign_;
1937 // The constraint, if any.
1938 Section_constraint constraint_;
1939 // The fill value. This may be NULL.
1940 Expression* fill_;
1941 // The list of segments this section should go into. This may be
1942 // NULL.
1943 String_list* phdrs_;
1944 // The list of elements defining the section.
1945 Output_section_elements elements_;
1946 // The Output_section created for this definition. This will be
1947 // NULL if none was created.
1948 Output_section* output_section_;
1949 // The address after it has been evaluated.
1950 uint64_t evaluated_address_;
1951 // The load address after it has been evaluated.
1952 uint64_t evaluated_load_address_;
1953 // The alignment after it has been evaluated.
1954 uint64_t evaluated_addralign_;
1955 // The output section is relro.
1956 bool is_relro_;
1957 // The output section type if specified.
1958 enum Script_section_type script_section_type_;
1959 };
1960
1961 // Constructor.
1962
1963 Output_section_definition::Output_section_definition(
1964 const char* name,
1965 size_t namelen,
1966 const Parser_output_section_header* header)
1967 : name_(name, namelen),
1968 address_(header->address),
1969 load_address_(header->load_address),
1970 align_(header->align),
1971 subalign_(header->subalign),
1972 constraint_(header->constraint),
1973 fill_(NULL),
1974 phdrs_(NULL),
1975 elements_(),
1976 output_section_(NULL),
1977 evaluated_address_(0),
1978 evaluated_load_address_(0),
1979 evaluated_addralign_(0),
1980 is_relro_(false),
1981 script_section_type_(header->section_type)
1982 {
1983 }
1984
1985 // Finish an output section.
1986
1987 void
1988 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1989 {
1990 this->fill_ = trailer->fill;
1991 this->phdrs_ = trailer->phdrs;
1992 }
1993
1994 // Add a symbol to be defined.
1995
1996 void
1997 Output_section_definition::add_symbol_assignment(const char* name,
1998 size_t length,
1999 Expression* value,
2000 bool provide,
2001 bool hidden)
2002 {
2003 Output_section_element* p = new Output_section_element_assignment(name,
2004 length,
2005 value,
2006 provide,
2007 hidden);
2008 this->elements_.push_back(p);
2009 }
2010
2011 // Add an assignment to the special dot symbol.
2012
2013 void
2014 Output_section_definition::add_dot_assignment(Expression* value)
2015 {
2016 Output_section_element* p = new Output_section_element_dot_assignment(value);
2017 this->elements_.push_back(p);
2018 }
2019
2020 // Add an assertion.
2021
2022 void
2023 Output_section_definition::add_assertion(Expression* check,
2024 const char* message,
2025 size_t messagelen)
2026 {
2027 Output_section_element* p = new Output_section_element_assertion(check,
2028 message,
2029 messagelen);
2030 this->elements_.push_back(p);
2031 }
2032
2033 // Add a data item to the current output section.
2034
2035 void
2036 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2037 {
2038 Output_section_element* p = new Output_section_element_data(size, is_signed,
2039 val);
2040 this->elements_.push_back(p);
2041 }
2042
2043 // Add a setting for the fill value.
2044
2045 void
2046 Output_section_definition::add_fill(Expression* val)
2047 {
2048 Output_section_element* p = new Output_section_element_fill(val);
2049 this->elements_.push_back(p);
2050 }
2051
2052 // Add an input section specification.
2053
2054 void
2055 Output_section_definition::add_input_section(const Input_section_spec* spec,
2056 bool keep)
2057 {
2058 Output_section_element* p = new Output_section_element_input(spec, keep);
2059 this->elements_.push_back(p);
2060 }
2061
2062 // Create any required output sections. We need an output section if
2063 // there is a data statement here.
2064
2065 void
2066 Output_section_definition::create_sections(Layout* layout)
2067 {
2068 if (this->output_section_ != NULL)
2069 return;
2070 for (Output_section_elements::const_iterator p = this->elements_.begin();
2071 p != this->elements_.end();
2072 ++p)
2073 {
2074 if ((*p)->needs_output_section())
2075 {
2076 const char* name = this->name_.c_str();
2077 this->output_section_ =
2078 layout->make_output_section_for_script(name, this->section_type());
2079 return;
2080 }
2081 }
2082 }
2083
2084 // Add any symbols being defined to the symbol table.
2085
2086 void
2087 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2088 {
2089 for (Output_section_elements::iterator p = this->elements_.begin();
2090 p != this->elements_.end();
2091 ++p)
2092 (*p)->add_symbols_to_table(symtab);
2093 }
2094
2095 // Finalize symbols and check assertions.
2096
2097 void
2098 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2099 const Layout* layout,
2100 uint64_t* dot_value)
2101 {
2102 if (this->output_section_ != NULL)
2103 *dot_value = this->output_section_->address();
2104 else
2105 {
2106 uint64_t address = *dot_value;
2107 if (this->address_ != NULL)
2108 {
2109 address = this->address_->eval_with_dot(symtab, layout, true,
2110 *dot_value, NULL,
2111 NULL, NULL);
2112 }
2113 if (this->align_ != NULL)
2114 {
2115 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2116 *dot_value, NULL,
2117 NULL, NULL);
2118 address = align_address(address, align);
2119 }
2120 *dot_value = address;
2121 }
2122
2123 Output_section* dot_section = this->output_section_;
2124 for (Output_section_elements::iterator p = this->elements_.begin();
2125 p != this->elements_.end();
2126 ++p)
2127 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2128 }
2129
2130 // Return the output section name to use for an input section name.
2131
2132 const char*
2133 Output_section_definition::output_section_name(
2134 const char* file_name,
2135 const char* section_name,
2136 Output_section*** slot,
2137 Script_sections::Section_type* psection_type)
2138 {
2139 // Ask each element whether it matches NAME.
2140 for (Output_section_elements::const_iterator p = this->elements_.begin();
2141 p != this->elements_.end();
2142 ++p)
2143 {
2144 if ((*p)->match_name(file_name, section_name))
2145 {
2146 // We found a match for NAME, which means that it should go
2147 // into this output section.
2148 *slot = &this->output_section_;
2149 *psection_type = this->section_type();
2150 return this->name_.c_str();
2151 }
2152 }
2153
2154 // We don't know about this section name.
2155 return NULL;
2156 }
2157
2158 // Return true if memory from START to START + LENGTH is contained
2159 // within a memory region.
2160
2161 bool
2162 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2163 uint64_t start, uint64_t length) const
2164 {
2165 if (this->memory_regions_ == NULL)
2166 return false;
2167
2168 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2169 mr != this->memory_regions_->end();
2170 ++mr)
2171 {
2172 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2173 uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2174
2175 if (s <= start
2176 && (s + l) >= (start + length))
2177 return true;
2178 }
2179
2180 return false;
2181 }
2182
2183 // Find a memory region that should be used by a given output SECTION.
2184 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2185 // that used the return memory region.
2186
2187 Memory_region*
2188 Script_sections::find_memory_region(
2189 Output_section_definition* section,
2190 bool find_vma_region,
2191 Output_section_definition** previous_section_return)
2192 {
2193 if (previous_section_return != NULL)
2194 * previous_section_return = NULL;
2195
2196 // Walk the memory regions specified in this script, if any.
2197 if (this->memory_regions_ == NULL)
2198 return NULL;
2199
2200 // The /DISCARD/ section never gets assigned to any region.
2201 if (section->get_section_name() == "/DISCARD/")
2202 return NULL;
2203
2204 Memory_region* first_match = NULL;
2205
2206 // First check to see if a region has been assigned to this section.
2207 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2208 mr != this->memory_regions_->end();
2209 ++mr)
2210 {
2211 if (find_vma_region)
2212 {
2213 for (Memory_region::Section_list::const_iterator s =
2214 (*mr)->get_vma_section_list_start();
2215 s != (*mr)->get_vma_section_list_end();
2216 ++s)
2217 if ((*s) == section)
2218 {
2219 (*mr)->set_last_section(section);
2220 return *mr;
2221 }
2222 }
2223 else
2224 {
2225 for (Memory_region::Section_list::const_iterator s =
2226 (*mr)->get_lma_section_list_start();
2227 s != (*mr)->get_lma_section_list_end();
2228 ++s)
2229 if ((*s) == section)
2230 {
2231 (*mr)->set_last_section(section);
2232 return *mr;
2233 }
2234 }
2235
2236 // Make a note of the first memory region whose attributes
2237 // are compatible with the section. If we do not find an
2238 // explicit region assignment, then we will return this region.
