2010-05-14 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // Manage orphan sections. This is intended to be largely compatible
47 // with the GNU linker. The Linux kernel implicitly relies on
48 // something similar to the GNU linker's orphan placement. We
49 // originally used a simpler scheme here, but it caused the kernel
50 // build to fail, and was also rather inefficient.
51
52 class Orphan_section_placement
53 {
54 private:
55 typedef Script_sections::Elements_iterator Elements_iterator;
56
57 public:
58 Orphan_section_placement();
59
60 // Handle an output section during initialization of this mapping.
61 void
62 output_section_init(const std::string& name, Output_section*,
63 Elements_iterator location);
64
65 // Initialize the last location.
66 void
67 last_init(Elements_iterator location);
68
69 // Set *PWHERE to the address of an iterator pointing to the
70 // location to use for an orphan section. Return true if the
71 // iterator has a value, false otherwise.
72 bool
73 find_place(Output_section*, Elements_iterator** pwhere);
74
75 // Return the iterator being used for sections at the very end of
76 // the linker script.
77 Elements_iterator
78 last_place() const;
79
80 private:
81 // The places that we specifically recognize. This list is copied
82 // from the GNU linker.
83 enum Place_index
84 {
85 PLACE_TEXT,
86 PLACE_RODATA,
87 PLACE_DATA,
88 PLACE_TLS,
89 PLACE_TLS_BSS,
90 PLACE_BSS,
91 PLACE_REL,
92 PLACE_INTERP,
93 PLACE_NONALLOC,
94 PLACE_LAST,
95 PLACE_MAX
96 };
97
98 // The information we keep for a specific place.
99 struct Place
100 {
101 // The name of sections for this place.
102 const char* name;
103 // Whether we have a location for this place.
104 bool have_location;
105 // The iterator for this place.
106 Elements_iterator location;
107 };
108
109 // Initialize one place element.
110 void
111 initialize_place(Place_index, const char*);
112
113 // The places.
114 Place places_[PLACE_MAX];
115 // True if this is the first call to output_section_init.
116 bool first_init_;
117 };
118
119 // Initialize Orphan_section_placement.
120
121 Orphan_section_placement::Orphan_section_placement()
122 : first_init_(true)
123 {
124 this->initialize_place(PLACE_TEXT, ".text");
125 this->initialize_place(PLACE_RODATA, ".rodata");
126 this->initialize_place(PLACE_DATA, ".data");
127 this->initialize_place(PLACE_TLS, NULL);
128 this->initialize_place(PLACE_TLS_BSS, NULL);
129 this->initialize_place(PLACE_BSS, ".bss");
130 this->initialize_place(PLACE_REL, NULL);
131 this->initialize_place(PLACE_INTERP, ".interp");
132 this->initialize_place(PLACE_NONALLOC, NULL);
133 this->initialize_place(PLACE_LAST, NULL);
134 }
135
136 // Initialize one place element.
137
138 void
139 Orphan_section_placement::initialize_place(Place_index index, const char* name)
140 {
141 this->places_[index].name = name;
142 this->places_[index].have_location = false;
143 }
144
145 // While initializing the Orphan_section_placement information, this
146 // is called once for each output section named in the linker script.
147 // If we found an output section during the link, it will be passed in
148 // OS.
149
150 void
151 Orphan_section_placement::output_section_init(const std::string& name,
152 Output_section* os,
153 Elements_iterator location)
154 {
155 bool first_init = this->first_init_;
156 this->first_init_ = false;
157
158 for (int i = 0; i < PLACE_MAX; ++i)
159 {
160 if (this->places_[i].name != NULL && this->places_[i].name == name)
161 {
162 if (this->places_[i].have_location)
163 {
164 // We have already seen a section with this name.
165 return;
166 }
167
168 this->places_[i].location = location;
169 this->places_[i].have_location = true;
170
171 // If we just found the .bss section, restart the search for
172 // an unallocated section. This follows the GNU linker's
173 // behaviour.
174 if (i == PLACE_BSS)
175 this->places_[PLACE_NONALLOC].have_location = false;
176
177 return;
178 }
179 }
180
181 // Relocation sections.
182 if (!this->places_[PLACE_REL].have_location
183 && os != NULL
184 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
185 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
186 {
187 this->places_[PLACE_REL].location = location;
188 this->places_[PLACE_REL].have_location = true;
189 }
190
191 // We find the location for unallocated sections by finding the
192 // first debugging or comment section after the BSS section (if
193 // there is one).
194 if (!this->places_[PLACE_NONALLOC].have_location
195 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
196 {
197 // We add orphan sections after the location in PLACES_. We
198 // want to store unallocated sections before LOCATION. If this
199 // is the very first section, we can't use it.
200 if (!first_init)
201 {
202 --location;
203 this->places_[PLACE_NONALLOC].location = location;
204 this->places_[PLACE_NONALLOC].have_location = true;
205 }
206 }
207 }
208
209 // Initialize the last location.
210
211 void
212 Orphan_section_placement::last_init(Elements_iterator location)
213 {
214 this->places_[PLACE_LAST].location = location;
215 this->places_[PLACE_LAST].have_location = true;
216 }
217
218 // Set *PWHERE to the address of an iterator pointing to the location
219 // to use for an orphan section. Return true if the iterator has a
220 // value, false otherwise.
221
222 bool
223 Orphan_section_placement::find_place(Output_section* os,
224 Elements_iterator** pwhere)
225 {
226 // Figure out where OS should go. This is based on the GNU linker
227 // code. FIXME: The GNU linker handles small data sections
228 // specially, but we don't.
229 elfcpp::Elf_Word type = os->type();
230 elfcpp::Elf_Xword flags = os->flags();
231 Place_index index;
232 if ((flags & elfcpp::SHF_ALLOC) == 0
233 && !Layout::is_debug_info_section(os->name()))
234 index = PLACE_NONALLOC;
235 else if ((flags & elfcpp::SHF_ALLOC) == 0)
236 index = PLACE_LAST;
237 else if (type == elfcpp::SHT_NOTE)
238 index = PLACE_INTERP;
239 else if ((flags & elfcpp::SHF_TLS) != 0)
240 {
241 if (type == elfcpp::SHT_NOBITS)
242 index = PLACE_TLS_BSS;
243 else
244 index = PLACE_TLS;
245 }
246 else if (type == elfcpp::SHT_NOBITS)
247 index = PLACE_BSS;
248 else if ((flags & elfcpp::SHF_WRITE) != 0)
249 index = PLACE_DATA;
250 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
251 index = PLACE_REL;
252 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
253 index = PLACE_RODATA;
254 else
255 index = PLACE_TEXT;
256
257 // If we don't have a location yet, try to find one based on a
258 // plausible ordering of sections.
259 if (!this->places_[index].have_location)
260 {
261 Place_index follow;
262 switch (index)
263 {
264 default:
265 follow = PLACE_MAX;
266 break;
267 case PLACE_RODATA:
268 follow = PLACE_TEXT;
269 break;
270 case PLACE_BSS:
271 follow = PLACE_DATA;
272 break;
273 case PLACE_REL:
274 follow = PLACE_TEXT;
275 break;
276 case PLACE_INTERP:
277 follow = PLACE_TEXT;
278 break;
279 case PLACE_TLS:
280 follow = PLACE_DATA;
281 break;
282 case PLACE_TLS_BSS:
283 follow = PLACE_TLS;
284 if (!this->places_[PLACE_TLS].have_location)
285 follow = PLACE_DATA;
286 break;
287 }
288 if (follow != PLACE_MAX && this->places_[follow].have_location)
289 {
290 // Set the location of INDEX to the location of FOLLOW. The
291 // location of INDEX will then be incremented by the caller,
292 // so anything in INDEX will continue to be after anything
293 // in FOLLOW.
294 this->places_[index].location = this->places_[follow].location;
295 this->places_[index].have_location = true;
296 }
297 }
298
299 *pwhere = &this->places_[index].location;
300 bool ret = this->places_[index].have_location;
301
302 // The caller will set the location.
303 this->places_[index].have_location = true;
304
305 return ret;
306 }
307
308 // Return the iterator being used for sections at the very end of the
309 // linker script.
310
311 Orphan_section_placement::Elements_iterator
312 Orphan_section_placement::last_place() const
313 {
314 gold_assert(this->places_[PLACE_LAST].have_location);
315 return this->places_[PLACE_LAST].location;
316 }
317
318 // An element in a SECTIONS clause.
319
320 class Sections_element
321 {
322 public:
323 Sections_element()
324 { }
325
326 virtual ~Sections_element()
327 { }
328
329 // Return whether an output section is relro.
330 virtual bool
331 is_relro() const
332 { return false; }
333
334 // Record that an output section is relro.
335 virtual void
336 set_is_relro()
337 { }
338
339 // Create any required output sections. The only real
340 // implementation is in Output_section_definition.
341 virtual void
342 create_sections(Layout*)
343 { }
344
345 // Add any symbol being defined to the symbol table.
346 virtual void
347 add_symbols_to_table(Symbol_table*)
348 { }
349
350 // Finalize symbols and check assertions.
351 virtual void
352 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
353 { }
354
355 // Return the output section name to use for an input file name and
356 // section name. This only real implementation is in
357 // Output_section_definition.
358 virtual const char*
359 output_section_name(const char*, const char*, Output_section***,
360 Script_sections::Section_type*)
361 { return NULL; }
362
363 // Initialize OSP with an output section.
364 virtual void
365 orphan_section_init(Orphan_section_placement*,
366 Script_sections::Elements_iterator)
367 { }
368
369 // Set section addresses. This includes applying assignments if the
370 // the expression is an absolute value.
371 virtual void
372 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
373 uint64_t*)
374 { }
375
376 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
377 // this section is constrained, and the input sections do not match,
378 // return the constraint, and set *POSD.
379 virtual Section_constraint
380 check_constraint(Output_section_definition**)
381 { return CONSTRAINT_NONE; }
382
383 // See if this is the alternate output section for a constrained
384 // output section. If it is, transfer the Output_section and return
385 // true. Otherwise return false.
386 virtual bool
387 alternate_constraint(Output_section_definition*, Section_constraint)
388 { return false; }
389
390 // Get the list of segments to use for an allocated section when
391 // using a PHDRS clause. If this is an allocated section, return
392 // the Output_section, and set *PHDRS_LIST (the first parameter) to
393 // the list of PHDRS to which it should be attached. If the PHDRS
394 // were not specified, don't change *PHDRS_LIST. When not returning
395 // NULL, set *ORPHAN (the second parameter) according to whether
396 // this is an orphan section--one that is not mentioned in the
397 // linker script.
398 virtual Output_section*
399 allocate_to_segment(String_list**, bool*)
400 { return NULL; }
401
402 // Look for an output section by name and return the address, the
403 // load address, the alignment, and the size. This is used when an
404 // expression refers to an output section which was not actually
405 // created. This returns true if the section was found, false
406 // otherwise. The only real definition is for
407 // Output_section_definition.
408 virtual bool
409 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
410 uint64_t*) const
411 { return false; }
412
413 // Return the associated Output_section if there is one.
414 virtual Output_section*
415 get_output_section() const
416 { return NULL; }
417
418 // Print the element for debugging purposes.
419 virtual void
420 print(FILE* f) const = 0;
421 };
422
423 // An assignment in a SECTIONS clause outside of an output section.
424
425 class Sections_element_assignment : public Sections_element
426 {
427 public:
428 Sections_element_assignment(const char* name, size_t namelen,
429 Expression* val, bool provide, bool hidden)
430 : assignment_(name, namelen, false, val, provide, hidden)
431 { }
432
433 // Add the symbol to the symbol table.
434 void
435 add_symbols_to_table(Symbol_table* symtab)
436 { this->assignment_.add_to_table(symtab); }
437
438 // Finalize the symbol.
439 void
440 finalize_symbols(Symbol_table* symtab, const Layout* layout,
441 uint64_t* dot_value)
442 {
443 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
444 }
445
446 // Set the section address. There is no section here, but if the
447 // value is absolute, we set the symbol. This permits us to use
448 // absolute symbols when setting dot.
449 void
450 set_section_addresses(Symbol_table* symtab, Layout* layout,
451 uint64_t* dot_value, uint64_t*, uint64_t*)
452 {
453 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
454 }
455
456 // Print for debugging.
457 void
458 print(FILE* f) const
459 {
460 fprintf(f, " ");
461 this->assignment_.print(f);
462 }
463
464 private:
465 Symbol_assignment assignment_;
466 };
467
468 // An assignment to the dot symbol in a SECTIONS clause outside of an
469 // output section.
470
471 class Sections_element_dot_assignment : public Sections_element
472 {
473 public:
474 Sections_element_dot_assignment(Expression* val)
475 : val_(val)
476 { }
477
478 // Finalize the symbol.
479 void
480 finalize_symbols(Symbol_table* symtab, const Layout* layout,
481 uint64_t* dot_value)
482 {
483 // We ignore the section of the result because outside of an
484 // output section definition the dot symbol is always considered
485 // to be absolute.
486 Output_section* dummy;
487 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
488 NULL, &dummy, NULL);
489 }
490
491 // Update the dot symbol while setting section addresses.
