* script-sections.cc (Script_sections::create_segments): Use
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // An element in a SECTIONS clause.
47
48 class Sections_element
49 {
50 public:
51 Sections_element()
52 { }
53
54 virtual ~Sections_element()
55 { }
56
57 // Create any required output sections. The only real
58 // implementation is in Output_section_definition.
59 virtual void
60 create_sections(Layout*)
61 { }
62
63 // Add any symbol being defined to the symbol table.
64 virtual void
65 add_symbols_to_table(Symbol_table*)
66 { }
67
68 // Finalize symbols and check assertions.
69 virtual void
70 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
71 { }
72
73 // Return the output section name to use for an input file name and
74 // section name. This only real implementation is in
75 // Output_section_definition.
76 virtual const char*
77 output_section_name(const char*, const char*, Output_section***)
78 { return NULL; }
79
80 // Return whether to place an orphan output section after this
81 // element.
82 virtual bool
83 place_orphan_here(const Output_section *, bool*) const
84 { return false; }
85
86 // Set section addresses. This includes applying assignments if the
87 // the expression is an absolute value.
88 virtual void
89 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
90 { }
91
92 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
93 // this section is constrained, and the input sections do not match,
94 // return the constraint, and set *POSD.
95 virtual Section_constraint
96 check_constraint(Output_section_definition**)
97 { return CONSTRAINT_NONE; }
98
99 // See if this is the alternate output section for a constrained
100 // output section. If it is, transfer the Output_section and return
101 // true. Otherwise return false.
102 virtual bool
103 alternate_constraint(Output_section_definition*, Section_constraint)
104 { return false; }
105
106 // Get the list of segments to use for an allocated section when
107 // using a PHDRS clause. If this is an allocated section, return
108 // the Output_section, and set *PHDRS_LIST (the first parameter) to
109 // the list of PHDRS to which it should be attached. If the PHDRS
110 // were not specified, don't change *PHDRS_LIST. When not returning
111 // NULL, set *ORPHAN (the second parameter) according to whether
112 // this is an orphan section--one that is not mentioned in the
113 // linker script.
114 virtual Output_section*
115 allocate_to_segment(String_list**, bool*)
116 { return NULL; }
117
118 // Look for an output section by name and return the address, the
119 // load address, the alignment, and the size. This is used when an
120 // expression refers to an output section which was not actually
121 // created. This returns true if the section was found, false
122 // otherwise. The only real definition is for
123 // Output_section_definition.
124 virtual bool
125 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
126 uint64_t*) const
127 { return false; }
128
129 // Print the element for debugging purposes.
130 virtual void
131 print(FILE* f) const = 0;
132 };
133
134 // An assignment in a SECTIONS clause outside of an output section.
135
136 class Sections_element_assignment : public Sections_element
137 {
138 public:
139 Sections_element_assignment(const char* name, size_t namelen,
140 Expression* val, bool provide, bool hidden)
141 : assignment_(name, namelen, val, provide, hidden)
142 { }
143
144 // Add the symbol to the symbol table.
145 void
146 add_symbols_to_table(Symbol_table* symtab)
147 { this->assignment_.add_to_table(symtab); }
148
149 // Finalize the symbol.
150 void
151 finalize_symbols(Symbol_table* symtab, const Layout* layout,
152 uint64_t* dot_value)
153 {
154 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
155 }
156
157 // Set the section address. There is no section here, but if the
158 // value is absolute, we set the symbol. This permits us to use
159 // absolute symbols when setting dot.
160 void
161 set_section_addresses(Symbol_table* symtab, Layout* layout,
162 uint64_t* dot_value, uint64_t*)
163 {
164 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
165 }
166
167 // Print for debugging.
168 void
169 print(FILE* f) const
170 {
171 fprintf(f, " ");
172 this->assignment_.print(f);
173 }
174
175 private:
176 Symbol_assignment assignment_;
177 };
178
179 // An assignment to the dot symbol in a SECTIONS clause outside of an
180 // output section.