2239 Output_section* out_sec = section->get_output_section();
2240 if (first_match == NULL
2241 && out_sec != NULL
2242 && (*mr)->attributes_compatible(out_sec->flags(),
2243 out_sec->type()))
2244 first_match = *mr;
2245 }
2246
2247 // With LMA computations, if an explicit region has not been specified then
2248 // we will want to set the difference between the VMA and the LMA of the
2249 // section were searching for to be the same as the difference between the
2250 // VMA and LMA of the last section to be added to first matched region.
2251 // Hence, if it was asked for, we return a pointer to the last section
2252 // known to be used by the first matched region.
2253 if (first_match != NULL
2254 && previous_section_return != NULL)
2255 *previous_section_return = first_match->get_last_section();
2256
2257 return first_match;
2258 }
2259
2260 // Set the section address. Note that the OUTPUT_SECTION_ field will
2261 // be NULL if no input sections were mapped to this output section.
2262 // We still have to adjust dot and process symbol assignments.
2263
2264 void
2265 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2266 Layout* layout,
2267 uint64_t* dot_value,
2268 uint64_t* dot_alignment,
2269 uint64_t* load_address)
2270 {
2271 Memory_region* vma_region = NULL;
2272 Memory_region* lma_region = NULL;
2273 Script_sections* script_sections =
2274 layout->script_options()->script_sections();
2275 uint64_t address;
2276 uint64_t old_dot_value = *dot_value;
2277 uint64_t old_load_address = *load_address;
2278
2279 // Decide the start address for the section. The algorithm is:
2280 // 1) If an address has been specified in a linker script, use that.
2281 // 2) Otherwise if a memory region has been specified for the section,
2282 // use the next free address in the region.
2283 // 3) Otherwise if memory regions have been specified find the first
2284 // region whose attributes are compatible with this section and
2285 // install it into that region.
2286 // 4) Otherwise use the current location counter.
2287
2288 if (this->output_section_ != NULL
2289 // Check for --section-start.
2290 && parameters->options().section_start(this->output_section_->name(),
2291 &address))
2292 ;
2293 else if (this->address_ == NULL)
2294 {
2295 vma_region = script_sections->find_memory_region(this, true, NULL);
2296
2297 if (vma_region != NULL)
2298 address = vma_region->get_current_address()->eval(symtab, layout,
2299 false);
2300 else
2301 address = *dot_value;
2302 }
2303 else
2304 address = this->address_->eval_with_dot(symtab, layout, true,
2305 *dot_value, NULL, NULL,
2306 dot_alignment);
2307 uint64_t align;
2308 if (this->align_ == NULL)
2309 {
2310 if (this->output_section_ == NULL)
2311 align = 0;
2312 else
2313 align = this->output_section_->addralign();
2314 }
2315 else
2316 {
2317 Output_section* align_section;
2318 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2319 NULL, &align_section, NULL);
2320 if (align_section != NULL)
2321 gold_warning(_("alignment of section %s is not absolute"),
2322 this->name_.c_str());
2323 if (this->output_section_ != NULL)
2324 this->output_section_->set_addralign(align);
2325 }
2326
2327 address = align_address(address, align);
2328
2329 uint64_t start_address = address;
2330
2331 *dot_value = address;
2332
2333 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2334 // forced to zero, regardless of what the linker script wants.
2335 if (this->output_section_ != NULL
2336 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2337 || this->output_section_->is_noload()))
2338 this->output_section_->set_address(address);
2339
2340 this->evaluated_address_ = address;
2341 this->evaluated_addralign_ = align;
2342
2343 uint64_t laddr;
2344
2345 if (this->load_address_ == NULL)
2346 {
2347 Output_section_definition* previous_section;
2348
2349 // Determine if an LMA region has been set for this section.
2350 lma_region = script_sections->find_memory_region(this, false,
2351 &previous_section);
2352
2353 if (lma_region != NULL)
2354 {
2355 if (previous_section == NULL)
2356 // The LMA address was explicitly set to the given region.
2357 laddr = lma_region->get_current_address()->eval(symtab, layout,
2358 false);
2359 else
2360 {
2361 // We are not going to use the discovered lma_region, so
2362 // make sure that we do not update it in the code below.
2363 lma_region = NULL;
2364
2365 if (this->address_ != NULL || previous_section == this)
2366 {
2367 // Either an explicit VMA address has been set, or an
2368 // explicit VMA region has been set, so set the LMA equal to
2369 // the VMA.
2370 laddr = address;
2371 }
2372 else
2373 {
2374 // The LMA address was not explicitly or implicitly set.
2375 //
2376 // We have been given the first memory region that is
2377 // compatible with the current section and a pointer to the
2378 // last section to use this region. Set the LMA of this
2379 // section so that the difference between its' VMA and LMA
2380 // is the same as the difference between the VMA and LMA of
2381 // the last section in the given region.
2382 laddr = address + (previous_section->evaluated_load_address_
2383 - previous_section->evaluated_address_);
2384 }
2385 }
2386
2387 if (this->output_section_ != NULL)
2388 this->output_section_->set_load_address(laddr);
2389 }
2390 else
2391 {
2392 // Do not set the load address of the output section, if one exists.
2393 // This allows future sections to determine what the load address
2394 // should be. If none is ever set, it will default to being the
2395 // same as the vma address.
2396 laddr = address;
2397 }
2398 }
2399 else
2400 {
2401 laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2402 *dot_value,
2403 this->output_section_,
2404 NULL, NULL);
2405 if (this->output_section_ != NULL)
2406 this->output_section_->set_load_address(laddr);
2407 }
2408
2409 this->evaluated_load_address_ = laddr;
2410
2411 uint64_t subalign;
2412 if (this->subalign_ == NULL)
2413 subalign = 0;
2414 else
2415 {
2416 Output_section* subalign_section;
2417 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2418 *dot_value, NULL,
2419 &subalign_section, NULL);
2420 if (subalign_section != NULL)
2421 gold_warning(_("subalign of section %s is not absolute"),
2422 this->name_.c_str());
2423 }
2424
2425 std::string fill;
2426 if (this->fill_ != NULL)
2427 {
2428 // FIXME: The GNU linker supports fill values of arbitrary
2429 // length.
2430 Output_section* fill_section;
2431 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2432 *dot_value,
2433 NULL, &fill_section,
2434 NULL);
2435 if (fill_section != NULL)
2436 gold_warning(_("fill of section %s is not absolute"),
2437 this->name_.c_str());
2438 unsigned char fill_buff[4];
2439 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2440 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2441 }
2442
2443 Input_section_list input_sections;
2444 if (this->output_section_ != NULL)
2445 {
2446 // Get the list of input sections attached to this output
2447 // section. This will leave the output section with only
2448 // Output_section_data entries.
2449 address += this->output_section_->get_input_sections(address,
2450 fill,
2451 &input_sections);
2452 *dot_value = address;
2453 }
2454
2455 Output_section* dot_section = this->output_section_;
2456 for (Output_section_elements::iterator p = this->elements_.begin();
2457 p != this->elements_.end();
2458 ++p)
2459 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2460 subalign, dot_value, dot_alignment,
2461 &dot_section, &fill, &input_sections);
2462
2463 gold_assert(input_sections.empty());
2464
2465 if (vma_region != NULL)
2466 {
2467 // Update the VMA region being used by the section now that we know how
2468 // big it is. Use the current address in the region, rather than
2469 // start_address because that might have been aligned upwards and we
2470 // need to allow for the padding.
2471 Expression* addr = vma_region->get_current_address();
2472 uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2473
2474 vma_region->increment_offset(this->get_section_name(), size,
2475 symtab, layout);
2476 }
2477
2478 // If the LMA region is different from the VMA region, then increment the
2479 // offset there as well. Note that we use the same "dot_value -
2480 // start_address" formula that is used in the load_address assignment below.
2481 if (lma_region != NULL && lma_region != vma_region)
2482 lma_region->increment_offset(this->get_section_name(),
2483 *dot_value - start_address,
2484 symtab, layout);
2485
2486 // Compute the load address for the following section.
2487 if (this->output_section_ == NULL)
2488 *load_address = *dot_value;
2489 else if (this->load_address_ == NULL)
2490 {
2491 if (lma_region == NULL)
2492 *load_address = *dot_value;
2493 else
2494 *load_address =
2495 lma_region->get_current_address()->eval(symtab, layout, false);
2496 }
2497 else
2498 *load_address = (this->output_section_->load_address()
2499 + (*dot_value - start_address));
2500
2501 if (this->output_section_ != NULL)
2502 {
2503 if (this->is_relro_)
2504 this->output_section_->set_is_relro();
2505 else
2506 this->output_section_->clear_is_relro();
2507
2508 // If this is a NOLOAD section, keep dot and load address unchanged.
2509 if (this->output_section_->is_noload())
2510 {
2511 *dot_value = old_dot_value;
2512 *load_address = old_load_address;
2513 }
2514 }
2515 }
2516
2517 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2518 // this section is constrained, and the input sections do not match,
2519 // return the constraint, and set *POSD.
