* layout.cc (Layout::set_segment_offsets): Align the file offset
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // Manage orphan sections. This is intended to be largely compatible
47 // with the GNU linker. The Linux kernel implicitly relies on
48 // something similar to the GNU linker's orphan placement. We
49 // originally used a simpler scheme here, but it caused the kernel
50 // build to fail, and was also rather inefficient.
51
52 class Orphan_section_placement
53 {
54 private:
55 typedef Script_sections::Elements_iterator Elements_iterator;
56
57 public:
58 Orphan_section_placement();
59
60 // Handle an output section during initialization of this mapping.
61 void
62 output_section_init(const std::string& name, Output_section*,
63 Elements_iterator location);
64
65 // Initialize the last location.
66 void
67 last_init(Elements_iterator location);
68
69 // Set *PWHERE to the address of an iterator pointing to the
70 // location to use for an orphan section. Return true if the
71 // iterator has a value, false otherwise.
72 bool
73 find_place(Output_section*, Elements_iterator** pwhere);
74
75 // Return the iterator being used for sections at the very end of
76 // the linker script.
77 Elements_iterator
78 last_place() const;
79
80 private:
81 // The places that we specifically recognize. This list is copied
82 // from the GNU linker.
83 enum Place_index
84 {
85 PLACE_TEXT,
86 PLACE_RODATA,
87 PLACE_DATA,
88 PLACE_BSS,
89 PLACE_REL,
90 PLACE_INTERP,
91 PLACE_NONALLOC,
92 PLACE_LAST,
93 PLACE_MAX
94 };
95
96 // The information we keep for a specific place.
97 struct Place
98 {
99 // The name of sections for this place.
100 const char* name;
101 // Whether we have a location for this place.
102 bool have_location;
103 // The iterator for this place.
104 Elements_iterator location;
105 };
106
107 // Initialize one place element.
108 void
109 initialize_place(Place_index, const char*);
110
111 // The places.
112 Place places_[PLACE_MAX];
113 // True if this is the first call to output_section_init.
114 bool first_init_;
115 };
116
117 // Initialize Orphan_section_placement.
118
119 Orphan_section_placement::Orphan_section_placement()
120 : first_init_(true)
121 {
122 this->initialize_place(PLACE_TEXT, ".text");
123 this->initialize_place(PLACE_RODATA, ".rodata");
124 this->initialize_place(PLACE_DATA, ".data");
125 this->initialize_place(PLACE_BSS, ".bss");
126 this->initialize_place(PLACE_REL, NULL);
127 this->initialize_place(PLACE_INTERP, ".interp");
128 this->initialize_place(PLACE_NONALLOC, NULL);
129 this->initialize_place(PLACE_LAST, NULL);
130 }
131
132 // Initialize one place element.
133
134 void
135 Orphan_section_placement::initialize_place(Place_index index, const char* name)
136 {
137 this->places_[index].name = name;
138 this->places_[index].have_location = false;
139 }
140
141 // While initializing the Orphan_section_placement information, this
142 // is called once for each output section named in the linker script.
143 // If we found an output section during the link, it will be passed in
144 // OS.
145
146 void
147 Orphan_section_placement::output_section_init(const std::string& name,
148 Output_section* os,
149 Elements_iterator location)
150 {
151 bool first_init = this->first_init_;
152 this->first_init_ = false;
153
154 for (int i = 0; i < PLACE_MAX; ++i)
155 {
156 if (this->places_[i].name != NULL && this->places_[i].name == name)
157 {
158 if (this->places_[i].have_location)
159 {
160 // We have already seen a section with this name.
161 return;
162 }
163
164 this->places_[i].location = location;
165 this->places_[i].have_location = true;
166
167 // If we just found the .bss section, restart the search for
168 // an unallocated section. This follows the GNU linker's
169 // behaviour.
170 if (i == PLACE_BSS)
171 this->places_[PLACE_NONALLOC].have_location = false;
172
173 return;
174 }
175 }
176
177 // Relocation sections.
178 if (!this->places_[PLACE_REL].have_location
179 && os != NULL
180 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
181 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
182 {
183 this->places_[PLACE_REL].location = location;
184 this->places_[PLACE_REL].have_location = true;
185 }
186
187 // We find the location for unallocated sections by finding the
188 // first debugging or comment section after the BSS section (if
189 // there is one).
190 if (!this->places_[PLACE_NONALLOC].have_location
191 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
192 {
193 // We add orphan sections after the location in PLACES_. We
194 // want to store unallocated sections before LOCATION. If this
195 // is the very first section, we can't use it.
196 if (!first_init)
197 {
198 --location;
199 this->places_[PLACE_NONALLOC].location = location;
200 this->places_[PLACE_NONALLOC].have_location = true;
201 }
202 }
203 }
204
205 // Initialize the last location.
206
207 void
208 Orphan_section_placement::last_init(Elements_iterator location)
209 {
210 this->places_[PLACE_LAST].location = location;
211 this->places_[PLACE_LAST].have_location = true;
212 }
213
214 // Set *PWHERE to the address of an iterator pointing to the location
215 // to use for an orphan section. Return true if the iterator has a
216 // value, false otherwise.
217
218 bool
219 Orphan_section_placement::find_place(Output_section* os,
220 Elements_iterator** pwhere)
221 {
222 // Figure out where OS should go. This is based on the GNU linker
223 // code. FIXME: The GNU linker handles small data sections
224 // specially, but we don't.
225 elfcpp::Elf_Word type = os->type();
226 elfcpp::Elf_Xword flags = os->flags();
227 Place_index index;
228 if ((flags & elfcpp::SHF_ALLOC) == 0
229 && !Layout::is_debug_info_section(os->name()))
230 index = PLACE_NONALLOC;
231 else if ((flags & elfcpp::SHF_ALLOC) == 0)
232 index = PLACE_LAST;
233 else if (type == elfcpp::SHT_NOTE)
234 index = PLACE_INTERP;
235 else if (type == elfcpp::SHT_NOBITS)
236 index = PLACE_BSS;
237 else if ((flags & elfcpp::SHF_WRITE) != 0)
238 index = PLACE_DATA;
239 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
240 index = PLACE_REL;
241 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
242 index = PLACE_RODATA;
243 else
244 index = PLACE_TEXT;
245
246 // If we don't have a location yet, try to find one based on a
247 // plausible ordering of sections.
248 if (!this->places_[index].have_location)
249 {
250 Place_index follow;
251 switch (index)
252 {
253 default:
254 follow = PLACE_MAX;
255 break;
256 case PLACE_RODATA:
257 follow = PLACE_TEXT;
258 break;
259 case PLACE_BSS:
260 follow = PLACE_DATA;
261 break;
262 case PLACE_REL:
263 follow = PLACE_TEXT;
264 break;
265 case PLACE_INTERP:
266 follow = PLACE_TEXT;
267 break;
268 }
269 if (follow != PLACE_MAX && this->places_[follow].have_location)
270 {
271 // Set the location of INDEX to the location of FOLLOW. The
272 // location of INDEX will then be incremented by the caller,
273 // so anything in INDEX will continue to be after anything
274 // in FOLLOW.
275 this->places_[index].location = this->places_[follow].location;
276 this->places_[index].have_location = true;
277 }
278 }
279
280 *pwhere = &this->places_[index].location;
281 bool ret = this->places_[index].have_location;
282
283 // The caller will set the location.
284 this->places_[index].have_location = true;
285
286 return ret;
287 }
288
289 // Return the iterator being used for sections at the very end of the
290 // linker script.
291
292 Orphan_section_placement::Elements_iterator
293 Orphan_section_placement::last_place() const
294 {
295 gold_assert(this->places_[PLACE_LAST].have_location);
296 return this->places_[PLACE_LAST].location;
297 }
298
299 // An element in a SECTIONS clause.
300
301 class Sections_element
302 {
303 public:
304 Sections_element()
305 { }
306
307 virtual ~Sections_element()
308 { }
309
310 // Return whether an output section is relro.
311 virtual bool
312 is_relro() const
313 { return false; }
314
315 // Record that an output section is relro.
316 virtual void
317 set_is_relro()
318 { }
319
320 // Create any required output sections. The only real
321 // implementation is in Output_section_definition.
322 virtual void
323 create_sections(Layout*)
324 { }
325
326 // Add any symbol being defined to the symbol table.
327 virtual void
328 add_symbols_to_table(Symbol_table*)
329 { }
330
331 // Finalize symbols and check assertions.
332 virtual void
333 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
334 { }
335
336 // Return the output section name to use for an input file name and
337 // section name. This only real implementation is in
338 // Output_section_definition.
339 virtual const char*
340 output_section_name(const char*, const char*, Output_section***)
341 { return NULL; }
342
343 // Initialize OSP with an output section.
344 virtual void
345 orphan_section_init(Orphan_section_placement*,
346 Script_sections::Elements_iterator)
347 { }
348
349 // Set section addresses. This includes applying assignments if the
350 // the expression is an absolute value.
351 virtual void
352 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
353 { }
354
355 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
356 // this section is constrained, and the input sections do not match,
357 // return the constraint, and set *POSD.
358 virtual Section_constraint
359 check_constraint(Output_section_definition**)
360 { return CONSTRAINT_NONE; }
361
362 // See if this is the alternate output section for a constrained
363 // output section. If it is, transfer the Output_section and return
364 // true. Otherwise return false.
365 virtual bool
366 alternate_constraint(Output_section_definition*, Section_constraint)
367 { return false; }
368
369 // Get the list of segments to use for an allocated section when
370 // using a PHDRS clause. If this is an allocated section, return
371 // the Output_section, and set *PHDRS_LIST (the first parameter) to
372 // the list of PHDRS to which it should be attached. If the PHDRS
373 // were not specified, don't change *PHDRS_LIST. When not returning
374 // NULL, set *ORPHAN (the second parameter) according to whether
375 // this is an orphan section--one that is not mentioned in the
376 // linker script.
377 virtual Output_section*
378 allocate_to_segment(String_list**, bool*)
379 { return NULL; }
380
381 // Look for an output section by name and return the address, the
382 // load address, the alignment, and the size. This is used when an
383 // expression refers to an output section which was not actually
384 // created. This returns true if the section was found, false
385 // otherwise. The only real definition is for
386 // Output_section_definition.
387 virtual bool
388 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
389 uint64_t*) const
390 { return false; }
391
392 // Return the associated Output_section if there is one.
393 virtual Output_section*
394 get_output_section() const
395 { return NULL; }
396
397 // Print the element for debugging purposes.
398 virtual void
399 print(FILE* f) const = 0;
400 };
401
402 // An assignment in a SECTIONS clause outside of an output section.
403
404 class Sections_element_assignment : public Sections_element
405 {
406 public:
407 Sections_element_assignment(const char* name, size_t namelen,
408 Expression* val, bool provide, bool hidden)
409 : assignment_(name, namelen, val, provide, hidden)
410 { }
411
412 // Add the symbol to the symbol table.
413 void
414 add_symbols_to_table(Symbol_table* symtab)
415 { this->assignment_.add_to_table(symtab); }
416
417 // Finalize the symbol.
418 void
419 finalize_symbols(Symbol_table* symtab, const Layout* layout,
420 uint64_t* dot_value)
421 {
422 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
423 }
424
425 // Set the section address. There is no section here, but if the
426 // value is absolute, we set the symbol. This permits us to use
427 // absolute symbols when setting dot.
428 void
429 set_section_addresses(Symbol_table* symtab, Layout* layout,
430 uint64_t* dot_value, uint64_t*)
431 {
432 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
433 }
434
435 // Print for debugging.
436 void
437 print(FILE* f) const
438 {
439 fprintf(f, " ");
440 this->assignment_.print(f);
441 }
442
443 private:
444 Symbol_assignment assignment_;
445 };
446
447 // An assignment to the dot symbol in a SECTIONS clause outside of an
448 // output section.
449
450 class Sections_element_dot_assignment : public Sections_element
451 {
452 public:
453 Sections_element_dot_assignment(Expression* val)
454 : val_(val)
455 { }
456
457 // Finalize the symbol.
458 void
459 finalize_symbols(Symbol_table* symtab, const Layout* layout,
460 uint64_t* dot_value)
461 {
462 // We ignore the section of the result because outside of an
463 // output section definition the dot symbol is always considered
464 // to be absolute.
465 Output_section* dummy;
466 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
467 NULL, &dummy);
468 }
469
470 // Update the dot symbol while setting section addresses.