181
182 class Sections_element_dot_assignment : public Sections_element
183 {
184 public:
185 Sections_element_dot_assignment(Expression* val)
186 : val_(val)
187 { }
188
189 // Finalize the symbol.
190 void
191 finalize_symbols(Symbol_table* symtab, const Layout* layout,
192 uint64_t* dot_value)
193 {
194 // We ignore the section of the result because outside of an
195 // output section definition the dot symbol is always considered
196 // to be absolute.
197 Output_section* dummy;
198 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
199 NULL, &dummy);
200 }
201
202 // Update the dot symbol while setting section addresses.
203 void
204 set_section_addresses(Symbol_table* symtab, Layout* layout,
205 uint64_t* dot_value, uint64_t* load_address)
206 {
207 Output_section* dummy;
208 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
209 NULL, &dummy);
210 *load_address = *dot_value;
211 }
212
213 // Print for debugging.
214 void
215 print(FILE* f) const
216 {
217 fprintf(f, " . = ");
218 this->val_->print(f);
219 fprintf(f, "\n");
220 }
221
222 private:
223 Expression* val_;
224 };
225
226 // An assertion in a SECTIONS clause outside of an output section.
227
228 class Sections_element_assertion : public Sections_element
229 {
230 public:
231 Sections_element_assertion(Expression* check, const char* message,
232 size_t messagelen)
233 : assertion_(check, message, messagelen)
234 { }
235
236 // Check the assertion.
237 void
238 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
239 { this->assertion_.check(symtab, layout); }
240
241 // Print for debugging.
242 void
243 print(FILE* f) const
244 {
245 fprintf(f, " ");
246 this->assertion_.print(f);
247 }
248
249 private:
250 Script_assertion assertion_;
251 };
252
253 // An element in an output section in a SECTIONS clause.
254
255 class Output_section_element
256 {
257 public:
258 // A list of input sections.
259 typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
260
261 Output_section_element()
262 { }
263
264 virtual ~Output_section_element()
265 { }
266
267 // Return whether this element requires an output section to exist.
268 virtual bool
269 needs_output_section() const
270 { return false; }
271
272 // Add any symbol being defined to the symbol table.
273 virtual void
274 add_symbols_to_table(Symbol_table*)
275 { }
276
277 // Finalize symbols and check assertions.
278 virtual void
279 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
280 { }
281
282 // Return whether this element matches FILE_NAME and SECTION_NAME.
283 // The only real implementation is in Output_section_element_input.
284 virtual bool
285 match_name(const char*, const char*) const
286 { return false; }
287
288 // Set section addresses. This includes applying assignments if the
289 // the expression is an absolute value.
290 virtual void
291 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
292 uint64_t*, Output_section**, std::string*,
293 Input_section_list*)
294 { }
295
296 // Print the element for debugging purposes.
297 virtual void
298 print(FILE* f) const = 0;
299
300 protected:
301 // Return a fill string that is LENGTH bytes long, filling it with
302 // FILL.
303 std::string
304 get_fill_string(const std::string* fill, section_size_type length) const;
305 };
306
307 std::string
308 Output_section_element::get_fill_string(const std::string* fill,
309 section_size_type length) const
310 {
311 std::string this_fill;
312 this_fill.reserve(length);
313 while (this_fill.length() + fill->length() <= length)
314 this_fill += *fill;
315 if (this_fill.length() < length)
316 this_fill.append(*fill, 0, length - this_fill.length());
317 return this_fill;
318 }
319
320 // A symbol assignment in an output section.
321
322 class Output_section_element_assignment : public Output_section_element
323 {
324 public:
325 Output_section_element_assignment(const char* name, size_t namelen,
326 Expression* val, bool provide,
327 bool hidden)
328 : assignment_(name, namelen, val, provide, hidden)
329 { }
330
331 // Add the symbol to the symbol table.
332 void
333 add_symbols_to_table(Symbol_table* symtab)
334 { this->assignment_.add_to_table(symtab); }
335
336 // Finalize the symbol.