2520
2521 Section_constraint
2522 Output_section_definition::check_constraint(Output_section_definition** posd)
2523 {
2524 switch (this->constraint_)
2525 {
2526 case CONSTRAINT_NONE:
2527 return CONSTRAINT_NONE;
2528
2529 case CONSTRAINT_ONLY_IF_RO:
2530 if (this->output_section_ != NULL
2531 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2532 {
2533 *posd = this;
2534 return CONSTRAINT_ONLY_IF_RO;
2535 }
2536 return CONSTRAINT_NONE;
2537
2538 case CONSTRAINT_ONLY_IF_RW:
2539 if (this->output_section_ != NULL
2540 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2541 {
2542 *posd = this;
2543 return CONSTRAINT_ONLY_IF_RW;
2544 }
2545 return CONSTRAINT_NONE;
2546
2547 case CONSTRAINT_SPECIAL:
2548 if (this->output_section_ != NULL)
2549 gold_error(_("SPECIAL constraints are not implemented"));
2550 return CONSTRAINT_NONE;
2551
2552 default:
2553 gold_unreachable();
2554 }
2555 }
2556
2557 // See if this is the alternate output section for a constrained
2558 // output section. If it is, transfer the Output_section and return
2559 // true. Otherwise return false.
2560
2561 bool
2562 Output_section_definition::alternate_constraint(
2563 Output_section_definition* posd,
2564 Section_constraint constraint)
2565 {
2566 if (this->name_ != posd->name_)
2567 return false;
2568
2569 switch (constraint)
2570 {
2571 case CONSTRAINT_ONLY_IF_RO:
2572 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2573 return false;
2574 break;
2575
2576 case CONSTRAINT_ONLY_IF_RW:
2577 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2578 return false;
2579 break;
2580
2581 default:
2582 gold_unreachable();
2583 }
2584
2585 // We have found the alternate constraint. We just need to move
2586 // over the Output_section. When constraints are used properly,
2587 // THIS should not have an output_section pointer, as all the input
2588 // sections should have matched the other definition.
2589
2590 if (this->output_section_ != NULL)
2591 gold_error(_("mismatched definition for constrained sections"));
2592
2593 this->output_section_ = posd->output_section_;
2594 posd->output_section_ = NULL;
2595
2596 if (this->is_relro_)
2597 this->output_section_->set_is_relro();
2598 else
2599 this->output_section_->clear_is_relro();
2600
2601 return true;
2602 }
2603
2604 // Get the list of segments to use for an allocated section when using
2605 // a PHDRS clause.
2606
2607 Output_section*
2608 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2609 bool* orphan)
2610 {
2611 // Update phdrs_list even if we don't have an output section. It
2612 // might be used by the following sections.
2613 if (this->phdrs_ != NULL)
2614 *phdrs_list = this->phdrs_;
2615
2616 if (this->output_section_ == NULL)
2617 return NULL;
2618 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2619 return NULL;
2620 *orphan = false;
2621 return this->output_section_;
2622 }
2623
2624 // Look for an output section by name and return the address, the load
2625 // address, the alignment, and the size. This is used when an
2626 // expression refers to an output section which was not actually
2627 // created. This returns true if the section was found, false
2628 // otherwise.
2629
2630 bool
2631 Output_section_definition::get_output_section_info(const char* name,
2632 uint64_t* address,
2633 uint64_t* load_address,
2634 uint64_t* addralign,
2635 uint64_t* size) const
2636 {
2637 if (this->name_ != name)
2638 return false;
2639
2640 if (this->output_section_ != NULL)
2641 {
2642 *address = this->output_section_->address();
2643 if (this->output_section_->has_load_address())
2644 *load_address = this->output_section_->load_address();
2645 else
2646 *load_address = *address;
2647 *addralign = this->output_section_->addralign();
2648 *size = this->output_section_->current_data_size();
2649 }
2650 else
2651 {
2652 *address = this->evaluated_address_;
2653 *load_address = this->evaluated_load_address_;
2654 *addralign = this->evaluated_addralign_;
2655 *size = 0;
2656 }
2657
2658 return true;
2659 }
2660
2661 // Print for debugging.
2662
2663 void
2664 Output_section_definition::print(FILE* f) const
2665 {
2666 fprintf(f, " %s ", this->name_.c_str());
2667
2668 if (this->address_ != NULL)
2669 {
2670 this->address_->print(f);
2671 fprintf(f, " ");
2672 }
2673
2674 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2675 fprintf(f, "(%s) ",
2676 this->script_section_type_name(this->script_section_type_));
2677
2678 fprintf(f, ": ");
2679
2680 if (this->load_address_ != NULL)
2681 {
2682 fprintf(f, "AT(");
2683 this->load_address_->print(f);
2684 fprintf(f, ") ");
2685 }
2686
2687 if (this->align_ != NULL)
2688 {
2689 fprintf(f, "ALIGN(");
2690 this->align_->print(f);
2691 fprintf(f, ") ");
2692 }
2693
2694 if (this->subalign_ != NULL)
2695 {
2696 fprintf(f, "SUBALIGN(");
2697 this->subalign_->print(f);
2698 fprintf(f, ") ");
2699 }
2700
2701 fprintf(f, "{\n");
2702
2703 for (Output_section_elements::const_iterator p = this->elements_.begin();
2704 p != this->elements_.end();
2705 ++p)
2706 (*p)->print(f);
2707
2708 fprintf(f, " }");
2709
2710 if (this->fill_ != NULL)
2711 {
2712 fprintf(f, " = ");
2713 this->fill_->print(f);
2714 }
2715
2716 if (this->phdrs_ != NULL)
2717 {
2718 for (String_list::const_iterator p = this->phdrs_->begin();
2719 p != this->phdrs_->end();
2720 ++p)
2721 fprintf(f, " :%s", p->c_str());
2722 }
2723
2724 fprintf(f, "\n");
2725 }
2726
2727 Script_sections::Section_type
2728 Output_section_definition::section_type() const
2729 {
2730 switch (this->script_section_type_)
2731 {
2732 case SCRIPT_SECTION_TYPE_NONE:
2733 return Script_sections::ST_NONE;
2734 case SCRIPT_SECTION_TYPE_NOLOAD:
2735 return Script_sections::ST_NOLOAD;
2736 case SCRIPT_SECTION_TYPE_COPY:
2737 case SCRIPT_SECTION_TYPE_DSECT:
2738 case SCRIPT_SECTION_TYPE_INFO:
2739 case SCRIPT_SECTION_TYPE_OVERLAY:
2740 // There are not really support so we treat them as ST_NONE. The
2741 // parse should have issued errors for them already.
2742 return Script_sections::ST_NONE;
2743 default:
2744 gold_unreachable();
2745 }
2746 }
2747
2748 // Return the name of a script section type.
2749
2750 const char*
2751 Output_section_definition::script_section_type_name(
2752 Script_section_type script_section_type)
2753 {
2754 switch (script_section_type)
2755 {
2756 case SCRIPT_SECTION_TYPE_NONE:
2757 return "NONE";
2758 case SCRIPT_SECTION_TYPE_NOLOAD:
2759 return "NOLOAD";
2760 case SCRIPT_SECTION_TYPE_DSECT:
2761 return "DSECT";
2762 case SCRIPT_SECTION_TYPE_COPY:
2763 return "COPY";
2764 case SCRIPT_SECTION_TYPE_INFO:
2765 return "INFO";
2766 case SCRIPT_SECTION_TYPE_OVERLAY:
2767 return "OVERLAY";
2768 default:
2769 gold_unreachable();
2770 }
2771 }
2772
2773 void
2774 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2775 {
2776 gold_assert(mr != NULL);
2777 // Add the current section to the specified region's list.
2778 mr->add_section(this, set_vma);
2779 }
2780
2781 // An output section created to hold orphaned input sections. These
2782 // do not actually appear in linker scripts. However, for convenience
2783 // when setting the output section addresses, we put a marker to these
2784 // sections in the appropriate place in the list of SECTIONS elements.
2785
2786 class Orphan_output_section : public Sections_element
2787 {
2788 public:
2789 Orphan_output_section(Output_section* os)
2790 : os_(os)
2791 { }
2792
2793 // Return whether the orphan output section is relro. We can just
2794 // check the output section because we always set the flag, if
2795 // needed, just after we create the Orphan_output_section.
2796 bool
2797 is_relro() const
2798 { return this->os_->is_relro(); }
2799
2800 // Initialize OSP with an output section. This should have been
2801 // done already.
2802 void
2803 orphan_section_init(Orphan_section_placement*,
2804 Script_sections::Elements_iterator)
2805 { gold_unreachable(); }
2806
2807 // Set section addresses.
