* script-sections.cc (Script_sections::place_orphan): Initialize
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // An element in a SECTIONS clause.
47
48 class Sections_element
49 {
50 public:
51 Sections_element()
52 { }
53
54 virtual ~Sections_element()
55 { }
56
57 // Create any required output sections. The only real
58 // implementation is in Output_section_definition.
59 virtual void
60 create_sections(Layout*)
61 { }
62
63 // Add any symbol being defined to the symbol table.
64 virtual void
65 add_symbols_to_table(Symbol_table*)
66 { }
67
68 // Finalize symbols and check assertions.
69 virtual void
70 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
71 { }
72
73 // Return the output section name to use for an input file name and
74 // section name. This only real implementation is in
75 // Output_section_definition.
76 virtual const char*
77 output_section_name(const char*, const char*, Output_section***)
78 { return NULL; }
79
80 // Return whether to place an orphan output section after this
81 // element.
82 virtual bool
83 place_orphan_here(const Output_section *, bool*) const
84 { return false; }
85
86 // Set section addresses. This includes applying assignments if the
87 // the expression is an absolute value.
88 virtual void
89 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
90 { }
91
92 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
93 // this section is constrained, and the input sections do not match,
94 // return the constraint, and set *POSD.
95 virtual Section_constraint
96 check_constraint(Output_section_definition**)
97 { return CONSTRAINT_NONE; }
98
99 // See if this is the alternate output section for a constrained
100 // output section. If it is, transfer the Output_section and return
101 // true. Otherwise return false.
102 virtual bool
103 alternate_constraint(Output_section_definition*, Section_constraint)
104 { return false; }
105
106 // Get the list of segments to use for an allocated section when
107 // using a PHDRS clause. If this is an allocated section, return
108 // the Output_section, and set *PHDRS_LIST (the first parameter) to
109 // the list of PHDRS to which it should be attached. If the PHDRS
110 // were not specified, don't change *PHDRS_LIST. When not returning
111 // NULL, set *ORPHAN (the second parameter) according to whether
112 // this is an orphan section--one that is not mentioned in the
113 // linker script.
114 virtual Output_section*
115 allocate_to_segment(String_list**, bool*)
116 { return NULL; }
117
118 // Look for an output section by name and return the address, the
119 // load address, the alignment, and the size. This is used when an
120 // expression refers to an output section which was not actually
121 // created. This returns true if the section was found, false
122 // otherwise. The only real definition is for
123 // Output_section_definition.
124 virtual bool
125 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
126 uint64_t*) const
127 { return false; }
128
129 // Print the element for debugging purposes.
130 virtual void
131 print(FILE* f) const = 0;
132 };
133
134 // An assignment in a SECTIONS clause outside of an output section.
135
136 class Sections_element_assignment : public Sections_element
137 {
138 public:
139 Sections_element_assignment(const char* name, size_t namelen,
140 Expression* val, bool provide, bool hidden)
141 : assignment_(name, namelen, val, provide, hidden)
142 { }
143
144 // Add the symbol to the symbol table.
145 void
146 add_symbols_to_table(Symbol_table* symtab)
147 { this->assignment_.add_to_table(symtab); }
148
149 // Finalize the symbol.
150 void
151 finalize_symbols(Symbol_table* symtab, const Layout* layout,
152 uint64_t* dot_value)
153 {
154 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
155 }
156
157 // Set the section address. There is no section here, but if the
158 // value is absolute, we set the symbol. This permits us to use
159 // absolute symbols when setting dot.
160 void
161 set_section_addresses(Symbol_table* symtab, Layout* layout,
162 uint64_t* dot_value, uint64_t*)
163 {
164 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
165 }
166
167 // Print for debugging.
168 void
169 print(FILE* f) const
170 {
171 fprintf(f, " ");
172 this->assignment_.print(f);
173 }
174
175 private:
176 Symbol_assignment assignment_;
177 };
178
179 // An assignment to the dot symbol in a SECTIONS clause outside of an
180 // output section.
181
182 class Sections_element_dot_assignment : public Sections_element
183 {
184 public:
185 Sections_element_dot_assignment(Expression* val)
186 : val_(val)
187 { }
188
189 // Finalize the symbol.
190 void
191 finalize_symbols(Symbol_table* symtab, const Layout* layout,
192 uint64_t* dot_value)
193 {
194 // We ignore the section of the result because outside of an
195 // output section definition the dot symbol is always considered
196 // to be absolute.
197 Output_section* dummy;
198 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
199 NULL, &dummy);
200 }
201
202 // Update the dot symbol while setting section addresses.
203 void
204 set_section_addresses(Symbol_table* symtab, Layout* layout,
205 uint64_t* dot_value, uint64_t* load_address)
206 {
207 Output_section* dummy;
208 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
209 NULL, &dummy);
210 *load_address = *dot_value;
211 }
212
213 // Print for debugging.
214 void
215 print(FILE* f) const
216 {
217 fprintf(f, " . = ");
218 this->val_->print(f);
219 fprintf(f, "\n");
220 }
221
222 private:
223 Expression* val_;
224 };
225
226 // An assertion in a SECTIONS clause outside of an output section.
227
228 class Sections_element_assertion : public Sections_element
229 {
230 public:
231 Sections_element_assertion(Expression* check, const char* message,
232 size_t messagelen)
233 : assertion_(check, message, messagelen)
234 { }
235
236 // Check the assertion.
237 void
238 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
239 { this->assertion_.check(symtab, layout); }
240
241 // Print for debugging.
242 void
243 print(FILE* f) const
244 {
245 fprintf(f, " ");
246 this->assertion_.print(f);
247 }
248
249 private:
250 Script_assertion assertion_;
251 };
252
253 // An element in an output section in a SECTIONS clause.
254
255 class Output_section_element
256 {
257 public:
258 // A list of input sections.
259 typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
260
261 Output_section_element()
262 { }
263
264 virtual ~Output_section_element()
265 { }
266
267 // Return whether this element requires an output section to exist.
268 virtual bool
269 needs_output_section() const
270 { return false; }
271
272 // Add any symbol being defined to the symbol table.
273 virtual void
274 add_symbols_to_table(Symbol_table*)
275 { }
276
277 // Finalize symbols and check assertions.
278 virtual void
279 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
280 { }
281
282 // Return whether this element matches FILE_NAME and SECTION_NAME.
283 // The only real implementation is in Output_section_element_input.
284 virtual bool
285 match_name(const char*, const char*) const
286 { return false; }
287
288 // Set section addresses. This includes applying assignments if the
289 // the expression is an absolute value.
290 virtual void
291 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
292 uint64_t*, Output_section**, std::string*,
293 Input_section_list*)
294 { }
295
296 // Print the element for debugging purposes.
297 virtual void
298 print(FILE* f) const = 0;
299
300 protected:
301 // Return a fill string that is LENGTH bytes long, filling it with
302 // FILL.
303 std::string
304 get_fill_string(const std::string* fill, section_size_type length) const;
305 };
306
307 std::string
308 Output_section_element::get_fill_string(const std::string* fill,
309 section_size_type length) const
310 {
311 std::string this_fill;
312 this_fill.reserve(length);
313 while (this_fill.length() + fill->length() <= length)
314 this_fill += *fill;
315 if (this_fill.length() < length)
316 this_fill.append(*fill, 0, length - this_fill.length());
317 return this_fill;
318 }
319
320 // A symbol assignment in an output section.
321
322 class Output_section_element_assignment : public Output_section_element
323 {
324 public:
325 Output_section_element_assignment(const char* name, size_t namelen,
326 Expression* val, bool provide,
327 bool hidden)
328 : assignment_(name, namelen, val, provide, hidden)
329 { }
330
331 // Add the symbol to the symbol table.
332 void
333 add_symbols_to_table(Symbol_table* symtab)
334 { this->assignment_.add_to_table(symtab); }
335
336 // Finalize the symbol.
337 void
338 finalize_symbols(Symbol_table* symtab, const Layout* layout,
339 uint64_t* dot_value, Output_section** dot_section)
340 {
341 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
342 *dot_section);
343 }
344
345 // Set the section address. There is no section here, but if the
346 // value is absolute, we set the symbol. This permits us to use
347 // absolute symbols when setting dot.
348 void
349 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
350 uint64_t, uint64_t* dot_value, Output_section**,
351 std::string*, Input_section_list*)
352 {
353 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
354 }
355
356 // Print for debugging.
357 void
358 print(FILE* f) const
359 {
360 fprintf(f, " ");
361 this->assignment_.print(f);
362 }
363
364 private:
365 Symbol_assignment assignment_;
366 };
367
368 // An assignment to the dot symbol in an output section.
369
370 class Output_section_element_dot_assignment : public Output_section_element
371 {
372 public:
373 Output_section_element_dot_assignment(Expression* val)
374 : val_(val)
375 { }
376
377 // Finalize the symbol.
378 void
379 finalize_symbols(Symbol_table* symtab, const Layout* layout,
380 uint64_t* dot_value, Output_section** dot_section)
381 {
382 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
383 *dot_section, dot_section);
384 }
385
386 // Update the dot symbol while setting section addresses.
387 void
388 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
389 uint64_t, uint64_t* dot_value, Output_section**,
390 std::string*, Input_section_list*);
391
392 // Print for debugging.
393 void
394 print(FILE* f) const
395 {
396 fprintf(f, " . = ");
397 this->val_->print(f);
398 fprintf(f, "\n");
399 }
400
401 private:
402 Expression* val_;
403 };
404
405 // Update the dot symbol while setting section addresses.
406
407 void
408 Output_section_element_dot_assignment::set_section_addresses(
409 Symbol_table* symtab,
410 Layout* layout,
411 Output_section* output_section,
412 uint64_t,
413 uint64_t* dot_value,
414 Output_section** dot_section,
415 std::string* fill,
416 Input_section_list*)
417 {
418 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
419 *dot_value, *dot_section,
420 dot_section);
421 if (next_dot < *dot_value)
422 gold_error(_("dot may not move backward"));
423 if (next_dot > *dot_value && output_section != NULL)
424 {
425 section_size_type length = convert_to_section_size_type(next_dot
426 - *dot_value);
427 Output_section_data* posd;
428 if (fill->empty())
429 posd = new Output_data_zero_fill(length, 0);
430 else
431 {
432 std::string this_fill = this->get_fill_string(fill, length);
433 posd = new Output_data_const(this_fill, 0);
434 }
435 output_section->add_output_section_data(posd);
436 }
437 *dot_value = next_dot;
438 }
439
440 // An assertion in an output section.
441
442 class Output_section_element_assertion : public Output_section_element
443 {
444 public:
445 Output_section_element_assertion(Expression* check, const char* message,
446 size_t messagelen)
447 : assertion_(check, message, messagelen)
448 { }
449
450 void
451 print(FILE* f) const
452 {
453 fprintf(f, " ");
454 this->assertion_.print(f);
455 }
456
457 private:
458 Script_assertion assertion_;
459 };
460
461 // We use a special instance of Output_section_data to handle BYTE,
462 // SHORT, etc. This permits forward references to symbols in the
463 // expressions.