471 void
472 set_section_addresses(Symbol_table* symtab, Layout* layout,
473 uint64_t* dot_value, uint64_t* load_address)
474 {
475 Output_section* dummy;
476 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
477 NULL, &dummy);
478 *load_address = *dot_value;
479 }
480
481 // Print for debugging.
482 void
483 print(FILE* f) const
484 {
485 fprintf(f, " . = ");
486 this->val_->print(f);
487 fprintf(f, "\n");
488 }
489
490 private:
491 Expression* val_;
492 };
493
494 // An assertion in a SECTIONS clause outside of an output section.
495
496 class Sections_element_assertion : public Sections_element
497 {
498 public:
499 Sections_element_assertion(Expression* check, const char* message,
500 size_t messagelen)
501 : assertion_(check, message, messagelen)
502 { }
503
504 // Check the assertion.
505 void
506 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
507 { this->assertion_.check(symtab, layout); }
508
509 // Print for debugging.
510 void
511 print(FILE* f) const
512 {
513 fprintf(f, " ");
514 this->assertion_.print(f);
515 }
516
517 private:
518 Script_assertion assertion_;
519 };
520
521 // An element in an output section in a SECTIONS clause.
522
523 class Output_section_element
524 {
525 public:
526 // A list of input sections.
527 typedef std::list<Output_section::Simple_input_section> Input_section_list;
528
529 Output_section_element()
530 { }
531
532 virtual ~Output_section_element()
533 { }
534
535 // Return whether this element requires an output section to exist.
536 virtual bool
537 needs_output_section() const
538 { return false; }
539
540 // Add any symbol being defined to the symbol table.
541 virtual void
542 add_symbols_to_table(Symbol_table*)
543 { }
544
545 // Finalize symbols and check assertions.
546 virtual void
547 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
548 { }
549
550 // Return whether this element matches FILE_NAME and SECTION_NAME.
551 // The only real implementation is in Output_section_element_input.
552 virtual bool
553 match_name(const char*, const char*) const
554 { return false; }
555
556 // Set section addresses. This includes applying assignments if the
557 // the expression is an absolute value.
558 virtual void
559 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
560 uint64_t*, Output_section**, std::string*,
561 Input_section_list*)
562 { }
563
564 // Print the element for debugging purposes.
565 virtual void
566 print(FILE* f) const = 0;
567
568 protected:
569 // Return a fill string that is LENGTH bytes long, filling it with
570 // FILL.
571 std::string
572 get_fill_string(const std::string* fill, section_size_type length) const;
573 };
574
575 std::string
576 Output_section_element::get_fill_string(const std::string* fill,
577 section_size_type length) const
578 {
579 std::string this_fill;
580 this_fill.reserve(length);
581 while (this_fill.length() + fill->length() <= length)
582 this_fill += *fill;
583 if (this_fill.length() < length)
584 this_fill.append(*fill, 0, length - this_fill.length());
585 return this_fill;
586 }
587
588 // A symbol assignment in an output section.
589
590 class Output_section_element_assignment : public Output_section_element
591 {
592 public:
593 Output_section_element_assignment(const char* name, size_t namelen,
594 Expression* val, bool provide,
595 bool hidden)
596 : assignment_(name, namelen, val, provide, hidden)
597 { }
598
599 // Add the symbol to the symbol table.
600 void
601 add_symbols_to_table(Symbol_table* symtab)
602 { this->assignment_.add_to_table(symtab); }
603
604 // Finalize the symbol.
605 void
606 finalize_symbols(Symbol_table* symtab, const Layout* layout,
607 uint64_t* dot_value, Output_section** dot_section)
608 {
609 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
610 *dot_section);
611 }
612
613 // Set the section address. There is no section here, but if the
614 // value is absolute, we set the symbol. This permits us to use
615 // absolute symbols when setting dot.
616 void
617 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
618 uint64_t, uint64_t* dot_value, Output_section**,
619 std::string*, Input_section_list*)
620 {
621 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
622 }
623
624 // Print for debugging.
625 void
626 print(FILE* f) const
627 {
628 fprintf(f, " ");
629 this->assignment_.print(f);
630 }
631
632 private:
633 Symbol_assignment assignment_;
634 };
635
636 // An assignment to the dot symbol in an output section.
637
638 class Output_section_element_dot_assignment : public Output_section_element
639 {
640 public:
641 Output_section_element_dot_assignment(Expression* val)
642 : val_(val)
643 { }
644
645 // Finalize the symbol.
646 void
647 finalize_symbols(Symbol_table* symtab, const Layout* layout,
648 uint64_t* dot_value, Output_section** dot_section)
649 {
650 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
651 *dot_section, dot_section);
652 }
653
654 // Update the dot symbol while setting section addresses.
655 void
656 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
657 uint64_t, uint64_t* dot_value, Output_section**,
658 std::string*, Input_section_list*);
659
660 // Print for debugging.
661 void
662 print(FILE* f) const
663 {
664 fprintf(f, " . = ");
665 this->val_->print(f);
666 fprintf(f, "\n");
667 }
668
669 private:
670 Expression* val_;
671 };
672
673 // Update the dot symbol while setting section addresses.
674
675 void
676 Output_section_element_dot_assignment::set_section_addresses(
677 Symbol_table* symtab,
678 Layout* layout,
679 Output_section* output_section,
680 uint64_t,
681 uint64_t* dot_value,
682 Output_section** dot_section,
683 std::string* fill,
684 Input_section_list*)
685 {
686 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
687 *dot_value, *dot_section,
688 dot_section);
689 if (next_dot < *dot_value)
690 gold_error(_("dot may not move backward"));
691 if (next_dot > *dot_value && output_section != NULL)
692 {
693 section_size_type length = convert_to_section_size_type(next_dot
694 - *dot_value);
695 Output_section_data* posd;
696 if (fill->empty())
697 posd = new Output_data_zero_fill(length, 0);
698 else
699 {
700 std::string this_fill = this->get_fill_string(fill, length);
701 posd = new Output_data_const(this_fill, 0);
702 }
703 output_section->add_output_section_data(posd);
704 layout->new_output_section_data_from_script(posd);
705 }
706 *dot_value = next_dot;
707 }
708
709 // An assertion in an output section.
710
711 class Output_section_element_assertion : public Output_section_element
712 {
713 public:
714 Output_section_element_assertion(Expression* check, const char* message,
715 size_t messagelen)
716 : assertion_(check, message, messagelen)
717 { }
718
719 void
720 print(FILE* f) const
721 {
722 fprintf(f, " ");
723 this->assertion_.print(f);
724 }
725
726 private:
727 Script_assertion assertion_;
728 };
729
730 // We use a special instance of Output_section_data to handle BYTE,
731 // SHORT, etc. This permits forward references to symbols in the
732 // expressions.
733
734 class Output_data_expression : public Output_section_data
735 {
736 public:
737 Output_data_expression(int size, bool is_signed, Expression* val,
738 const Symbol_table* symtab, const Layout* layout,
739 uint64_t dot_value, Output_section* dot_section)
740 : Output_section_data(size, 0, true),
741 is_signed_(is_signed), val_(val), symtab_(symtab),
742 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
743 { }
744
745 protected:
746 // Write the data to the output file.
747 void
748 do_write(Output_file*);
749
750 // Write the data to a buffer.
751 void
752 do_write_to_buffer(unsigned char*);
753
754 // Write to a map file.
755 void
756 do_print_to_mapfile(Mapfile* mapfile) const
757 { mapfile->print_output_data(this, _("** expression")); }
758
759 private:
760 template<bool big_endian>
761 void
762 endian_write_to_buffer(uint64_t, unsigned char*);
763
764 bool is_signed_;
765 Expression* val_;
766 const Symbol_table* symtab_;
767 const Layout* layout_;
768 uint64_t dot_value_;
769 Output_section* dot_section_;
770 };
771
772 // Write the data element to the output file.
773
774 void
775 Output_data_expression::do_write(Output_file* of)
776 {
777 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
778 this->write_to_buffer(view);
779 of->write_output_view(this->offset(), this->data_size(), view);
780 }
781
782 // Write the data element to a buffer.
783
784 void
785 Output_data_expression::do_write_to_buffer(unsigned char* buf)
786 {
787 Output_section* dummy;
788 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
789 true, this->dot_value_,
790 this->dot_section_, &dummy);
791
792 if (parameters->target().is_big_endian())
793 this->endian_write_to_buffer<true>(val, buf);
794 else
795 this->endian_write_to_buffer<false>(val, buf);
796 }
797
798 template<bool big_endian>
799 void
800 Output_data_expression::endian_write_to_buffer(uint64_t val,
801 unsigned char* buf)
802 {
803 switch (this->data_size())
804 {
805 case 1:
806 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
807 break;
808 case 2:
809 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
810 break;
811 case 4:
812 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
813 break;
814 case 8:
815 if (parameters->target().get_size() == 32)
816 {
817 val &= 0xffffffff;
818 if (this->is_signed_ && (val & 0x80000000) != 0)
819 val |= 0xffffffff00000000LL;
820 }
821 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
822 break;
823 default:
824 gold_unreachable();
825 }
826 }
827
828 // A data item in an output section.
829
830 class Output_section_element_data : public Output_section_element
831 {
832 public:
833 Output_section_element_data(int size, bool is_signed, Expression* val)
834 : size_(size), is_signed_(is_signed), val_(val)
835 { }
836
837 // If there is a data item, then we must create an output section.
838 bool
839 needs_output_section() const
840 { return true; }
841
842 // Finalize symbols--we just need to update dot.
843 void
844 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
845 Output_section**)
846 { *dot_value += this->size_; }
847
848 // Store the value in the section.
849 void
850 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
851 uint64_t* dot_value, Output_section**, std::string*,
852 Input_section_list*);
853
854 // Print for debugging.
855 void
856 print(FILE*) const;
857
858 private:
859 // The size in bytes.
860 int size_;
861 // Whether the value is signed.
862 bool is_signed_;
863 // The value.
864 Expression* val_;
865 };
866
867 // Store the value in the section.
868
869 void
870 Output_section_element_data::set_section_addresses(
871 Symbol_table* symtab,
872 Layout* layout,
873 Output_section* os,
874 uint64_t,
875 uint64_t* dot_value,
876 Output_section** dot_section,
877 std::string*,
878 Input_section_list*)
879 {
880 gold_assert(os != NULL);
881 Output_data_expression* expression =
882 new Output_data_expression(this->size_, this->is_signed_, this->val_,
883 symtab, layout, *dot_value, *dot_section);
884 os->add_output_section_data(expression);
885 layout->new_output_section_data_from_script(expression);
886 *dot_value += this->size_;
887 }
888
889 // Print for debugging.
890
891 void
892 Output_section_element_data::print(FILE* f) const
893 {
894 const char* s;
895 switch (this->size_)
896 {
897 case 1:
898 s = "BYTE";
899 break;
900 case 2:
901 s = "SHORT";
902 break;
903 case 4:
904 s = "LONG";
905 break;
906 case 8:
907 if (this->is_signed_)
908 s = "SQUAD";
909 else
910 s = "QUAD";
911 break;
912 default:
913 gold_unreachable();
914 }
915 fprintf(f, " %s(", s);
916 this->val_->print(f);
917 fprintf(f, ")\n");
918 }
919
920 // A fill value setting in an output section.
921
922 class Output_section_element_fill : public Output_section_element
923 {
924 public:
925 Output_section_element_fill(Expression* val)
926 : val_(val)
927 { }
928
929 // Update the fill value while setting section addresses.
930 void
931 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932 uint64_t, uint64_t* dot_value,
933 Output_section** dot_section,
934 std::string* fill, Input_section_list*)
935 {
936 Output_section* fill_section;
937 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
938 *dot_value, *dot_section,
939 &fill_section);
940 if (fill_section != NULL)
941 gold_warning(_("fill value is not absolute"));
942 // FIXME: The GNU linker supports fill values of arbitrary length.
943 unsigned char fill_buff[4];
944 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
945 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
946 }
947
948 // Print for debugging.
949 void
950 print(FILE* f) const
951 {
952 fprintf(f, " FILL(");
953 this->val_->print(f);
954 fprintf(f, ")\n");
955 }
956
957 private:
958 // The new fill value.
959 Expression* val_;
960 };
961
962 // Return whether STRING contains a wildcard character. This is used
963 // to speed up matching.