2808 void
2809 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2810 uint64_t*);
2811
2812 // Get the list of segments to use for an allocated section when
2813 // using a PHDRS clause.
2814 Output_section*
2815 allocate_to_segment(String_list**, bool*);
2816
2817 // Return the associated Output_section.
2818 Output_section*
2819 get_output_section() const
2820 { return this->os_; }
2821
2822 // Print for debugging.
2823 void
2824 print(FILE* f) const
2825 {
2826 fprintf(f, " marker for orphaned output section %s\n",
2827 this->os_->name());
2828 }
2829
2830 private:
2831 Output_section* os_;
2832 };
2833
2834 // Set section addresses.
2835
2836 void
2837 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2838 uint64_t* dot_value,
2839 uint64_t*,
2840 uint64_t* load_address)
2841 {
2842 typedef std::list<Output_section::Input_section> Input_section_list;
2843
2844 bool have_load_address = *load_address != *dot_value;
2845
2846 uint64_t address = *dot_value;
2847 address = align_address(address, this->os_->addralign());
2848
2849 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2850 {
2851 this->os_->set_address(address);
2852 if (have_load_address)
2853 this->os_->set_load_address(align_address(*load_address,
2854 this->os_->addralign()));
2855 }
2856
2857 Input_section_list input_sections;
2858 address += this->os_->get_input_sections(address, "", &input_sections);
2859
2860 for (Input_section_list::iterator p = input_sections.begin();
2861 p != input_sections.end();
2862 ++p)
2863 {
2864 uint64_t addralign = p->addralign();
2865 if (!p->is_input_section())
2866 p->output_section_data()->finalize_data_size();
2867 uint64_t size = p->data_size();
2868 address = align_address(address, addralign);
2869 this->os_->add_script_input_section(*p);
2870 address += size;
2871 }
2872
2873 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2874 if (this->os_ == NULL
2875 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2876 || this->os_->type() != elfcpp::SHT_NOBITS)
2877 {
2878 if (!have_load_address)
2879 *load_address = address;
2880 else
2881 *load_address += address - *dot_value;
2882
2883 *dot_value = address;
2884 }
2885 }
2886
2887 // Get the list of segments to use for an allocated section when using
2888 // a PHDRS clause. If this is an allocated section, return the
2889 // Output_section. We don't change the list of segments.
2890
2891 Output_section*
2892 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2893 {
2894 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2895 return NULL;
2896 *orphan = true;
2897 return this->os_;
2898 }
2899
2900 // Class Phdrs_element. A program header from a PHDRS clause.
2901
2902 class Phdrs_element
2903 {
2904 public:
2905 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2906 bool includes_filehdr, bool includes_phdrs,
2907 bool is_flags_valid, unsigned int flags,
2908 Expression* load_address)
2909 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2910 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2911 flags_(flags), load_address_(load_address), load_address_value_(0),
2912 segment_(NULL)
2913 { }
2914
2915 // Return the name of this segment.
2916 const std::string&
2917 name() const
2918 { return this->name_; }
2919
2920 // Return the type of the segment.
2921 unsigned int
2922 type() const
2923 { return this->type_; }
2924
2925 // Whether to include the file header.
2926 bool
2927 includes_filehdr() const
2928 { return this->includes_filehdr_; }
2929
2930 // Whether to include the program headers.
2931 bool
2932 includes_phdrs() const
2933 { return this->includes_phdrs_; }
2934
2935 // Return whether there is a load address.
2936 bool
2937 has_load_address() const
2938 { return this->load_address_ != NULL; }
2939
2940 // Evaluate the load address expression if there is one.
2941 void
2942 eval_load_address(Symbol_table* symtab, Layout* layout)
2943 {
2944 if (this->load_address_ != NULL)
2945 this->load_address_value_ = this->load_address_->eval(symtab, layout,
2946 true);
2947 }
2948
2949 // Return the load address.
2950 uint64_t
2951 load_address() const
2952 {
2953 gold_assert(this->load_address_ != NULL);
2954 return this->load_address_value_;
2955 }
2956
2957 // Create the segment.
2958 Output_segment*
2959 create_segment(Layout* layout)
2960 {
2961 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2962 return this->segment_;
2963 }
2964
2965 // Return the segment.
2966 Output_segment*
2967 segment()
2968 { return this->segment_; }
2969
2970 // Release the segment.
2971 void
2972 release_segment()
2973 { this->segment_ = NULL; }
2974
2975 // Set the segment flags if appropriate.
2976 void
2977 set_flags_if_valid()
2978 {
2979 if (this->is_flags_valid_)
2980 this->segment_->set_flags(this->flags_);
2981 }
2982
2983 // Print for debugging.
2984 void
2985 print(FILE*) const;
2986
2987 private:
2988 // The name used in the script.
2989 std::string name_;
2990 // The type of the segment (PT_LOAD, etc.).
2991 unsigned int type_;
2992 // Whether this segment includes the file header.
2993 bool includes_filehdr_;
2994 // Whether this segment includes the section headers.
2995 bool includes_phdrs_;
2996 // Whether the flags were explicitly specified.
2997 bool is_flags_valid_;
2998 // The flags for this segment (PF_R, etc.) if specified.
2999 unsigned int flags_;
3000 // The expression for the load address for this segment. This may
3001 // be NULL.
3002 Expression* load_address_;
3003 // The actual load address from evaluating the expression.
3004 uint64_t load_address_value_;
3005 // The segment itself.
3006 Output_segment* segment_;
3007 };
3008
3009 // Print for debugging.
3010
3011 void
3012 Phdrs_element::print(FILE* f) const
3013 {
3014 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
3015 if (this->includes_filehdr_)
3016 fprintf(f, " FILEHDR");
3017 if (this->includes_phdrs_)
3018 fprintf(f, " PHDRS");
3019 if (this->is_flags_valid_)
3020 fprintf(f, " FLAGS(%u)", this->flags_);
3021 if (this->load_address_ != NULL)
3022 {
3023 fprintf(f, " AT(");
3024 this->load_address_->print(f);
3025 fprintf(f, ")");
3026 }
3027 fprintf(f, ";\n");
3028 }
3029
3030 // Add a memory region.
3031
3032 void
3033 Script_sections::add_memory_region(const char* name, size_t namelen,
3034 unsigned int attributes,
3035 Expression* start, Expression* length)
3036 {
3037 if (this->memory_regions_ == NULL)
3038 this->memory_regions_ = new Memory_regions();
3039 else if (this->find_memory_region(name, namelen))
3040 {
3041 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3042 name);
3043 // FIXME: Add a GOLD extension to allow multiple regions with the same
3044 // name. This would amount to a single region covering disjoint blocks
3045 // of memory, which is useful for embedded devices.
3046 }
3047
3048 // FIXME: Check the length and start values. Currently we allow
3049 // non-constant expressions for these values, whereas LD does not.
3050
3051 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3052 // describe a region that packs from the end address going down, rather
3053 // than the start address going up. This would be useful for embedded
3054 // devices.
3055
3056 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3057 start, length));
3058 }
3059
3060 // Find a memory region.
3061
3062 Memory_region*
3063 Script_sections::find_memory_region(const char* name, size_t namelen)
3064 {
3065 if (this->memory_regions_ == NULL)
3066 return NULL;
3067
3068 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3069 m != this->memory_regions_->end();
3070 ++m)
3071 if ((*m)->name_match(name, namelen))
3072 return *m;
3073
3074 return NULL;
3075 }
3076
3077 // Find a memory region's origin.
3078
3079 Expression*
3080 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3081 {
3082 Memory_region* mr = find_memory_region(name, namelen);
3083 if (mr == NULL)
3084 return NULL;
3085
3086 return mr->start_address();
3087 }
3088
3089 // Find a memory region's length.
3090
3091 Expression*
3092 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3093 {
3094 Memory_region* mr = find_memory_region(name, namelen);
3095 if (mr == NULL)
3096 return NULL;
3097
3098 return mr->length();
3099 }
3100
3101 // Set the memory region to use for the current section.
3102
3103 void
3104 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3105 {
3106 gold_assert(!this->sections_elements_->empty());
3107 this->sections_elements_->back()->set_memory_region(mr, set_vma);
3108 }
3109
3110 // Class Script_sections.
3111
3112 Script_sections::Script_sections()
3113 : saw_sections_clause_(false),
3114 in_sections_clause_(false),
3115 sections_elements_(NULL),
3116 output_section_(NULL),
3117 memory_regions_(NULL),
3118 phdrs_elements_(NULL),
3119 orphan_section_placement_(NULL),
3120 data_segment_align_start_(),
3121 saw_data_segment_align_(false),
3122 saw_relro_end_(false),
3123 saw_segment_start_expression_(false)
3124 {
3125 }
3126
3127 // Start a SECTIONS clause.