464
465 class Output_data_expression : public Output_section_data
466 {
467 public:
468 Output_data_expression(int size, bool is_signed, Expression* val,
469 const Symbol_table* symtab, const Layout* layout,
470 uint64_t dot_value, Output_section* dot_section)
471 : Output_section_data(size, 0),
472 is_signed_(is_signed), val_(val), symtab_(symtab),
473 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
474 { }
475
476 protected:
477 // Write the data to the output file.
478 void
479 do_write(Output_file*);
480
481 // Write the data to a buffer.
482 void
483 do_write_to_buffer(unsigned char*);
484
485 // Write to a map file.
486 void
487 do_print_to_mapfile(Mapfile* mapfile) const
488 { mapfile->print_output_data(this, _("** expression")); }
489
490 private:
491 template<bool big_endian>
492 void
493 endian_write_to_buffer(uint64_t, unsigned char*);
494
495 bool is_signed_;
496 Expression* val_;
497 const Symbol_table* symtab_;
498 const Layout* layout_;
499 uint64_t dot_value_;
500 Output_section* dot_section_;
501 };
502
503 // Write the data element to the output file.
504
505 void
506 Output_data_expression::do_write(Output_file* of)
507 {
508 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
509 this->write_to_buffer(view);
510 of->write_output_view(this->offset(), this->data_size(), view);
511 }
512
513 // Write the data element to a buffer.
514
515 void
516 Output_data_expression::do_write_to_buffer(unsigned char* buf)
517 {
518 Output_section* dummy;
519 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
520 true, this->dot_value_,
521 this->dot_section_, &dummy);
522
523 if (parameters->target().is_big_endian())
524 this->endian_write_to_buffer<true>(val, buf);
525 else
526 this->endian_write_to_buffer<false>(val, buf);
527 }
528
529 template<bool big_endian>
530 void
531 Output_data_expression::endian_write_to_buffer(uint64_t val,
532 unsigned char* buf)
533 {
534 switch (this->data_size())
535 {
536 case 1:
537 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
538 break;
539 case 2:
540 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
541 break;
542 case 4:
543 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
544 break;
545 case 8:
546 if (parameters->target().get_size() == 32)
547 {
548 val &= 0xffffffff;
549 if (this->is_signed_ && (val & 0x80000000) != 0)
550 val |= 0xffffffff00000000LL;
551 }
552 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
553 break;
554 default:
555 gold_unreachable();
556 }
557 }
558
559 // A data item in an output section.
560
561 class Output_section_element_data : public Output_section_element
562 {
563 public:
564 Output_section_element_data(int size, bool is_signed, Expression* val)
565 : size_(size), is_signed_(is_signed), val_(val)
566 { }
567
568 // If there is a data item, then we must create an output section.
569 bool
570 needs_output_section() const
571 { return true; }
572
573 // Finalize symbols--we just need to update dot.
574 void
575 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
576 Output_section**)
577 { *dot_value += this->size_; }
578
579 // Store the value in the section.
580 void
581 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
582 uint64_t* dot_value, Output_section**, std::string*,
583 Input_section_list*);
584
585 // Print for debugging.
586 void
587 print(FILE*) const;
588
589 private:
590 // The size in bytes.
591 int size_;
592 // Whether the value is signed.
593 bool is_signed_;
594 // The value.
595 Expression* val_;
596 };
597
598 // Store the value in the section.
599
600 void
601 Output_section_element_data::set_section_addresses(
602 Symbol_table* symtab,
603 Layout* layout,
604 Output_section* os,
605 uint64_t,
606 uint64_t* dot_value,
607 Output_section** dot_section,
608 std::string*,
609 Input_section_list*)
610 {
611 gold_assert(os != NULL);
612 os->add_output_section_data(new Output_data_expression(this->size_,
613 this->is_signed_,
614 this->val_,
615 symtab,
616 layout,
617 *dot_value,
618 *dot_section));
619 *dot_value += this->size_;
620 }
621
622 // Print for debugging.
623
624 void
625 Output_section_element_data::print(FILE* f) const
626 {
627 const char* s;
628 switch (this->size_)
629 {
630 case 1:
631 s = "BYTE";
632 break;
633 case 2:
634 s = "SHORT";
635 break;
636 case 4:
637 s = "LONG";
638 break;
639 case 8:
640 if (this->is_signed_)
641 s = "SQUAD";
642 else
643 s = "QUAD";
644 break;
645 default:
646 gold_unreachable();
647 }
648 fprintf(f, " %s(", s);
649 this->val_->print(f);
650 fprintf(f, ")\n");
651 }
652
653 // A fill value setting in an output section.
654
655 class Output_section_element_fill : public Output_section_element
656 {
657 public:
658 Output_section_element_fill(Expression* val)
659 : val_(val)
660 { }
661
662 // Update the fill value while setting section addresses.
663 void
664 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
665 uint64_t, uint64_t* dot_value,
666 Output_section** dot_section,
667 std::string* fill, Input_section_list*)
668 {
669 Output_section* fill_section;
670 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
671 *dot_value, *dot_section,
672 &fill_section);
673 if (fill_section != NULL)
674 gold_warning(_("fill value is not absolute"));
675 // FIXME: The GNU linker supports fill values of arbitrary length.
676 unsigned char fill_buff[4];
677 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
678 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
679 }
680
681 // Print for debugging.
682 void
683 print(FILE* f) const
684 {
685 fprintf(f, " FILL(");
686 this->val_->print(f);
687 fprintf(f, ")\n");
688 }
689
690 private:
691 // The new fill value.
692 Expression* val_;
693 };
694
695 // Return whether STRING contains a wildcard character. This is used
696 // to speed up matching.
697
698 static inline bool
699 is_wildcard_string(const std::string& s)
700 {
701 return strpbrk(s.c_str(), "?*[") != NULL;
702 }
703
704 // An input section specification in an output section
705
706 class Output_section_element_input : public Output_section_element
707 {
708 public:
709 Output_section_element_input(const Input_section_spec* spec, bool keep);
710
711 // Finalize symbols--just update the value of the dot symbol.
712 void
713 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
714 Output_section** dot_section)
715 {
716 *dot_value = this->final_dot_value_;
717 *dot_section = this->final_dot_section_;
718 }
719
720 // See whether we match FILE_NAME and SECTION_NAME as an input
721 // section.
722 bool
723 match_name(const char* file_name, const char* section_name) const;
724
725 // Set the section address.
726 void
727 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
728 uint64_t subalign, uint64_t* dot_value,
729 Output_section**, std::string* fill,
730 Input_section_list*);
731
732 // Print for debugging.
733 void
734 print(FILE* f) const;
735
736 private:
737 // An input section pattern.
738 struct Input_section_pattern
739 {
740 std::string pattern;
741 bool pattern_is_wildcard;
742 Sort_wildcard sort;
743
744 Input_section_pattern(const char* patterna, size_t patternlena,
745 Sort_wildcard sorta)
746 : pattern(patterna, patternlena),
747 pattern_is_wildcard(is_wildcard_string(this->pattern)),
748 sort(sorta)
749 { }
750 };
751
752 typedef std::vector<Input_section_pattern> Input_section_patterns;
753
754 // Filename_exclusions is a pair of filename pattern and a bool
755 // indicating whether the filename is a wildcard.
756 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
757
758 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
759 // indicates whether this is a wildcard pattern.
760 static inline bool
761 match(const char* string, const char* pattern, bool is_wildcard_pattern)
762 {
763 return (is_wildcard_pattern
764 ? fnmatch(pattern, string, 0) == 0
765 : strcmp(string, pattern) == 0);
766 }
767
768 // See if we match a file name.
769 bool
770 match_file_name(const char* file_name) const;
771
772 // The file name pattern. If this is the empty string, we match all
773 // files.
774 std::string filename_pattern_;
775 // Whether the file name pattern is a wildcard.
776 bool filename_is_wildcard_;
777 // How the file names should be sorted. This may only be
778 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
779 Sort_wildcard filename_sort_;
780 // The list of file names to exclude.
781 Filename_exclusions filename_exclusions_;
782 // The list of input section patterns.
783 Input_section_patterns input_section_patterns_;
784 // Whether to keep this section when garbage collecting.
785 bool keep_;
786 // The value of dot after including all matching sections.
787 uint64_t final_dot_value_;
788 // The section where dot is defined after including all matching
789 // sections.
790 Output_section* final_dot_section_;
791 };
792
793 // Construct Output_section_element_input. The parser records strings
794 // as pointers into a copy of the script file, which will go away when
795 // parsing is complete. We make sure they are in std::string objects.
796
797 Output_section_element_input::Output_section_element_input(
798 const Input_section_spec* spec,
799 bool keep)
800 : filename_pattern_(),
801 filename_is_wildcard_(false),
802 filename_sort_(spec->file.sort),
803 filename_exclusions_(),
804 input_section_patterns_(),
805 keep_(keep),
806 final_dot_value_(0),
807 final_dot_section_(NULL)
808 {
809 // The filename pattern "*" is common, and matches all files. Turn
810 // it into the empty string.
811 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
812 this->filename_pattern_.assign(spec->file.name.value,
813 spec->file.name.length);
814 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
815
816 if (spec->input_sections.exclude != NULL)
817 {
818 for (String_list::const_iterator p =
819 spec->input_sections.exclude->begin();
820 p != spec->input_sections.exclude->end();
821 ++p)
822 {
823 bool is_wildcard = is_wildcard_string(*p);
824 this->filename_exclusions_.push_back(std::make_pair(*p,
825 is_wildcard));
826 }
827 }
828
829 if (spec->input_sections.sections != NULL)
830 {
831 Input_section_patterns& isp(this->input_section_patterns_);
832 for (String_sort_list::const_iterator p =
833 spec->input_sections.sections->begin();
834 p != spec->input_sections.sections->end();
835 ++p)
836 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
837 p->sort));
838 }
839 }
840
841 // See whether we match FILE_NAME.
842
843 bool
844 Output_section_element_input::match_file_name(const char* file_name) const
845 {
846 if (!this->filename_pattern_.empty())
847 {
848 // If we were called with no filename, we refuse to match a
849 // pattern which requires a file name.
850 if (file_name == NULL)
851 return false;
852
853 if (!match(file_name, this->filename_pattern_.c_str(),
854 this->filename_is_wildcard_))
855 return false;
856 }
857
858 if (file_name != NULL)
859 {
860 // Now we have to see whether FILE_NAME matches one of the
861 // exclusion patterns, if any.
862 for (Filename_exclusions::const_iterator p =
863 this->filename_exclusions_.begin();
864 p != this->filename_exclusions_.end();
865 ++p)
866 {
867 if (match(file_name, p->first.c_str(), p->second))
868 return false;
869 }
870 }
871
872 return true;
873 }
874
875 // See whether we match FILE_NAME and SECTION_NAME.