964
965 static inline bool
966 is_wildcard_string(const std::string& s)
967 {
968 return strpbrk(s.c_str(), "?*[") != NULL;
969 }
970
971 // An input section specification in an output section
972
973 class Output_section_element_input : public Output_section_element
974 {
975 public:
976 Output_section_element_input(const Input_section_spec* spec, bool keep);
977
978 // Finalize symbols--just update the value of the dot symbol.
979 void
980 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
981 Output_section** dot_section)
982 {
983 *dot_value = this->final_dot_value_;
984 *dot_section = this->final_dot_section_;
985 }
986
987 // See whether we match FILE_NAME and SECTION_NAME as an input
988 // section.
989 bool
990 match_name(const char* file_name, const char* section_name) const;
991
992 // Set the section address.
993 void
994 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
995 uint64_t subalign, uint64_t* dot_value,
996 Output_section**, std::string* fill,
997 Input_section_list*);
998
999 // Print for debugging.
1000 void
1001 print(FILE* f) const;
1002
1003 private:
1004 // An input section pattern.
1005 struct Input_section_pattern
1006 {
1007 std::string pattern;
1008 bool pattern_is_wildcard;
1009 Sort_wildcard sort;
1010
1011 Input_section_pattern(const char* patterna, size_t patternlena,
1012 Sort_wildcard sorta)
1013 : pattern(patterna, patternlena),
1014 pattern_is_wildcard(is_wildcard_string(this->pattern)),
1015 sort(sorta)
1016 { }
1017 };
1018
1019 typedef std::vector<Input_section_pattern> Input_section_patterns;
1020
1021 // Filename_exclusions is a pair of filename pattern and a bool
1022 // indicating whether the filename is a wildcard.
1023 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1024
1025 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1026 // indicates whether this is a wildcard pattern.
1027 static inline bool
1028 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1029 {
1030 return (is_wildcard_pattern
1031 ? fnmatch(pattern, string, 0) == 0
1032 : strcmp(string, pattern) == 0);
1033 }
1034
1035 // See if we match a file name.
1036 bool
1037 match_file_name(const char* file_name) const;
1038
1039 // The file name pattern. If this is the empty string, we match all
1040 // files.
1041 std::string filename_pattern_;
1042 // Whether the file name pattern is a wildcard.
1043 bool filename_is_wildcard_;
1044 // How the file names should be sorted. This may only be
1045 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1046 Sort_wildcard filename_sort_;
1047 // The list of file names to exclude.
1048 Filename_exclusions filename_exclusions_;
1049 // The list of input section patterns.
1050 Input_section_patterns input_section_patterns_;
1051 // Whether to keep this section when garbage collecting.
1052 bool keep_;
1053 // The value of dot after including all matching sections.
1054 uint64_t final_dot_value_;
1055 // The section where dot is defined after including all matching
1056 // sections.
1057 Output_section* final_dot_section_;
1058 };
1059
1060 // Construct Output_section_element_input. The parser records strings
1061 // as pointers into a copy of the script file, which will go away when
1062 // parsing is complete. We make sure they are in std::string objects.
1063
1064 Output_section_element_input::Output_section_element_input(
1065 const Input_section_spec* spec,
1066 bool keep)
1067 : filename_pattern_(),
1068 filename_is_wildcard_(false),
1069 filename_sort_(spec->file.sort),
1070 filename_exclusions_(),
1071 input_section_patterns_(),
1072 keep_(keep),
1073 final_dot_value_(0),
1074 final_dot_section_(NULL)
1075 {
1076 // The filename pattern "*" is common, and matches all files. Turn
1077 // it into the empty string.
1078 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1079 this->filename_pattern_.assign(spec->file.name.value,
1080 spec->file.name.length);
1081 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
1082
1083 if (spec->input_sections.exclude != NULL)
1084 {
1085 for (String_list::const_iterator p =
1086 spec->input_sections.exclude->begin();
1087 p != spec->input_sections.exclude->end();
1088 ++p)
1089 {
1090 bool is_wildcard = is_wildcard_string(*p);
1091 this->filename_exclusions_.push_back(std::make_pair(*p,
1092 is_wildcard));
1093 }
1094 }
1095
1096 if (spec->input_sections.sections != NULL)
1097 {
1098 Input_section_patterns& isp(this->input_section_patterns_);
1099 for (String_sort_list::const_iterator p =
1100 spec->input_sections.sections->begin();
1101 p != spec->input_sections.sections->end();
1102 ++p)
1103 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1104 p->sort));
1105 }
1106 }
1107
1108 // See whether we match FILE_NAME.
1109
1110 bool
1111 Output_section_element_input::match_file_name(const char* file_name) const
1112 {
1113 if (!this->filename_pattern_.empty())
1114 {
1115 // If we were called with no filename, we refuse to match a
1116 // pattern which requires a file name.
1117 if (file_name == NULL)
1118 return false;
1119
1120 if (!match(file_name, this->filename_pattern_.c_str(),
1121 this->filename_is_wildcard_))
1122 return false;
1123 }
1124
1125 if (file_name != NULL)
1126 {
1127 // Now we have to see whether FILE_NAME matches one of the
1128 // exclusion patterns, if any.
1129 for (Filename_exclusions::const_iterator p =
1130 this->filename_exclusions_.begin();
1131 p != this->filename_exclusions_.end();
1132 ++p)
1133 {
1134 if (match(file_name, p->first.c_str(), p->second))
1135 return false;
1136 }
1137 }
1138
1139 return true;
1140 }
1141
1142 // See whether we match FILE_NAME and SECTION_NAME.
1143
1144 bool
1145 Output_section_element_input::match_name(const char* file_name,
1146 const char* section_name) const
1147 {
1148 if (!this->match_file_name(file_name))
1149 return false;
1150
1151 // If there are no section name patterns, then we match.
1152 if (this->input_section_patterns_.empty())
1153 return true;
1154
1155 // See whether we match the section name patterns.
1156 for (Input_section_patterns::const_iterator p =
1157 this->input_section_patterns_.begin();
1158 p != this->input_section_patterns_.end();
1159 ++p)
1160 {
1161 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1162 return true;
1163 }
1164
1165 // We didn't match any section names, so we didn't match.
1166 return false;
1167 }
1168
1169 // Information we use to sort the input sections.
1170
1171 class Input_section_info
1172 {
1173 public:
1174 Input_section_info(const Output_section::Simple_input_section& input_section)
1175 : input_section_(input_section), section_name_(),
1176 size_(0), addralign_(1)
1177 { }
1178
1179 // Return the simple input section.
1180 const Output_section::Simple_input_section&
1181 input_section() const
1182 { return this->input_section_; }
1183
1184 // Return the object.
1185 Relobj*
1186 relobj() const
1187 { return this->input_section_.relobj(); }
1188
1189 // Return the section index.
1190 unsigned int
1191 shndx()
1192 { return this->input_section_.shndx(); }
1193
1194 // Return the section name.
1195 const std::string&
1196 section_name() const
1197 { return this->section_name_; }
1198
1199 // Set the section name.
1200 void
1201 set_section_name(const std::string name)
1202 { this->section_name_ = name; }
1203
1204 // Return the section size.
1205 uint64_t
1206 size() const
1207 { return this->size_; }
1208
1209 // Set the section size.
1210 void
1211 set_size(uint64_t size)
1212 { this->size_ = size; }
1213
1214 // Return the address alignment.
1215 uint64_t
1216 addralign() const
1217 { return this->addralign_; }
1218
1219 // Set the address alignment.
1220 void
1221 set_addralign(uint64_t addralign)
1222 { this->addralign_ = addralign; }
1223
1224 private:
1225 // Input section, can be a relaxed section.
1226 Output_section::Simple_input_section input_section_;
1227 // Name of the section.
1228 std::string section_name_;
1229 // Section size.
1230 uint64_t size_;
1231 // Address alignment.
1232 uint64_t addralign_;
1233 };
1234
1235 // A class to sort the input sections.
1236
1237 class Input_section_sorter
1238 {
1239 public:
1240 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1241 : filename_sort_(filename_sort), section_sort_(section_sort)
1242 { }
1243
1244 bool
1245 operator()(const Input_section_info&, const Input_section_info&) const;
1246
1247 private:
1248 Sort_wildcard filename_sort_;
1249 Sort_wildcard section_sort_;
1250 };
1251
1252 bool
1253 Input_section_sorter::operator()(const Input_section_info& isi1,
1254 const Input_section_info& isi2) const
1255 {
1256 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1257 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1258 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1259 && isi1.addralign() == isi2.addralign()))
1260 {
1261 if (isi1.section_name() != isi2.section_name())
1262 return isi1.section_name() < isi2.section_name();
1263 }
1264 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1265 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1266 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1267 {
1268 if (isi1.addralign() != isi2.addralign())
1269 return isi1.addralign() < isi2.addralign();
1270 }
1271 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1272 {
1273 if (isi1.relobj()->name() != isi2.relobj()->name())
1274 return (isi1.relobj()->name() < isi2.relobj()->name());
1275 }
1276
1277 // Otherwise we leave them in the same order.
1278 return false;
1279 }
1280
1281 // Set the section address. Look in INPUT_SECTIONS for sections which
1282 // match this spec, sort them as specified, and add them to the output
1283 // section.
1284
1285 void
1286 Output_section_element_input::set_section_addresses(
1287 Symbol_table*,
1288 Layout* layout,
1289 Output_section* output_section,
1290 uint64_t subalign,
1291 uint64_t* dot_value,
1292 Output_section** dot_section,
1293 std::string* fill,
1294 Input_section_list* input_sections)
1295 {
1296 // We build a list of sections which match each
1297 // Input_section_pattern.
1298
1299 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1300 size_t input_pattern_count = this->input_section_patterns_.size();
1301 if (input_pattern_count == 0)
1302 input_pattern_count = 1;
1303 Matching_sections matching_sections(input_pattern_count);
1304
1305 // Look through the list of sections for this output section. Add
1306 // each one which matches to one of the elements of
1307 // MATCHING_SECTIONS.
1308
1309 Input_section_list::iterator p = input_sections->begin();
1310 while (p != input_sections->end())
1311 {
1312 Relobj* relobj = p->relobj();
1313 unsigned int shndx = p->shndx();
1314 Input_section_info isi(*p);
1315
1316 // Calling section_name and section_addralign is not very
1317 // efficient.
1318
1319 // Lock the object so that we can get information about the
1320 // section. This is OK since we know we are single-threaded
1321 // here.
1322 {
1323 const Task* task = reinterpret_cast<const Task*>(-1);
1324 Task_lock_obj<Object> tl(task, relobj);
1325
1326 isi.set_section_name(relobj->section_name(shndx));
1327 if (p->is_relaxed_input_section())
1328 {
1329 // We use current data size because relxed section sizes may not
1330 // have finalized yet.
1331 isi.set_size(p->relaxed_input_section()->current_data_size());
1332 isi.set_addralign(p->relaxed_input_section()->addralign());
1333 }
1334 else
1335 {
1336 isi.set_size(relobj->section_size(shndx));
1337 isi.set_addralign(relobj->section_addralign(shndx));
1338 }
1339 }
1340
1341 if (!this->match_file_name(relobj->name().c_str()))
1342 ++p;
1343 else if (this->input_section_patterns_.empty())
1344 {
1345 matching_sections[0].push_back(isi);
1346 p = input_sections->erase(p);
1347 }
1348 else
1349 {
1350 size_t i;
1351 for (i = 0; i < input_pattern_count; ++i)
1352 {
1353 const Input_section_pattern&
1354 isp(this->input_section_patterns_[i]);
1355 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1356 isp.pattern_is_wildcard))
1357 break;
1358 }
1359
1360 if (i >= this->input_section_patterns_.size())
1361 ++p;
1362 else
1363 {
1364 matching_sections[i].push_back(isi);
1365 p = input_sections->erase(p);
1366 }
1367 }
1368 }
1369
1370 // Look through MATCHING_SECTIONS. Sort each one as specified,
1371 // using a stable sort so that we get the default order when
1372 // sections are otherwise equal. Add each input section to the
1373 // output section.