3128
3129 void
3130 Script_sections::start_sections()
3131 {
3132 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3133 this->saw_sections_clause_ = true;
3134 this->in_sections_clause_ = true;
3135 if (this->sections_elements_ == NULL)
3136 this->sections_elements_ = new Sections_elements;
3137 }
3138
3139 // Finish a SECTIONS clause.
3140
3141 void
3142 Script_sections::finish_sections()
3143 {
3144 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3145 this->in_sections_clause_ = false;
3146 }
3147
3148 // Add a symbol to be defined.
3149
3150 void
3151 Script_sections::add_symbol_assignment(const char* name, size_t length,
3152 Expression* val, bool provide,
3153 bool hidden)
3154 {
3155 if (this->output_section_ != NULL)
3156 this->output_section_->add_symbol_assignment(name, length, val,
3157 provide, hidden);
3158 else
3159 {
3160 Sections_element* p = new Sections_element_assignment(name, length,
3161 val, provide,
3162 hidden);
3163 this->sections_elements_->push_back(p);
3164 }
3165 }
3166
3167 // Add an assignment to the special dot symbol.
3168
3169 void
3170 Script_sections::add_dot_assignment(Expression* val)
3171 {
3172 if (this->output_section_ != NULL)
3173 this->output_section_->add_dot_assignment(val);
3174 else
3175 {
3176 // The GNU linker permits assignments to . to appears outside of
3177 // a SECTIONS clause, and treats it as appearing inside, so
3178 // sections_elements_ may be NULL here.
3179 if (this->sections_elements_ == NULL)
3180 {
3181 this->sections_elements_ = new Sections_elements;
3182 this->saw_sections_clause_ = true;
3183 }
3184
3185 Sections_element* p = new Sections_element_dot_assignment(val);
3186 this->sections_elements_->push_back(p);
3187 }
3188 }
3189
3190 // Add an assertion.
3191
3192 void
3193 Script_sections::add_assertion(Expression* check, const char* message,
3194 size_t messagelen)
3195 {
3196 if (this->output_section_ != NULL)
3197 this->output_section_->add_assertion(check, message, messagelen);
3198 else
3199 {
3200 Sections_element* p = new Sections_element_assertion(check, message,
3201 messagelen);
3202 this->sections_elements_->push_back(p);
3203 }
3204 }
3205
3206 // Start processing entries for an output section.
3207
3208 void
3209 Script_sections::start_output_section(
3210 const char* name,
3211 size_t namelen,
3212 const Parser_output_section_header* header)
3213 {
3214 Output_section_definition* posd = new Output_section_definition(name,
3215 namelen,
3216 header);
3217 this->sections_elements_->push_back(posd);
3218 gold_assert(this->output_section_ == NULL);
3219 this->output_section_ = posd;
3220 }
3221
3222 // Stop processing entries for an output section.
3223
3224 void
3225 Script_sections::finish_output_section(
3226 const Parser_output_section_trailer* trailer)
3227 {
3228 gold_assert(this->output_section_ != NULL);
3229 this->output_section_->finish(trailer);
3230 this->output_section_ = NULL;
3231 }
3232
3233 // Add a data item to the current output section.
3234
3235 void
3236 Script_sections::add_data(int size, bool is_signed, Expression* val)
3237 {
3238 gold_assert(this->output_section_ != NULL);
3239 this->output_section_->add_data(size, is_signed, val);
3240 }
3241
3242 // Add a fill value setting to the current output section.
3243
3244 void
3245 Script_sections::add_fill(Expression* val)
3246 {
3247 gold_assert(this->output_section_ != NULL);
3248 this->output_section_->add_fill(val);
3249 }
3250
3251 // Add an input section specification to the current output section.
3252
3253 void
3254 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3255 {
3256 gold_assert(this->output_section_ != NULL);
3257 this->output_section_->add_input_section(spec, keep);
3258 }
3259
3260 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3261 // subsequent output sections may be relro.
3262
3263 void
3264 Script_sections::data_segment_align()
3265 {
3266 if (this->saw_data_segment_align_)
3267 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3268 gold_assert(!this->sections_elements_->empty());
3269 Sections_elements::iterator p = this->sections_elements_->end();
3270 --p;
3271 this->data_segment_align_start_ = p;
3272 this->saw_data_segment_align_ = true;
3273 }
3274
3275 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3276 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3277
3278 void
3279 Script_sections::data_segment_relro_end()
3280 {
3281 if (this->saw_relro_end_)
3282 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3283 "in a linker script"));
3284 this->saw_relro_end_ = true;
3285
3286 if (!this->saw_data_segment_align_)
3287 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3288 else
3289 {
3290 Sections_elements::iterator p = this->data_segment_align_start_;
3291 for (++p; p != this->sections_elements_->end(); ++p)
3292 (*p)->set_is_relro();
3293 }
3294 }
3295
3296 // Create any required sections.
3297
3298 void
3299 Script_sections::create_sections(Layout* layout)
3300 {
3301 if (!this->saw_sections_clause_)
3302 return;
3303 for (Sections_elements::iterator p = this->sections_elements_->begin();
3304 p != this->sections_elements_->end();
3305 ++p)
3306 (*p)->create_sections(layout);
3307 }
3308
3309 // Add any symbols we are defining to the symbol table.
3310
3311 void
3312 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3313 {
3314 if (!this->saw_sections_clause_)
3315 return;
3316 for (Sections_elements::iterator p = this->sections_elements_->begin();
3317 p != this->sections_elements_->end();
3318 ++p)
3319 (*p)->add_symbols_to_table(symtab);
3320 }
3321
3322 // Finalize symbols and check assertions.
3323
3324 void
3325 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3326 {
3327 if (!this->saw_sections_clause_)
3328 return;
3329 uint64_t dot_value = 0;
3330 for (Sections_elements::iterator p = this->sections_elements_->begin();
3331 p != this->sections_elements_->end();
3332 ++p)
3333 (*p)->finalize_symbols(symtab, layout, &dot_value);
3334 }
3335
3336 // Return the name of the output section to use for an input file name
3337 // and section name.
3338
3339 const char*
3340 Script_sections::output_section_name(
3341 const char* file_name,
3342 const char* section_name,
3343 Output_section*** output_section_slot,
3344 Script_sections::Section_type* psection_type)
3345 {
3346 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3347 p != this->sections_elements_->end();
3348 ++p)
3349 {
3350 const char* ret = (*p)->output_section_name(file_name, section_name,
3351 output_section_slot,
3352 psection_type);
3353
3354 if (ret != NULL)
3355 {
3356 // The special name /DISCARD/ means that the input section
3357 // should be discarded.
3358 if (strcmp(ret, "/DISCARD/") == 0)
3359 {
3360 *output_section_slot = NULL;
3361 *psection_type = Script_sections::ST_NONE;
3362 return NULL;
3363 }
3364 return ret;
3365 }
3366 }
3367
3368 // If we couldn't find a mapping for the name, the output section
3369 // gets the name of the input section.
3370
3371 *output_section_slot = NULL;
3372 *psection_type = Script_sections::ST_NONE;
3373
3374 return section_name;
3375 }
3376
3377 // Place a marker for an orphan output section into the SECTIONS
3378 // clause.
3379
3380 void
3381 Script_sections::place_orphan(Output_section* os)
3382 {
3383 Orphan_section_placement* osp = this->orphan_section_placement_;
3384 if (osp == NULL)
3385 {
3386 // Initialize the Orphan_section_placement structure.
3387 osp = new Orphan_section_placement();
3388 for (Sections_elements::iterator p = this->sections_elements_->begin();
3389 p != this->sections_elements_->end();
3390 ++p)
3391 (*p)->orphan_section_init(osp, p);
3392 gold_assert(!this->sections_elements_->empty());
3393 Sections_elements::iterator last = this->sections_elements_->end();
3394 --last;
3395 osp->last_init(last);
3396 this->orphan_section_placement_ = osp;
3397 }
3398
3399 Orphan_output_section* orphan = new Orphan_output_section(os);
3400
3401 // Look for where to put ORPHAN.
3402 Sections_elements::iterator* where;
3403 if (osp->find_place(os, &where))
3404 {
3405 if ((**where)->is_relro())
3406 os->set_is_relro();
3407 else
3408 os->clear_is_relro();
3409
3410 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3411 // so that the next one goes after this one.
3412 Sections_elements::iterator p = *where;
3413 gold_assert(p != this->sections_elements_->end());
3414 ++p;
3415 *where = this->sections_elements_->insert(p, orphan);
3416 }
3417 else
3418 {
3419 os->clear_is_relro();
3420 // We don't have a place to put this orphan section. Put it,
3421 // and all other sections like it, at the end, but before the
3422 // sections which always come at the end.