876
877 bool
878 Output_section_element_input::match_name(const char* file_name,
879 const char* section_name) const
880 {
881 if (!this->match_file_name(file_name))
882 return false;
883
884 // If there are no section name patterns, then we match.
885 if (this->input_section_patterns_.empty())
886 return true;
887
888 // See whether we match the section name patterns.
889 for (Input_section_patterns::const_iterator p =
890 this->input_section_patterns_.begin();
891 p != this->input_section_patterns_.end();
892 ++p)
893 {
894 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
895 return true;
896 }
897
898 // We didn't match any section names, so we didn't match.
899 return false;
900 }
901
902 // Information we use to sort the input sections.
903
904 struct Input_section_info
905 {
906 Relobj* relobj;
907 unsigned int shndx;
908 std::string section_name;
909 uint64_t size;
910 uint64_t addralign;
911 };
912
913 // A class to sort the input sections.
914
915 class Input_section_sorter
916 {
917 public:
918 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
919 : filename_sort_(filename_sort), section_sort_(section_sort)
920 { }
921
922 bool
923 operator()(const Input_section_info&, const Input_section_info&) const;
924
925 private:
926 Sort_wildcard filename_sort_;
927 Sort_wildcard section_sort_;
928 };
929
930 bool
931 Input_section_sorter::operator()(const Input_section_info& isi1,
932 const Input_section_info& isi2) const
933 {
934 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
935 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
936 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
937 && isi1.addralign == isi2.addralign))
938 {
939 if (isi1.section_name != isi2.section_name)
940 return isi1.section_name < isi2.section_name;
941 }
942 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
943 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
944 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
945 {
946 if (isi1.addralign != isi2.addralign)
947 return isi1.addralign < isi2.addralign;
948 }
949 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
950 {
951 if (isi1.relobj->name() != isi2.relobj->name())
952 return isi1.relobj->name() < isi2.relobj->name();
953 }
954
955 // Otherwise we leave them in the same order.
956 return false;
957 }
958
959 // Set the section address. Look in INPUT_SECTIONS for sections which
960 // match this spec, sort them as specified, and add them to the output
961 // section.
962
963 void
964 Output_section_element_input::set_section_addresses(
965 Symbol_table*,
966 Layout*,
967 Output_section* output_section,
968 uint64_t subalign,
969 uint64_t* dot_value,
970 Output_section** dot_section,
971 std::string* fill,
972 Input_section_list* input_sections)
973 {
974 // We build a list of sections which match each
975 // Input_section_pattern.
976
977 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
978 size_t input_pattern_count = this->input_section_patterns_.size();
979 if (input_pattern_count == 0)
980 input_pattern_count = 1;
981 Matching_sections matching_sections(input_pattern_count);
982
983 // Look through the list of sections for this output section. Add
984 // each one which matches to one of the elements of
985 // MATCHING_SECTIONS.
986
987 Input_section_list::iterator p = input_sections->begin();
988 while (p != input_sections->end())
989 {
990 // Calling section_name and section_addralign is not very
991 // efficient.
992 Input_section_info isi;
993 isi.relobj = p->first;
994 isi.shndx = p->second;
995
996 // Lock the object so that we can get information about the
997 // section. This is OK since we know we are single-threaded
998 // here.
999 {
1000 const Task* task = reinterpret_cast<const Task*>(-1);
1001 Task_lock_obj<Object> tl(task, p->first);
1002
1003 isi.section_name = p->first->section_name(p->second);
1004 isi.size = p->first->section_size(p->second);
1005 isi.addralign = p->first->section_addralign(p->second);
1006 }
1007
1008 if (!this->match_file_name(isi.relobj->name().c_str()))
1009 ++p;
1010 else if (this->input_section_patterns_.empty())
1011 {
1012 matching_sections[0].push_back(isi);
1013 p = input_sections->erase(p);
1014 }
1015 else
1016 {
1017 size_t i;
1018 for (i = 0; i < input_pattern_count; ++i)
1019 {
1020 const Input_section_pattern&
1021 isp(this->input_section_patterns_[i]);
1022 if (match(isi.section_name.c_str(), isp.pattern.c_str(),
1023 isp.pattern_is_wildcard))
1024 break;
1025 }
1026
1027 if (i >= this->input_section_patterns_.size())
1028 ++p;
1029 else
1030 {
1031 matching_sections[i].push_back(isi);
1032 p = input_sections->erase(p);
1033 }
1034 }
1035 }
1036
1037 // Look through MATCHING_SECTIONS. Sort each one as specified,
1038 // using a stable sort so that we get the default order when
1039 // sections are otherwise equal. Add each input section to the
1040 // output section.
1041
1042 for (size_t i = 0; i < input_pattern_count; ++i)
1043 {
1044 if (matching_sections[i].empty())
1045 continue;
1046
1047 gold_assert(output_section != NULL);
1048
1049 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1050 if (isp.sort != SORT_WILDCARD_NONE
1051 || this->filename_sort_ != SORT_WILDCARD_NONE)
1052 std::stable_sort(matching_sections[i].begin(),
1053 matching_sections[i].end(),
1054 Input_section_sorter(this->filename_sort_,
1055 isp.sort));
1056
1057 for (std::vector<Input_section_info>::const_iterator p =
1058 matching_sections[i].begin();
1059 p != matching_sections[i].end();
1060 ++p)
1061 {
1062 uint64_t this_subalign = p->addralign;
1063 if (this_subalign < subalign)
1064 this_subalign = subalign;
1065
1066 uint64_t address = align_address(*dot_value, this_subalign);
1067
1068 if (address > *dot_value && !fill->empty())
1069 {
1070 section_size_type length =
1071 convert_to_section_size_type(address - *dot_value);
1072 std::string this_fill = this->get_fill_string(fill, length);
1073 Output_section_data* posd = new Output_data_const(this_fill, 0);
1074 output_section->add_output_section_data(posd);
1075 }
1076
1077 output_section->add_input_section_for_script(p->relobj,
1078 p->shndx,
1079 p->size,
1080 this_subalign);
1081
1082 *dot_value = address + p->size;
1083 }
1084 }
1085
1086 this->final_dot_value_ = *dot_value;
1087 this->final_dot_section_ = *dot_section;
1088 }
1089
1090 // Print for debugging.
1091
1092 void
1093 Output_section_element_input::print(FILE* f) const
1094 {
1095 fprintf(f, " ");
1096
1097 if (this->keep_)
1098 fprintf(f, "KEEP(");
1099
1100 if (!this->filename_pattern_.empty())
1101 {
1102 bool need_close_paren = false;
1103 switch (this->filename_sort_)
1104 {
1105 case SORT_WILDCARD_NONE:
1106 break;
1107 case SORT_WILDCARD_BY_NAME:
1108 fprintf(f, "SORT_BY_NAME(");
1109 need_close_paren = true;
1110 break;
1111 default:
1112 gold_unreachable();
1113 }
1114
1115 fprintf(f, "%s", this->filename_pattern_.c_str());
1116
1117 if (need_close_paren)
1118 fprintf(f, ")");
1119 }
1120
1121 if (!this->input_section_patterns_.empty()
1122 || !this->filename_exclusions_.empty())
1123 {
1124 fprintf(f, "(");
1125
1126 bool need_space = false;
1127 if (!this->filename_exclusions_.empty())
1128 {
1129 fprintf(f, "EXCLUDE_FILE(");
1130 bool need_comma = false;
1131 for (Filename_exclusions::const_iterator p =
1132 this->filename_exclusions_.begin();
1133 p != this->filename_exclusions_.end();
1134 ++p)
1135 {
1136 if (need_comma)
1137 fprintf(f, ", ");
1138 fprintf(f, "%s", p->first.c_str());
1139 need_comma = true;
1140 }
1141 fprintf(f, ")");
1142 need_space = true;
1143 }
1144
1145 for (Input_section_patterns::const_iterator p =
1146 this->input_section_patterns_.begin();
1147 p != this->input_section_patterns_.end();
1148 ++p)
1149 {
1150 if (need_space)
1151 fprintf(f, " ");
1152
1153 int close_parens = 0;
1154 switch (p->sort)
1155 {
1156 case SORT_WILDCARD_NONE:
1157 break;
1158 case SORT_WILDCARD_BY_NAME:
1159 fprintf(f, "SORT_BY_NAME(");
1160 close_parens = 1;
1161 break;
1162 case SORT_WILDCARD_BY_ALIGNMENT:
1163 fprintf(f, "SORT_BY_ALIGNMENT(");
1164 close_parens = 1;
1165 break;
1166 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1167 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1168 close_parens = 2;
1169 break;
1170 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1171 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1172 close_parens = 2;
1173 break;
1174 default:
1175 gold_unreachable();
1176 }
1177
1178 fprintf(f, "%s", p->pattern.c_str());
1179
1180 for (int i = 0; i < close_parens; ++i)
1181 fprintf(f, ")");
1182
1183 need_space = true;
1184 }
1185
1186 fprintf(f, ")");
1187 }
1188
1189 if (this->keep_)
1190 fprintf(f, ")");
1191
1192 fprintf(f, "\n");
1193 }
1194
1195 // An output section.
1196
1197 class Output_section_definition : public Sections_element
1198 {
1199 public:
1200 typedef Output_section_element::Input_section_list Input_section_list;
1201
1202 Output_section_definition(const char* name, size_t namelen,
1203 const Parser_output_section_header* header);
1204
1205 // Finish the output section with the information in the trailer.
1206 void
1207 finish(const Parser_output_section_trailer* trailer);
1208
1209 // Add a symbol to be defined.
1210 void
1211 add_symbol_assignment(const char* name, size_t length, Expression* value,
1212 bool provide, bool hidden);
1213
1214 // Add an assignment to the special dot symbol.
1215 void
1216 add_dot_assignment(Expression* value);
1217
1218 // Add an assertion.
1219 void
1220 add_assertion(Expression* check, const char* message, size_t messagelen);
1221
1222 // Add a data item to the current output section.
1223 void
1224 add_data(int size, bool is_signed, Expression* val);
1225
1226 // Add a setting for the fill value.
1227 void
1228 add_fill(Expression* val);
1229
1230 // Add an input section specification.
1231 void
1232 add_input_section(const Input_section_spec* spec, bool keep);
1233
1234 // Create any required output sections.
1235 void
1236 create_sections(Layout*);
1237
1238 // Add any symbols being defined to the symbol table.
1239 void
1240 add_symbols_to_table(Symbol_table* symtab);
1241
1242 // Finalize symbols and check assertions.
1243 void
1244 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1245
1246 // Return the output section name to use for an input file name and
1247 // section name.
1248 const char*
1249 output_section_name(const char* file_name, const char* section_name,
1250 Output_section***);
1251
1252 // Return whether to place an orphan section after this one.