1374
1375 uint64_t dot = *dot_value;
1376 for (size_t i = 0; i < input_pattern_count; ++i)
1377 {
1378 if (matching_sections[i].empty())
1379 continue;
1380
1381 gold_assert(output_section != NULL);
1382
1383 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1384 if (isp.sort != SORT_WILDCARD_NONE
1385 || this->filename_sort_ != SORT_WILDCARD_NONE)
1386 std::stable_sort(matching_sections[i].begin(),
1387 matching_sections[i].end(),
1388 Input_section_sorter(this->filename_sort_,
1389 isp.sort));
1390
1391 for (std::vector<Input_section_info>::const_iterator p =
1392 matching_sections[i].begin();
1393 p != matching_sections[i].end();
1394 ++p)
1395 {
1396 uint64_t this_subalign = p->addralign();
1397 if (this_subalign < subalign)
1398 this_subalign = subalign;
1399
1400 uint64_t address = align_address(dot, this_subalign);
1401
1402 if (address > dot && !fill->empty())
1403 {
1404 section_size_type length =
1405 convert_to_section_size_type(address - dot);
1406 std::string this_fill = this->get_fill_string(fill, length);
1407 Output_section_data* posd = new Output_data_const(this_fill, 0);
1408 output_section->add_output_section_data(posd);
1409 layout->new_output_section_data_from_script(posd);
1410 }
1411
1412 output_section->add_input_section_for_script(p->input_section(),
1413 p->size(),
1414 this_subalign);
1415
1416 dot = address + p->size();
1417 }
1418 }
1419
1420 // An SHF_TLS/SHT_NOBITS section does not take up any
1421 // address space.
1422 if (output_section == NULL
1423 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1424 || output_section->type() != elfcpp::SHT_NOBITS)
1425 *dot_value = dot;
1426
1427 this->final_dot_value_ = *dot_value;
1428 this->final_dot_section_ = *dot_section;
1429 }
1430
1431 // Print for debugging.
1432
1433 void
1434 Output_section_element_input::print(FILE* f) const
1435 {
1436 fprintf(f, " ");
1437
1438 if (this->keep_)
1439 fprintf(f, "KEEP(");
1440
1441 if (!this->filename_pattern_.empty())
1442 {
1443 bool need_close_paren = false;
1444 switch (this->filename_sort_)
1445 {
1446 case SORT_WILDCARD_NONE:
1447 break;
1448 case SORT_WILDCARD_BY_NAME:
1449 fprintf(f, "SORT_BY_NAME(");
1450 need_close_paren = true;
1451 break;
1452 default:
1453 gold_unreachable();
1454 }
1455
1456 fprintf(f, "%s", this->filename_pattern_.c_str());
1457
1458 if (need_close_paren)
1459 fprintf(f, ")");
1460 }
1461
1462 if (!this->input_section_patterns_.empty()
1463 || !this->filename_exclusions_.empty())
1464 {
1465 fprintf(f, "(");
1466
1467 bool need_space = false;
1468 if (!this->filename_exclusions_.empty())
1469 {
1470 fprintf(f, "EXCLUDE_FILE(");
1471 bool need_comma = false;
1472 for (Filename_exclusions::const_iterator p =
1473 this->filename_exclusions_.begin();
1474 p != this->filename_exclusions_.end();
1475 ++p)
1476 {
1477 if (need_comma)
1478 fprintf(f, ", ");
1479 fprintf(f, "%s", p->first.c_str());
1480 need_comma = true;
1481 }
1482 fprintf(f, ")");
1483 need_space = true;
1484 }
1485
1486 for (Input_section_patterns::const_iterator p =
1487 this->input_section_patterns_.begin();
1488 p != this->input_section_patterns_.end();
1489 ++p)
1490 {
1491 if (need_space)
1492 fprintf(f, " ");
1493
1494 int close_parens = 0;
1495 switch (p->sort)
1496 {
1497 case SORT_WILDCARD_NONE:
1498 break;
1499 case SORT_WILDCARD_BY_NAME:
1500 fprintf(f, "SORT_BY_NAME(");
1501 close_parens = 1;
1502 break;
1503 case SORT_WILDCARD_BY_ALIGNMENT:
1504 fprintf(f, "SORT_BY_ALIGNMENT(");
1505 close_parens = 1;
1506 break;
1507 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1508 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1509 close_parens = 2;
1510 break;
1511 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1512 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1513 close_parens = 2;
1514 break;
1515 default:
1516 gold_unreachable();
1517 }
1518
1519 fprintf(f, "%s", p->pattern.c_str());
1520
1521 for (int i = 0; i < close_parens; ++i)
1522 fprintf(f, ")");
1523
1524 need_space = true;
1525 }
1526
1527 fprintf(f, ")");
1528 }
1529
1530 if (this->keep_)
1531 fprintf(f, ")");
1532
1533 fprintf(f, "\n");
1534 }
1535
1536 // An output section.
1537
1538 class Output_section_definition : public Sections_element
1539 {
1540 public:
1541 typedef Output_section_element::Input_section_list Input_section_list;
1542
1543 Output_section_definition(const char* name, size_t namelen,
1544 const Parser_output_section_header* header);
1545
1546 // Finish the output section with the information in the trailer.
1547 void
1548 finish(const Parser_output_section_trailer* trailer);
1549
1550 // Add a symbol to be defined.
1551 void
1552 add_symbol_assignment(const char* name, size_t length, Expression* value,
1553 bool provide, bool hidden);
1554
1555 // Add an assignment to the special dot symbol.
1556 void
1557 add_dot_assignment(Expression* value);
1558
1559 // Add an assertion.
1560 void
1561 add_assertion(Expression* check, const char* message, size_t messagelen);
1562
1563 // Add a data item to the current output section.
1564 void
1565 add_data(int size, bool is_signed, Expression* val);
1566
1567 // Add a setting for the fill value.
1568 void
1569 add_fill(Expression* val);
1570
1571 // Add an input section specification.
1572 void
1573 add_input_section(const Input_section_spec* spec, bool keep);
1574
1575 // Return whether the output section is relro.
1576 bool
1577 is_relro() const
1578 { return this->is_relro_; }
1579
1580 // Record that the output section is relro.
1581 void
1582 set_is_relro()
1583 { this->is_relro_ = true; }
1584
1585 // Create any required output sections.
1586 void
1587 create_sections(Layout*);
1588
1589 // Add any symbols being defined to the symbol table.
1590 void
1591 add_symbols_to_table(Symbol_table* symtab);
1592
1593 // Finalize symbols and check assertions.
1594 void
1595 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1596
1597 // Return the output section name to use for an input file name and
1598 // section name.
1599 const char*
1600 output_section_name(const char* file_name, const char* section_name,
1601 Output_section***);
1602
1603 // Initialize OSP with an output section.
1604 void
1605 orphan_section_init(Orphan_section_placement* osp,
1606 Script_sections::Elements_iterator p)
1607 { osp->output_section_init(this->name_, this->output_section_, p); }
1608
1609 // Set the section address.
1610 void
1611 set_section_addresses(Symbol_table* symtab, Layout* layout,
1612 uint64_t* dot_value, uint64_t* load_address);
1613
1614 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1615 // this section is constrained, and the input sections do not match,
1616 // return the constraint, and set *POSD.
1617 Section_constraint
1618 check_constraint(Output_section_definition** posd);
1619
1620 // See if this is the alternate output section for a constrained
1621 // output section. If it is, transfer the Output_section and return
1622 // true. Otherwise return false.
1623 bool
1624 alternate_constraint(Output_section_definition*, Section_constraint);
1625
1626 // Get the list of segments to use for an allocated section when
1627 // using a PHDRS clause.
1628 Output_section*
1629 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1630
1631 // Look for an output section by name and return the address, the
1632 // load address, the alignment, and the size. This is used when an
1633 // expression refers to an output section which was not actually
1634 // created. This returns true if the section was found, false
1635 // otherwise.
1636 bool
1637 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1638 uint64_t*) const;
1639
1640 // Return the associated Output_section if there is one.
1641 Output_section*
1642 get_output_section() const
1643 { return this->output_section_; }
1644
1645 // Print the contents to the FILE. This is for debugging.
1646 void
1647 print(FILE*) const;
1648
1649 private:
1650 typedef std::vector<Output_section_element*> Output_section_elements;
1651
1652 // The output section name.
1653 std::string name_;
1654 // The address. This may be NULL.
1655 Expression* address_;
1656 // The load address. This may be NULL.
1657 Expression* load_address_;
1658 // The alignment. This may be NULL.
1659 Expression* align_;
1660 // The input section alignment. This may be NULL.
1661 Expression* subalign_;
1662 // The constraint, if any.
1663 Section_constraint constraint_;
1664 // The fill value. This may be NULL.
1665 Expression* fill_;
1666 // The list of segments this section should go into. This may be
1667 // NULL.
1668 String_list* phdrs_;
1669 // The list of elements defining the section.
1670 Output_section_elements elements_;
1671 // The Output_section created for this definition. This will be
1672 // NULL if none was created.
1673 Output_section* output_section_;
1674 // The address after it has been evaluated.
1675 uint64_t evaluated_address_;
1676 // The load address after it has been evaluated.
1677 uint64_t evaluated_load_address_;
1678 // The alignment after it has been evaluated.
1679 uint64_t evaluated_addralign_;
1680 // The output section is relro.
1681 bool is_relro_;
1682 };
1683
1684 // Constructor.
1685
1686 Output_section_definition::Output_section_definition(
1687 const char* name,
1688 size_t namelen,
1689 const Parser_output_section_header* header)
1690 : name_(name, namelen),
1691 address_(header->address),
1692 load_address_(header->load_address),
1693 align_(header->align),
1694 subalign_(header->subalign),
1695 constraint_(header->constraint),
1696 fill_(NULL),
1697 phdrs_(NULL),
1698 elements_(),
1699 output_section_(NULL),
1700 evaluated_address_(0),
1701 evaluated_load_address_(0),
1702 evaluated_addralign_(0),
1703 is_relro_(false)
1704 {
1705 }
1706
1707 // Finish an output section.
1708
1709 void
1710 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1711 {
1712 this->fill_ = trailer->fill;
1713 this->phdrs_ = trailer->phdrs;
1714 }
1715
1716 // Add a symbol to be defined.
1717
1718 void
1719 Output_section_definition::add_symbol_assignment(const char* name,
1720 size_t length,
1721 Expression* value,
1722 bool provide,
1723 bool hidden)
1724 {
1725 Output_section_element* p = new Output_section_element_assignment(name,
1726 length,
1727 value,
1728 provide,
1729 hidden);
1730 this->elements_.push_back(p);
1731 }
1732
1733 // Add an assignment to the special dot symbol.
1734
1735 void
1736 Output_section_definition::add_dot_assignment(Expression* value)
1737 {
1738 Output_section_element* p = new Output_section_element_dot_assignment(value);
1739 this->elements_.push_back(p);
1740 }
1741
1742 // Add an assertion.
1743
1744 void
1745 Output_section_definition::add_assertion(Expression* check,
1746 const char* message,
1747 size_t messagelen)
1748 {
1749 Output_section_element* p = new Output_section_element_assertion(check,
1750 message,
1751 messagelen);
1752 this->elements_.push_back(p);
1753 }
1754
1755 // Add a data item to the current output section.
1756
1757 void
1758 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1759 {
1760 Output_section_element* p = new Output_section_element_data(size, is_signed,
1761 val);
1762 this->elements_.push_back(p);
1763 }
1764
1765 // Add a setting for the fill value.
1766
1767 void
1768 Output_section_definition::add_fill(Expression* val)
1769 {
1770 Output_section_element* p = new Output_section_element_fill(val);
1771 this->elements_.push_back(p);
1772 }
1773
1774 // Add an input section specification.
1775
1776 void
1777 Output_section_definition::add_input_section(const Input_section_spec* spec,
1778 bool keep)
1779 {
1780 Output_section_element* p = new Output_section_element_input(spec, keep);
1781 this->elements_.push_back(p);
1782 }
1783
1784 // Create any required output sections. We need an output section if
1785 // there is a data statement here.
1786
1787 void
1788 Output_section_definition::create_sections(Layout* layout)
1789 {
1790 if (this->output_section_ != NULL)
1791 return;
1792 for (Output_section_elements::const_iterator p = this->elements_.begin();
1793 p != this->elements_.end();
1794 ++p)
1795 {
1796 if ((*p)->needs_output_section())
1797 {
1798 const char* name = this->name_.c_str();
1799 this->output_section_ = layout->make_output_section_for_script(name);
1800 return;
1801 }
1802 }
1803 }
1804
1805 // Add any symbols being defined to the symbol table.