492 void
493 set_section_addresses(Symbol_table* symtab, Layout* layout,
494 uint64_t* dot_value, uint64_t* dot_alignment,
495 uint64_t* load_address)
496 {
497 Output_section* dummy;
498 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
499 NULL, &dummy, dot_alignment);
500 *load_address = *dot_value;
501 }
502
503 // Print for debugging.
504 void
505 print(FILE* f) const
506 {
507 fprintf(f, " . = ");
508 this->val_->print(f);
509 fprintf(f, "\n");
510 }
511
512 private:
513 Expression* val_;
514 };
515
516 // An assertion in a SECTIONS clause outside of an output section.
517
518 class Sections_element_assertion : public Sections_element
519 {
520 public:
521 Sections_element_assertion(Expression* check, const char* message,
522 size_t messagelen)
523 : assertion_(check, message, messagelen)
524 { }
525
526 // Check the assertion.
527 void
528 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
529 { this->assertion_.check(symtab, layout); }
530
531 // Print for debugging.
532 void
533 print(FILE* f) const
534 {
535 fprintf(f, " ");
536 this->assertion_.print(f);
537 }
538
539 private:
540 Script_assertion assertion_;
541 };
542
543 // An element in an output section in a SECTIONS clause.
544
545 class Output_section_element
546 {
547 public:
548 // A list of input sections.
549 typedef std::list<Output_section::Input_section> Input_section_list;
550
551 Output_section_element()
552 { }
553
554 virtual ~Output_section_element()
555 { }
556
557 // Return whether this element requires an output section to exist.
558 virtual bool
559 needs_output_section() const
560 { return false; }
561
562 // Add any symbol being defined to the symbol table.
563 virtual void
564 add_symbols_to_table(Symbol_table*)
565 { }
566
567 // Finalize symbols and check assertions.
568 virtual void
569 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
570 { }
571
572 // Return whether this element matches FILE_NAME and SECTION_NAME.
573 // The only real implementation is in Output_section_element_input.
574 virtual bool
575 match_name(const char*, const char*) const
576 { return false; }
577
578 // Set section addresses. This includes applying assignments if the
579 // the expression is an absolute value.
580 virtual void
581 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
582 uint64_t*, uint64_t*, Output_section**, std::string*,
583 Input_section_list*)
584 { }
585
586 // Print the element for debugging purposes.
587 virtual void
588 print(FILE* f) const = 0;
589
590 protected:
591 // Return a fill string that is LENGTH bytes long, filling it with
592 // FILL.
593 std::string
594 get_fill_string(const std::string* fill, section_size_type length) const;
595 };
596
597 std::string
598 Output_section_element::get_fill_string(const std::string* fill,
599 section_size_type length) const
600 {
601 std::string this_fill;
602 this_fill.reserve(length);
603 while (this_fill.length() + fill->length() <= length)
604 this_fill += *fill;
605 if (this_fill.length() < length)
606 this_fill.append(*fill, 0, length - this_fill.length());
607 return this_fill;
608 }
609
610 // A symbol assignment in an output section.
611
612 class Output_section_element_assignment : public Output_section_element
613 {
614 public:
615 Output_section_element_assignment(const char* name, size_t namelen,
616 Expression* val, bool provide,
617 bool hidden)
618 : assignment_(name, namelen, false, val, provide, hidden)
619 { }
620
621 // Add the symbol to the symbol table.
622 void
623 add_symbols_to_table(Symbol_table* symtab)
624 { this->assignment_.add_to_table(symtab); }
625
626 // Finalize the symbol.
627 void
628 finalize_symbols(Symbol_table* symtab, const Layout* layout,
629 uint64_t* dot_value, Output_section** dot_section)
630 {
631 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
632 *dot_section);
633 }
634
635 // Set the section address. There is no section here, but if the
636 // value is absolute, we set the symbol. This permits us to use
637 // absolute symbols when setting dot.
638 void
639 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
640 uint64_t, uint64_t* dot_value, uint64_t*,
641 Output_section**, std::string*, Input_section_list*)
642 {
643 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
644 }
645
646 // Print for debugging.
647 void
648 print(FILE* f) const
649 {
650 fprintf(f, " ");
651 this->assignment_.print(f);
652 }
653
654 private:
655 Symbol_assignment assignment_;
656 };
657
658 // An assignment to the dot symbol in an output section.
659
660 class Output_section_element_dot_assignment : public Output_section_element
661 {
662 public:
663 Output_section_element_dot_assignment(Expression* val)
664 : val_(val)
665 { }
666
667 // Finalize the symbol.
668 void
669 finalize_symbols(Symbol_table* symtab, const Layout* layout,
670 uint64_t* dot_value, Output_section** dot_section)
671 {
672 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
673 *dot_section, dot_section, NULL);
674 }
675
676 // Update the dot symbol while setting section addresses.
677 void
678 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
679 uint64_t, uint64_t* dot_value, uint64_t*,
680 Output_section**, std::string*, Input_section_list*);
681
682 // Print for debugging.
683 void
684 print(FILE* f) const
685 {
686 fprintf(f, " . = ");
687 this->val_->print(f);
688 fprintf(f, "\n");
689 }
690
691 private:
692 Expression* val_;
693 };
694
695 // Update the dot symbol while setting section addresses.
696
697 void
698 Output_section_element_dot_assignment::set_section_addresses(
699 Symbol_table* symtab,
700 Layout* layout,
701 Output_section* output_section,
702 uint64_t,
703 uint64_t* dot_value,
704 uint64_t* dot_alignment,
705 Output_section** dot_section,
706 std::string* fill,
707 Input_section_list*)
708 {
709 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
710 *dot_value, *dot_section,
711 dot_section, dot_alignment);
712 if (next_dot < *dot_value)
713 gold_error(_("dot may not move backward"));
714 if (next_dot > *dot_value && output_section != NULL)
715 {
716 section_size_type length = convert_to_section_size_type(next_dot
717 - *dot_value);
718 Output_section_data* posd;
719 if (fill->empty())
720 posd = new Output_data_zero_fill(length, 0);
721 else
722 {
723 std::string this_fill = this->get_fill_string(fill, length);
724 posd = new Output_data_const(this_fill, 0);
725 }
726 output_section->add_output_section_data(posd);
727 layout->new_output_section_data_from_script(posd);
728 }
729 *dot_value = next_dot;
730 }
731
732 // An assertion in an output section.
733
734 class Output_section_element_assertion : public Output_section_element
735 {
736 public:
737 Output_section_element_assertion(Expression* check, const char* message,
738 size_t messagelen)
739 : assertion_(check, message, messagelen)
740 { }
741
742 void
743 print(FILE* f) const
744 {
745 fprintf(f, " ");
746 this->assertion_.print(f);
747 }
748
749 private:
750 Script_assertion assertion_;
751 };
752
753 // We use a special instance of Output_section_data to handle BYTE,
754 // SHORT, etc. This permits forward references to symbols in the
755 // expressions.
756
757 class Output_data_expression : public Output_section_data
758 {
759 public:
760 Output_data_expression(int size, bool is_signed, Expression* val,
761 const Symbol_table* symtab, const Layout* layout,
762 uint64_t dot_value, Output_section* dot_section)
763 : Output_section_data(size, 0, true),
764 is_signed_(is_signed), val_(val), symtab_(symtab),
765 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
766 { }
767
768 protected:
769 // Write the data to the output file.
770 void
771 do_write(Output_file*);
772
773 // Write the data to a buffer.
774 void
775 do_write_to_buffer(unsigned char*);
776
777 // Write to a map file.
778 void
779 do_print_to_mapfile(Mapfile* mapfile) const
780 { mapfile->print_output_data(this, _("** expression")); }
781
782 private:
783 template<bool big_endian>
784 void
785 endian_write_to_buffer(uint64_t, unsigned char*);
786
787 bool is_signed_;
788 Expression* val_;
789 const Symbol_table* symtab_;
790 const Layout* layout_;
791 uint64_t dot_value_;
792 Output_section* dot_section_;
793 };
794
795 // Write the data element to the output file.
796
797 void
798 Output_data_expression::do_write(Output_file* of)
799 {
800 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
801 this->write_to_buffer(view);
802 of->write_output_view(this->offset(), this->data_size(), view);
803 }
804
805 // Write the data element to a buffer.
806
807 void
808 Output_data_expression::do_write_to_buffer(unsigned char* buf)
809 {
810 Output_section* dummy;
811 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
812 true, this->dot_value_,
813 this->dot_section_, &dummy, NULL);
814
815 if (parameters->target().is_big_endian())
816 this->endian_write_to_buffer<true>(val, buf);
817 else
818 this->endian_write_to_buffer<false>(val, buf);
819 }
820
821 template<bool big_endian>
822 void
823 Output_data_expression::endian_write_to_buffer(uint64_t val,
824 unsigned char* buf)
825 {
826 switch (this->data_size())
827 {
828 case 1:
829 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
830 break;
831 case 2:
832 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
833 break;
834 case 4:
835 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
836 break;
837 case 8:
838 if (parameters->target().get_size() == 32)
839 {
840 val &= 0xffffffff;
841 if (this->is_signed_ && (val & 0x80000000) != 0)
842 val |= 0xffffffff00000000LL;
843 }
844 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
845 break;
846 default:
847 gold_unreachable();
848 }
849 }
850
851 // A data item in an output section.
852
853 class Output_section_element_data : public Output_section_element
854 {
855 public:
856 Output_section_element_data(int size, bool is_signed, Expression* val)
857 : size_(size), is_signed_(is_signed), val_(val)
858 { }
859
860 // If there is a data item, then we must create an output section.
861 bool
862 needs_output_section() const
863 { return true; }
864
865 // Finalize symbols--we just need to update dot.
866 void
867 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
868 Output_section**)
869 { *dot_value += this->size_; }
870
871 // Store the value in the section.
872 void
873 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
874 uint64_t* dot_value, uint64_t*, Output_section**,
875 std::string*, Input_section_list*);
876
877 // Print for debugging.
878 void
879 print(FILE*) const;
880
881 private:
882 // The size in bytes.
883 int size_;
884 // Whether the value is signed.
885 bool is_signed_;
886 // The value.
887 Expression* val_;
888 };
889
890 // Store the value in the section.
891
892 void
893 Output_section_element_data::set_section_addresses(
894 Symbol_table* symtab,
895 Layout* layout,
896 Output_section* os,
897 uint64_t,
898 uint64_t* dot_value,
899 uint64_t*,
900 Output_section** dot_section,
901 std::string*,
902 Input_section_list*)
903 {
904 gold_assert(os != NULL);
905 Output_data_expression* expression =
906 new Output_data_expression(this->size_, this->is_signed_, this->val_,
907 symtab, layout, *dot_value, *dot_section);
908 os->add_output_section_data(expression);
909 layout->new_output_section_data_from_script(expression);
910 *dot_value += this->size_;
911 }
912
913 // Print for debugging.
914
915 void
916 Output_section_element_data::print(FILE* f) const
917 {
918 const char* s;
919 switch (this->size_)
920 {
921 case 1:
922 s = "BYTE";
923 break;
924 case 2:
925 s = "SHORT";
926 break;
927 case 4:
928 s = "LONG";
929 break;
930 case 8:
931 if (this->is_signed_)
932 s = "SQUAD";
933 else
934 s = "QUAD";
935 break;
936 default:
937 gold_unreachable();
938 }
939 fprintf(f, " %s(", s);
940 this->val_->print(f);
941 fprintf(f, ")\n");
942 }
943
944 // A fill value setting in an output section.
945
946 class Output_section_element_fill : public Output_section_element
947 {
948 public:
949 Output_section_element_fill(Expression* val)
950 : val_(val)
951 { }
952
953 // Update the fill value while setting section addresses.
954 void
955 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
956 uint64_t, uint64_t* dot_value, uint64_t*,
957 Output_section** dot_section,
958 std::string* fill, Input_section_list*)
959 {
960 Output_section* fill_section;
961 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
962 *dot_value, *dot_section,
963 &fill_section, NULL);
964 if (fill_section != NULL)
965 gold_warning(_("fill value is not absolute"));
966 // FIXME: The GNU linker supports fill values of arbitrary length.
967 unsigned char fill_buff[4];
968 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
969 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
970 }
971
972 // Print for debugging.
973 void
974 print(FILE* f) const
975 {
976 fprintf(f, " FILL(");
977 this->val_->print(f);
978 fprintf(f, ")\n");
979 }
980
981 private:
982 // The new fill value.
983 Expression* val_;
984 };
985
986 // Return whether STRING contains a wildcard character. This is used
987 // to speed up matching.
988
989 static inline bool
990 is_wildcard_string(const std::string& s)
991 {
992 return strpbrk(s.c_str(), "?*[") != NULL;
993 }
994
995 // An input section specification in an output section
996
997 class Output_section_element_input : public Output_section_element
998 {
999 public:
1000 Output_section_element_input(const Input_section_spec* spec, bool keep);
1001
1002 // Finalize symbols--just update the value of the dot symbol.
1003 void
1004 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1005 Output_section** dot_section)
1006 {
1007 *dot_value = this->final_dot_value_;
1008 *dot_section = this->final_dot_section_;
1009 }
1010
1011 // See whether we match FILE_NAME and SECTION_NAME as an input
1012 // section.