1253 bool
1254 place_orphan_here(const Output_section *os, bool* exact) const;
1255
1256 // Set the section address.
1257 void
1258 set_section_addresses(Symbol_table* symtab, Layout* layout,
1259 uint64_t* dot_value, uint64_t* load_address);
1260
1261 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1262 // this section is constrained, and the input sections do not match,
1263 // return the constraint, and set *POSD.
1264 Section_constraint
1265 check_constraint(Output_section_definition** posd);
1266
1267 // See if this is the alternate output section for a constrained
1268 // output section. If it is, transfer the Output_section and return
1269 // true. Otherwise return false.
1270 bool
1271 alternate_constraint(Output_section_definition*, Section_constraint);
1272
1273 // Get the list of segments to use for an allocated section when
1274 // using a PHDRS clause.
1275 Output_section*
1276 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1277
1278 // Look for an output section by name and return the address, the
1279 // load address, the alignment, and the size. This is used when an
1280 // expression refers to an output section which was not actually
1281 // created. This returns true if the section was found, false
1282 // otherwise.
1283 bool
1284 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1285 uint64_t*) const;
1286
1287 // Print the contents to the FILE. This is for debugging.
1288 void
1289 print(FILE*) const;
1290
1291 private:
1292 typedef std::vector<Output_section_element*> Output_section_elements;
1293
1294 // The output section name.
1295 std::string name_;
1296 // The address. This may be NULL.
1297 Expression* address_;
1298 // The load address. This may be NULL.
1299 Expression* load_address_;
1300 // The alignment. This may be NULL.
1301 Expression* align_;
1302 // The input section alignment. This may be NULL.
1303 Expression* subalign_;
1304 // The constraint, if any.
1305 Section_constraint constraint_;
1306 // The fill value. This may be NULL.
1307 Expression* fill_;
1308 // The list of segments this section should go into. This may be
1309 // NULL.
1310 String_list* phdrs_;
1311 // The list of elements defining the section.
1312 Output_section_elements elements_;
1313 // The Output_section created for this definition. This will be
1314 // NULL if none was created.
1315 Output_section* output_section_;
1316 // The address after it has been evaluated.
1317 uint64_t evaluated_address_;
1318 // The load address after it has been evaluated.
1319 uint64_t evaluated_load_address_;
1320 // The alignment after it has been evaluated.
1321 uint64_t evaluated_addralign_;
1322 };
1323
1324 // Constructor.
1325
1326 Output_section_definition::Output_section_definition(
1327 const char* name,
1328 size_t namelen,
1329 const Parser_output_section_header* header)
1330 : name_(name, namelen),
1331 address_(header->address),
1332 load_address_(header->load_address),
1333 align_(header->align),
1334 subalign_(header->subalign),
1335 constraint_(header->constraint),
1336 fill_(NULL),
1337 phdrs_(NULL),
1338 elements_(),
1339 output_section_(NULL)
1340 {
1341 }
1342
1343 // Finish an output section.
1344
1345 void
1346 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1347 {
1348 this->fill_ = trailer->fill;
1349 this->phdrs_ = trailer->phdrs;
1350 }
1351
1352 // Add a symbol to be defined.
1353
1354 void
1355 Output_section_definition::add_symbol_assignment(const char* name,
1356 size_t length,
1357 Expression* value,
1358 bool provide,
1359 bool hidden)
1360 {
1361 Output_section_element* p = new Output_section_element_assignment(name,
1362 length,
1363 value,
1364 provide,
1365 hidden);
1366 this->elements_.push_back(p);
1367 }
1368
1369 // Add an assignment to the special dot symbol.
1370
1371 void
1372 Output_section_definition::add_dot_assignment(Expression* value)
1373 {
1374 Output_section_element* p = new Output_section_element_dot_assignment(value);
1375 this->elements_.push_back(p);
1376 }
1377
1378 // Add an assertion.
1379
1380 void
1381 Output_section_definition::add_assertion(Expression* check,
1382 const char* message,
1383 size_t messagelen)
1384 {
1385 Output_section_element* p = new Output_section_element_assertion(check,
1386 message,
1387 messagelen);
1388 this->elements_.push_back(p);
1389 }
1390
1391 // Add a data item to the current output section.
1392
1393 void
1394 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1395 {
1396 Output_section_element* p = new Output_section_element_data(size, is_signed,
1397 val);
1398 this->elements_.push_back(p);
1399 }
1400
1401 // Add a setting for the fill value.
1402
1403 void
1404 Output_section_definition::add_fill(Expression* val)
1405 {
1406 Output_section_element* p = new Output_section_element_fill(val);
1407 this->elements_.push_back(p);
1408 }
1409
1410 // Add an input section specification.
1411
1412 void
1413 Output_section_definition::add_input_section(const Input_section_spec* spec,
1414 bool keep)
1415 {
1416 Output_section_element* p = new Output_section_element_input(spec, keep);
1417 this->elements_.push_back(p);
1418 }
1419
1420 // Create any required output sections. We need an output section if
1421 // there is a data statement here.
1422
1423 void
1424 Output_section_definition::create_sections(Layout* layout)
1425 {
1426 if (this->output_section_ != NULL)
1427 return;
1428 for (Output_section_elements::const_iterator p = this->elements_.begin();
1429 p != this->elements_.end();
1430 ++p)
1431 {
1432 if ((*p)->needs_output_section())
1433 {
1434 const char* name = this->name_.c_str();
1435 this->output_section_ = layout->make_output_section_for_script(name);
1436 return;
1437 }
1438 }
1439 }
1440
1441 // Add any symbols being defined to the symbol table.
1442
1443 void
1444 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1445 {
1446 for (Output_section_elements::iterator p = this->elements_.begin();
1447 p != this->elements_.end();
1448 ++p)
1449 (*p)->add_symbols_to_table(symtab);
1450 }
1451
1452 // Finalize symbols and check assertions.
1453
1454 void
1455 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1456 const Layout* layout,
1457 uint64_t* dot_value)
1458 {
1459 if (this->output_section_ != NULL)
1460 *dot_value = this->output_section_->address();
1461 else
1462 {
1463 uint64_t address = *dot_value;
1464 if (this->address_ != NULL)
1465 {
1466 Output_section* dummy;
1467 address = this->address_->eval_with_dot(symtab, layout, true,
1468 *dot_value, NULL,
1469 &dummy);
1470 }
1471 if (this->align_ != NULL)
1472 {
1473 Output_section* dummy;
1474 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1475 *dot_value,
1476 NULL,
1477 &dummy);
1478 address = align_address(address, align);
1479 }
1480 *dot_value = address;
1481 }
1482
1483 Output_section* dot_section = this->output_section_;
1484 for (Output_section_elements::iterator p = this->elements_.begin();
1485 p != this->elements_.end();
1486 ++p)
1487 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1488 }
1489
1490 // Return the output section name to use for an input section name.
1491
1492 const char*
1493 Output_section_definition::output_section_name(const char* file_name,
1494 const char* section_name,
1495 Output_section*** slot)
1496 {
1497 // Ask each element whether it matches NAME.
1498 for (Output_section_elements::const_iterator p = this->elements_.begin();
1499 p != this->elements_.end();
1500 ++p)
1501 {
1502 if ((*p)->match_name(file_name, section_name))
1503 {
1504 // We found a match for NAME, which means that it should go
1505 // into this output section.
1506 *slot = &this->output_section_;
1507 return this->name_.c_str();
1508 }
1509 }
1510
1511 // We don't know about this section name.
1512 return NULL;
1513 }
1514
1515 // Return whether to place an orphan output section after this
1516 // section.
1517
1518 bool
1519 Output_section_definition::place_orphan_here(const Output_section *os,
1520 bool* exact) const
1521 {
1522 // Check for the simple case first.
1523 if (this->output_section_ != NULL
1524 && this->output_section_->type() == os->type()
1525 && this->output_section_->flags() == os->flags())
1526 {
1527 *exact = true;
1528 return true;
1529 }
1530
1531 // Otherwise use some heuristics.
1532
1533 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1534 return false;
1535
1536 if (os->type() == elfcpp::SHT_NOBITS)
1537 {
1538 if (this->name_ == ".bss")
1539 {
1540 *exact = true;
1541 return true;
1542 }
1543 if (this->output_section_ != NULL
1544 && this->output_section_->type() == elfcpp::SHT_NOBITS)
1545 return true;
1546 }
1547 else if (os->type() == elfcpp::SHT_NOTE)
1548 {
1549 if (this->output_section_ != NULL
1550 && this->output_section_->type() == elfcpp::SHT_NOTE)
1551 {
1552 *exact = true;
1553 return true;
1554 }
1555 if (this->name_.compare(0, 5, ".note") == 0)
1556 {
1557 *exact = true;
1558 return true;
1559 }
1560 if (this->name_ == ".interp")
1561 return true;
1562 if (this->output_section_ != NULL
1563 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1564 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1565 return true;
1566 }
1567 else if (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
1568 {
1569 if (this->name_.compare(0, 4, ".rel") == 0)
1570 {
1571 *exact = true;
1572 return true;
1573 }
1574 if (this->output_section_ != NULL
1575 && (this->output_section_->type() == elfcpp::SHT_REL
1576 || this->output_section_->type() == elfcpp::SHT_RELA))
1577 {
1578 *exact = true;
1579 return true;
1580 }
1581 if (this->output_section_ != NULL
1582 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1583 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1584 return true;
1585 }
1586 else if (os->type() == elfcpp::SHT_PROGBITS
1587 && (os->flags() & elfcpp::SHF_WRITE) != 0)
1588 {
1589 if (this->name_ == ".data")
1590 {
1591 *exact = true;
1592 return true;
1593 }
1594 if (this->output_section_ != NULL
1595 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1596 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1597 return true;
1598 }
1599 else if (os->type() == elfcpp::SHT_PROGBITS
1600 && (os->flags() & elfcpp::SHF_EXECINSTR) != 0)
1601 {
1602 if (this->name_ == ".text")
1603 {
1604 *exact = true;
1605 return true;
1606 }
1607 if (this->output_section_ != NULL
1608 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1609 && (this->output_section_->flags() & elfcpp::SHF_EXECINSTR) != 0)
1610 return true;
1611 }
1612 else if (os->type() == elfcpp::SHT_PROGBITS
1613 || (os->type() != elfcpp::SHT_PROGBITS
1614 && (os->flags() & elfcpp::SHF_WRITE) == 0))
1615 {
1616 if (this->name_ == ".rodata")
1617 {
1618 *exact = true;
1619 return true;
1620 }
1621 if (this->output_section_ != NULL
1622 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1623 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1624 return true;
1625 }
1626
1627 return false;
1628 }
1629
1630 // Set the section address. Note that the OUTPUT_SECTION_ field will
1631 // be NULL if no input sections were mapped to this output section.