1806
1807 void
1808 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1809 {
1810 for (Output_section_elements::iterator p = this->elements_.begin();
1811 p != this->elements_.end();
1812 ++p)
1813 (*p)->add_symbols_to_table(symtab);
1814 }
1815
1816 // Finalize symbols and check assertions.
1817
1818 void
1819 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1820 const Layout* layout,
1821 uint64_t* dot_value)
1822 {
1823 if (this->output_section_ != NULL)
1824 *dot_value = this->output_section_->address();
1825 else
1826 {
1827 uint64_t address = *dot_value;
1828 if (this->address_ != NULL)
1829 {
1830 Output_section* dummy;
1831 address = this->address_->eval_with_dot(symtab, layout, true,
1832 *dot_value, NULL,
1833 &dummy);
1834 }
1835 if (this->align_ != NULL)
1836 {
1837 Output_section* dummy;
1838 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1839 *dot_value,
1840 NULL,
1841 &dummy);
1842 address = align_address(address, align);
1843 }
1844 *dot_value = address;
1845 }
1846
1847 Output_section* dot_section = this->output_section_;
1848 for (Output_section_elements::iterator p = this->elements_.begin();
1849 p != this->elements_.end();
1850 ++p)
1851 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1852 }
1853
1854 // Return the output section name to use for an input section name.
1855
1856 const char*
1857 Output_section_definition::output_section_name(const char* file_name,
1858 const char* section_name,
1859 Output_section*** slot)
1860 {
1861 // Ask each element whether it matches NAME.
1862 for (Output_section_elements::const_iterator p = this->elements_.begin();
1863 p != this->elements_.end();
1864 ++p)
1865 {
1866 if ((*p)->match_name(file_name, section_name))
1867 {
1868 // We found a match for NAME, which means that it should go
1869 // into this output section.
1870 *slot = &this->output_section_;
1871 return this->name_.c_str();
1872 }
1873 }
1874
1875 // We don't know about this section name.
1876 return NULL;
1877 }
1878
1879 // Set the section address. Note that the OUTPUT_SECTION_ field will
1880 // be NULL if no input sections were mapped to this output section.
1881 // We still have to adjust dot and process symbol assignments.
1882
1883 void
1884 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1885 Layout* layout,
1886 uint64_t* dot_value,
1887 uint64_t* load_address)
1888 {
1889 uint64_t address;
1890 if (this->address_ == NULL)
1891 address = *dot_value;
1892 else
1893 {
1894 Output_section* dummy;
1895 address = this->address_->eval_with_dot(symtab, layout, true,
1896 *dot_value, NULL, &dummy);
1897 }
1898
1899 uint64_t align;
1900 if (this->align_ == NULL)
1901 {
1902 if (this->output_section_ == NULL)
1903 align = 0;
1904 else
1905 align = this->output_section_->addralign();
1906 }
1907 else
1908 {
1909 Output_section* align_section;
1910 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1911 NULL, &align_section);
1912 if (align_section != NULL)
1913 gold_warning(_("alignment of section %s is not absolute"),
1914 this->name_.c_str());
1915 if (this->output_section_ != NULL)
1916 this->output_section_->set_addralign(align);
1917 }
1918
1919 address = align_address(address, align);
1920
1921 uint64_t start_address = address;
1922
1923 *dot_value = address;
1924
1925 // The address of non-SHF_ALLOC sections is forced to zero,
1926 // regardless of what the linker script wants.
1927 if (this->output_section_ != NULL
1928 && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1929 this->output_section_->set_address(address);
1930
1931 this->evaluated_address_ = address;
1932 this->evaluated_addralign_ = align;
1933
1934 if (this->load_address_ == NULL)
1935 this->evaluated_load_address_ = address;
1936 else
1937 {
1938 Output_section* dummy;
1939 uint64_t laddr =
1940 this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1941 this->output_section_, &dummy);
1942 if (this->output_section_ != NULL)
1943 this->output_section_->set_load_address(laddr);
1944 this->evaluated_load_address_ = laddr;
1945 }
1946
1947 uint64_t subalign;
1948 if (this->subalign_ == NULL)
1949 subalign = 0;
1950 else
1951 {
1952 Output_section* subalign_section;
1953 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1954 *dot_value, NULL,
1955 &subalign_section);
1956 if (subalign_section != NULL)
1957 gold_warning(_("subalign of section %s is not absolute"),
1958 this->name_.c_str());
1959 }
1960
1961 std::string fill;
1962 if (this->fill_ != NULL)
1963 {
1964 // FIXME: The GNU linker supports fill values of arbitrary
1965 // length.
1966 Output_section* fill_section;
1967 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1968 *dot_value,
1969 NULL,
1970 &fill_section);
1971 if (fill_section != NULL)
1972 gold_warning(_("fill of section %s is not absolute"),
1973 this->name_.c_str());
1974 unsigned char fill_buff[4];
1975 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1976 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1977 }
1978
1979 Input_section_list input_sections;
1980 if (this->output_section_ != NULL)
1981 {
1982 // Get the list of input sections attached to this output
1983 // section. This will leave the output section with only
1984 // Output_section_data entries.
1985 address += this->output_section_->get_input_sections(address,
1986 fill,
1987 &input_sections);
1988 *dot_value = address;
1989 }
1990
1991 Output_section* dot_section = this->output_section_;
1992 for (Output_section_elements::iterator p = this->elements_.begin();
1993 p != this->elements_.end();
1994 ++p)
1995 (*p)->set_section_addresses(symtab, layout, this->output_section_,
1996 subalign, dot_value, &dot_section, &fill,
1997 &input_sections);
1998
1999 gold_assert(input_sections.empty());
2000
2001 if (this->load_address_ == NULL || this->output_section_ == NULL)
2002 *load_address = *dot_value;
2003 else
2004 *load_address = (this->output_section_->load_address()
2005 + (*dot_value - start_address));
2006
2007 if (this->output_section_ != NULL)
2008 {
2009 if (this->is_relro_)
2010 this->output_section_->set_is_relro();
2011 else
2012 this->output_section_->clear_is_relro();
2013 }
2014 }
2015
2016 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2017 // this section is constrained, and the input sections do not match,
2018 // return the constraint, and set *POSD.
2019
2020 Section_constraint
2021 Output_section_definition::check_constraint(Output_section_definition** posd)
2022 {
2023 switch (this->constraint_)
2024 {
2025 case CONSTRAINT_NONE:
2026 return CONSTRAINT_NONE;
2027
2028 case CONSTRAINT_ONLY_IF_RO:
2029 if (this->output_section_ != NULL
2030 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2031 {
2032 *posd = this;
2033 return CONSTRAINT_ONLY_IF_RO;
2034 }
2035 return CONSTRAINT_NONE;
2036
2037 case CONSTRAINT_ONLY_IF_RW:
2038 if (this->output_section_ != NULL
2039 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2040 {
2041 *posd = this;
2042 return CONSTRAINT_ONLY_IF_RW;
2043 }
2044 return CONSTRAINT_NONE;
2045
2046 case CONSTRAINT_SPECIAL:
2047 if (this->output_section_ != NULL)
2048 gold_error(_("SPECIAL constraints are not implemented"));
2049 return CONSTRAINT_NONE;
2050
2051 default:
2052 gold_unreachable();
2053 }
2054 }
2055
2056 // See if this is the alternate output section for a constrained
2057 // output section. If it is, transfer the Output_section and return
2058 // true. Otherwise return false.
2059
2060 bool
2061 Output_section_definition::alternate_constraint(
2062 Output_section_definition* posd,
2063 Section_constraint constraint)
2064 {
2065 if (this->name_ != posd->name_)
2066 return false;
2067
2068 switch (constraint)
2069 {
2070 case CONSTRAINT_ONLY_IF_RO:
2071 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2072 return false;
2073 break;
2074
2075 case CONSTRAINT_ONLY_IF_RW:
2076 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2077 return false;
2078 break;
2079
2080 default:
2081 gold_unreachable();
2082 }
2083
2084 // We have found the alternate constraint. We just need to move
2085 // over the Output_section. When constraints are used properly,
2086 // THIS should not have an output_section pointer, as all the input
2087 // sections should have matched the other definition.
2088
2089 if (this->output_section_ != NULL)
2090 gold_error(_("mismatched definition for constrained sections"));
2091
2092 this->output_section_ = posd->output_section_;
2093 posd->output_section_ = NULL;
2094
2095 if (this->is_relro_)
2096 this->output_section_->set_is_relro();
2097 else
2098 this->output_section_->clear_is_relro();
2099
2100 return true;
2101 }
2102
2103 // Get the list of segments to use for an allocated section when using
2104 // a PHDRS clause.
2105
2106 Output_section*
2107 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2108 bool* orphan)
2109 {
2110 if (this->output_section_ == NULL)
2111 return NULL;
2112 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2113 return NULL;
2114 *orphan = false;
2115 if (this->phdrs_ != NULL)
2116 *phdrs_list = this->phdrs_;
2117 return this->output_section_;
2118 }
2119
2120 // Look for an output section by name and return the address, the load
2121 // address, the alignment, and the size. This is used when an
2122 // expression refers to an output section which was not actually
2123 // created. This returns true if the section was found, false
2124 // otherwise.
2125
2126 bool
2127 Output_section_definition::get_output_section_info(const char* name,
2128 uint64_t* address,
2129 uint64_t* load_address,
2130 uint64_t* addralign,
2131 uint64_t* size) const
2132 {
2133 if (this->name_ != name)
2134 return false;
2135
2136 if (this->output_section_ != NULL)
2137 {
2138 *address = this->output_section_->address();
2139 if (this->output_section_->has_load_address())
2140 *load_address = this->output_section_->load_address();
2141 else
2142 *load_address = *address;
2143 *addralign = this->output_section_->addralign();
2144 *size = this->output_section_->current_data_size();
2145 }
2146 else
2147 {
2148 *address = this->evaluated_address_;
2149 *load_address = this->evaluated_load_address_;
2150 *addralign = this->evaluated_addralign_;
2151 *size = 0;
2152 }
2153
2154 return true;
2155 }
2156
2157 // Print for debugging.
2158
2159 void
2160 Output_section_definition::print(FILE* f) const
2161 {
2162 fprintf(f, " %s ", this->name_.c_str());
2163
2164 if (this->address_ != NULL)
2165 {
2166 this->address_->print(f);
2167 fprintf(f, " ");
2168 }
2169
2170 fprintf(f, ": ");
2171
2172 if (this->load_address_ != NULL)
2173 {
2174 fprintf(f, "AT(");
2175 this->load_address_->print(f);
2176 fprintf(f, ") ");
2177 }
2178
2179 if (this->align_ != NULL)
2180 {
2181 fprintf(f, "ALIGN(");
2182 this->align_->print(f);
2183 fprintf(f, ") ");
2184 }
2185
2186 if (this->subalign_ != NULL)
2187 {
2188 fprintf(f, "SUBALIGN(");
2189 this->subalign_->print(f);
2190 fprintf(f, ") ");
2191 }
2192
2193 fprintf(f, "{\n");
2194
2195 for (Output_section_elements::const_iterator p = this->elements_.begin();
2196 p != this->elements_.end();
2197 ++p)
2198 (*p)->print(f);
2199
2200 fprintf(f, " }");
2201
2202 if (this->fill_ != NULL)
2203 {
2204 fprintf(f, " = ");
2205 this->fill_->print(f);
2206 }
2207
2208 if (this->phdrs_ != NULL)
2209 {
2210 for (String_list::const_iterator p = this->phdrs_->begin();
2211 p != this->phdrs_->end();
2212 ++p)
2213 fprintf(f, " :%s", p->c_str());
2214 }
2215
2216 fprintf(f, "\n");
2217 }
2218
2219 // An output section created to hold orphaned input sections. These
2220 // do not actually appear in linker scripts. However, for convenience
2221 // when setting the output section addresses, we put a marker to these
2222 // sections in the appropriate place in the list of SECTIONS elements.
2223
2224 class Orphan_output_section : public Sections_element
2225 {
2226 public:
2227 Orphan_output_section(Output_section* os)
2228 : os_(os)
2229 { }
2230
2231 // Return whether the orphan output section is relro. We can just
2232 // check the output section because we always set the flag, if
2233 // needed, just after we create the Orphan_output_section.
2234 bool
2235 is_relro() const
2236 { return this->os_->is_relro(); }
2237
2238 // Initialize OSP with an output section. This should have been
2239 // done already.