1013 bool
1014 match_name(const char* file_name, const char* section_name) const;
1015
1016 // Set the section address.
1017 void
1018 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1019 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1020 Output_section**, std::string* fill,
1021 Input_section_list*);
1022
1023 // Print for debugging.
1024 void
1025 print(FILE* f) const;
1026
1027 private:
1028 // An input section pattern.
1029 struct Input_section_pattern
1030 {
1031 std::string pattern;
1032 bool pattern_is_wildcard;
1033 Sort_wildcard sort;
1034
1035 Input_section_pattern(const char* patterna, size_t patternlena,
1036 Sort_wildcard sorta)
1037 : pattern(patterna, patternlena),
1038 pattern_is_wildcard(is_wildcard_string(this->pattern)),
1039 sort(sorta)
1040 { }
1041 };
1042
1043 typedef std::vector<Input_section_pattern> Input_section_patterns;
1044
1045 // Filename_exclusions is a pair of filename pattern and a bool
1046 // indicating whether the filename is a wildcard.
1047 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1048
1049 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1050 // indicates whether this is a wildcard pattern.
1051 static inline bool
1052 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1053 {
1054 return (is_wildcard_pattern
1055 ? fnmatch(pattern, string, 0) == 0
1056 : strcmp(string, pattern) == 0);
1057 }
1058
1059 // See if we match a file name.
1060 bool
1061 match_file_name(const char* file_name) const;
1062
1063 // The file name pattern. If this is the empty string, we match all
1064 // files.
1065 std::string filename_pattern_;
1066 // Whether the file name pattern is a wildcard.
1067 bool filename_is_wildcard_;
1068 // How the file names should be sorted. This may only be
1069 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1070 Sort_wildcard filename_sort_;
1071 // The list of file names to exclude.
1072 Filename_exclusions filename_exclusions_;
1073 // The list of input section patterns.
1074 Input_section_patterns input_section_patterns_;
1075 // Whether to keep this section when garbage collecting.
1076 bool keep_;
1077 // The value of dot after including all matching sections.
1078 uint64_t final_dot_value_;
1079 // The section where dot is defined after including all matching
1080 // sections.
1081 Output_section* final_dot_section_;
1082 };
1083
1084 // Construct Output_section_element_input. The parser records strings
1085 // as pointers into a copy of the script file, which will go away when
1086 // parsing is complete. We make sure they are in std::string objects.
1087
1088 Output_section_element_input::Output_section_element_input(
1089 const Input_section_spec* spec,
1090 bool keep)
1091 : filename_pattern_(),
1092 filename_is_wildcard_(false),
1093 filename_sort_(spec->file.sort),
1094 filename_exclusions_(),
1095 input_section_patterns_(),
1096 keep_(keep),
1097 final_dot_value_(0),
1098 final_dot_section_(NULL)
1099 {
1100 // The filename pattern "*" is common, and matches all files. Turn
1101 // it into the empty string.
1102 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1103 this->filename_pattern_.assign(spec->file.name.value,
1104 spec->file.name.length);
1105 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
1106
1107 if (spec->input_sections.exclude != NULL)
1108 {
1109 for (String_list::const_iterator p =
1110 spec->input_sections.exclude->begin();
1111 p != spec->input_sections.exclude->end();
1112 ++p)
1113 {
1114 bool is_wildcard = is_wildcard_string(*p);
1115 this->filename_exclusions_.push_back(std::make_pair(*p,
1116 is_wildcard));
1117 }
1118 }
1119
1120 if (spec->input_sections.sections != NULL)
1121 {
1122 Input_section_patterns& isp(this->input_section_patterns_);
1123 for (String_sort_list::const_iterator p =
1124 spec->input_sections.sections->begin();
1125 p != spec->input_sections.sections->end();
1126 ++p)
1127 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1128 p->sort));
1129 }
1130 }
1131
1132 // See whether we match FILE_NAME.
1133
1134 bool
1135 Output_section_element_input::match_file_name(const char* file_name) const
1136 {
1137 if (!this->filename_pattern_.empty())
1138 {
1139 // If we were called with no filename, we refuse to match a
1140 // pattern which requires a file name.
1141 if (file_name == NULL)
1142 return false;
1143
1144 if (!match(file_name, this->filename_pattern_.c_str(),
1145 this->filename_is_wildcard_))
1146 return false;
1147 }
1148
1149 if (file_name != NULL)
1150 {
1151 // Now we have to see whether FILE_NAME matches one of the
1152 // exclusion patterns, if any.
1153 for (Filename_exclusions::const_iterator p =
1154 this->filename_exclusions_.begin();
1155 p != this->filename_exclusions_.end();
1156 ++p)
1157 {
1158 if (match(file_name, p->first.c_str(), p->second))
1159 return false;
1160 }
1161 }
1162
1163 return true;
1164 }
1165
1166 // See whether we match FILE_NAME and SECTION_NAME.
1167
1168 bool
1169 Output_section_element_input::match_name(const char* file_name,
1170 const char* section_name) const
1171 {
1172 if (!this->match_file_name(file_name))
1173 return false;
1174
1175 // If there are no section name patterns, then we match.
1176 if (this->input_section_patterns_.empty())
1177 return true;
1178
1179 // See whether we match the section name patterns.
1180 for (Input_section_patterns::const_iterator p =
1181 this->input_section_patterns_.begin();
1182 p != this->input_section_patterns_.end();
1183 ++p)
1184 {
1185 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1186 return true;
1187 }
1188
1189 // We didn't match any section names, so we didn't match.
1190 return false;
1191 }
1192
1193 // Information we use to sort the input sections.
1194
1195 class Input_section_info
1196 {
1197 public:
1198 Input_section_info(const Output_section::Input_section& input_section)
1199 : input_section_(input_section), section_name_(),
1200 size_(0), addralign_(1)
1201 { }
1202
1203 // Return the simple input section.
1204 const Output_section::Input_section&
1205 input_section() const
1206 { return this->input_section_; }
1207
1208 // Return the object.
1209 Relobj*
1210 relobj() const
1211 { return this->input_section_.relobj(); }
1212
1213 // Return the section index.
1214 unsigned int
1215 shndx()
1216 { return this->input_section_.shndx(); }
1217
1218 // Return the section name.
1219 const std::string&
1220 section_name() const
1221 { return this->section_name_; }
1222
1223 // Set the section name.
1224 void
1225 set_section_name(const std::string name)
1226 { this->section_name_ = name; }
1227
1228 // Return the section size.
1229 uint64_t
1230 size() const
1231 { return this->size_; }
1232
1233 // Set the section size.
1234 void
1235 set_size(uint64_t size)
1236 { this->size_ = size; }
1237
1238 // Return the address alignment.
1239 uint64_t
1240 addralign() const
1241 { return this->addralign_; }
1242
1243 // Set the address alignment.
1244 void
1245 set_addralign(uint64_t addralign)
1246 { this->addralign_ = addralign; }
1247
1248 private:
1249 // Input section, can be a relaxed section.
1250 Output_section::Input_section input_section_;
1251 // Name of the section.
1252 std::string section_name_;
1253 // Section size.
1254 uint64_t size_;
1255 // Address alignment.
1256 uint64_t addralign_;
1257 };
1258
1259 // A class to sort the input sections.
1260
1261 class Input_section_sorter
1262 {
1263 public:
1264 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1265 : filename_sort_(filename_sort), section_sort_(section_sort)
1266 { }
1267
1268 bool
1269 operator()(const Input_section_info&, const Input_section_info&) const;
1270
1271 private:
1272 Sort_wildcard filename_sort_;
1273 Sort_wildcard section_sort_;
1274 };
1275
1276 bool
1277 Input_section_sorter::operator()(const Input_section_info& isi1,
1278 const Input_section_info& isi2) const
1279 {
1280 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1281 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1282 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1283 && isi1.addralign() == isi2.addralign()))
1284 {
1285 if (isi1.section_name() != isi2.section_name())
1286 return isi1.section_name() < isi2.section_name();
1287 }
1288 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1289 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1290 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1291 {
1292 if (isi1.addralign() != isi2.addralign())
1293 return isi1.addralign() < isi2.addralign();
1294 }
1295 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1296 {
1297 if (isi1.relobj()->name() != isi2.relobj()->name())
1298 return (isi1.relobj()->name() < isi2.relobj()->name());
1299 }
1300
1301 // Otherwise we leave them in the same order.
1302 return false;
1303 }
1304
1305 // Set the section address. Look in INPUT_SECTIONS for sections which
1306 // match this spec, sort them as specified, and add them to the output
1307 // section.
1308
1309 void
1310 Output_section_element_input::set_section_addresses(
1311 Symbol_table*,
1312 Layout* layout,
1313 Output_section* output_section,
1314 uint64_t subalign,
1315 uint64_t* dot_value,
1316 uint64_t*,
1317 Output_section** dot_section,
1318 std::string* fill,
1319 Input_section_list* input_sections)
1320 {
1321 // We build a list of sections which match each
1322 // Input_section_pattern.
1323
1324 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1325 size_t input_pattern_count = this->input_section_patterns_.size();
1326 if (input_pattern_count == 0)
1327 input_pattern_count = 1;
1328 Matching_sections matching_sections(input_pattern_count);
1329
1330 // Look through the list of sections for this output section. Add
1331 // each one which matches to one of the elements of
1332 // MATCHING_SECTIONS.
1333
1334 Input_section_list::iterator p = input_sections->begin();
1335 while (p != input_sections->end())
1336 {
1337 Relobj* relobj = p->relobj();
1338 unsigned int shndx = p->shndx();
1339 Input_section_info isi(*p);
1340
1341 // Calling section_name and section_addralign is not very
1342 // efficient.
1343
1344 // Lock the object so that we can get information about the
1345 // section. This is OK since we know we are single-threaded
1346 // here.
1347 {
1348 const Task* task = reinterpret_cast<const Task*>(-1);
1349 Task_lock_obj<Object> tl(task, relobj);
1350
1351 isi.set_section_name(relobj->section_name(shndx));
1352 if (p->is_relaxed_input_section())
1353 {
1354 // We use current data size because relxed section sizes may not
1355 // have finalized yet.
1356 isi.set_size(p->relaxed_input_section()->current_data_size());
1357 isi.set_addralign(p->relaxed_input_section()->addralign());
1358 }
1359 else
1360 {
1361 isi.set_size(relobj->section_size(shndx));
1362 isi.set_addralign(relobj->section_addralign(shndx));
1363 }
1364 }
1365
1366 if (!this->match_file_name(relobj->name().c_str()))
1367 ++p;
1368 else if (this->input_section_patterns_.empty())
1369 {
1370 matching_sections[0].push_back(isi);
1371 p = input_sections->erase(p);
1372 }
1373 else
1374 {
1375 size_t i;
1376 for (i = 0; i < input_pattern_count; ++i)
1377 {
1378 const Input_section_pattern&
1379 isp(this->input_section_patterns_[i]);
1380 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1381 isp.pattern_is_wildcard))
1382 break;
1383 }
1384
1385 if (i >= this->input_section_patterns_.size())
1386 ++p;
1387 else
1388 {
1389 matching_sections[i].push_back(isi);
1390 p = input_sections->erase(p);
1391 }
1392 }
1393 }
1394
1395 // Look through MATCHING_SECTIONS. Sort each one as specified,
1396 // using a stable sort so that we get the default order when
1397 // sections are otherwise equal. Add each input section to the
1398 // output section.
1399
1400 uint64_t dot = *dot_value;
1401 for (size_t i = 0; i < input_pattern_count; ++i)
1402 {
1403 if (matching_sections[i].empty())
1404 continue;
1405
1406 gold_assert(output_section != NULL);
1407
1408 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1409 if (isp.sort != SORT_WILDCARD_NONE
1410 || this->filename_sort_ != SORT_WILDCARD_NONE)
1411 std::stable_sort(matching_sections[i].begin(),
1412 matching_sections[i].end(),
1413 Input_section_sorter(this->filename_sort_,
1414 isp.sort));
1415
1416 for (std::vector<Input_section_info>::const_iterator p =
1417 matching_sections[i].begin();
1418 p != matching_sections[i].end();
1419 ++p)
1420 {
1421 // Override the original address alignment if SUBALIGN is specified
1422 // and is greater than the original alignment. We need to make a
1423 // copy of the input section to modify the alignment.
1424 Output_section::Input_section sis(p->input_section());
1425
1426 uint64_t this_subalign = sis.addralign();
1427 if (!sis.is_input_section())
1428 sis.output_section_data()->finalize_data_size();
1429 uint64_t data_size = sis.data_size();
1430 if (this_subalign < subalign)
1431 {
1432 this_subalign = subalign;
1433 sis.set_addralign(subalign);
1434 }
1435
1436 uint64_t address = align_address(dot, this_subalign);
1437
1438 if (address > dot && !fill->empty())
1439 {
1440 section_size_type length =
1441 convert_to_section_size_type(address - dot);
1442 std::string this_fill = this->get_fill_string(fill, length);
1443 Output_section_data* posd = new Output_data_const(this_fill, 0);
1444 output_section->add_output_section_data(posd);
1445 layout->new_output_section_data_from_script(posd);
1446 }
1447
1448 output_section->add_script_input_section(sis);
1449 dot = address + data_size;
1450 }
1451 }
1452
1453 // An SHF_TLS/SHT_NOBITS section does not take up any
1454 // address space.