1632 // We still have to adjust dot and process symbol assignments.
1633
1634 void
1635 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1636 Layout* layout,
1637 uint64_t* dot_value,
1638 uint64_t* load_address)
1639 {
1640 uint64_t address;
1641 if (this->address_ == NULL)
1642 address = *dot_value;
1643 else
1644 {
1645 Output_section* dummy;
1646 address = this->address_->eval_with_dot(symtab, layout, true,
1647 *dot_value, NULL, &dummy);
1648 }
1649
1650 uint64_t align;
1651 if (this->align_ == NULL)
1652 {
1653 if (this->output_section_ == NULL)
1654 align = 0;
1655 else
1656 align = this->output_section_->addralign();
1657 }
1658 else
1659 {
1660 Output_section* align_section;
1661 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1662 NULL, &align_section);
1663 if (align_section != NULL)
1664 gold_warning(_("alignment of section %s is not absolute"),
1665 this->name_.c_str());
1666 if (this->output_section_ != NULL)
1667 this->output_section_->set_addralign(align);
1668 }
1669
1670 address = align_address(address, align);
1671
1672 uint64_t start_address = address;
1673
1674 *dot_value = address;
1675
1676 // The address of non-SHF_ALLOC sections is forced to zero,
1677 // regardless of what the linker script wants.
1678 if (this->output_section_ != NULL
1679 && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1680 this->output_section_->set_address(address);
1681
1682 this->evaluated_address_ = address;
1683 this->evaluated_addralign_ = align;
1684
1685 if (this->load_address_ == NULL)
1686 this->evaluated_load_address_ = address;
1687 else
1688 {
1689 Output_section* dummy;
1690 uint64_t load_address =
1691 this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1692 this->output_section_, &dummy);
1693 if (this->output_section_ != NULL)
1694 this->output_section_->set_load_address(load_address);
1695 this->evaluated_load_address_ = load_address;
1696 }
1697
1698 uint64_t subalign;
1699 if (this->subalign_ == NULL)
1700 subalign = 0;
1701 else
1702 {
1703 Output_section* subalign_section;
1704 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1705 *dot_value, NULL,
1706 &subalign_section);
1707 if (subalign_section != NULL)
1708 gold_warning(_("subalign of section %s is not absolute"),
1709 this->name_.c_str());
1710 }
1711
1712 std::string fill;
1713 if (this->fill_ != NULL)
1714 {
1715 // FIXME: The GNU linker supports fill values of arbitrary
1716 // length.
1717 Output_section* fill_section;
1718 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1719 *dot_value,
1720 NULL,
1721 &fill_section);
1722 if (fill_section != NULL)
1723 gold_warning(_("fill of section %s is not absolute"),
1724 this->name_.c_str());
1725 unsigned char fill_buff[4];
1726 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1727 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1728 }
1729
1730 Input_section_list input_sections;
1731 if (this->output_section_ != NULL)
1732 {
1733 // Get the list of input sections attached to this output
1734 // section. This will leave the output section with only
1735 // Output_section_data entries.
1736 address += this->output_section_->get_input_sections(address,
1737 fill,
1738 &input_sections);
1739 *dot_value = address;
1740 }
1741
1742 Output_section* dot_section = this->output_section_;
1743 for (Output_section_elements::iterator p = this->elements_.begin();
1744 p != this->elements_.end();
1745 ++p)
1746 (*p)->set_section_addresses(symtab, layout, this->output_section_,
1747 subalign, dot_value, &dot_section, &fill,
1748 &input_sections);
1749
1750 gold_assert(input_sections.empty());
1751
1752 if (this->load_address_ == NULL || this->output_section_ == NULL)
1753 *load_address = *dot_value;
1754 else
1755 *load_address = (this->output_section_->load_address()
1756 + (*dot_value - start_address));
1757 }
1758
1759 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1760 // this section is constrained, and the input sections do not match,
1761 // return the constraint, and set *POSD.
1762
1763 Section_constraint
1764 Output_section_definition::check_constraint(Output_section_definition** posd)
1765 {
1766 switch (this->constraint_)
1767 {
1768 case CONSTRAINT_NONE:
1769 return CONSTRAINT_NONE;
1770
1771 case CONSTRAINT_ONLY_IF_RO:
1772 if (this->output_section_ != NULL
1773 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1774 {
1775 *posd = this;
1776 return CONSTRAINT_ONLY_IF_RO;
1777 }
1778 return CONSTRAINT_NONE;
1779
1780 case CONSTRAINT_ONLY_IF_RW:
1781 if (this->output_section_ != NULL
1782 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1783 {
1784 *posd = this;
1785 return CONSTRAINT_ONLY_IF_RW;
1786 }
1787 return CONSTRAINT_NONE;
1788
1789 case CONSTRAINT_SPECIAL:
1790 if (this->output_section_ != NULL)
1791 gold_error(_("SPECIAL constraints are not implemented"));
1792 return CONSTRAINT_NONE;
1793
1794 default:
1795 gold_unreachable();
1796 }
1797 }
1798
1799 // See if this is the alternate output section for a constrained
1800 // output section. If it is, transfer the Output_section and return
1801 // true. Otherwise return false.
1802
1803 bool
1804 Output_section_definition::alternate_constraint(
1805 Output_section_definition* posd,
1806 Section_constraint constraint)
1807 {
1808 if (this->name_ != posd->name_)
1809 return false;
1810
1811 switch (constraint)
1812 {
1813 case CONSTRAINT_ONLY_IF_RO:
1814 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
1815 return false;
1816 break;
1817
1818 case CONSTRAINT_ONLY_IF_RW:
1819 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
1820 return false;
1821 break;
1822
1823 default:
1824 gold_unreachable();
1825 }
1826
1827 // We have found the alternate constraint. We just need to move
1828 // over the Output_section. When constraints are used properly,
1829 // THIS should not have an output_section pointer, as all the input
1830 // sections should have matched the other definition.
1831
1832 if (this->output_section_ != NULL)
1833 gold_error(_("mismatched definition for constrained sections"));
1834
1835 this->output_section_ = posd->output_section_;
1836 posd->output_section_ = NULL;
1837
1838 return true;
1839 }
1840
1841 // Get the list of segments to use for an allocated section when using
1842 // a PHDRS clause.
1843
1844 Output_section*
1845 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
1846 bool* orphan)
1847 {
1848 if (this->output_section_ == NULL)
1849 return NULL;
1850 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
1851 return NULL;
1852 *orphan = false;
1853 if (this->phdrs_ != NULL)
1854 *phdrs_list = this->phdrs_;
1855 return this->output_section_;
1856 }
1857
1858 // Look for an output section by name and return the address, the load
1859 // address, the alignment, and the size. This is used when an
1860 // expression refers to an output section which was not actually
1861 // created. This returns true if the section was found, false
1862 // otherwise.
1863
1864 bool
1865 Output_section_definition::get_output_section_info(const char* name,
1866 uint64_t* address,
1867 uint64_t* load_address,
1868 uint64_t* addralign,
1869 uint64_t* size) const
1870 {
1871 if (this->name_ != name)
1872 return false;
1873
1874 if (this->output_section_ != NULL)
1875 {
1876 *address = this->output_section_->address();
1877 if (this->output_section_->has_load_address())
1878 *load_address = this->output_section_->load_address();
1879 else
1880 *load_address = *address;
1881 *addralign = this->output_section_->addralign();
1882 *size = this->output_section_->current_data_size();
1883 }
1884 else
1885 {
1886 *address = this->evaluated_address_;
1887 *load_address = this->evaluated_load_address_;
1888 *addralign = this->evaluated_addralign_;
1889 *size = 0;
1890 }
1891
1892 return true;
1893 }
1894
1895 // Print for debugging.
1896
1897 void
1898 Output_section_definition::print(FILE* f) const
1899 {
1900 fprintf(f, " %s ", this->name_.c_str());
1901
1902 if (this->address_ != NULL)
1903 {
1904 this->address_->print(f);
1905 fprintf(f, " ");
1906 }
1907
1908 fprintf(f, ": ");
1909
1910 if (this->load_address_ != NULL)
1911 {
1912 fprintf(f, "AT(");
1913 this->load_address_->print(f);
1914 fprintf(f, ") ");
1915 }
1916
1917 if (this->align_ != NULL)
1918 {
1919 fprintf(f, "ALIGN(");
1920 this->align_->print(f);
1921 fprintf(f, ") ");
1922 }
1923
1924 if (this->subalign_ != NULL)
1925 {
1926 fprintf(f, "SUBALIGN(");
1927 this->subalign_->print(f);
1928 fprintf(f, ") ");
1929 }
1930
1931 fprintf(f, "{\n");
1932
1933 for (Output_section_elements::const_iterator p = this->elements_.begin();
1934 p != this->elements_.end();
1935 ++p)
1936 (*p)->print(f);
1937
1938 fprintf(f, " }");
1939
1940 if (this->fill_ != NULL)
1941 {
1942 fprintf(f, " = ");
1943 this->fill_->print(f);
1944 }
1945
1946 if (this->phdrs_ != NULL)
1947 {
1948 for (String_list::const_iterator p = this->phdrs_->begin();
1949 p != this->phdrs_->end();
1950 ++p)
1951 fprintf(f, " :%s", p->c_str());
1952 }
1953
1954 fprintf(f, "\n");
1955 }
1956
1957 // An output section created to hold orphaned input sections. These
1958 // do not actually appear in linker scripts. However, for convenience
1959 // when setting the output section addresses, we put a marker to these
1960 // sections in the appropriate place in the list of SECTIONS elements.
1961
1962 class Orphan_output_section : public Sections_element
1963 {
1964 public:
1965 Orphan_output_section(Output_section* os)
1966 : os_(os)
1967 { }
1968
1969 // Return whether to place an orphan section after this one.
1970 bool
1971 place_orphan_here(const Output_section *os, bool* exact) const;
1972
1973 // Set section addresses.
1974 void
1975 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
1976
1977 // Get the list of segments to use for an allocated section when
1978 // using a PHDRS clause.
1979 Output_section*
1980 allocate_to_segment(String_list**, bool*);
1981
1982 // Print for debugging.
1983 void
1984 print(FILE* f) const
1985 {
1986 fprintf(f, " marker for orphaned output section %s\n",
1987 this->os_->name());
1988 }
1989
1990 private:
1991 Output_section* os_;
1992 };
1993
1994 // Whether to place another orphan section after this one.
1995
1996 bool
1997 Orphan_output_section::place_orphan_here(const Output_section* os,
1998 bool* exact) const
1999 {
2000 if (this->os_->type() == os->type()
2001 && this->os_->flags() == os->flags())
2002 {
2003 *exact = true;
2004 return true;
2005 }
2006 return false;
2007 }
2008
2009 // Set section addresses.