337 void
338 finalize_symbols(Symbol_table* symtab, const Layout* layout,
339 uint64_t* dot_value, Output_section** dot_section)
340 {
341 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
342 *dot_section);
343 }
344
345 // Set the section address. There is no section here, but if the
346 // value is absolute, we set the symbol. This permits us to use
347 // absolute symbols when setting dot.
348 void
349 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
350 uint64_t, uint64_t* dot_value, Output_section**,
351 std::string*, Input_section_list*)
352 {
353 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
354 }
355
356 // Print for debugging.
357 void
358 print(FILE* f) const
359 {
360 fprintf(f, " ");
361 this->assignment_.print(f);
362 }
363
364 private:
365 Symbol_assignment assignment_;
366 };
367
368 // An assignment to the dot symbol in an output section.
369
370 class Output_section_element_dot_assignment : public Output_section_element
371 {
372 public:
373 Output_section_element_dot_assignment(Expression* val)
374 : val_(val)
375 { }
376
377 // Finalize the symbol.
378 void
379 finalize_symbols(Symbol_table* symtab, const Layout* layout,
380 uint64_t* dot_value, Output_section** dot_section)
381 {
382 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
383 *dot_section, dot_section);
384 }
385
386 // Update the dot symbol while setting section addresses.
387 void
388 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
389 uint64_t, uint64_t* dot_value, Output_section**,
390 std::string*, Input_section_list*);
391
392 // Print for debugging.
393 void
394 print(FILE* f) const
395 {
396 fprintf(f, " . = ");
397 this->val_->print(f);
398 fprintf(f, "\n");
399 }
400
401 private:
402 Expression* val_;
403 };
404
405 // Update the dot symbol while setting section addresses.
406
407 void
408 Output_section_element_dot_assignment::set_section_addresses(
409 Symbol_table* symtab,
410 Layout* layout,
411 Output_section* output_section,
412 uint64_t,
413 uint64_t* dot_value,
414 Output_section** dot_section,
415 std::string* fill,
416 Input_section_list*)
417 {
418 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
419 *dot_value, *dot_section,
420 dot_section);
421 if (next_dot < *dot_value)
422 gold_error(_("dot may not move backward"));
423 if (next_dot > *dot_value && output_section != NULL)
424 {
425 section_size_type length = convert_to_section_size_type(next_dot
426 - *dot_value);
427 Output_section_data* posd;
428 if (fill->empty())
429 posd = new Output_data_fixed_space(length, 0);
430 else
431 {
432 std::string this_fill = this->get_fill_string(fill, length);
433 posd = new Output_data_const(this_fill, 0);
434 }
435 output_section->add_output_section_data(posd);
436 }
437 *dot_value = next_dot;
438 }
439
440 // An assertion in an output section.
441
442 class Output_section_element_assertion : public Output_section_element
443 {
444 public:
445 Output_section_element_assertion(Expression* check, const char* message,
446 size_t messagelen)
447 : assertion_(check, message, messagelen)
448 { }
449
450 void
451 print(FILE* f) const
452 {
453 fprintf(f, " ");
454 this->assertion_.print(f);
455 }
456
457 private:
458 Script_assertion assertion_;
459 };
460
461 // We use a special instance of Output_section_data to handle BYTE,
462 // SHORT, etc. This permits forward references to symbols in the
463 // expressions.
464
465 class Output_data_expression : public Output_section_data
466 {
467 public:
468 Output_data_expression(int size, bool is_signed, Expression* val,
469 const Symbol_table* symtab, const Layout* layout,
470 uint64_t dot_value, Output_section* dot_section)
471 : Output_section_data(size, 0),
472 is_signed_(is_signed), val_(val), symtab_(symtab),
473 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
474 { }
475
476 protected:
477 // Write the data to the output file.
478 void
479 do_write(Output_file*);
480
481 // Write the data to a buffer.