1455 if (output_section == NULL
1456 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1457 || output_section->type() != elfcpp::SHT_NOBITS)
1458 *dot_value = dot;
1459
1460 this->final_dot_value_ = *dot_value;
1461 this->final_dot_section_ = *dot_section;
1462 }
1463
1464 // Print for debugging.
1465
1466 void
1467 Output_section_element_input::print(FILE* f) const
1468 {
1469 fprintf(f, " ");
1470
1471 if (this->keep_)
1472 fprintf(f, "KEEP(");
1473
1474 if (!this->filename_pattern_.empty())
1475 {
1476 bool need_close_paren = false;
1477 switch (this->filename_sort_)
1478 {
1479 case SORT_WILDCARD_NONE:
1480 break;
1481 case SORT_WILDCARD_BY_NAME:
1482 fprintf(f, "SORT_BY_NAME(");
1483 need_close_paren = true;
1484 break;
1485 default:
1486 gold_unreachable();
1487 }
1488
1489 fprintf(f, "%s", this->filename_pattern_.c_str());
1490
1491 if (need_close_paren)
1492 fprintf(f, ")");
1493 }
1494
1495 if (!this->input_section_patterns_.empty()
1496 || !this->filename_exclusions_.empty())
1497 {
1498 fprintf(f, "(");
1499
1500 bool need_space = false;
1501 if (!this->filename_exclusions_.empty())
1502 {
1503 fprintf(f, "EXCLUDE_FILE(");
1504 bool need_comma = false;
1505 for (Filename_exclusions::const_iterator p =
1506 this->filename_exclusions_.begin();
1507 p != this->filename_exclusions_.end();
1508 ++p)
1509 {
1510 if (need_comma)
1511 fprintf(f, ", ");
1512 fprintf(f, "%s", p->first.c_str());
1513 need_comma = true;
1514 }
1515 fprintf(f, ")");
1516 need_space = true;
1517 }
1518
1519 for (Input_section_patterns::const_iterator p =
1520 this->input_section_patterns_.begin();
1521 p != this->input_section_patterns_.end();
1522 ++p)
1523 {
1524 if (need_space)
1525 fprintf(f, " ");
1526
1527 int close_parens = 0;
1528 switch (p->sort)
1529 {
1530 case SORT_WILDCARD_NONE:
1531 break;
1532 case SORT_WILDCARD_BY_NAME:
1533 fprintf(f, "SORT_BY_NAME(");
1534 close_parens = 1;
1535 break;
1536 case SORT_WILDCARD_BY_ALIGNMENT:
1537 fprintf(f, "SORT_BY_ALIGNMENT(");
1538 close_parens = 1;
1539 break;
1540 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1541 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1542 close_parens = 2;
1543 break;
1544 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1545 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1546 close_parens = 2;
1547 break;
1548 default:
1549 gold_unreachable();
1550 }
1551
1552 fprintf(f, "%s", p->pattern.c_str());
1553
1554 for (int i = 0; i < close_parens; ++i)
1555 fprintf(f, ")");
1556
1557 need_space = true;
1558 }
1559
1560 fprintf(f, ")");
1561 }
1562
1563 if (this->keep_)
1564 fprintf(f, ")");
1565
1566 fprintf(f, "\n");
1567 }
1568
1569 // An output section.
1570
1571 class Output_section_definition : public Sections_element
1572 {
1573 public:
1574 typedef Output_section_element::Input_section_list Input_section_list;
1575
1576 Output_section_definition(const char* name, size_t namelen,
1577 const Parser_output_section_header* header);
1578
1579 // Finish the output section with the information in the trailer.
1580 void
1581 finish(const Parser_output_section_trailer* trailer);
1582
1583 // Add a symbol to be defined.
1584 void
1585 add_symbol_assignment(const char* name, size_t length, Expression* value,
1586 bool provide, bool hidden);
1587
1588 // Add an assignment to the special dot symbol.
1589 void
1590 add_dot_assignment(Expression* value);
1591
1592 // Add an assertion.
1593 void
1594 add_assertion(Expression* check, const char* message, size_t messagelen);
1595
1596 // Add a data item to the current output section.
1597 void
1598 add_data(int size, bool is_signed, Expression* val);
1599
1600 // Add a setting for the fill value.
1601 void
1602 add_fill(Expression* val);
1603
1604 // Add an input section specification.
1605 void
1606 add_input_section(const Input_section_spec* spec, bool keep);
1607
1608 // Return whether the output section is relro.
1609 bool
1610 is_relro() const
1611 { return this->is_relro_; }
1612
1613 // Record that the output section is relro.
1614 void
1615 set_is_relro()
1616 { this->is_relro_ = true; }
1617
1618 // Create any required output sections.
1619 void
1620 create_sections(Layout*);
1621
1622 // Add any symbols being defined to the symbol table.
1623 void
1624 add_symbols_to_table(Symbol_table* symtab);
1625
1626 // Finalize symbols and check assertions.
1627 void
1628 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1629
1630 // Return the output section name to use for an input file name and
1631 // section name.
1632 const char*
1633 output_section_name(const char* file_name, const char* section_name,
1634 Output_section***, Script_sections::Section_type*);
1635
1636 // Initialize OSP with an output section.
1637 void
1638 orphan_section_init(Orphan_section_placement* osp,
1639 Script_sections::Elements_iterator p)
1640 { osp->output_section_init(this->name_, this->output_section_, p); }
1641
1642 // Set the section address.
1643 void
1644 set_section_addresses(Symbol_table* symtab, Layout* layout,
1645 uint64_t* dot_value, uint64_t*,
1646 uint64_t* load_address);
1647
1648 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1649 // this section is constrained, and the input sections do not match,
1650 // return the constraint, and set *POSD.
1651 Section_constraint
1652 check_constraint(Output_section_definition** posd);
1653
1654 // See if this is the alternate output section for a constrained
1655 // output section. If it is, transfer the Output_section and return
1656 // true. Otherwise return false.
1657 bool
1658 alternate_constraint(Output_section_definition*, Section_constraint);
1659
1660 // Get the list of segments to use for an allocated section when
1661 // using a PHDRS clause.
1662 Output_section*
1663 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1664
1665 // Look for an output section by name and return the address, the
1666 // load address, the alignment, and the size. This is used when an
1667 // expression refers to an output section which was not actually
1668 // created. This returns true if the section was found, false
1669 // otherwise.
1670 bool
1671 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1672 uint64_t*) const;
1673
1674 // Return the associated Output_section if there is one.
1675 Output_section*
1676 get_output_section() const
1677 { return this->output_section_; }
1678
1679 // Print the contents to the FILE. This is for debugging.
1680 void
1681 print(FILE*) const;
1682
1683 // Return the output section type if specified or Script_sections::ST_NONE.
1684 Script_sections::Section_type
1685 section_type() const;
1686
1687 private:
1688 static const char*
1689 script_section_type_name(Script_section_type);
1690
1691 typedef std::vector<Output_section_element*> Output_section_elements;
1692
1693 // The output section name.
1694 std::string name_;
1695 // The address. This may be NULL.
1696 Expression* address_;
1697 // The load address. This may be NULL.
1698 Expression* load_address_;
1699 // The alignment. This may be NULL.
1700 Expression* align_;
1701 // The input section alignment. This may be NULL.
1702 Expression* subalign_;
1703 // The constraint, if any.
1704 Section_constraint constraint_;
1705 // The fill value. This may be NULL.
1706 Expression* fill_;
1707 // The list of segments this section should go into. This may be
1708 // NULL.
1709 String_list* phdrs_;
1710 // The list of elements defining the section.
1711 Output_section_elements elements_;
1712 // The Output_section created for this definition. This will be
1713 // NULL if none was created.
1714 Output_section* output_section_;
1715 // The address after it has been evaluated.
1716 uint64_t evaluated_address_;
1717 // The load address after it has been evaluated.
1718 uint64_t evaluated_load_address_;
1719 // The alignment after it has been evaluated.
1720 uint64_t evaluated_addralign_;
1721 // The output section is relro.
1722 bool is_relro_;
1723 // The output section type if specified.
1724 enum Script_section_type script_section_type_;
1725 };
1726
1727 // Constructor.
1728
1729 Output_section_definition::Output_section_definition(
1730 const char* name,
1731 size_t namelen,
1732 const Parser_output_section_header* header)
1733 : name_(name, namelen),
1734 address_(header->address),
1735 load_address_(header->load_address),
1736 align_(header->align),
1737 subalign_(header->subalign),
1738 constraint_(header->constraint),
1739 fill_(NULL),
1740 phdrs_(NULL),
1741 elements_(),
1742 output_section_(NULL),
1743 evaluated_address_(0),
1744 evaluated_load_address_(0),
1745 evaluated_addralign_(0),
1746 is_relro_(false),
1747 script_section_type_(header->section_type)
1748 {
1749 }
1750
1751 // Finish an output section.
1752
1753 void
1754 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1755 {
1756 this->fill_ = trailer->fill;
1757 this->phdrs_ = trailer->phdrs;
1758 }
1759
1760 // Add a symbol to be defined.
1761
1762 void
1763 Output_section_definition::add_symbol_assignment(const char* name,
1764 size_t length,
1765 Expression* value,
1766 bool provide,
1767 bool hidden)
1768 {
1769 Output_section_element* p = new Output_section_element_assignment(name,
1770 length,
1771 value,
1772 provide,
1773 hidden);
1774 this->elements_.push_back(p);
1775 }
1776
1777 // Add an assignment to the special dot symbol.
1778
1779 void
1780 Output_section_definition::add_dot_assignment(Expression* value)
1781 {
1782 Output_section_element* p = new Output_section_element_dot_assignment(value);
1783 this->elements_.push_back(p);
1784 }
1785
1786 // Add an assertion.
1787
1788 void
1789 Output_section_definition::add_assertion(Expression* check,
1790 const char* message,
1791 size_t messagelen)
1792 {
1793 Output_section_element* p = new Output_section_element_assertion(check,
1794 message,
1795 messagelen);
1796 this->elements_.push_back(p);
1797 }
1798
1799 // Add a data item to the current output section.
1800
1801 void
1802 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1803 {
1804 Output_section_element* p = new Output_section_element_data(size, is_signed,
1805 val);
1806 this->elements_.push_back(p);
1807 }
1808
1809 // Add a setting for the fill value.
1810
1811 void
1812 Output_section_definition::add_fill(Expression* val)
1813 {
1814 Output_section_element* p = new Output_section_element_fill(val);
1815 this->elements_.push_back(p);
1816 }
1817
1818 // Add an input section specification.
1819
1820 void
1821 Output_section_definition::add_input_section(const Input_section_spec* spec,
1822 bool keep)
1823 {
1824 Output_section_element* p = new Output_section_element_input(spec, keep);
1825 this->elements_.push_back(p);
1826 }
1827
1828 // Create any required output sections. We need an output section if
1829 // there is a data statement here.
1830
1831 void
1832 Output_section_definition::create_sections(Layout* layout)
1833 {
1834 if (this->output_section_ != NULL)
1835 return;
1836 for (Output_section_elements::const_iterator p = this->elements_.begin();
1837 p != this->elements_.end();
1838 ++p)
1839 {
1840 if ((*p)->needs_output_section())
1841 {
1842 const char* name = this->name_.c_str();
1843 this->output_section_ =
1844 layout->make_output_section_for_script(name, this->section_type());
1845 return;
1846 }
1847 }
1848 }
1849
1850 // Add any symbols being defined to the symbol table.
1851
1852 void
1853 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1854 {
1855 for (Output_section_elements::iterator p = this->elements_.begin();
1856 p != this->elements_.end();
1857 ++p)
1858 (*p)->add_symbols_to_table(symtab);
1859 }
1860
1861 // Finalize symbols and check assertions.
1862
1863 void
1864 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1865 const Layout* layout,
1866 uint64_t* dot_value)
1867 {
1868 if (this->output_section_ != NULL)
1869 *dot_value = this->output_section_->address();
1870 else
1871 {
1872 uint64_t address = *dot_value;
1873 if (this->address_ != NULL)
1874 {
1875 Output_section* dummy;
1876 address = this->address_->eval_with_dot(symtab, layout, true,
1877 *dot_value, NULL,
1878 &dummy, NULL);
1879 }
1880 if (this->align_ != NULL)
1881 {
1882 Output_section* dummy;
1883 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1884 *dot_value,
1885 NULL,
1886 &dummy, NULL);
1887 address = align_address(address, align);
1888 }
1889 *dot_value = address;
1890 }
1891
1892 Output_section* dot_section = this->output_section_;
1893 for (Output_section_elements::iterator p = this->elements_.begin();
1894 p != this->elements_.end();
1895 ++p)
1896 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1897 }
1898
1899 // Return the output section name to use for an input section name.
1900
1901 const char*
1902 Output_section_definition::output_section_name(
1903 const char* file_name,
1904 const char* section_name,
1905 Output_section*** slot,
1906 Script_sections::Section_type *psection_type)
1907 {
1908 // Ask each element whether it matches NAME.