2010
2011 void
2012 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2013 uint64_t* dot_value,
2014 uint64_t* load_address)
2015 {
2016 typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
2017
2018 bool have_load_address = *load_address != *dot_value;
2019
2020 uint64_t address = *dot_value;
2021 address = align_address(address, this->os_->addralign());
2022
2023 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2024 {
2025 this->os_->set_address(address);
2026 if (have_load_address)
2027 this->os_->set_load_address(align_address(*load_address,
2028 this->os_->addralign()));
2029 }
2030
2031 Input_section_list input_sections;
2032 address += this->os_->get_input_sections(address, "", &input_sections);
2033
2034 for (Input_section_list::iterator p = input_sections.begin();
2035 p != input_sections.end();
2036 ++p)
2037 {
2038 uint64_t addralign;
2039 uint64_t size;
2040
2041 // We know what are single-threaded, so it is OK to lock the
2042 // object.
2043 {
2044 const Task* task = reinterpret_cast<const Task*>(-1);
2045 Task_lock_obj<Object> tl(task, p->first);
2046 addralign = p->first->section_addralign(p->second);
2047 size = p->first->section_size(p->second);
2048 }
2049
2050 address = align_address(address, addralign);
2051 this->os_->add_input_section_for_script(p->first, p->second, size,
2052 addralign);
2053 address += size;
2054 }
2055
2056 if (!have_load_address)
2057 *load_address = address;
2058 else
2059 *load_address += address - *dot_value;
2060
2061 *dot_value = address;
2062 }
2063
2064 // Get the list of segments to use for an allocated section when using
2065 // a PHDRS clause. If this is an allocated section, return the
2066 // Output_section. We don't change the list of segments.
2067
2068 Output_section*
2069 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2070 {
2071 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2072 return NULL;
2073 *orphan = true;
2074 return this->os_;
2075 }
2076
2077 // Class Phdrs_element. A program header from a PHDRS clause.
2078
2079 class Phdrs_element
2080 {
2081 public:
2082 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2083 bool includes_filehdr, bool includes_phdrs,
2084 bool is_flags_valid, unsigned int flags,
2085 Expression* load_address)
2086 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2087 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2088 flags_(flags), load_address_(load_address), load_address_value_(0),
2089 segment_(NULL)
2090 { }
2091
2092 // Return the name of this segment.
2093 const std::string&
2094 name() const
2095 { return this->name_; }
2096
2097 // Return the type of the segment.
2098 unsigned int
2099 type() const
2100 { return this->type_; }
2101
2102 // Whether to include the file header.
2103 bool
2104 includes_filehdr() const
2105 { return this->includes_filehdr_; }
2106
2107 // Whether to include the program headers.
2108 bool
2109 includes_phdrs() const
2110 { return this->includes_phdrs_; }
2111
2112 // Return whether there is a load address.
2113 bool
2114 has_load_address() const
2115 { return this->load_address_ != NULL; }
2116
2117 // Evaluate the load address expression if there is one.
2118 void
2119 eval_load_address(Symbol_table* symtab, Layout* layout)
2120 {
2121 if (this->load_address_ != NULL)
2122 this->load_address_value_ = this->load_address_->eval(symtab, layout,
2123 true);
2124 }
2125
2126 // Return the load address.
2127 uint64_t
2128 load_address() const
2129 {
2130 gold_assert(this->load_address_ != NULL);
2131 return this->load_address_value_;
2132 }
2133
2134 // Create the segment.
2135 Output_segment*
2136 create_segment(Layout* layout)
2137 {
2138 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2139 return this->segment_;
2140 }
2141
2142 // Return the segment.
2143 Output_segment*
2144 segment()
2145 { return this->segment_; }
2146
2147 // Set the segment flags if appropriate.
2148 void
2149 set_flags_if_valid()
2150 {
2151 if (this->is_flags_valid_)
2152 this->segment_->set_flags(this->flags_);
2153 }
2154
2155 // Print for debugging.
2156 void
2157 print(FILE*) const;
2158
2159 private:
2160 // The name used in the script.
2161 std::string name_;
2162 // The type of the segment (PT_LOAD, etc.).
2163 unsigned int type_;
2164 // Whether this segment includes the file header.
2165 bool includes_filehdr_;
2166 // Whether this segment includes the section headers.
2167 bool includes_phdrs_;
2168 // Whether the flags were explicitly specified.
2169 bool is_flags_valid_;
2170 // The flags for this segment (PF_R, etc.) if specified.
2171 unsigned int flags_;
2172 // The expression for the load address for this segment. This may
2173 // be NULL.
2174 Expression* load_address_;
2175 // The actual load address from evaluating the expression.
2176 uint64_t load_address_value_;
2177 // The segment itself.
2178 Output_segment* segment_;
2179 };
2180
2181 // Print for debugging.
2182
2183 void
2184 Phdrs_element::print(FILE* f) const
2185 {
2186 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
2187 if (this->includes_filehdr_)
2188 fprintf(f, " FILEHDR");
2189 if (this->includes_phdrs_)
2190 fprintf(f, " PHDRS");
2191 if (this->is_flags_valid_)
2192 fprintf(f, " FLAGS(%u)", this->flags_);
2193 if (this->load_address_ != NULL)
2194 {
2195 fprintf(f, " AT(");
2196 this->load_address_->print(f);
2197 fprintf(f, ")");
2198 }
2199 fprintf(f, ";\n");
2200 }
2201
2202 // Class Script_sections.
2203
2204 Script_sections::Script_sections()
2205 : saw_sections_clause_(false),
2206 in_sections_clause_(false),
2207 sections_elements_(NULL),
2208 output_section_(NULL),
2209 phdrs_elements_(NULL)
2210 {
2211 }
2212
2213 // Start a SECTIONS clause.
2214
2215 void
2216 Script_sections::start_sections()
2217 {
2218 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2219 this->saw_sections_clause_ = true;
2220 this->in_sections_clause_ = true;
2221 if (this->sections_elements_ == NULL)
2222 this->sections_elements_ = new Sections_elements;
2223 }
2224
2225 // Finish a SECTIONS clause.
2226
2227 void
2228 Script_sections::finish_sections()
2229 {
2230 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2231 this->in_sections_clause_ = false;
2232 }
2233
2234 // Add a symbol to be defined.
2235
2236 void
2237 Script_sections::add_symbol_assignment(const char* name, size_t length,
2238 Expression* val, bool provide,
2239 bool hidden)
2240 {
2241 if (this->output_section_ != NULL)
2242 this->output_section_->add_symbol_assignment(name, length, val,
2243 provide, hidden);
2244 else
2245 {
2246 Sections_element* p = new Sections_element_assignment(name, length,
2247 val, provide,
2248 hidden);
2249 this->sections_elements_->push_back(p);
2250 }
2251 }
2252
2253 // Add an assignment to the special dot symbol.
2254
2255 void
2256 Script_sections::add_dot_assignment(Expression* val)
2257 {
2258 if (this->output_section_ != NULL)
2259 this->output_section_->add_dot_assignment(val);
2260 else
2261 {
2262 Sections_element* p = new Sections_element_dot_assignment(val);
2263 this->sections_elements_->push_back(p);
2264 }
2265 }
2266
2267 // Add an assertion.
2268
2269 void
2270 Script_sections::add_assertion(Expression* check, const char* message,
2271 size_t messagelen)
2272 {
2273 if (this->output_section_ != NULL)
2274 this->output_section_->add_assertion(check, message, messagelen);
2275 else
2276 {
2277 Sections_element* p = new Sections_element_assertion(check, message,
2278 messagelen);
2279 this->sections_elements_->push_back(p);
2280 }
2281 }
2282
2283 // Start processing entries for an output section.
2284
2285 void
2286 Script_sections::start_output_section(
2287 const char* name,
2288 size_t namelen,
2289 const Parser_output_section_header *header)
2290 {
2291 Output_section_definition* posd = new Output_section_definition(name,
2292 namelen,
2293 header);
2294 this->sections_elements_->push_back(posd);
2295 gold_assert(this->output_section_ == NULL);
2296 this->output_section_ = posd;
2297 }
2298
2299 // Stop processing entries for an output section.
2300
2301 void
2302 Script_sections::finish_output_section(
2303 const Parser_output_section_trailer* trailer)
2304 {
2305 gold_assert(this->output_section_ != NULL);
2306 this->output_section_->finish(trailer);
2307 this->output_section_ = NULL;
2308 }
2309
2310 // Add a data item to the current output section.
2311
2312 void
2313 Script_sections::add_data(int size, bool is_signed, Expression* val)
2314 {
2315 gold_assert(this->output_section_ != NULL);
2316 this->output_section_->add_data(size, is_signed, val);
2317 }
2318
2319 // Add a fill value setting to the current output section.
2320
2321 void
2322 Script_sections::add_fill(Expression* val)
2323 {
2324 gold_assert(this->output_section_ != NULL);
2325 this->output_section_->add_fill(val);
2326 }
2327
2328 // Add an input section specification to the current output section.
2329
2330 void
2331 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2332 {
2333 gold_assert(this->output_section_ != NULL);
2334 this->output_section_->add_input_section(spec, keep);
2335 }
2336
2337 // Create any required sections.
2338
2339 void
2340 Script_sections::create_sections(Layout* layout)
2341 {
2342 if (!this->saw_sections_clause_)
2343 return;
2344 for (Sections_elements::iterator p = this->sections_elements_->begin();
2345 p != this->sections_elements_->end();
2346 ++p)
2347 (*p)->create_sections(layout);
2348 }
2349
2350 // Add any symbols we are defining to the symbol table.
2351
2352 void
2353 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2354 {
2355 if (!this->saw_sections_clause_)
2356 return;
2357 for (Sections_elements::iterator p = this->sections_elements_->begin();
2358 p != this->sections_elements_->end();
2359 ++p)
2360 (*p)->add_symbols_to_table(symtab);
2361 }
2362
2363 // Finalize symbols and check assertions.
2364
2365 void
2366 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2367 {
2368 if (!this->saw_sections_clause_)
2369 return;
2370 uint64_t dot_value = 0;
2371 for (Sections_elements::iterator p = this->sections_elements_->begin();
2372 p != this->sections_elements_->end();
2373 ++p)
2374 (*p)->finalize_symbols(symtab, layout, &dot_value);
2375 }
2376
2377 // Return the name of the output section to use for an input file name
2378 // and section name.
2379
2380 const char*
2381 Script_sections::output_section_name(const char* file_name,
2382 const char* section_name,
2383 Output_section*** output_section_slot)
2384 {
2385 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2386 p != this->sections_elements_->end();
2387 ++p)
2388 {
2389 const char* ret = (*p)->output_section_name(file_name, section_name,
2390 output_section_slot);
2391
2392 if (ret != NULL)
2393 {
2394 // The special name /DISCARD/ means that the input section
2395 // should be discarded.