2240 void
2241 orphan_section_init(Orphan_section_placement*,
2242 Script_sections::Elements_iterator)
2243 { gold_unreachable(); }
2244
2245 // Set section addresses.
2246 void
2247 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
2248
2249 // Get the list of segments to use for an allocated section when
2250 // using a PHDRS clause.
2251 Output_section*
2252 allocate_to_segment(String_list**, bool*);
2253
2254 // Return the associated Output_section.
2255 Output_section*
2256 get_output_section() const
2257 { return this->os_; }
2258
2259 // Print for debugging.
2260 void
2261 print(FILE* f) const
2262 {
2263 fprintf(f, " marker for orphaned output section %s\n",
2264 this->os_->name());
2265 }
2266
2267 private:
2268 Output_section* os_;
2269 };
2270
2271 // Set section addresses.
2272
2273 void
2274 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2275 uint64_t* dot_value,
2276 uint64_t* load_address)
2277 {
2278 typedef std::list<Output_section::Simple_input_section> Input_section_list;
2279
2280 bool have_load_address = *load_address != *dot_value;
2281
2282 uint64_t address = *dot_value;
2283 address = align_address(address, this->os_->addralign());
2284
2285 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2286 {
2287 this->os_->set_address(address);
2288 if (have_load_address)
2289 this->os_->set_load_address(align_address(*load_address,
2290 this->os_->addralign()));
2291 }
2292
2293 Input_section_list input_sections;
2294 address += this->os_->get_input_sections(address, "", &input_sections);
2295
2296 for (Input_section_list::iterator p = input_sections.begin();
2297 p != input_sections.end();
2298 ++p)
2299 {
2300 uint64_t addralign;
2301 uint64_t size;
2302
2303 // We know what are single-threaded, so it is OK to lock the
2304 // object.
2305 {
2306 const Task* task = reinterpret_cast<const Task*>(-1);
2307 Task_lock_obj<Object> tl(task, p->relobj());
2308 addralign = p->relobj()->section_addralign(p->shndx());
2309 if (p->is_relaxed_input_section())
2310 // We use current data size because relxed section sizes may not
2311 // have finalized yet.
2312 size = p->relaxed_input_section()->current_data_size();
2313 else
2314 size = p->relobj()->section_size(p->shndx());
2315 }
2316
2317 address = align_address(address, addralign);
2318 this->os_->add_input_section_for_script(*p, size, addralign);
2319 address += size;
2320 }
2321
2322 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2323 if (this->os_ == NULL
2324 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2325 || this->os_->type() != elfcpp::SHT_NOBITS)
2326 {
2327 if (!have_load_address)
2328 *load_address = address;
2329 else
2330 *load_address += address - *dot_value;
2331
2332 *dot_value = address;
2333 }
2334 }
2335
2336 // Get the list of segments to use for an allocated section when using
2337 // a PHDRS clause. If this is an allocated section, return the
2338 // Output_section. We don't change the list of segments.
2339
2340 Output_section*
2341 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2342 {
2343 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2344 return NULL;
2345 *orphan = true;
2346 return this->os_;
2347 }
2348
2349 // Class Phdrs_element. A program header from a PHDRS clause.
2350
2351 class Phdrs_element
2352 {
2353 public:
2354 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2355 bool includes_filehdr, bool includes_phdrs,
2356 bool is_flags_valid, unsigned int flags,
2357 Expression* load_address)
2358 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2359 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2360 flags_(flags), load_address_(load_address), load_address_value_(0),
2361 segment_(NULL)
2362 { }
2363
2364 // Return the name of this segment.
2365 const std::string&
2366 name() const
2367 { return this->name_; }
2368
2369 // Return the type of the segment.
2370 unsigned int
2371 type() const
2372 { return this->type_; }
2373
2374 // Whether to include the file header.
2375 bool
2376 includes_filehdr() const
2377 { return this->includes_filehdr_; }
2378
2379 // Whether to include the program headers.
2380 bool
2381 includes_phdrs() const
2382 { return this->includes_phdrs_; }
2383
2384 // Return whether there is a load address.
2385 bool
2386 has_load_address() const
2387 { return this->load_address_ != NULL; }
2388
2389 // Evaluate the load address expression if there is one.
2390 void
2391 eval_load_address(Symbol_table* symtab, Layout* layout)
2392 {
2393 if (this->load_address_ != NULL)
2394 this->load_address_value_ = this->load_address_->eval(symtab, layout,
2395 true);
2396 }
2397
2398 // Return the load address.
2399 uint64_t
2400 load_address() const
2401 {
2402 gold_assert(this->load_address_ != NULL);
2403 return this->load_address_value_;
2404 }
2405
2406 // Create the segment.
2407 Output_segment*
2408 create_segment(Layout* layout)
2409 {
2410 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2411 return this->segment_;
2412 }
2413
2414 // Return the segment.
2415 Output_segment*
2416 segment()
2417 { return this->segment_; }
2418
2419 // Release the segment.
2420 void
2421 release_segment()
2422 { this->segment_ = NULL; }
2423
2424 // Set the segment flags if appropriate.
2425 void
2426 set_flags_if_valid()
2427 {
2428 if (this->is_flags_valid_)
2429 this->segment_->set_flags(this->flags_);
2430 }
2431
2432 // Print for debugging.
2433 void
2434 print(FILE*) const;
2435
2436 private:
2437 // The name used in the script.
2438 std::string name_;
2439 // The type of the segment (PT_LOAD, etc.).
2440 unsigned int type_;
2441 // Whether this segment includes the file header.
2442 bool includes_filehdr_;
2443 // Whether this segment includes the section headers.
2444 bool includes_phdrs_;
2445 // Whether the flags were explicitly specified.
2446 bool is_flags_valid_;
2447 // The flags for this segment (PF_R, etc.) if specified.
2448 unsigned int flags_;
2449 // The expression for the load address for this segment. This may
2450 // be NULL.
2451 Expression* load_address_;
2452 // The actual load address from evaluating the expression.
2453 uint64_t load_address_value_;
2454 // The segment itself.
2455 Output_segment* segment_;
2456 };
2457
2458 // Print for debugging.
2459
2460 void
2461 Phdrs_element::print(FILE* f) const
2462 {
2463 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
2464 if (this->includes_filehdr_)
2465 fprintf(f, " FILEHDR");
2466 if (this->includes_phdrs_)
2467 fprintf(f, " PHDRS");
2468 if (this->is_flags_valid_)
2469 fprintf(f, " FLAGS(%u)", this->flags_);
2470 if (this->load_address_ != NULL)
2471 {
2472 fprintf(f, " AT(");
2473 this->load_address_->print(f);
2474 fprintf(f, ")");
2475 }
2476 fprintf(f, ";\n");
2477 }
2478
2479 // Class Script_sections.
2480
2481 Script_sections::Script_sections()
2482 : saw_sections_clause_(false),
2483 in_sections_clause_(false),
2484 sections_elements_(NULL),
2485 output_section_(NULL),
2486 phdrs_elements_(NULL),
2487 orphan_section_placement_(NULL),
2488 data_segment_align_start_(),
2489 saw_data_segment_align_(false),
2490 saw_relro_end_(false)
2491 {
2492 }
2493
2494 // Start a SECTIONS clause.
2495
2496 void
2497 Script_sections::start_sections()
2498 {
2499 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2500 this->saw_sections_clause_ = true;
2501 this->in_sections_clause_ = true;
2502 if (this->sections_elements_ == NULL)
2503 this->sections_elements_ = new Sections_elements;
2504 }
2505
2506 // Finish a SECTIONS clause.
2507
2508 void
2509 Script_sections::finish_sections()
2510 {
2511 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2512 this->in_sections_clause_ = false;
2513 }
2514
2515 // Add a symbol to be defined.
2516
2517 void
2518 Script_sections::add_symbol_assignment(const char* name, size_t length,
2519 Expression* val, bool provide,
2520 bool hidden)
2521 {
2522 if (this->output_section_ != NULL)
2523 this->output_section_->add_symbol_assignment(name, length, val,
2524 provide, hidden);
2525 else
2526 {
2527 Sections_element* p = new Sections_element_assignment(name, length,
2528 val, provide,
2529 hidden);
2530 this->sections_elements_->push_back(p);
2531 }
2532 }
2533
2534 // Add an assignment to the special dot symbol.
2535
2536 void
2537 Script_sections::add_dot_assignment(Expression* val)
2538 {
2539 if (this->output_section_ != NULL)
2540 this->output_section_->add_dot_assignment(val);
2541 else
2542 {
2543 Sections_element* p = new Sections_element_dot_assignment(val);
2544 this->sections_elements_->push_back(p);
2545 }
2546 }
2547
2548 // Add an assertion.
2549
2550 void
2551 Script_sections::add_assertion(Expression* check, const char* message,
2552 size_t messagelen)
2553 {
2554 if (this->output_section_ != NULL)
2555 this->output_section_->add_assertion(check, message, messagelen);
2556 else
2557 {
2558 Sections_element* p = new Sections_element_assertion(check, message,
2559 messagelen);
2560 this->sections_elements_->push_back(p);
2561 }
2562 }
2563
2564 // Start processing entries for an output section.
2565
2566 void
2567 Script_sections::start_output_section(
2568 const char* name,
2569 size_t namelen,
2570 const Parser_output_section_header *header)
2571 {
2572 Output_section_definition* posd = new Output_section_definition(name,
2573 namelen,
2574 header);
2575 this->sections_elements_->push_back(posd);
2576 gold_assert(this->output_section_ == NULL);
2577 this->output_section_ = posd;
2578 }
2579
2580 // Stop processing entries for an output section.
2581
2582 void
2583 Script_sections::finish_output_section(
2584 const Parser_output_section_trailer* trailer)
2585 {
2586 gold_assert(this->output_section_ != NULL);
2587 this->output_section_->finish(trailer);
2588 this->output_section_ = NULL;
2589 }
2590
2591 // Add a data item to the current output section.
2592
2593 void
2594 Script_sections::add_data(int size, bool is_signed, Expression* val)
2595 {
2596 gold_assert(this->output_section_ != NULL);
2597 this->output_section_->add_data(size, is_signed, val);
2598 }
2599
2600 // Add a fill value setting to the current output section.
2601
2602 void
2603 Script_sections::add_fill(Expression* val)
2604 {
2605 gold_assert(this->output_section_ != NULL);
2606 this->output_section_->add_fill(val);
2607 }
2608
2609 // Add an input section specification to the current output section.
2610
2611 void
2612 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2613 {
2614 gold_assert(this->output_section_ != NULL);
2615 this->output_section_->add_input_section(spec, keep);
2616 }
2617
2618 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
2619 // subsequent output sections may be relro.
2620
2621 void
2622 Script_sections::data_segment_align()
2623 {
2624 if (this->saw_data_segment_align_)
2625 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
2626 gold_assert(!this->sections_elements_->empty());
2627 Sections_elements::iterator p = this->sections_elements_->end();
2628 --p;
2629 this->data_segment_align_start_ = p;
2630 this->saw_data_segment_align_ = true;
2631 }
2632
2633 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
2634 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
2635
2636 void
2637 Script_sections::data_segment_relro_end()
2638 {
2639 if (this->saw_relro_end_)
2640 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
2641 "in a linker script"));
2642 this->saw_relro_end_ = true;
2643
2644 if (!this->saw_data_segment_align_)
2645 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
2646 else
2647 {
2648 Sections_elements::iterator p = this->data_segment_align_start_;
2649 for (++p; p != this->sections_elements_->end(); ++p)
2650 (*p)->set_is_relro();
2651 }
2652 }
2653
2654 // Create any required sections.
2655
2656 void
2657 Script_sections::create_sections(Layout* layout)
2658 {
2659 if (!this->saw_sections_clause_)
2660 return;
2661 for (Sections_elements::iterator p = this->sections_elements_->begin();
2662 p != this->sections_elements_->end();
2663 ++p)
2664 (*p)->create_sections(layout);
2665 }
2666
2667 // Add any symbols we are defining to the symbol table.
2668
2669 void
2670 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2671 {
2672 if (!this->saw_sections_clause_)
2673 return;
2674 for (Sections_elements::iterator p = this->sections_elements_->begin();
2675 p != this->sections_elements_->end();
2676 ++p)
2677 (*p)->add_symbols_to_table(symtab);
2678 }
2679
2680 // Finalize symbols and check assertions.