482 void
483 do_write_to_buffer(unsigned char*);
484
485 private:
486 template<bool big_endian>
487 void
488 endian_write_to_buffer(uint64_t, unsigned char*);
489
490 bool is_signed_;
491 Expression* val_;
492 const Symbol_table* symtab_;
493 const Layout* layout_;
494 uint64_t dot_value_;
495 Output_section* dot_section_;
496 };
497
498 // Write the data element to the output file.
499
500 void
501 Output_data_expression::do_write(Output_file* of)
502 {
503 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
504 this->write_to_buffer(view);
505 of->write_output_view(this->offset(), this->data_size(), view);
506 }
507
508 // Write the data element to a buffer.
509
510 void
511 Output_data_expression::do_write_to_buffer(unsigned char* buf)
512 {
513 Output_section* dummy;
514 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
515 true, this->dot_value_,
516 this->dot_section_, &dummy);
517
518 if (parameters->target().is_big_endian())
519 this->endian_write_to_buffer<true>(val, buf);
520 else
521 this->endian_write_to_buffer<false>(val, buf);
522 }
523
524 template<bool big_endian>
525 void
526 Output_data_expression::endian_write_to_buffer(uint64_t val,
527 unsigned char* buf)
528 {
529 switch (this->data_size())
530 {
531 case 1:
532 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
533 break;
534 case 2:
535 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
536 break;
537 case 4:
538 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
539 break;
540 case 8:
541 if (parameters->target().get_size() == 32)
542 {
543 val &= 0xffffffff;
544 if (this->is_signed_ && (val & 0x80000000) != 0)
545 val |= 0xffffffff00000000LL;
546 }
547 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
548 break;
549 default:
550 gold_unreachable();
551 }
552 }
553
554 // A data item in an output section.
555
556 class Output_section_element_data : public Output_section_element
557 {
558 public:
559 Output_section_element_data(int size, bool is_signed, Expression* val)
560 : size_(size), is_signed_(is_signed), val_(val)
561 { }
562
563 // If there is a data item, then we must create an output section.
564 bool
565 needs_output_section() const
566 { return true; }
567
568 // Finalize symbols--we just need to update dot.
569 void
570 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
571 Output_section**)
572 { *dot_value += this->size_; }
573
574 // Store the value in the section.
575 void
576 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
577 uint64_t* dot_value, Output_section**, std::string*,
578 Input_section_list*);
579
580 // Print for debugging.
581 void
582 print(FILE*) const;
583
584 private:
585 // The size in bytes.
586 int size_;
587 // Whether the value is signed.
588 bool is_signed_;
589 // The value.
590 Expression* val_;
591 };
592
593 // Store the value in the section.
594
595 void
596 Output_section_element_data::set_section_addresses(
597 Symbol_table* symtab,
598 Layout* layout,
599 Output_section* os,
600 uint64_t,
601 uint64_t* dot_value,
602 Output_section** dot_section,
603 std::string*,
604 Input_section_list*)
605 {
606 gold_assert(os != NULL);
607 os->add_output_section_data(new Output_data_expression(this->size_,
608 this->is_signed_,
609 this->val_,
610 symtab,
611 layout,
612 *dot_value,
613 *dot_section));
614 *dot_value += this->size_;
615 }
616
617 // Print for debugging.
618
619 void
620 Output_section_element_data::print(FILE* f) const
621 {
622 const char* s;
623 switch (this->size_)
624 {
625 case 1:
626 s = "BYTE";
627 break;
628 case 2:
629 s = "SHORT";
630 break;
631 case 4:
632 s = "LONG";
633 break;
634 case 8:
635 if (this->is_signed_)
636 s = "SQUAD";
637 else
638 s = "QUAD";
639 break;
640 default:
641 gold_unreachable();
642 }
643 fprintf(f, " %s(", s);
644 this->val_->print(f);
645 fprintf(f, ")\n");
646 }
647
648 // A fill value setting in an output section.