2396 if (strcmp(ret, "/DISCARD/") == 0)
2397 {
2398 *output_section_slot = NULL;
2399 return NULL;
2400 }
2401 return ret;
2402 }
2403 }
2404
2405 // If we couldn't find a mapping for the name, the output section
2406 // gets the name of the input section.
2407
2408 *output_section_slot = NULL;
2409
2410 return section_name;
2411 }
2412
2413 // Place a marker for an orphan output section into the SECTIONS
2414 // clause.
2415
2416 void
2417 Script_sections::place_orphan(Output_section* os)
2418 {
2419 // Look for an output section definition which matches the output
2420 // section. Put a marker after that section.
2421 Sections_elements::iterator place = this->sections_elements_->end();
2422 for (Sections_elements::iterator p = this->sections_elements_->begin();
2423 p != this->sections_elements_->end();
2424 ++p)
2425 {
2426 bool exact = false;
2427 if ((*p)->place_orphan_here(os, &exact))
2428 {
2429 place = p;
2430 if (exact)
2431 break;
2432 }
2433 }
2434
2435 // The insert function puts the new element before the iterator.
2436 if (place != this->sections_elements_->end())
2437 ++place;
2438
2439 this->sections_elements_->insert(place, new Orphan_output_section(os));
2440 }
2441
2442 // Set the addresses of all the output sections. Walk through all the
2443 // elements, tracking the dot symbol. Apply assignments which set
2444 // absolute symbol values, in case they are used when setting dot.
2445 // Fill in data statement values. As we find output sections, set the
2446 // address, set the address of all associated input sections, and
2447 // update dot. Return the segment which should hold the file header
2448 // and segment headers, if any.
2449
2450 Output_segment*
2451 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2452 {
2453 gold_assert(this->saw_sections_clause_);
2454
2455 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
2456 // for our representation.
2457 for (Sections_elements::iterator p = this->sections_elements_->begin();
2458 p != this->sections_elements_->end();
2459 ++p)
2460 {
2461 Output_section_definition* posd;
2462 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2463 if (failed_constraint != CONSTRAINT_NONE)
2464 {
2465 Sections_elements::iterator q;
2466 for (q = this->sections_elements_->begin();
2467 q != this->sections_elements_->end();
2468 ++q)
2469 {
2470 if (q != p)
2471 {
2472 if ((*q)->alternate_constraint(posd, failed_constraint))
2473 break;
2474 }
2475 }
2476
2477 if (q == this->sections_elements_->end())
2478 gold_error(_("no matching section constraint"));
2479 }
2480 }
2481
2482 // For a relocatable link, we implicitly set dot to zero.
2483 uint64_t dot_value = 0;
2484 uint64_t load_address = 0;
2485 for (Sections_elements::iterator p = this->sections_elements_->begin();
2486 p != this->sections_elements_->end();
2487 ++p)
2488 (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2489
2490 if (this->phdrs_elements_ != NULL)
2491 {
2492 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2493 p != this->phdrs_elements_->end();
2494 ++p)
2495 (*p)->eval_load_address(symtab, layout);
2496 }
2497
2498 return this->create_segments(layout);
2499 }
2500
2501 // Sort the sections in order to put them into segments.
2502
2503 class Sort_output_sections
2504 {
2505 public:
2506 bool
2507 operator()(const Output_section* os1, const Output_section* os2) const;
2508 };
2509
2510 bool
2511 Sort_output_sections::operator()(const Output_section* os1,
2512 const Output_section* os2) const
2513 {
2514 // Sort first by the load address.
2515 uint64_t lma1 = (os1->has_load_address()
2516 ? os1->load_address()
2517 : os1->address());
2518 uint64_t lma2 = (os2->has_load_address()
2519 ? os2->load_address()
2520 : os2->address());
2521 if (lma1 != lma2)
2522 return lma1 < lma2;
2523
2524 // Then sort by the virtual address.
2525 if (os1->address() != os2->address())
2526 return os1->address() < os2->address();
2527
2528 // Sort TLS sections to the end.
2529 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2530 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2531 if (tls1 != tls2)
2532 return tls2;
2533
2534 // Sort PROGBITS before NOBITS.
2535 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2536 return true;
2537 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2538 return false;
2539
2540 // Otherwise we don't care.
2541 return false;
2542 }
2543
2544 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
2545 // We treat a section with the SHF_TLS flag set as taking up space
2546 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2547 // space for them in the file.
2548
2549 bool
2550 Script_sections::is_bss_section(const Output_section* os)
2551 {
2552 return (os->type() == elfcpp::SHT_NOBITS
2553 && (os->flags() & elfcpp::SHF_TLS) == 0);
2554 }
2555
2556 // Return the size taken by the file header and the program headers.
2557
2558 size_t
2559 Script_sections::total_header_size(Layout* layout) const
2560 {
2561 size_t segment_count = layout->segment_count();
2562 size_t file_header_size;
2563 size_t segment_headers_size;
2564 if (parameters->target().get_size() == 32)
2565 {
2566 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2567 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2568 }
2569 else if (parameters->target().get_size() == 64)
2570 {
2571 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2572 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2573 }
2574 else
2575 gold_unreachable();
2576
2577 return file_header_size + segment_headers_size;
2578 }
2579
2580 // Return the amount we have to subtract from the LMA to accomodate
2581 // headers of the given size. The complication is that the file
2582 // header have to be at the start of a page, as otherwise it will not
2583 // be at the start of the file.
2584
2585 uint64_t
2586 Script_sections::header_size_adjustment(uint64_t lma,
2587 size_t sizeof_headers) const
2588 {
2589 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2590 uint64_t hdr_lma = lma - sizeof_headers;
2591 hdr_lma &= ~(abi_pagesize - 1);
2592 return lma - hdr_lma;
2593 }
2594
2595 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
2596 // the segment which should hold the file header and segment headers,
2597 // if any.
2598
2599 Output_segment*
2600 Script_sections::create_segments(Layout* layout)
2601 {
2602 gold_assert(this->saw_sections_clause_);
2603
2604 if (parameters->options().relocatable())
2605 return NULL;
2606
2607 if (this->saw_phdrs_clause())
2608 return create_segments_from_phdrs_clause(layout);
2609
2610 Layout::Section_list sections;
2611 layout->get_allocated_sections(&sections);
2612
2613 // Sort the sections by address.
2614 std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2615
2616 this->create_note_and_tls_segments(layout, &sections);
2617
2618 // Walk through the sections adding them to PT_LOAD segments.
2619 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2620 Output_segment* first_seg = NULL;
2621 Output_segment* current_seg = NULL;
2622 bool is_current_seg_readonly = true;
2623 Layout::Section_list::iterator plast = sections.end();
2624 uint64_t last_vma = 0;
2625 uint64_t last_lma = 0;
2626 uint64_t last_size = 0;
2627 for (Layout::Section_list::iterator p = sections.begin();
2628 p != sections.end();
2629 ++p)
2630 {
2631 const uint64_t vma = (*p)->address();
2632 const uint64_t lma = ((*p)->has_load_address()
2633 ? (*p)->load_address()
2634 : vma);
2635 const uint64_t size = (*p)->current_data_size();
2636
2637 bool need_new_segment;
2638 if (current_seg == NULL)
2639 need_new_segment = true;
2640 else if (lma - vma != last_lma - last_vma)
2641 {
2642 // This section has a different LMA relationship than the
2643 // last one; we need a new segment.
2644 need_new_segment = true;
2645 }
2646 else if (align_address(last_lma + last_size, abi_pagesize)
2647 < align_address(lma, abi_pagesize))
2648 {
2649 // Putting this section in the segment would require
2650 // skipping a page.
2651 need_new_segment = true;
2652 }
2653 else if (is_bss_section(*plast) && !is_bss_section(*p))
2654 {
2655 // A non-BSS section can not follow a BSS section in the
2656 // same segment.
2657 need_new_segment = true;
2658 }
2659 else if (is_current_seg_readonly
2660 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2661 {
2662 // Don't put a writable section in the same segment as a
2663 // non-writable section.
2664 need_new_segment = true;
2665 }
2666 else
2667 {
2668 // Otherwise, reuse the existing segment.
2669 need_new_segment = false;
2670 }
2671
2672 elfcpp::Elf_Word seg_flags =
2673 Layout::section_flags_to_segment((*p)->flags());
2674
2675 if (need_new_segment)
2676 {
2677 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2678 seg_flags);
2679 current_seg->set_addresses(vma, lma);
2680 if (first_seg == NULL)
2681 first_seg = current_seg;
2682 is_current_seg_readonly = true;
2683 }
2684
2685 current_seg->add_output_section(*p, seg_flags);
2686
2687 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2688 is_current_seg_readonly = false;
2689
2690 plast = p;
2691 last_vma = vma;
2692 last_lma = lma;
2693 last_size = size;
2694 }
2695
2696 // An ELF program should work even if the program headers are not in
2697 // a PT_LOAD segment. However, it appears that the Linux kernel
2698 // does not set the AT_PHDR auxiliary entry in that case. It sets
2699 // the load address to p_vaddr - p_offset of the first PT_LOAD
2700 // segment. It then sets AT_PHDR to the load address plus the
2701 // offset to the program headers, e_phoff in the file header. This
2702 // fails when the program headers appear in the file before the
2703 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
2704 // segment to hold the file header and the program headers. This is
2705 // effectively what the GNU linker does, and it is slightly more
2706 // efficient in any case. We try to use the first PT_LOAD segment
2707 // if we can, otherwise we make a new one.
2708
2709 if (first_seg == NULL)
2710 return NULL;
2711
2712 size_t sizeof_headers = this->total_header_size(layout);
2713
2714 uint64_t vma = first_seg->vaddr();
2715 uint64_t lma = first_seg->paddr();
2716
2717 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
2718
2719 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
2720 {
2721 first_seg->set_addresses(vma - subtract, lma - subtract);
2722 return first_seg;
2723 }
2724
2725 // If there is no room to squeeze in the headers, then punt. The
2726 // resulting executable probably won't run on GNU/Linux, but we
2727 // trust that the user knows what they are doing.
2728 if (lma < subtract || vma < subtract)
2729 return NULL;
2730
2731 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2732 elfcpp::PF_R);
2733 load_seg->set_addresses(vma - subtract, lma - subtract);
2734
2735 return load_seg;
2736 }
2737
2738 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
2739 // segment if there are any SHT_TLS sections.
2740
2741 void
2742 Script_sections::create_note_and_tls_segments(
2743 Layout* layout,
2744 const Layout::Section_list* sections)
2745 {
2746 gold_assert(!this->saw_phdrs_clause());
2747
2748 bool saw_tls = false;
2749 for (Layout::Section_list::const_iterator p = sections->begin();
2750 p != sections->end();
2751 ++p)
2752 {
2753 if ((*p)->type() == elfcpp::SHT_NOTE)
2754 {
2755 elfcpp::Elf_Word seg_flags =
2756 Layout::section_flags_to_segment((*p)->flags());
2757 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
2758 seg_flags);
2759 oseg->add_output_section(*p, seg_flags);
2760
2761 // Incorporate any subsequent SHT_NOTE sections, in the
2762 // hopes that the script is sensible.