2681
2682 void
2683 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2684 {
2685 if (!this->saw_sections_clause_)
2686 return;
2687 uint64_t dot_value = 0;
2688 for (Sections_elements::iterator p = this->sections_elements_->begin();
2689 p != this->sections_elements_->end();
2690 ++p)
2691 (*p)->finalize_symbols(symtab, layout, &dot_value);
2692 }
2693
2694 // Return the name of the output section to use for an input file name
2695 // and section name.
2696
2697 const char*
2698 Script_sections::output_section_name(const char* file_name,
2699 const char* section_name,
2700 Output_section*** output_section_slot)
2701 {
2702 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2703 p != this->sections_elements_->end();
2704 ++p)
2705 {
2706 const char* ret = (*p)->output_section_name(file_name, section_name,
2707 output_section_slot);
2708
2709 if (ret != NULL)
2710 {
2711 // The special name /DISCARD/ means that the input section
2712 // should be discarded.
2713 if (strcmp(ret, "/DISCARD/") == 0)
2714 {
2715 *output_section_slot = NULL;
2716 return NULL;
2717 }
2718 return ret;
2719 }
2720 }
2721
2722 // If we couldn't find a mapping for the name, the output section
2723 // gets the name of the input section.
2724
2725 *output_section_slot = NULL;
2726
2727 return section_name;
2728 }
2729
2730 // Place a marker for an orphan output section into the SECTIONS
2731 // clause.
2732
2733 void
2734 Script_sections::place_orphan(Output_section* os)
2735 {
2736 Orphan_section_placement* osp = this->orphan_section_placement_;
2737 if (osp == NULL)
2738 {
2739 // Initialize the Orphan_section_placement structure.
2740 osp = new Orphan_section_placement();
2741 for (Sections_elements::iterator p = this->sections_elements_->begin();
2742 p != this->sections_elements_->end();
2743 ++p)
2744 (*p)->orphan_section_init(osp, p);
2745 gold_assert(!this->sections_elements_->empty());
2746 Sections_elements::iterator last = this->sections_elements_->end();
2747 --last;
2748 osp->last_init(last);
2749 this->orphan_section_placement_ = osp;
2750 }
2751
2752 Orphan_output_section* orphan = new Orphan_output_section(os);
2753
2754 // Look for where to put ORPHAN.
2755 Sections_elements::iterator* where;
2756 if (osp->find_place(os, &where))
2757 {
2758 if ((**where)->is_relro())
2759 os->set_is_relro();
2760 else
2761 os->clear_is_relro();
2762
2763 // We want to insert ORPHAN after *WHERE, and then update *WHERE
2764 // so that the next one goes after this one.
2765 Sections_elements::iterator p = *where;
2766 gold_assert(p != this->sections_elements_->end());
2767 ++p;
2768 *where = this->sections_elements_->insert(p, orphan);
2769 }
2770 else
2771 {
2772 os->clear_is_relro();
2773 // We don't have a place to put this orphan section. Put it,
2774 // and all other sections like it, at the end, but before the
2775 // sections which always come at the end.
2776 Sections_elements::iterator last = osp->last_place();
2777 *where = this->sections_elements_->insert(last, orphan);
2778 }
2779 }
2780
2781 // Set the addresses of all the output sections. Walk through all the
2782 // elements, tracking the dot symbol. Apply assignments which set
2783 // absolute symbol values, in case they are used when setting dot.
2784 // Fill in data statement values. As we find output sections, set the
2785 // address, set the address of all associated input sections, and
2786 // update dot. Return the segment which should hold the file header
2787 // and segment headers, if any.
2788
2789 Output_segment*
2790 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2791 {
2792 gold_assert(this->saw_sections_clause_);
2793
2794 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
2795 // for our representation.
2796 for (Sections_elements::iterator p = this->sections_elements_->begin();
2797 p != this->sections_elements_->end();
2798 ++p)
2799 {
2800 Output_section_definition* posd;
2801 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2802 if (failed_constraint != CONSTRAINT_NONE)
2803 {
2804 Sections_elements::iterator q;
2805 for (q = this->sections_elements_->begin();
2806 q != this->sections_elements_->end();
2807 ++q)
2808 {
2809 if (q != p)
2810 {
2811 if ((*q)->alternate_constraint(posd, failed_constraint))
2812 break;
2813 }
2814 }
2815
2816 if (q == this->sections_elements_->end())
2817 gold_error(_("no matching section constraint"));
2818 }
2819 }
2820
2821 // Force the alignment of the first TLS section to be the maximum
2822 // alignment of all TLS sections.
2823 Output_section* first_tls = NULL;
2824 uint64_t tls_align = 0;
2825 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2826 p != this->sections_elements_->end();
2827 ++p)
2828 {
2829 Output_section *os = (*p)->get_output_section();
2830 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
2831 {
2832 if (first_tls == NULL)
2833 first_tls = os;
2834 if (os->addralign() > tls_align)
2835 tls_align = os->addralign();
2836 }
2837 }
2838 if (first_tls != NULL)
2839 first_tls->set_addralign(tls_align);
2840
2841 // For a relocatable link, we implicitly set dot to zero.
2842 uint64_t dot_value = 0;
2843 uint64_t load_address = 0;
2844 for (Sections_elements::iterator p = this->sections_elements_->begin();
2845 p != this->sections_elements_->end();
2846 ++p)
2847 (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2848
2849 if (this->phdrs_elements_ != NULL)
2850 {
2851 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2852 p != this->phdrs_elements_->end();
2853 ++p)
2854 (*p)->eval_load_address(symtab, layout);
2855 }
2856
2857 return this->create_segments(layout);
2858 }
2859
2860 // Sort the sections in order to put them into segments.
2861
2862 class Sort_output_sections
2863 {
2864 public:
2865 bool
2866 operator()(const Output_section* os1, const Output_section* os2) const;
2867 };
2868
2869 bool
2870 Sort_output_sections::operator()(const Output_section* os1,
2871 const Output_section* os2) const
2872 {
2873 // Sort first by the load address.
2874 uint64_t lma1 = (os1->has_load_address()
2875 ? os1->load_address()
2876 : os1->address());
2877 uint64_t lma2 = (os2->has_load_address()
2878 ? os2->load_address()
2879 : os2->address());
2880 if (lma1 != lma2)
2881 return lma1 < lma2;
2882
2883 // Then sort by the virtual address.
2884 if (os1->address() != os2->address())
2885 return os1->address() < os2->address();
2886
2887 // Sort TLS sections to the end.
2888 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2889 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2890 if (tls1 != tls2)
2891 return tls2;
2892
2893 // Sort PROGBITS before NOBITS.
2894 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2895 return true;
2896 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2897 return false;
2898
2899 // Otherwise we don't care.
2900 return false;
2901 }
2902
2903 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
2904 // We treat a section with the SHF_TLS flag set as taking up space
2905 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2906 // space for them in the file.
2907
2908 bool
2909 Script_sections::is_bss_section(const Output_section* os)
2910 {
2911 return (os->type() == elfcpp::SHT_NOBITS
2912 && (os->flags() & elfcpp::SHF_TLS) == 0);
2913 }
2914
2915 // Return the size taken by the file header and the program headers.
2916
2917 size_t
2918 Script_sections::total_header_size(Layout* layout) const
2919 {
2920 size_t segment_count = layout->segment_count();
2921 size_t file_header_size;
2922 size_t segment_headers_size;
2923 if (parameters->target().get_size() == 32)
2924 {
2925 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2926 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2927 }
2928 else if (parameters->target().get_size() == 64)
2929 {
2930 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2931 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2932 }
2933 else
2934 gold_unreachable();
2935
2936 return file_header_size + segment_headers_size;
2937 }
2938
2939 // Return the amount we have to subtract from the LMA to accomodate
2940 // headers of the given size. The complication is that the file
2941 // header have to be at the start of a page, as otherwise it will not
2942 // be at the start of the file.
2943
2944 uint64_t
2945 Script_sections::header_size_adjustment(uint64_t lma,
2946 size_t sizeof_headers) const
2947 {
2948 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2949 uint64_t hdr_lma = lma - sizeof_headers;
2950 hdr_lma &= ~(abi_pagesize - 1);
2951 return lma - hdr_lma;
2952 }
2953
2954 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
2955 // the segment which should hold the file header and segment headers,
2956 // if any.
2957
2958 Output_segment*
2959 Script_sections::create_segments(Layout* layout)
2960 {
2961 gold_assert(this->saw_sections_clause_);
2962
2963 if (parameters->options().relocatable())
2964 return NULL;
2965
2966 if (this->saw_phdrs_clause())
2967 return create_segments_from_phdrs_clause(layout);
2968
2969 Layout::Section_list sections;
2970 layout->get_allocated_sections(&sections);
2971
2972 // Sort the sections by address.
2973 std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2974
2975 this->create_note_and_tls_segments(layout, &sections);
2976
2977 // Walk through the sections adding them to PT_LOAD segments.
2978 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2979 Output_segment* first_seg = NULL;
2980 Output_segment* current_seg = NULL;
2981 bool is_current_seg_readonly = true;
2982 Layout::Section_list::iterator plast = sections.end();
2983 uint64_t last_vma = 0;
2984 uint64_t last_lma = 0;
2985 uint64_t last_size = 0;
2986 for (Layout::Section_list::iterator p = sections.begin();
2987 p != sections.end();
2988 ++p)
2989 {
2990 const uint64_t vma = (*p)->address();
2991 const uint64_t lma = ((*p)->has_load_address()
2992 ? (*p)->load_address()
2993 : vma);
2994 const uint64_t size = (*p)->current_data_size();
2995
2996 bool need_new_segment;
2997 if (current_seg == NULL)
2998 need_new_segment = true;
2999 else if (lma - vma != last_lma - last_vma)
3000 {
3001 // This section has a different LMA relationship than the
3002 // last one; we need a new segment.
3003 need_new_segment = true;
3004 }
3005 else if (align_address(last_lma + last_size, abi_pagesize)
3006 < align_address(lma, abi_pagesize))
3007 {
3008 // Putting this section in the segment would require
3009 // skipping a page.
3010 need_new_segment = true;
3011 }
3012 else if (is_bss_section(*plast) && !is_bss_section(*p))
3013 {
3014 // A non-BSS section can not follow a BSS section in the
3015 // same segment.
3016 need_new_segment = true;
3017 }
3018 else if (is_current_seg_readonly
3019 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3020 && !parameters->options().omagic())
3021 {
3022 // Don't put a writable section in the same segment as a
3023 // non-writable section.
3024 need_new_segment = true;
3025 }
3026 else
3027 {
3028 // Otherwise, reuse the existing segment.
3029 need_new_segment = false;
3030 }
3031
3032 elfcpp::Elf_Word seg_flags =
3033 Layout::section_flags_to_segment((*p)->flags());
3034
3035 if (need_new_segment)
3036 {
3037 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3038 seg_flags);
3039 current_seg->set_addresses(vma, lma);
3040 if (first_seg == NULL)
3041 first_seg = current_seg;
3042 is_current_seg_readonly = true;
3043 }
3044
3045 current_seg->add_output_section(*p, seg_flags);
3046
3047 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3048 is_current_seg_readonly = false;
3049
3050 plast = p;
3051 last_vma = vma;
3052 last_lma = lma;
3053 last_size = size;
3054 }
3055
3056 // An ELF program should work even if the program headers are not in
3057 // a PT_LOAD segment. However, it appears that the Linux kernel
3058 // does not set the AT_PHDR auxiliary entry in that case. It sets
3059 // the load address to p_vaddr - p_offset of the first PT_LOAD
3060 // segment. It then sets AT_PHDR to the load address plus the
3061 // offset to the program headers, e_phoff in the file header. This
3062 // fails when the program headers appear in the file before the
3063 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3064 // segment to hold the file header and the program headers. This is
3065 // effectively what the GNU linker does, and it is slightly more
3066 // efficient in any case. We try to use the first PT_LOAD segment
3067 // if we can, otherwise we make a new one.
3068
3069 if (first_seg == NULL)
3070 return NULL;
3071
3072 // -n or -N mean that the program is not demand paged and there is
3073 // no need to put the program headers in a PT_LOAD segment.
3074 if (parameters->options().nmagic() || parameters->options().omagic())
3075 return NULL;
3076
3077 size_t sizeof_headers = this->total_header_size(layout);
3078
3079 uint64_t vma = first_seg->vaddr();
3080 uint64_t lma = first_seg->paddr();
3081
3082 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3083
3084 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3085 {
3086 first_seg->set_addresses(vma - subtract, lma - subtract);
3087 return first_seg;
3088 }
3089
3090 // If there is no room to squeeze in the headers, then punt. The
3091 // resulting executable probably won't run on GNU/Linux, but we
3092 // trust that the user knows what they are doing.