1909 for (Output_section_elements::const_iterator p = this->elements_.begin();
1910 p != this->elements_.end();
1911 ++p)
1912 {
1913 if ((*p)->match_name(file_name, section_name))
1914 {
1915 // We found a match for NAME, which means that it should go
1916 // into this output section.
1917 *slot = &this->output_section_;
1918 *psection_type = this->section_type();
1919 return this->name_.c_str();
1920 }
1921 }
1922
1923 // We don't know about this section name.
1924 return NULL;
1925 }
1926
1927 // Set the section address. Note that the OUTPUT_SECTION_ field will
1928 // be NULL if no input sections were mapped to this output section.
1929 // We still have to adjust dot and process symbol assignments.
1930
1931 void
1932 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1933 Layout* layout,
1934 uint64_t* dot_value,
1935 uint64_t* dot_alignment,
1936 uint64_t* load_address)
1937 {
1938 uint64_t address;
1939 uint64_t old_dot_value = *dot_value;
1940 uint64_t old_load_address = *load_address;
1941
1942 if (this->address_ == NULL)
1943 address = *dot_value;
1944 else
1945 {
1946 Output_section* dummy;
1947 address = this->address_->eval_with_dot(symtab, layout, true,
1948 *dot_value, NULL, &dummy,
1949 dot_alignment);
1950 }
1951
1952 uint64_t align;
1953 if (this->align_ == NULL)
1954 {
1955 if (this->output_section_ == NULL)
1956 align = 0;
1957 else
1958 align = this->output_section_->addralign();
1959 }
1960 else
1961 {
1962 Output_section* align_section;
1963 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1964 NULL, &align_section, NULL);
1965 if (align_section != NULL)
1966 gold_warning(_("alignment of section %s is not absolute"),
1967 this->name_.c_str());
1968 if (this->output_section_ != NULL)
1969 this->output_section_->set_addralign(align);
1970 }
1971
1972 address = align_address(address, align);
1973
1974 uint64_t start_address = address;
1975
1976 *dot_value = address;
1977
1978 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
1979 // forced to zero, regardless of what the linker script wants.
1980 if (this->output_section_ != NULL
1981 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
1982 || this->output_section_->is_noload()))
1983 this->output_section_->set_address(address);
1984
1985 this->evaluated_address_ = address;
1986 this->evaluated_addralign_ = align;
1987
1988 if (this->load_address_ == NULL)
1989 this->evaluated_load_address_ = address;
1990 else
1991 {
1992 Output_section* dummy;
1993 uint64_t laddr =
1994 this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1995 this->output_section_, &dummy,
1996 NULL);
1997 if (this->output_section_ != NULL)
1998 this->output_section_->set_load_address(laddr);
1999 this->evaluated_load_address_ = laddr;
2000 }
2001
2002 uint64_t subalign;
2003 if (this->subalign_ == NULL)
2004 subalign = 0;
2005 else
2006 {
2007 Output_section* subalign_section;
2008 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2009 *dot_value, NULL,
2010 &subalign_section, NULL);
2011 if (subalign_section != NULL)
2012 gold_warning(_("subalign of section %s is not absolute"),
2013 this->name_.c_str());
2014 }
2015
2016 std::string fill;
2017 if (this->fill_ != NULL)
2018 {
2019 // FIXME: The GNU linker supports fill values of arbitrary
2020 // length.
2021 Output_section* fill_section;
2022 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2023 *dot_value,
2024 NULL, &fill_section,
2025 NULL);
2026 if (fill_section != NULL)
2027 gold_warning(_("fill of section %s is not absolute"),
2028 this->name_.c_str());
2029 unsigned char fill_buff[4];
2030 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2031 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2032 }
2033
2034 Input_section_list input_sections;
2035 if (this->output_section_ != NULL)
2036 {
2037 // Get the list of input sections attached to this output
2038 // section. This will leave the output section with only
2039 // Output_section_data entries.
2040 address += this->output_section_->get_input_sections(address,
2041 fill,
2042 &input_sections);
2043 *dot_value = address;
2044 }
2045
2046 Output_section* dot_section = this->output_section_;
2047 for (Output_section_elements::iterator p = this->elements_.begin();
2048 p != this->elements_.end();
2049 ++p)
2050 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2051 subalign, dot_value, dot_alignment,
2052 &dot_section, &fill, &input_sections);
2053
2054 gold_assert(input_sections.empty());
2055
2056 if (this->load_address_ == NULL || this->output_section_ == NULL)
2057 *load_address = *dot_value;
2058 else
2059 *load_address = (this->output_section_->load_address()
2060 + (*dot_value - start_address));
2061
2062 if (this->output_section_ != NULL)
2063 {
2064 if (this->is_relro_)
2065 this->output_section_->set_is_relro();
2066 else
2067 this->output_section_->clear_is_relro();
2068
2069 // If this is a NOLOAD section, keep dot and load address unchanged.
2070 if (this->output_section_->is_noload())
2071 {
2072 *dot_value = old_dot_value;
2073 *load_address = old_load_address;
2074 }
2075 }
2076 }
2077
2078 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2079 // this section is constrained, and the input sections do not match,
2080 // return the constraint, and set *POSD.
2081
2082 Section_constraint
2083 Output_section_definition::check_constraint(Output_section_definition** posd)
2084 {
2085 switch (this->constraint_)
2086 {
2087 case CONSTRAINT_NONE:
2088 return CONSTRAINT_NONE;
2089
2090 case CONSTRAINT_ONLY_IF_RO:
2091 if (this->output_section_ != NULL
2092 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2093 {
2094 *posd = this;
2095 return CONSTRAINT_ONLY_IF_RO;
2096 }
2097 return CONSTRAINT_NONE;
2098
2099 case CONSTRAINT_ONLY_IF_RW:
2100 if (this->output_section_ != NULL
2101 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2102 {
2103 *posd = this;
2104 return CONSTRAINT_ONLY_IF_RW;
2105 }
2106 return CONSTRAINT_NONE;
2107
2108 case CONSTRAINT_SPECIAL:
2109 if (this->output_section_ != NULL)
2110 gold_error(_("SPECIAL constraints are not implemented"));
2111 return CONSTRAINT_NONE;
2112
2113 default:
2114 gold_unreachable();
2115 }
2116 }
2117
2118 // See if this is the alternate output section for a constrained
2119 // output section. If it is, transfer the Output_section and return
2120 // true. Otherwise return false.
2121
2122 bool
2123 Output_section_definition::alternate_constraint(
2124 Output_section_definition* posd,
2125 Section_constraint constraint)
2126 {
2127 if (this->name_ != posd->name_)
2128 return false;
2129
2130 switch (constraint)
2131 {
2132 case CONSTRAINT_ONLY_IF_RO:
2133 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2134 return false;
2135 break;
2136
2137 case CONSTRAINT_ONLY_IF_RW:
2138 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2139 return false;
2140 break;
2141
2142 default:
2143 gold_unreachable();
2144 }
2145
2146 // We have found the alternate constraint. We just need to move
2147 // over the Output_section. When constraints are used properly,
2148 // THIS should not have an output_section pointer, as all the input
2149 // sections should have matched the other definition.
2150
2151 if (this->output_section_ != NULL)
2152 gold_error(_("mismatched definition for constrained sections"));
2153
2154 this->output_section_ = posd->output_section_;
2155 posd->output_section_ = NULL;
2156
2157 if (this->is_relro_)
2158 this->output_section_->set_is_relro();
2159 else
2160 this->output_section_->clear_is_relro();
2161
2162 return true;
2163 }
2164
2165 // Get the list of segments to use for an allocated section when using
2166 // a PHDRS clause.
2167
2168 Output_section*
2169 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2170 bool* orphan)
2171 {
2172 if (this->output_section_ == NULL)
2173 return NULL;
2174 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2175 return NULL;
2176 *orphan = false;
2177 if (this->phdrs_ != NULL)
2178 *phdrs_list = this->phdrs_;
2179 return this->output_section_;
2180 }
2181
2182 // Look for an output section by name and return the address, the load
2183 // address, the alignment, and the size. This is used when an
2184 // expression refers to an output section which was not actually
2185 // created. This returns true if the section was found, false
2186 // otherwise.
2187
2188 bool
2189 Output_section_definition::get_output_section_info(const char* name,
2190 uint64_t* address,
2191 uint64_t* load_address,
2192 uint64_t* addralign,
2193 uint64_t* size) const
2194 {
2195 if (this->name_ != name)
2196 return false;
2197
2198 if (this->output_section_ != NULL)
2199 {
2200 *address = this->output_section_->address();
2201 if (this->output_section_->has_load_address())
2202 *load_address = this->output_section_->load_address();
2203 else
2204 *load_address = *address;
2205 *addralign = this->output_section_->addralign();
2206 *size = this->output_section_->current_data_size();
2207 }
2208 else
2209 {
2210 *address = this->evaluated_address_;
2211 *load_address = this->evaluated_load_address_;
2212 *addralign = this->evaluated_addralign_;
2213 *size = 0;
2214 }
2215
2216 return true;
2217 }
2218
2219 // Print for debugging.
2220
2221 void
2222 Output_section_definition::print(FILE* f) const
2223 {
2224 fprintf(f, " %s ", this->name_.c_str());
2225
2226 if (this->address_ != NULL)
2227 {
2228 this->address_->print(f);
2229 fprintf(f, " ");
2230 }
2231
2232 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2233 fprintf(f, "(%s) ",
2234 this->script_section_type_name(this->script_section_type_));
2235
2236 fprintf(f, ": ");
2237
2238 if (this->load_address_ != NULL)
2239 {
2240 fprintf(f, "AT(");
2241 this->load_address_->print(f);
2242 fprintf(f, ") ");
2243 }
2244
2245 if (this->align_ != NULL)
2246 {
2247 fprintf(f, "ALIGN(");
2248 this->align_->print(f);
2249 fprintf(f, ") ");
2250 }
2251
2252 if (this->subalign_ != NULL)
2253 {
2254 fprintf(f, "SUBALIGN(");
2255 this->subalign_->print(f);
2256 fprintf(f, ") ");
2257 }
2258
2259 fprintf(f, "{\n");
2260
2261 for (Output_section_elements::const_iterator p = this->elements_.begin();
2262 p != this->elements_.end();
2263 ++p)
2264 (*p)->print(f);
2265
2266 fprintf(f, " }");
2267
2268 if (this->fill_ != NULL)
2269 {
2270 fprintf(f, " = ");
2271 this->fill_->print(f);
2272 }
2273
2274 if (this->phdrs_ != NULL)
2275 {
2276 for (String_list::const_iterator p = this->phdrs_->begin();
2277 p != this->phdrs_->end();
2278 ++p)
2279 fprintf(f, " :%s", p->c_str());
2280 }
2281
2282 fprintf(f, "\n");
2283 }
2284
2285 Script_sections::Section_type
2286 Output_section_definition::section_type() const
2287 {
2288 switch (this->script_section_type_)
2289 {
2290 case SCRIPT_SECTION_TYPE_NONE:
2291 return Script_sections::ST_NONE;
2292 case SCRIPT_SECTION_TYPE_NOLOAD:
2293 return Script_sections::ST_NOLOAD;
2294 case SCRIPT_SECTION_TYPE_COPY:
2295 case SCRIPT_SECTION_TYPE_DSECT:
2296 case SCRIPT_SECTION_TYPE_INFO:
2297 case SCRIPT_SECTION_TYPE_OVERLAY:
2298 // There are not really support so we treat them as ST_NONE. The
2299 // parse should have issued errors for them already.
2300 return Script_sections::ST_NONE;
2301 default:
2302 gold_unreachable();
2303 }
2304 }
2305
2306 // Return the name of a script section type.
2307
2308 const char*
2309 Output_section_definition::script_section_type_name (
2310 Script_section_type script_section_type)
2311 {
2312 switch (script_section_type)
2313 {
2314 case SCRIPT_SECTION_TYPE_NONE:
2315 return "NONE";
2316 case SCRIPT_SECTION_TYPE_NOLOAD:
2317 return "NOLOAD";
2318 case SCRIPT_SECTION_TYPE_DSECT:
2319 return "DSECT";
2320 case SCRIPT_SECTION_TYPE_COPY:
2321 return "COPY";
2322 case SCRIPT_SECTION_TYPE_INFO:
2323 return "INFO";
2324 case SCRIPT_SECTION_TYPE_OVERLAY:
2325 return "OVERLAY";
2326 default:
2327 gold_unreachable();
2328 }
2329 }
2330
2331 // An output section created to hold orphaned input sections. These
2332 // do not actually appear in linker scripts. However, for convenience
2333 // when setting the output section addresses, we put a marker to these
2334 // sections in the appropriate place in the list of SECTIONS elements.
2335
2336 class Orphan_output_section : public Sections_element
2337 {
2338 public:
2339 Orphan_output_section(Output_section* os)
2340 : os_(os)
2341 { }
2342
2343 // Return whether the orphan output section is relro. We can just
2344 // check the output section because we always set the flag, if
2345 // needed, just after we create the Orphan_output_section.