2763 Layout::Section_list::const_iterator pnext = p + 1;
2764 while (pnext != sections->end()
2765 && (*pnext)->type() == elfcpp::SHT_NOTE)
2766 {
2767 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2768 oseg->add_output_section(*pnext, seg_flags);
2769 p = pnext;
2770 ++pnext;
2771 }
2772 }
2773
2774 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2775 {
2776 if (saw_tls)
2777 gold_error(_("TLS sections are not adjacent"));
2778
2779 elfcpp::Elf_Word seg_flags =
2780 Layout::section_flags_to_segment((*p)->flags());
2781 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
2782 seg_flags);
2783 oseg->add_output_section(*p, seg_flags);
2784
2785 Layout::Section_list::const_iterator pnext = p + 1;
2786 while (pnext != sections->end()
2787 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
2788 {
2789 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2790 oseg->add_output_section(*pnext, seg_flags);
2791 p = pnext;
2792 ++pnext;
2793 }
2794
2795 saw_tls = true;
2796 }
2797 }
2798 }
2799
2800 // Add a program header. The PHDRS clause is syntactically distinct
2801 // from the SECTIONS clause, but we implement it with the SECTIONS
2802 // support becauase PHDRS is useless if there is no SECTIONS clause.
2803
2804 void
2805 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
2806 bool includes_filehdr, bool includes_phdrs,
2807 bool is_flags_valid, unsigned int flags,
2808 Expression* load_address)
2809 {
2810 if (this->phdrs_elements_ == NULL)
2811 this->phdrs_elements_ = new Phdrs_elements();
2812 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
2813 includes_filehdr,
2814 includes_phdrs,
2815 is_flags_valid, flags,
2816 load_address));
2817 }
2818
2819 // Return the number of segments we expect to create based on the
2820 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
2821
2822 size_t
2823 Script_sections::expected_segment_count(const Layout* layout) const
2824 {
2825 if (this->saw_phdrs_clause())
2826 return this->phdrs_elements_->size();
2827
2828 Layout::Section_list sections;
2829 layout->get_allocated_sections(&sections);
2830
2831 // We assume that we will need two PT_LOAD segments.
2832 size_t ret = 2;
2833
2834 bool saw_note = false;
2835 bool saw_tls = false;
2836 for (Layout::Section_list::const_iterator p = sections.begin();
2837 p != sections.end();
2838 ++p)
2839 {
2840 if ((*p)->type() == elfcpp::SHT_NOTE)
2841 {
2842 // Assume that all note sections will fit into a single
2843 // PT_NOTE segment.
2844 if (!saw_note)
2845 {
2846 ++ret;
2847 saw_note = true;
2848 }
2849 }
2850 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2851 {
2852 // There can only be one PT_TLS segment.
2853 if (!saw_tls)
2854 {
2855 ++ret;
2856 saw_tls = true;
2857 }
2858 }
2859 }
2860
2861 return ret;
2862 }
2863
2864 // Create the segments from a PHDRS clause. Return the segment which
2865 // should hold the file header and program headers, if any.
2866
2867 Output_segment*
2868 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
2869 {
2870 this->attach_sections_using_phdrs_clause(layout);
2871 return this->set_phdrs_clause_addresses(layout);
2872 }
2873
2874 // Create the segments from the PHDRS clause, and put the output
2875 // sections in them.
2876
2877 void
2878 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
2879 {
2880 typedef std::map<std::string, Output_segment*> Name_to_segment;
2881 Name_to_segment name_to_segment;
2882 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2883 p != this->phdrs_elements_->end();
2884 ++p)
2885 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
2886
2887 // Walk through the output sections and attach them to segments.
2888 // Output sections in the script which do not list segments are
2889 // attached to the same set of segments as the immediately preceding
2890 // output section.
2891 String_list* phdr_names = NULL;
2892 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2893 p != this->sections_elements_->end();
2894 ++p)
2895 {
2896 bool orphan;
2897 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
2898 if (os == NULL)
2899 continue;
2900
2901 if (phdr_names == NULL)
2902 {
2903 gold_error(_("allocated section not in any segment"));
2904 continue;
2905 }
2906
2907 // If this is an orphan section--one that was not explicitly
2908 // mentioned in the linker script--then it should not inherit
2909 // any segment type other than PT_LOAD. Otherwise, e.g., the
2910 // PT_INTERP segment will pick up following orphan sections,
2911 // which does not make sense. If this is not an orphan section,
2912 // we trust the linker script.
2913 if (orphan)
2914 {
2915 String_list::iterator q = phdr_names->begin();
2916 while (q != phdr_names->end())
2917 {
2918 Name_to_segment::const_iterator r = name_to_segment.find(*q);
2919 // We give errors about unknown segments below.
2920 if (r == name_to_segment.end()
2921 || r->second->type() == elfcpp::PT_LOAD)
2922 ++q;
2923 else
2924 q = phdr_names->erase(q);
2925 }
2926 }
2927
2928 bool in_load_segment = false;
2929 for (String_list::const_iterator q = phdr_names->begin();
2930 q != phdr_names->end();
2931 ++q)
2932 {
2933 Name_to_segment::const_iterator r = name_to_segment.find(*q);
2934 if (r == name_to_segment.end())
2935 gold_error(_("no segment %s"), q->c_str());
2936 else
2937 {
2938 elfcpp::Elf_Word seg_flags =
2939 Layout::section_flags_to_segment(os->flags());
2940 r->second->add_output_section(os, seg_flags);
2941
2942 if (r->second->type() == elfcpp::PT_LOAD)
2943 {
2944 if (in_load_segment)
2945 gold_error(_("section in two PT_LOAD segments"));
2946 in_load_segment = true;
2947 }
2948 }
2949 }
2950
2951 if (!in_load_segment)
2952 gold_error(_("allocated section not in any PT_LOAD segment"));
2953 }
2954 }
2955
2956 // Set the addresses for segments created from a PHDRS clause. Return
2957 // the segment which should hold the file header and program headers,
2958 // if any.
2959
2960 Output_segment*
2961 Script_sections::set_phdrs_clause_addresses(Layout* layout)
2962 {
2963 Output_segment* load_seg = NULL;
2964 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2965 p != this->phdrs_elements_->end();
2966 ++p)
2967 {
2968 // Note that we have to set the flags after adding the output
2969 // sections to the segment, as adding an output segment can
2970 // change the flags.
2971 (*p)->set_flags_if_valid();
2972
2973 Output_segment* oseg = (*p)->segment();
2974
2975 if (oseg->type() != elfcpp::PT_LOAD)
2976 {
2977 // The addresses of non-PT_LOAD segments are set from the
2978 // PT_LOAD segments.
2979 if ((*p)->has_load_address())
2980 gold_error(_("may only specify load address for PT_LOAD segment"));
2981 continue;
2982 }
2983
2984 // The output sections should have addresses from the SECTIONS
2985 // clause. The addresses don't have to be in order, so find the
2986 // one with the lowest load address. Use that to set the
2987 // address of the segment.
2988
2989 Output_section* osec = oseg->section_with_lowest_load_address();
2990 if (osec == NULL)
2991 {
2992 oseg->set_addresses(0, 0);
2993 continue;
2994 }
2995
2996 uint64_t vma = osec->address();
2997 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
2998
2999 // Override the load address of the section with the load
3000 // address specified for the segment.
3001 if ((*p)->has_load_address())
3002 {
3003 if (osec->has_load_address())
3004 gold_warning(_("PHDRS load address overrides "
3005 "section %s load address"),
3006 osec->name());
3007
3008 lma = (*p)->load_address();
3009 }
3010
3011 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3012 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3013 {
3014 // We could support this if we wanted to.
3015 gold_error(_("using only one of FILEHDR and PHDRS is "
3016 "not currently supported"));
3017 }
3018 if (headers)
3019 {
3020 size_t sizeof_headers = this->total_header_size(layout);
3021 uint64_t subtract = this->header_size_adjustment(lma,
3022 sizeof_headers);
3023 if (lma >= subtract && vma >= subtract)
3024 {
3025 lma -= subtract;
3026 vma -= subtract;
3027 }
3028 else
3029 {
3030 gold_error(_("sections loaded on first page without room "
3031 "for file and program headers "
3032 "are not supported"));
3033 }
3034
3035 if (load_seg != NULL)
3036 gold_error(_("using FILEHDR and PHDRS on more than one "
3037 "PT_LOAD segment is not currently supported"));
3038 load_seg = oseg;
3039 }
3040
3041 oseg->set_addresses(vma, lma);
3042 }
3043
3044 return load_seg;
3045 }
3046
3047 // Add the file header and segment headers to non-load segments
3048 // specified in the PHDRS clause.
3049
3050 void
3051 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3052 Output_data* segment_headers)
3053 {
3054 gold_assert(this->saw_phdrs_clause());
3055 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3056 p != this->phdrs_elements_->end();
3057 ++p)
3058 {
3059 if ((*p)->type() != elfcpp::PT_LOAD)
3060 {
3061 if ((*p)->includes_phdrs())
3062 (*p)->segment()->add_initial_output_data(segment_headers);
3063 if ((*p)->includes_filehdr())
3064 (*p)->segment()->add_initial_output_data(file_header);
3065 }
3066 }
3067 }
3068
3069 // Look for an output section by name and return the address, the load
3070 // address, the alignment, and the size. This is used when an
3071 // expression refers to an output section which was not actually
3072 // created. This returns true if the section was found, false
3073 // otherwise.
3074
3075 bool
3076 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3077 uint64_t* load_address,
3078 uint64_t* addralign,
3079 uint64_t* size) const
3080 {
3081 if (!this->saw_sections_clause_)
3082 return false;
3083 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3084 p != this->sections_elements_->end();
3085 ++p)
3086 if ((*p)->get_output_section_info(name, address, load_address, addralign,
3087 size))
3088 return true;
3089 return false;
3090 }
3091
3092 // Print the SECTIONS clause to F for debugging.
3093
3094 void
3095 Script_sections::print(FILE* f) const
3096 {
3097 if (!this->saw_sections_clause_)
3098 return;
3099
3100 fprintf(f, "SECTIONS {\n");
3101
3102 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3103 p != this->sections_elements_->end();
3104 ++p)
3105 (*p)->print(f);
3106
3107 fprintf(f, "}\n");
3108
3109 if (this->phdrs_elements_ != NULL)
3110 {
3111 fprintf(f, "PHDRS {\n");
3112 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3113 p != this->phdrs_elements_->end();
3114 ++p)
3115 (*p)->print(f);
3116 fprintf(f, "}\n");
3117 }
3118 }
3119
3120 } // End namespace gold.
This page took 0.093672 seconds and 5 git commands to generate.