3093 if (lma < subtract || vma < subtract)
3094 return NULL;
3095
3096 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3097 elfcpp::PF_R);
3098 load_seg->set_addresses(vma - subtract, lma - subtract);
3099
3100 return load_seg;
3101 }
3102
3103 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3104 // segment if there are any SHT_TLS sections.
3105
3106 void
3107 Script_sections::create_note_and_tls_segments(
3108 Layout* layout,
3109 const Layout::Section_list* sections)
3110 {
3111 gold_assert(!this->saw_phdrs_clause());
3112
3113 bool saw_tls = false;
3114 for (Layout::Section_list::const_iterator p = sections->begin();
3115 p != sections->end();
3116 ++p)
3117 {
3118 if ((*p)->type() == elfcpp::SHT_NOTE)
3119 {
3120 elfcpp::Elf_Word seg_flags =
3121 Layout::section_flags_to_segment((*p)->flags());
3122 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3123 seg_flags);
3124 oseg->add_output_section(*p, seg_flags);
3125
3126 // Incorporate any subsequent SHT_NOTE sections, in the
3127 // hopes that the script is sensible.
3128 Layout::Section_list::const_iterator pnext = p + 1;
3129 while (pnext != sections->end()
3130 && (*pnext)->type() == elfcpp::SHT_NOTE)
3131 {
3132 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3133 oseg->add_output_section(*pnext, seg_flags);
3134 p = pnext;
3135 ++pnext;
3136 }
3137 }
3138
3139 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3140 {
3141 if (saw_tls)
3142 gold_error(_("TLS sections are not adjacent"));
3143
3144 elfcpp::Elf_Word seg_flags =
3145 Layout::section_flags_to_segment((*p)->flags());
3146 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3147 seg_flags);
3148 oseg->add_output_section(*p, seg_flags);
3149
3150 Layout::Section_list::const_iterator pnext = p + 1;
3151 while (pnext != sections->end()
3152 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3153 {
3154 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3155 oseg->add_output_section(*pnext, seg_flags);
3156 p = pnext;
3157 ++pnext;
3158 }
3159
3160 saw_tls = true;
3161 }
3162 }
3163 }
3164
3165 // Add a program header. The PHDRS clause is syntactically distinct
3166 // from the SECTIONS clause, but we implement it with the SECTIONS
3167 // support because PHDRS is useless if there is no SECTIONS clause.
3168
3169 void
3170 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3171 bool includes_filehdr, bool includes_phdrs,
3172 bool is_flags_valid, unsigned int flags,
3173 Expression* load_address)
3174 {
3175 if (this->phdrs_elements_ == NULL)
3176 this->phdrs_elements_ = new Phdrs_elements();
3177 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3178 includes_filehdr,
3179 includes_phdrs,
3180 is_flags_valid, flags,
3181 load_address));
3182 }
3183
3184 // Return the number of segments we expect to create based on the
3185 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
3186
3187 size_t
3188 Script_sections::expected_segment_count(const Layout* layout) const
3189 {
3190 if (this->saw_phdrs_clause())
3191 return this->phdrs_elements_->size();
3192
3193 Layout::Section_list sections;
3194 layout->get_allocated_sections(&sections);
3195
3196 // We assume that we will need two PT_LOAD segments.
3197 size_t ret = 2;
3198
3199 bool saw_note = false;
3200 bool saw_tls = false;
3201 for (Layout::Section_list::const_iterator p = sections.begin();
3202 p != sections.end();
3203 ++p)
3204 {
3205 if ((*p)->type() == elfcpp::SHT_NOTE)
3206 {
3207 // Assume that all note sections will fit into a single
3208 // PT_NOTE segment.
3209 if (!saw_note)
3210 {
3211 ++ret;
3212 saw_note = true;
3213 }
3214 }
3215 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3216 {
3217 // There can only be one PT_TLS segment.
3218 if (!saw_tls)
3219 {
3220 ++ret;
3221 saw_tls = true;
3222 }
3223 }
3224 }
3225
3226 return ret;
3227 }
3228
3229 // Create the segments from a PHDRS clause. Return the segment which
3230 // should hold the file header and program headers, if any.
3231
3232 Output_segment*
3233 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
3234 {
3235 this->attach_sections_using_phdrs_clause(layout);
3236 return this->set_phdrs_clause_addresses(layout);
3237 }
3238
3239 // Create the segments from the PHDRS clause, and put the output
3240 // sections in them.
3241
3242 void
3243 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3244 {
3245 typedef std::map<std::string, Output_segment*> Name_to_segment;
3246 Name_to_segment name_to_segment;
3247 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3248 p != this->phdrs_elements_->end();
3249 ++p)
3250 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3251
3252 // Walk through the output sections and attach them to segments.
3253 // Output sections in the script which do not list segments are
3254 // attached to the same set of segments as the immediately preceding
3255 // output section.
3256
3257 String_list* phdr_names = NULL;
3258 bool load_segments_only = false;
3259 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3260 p != this->sections_elements_->end();
3261 ++p)
3262 {
3263 bool orphan;
3264 String_list* old_phdr_names = phdr_names;
3265 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3266 if (os == NULL)
3267 continue;
3268
3269 if (phdr_names == NULL)
3270 {
3271 gold_error(_("allocated section not in any segment"));
3272 continue;
3273 }
3274
3275 // We see a list of segments names. Disable PT_LOAD segment only
3276 // filtering.
3277 if (old_phdr_names != phdr_names)
3278 load_segments_only = false;
3279
3280 // If this is an orphan section--one that was not explicitly
3281 // mentioned in the linker script--then it should not inherit
3282 // any segment type other than PT_LOAD. Otherwise, e.g., the
3283 // PT_INTERP segment will pick up following orphan sections,
3284 // which does not make sense. If this is not an orphan section,
3285 // we trust the linker script.
3286 if (orphan)
3287 {
3288 // Enable PT_LOAD segments only filtering until we see another
3289 // list of segment names.
3290 load_segments_only = true;
3291 }
3292
3293 bool in_load_segment = false;
3294 for (String_list::const_iterator q = phdr_names->begin();
3295 q != phdr_names->end();
3296 ++q)
3297 {
3298 Name_to_segment::const_iterator r = name_to_segment.find(*q);
3299 if (r == name_to_segment.end())
3300 gold_error(_("no segment %s"), q->c_str());
3301 else
3302 {
3303 if (load_segments_only
3304 && r->second->type() != elfcpp::PT_LOAD)
3305 continue;
3306
3307 elfcpp::Elf_Word seg_flags =
3308 Layout::section_flags_to_segment(os->flags());
3309 r->second->add_output_section(os, seg_flags);
3310
3311 if (r->second->type() == elfcpp::PT_LOAD)
3312 {
3313 if (in_load_segment)
3314 gold_error(_("section in two PT_LOAD segments"));
3315 in_load_segment = true;
3316 }
3317 }
3318 }
3319
3320 if (!in_load_segment)
3321 gold_error(_("allocated section not in any PT_LOAD segment"));
3322 }
3323 }
3324
3325 // Set the addresses for segments created from a PHDRS clause. Return
3326 // the segment which should hold the file header and program headers,
3327 // if any.
3328
3329 Output_segment*
3330 Script_sections::set_phdrs_clause_addresses(Layout* layout)
3331 {
3332 Output_segment* load_seg = NULL;
3333 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3334 p != this->phdrs_elements_->end();
3335 ++p)
3336 {
3337 // Note that we have to set the flags after adding the output
3338 // sections to the segment, as adding an output segment can
3339 // change the flags.
3340 (*p)->set_flags_if_valid();
3341
3342 Output_segment* oseg = (*p)->segment();
3343
3344 if (oseg->type() != elfcpp::PT_LOAD)
3345 {
3346 // The addresses of non-PT_LOAD segments are set from the
3347 // PT_LOAD segments.
3348 if ((*p)->has_load_address())
3349 gold_error(_("may only specify load address for PT_LOAD segment"));
3350 continue;
3351 }
3352
3353 // The output sections should have addresses from the SECTIONS
3354 // clause. The addresses don't have to be in order, so find the
3355 // one with the lowest load address. Use that to set the
3356 // address of the segment.
3357
3358 Output_section* osec = oseg->section_with_lowest_load_address();
3359 if (osec == NULL)
3360 {
3361 oseg->set_addresses(0, 0);
3362 continue;
3363 }
3364
3365 uint64_t vma = osec->address();
3366 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3367
3368 // Override the load address of the section with the load
3369 // address specified for the segment.
3370 if ((*p)->has_load_address())
3371 {
3372 if (osec->has_load_address())
3373 gold_warning(_("PHDRS load address overrides "
3374 "section %s load address"),
3375 osec->name());
3376
3377 lma = (*p)->load_address();
3378 }
3379
3380 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3381 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3382 {
3383 // We could support this if we wanted to.
3384 gold_error(_("using only one of FILEHDR and PHDRS is "
3385 "not currently supported"));
3386 }
3387 if (headers)
3388 {
3389 size_t sizeof_headers = this->total_header_size(layout);
3390 uint64_t subtract = this->header_size_adjustment(lma,
3391 sizeof_headers);
3392 if (lma >= subtract && vma >= subtract)
3393 {
3394 lma -= subtract;
3395 vma -= subtract;
3396 }
3397 else
3398 {
3399 gold_error(_("sections loaded on first page without room "
3400 "for file and program headers "
3401 "are not supported"));
3402 }
3403
3404 if (load_seg != NULL)
3405 gold_error(_("using FILEHDR and PHDRS on more than one "
3406 "PT_LOAD segment is not currently supported"));
3407 load_seg = oseg;
3408 }
3409
3410 oseg->set_addresses(vma, lma);
3411 }
3412
3413 return load_seg;
3414 }
3415
3416 // Add the file header and segment headers to non-load segments
3417 // specified in the PHDRS clause.
3418
3419 void
3420 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3421 Output_data* segment_headers)
3422 {
3423 gold_assert(this->saw_phdrs_clause());
3424 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3425 p != this->phdrs_elements_->end();
3426 ++p)
3427 {
3428 if ((*p)->type() != elfcpp::PT_LOAD)
3429 {
3430 if ((*p)->includes_phdrs())
3431 (*p)->segment()->add_initial_output_data(segment_headers);
3432 if ((*p)->includes_filehdr())
3433 (*p)->segment()->add_initial_output_data(file_header);
3434 }
3435 }
3436 }
3437
3438 // Look for an output section by name and return the address, the load
3439 // address, the alignment, and the size. This is used when an
3440 // expression refers to an output section which was not actually
3441 // created. This returns true if the section was found, false
3442 // otherwise.
3443
3444 bool
3445 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3446 uint64_t* load_address,
3447 uint64_t* addralign,
3448 uint64_t* size) const
3449 {
3450 if (!this->saw_sections_clause_)
3451 return false;
3452 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3453 p != this->sections_elements_->end();
3454 ++p)
3455 if ((*p)->get_output_section_info(name, address, load_address, addralign,
3456 size))
3457 return true;
3458 return false;
3459 }
3460
3461 // Release all Output_segments. This remove all pointers to all
3462 // Output_segments.
3463
3464 void
3465 Script_sections::release_segments()
3466 {
3467 if (this->saw_phdrs_clause())
3468 {
3469 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3470 p != this->phdrs_elements_->end();
3471 ++p)
3472 (*p)->release_segment();
3473 }
3474 }
3475
3476 // Print the SECTIONS clause to F for debugging.
3477
3478 void
3479 Script_sections::print(FILE* f) const
3480 {
3481 if (!this->saw_sections_clause_)
3482 return;
3483
3484 fprintf(f, "SECTIONS {\n");
3485
3486 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3487 p != this->sections_elements_->end();
3488 ++p)
3489 (*p)->print(f);
3490
3491 fprintf(f, "}\n");
3492
3493 if (this->phdrs_elements_ != NULL)
3494 {
3495 fprintf(f, "PHDRS {\n");
3496 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3497 p != this->phdrs_elements_->end();
3498 ++p)
3499 (*p)->print(f);
3500 fprintf(f, "}\n");
3501 }
3502 }
3503
3504 } // End namespace gold.
This page took 0.107019 seconds and 5 git commands to generate.