2346 bool
2347 is_relro() const
2348 { return this->os_->is_relro(); }
2349
2350 // Initialize OSP with an output section. This should have been
2351 // done already.
2352 void
2353 orphan_section_init(Orphan_section_placement*,
2354 Script_sections::Elements_iterator)
2355 { gold_unreachable(); }
2356
2357 // Set section addresses.
2358 void
2359 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2360 uint64_t*);
2361
2362 // Get the list of segments to use for an allocated section when
2363 // using a PHDRS clause.
2364 Output_section*
2365 allocate_to_segment(String_list**, bool*);
2366
2367 // Return the associated Output_section.
2368 Output_section*
2369 get_output_section() const
2370 { return this->os_; }
2371
2372 // Print for debugging.
2373 void
2374 print(FILE* f) const
2375 {
2376 fprintf(f, " marker for orphaned output section %s\n",
2377 this->os_->name());
2378 }
2379
2380 private:
2381 Output_section* os_;
2382 };
2383
2384 // Set section addresses.
2385
2386 void
2387 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2388 uint64_t* dot_value,
2389 uint64_t*,
2390 uint64_t* load_address)
2391 {
2392 typedef std::list<Output_section::Input_section> Input_section_list;
2393
2394 bool have_load_address = *load_address != *dot_value;
2395
2396 uint64_t address = *dot_value;
2397 address = align_address(address, this->os_->addralign());
2398
2399 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2400 {
2401 this->os_->set_address(address);
2402 if (have_load_address)
2403 this->os_->set_load_address(align_address(*load_address,
2404 this->os_->addralign()));
2405 }
2406
2407 Input_section_list input_sections;
2408 address += this->os_->get_input_sections(address, "", &input_sections);
2409
2410 for (Input_section_list::iterator p = input_sections.begin();
2411 p != input_sections.end();
2412 ++p)
2413 {
2414 uint64_t addralign = p->addralign();
2415 if (!p->is_input_section())
2416 p->output_section_data()->finalize_data_size();
2417 uint64_t size = p->data_size();
2418 address = align_address(address, addralign);
2419 this->os_->add_script_input_section(*p);
2420 address += size;
2421 }
2422
2423 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2424 if (this->os_ == NULL
2425 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2426 || this->os_->type() != elfcpp::SHT_NOBITS)
2427 {
2428 if (!have_load_address)
2429 *load_address = address;
2430 else
2431 *load_address += address - *dot_value;
2432
2433 *dot_value = address;
2434 }
2435 }
2436
2437 // Get the list of segments to use for an allocated section when using
2438 // a PHDRS clause. If this is an allocated section, return the
2439 // Output_section. We don't change the list of segments.
2440
2441 Output_section*
2442 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2443 {
2444 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2445 return NULL;
2446 *orphan = true;
2447 return this->os_;
2448 }
2449
2450 // Class Phdrs_element. A program header from a PHDRS clause.
2451
2452 class Phdrs_element
2453 {
2454 public:
2455 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2456 bool includes_filehdr, bool includes_phdrs,
2457 bool is_flags_valid, unsigned int flags,
2458 Expression* load_address)
2459 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2460 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2461 flags_(flags), load_address_(load_address), load_address_value_(0),
2462 segment_(NULL)
2463 { }
2464
2465 // Return the name of this segment.
2466 const std::string&
2467 name() const
2468 { return this->name_; }
2469
2470 // Return the type of the segment.
2471 unsigned int
2472 type() const
2473 { return this->type_; }
2474
2475 // Whether to include the file header.
2476 bool
2477 includes_filehdr() const
2478 { return this->includes_filehdr_; }
2479
2480 // Whether to include the program headers.
2481 bool
2482 includes_phdrs() const
2483 { return this->includes_phdrs_; }
2484
2485 // Return whether there is a load address.
2486 bool
2487 has_load_address() const
2488 { return this->load_address_ != NULL; }
2489
2490 // Evaluate the load address expression if there is one.
2491 void
2492 eval_load_address(Symbol_table* symtab, Layout* layout)
2493 {
2494 if (this->load_address_ != NULL)
2495 this->load_address_value_ = this->load_address_->eval(symtab, layout,
2496 true);
2497 }
2498
2499 // Return the load address.
2500 uint64_t
2501 load_address() const
2502 {
2503 gold_assert(this->load_address_ != NULL);
2504 return this->load_address_value_;
2505 }
2506
2507 // Create the segment.
2508 Output_segment*
2509 create_segment(Layout* layout)
2510 {
2511 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2512 return this->segment_;
2513 }
2514
2515 // Return the segment.
2516 Output_segment*
2517 segment()
2518 { return this->segment_; }
2519
2520 // Release the segment.
2521 void
2522 release_segment()
2523 { this->segment_ = NULL; }
2524
2525 // Set the segment flags if appropriate.
2526 void
2527 set_flags_if_valid()
2528 {
2529 if (this->is_flags_valid_)
2530 this->segment_->set_flags(this->flags_);
2531 }
2532
2533 // Print for debugging.
2534 void
2535 print(FILE*) const;
2536
2537 private:
2538 // The name used in the script.
2539 std::string name_;
2540 // The type of the segment (PT_LOAD, etc.).
2541 unsigned int type_;
2542 // Whether this segment includes the file header.
2543 bool includes_filehdr_;
2544 // Whether this segment includes the section headers.
2545 bool includes_phdrs_;
2546 // Whether the flags were explicitly specified.
2547 bool is_flags_valid_;
2548 // The flags for this segment (PF_R, etc.) if specified.
2549 unsigned int flags_;
2550 // The expression for the load address for this segment. This may
2551 // be NULL.
2552 Expression* load_address_;
2553 // The actual load address from evaluating the expression.
2554 uint64_t load_address_value_;
2555 // The segment itself.
2556 Output_segment* segment_;
2557 };
2558
2559 // Print for debugging.
2560
2561 void
2562 Phdrs_element::print(FILE* f) const
2563 {
2564 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
2565 if (this->includes_filehdr_)
2566 fprintf(f, " FILEHDR");
2567 if (this->includes_phdrs_)
2568 fprintf(f, " PHDRS");
2569 if (this->is_flags_valid_)
2570 fprintf(f, " FLAGS(%u)", this->flags_);
2571 if (this->load_address_ != NULL)
2572 {
2573 fprintf(f, " AT(");
2574 this->load_address_->print(f);
2575 fprintf(f, ")");
2576 }
2577 fprintf(f, ";\n");
2578 }
2579
2580 // Class Script_sections.
2581
2582 Script_sections::Script_sections()
2583 : saw_sections_clause_(false),
2584 in_sections_clause_(false),
2585 sections_elements_(NULL),
2586 output_section_(NULL),
2587 phdrs_elements_(NULL),
2588 orphan_section_placement_(NULL),
2589 data_segment_align_start_(),
2590 saw_data_segment_align_(false),
2591 saw_relro_end_(false),
2592 saw_segment_start_expression_(false)
2593 {
2594 }
2595
2596 // Start a SECTIONS clause.
2597
2598 void
2599 Script_sections::start_sections()
2600 {
2601 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2602 this->saw_sections_clause_ = true;
2603 this->in_sections_clause_ = true;
2604 if (this->sections_elements_ == NULL)
2605 this->sections_elements_ = new Sections_elements;
2606 }
2607
2608 // Finish a SECTIONS clause.
2609
2610 void
2611 Script_sections::finish_sections()
2612 {
2613 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2614 this->in_sections_clause_ = false;
2615 }
2616
2617 // Add a symbol to be defined.
2618
2619 void
2620 Script_sections::add_symbol_assignment(const char* name, size_t length,
2621 Expression* val, bool provide,
2622 bool hidden)
2623 {
2624 if (this->output_section_ != NULL)
2625 this->output_section_->add_symbol_assignment(name, length, val,
2626 provide, hidden);
2627 else
2628 {
2629 Sections_element* p = new Sections_element_assignment(name, length,
2630 val, provide,
2631 hidden);
2632 this->sections_elements_->push_back(p);
2633 }
2634 }
2635
2636 // Add an assignment to the special dot symbol.
2637
2638 void
2639 Script_sections::add_dot_assignment(Expression* val)
2640 {
2641 if (this->output_section_ != NULL)
2642 this->output_section_->add_dot_assignment(val);
2643 else
2644 {
2645 // The GNU linker permits assignments to . to appears outside of
2646 // a SECTIONS clause, and treats it as appearing inside, so
2647 // sections_elements_ may be NULL here.
2648 if (this->sections_elements_ == NULL)
2649 {
2650 this->sections_elements_ = new Sections_elements;
2651 this->saw_sections_clause_ = true;
2652 }
2653
2654 Sections_element* p = new Sections_element_dot_assignment(val);
2655 this->sections_elements_->push_back(p);
2656 }
2657 }
2658
2659 // Add an assertion.
2660
2661 void
2662 Script_sections::add_assertion(Expression* check, const char* message,
2663 size_t messagelen)
2664 {
2665 if (this->output_section_ != NULL)
2666 this->output_section_->add_assertion(check, message, messagelen);
2667 else
2668 {
2669 Sections_element* p = new Sections_element_assertion(check, message,
2670 messagelen);
2671 this->sections_elements_->push_back(p);
2672 }
2673 }
2674
2675 // Start processing entries for an output section.
2676
2677 void
2678 Script_sections::start_output_section(
2679 const char* name,
2680 size_t namelen,
2681 const Parser_output_section_header *header)
2682 {
2683 Output_section_definition* posd = new Output_section_definition(name,
2684 namelen,
2685 header);
2686 this->sections_elements_->push_back(posd);
2687 gold_assert(this->output_section_ == NULL);
2688 this->output_section_ = posd;
2689 }
2690
2691 // Stop processing entries for an output section.
2692
2693 void
2694 Script_sections::finish_output_section(
2695 const Parser_output_section_trailer* trailer)
2696 {
2697 gold_assert(this->output_section_ != NULL);
2698 this->output_section_->finish(trailer);
2699 this->output_section_ = NULL;
2700 }
2701
2702 // Add a data item to the current output section.
2703
2704 void
2705 Script_sections::add_data(int size, bool is_signed, Expression* val)
2706 {
2707 gold_assert(this->output_section_ != NULL);
2708 this->output_section_->add_data(size, is_signed, val);
2709 }
2710
2711 // Add a fill value setting to the current output section.
2712
2713 void
2714 Script_sections::add_fill(Expression* val)
2715 {
2716 gold_assert(this->output_section_ != NULL);
2717 this->output_section_->add_fill(val);
2718 }
2719
2720 // Add an input section specification to the current output section.
2721
2722 void
2723 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2724 {
2725 gold_assert(this->output_section_ != NULL);
2726 this->output_section_->add_input_section(spec, keep);
2727 }
2728
2729 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
2730 // subsequent output sections may be relro.
2731
2732 void
2733 Script_sections::data_segment_align()
2734 {
2735 if (this->saw_data_segment_align_)
2736 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
2737 gold_assert(!this->sections_elements_->empty());
2738 Sections_elements::iterator p = this->sections_elements_->end();
2739 --p;
2740 this->data_segment_align_start_ = p;
2741 this->saw_data_segment_align_ = true;
2742 }
2743
2744 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
2745 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
2746
2747 void
2748 Script_sections::data_segment_relro_end()
2749 {
2750 if (this->saw_relro_end_)
2751 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
2752 "in a linker script"));
2753 this->saw_relro_end_ = true;
2754
2755 if (!this->saw_data_segment_align_)
2756 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
2757 else
2758 {
2759 Sections_elements::iterator p = this->data_segment_align_start_;
2760 for (++p; p != this->sections_elements_->end(); ++p)
2761 (*p)->set_is_relro();
2762 }
2763 }
2764
2765 // Create any required sections.
2766
2767 void
2768 Script_sections::create_sections(Layout* layout)
2769 {
2770 if (!this->saw_sections_clause_)
2771 return;
2772 for (Sections_elements::iterator p = this->sections_elements_->begin();
2773 p != this->sections_elements_->end();
2774 ++p)
2775 (*p)->create_sections(layout);
2776 }
2777
2778 // Add any symbols we are defining to the symbol table.
2779
2780 void
2781 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2782 {
2783 if (!this->saw_sections_clause_)
2784 return;
2785 for (Sections_elements::iterator p = this->sections_elements_->begin();
2786 p != this->sections_elements_->end();
2787 ++p)
2788 (*p)->add_symbols_to_table(symtab);
2789 }
2790
2791 // Finalize symbols and check assertions.
2792
2793 void
2794 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2795 {
2796 if (!this->saw_sections_clause_)
2797 return;
2798 uint64_t dot_value = 0;
2799 for (Sections_elements::iterator p = this->sections_elements_->begin();
2800 p != this->sections_elements_->end();
2801 ++p)
2802 (*p)->finalize_symbols(symtab, layout, &dot_value);
2803 }
2804
2805 // Return the name of the output section to use for an input file name
2806 // and section name.
2807
2808 const char*
2809 Script_sections::output_section_name(
2810 const char* file_name,
2811 const char* section_name,
2812 Output_section*** output_section_slot,
2813 Script_sections::Section_type *psection_type)
2814 {
2815 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2816 p != this->sections_elements_->end();
2817 ++p)
2818 {
2819 const char* ret = (*p)->output_section_name(file_name, section_name,
2820 output_section_slot,
2821 psection_type);
2822
2823 if (ret != NULL)
2824 {
2825 // The special name /DISCARD/ means that the input section
2826 // should be discarded.