3423 Sections_elements::iterator last = osp->last_place();
3424 *where = this->sections_elements_->insert(last, orphan);
3425 }
3426 }
3427
3428 // Set the addresses of all the output sections. Walk through all the
3429 // elements, tracking the dot symbol. Apply assignments which set
3430 // absolute symbol values, in case they are used when setting dot.
3431 // Fill in data statement values. As we find output sections, set the
3432 // address, set the address of all associated input sections, and
3433 // update dot. Return the segment which should hold the file header
3434 // and segment headers, if any.
3435
3436 Output_segment*
3437 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3438 {
3439 gold_assert(this->saw_sections_clause_);
3440
3441 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3442 // for our representation.
3443 for (Sections_elements::iterator p = this->sections_elements_->begin();
3444 p != this->sections_elements_->end();
3445 ++p)
3446 {
3447 Output_section_definition* posd;
3448 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3449 if (failed_constraint != CONSTRAINT_NONE)
3450 {
3451 Sections_elements::iterator q;
3452 for (q = this->sections_elements_->begin();
3453 q != this->sections_elements_->end();
3454 ++q)
3455 {
3456 if (q != p)
3457 {
3458 if ((*q)->alternate_constraint(posd, failed_constraint))
3459 break;
3460 }
3461 }
3462
3463 if (q == this->sections_elements_->end())
3464 gold_error(_("no matching section constraint"));
3465 }
3466 }
3467
3468 // Force the alignment of the first TLS section to be the maximum
3469 // alignment of all TLS sections.
3470 Output_section* first_tls = NULL;
3471 uint64_t tls_align = 0;
3472 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3473 p != this->sections_elements_->end();
3474 ++p)
3475 {
3476 Output_section* os = (*p)->get_output_section();
3477 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3478 {
3479 if (first_tls == NULL)
3480 first_tls = os;
3481 if (os->addralign() > tls_align)
3482 tls_align = os->addralign();
3483 }
3484 }
3485 if (first_tls != NULL)
3486 first_tls->set_addralign(tls_align);
3487
3488 // For a relocatable link, we implicitly set dot to zero.
3489 uint64_t dot_value = 0;
3490 uint64_t dot_alignment = 0;
3491 uint64_t load_address = 0;
3492
3493 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3494 // to set section addresses. If the script has any SEGMENT_START
3495 // expression, we do not set the section addresses.
3496 bool use_tsection_options =
3497 (!this->saw_segment_start_expression_
3498 && (parameters->options().user_set_Ttext()
3499 || parameters->options().user_set_Tdata()
3500 || parameters->options().user_set_Tbss()));
3501
3502 for (Sections_elements::iterator p = this->sections_elements_->begin();
3503 p != this->sections_elements_->end();
3504 ++p)
3505 {
3506 Output_section* os = (*p)->get_output_section();
3507
3508 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3509 // the special sections by names and doing dot assignments.
3510 if (use_tsection_options
3511 && os != NULL
3512 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3513 {
3514 uint64_t new_dot_value = dot_value;
3515
3516 if (parameters->options().user_set_Ttext()
3517 && strcmp(os->name(), ".text") == 0)
3518 new_dot_value = parameters->options().Ttext();
3519 else if (parameters->options().user_set_Tdata()
3520 && strcmp(os->name(), ".data") == 0)
3521 new_dot_value = parameters->options().Tdata();
3522 else if (parameters->options().user_set_Tbss()
3523 && strcmp(os->name(), ".bss") == 0)
3524 new_dot_value = parameters->options().Tbss();
3525
3526 // Update dot and load address if necessary.
3527 if (new_dot_value < dot_value)
3528 gold_error(_("dot may not move backward"));
3529 else if (new_dot_value != dot_value)
3530 {
3531 dot_value = new_dot_value;
3532 load_address = new_dot_value;
3533 }
3534 }
3535
3536 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3537 &load_address);
3538 }
3539
3540 if (this->phdrs_elements_ != NULL)
3541 {
3542 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3543 p != this->phdrs_elements_->end();
3544 ++p)
3545 (*p)->eval_load_address(symtab, layout);
3546 }
3547
3548 return this->create_segments(layout, dot_alignment);
3549 }
3550
3551 // Sort the sections in order to put them into segments.
3552
3553 class Sort_output_sections
3554 {
3555 public:
3556 Sort_output_sections(const Script_sections::Sections_elements* elements)
3557 : elements_(elements)
3558 { }
3559
3560 bool
3561 operator()(const Output_section* os1, const Output_section* os2) const;
3562
3563 private:
3564 bool
3565 is_before(const Output_section* os1, const Output_section* os2) const;
3566
3567 private:
3568 const Script_sections::Sections_elements* elements_;
3569 };
3570
3571 bool
3572 Sort_output_sections::operator()(const Output_section* os1,
3573 const Output_section* os2) const
3574 {
3575 // Sort first by the load address.
3576 uint64_t lma1 = (os1->has_load_address()
3577 ? os1->load_address()
3578 : os1->address());
3579 uint64_t lma2 = (os2->has_load_address()
3580 ? os2->load_address()
3581 : os2->address());
3582 if (lma1 != lma2)
3583 return lma1 < lma2;
3584
3585 // Then sort by the virtual address.
3586 if (os1->address() != os2->address())
3587 return os1->address() < os2->address();
3588
3589 // Sort TLS sections to the end.
3590 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3591 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3592 if (tls1 != tls2)
3593 return tls2;
3594
3595 // Sort PROGBITS before NOBITS.
3596 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
3597 return true;
3598 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
3599 return false;
3600
3601 // Sort non-NOLOAD before NOLOAD.
3602 if (os1->is_noload() && !os2->is_noload())
3603 return true;
3604 if (!os1->is_noload() && os2->is_noload())
3605 return true;
3606
3607 // The sections have the same address. Check the section positions
3608 // in accordance with the linker script.
3609 return this->is_before(os1, os2);
3610 }
3611
3612 // Return true if OS1 comes before OS2 in ELEMENTS_. This ensures
3613 // that we keep empty sections in the order in which they appear in a
3614 // linker script.
3615
3616 bool
3617 Sort_output_sections::is_before(const Output_section* os1,
3618 const Output_section* os2) const
3619 {
3620 if (this->elements_ == NULL)
3621 return false;
3622
3623 for (Script_sections::Sections_elements::const_iterator
3624 p = this->elements_->begin();
3625 p != this->elements_->end();
3626 ++p)
3627 {
3628 if (os1 == (*p)->get_output_section())
3629 {
3630 for (++p; p != this->elements_->end(); ++p)
3631 if (os2 == (*p)->get_output_section())
3632 return true;
3633 break;
3634 }
3635 }
3636
3637 return false;
3638 }
3639
3640 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3641 // We treat a section with the SHF_TLS flag set as taking up space
3642 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3643 // space for them in the file.
3644
3645 bool
3646 Script_sections::is_bss_section(const Output_section* os)
3647 {
3648 return (os->type() == elfcpp::SHT_NOBITS
3649 && (os->flags() & elfcpp::SHF_TLS) == 0);
3650 }
3651
3652 // Return the size taken by the file header and the program headers.
3653
3654 size_t
3655 Script_sections::total_header_size(Layout* layout) const
3656 {
3657 size_t segment_count = layout->segment_count();
3658 size_t file_header_size;
3659 size_t segment_headers_size;
3660 if (parameters->target().get_size() == 32)
3661 {
3662 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3663 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3664 }
3665 else if (parameters->target().get_size() == 64)
3666 {
3667 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3668 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3669 }
3670 else
3671 gold_unreachable();
3672
3673 return file_header_size + segment_headers_size;
3674 }
3675
3676 // Return the amount we have to subtract from the LMA to accomodate
3677 // headers of the given size. The complication is that the file
3678 // header have to be at the start of a page, as otherwise it will not
3679 // be at the start of the file.
3680
3681 uint64_t
3682 Script_sections::header_size_adjustment(uint64_t lma,
3683 size_t sizeof_headers) const
3684 {
3685 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3686 uint64_t hdr_lma = lma - sizeof_headers;
3687 hdr_lma &= ~(abi_pagesize - 1);
3688 return lma - hdr_lma;
3689 }
3690
3691 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3692 // the segment which should hold the file header and segment headers,
3693 // if any.
3694
3695 Output_segment*
3696 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3697 {
3698 gold_assert(this->saw_sections_clause_);
3699
3700 if (parameters->options().relocatable())
3701 return NULL;
3702
3703 if (this->saw_phdrs_clause())
3704 return create_segments_from_phdrs_clause(layout, dot_alignment);
3705
3706 Layout::Section_list sections;
3707 layout->get_allocated_sections(&sections);
3708
3709 // Sort the sections by address.