2827 if (strcmp(ret, "/DISCARD/") == 0)
2828 {
2829 *output_section_slot = NULL;
2830 *psection_type = Script_sections::ST_NONE;
2831 return NULL;
2832 }
2833 return ret;
2834 }
2835 }
2836
2837 // If we couldn't find a mapping for the name, the output section
2838 // gets the name of the input section.
2839
2840 *output_section_slot = NULL;
2841 *psection_type = Script_sections::ST_NONE;
2842
2843 return section_name;
2844 }
2845
2846 // Place a marker for an orphan output section into the SECTIONS
2847 // clause.
2848
2849 void
2850 Script_sections::place_orphan(Output_section* os)
2851 {
2852 Orphan_section_placement* osp = this->orphan_section_placement_;
2853 if (osp == NULL)
2854 {
2855 // Initialize the Orphan_section_placement structure.
2856 osp = new Orphan_section_placement();
2857 for (Sections_elements::iterator p = this->sections_elements_->begin();
2858 p != this->sections_elements_->end();
2859 ++p)
2860 (*p)->orphan_section_init(osp, p);
2861 gold_assert(!this->sections_elements_->empty());
2862 Sections_elements::iterator last = this->sections_elements_->end();
2863 --last;
2864 osp->last_init(last);
2865 this->orphan_section_placement_ = osp;
2866 }
2867
2868 Orphan_output_section* orphan = new Orphan_output_section(os);
2869
2870 // Look for where to put ORPHAN.
2871 Sections_elements::iterator* where;
2872 if (osp->find_place(os, &where))
2873 {
2874 if ((**where)->is_relro())
2875 os->set_is_relro();
2876 else
2877 os->clear_is_relro();
2878
2879 // We want to insert ORPHAN after *WHERE, and then update *WHERE
2880 // so that the next one goes after this one.
2881 Sections_elements::iterator p = *where;
2882 gold_assert(p != this->sections_elements_->end());
2883 ++p;
2884 *where = this->sections_elements_->insert(p, orphan);
2885 }
2886 else
2887 {
2888 os->clear_is_relro();
2889 // We don't have a place to put this orphan section. Put it,
2890 // and all other sections like it, at the end, but before the
2891 // sections which always come at the end.
2892 Sections_elements::iterator last = osp->last_place();
2893 *where = this->sections_elements_->insert(last, orphan);
2894 }
2895 }
2896
2897 // Set the addresses of all the output sections. Walk through all the
2898 // elements, tracking the dot symbol. Apply assignments which set
2899 // absolute symbol values, in case they are used when setting dot.
2900 // Fill in data statement values. As we find output sections, set the
2901 // address, set the address of all associated input sections, and
2902 // update dot. Return the segment which should hold the file header
2903 // and segment headers, if any.
2904
2905 Output_segment*
2906 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2907 {
2908 gold_assert(this->saw_sections_clause_);
2909
2910 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
2911 // for our representation.
2912 for (Sections_elements::iterator p = this->sections_elements_->begin();
2913 p != this->sections_elements_->end();
2914 ++p)
2915 {
2916 Output_section_definition* posd;
2917 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2918 if (failed_constraint != CONSTRAINT_NONE)
2919 {
2920 Sections_elements::iterator q;
2921 for (q = this->sections_elements_->begin();
2922 q != this->sections_elements_->end();
2923 ++q)
2924 {
2925 if (q != p)
2926 {
2927 if ((*q)->alternate_constraint(posd, failed_constraint))
2928 break;
2929 }
2930 }
2931
2932 if (q == this->sections_elements_->end())
2933 gold_error(_("no matching section constraint"));
2934 }
2935 }
2936
2937 // Force the alignment of the first TLS section to be the maximum
2938 // alignment of all TLS sections.
2939 Output_section* first_tls = NULL;
2940 uint64_t tls_align = 0;
2941 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2942 p != this->sections_elements_->end();
2943 ++p)
2944 {
2945 Output_section *os = (*p)->get_output_section();
2946 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
2947 {
2948 if (first_tls == NULL)
2949 first_tls = os;
2950 if (os->addralign() > tls_align)
2951 tls_align = os->addralign();
2952 }
2953 }
2954 if (first_tls != NULL)
2955 first_tls->set_addralign(tls_align);
2956
2957 // For a relocatable link, we implicitly set dot to zero.
2958 uint64_t dot_value = 0;
2959 uint64_t dot_alignment = 0;
2960 uint64_t load_address = 0;
2961
2962 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
2963 // to set section addresses. If the script has any SEGMENT_START
2964 // expression, we do not set the section addresses.
2965 bool use_tsection_options =
2966 (!this->saw_segment_start_expression_
2967 && (parameters->options().user_set_Ttext()
2968 || parameters->options().user_set_Tdata()
2969 || parameters->options().user_set_Tbss()));
2970
2971 for (Sections_elements::iterator p = this->sections_elements_->begin();
2972 p != this->sections_elements_->end();
2973 ++p)
2974 {
2975 Output_section* os = (*p)->get_output_section();
2976
2977 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
2978 // the special sections by names and doing dot assignments.
2979 if (use_tsection_options
2980 && os != NULL
2981 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
2982 {
2983 uint64_t new_dot_value = dot_value;
2984
2985 if (parameters->options().user_set_Ttext()
2986 && strcmp(os->name(), ".text") == 0)
2987 new_dot_value = parameters->options().Ttext();
2988 else if (parameters->options().user_set_Tdata()
2989 && strcmp(os->name(), ".data") == 0)
2990 new_dot_value = parameters->options().Tdata();
2991 else if (parameters->options().user_set_Tbss()
2992 && strcmp(os->name(), ".bss") == 0)
2993 new_dot_value = parameters->options().Tbss();
2994
2995 // Update dot and load address if necessary.
2996 if (new_dot_value < dot_value)
2997 gold_error(_("dot may not move backward"));
2998 else if (new_dot_value != dot_value)
2999 {
3000 dot_value = new_dot_value;
3001 load_address = new_dot_value;
3002 }
3003 }
3004
3005 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3006 &load_address);
3007 }
3008
3009 if (this->phdrs_elements_ != NULL)
3010 {
3011 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3012 p != this->phdrs_elements_->end();
3013 ++p)
3014 (*p)->eval_load_address(symtab, layout);
3015 }
3016
3017 return this->create_segments(layout, dot_alignment);
3018 }
3019
3020 // Sort the sections in order to put them into segments.
3021
3022 class Sort_output_sections
3023 {
3024 public:
3025 bool
3026 operator()(const Output_section* os1, const Output_section* os2) const;
3027 };
3028
3029 bool
3030 Sort_output_sections::operator()(const Output_section* os1,
3031 const Output_section* os2) const
3032 {
3033 // Sort first by the load address.
3034 uint64_t lma1 = (os1->has_load_address()
3035 ? os1->load_address()
3036 : os1->address());
3037 uint64_t lma2 = (os2->has_load_address()
3038 ? os2->load_address()
3039 : os2->address());
3040 if (lma1 != lma2)
3041 return lma1 < lma2;
3042
3043 // Then sort by the virtual address.
3044 if (os1->address() != os2->address())
3045 return os1->address() < os2->address();
3046
3047 // Sort TLS sections to the end.
3048 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3049 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3050 if (tls1 != tls2)
3051 return tls2;
3052
3053 // Sort PROGBITS before NOBITS.
3054 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
3055 return true;
3056 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
3057 return false;
3058
3059 // Sort non-NOLOAD before NOLOAD.
3060 if (os1->is_noload() && !os2->is_noload())
3061 return true;
3062 if (!os1->is_noload() && os2->is_noload())
3063 return true;
3064
3065 // Otherwise we don't care.
3066 return false;
3067 }
3068
3069 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3070 // We treat a section with the SHF_TLS flag set as taking up space
3071 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3072 // space for them in the file.
3073
3074 bool
3075 Script_sections::is_bss_section(const Output_section* os)
3076 {
3077 return (os->type() == elfcpp::SHT_NOBITS
3078 && (os->flags() & elfcpp::SHF_TLS) == 0);
3079 }
3080
3081 // Return the size taken by the file header and the program headers.
3082
3083 size_t
3084 Script_sections::total_header_size(Layout* layout) const
3085 {
3086 size_t segment_count = layout->segment_count();
3087 size_t file_header_size;
3088 size_t segment_headers_size;
3089 if (parameters->target().get_size() == 32)
3090 {
3091 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3092 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3093 }
3094 else if (parameters->target().get_size() == 64)
3095 {
3096 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3097 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3098 }
3099 else
3100 gold_unreachable();
3101
3102 return file_header_size + segment_headers_size;
3103 }
3104
3105 // Return the amount we have to subtract from the LMA to accomodate
3106 // headers of the given size. The complication is that the file
3107 // header have to be at the start of a page, as otherwise it will not
3108 // be at the start of the file.
3109
3110 uint64_t
3111 Script_sections::header_size_adjustment(uint64_t lma,
3112 size_t sizeof_headers) const
3113 {
3114 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3115 uint64_t hdr_lma = lma - sizeof_headers;
3116 hdr_lma &= ~(abi_pagesize - 1);
3117 return lma - hdr_lma;
3118 }
3119
3120 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3121 // the segment which should hold the file header and segment headers,
3122 // if any.
3123
3124 Output_segment*
3125 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3126 {
3127 gold_assert(this->saw_sections_clause_);
3128
3129 if (parameters->options().relocatable())
3130 return NULL;
3131
3132 if (this->saw_phdrs_clause())
3133 return create_segments_from_phdrs_clause(layout, dot_alignment);
3134
3135 Layout::Section_list sections;
3136 layout->get_allocated_sections(&sections);
3137
3138 // Sort the sections by address.
3139 std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
3140
3141 this->create_note_and_tls_segments(layout, &sections);
3142
3143 // Walk through the sections adding them to PT_LOAD segments.
3144 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3145 Output_segment* first_seg = NULL;
3146 Output_segment* current_seg = NULL;
3147 bool is_current_seg_readonly = true;
3148 Layout::Section_list::iterator plast = sections.end();
3149 uint64_t last_vma = 0;
3150 uint64_t last_lma = 0;
3151 uint64_t last_size = 0;
3152 for (Layout::Section_list::iterator p = sections.begin();
3153 p != sections.end();
3154 ++p)
3155 {
3156 const uint64_t vma = (*p)->address();
3157 const uint64_t lma = ((*p)->has_load_address()
3158 ? (*p)->load_address()
3159 : vma);
3160 const uint64_t size = (*p)->current_data_size();
3161
3162 bool need_new_segment;
3163 if (current_seg == NULL)
3164 need_new_segment = true;
3165 else if (lma - vma != last_lma - last_vma)
3166 {
3167 // This section has a different LMA relationship than the
3168 // last one; we need a new segment.
3169 need_new_segment = true;
3170 }
3171 else if (align_address(last_lma + last_size, abi_pagesize)
3172 < align_address(lma, abi_pagesize))
3173 {
3174 // Putting this section in the segment would require
3175 // skipping a page.
3176 need_new_segment = true;
3177 }
3178 else if (is_bss_section(*plast) && !is_bss_section(*p))
3179 {
3180 // A non-BSS section can not follow a BSS section in the
3181 // same segment.
3182 need_new_segment = true;
3183 }
3184 else if (is_current_seg_readonly
3185 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3186 && !parameters->options().omagic())
3187 {
3188 // Don't put a writable section in the same segment as a
3189 // non-writable section.
3190 need_new_segment = true;
3191 }
3192 else
3193 {
3194 // Otherwise, reuse the existing segment.
3195 need_new_segment = false;
3196 }
3197
3198 elfcpp::Elf_Word seg_flags =
3199 Layout::section_flags_to_segment((*p)->flags());
3200
3201 if (need_new_segment)
3202 {
3203 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3204 seg_flags);
3205 current_seg->set_addresses(vma, lma);
3206 current_seg->set_minimum_p_align(dot_alignment);
3207 if (first_seg == NULL)
3208 first_seg = current_seg;
3209 is_current_seg_readonly = true;
3210 }
3211
3212 current_seg->add_output_section(*p, seg_flags, false);
3213
3214 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3215 is_current_seg_readonly = false;
3216
3217 plast = p;
3218 last_vma = vma;
3219 last_lma = lma;
3220 last_size = size;
3221 }
3222
3223 // An ELF program should work even if the program headers are not in
3224 // a PT_LOAD segment. However, it appears that the Linux kernel
3225 // does not set the AT_PHDR auxiliary entry in that case. It sets
3226 // the load address to p_vaddr - p_offset of the first PT_LOAD
3227 // segment. It then sets AT_PHDR to the load address plus the
3228 // offset to the program headers, e_phoff in the file header. This
3229 // fails when the program headers appear in the file before the
3230 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3231 // segment to hold the file header and the program headers. This is
3232 // effectively what the GNU linker does, and it is slightly more
3233 // efficient in any case. We try to use the first PT_LOAD segment
3234 // if we can, otherwise we make a new one.