3710 std::stable_sort(sections.begin(), sections.end(),
3711 Sort_output_sections(this->sections_elements_));
3712
3713 this->create_note_and_tls_segments(layout, &sections);
3714
3715 // Walk through the sections adding them to PT_LOAD segments.
3716 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3717 Output_segment* first_seg = NULL;
3718 Output_segment* current_seg = NULL;
3719 bool is_current_seg_readonly = true;
3720 Layout::Section_list::iterator plast = sections.end();
3721 uint64_t last_vma = 0;
3722 uint64_t last_lma = 0;
3723 uint64_t last_size = 0;
3724 for (Layout::Section_list::iterator p = sections.begin();
3725 p != sections.end();
3726 ++p)
3727 {
3728 const uint64_t vma = (*p)->address();
3729 const uint64_t lma = ((*p)->has_load_address()
3730 ? (*p)->load_address()
3731 : vma);
3732 const uint64_t size = (*p)->current_data_size();
3733
3734 bool need_new_segment;
3735 if (current_seg == NULL)
3736 need_new_segment = true;
3737 else if (lma - vma != last_lma - last_vma)
3738 {
3739 // This section has a different LMA relationship than the
3740 // last one; we need a new segment.
3741 need_new_segment = true;
3742 }
3743 else if (align_address(last_lma + last_size, abi_pagesize)
3744 < align_address(lma, abi_pagesize))
3745 {
3746 // Putting this section in the segment would require
3747 // skipping a page.
3748 need_new_segment = true;
3749 }
3750 else if (is_bss_section(*plast) && !is_bss_section(*p))
3751 {
3752 // A non-BSS section can not follow a BSS section in the
3753 // same segment.
3754 need_new_segment = true;
3755 }
3756 else if (is_current_seg_readonly
3757 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3758 && !parameters->options().omagic())
3759 {
3760 // Don't put a writable section in the same segment as a
3761 // non-writable section.
3762 need_new_segment = true;
3763 }
3764 else
3765 {
3766 // Otherwise, reuse the existing segment.
3767 need_new_segment = false;
3768 }
3769
3770 elfcpp::Elf_Word seg_flags =
3771 Layout::section_flags_to_segment((*p)->flags());
3772
3773 if (need_new_segment)
3774 {
3775 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3776 seg_flags);
3777 current_seg->set_addresses(vma, lma);
3778 current_seg->set_minimum_p_align(dot_alignment);
3779 if (first_seg == NULL)
3780 first_seg = current_seg;
3781 is_current_seg_readonly = true;
3782 }
3783
3784 current_seg->add_output_section_to_load(layout, *p, seg_flags);
3785
3786 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3787 is_current_seg_readonly = false;
3788
3789 plast = p;
3790 last_vma = vma;
3791 last_lma = lma;
3792 last_size = size;
3793 }
3794
3795 // An ELF program should work even if the program headers are not in
3796 // a PT_LOAD segment. However, it appears that the Linux kernel
3797 // does not set the AT_PHDR auxiliary entry in that case. It sets
3798 // the load address to p_vaddr - p_offset of the first PT_LOAD
3799 // segment. It then sets AT_PHDR to the load address plus the
3800 // offset to the program headers, e_phoff in the file header. This
3801 // fails when the program headers appear in the file before the
3802 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3803 // segment to hold the file header and the program headers. This is
3804 // effectively what the GNU linker does, and it is slightly more
3805 // efficient in any case. We try to use the first PT_LOAD segment
3806 // if we can, otherwise we make a new one.
3807
3808 if (first_seg == NULL)
3809 return NULL;
3810
3811 // -n or -N mean that the program is not demand paged and there is
3812 // no need to put the program headers in a PT_LOAD segment.
3813 if (parameters->options().nmagic() || parameters->options().omagic())
3814 return NULL;
3815
3816 size_t sizeof_headers = this->total_header_size(layout);
3817
3818 uint64_t vma = first_seg->vaddr();
3819 uint64_t lma = first_seg->paddr();
3820
3821 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3822
3823 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3824 {
3825 first_seg->set_addresses(vma - subtract, lma - subtract);
3826 return first_seg;
3827 }
3828
3829 // If there is no room to squeeze in the headers, then punt. The
3830 // resulting executable probably won't run on GNU/Linux, but we
3831 // trust that the user knows what they are doing.
3832 if (lma < subtract || vma < subtract)
3833 return NULL;
3834
3835 // If memory regions have been specified and the address range
3836 // we are about to use is not contained within any region then
3837 // issue a warning message about the segment we are going to
3838 // create. It will be outside of any region and so possibly
3839 // using non-existent or protected memory. We test LMA rather
3840 // than VMA since we assume that the headers will never be
3841 // relocated.
3842 if (this->memory_regions_ != NULL
3843 && !this->block_in_region (NULL, layout, lma - subtract, subtract))
3844 gold_warning(_("creating a segment to contain the file and program"
3845 " headers outside of any MEMORY region"));
3846
3847 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3848 elfcpp::PF_R);
3849 load_seg->set_addresses(vma - subtract, lma - subtract);
3850
3851 return load_seg;
3852 }
3853
3854 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3855 // segment if there are any SHT_TLS sections.
3856
3857 void
3858 Script_sections::create_note_and_tls_segments(
3859 Layout* layout,
3860 const Layout::Section_list* sections)
3861 {
3862 gold_assert(!this->saw_phdrs_clause());
3863
3864 bool saw_tls = false;
3865 for (Layout::Section_list::const_iterator p = sections->begin();
3866 p != sections->end();
3867 ++p)
3868 {
3869 if ((*p)->type() == elfcpp::SHT_NOTE)
3870 {
3871 elfcpp::Elf_Word seg_flags =
3872 Layout::section_flags_to_segment((*p)->flags());
3873 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3874 seg_flags);
3875 oseg->add_output_section_to_nonload(*p, seg_flags);
3876
3877 // Incorporate any subsequent SHT_NOTE sections, in the
3878 // hopes that the script is sensible.
3879 Layout::Section_list::const_iterator pnext = p + 1;
3880 while (pnext != sections->end()
3881 && (*pnext)->type() == elfcpp::SHT_NOTE)
3882 {
3883 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3884 oseg->add_output_section_to_nonload(*pnext, seg_flags);
3885 p = pnext;
3886 ++pnext;
3887 }
3888 }
3889
3890 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3891 {
3892 if (saw_tls)
3893 gold_error(_("TLS sections are not adjacent"));
3894
3895 elfcpp::Elf_Word seg_flags =
3896 Layout::section_flags_to_segment((*p)->flags());
3897 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3898 seg_flags);
3899 oseg->add_output_section_to_nonload(*p, seg_flags);
3900
3901 Layout::Section_list::const_iterator pnext = p + 1;
3902 while (pnext != sections->end()
3903 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3904 {
3905 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3906 oseg->add_output_section_to_nonload(*pnext, seg_flags);
3907 p = pnext;
3908 ++pnext;
3909 }
3910
3911 saw_tls = true;
3912 }
3913 }
3914 }
3915
3916 // Add a program header. The PHDRS clause is syntactically distinct
3917 // from the SECTIONS clause, but we implement it with the SECTIONS
3918 // support because PHDRS is useless if there is no SECTIONS clause.
3919
3920 void
3921 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3922 bool includes_filehdr, bool includes_phdrs,
3923 bool is_flags_valid, unsigned int flags,
3924 Expression* load_address)
3925 {
3926 if (this->phdrs_elements_ == NULL)
3927 this->phdrs_elements_ = new Phdrs_elements();
3928 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3929 includes_filehdr,
3930 includes_phdrs,
3931 is_flags_valid, flags,
3932 load_address));
3933 }
3934
3935 // Return the number of segments we expect to create based on the
3936 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
3937
3938 size_t
3939 Script_sections::expected_segment_count(const Layout* layout) const
3940 {
3941 if (this->saw_phdrs_clause())
3942 return this->phdrs_elements_->size();
3943
3944 Layout::Section_list sections;
3945 layout->get_allocated_sections(&sections);
3946
3947 // We assume that we will need two PT_LOAD segments.
3948 size_t ret = 2;
3949
3950 bool saw_note = false;
3951 bool saw_tls = false;
3952 for (Layout::Section_list::const_iterator p = sections.begin();
3953 p != sections.end();
3954 ++p)
3955 {
3956 if ((*p)->type() == elfcpp::SHT_NOTE)
3957 {
3958 // Assume that all note sections will fit into a single
3959 // PT_NOTE segment.
3960 if (!saw_note)
3961 {
3962 ++ret;
3963 saw_note = true;
3964 }
3965 }
3966 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3967 {
3968 // There can only be one PT_TLS segment.
3969 if (!saw_tls)
3970 {
3971 ++ret;
3972 saw_tls = true;
3973 }
3974 }
3975 }
3976
3977 return ret;
3978 }
3979
3980 // Create the segments from a PHDRS clause. Return the segment which
3981 // should hold the file header and program headers, if any.