3235
3236 if (first_seg == NULL)
3237 return NULL;
3238
3239 // -n or -N mean that the program is not demand paged and there is
3240 // no need to put the program headers in a PT_LOAD segment.
3241 if (parameters->options().nmagic() || parameters->options().omagic())
3242 return NULL;
3243
3244 size_t sizeof_headers = this->total_header_size(layout);
3245
3246 uint64_t vma = first_seg->vaddr();
3247 uint64_t lma = first_seg->paddr();
3248
3249 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3250
3251 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3252 {
3253 first_seg->set_addresses(vma - subtract, lma - subtract);
3254 return first_seg;
3255 }
3256
3257 // If there is no room to squeeze in the headers, then punt. The
3258 // resulting executable probably won't run on GNU/Linux, but we
3259 // trust that the user knows what they are doing.
3260 if (lma < subtract || vma < subtract)
3261 return NULL;
3262
3263 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3264 elfcpp::PF_R);
3265 load_seg->set_addresses(vma - subtract, lma - subtract);
3266
3267 return load_seg;
3268 }
3269
3270 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3271 // segment if there are any SHT_TLS sections.
3272
3273 void
3274 Script_sections::create_note_and_tls_segments(
3275 Layout* layout,
3276 const Layout::Section_list* sections)
3277 {
3278 gold_assert(!this->saw_phdrs_clause());
3279
3280 bool saw_tls = false;
3281 for (Layout::Section_list::const_iterator p = sections->begin();
3282 p != sections->end();
3283 ++p)
3284 {
3285 if ((*p)->type() == elfcpp::SHT_NOTE)
3286 {
3287 elfcpp::Elf_Word seg_flags =
3288 Layout::section_flags_to_segment((*p)->flags());
3289 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3290 seg_flags);
3291 oseg->add_output_section(*p, seg_flags, false);
3292
3293 // Incorporate any subsequent SHT_NOTE sections, in the
3294 // hopes that the script is sensible.
3295 Layout::Section_list::const_iterator pnext = p + 1;
3296 while (pnext != sections->end()
3297 && (*pnext)->type() == elfcpp::SHT_NOTE)
3298 {
3299 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3300 oseg->add_output_section(*pnext, seg_flags, false);
3301 p = pnext;
3302 ++pnext;
3303 }
3304 }
3305
3306 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3307 {
3308 if (saw_tls)
3309 gold_error(_("TLS sections are not adjacent"));
3310
3311 elfcpp::Elf_Word seg_flags =
3312 Layout::section_flags_to_segment((*p)->flags());
3313 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3314 seg_flags);
3315 oseg->add_output_section(*p, seg_flags, false);
3316
3317 Layout::Section_list::const_iterator pnext = p + 1;
3318 while (pnext != sections->end()
3319 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
3320 {
3321 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3322 oseg->add_output_section(*pnext, seg_flags, false);
3323 p = pnext;
3324 ++pnext;
3325 }
3326
3327 saw_tls = true;
3328 }
3329 }
3330 }
3331
3332 // Add a program header. The PHDRS clause is syntactically distinct
3333 // from the SECTIONS clause, but we implement it with the SECTIONS
3334 // support because PHDRS is useless if there is no SECTIONS clause.
3335
3336 void
3337 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
3338 bool includes_filehdr, bool includes_phdrs,
3339 bool is_flags_valid, unsigned int flags,
3340 Expression* load_address)
3341 {
3342 if (this->phdrs_elements_ == NULL)
3343 this->phdrs_elements_ = new Phdrs_elements();
3344 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
3345 includes_filehdr,
3346 includes_phdrs,
3347 is_flags_valid, flags,
3348 load_address));
3349 }
3350
3351 // Return the number of segments we expect to create based on the
3352 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
3353
3354 size_t
3355 Script_sections::expected_segment_count(const Layout* layout) const
3356 {
3357 if (this->saw_phdrs_clause())
3358 return this->phdrs_elements_->size();
3359
3360 Layout::Section_list sections;
3361 layout->get_allocated_sections(&sections);
3362
3363 // We assume that we will need two PT_LOAD segments.
3364 size_t ret = 2;
3365
3366 bool saw_note = false;
3367 bool saw_tls = false;
3368 for (Layout::Section_list::const_iterator p = sections.begin();
3369 p != sections.end();
3370 ++p)
3371 {
3372 if ((*p)->type() == elfcpp::SHT_NOTE)
3373 {
3374 // Assume that all note sections will fit into a single
3375 // PT_NOTE segment.
3376 if (!saw_note)
3377 {
3378 ++ret;
3379 saw_note = true;
3380 }
3381 }
3382 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3383 {
3384 // There can only be one PT_TLS segment.
3385 if (!saw_tls)
3386 {
3387 ++ret;
3388 saw_tls = true;
3389 }
3390 }
3391 }
3392
3393 return ret;
3394 }
3395
3396 // Create the segments from a PHDRS clause. Return the segment which
3397 // should hold the file header and program headers, if any.
3398
3399 Output_segment*
3400 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
3401 uint64_t dot_alignment)
3402 {
3403 this->attach_sections_using_phdrs_clause(layout);
3404 return this->set_phdrs_clause_addresses(layout, dot_alignment);
3405 }
3406
3407 // Create the segments from the PHDRS clause, and put the output
3408 // sections in them.
3409
3410 void
3411 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
3412 {
3413 typedef std::map<std::string, Output_segment*> Name_to_segment;
3414 Name_to_segment name_to_segment;
3415 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3416 p != this->phdrs_elements_->end();
3417 ++p)
3418 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
3419
3420 // Walk through the output sections and attach them to segments.
3421 // Output sections in the script which do not list segments are
3422 // attached to the same set of segments as the immediately preceding
3423 // output section.
3424
3425 String_list* phdr_names = NULL;
3426 bool load_segments_only = false;
3427 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3428 p != this->sections_elements_->end();
3429 ++p)
3430 {
3431 bool orphan;
3432 String_list* old_phdr_names = phdr_names;
3433 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3434 if (os == NULL)
3435 continue;
3436
3437 if (phdr_names == NULL)
3438 {
3439 gold_error(_("allocated section not in any segment"));
3440 continue;
3441 }
3442
3443 // We see a list of segments names. Disable PT_LOAD segment only
3444 // filtering.
3445 if (old_phdr_names != phdr_names)
3446 load_segments_only = false;
3447
3448 // If this is an orphan section--one that was not explicitly
3449 // mentioned in the linker script--then it should not inherit
3450 // any segment type other than PT_LOAD. Otherwise, e.g., the
3451 // PT_INTERP segment will pick up following orphan sections,
3452 // which does not make sense. If this is not an orphan section,
3453 // we trust the linker script.
3454 if (orphan)
3455 {
3456 // Enable PT_LOAD segments only filtering until we see another
3457 // list of segment names.
3458 load_segments_only = true;
3459 }
3460
3461 bool in_load_segment = false;
3462 for (String_list::const_iterator q = phdr_names->begin();
3463 q != phdr_names->end();
3464 ++q)
3465 {
3466 Name_to_segment::const_iterator r = name_to_segment.find(*q);
3467 if (r == name_to_segment.end())
3468 gold_error(_("no segment %s"), q->c_str());
3469 else
3470 {
3471 if (load_segments_only
3472 && r->second->type() != elfcpp::PT_LOAD)
3473 continue;
3474
3475 elfcpp::Elf_Word seg_flags =
3476 Layout::section_flags_to_segment(os->flags());
3477 r->second->add_output_section(os, seg_flags, false);
3478
3479 if (r->second->type() == elfcpp::PT_LOAD)
3480 {
3481 if (in_load_segment)
3482 gold_error(_("section in two PT_LOAD segments"));
3483 in_load_segment = true;
3484 }
3485 }
3486 }
3487
3488 if (!in_load_segment)
3489 gold_error(_("allocated section not in any PT_LOAD segment"));
3490 }
3491 }
3492
3493 // Set the addresses for segments created from a PHDRS clause. Return
3494 // the segment which should hold the file header and program headers,
3495 // if any.
3496
3497 Output_segment*
3498 Script_sections::set_phdrs_clause_addresses(Layout* layout,
3499 uint64_t dot_alignment)
3500 {
3501 Output_segment* load_seg = NULL;
3502 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3503 p != this->phdrs_elements_->end();
3504 ++p)
3505 {
3506 // Note that we have to set the flags after adding the output
3507 // sections to the segment, as adding an output segment can
3508 // change the flags.
3509 (*p)->set_flags_if_valid();
3510
3511 Output_segment* oseg = (*p)->segment();
3512
3513 if (oseg->type() != elfcpp::PT_LOAD)
3514 {
3515 // The addresses of non-PT_LOAD segments are set from the
3516 // PT_LOAD segments.
3517 if ((*p)->has_load_address())
3518 gold_error(_("may only specify load address for PT_LOAD segment"));
3519 continue;
3520 }
3521
3522 oseg->set_minimum_p_align(dot_alignment);
3523
3524 // The output sections should have addresses from the SECTIONS
3525 // clause. The addresses don't have to be in order, so find the
3526 // one with the lowest load address. Use that to set the
3527 // address of the segment.
3528
3529 Output_section* osec = oseg->section_with_lowest_load_address();
3530 if (osec == NULL)
3531 {
3532 oseg->set_addresses(0, 0);
3533 continue;
3534 }
3535
3536 uint64_t vma = osec->address();
3537 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3538
3539 // Override the load address of the section with the load
3540 // address specified for the segment.
3541 if ((*p)->has_load_address())
3542 {
3543 if (osec->has_load_address())
3544 gold_warning(_("PHDRS load address overrides "
3545 "section %s load address"),
3546 osec->name());
3547
3548 lma = (*p)->load_address();
3549 }
3550
3551 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3552 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3553 {
3554 // We could support this if we wanted to.
3555 gold_error(_("using only one of FILEHDR and PHDRS is "
3556 "not currently supported"));
3557 }
3558 if (headers)
3559 {
3560 size_t sizeof_headers = this->total_header_size(layout);
3561 uint64_t subtract = this->header_size_adjustment(lma,
3562 sizeof_headers);
3563 if (lma >= subtract && vma >= subtract)
3564 {
3565 lma -= subtract;
3566 vma -= subtract;
3567 }
3568 else
3569 {
3570 gold_error(_("sections loaded on first page without room "
3571 "for file and program headers "
3572 "are not supported"));
3573 }
3574
3575 if (load_seg != NULL)
3576 gold_error(_("using FILEHDR and PHDRS on more than one "
3577 "PT_LOAD segment is not currently supported"));
3578 load_seg = oseg;
3579 }
3580
3581 oseg->set_addresses(vma, lma);
3582 }
3583
3584 return load_seg;
3585 }
3586
3587 // Add the file header and segment headers to non-load segments
3588 // specified in the PHDRS clause.
3589
3590 void
3591 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3592 Output_data* segment_headers)
3593 {
3594 gold_assert(this->saw_phdrs_clause());
3595 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3596 p != this->phdrs_elements_->end();
3597 ++p)
3598 {
3599 if ((*p)->type() != elfcpp::PT_LOAD)
3600 {
3601 if ((*p)->includes_phdrs())
3602 (*p)->segment()->add_initial_output_data(segment_headers);
3603 if ((*p)->includes_filehdr())
3604 (*p)->segment()->add_initial_output_data(file_header);
3605 }
3606 }
3607 }
3608
3609 // Look for an output section by name and return the address, the load
3610 // address, the alignment, and the size. This is used when an
3611 // expression refers to an output section which was not actually
3612 // created. This returns true if the section was found, false
3613 // otherwise.
3614
3615 bool
3616 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3617 uint64_t* load_address,
3618 uint64_t* addralign,
3619 uint64_t* size) const
3620 {
3621 if (!this->saw_sections_clause_)
3622 return false;
3623 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3624 p != this->sections_elements_->end();
3625 ++p)
3626 if ((*p)->get_output_section_info(name, address, load_address, addralign,
3627 size))
3628 return true;
3629 return false;
3630 }
3631
3632 // Release all Output_segments. This remove all pointers to all
3633 // Output_segments.
3634
3635 void
3636 Script_sections::release_segments()
3637 {
3638 if (this->saw_phdrs_clause())
3639 {
3640 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3641 p != this->phdrs_elements_->end();
3642 ++p)
3643 (*p)->release_segment();
3644 }
3645 }
3646
3647 // Print the SECTIONS clause to F for debugging.
3648
3649 void
3650 Script_sections::print(FILE* f) const
3651 {
3652 if (!this->saw_sections_clause_)
3653 return;
3654
3655 fprintf(f, "SECTIONS {\n");
3656
3657 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3658 p != this->sections_elements_->end();
3659 ++p)
3660 (*p)->print(f);
3661
3662 fprintf(f, "}\n");
3663
3664 if (this->phdrs_elements_ != NULL)
3665 {
3666 fprintf(f, "PHDRS {\n");
3667 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3668 p != this->phdrs_elements_->end();
3669 ++p)
3670 (*p)->print(f);
3671 fprintf(f, "}\n");
3672 }
3673 }
3674
3675 } // End namespace gold.
This page took 0.100741 seconds and 5 git commands to generate.