3982
3983 Output_segment*
3984 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
3985 uint64_t dot_alignment)
3986 {
3987 this->attach_sections_using_phdrs_clause(layout);
3988 return this->set_phdrs_clause_addresses(layout, dot_alignment);
3989 }
3990
3991 // Create the segments from the PHDRS clause, and put the output
3992 // sections in them.
3993
3994 void
3995 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3996 {
3997 typedef std::map<std::string, Output_segment*> Name_to_segment;
3998 Name_to_segment name_to_segment;
3999 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4000 p != this->phdrs_elements_->end();
4001 ++p)
4002 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4003
4004 // Walk through the output sections and attach them to segments.
4005 // Output sections in the script which do not list segments are
4006 // attached to the same set of segments as the immediately preceding
4007 // output section.
4008
4009 String_list* phdr_names = NULL;
4010 bool load_segments_only = false;
4011 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4012 p != this->sections_elements_->end();
4013 ++p)
4014 {
4015 bool orphan;
4016 String_list* old_phdr_names = phdr_names;
4017 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
4018 if (os == NULL)
4019 continue;
4020
4021 if (phdr_names == NULL)
4022 {
4023 gold_error(_("allocated section not in any segment"));
4024 continue;
4025 }
4026
4027 // We see a list of segments names. Disable PT_LOAD segment only
4028 // filtering.
4029 if (old_phdr_names != phdr_names)
4030 load_segments_only = false;
4031
4032 // If this is an orphan section--one that was not explicitly
4033 // mentioned in the linker script--then it should not inherit
4034 // any segment type other than PT_LOAD. Otherwise, e.g., the
4035 // PT_INTERP segment will pick up following orphan sections,
4036 // which does not make sense. If this is not an orphan section,
4037 // we trust the linker script.
4038 if (orphan)
4039 {
4040 // Enable PT_LOAD segments only filtering until we see another
4041 // list of segment names.
4042 load_segments_only = true;
4043 }
4044
4045 bool in_load_segment = false;
4046 for (String_list::const_iterator q = phdr_names->begin();
4047 q != phdr_names->end();
4048 ++q)
4049 {
4050 Name_to_segment::const_iterator r = name_to_segment.find(*q);
4051 if (r == name_to_segment.end())
4052 gold_error(_("no segment %s"), q->c_str());
4053 else
4054 {
4055 if (load_segments_only
4056 && r->second->type() != elfcpp::PT_LOAD)
4057 continue;
4058
4059 elfcpp::Elf_Word seg_flags =
4060 Layout::section_flags_to_segment(os->flags());
4061
4062 if (r->second->type() != elfcpp::PT_LOAD)
4063 r->second->add_output_section_to_nonload(os, seg_flags);
4064 else
4065 {
4066 r->second->add_output_section_to_load(layout, os, seg_flags);
4067 if (in_load_segment)
4068 gold_error(_("section in two PT_LOAD segments"));
4069 in_load_segment = true;
4070 }
4071 }
4072 }
4073
4074 if (!in_load_segment)
4075 gold_error(_("allocated section not in any PT_LOAD segment"));
4076 }
4077 }
4078
4079 // Set the addresses for segments created from a PHDRS clause. Return
4080 // the segment which should hold the file header and program headers,
4081 // if any.
4082
4083 Output_segment*
4084 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4085 uint64_t dot_alignment)
4086 {
4087 Output_segment* load_seg = NULL;
4088 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4089 p != this->phdrs_elements_->end();
4090 ++p)
4091 {
4092 // Note that we have to set the flags after adding the output
4093 // sections to the segment, as adding an output segment can
4094 // change the flags.
4095 (*p)->set_flags_if_valid();
4096
4097 Output_segment* oseg = (*p)->segment();
4098
4099 if (oseg->type() != elfcpp::PT_LOAD)
4100 {
4101 // The addresses of non-PT_LOAD segments are set from the
4102 // PT_LOAD segments.
4103 if ((*p)->has_load_address())
4104 gold_error(_("may only specify load address for PT_LOAD segment"));
4105 continue;
4106 }
4107
4108 oseg->set_minimum_p_align(dot_alignment);
4109
4110 // The output sections should have addresses from the SECTIONS
4111 // clause. The addresses don't have to be in order, so find the
4112 // one with the lowest load address. Use that to set the
4113 // address of the segment.
4114
4115 Output_section* osec = oseg->section_with_lowest_load_address();
4116 if (osec == NULL)
4117 {
4118 oseg->set_addresses(0, 0);
4119 continue;
4120 }
4121
4122 uint64_t vma = osec->address();
4123 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4124
4125 // Override the load address of the section with the load
4126 // address specified for the segment.
4127 if ((*p)->has_load_address())
4128 {
4129 if (osec->has_load_address())
4130 gold_warning(_("PHDRS load address overrides "
4131 "section %s load address"),
4132 osec->name());
4133
4134 lma = (*p)->load_address();
4135 }
4136
4137 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4138 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4139 {
4140 // We could support this if we wanted to.
4141 gold_error(_("using only one of FILEHDR and PHDRS is "
4142 "not currently supported"));
4143 }
4144 if (headers)
4145 {
4146 size_t sizeof_headers = this->total_header_size(layout);
4147 uint64_t subtract = this->header_size_adjustment(lma,
4148 sizeof_headers);
4149 if (lma >= subtract && vma >= subtract)
4150 {
4151 lma -= subtract;
4152 vma -= subtract;
4153 }
4154 else
4155 {
4156 gold_error(_("sections loaded on first page without room "
4157 "for file and program headers "
4158 "are not supported"));
4159 }
4160
4161 if (load_seg != NULL)
4162 gold_error(_("using FILEHDR and PHDRS on more than one "
4163 "PT_LOAD segment is not currently supported"));
4164 load_seg = oseg;
4165 }
4166
4167 oseg->set_addresses(vma, lma);
4168 }
4169
4170 return load_seg;
4171 }
4172
4173 // Add the file header and segment headers to non-load segments
4174 // specified in the PHDRS clause.
4175
4176 void
4177 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4178 Output_data* segment_headers)
4179 {
4180 gold_assert(this->saw_phdrs_clause());
4181 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4182 p != this->phdrs_elements_->end();
4183 ++p)
4184 {
4185 if ((*p)->type() != elfcpp::PT_LOAD)
4186 {
4187 if ((*p)->includes_phdrs())
4188 (*p)->segment()->add_initial_output_data(segment_headers);
4189 if ((*p)->includes_filehdr())
4190 (*p)->segment()->add_initial_output_data(file_header);
4191 }
4192 }
4193 }
4194
4195 // Look for an output section by name and return the address, the load
4196 // address, the alignment, and the size. This is used when an
4197 // expression refers to an output section which was not actually
4198 // created. This returns true if the section was found, false
4199 // otherwise.
4200
4201 bool
4202 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4203 uint64_t* load_address,
4204 uint64_t* addralign,
4205 uint64_t* size) const
4206 {
4207 if (!this->saw_sections_clause_)
4208 return false;
4209 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4210 p != this->sections_elements_->end();
4211 ++p)
4212 if ((*p)->get_output_section_info(name, address, load_address, addralign,
4213 size))
4214 return true;
4215 return false;
4216 }
4217
4218 // Release all Output_segments. This remove all pointers to all
4219 // Output_segments.
4220
4221 void
4222 Script_sections::release_segments()
4223 {
4224 if (this->saw_phdrs_clause())
4225 {
4226 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4227 p != this->phdrs_elements_->end();
4228 ++p)
4229 (*p)->release_segment();
4230 }
4231 }
4232
4233 // Print the SECTIONS clause to F for debugging.
4234
4235 void
4236 Script_sections::print(FILE* f) const
4237 {
4238 if (this->phdrs_elements_ != NULL)
4239 {
4240 fprintf(f, "PHDRS {\n");
4241 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4242 p != this->phdrs_elements_->end();
4243 ++p)
4244 (*p)->print(f);
4245 fprintf(f, "}\n");
4246 }
4247
4248 if (this->memory_regions_ != NULL)
4249 {
4250 fprintf(f, "MEMORY {\n");
4251 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4252 m != this->memory_regions_->end();
4253 ++m)
4254 (*m)->print(f);
4255 fprintf(f, "}\n");
4256 }
4257
4258 if (!this->saw_sections_clause_)
4259 return;
4260
4261 fprintf(f, "SECTIONS {\n");
4262
4263 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4264 p != this->sections_elements_->end();
4265 ++p)
4266 (*p)->print(f);
4267
4268 fprintf(f, "}\n");
4269 }
4270
4271 } // End namespace gold.
This page took 0.166004 seconds and 5 git commands to generate.