649
650 class Output_section_element_fill : public Output_section_element
651 {
652 public:
653 Output_section_element_fill(Expression* val)
654 : val_(val)
655 { }
656
657 // Update the fill value while setting section addresses.
658 void
659 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
660 uint64_t, uint64_t* dot_value,
661 Output_section** dot_section,
662 std::string* fill, Input_section_list*)
663 {
664 Output_section* fill_section;
665 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
666 *dot_value, *dot_section,
667 &fill_section);
668 if (fill_section != NULL)
669 gold_warning(_("fill value is not absolute"));
670 // FIXME: The GNU linker supports fill values of arbitrary length.
671 unsigned char fill_buff[4];
672 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
673 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
674 }
675
676 // Print for debugging.
677 void
678 print(FILE* f) const
679 {
680 fprintf(f, " FILL(");
681 this->val_->print(f);
682 fprintf(f, ")\n");
683 }
684
685 private:
686 // The new fill value.
687 Expression* val_;
688 };
689
690 // Return whether STRING contains a wildcard character. This is used
691 // to speed up matching.
692
693 static inline bool
694 is_wildcard_string(const std::string& s)
695 {
696 return strpbrk(s.c_str(), "?*[") != NULL;
697 }
698
699 // An input section specification in an output section
700
701 class Output_section_element_input : public Output_section_element
702 {
703 public:
704 Output_section_element_input(const Input_section_spec* spec, bool keep);
705
706 // Finalize symbols--just update the value of the dot symbol.
707 void
708 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
709 Output_section** dot_section)
710 {
711 *dot_value = this->final_dot_value_;
712 *dot_section = this->final_dot_section_;
713 }
714
715 // See whether we match FILE_NAME and SECTION_NAME as an input
716 // section.
717 bool
718 match_name(const char* file_name, const char* section_name) const;
719
720 // Set the section address.
721 void
722 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
723 uint64_t subalign, uint64_t* dot_value,
724 Output_section**, std::string* fill,
725 Input_section_list*);
726
727 // Print for debugging.
728 void
729 print(FILE* f) const;
730
731 private:
732 // An input section pattern.
733 struct Input_section_pattern
734 {
735 std::string pattern;
736 bool pattern_is_wildcard;
737 Sort_wildcard sort;
738
739 Input_section_pattern(const char* patterna, size_t patternlena,
740 Sort_wildcard sorta)
741 : pattern(patterna, patternlena),
742 pattern_is_wildcard(is_wildcard_string(this->pattern)),
743 sort(sorta)
744 { }
745 };
746
747 typedef std::vector<Input_section_pattern> Input_section_patterns;
748
749 // Filename_exclusions is a pair of filename pattern and a bool
750 // indicating whether the filename is a wildcard.
751 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
752
753 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
754 // indicates whether this is a wildcard pattern.
755 static inline bool
756 match(const char* string, const char* pattern, bool is_wildcard_pattern)
757 {
758 return (is_wildcard_pattern
759 ? fnmatch(pattern, string, 0) == 0
760 : strcmp(string, pattern) == 0);
761 }
762
763 // See if we match a file name.
764 bool
765 match_file_name(const char* file_name) const;
766
767 // The file name pattern. If this is the empty string, we match all
768 // files.
769 std::string filename_pattern_;
770 // Whether the file name pattern is a wildcard.
771 bool filename_is_wildcard_;
772 // How the file names should be sorted. This may only be
773 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
774 Sort_wildcard filename_sort_;
775 // The list of file names to exclude.
776 Filename_exclusions filename_exclusions_;
777 // The list of input section patterns.
778 Input_section_patterns input_section_patterns_;
779 // Whether to keep this section when garbage collecting.
780 bool keep_;
781 // The value of dot after including all matching sections.
782 uint64_t final_dot_value_;
783 // The section where dot is defined after including all matching
784 // sections.
785 Output_section* final_dot_section_;
786 };
787
788 // Construct Output_section_element_input. The parser records strings
789 // as pointers into a copy of the script file, which will go away when
790 // parsing is complete. We make sure they are in std::string objects.
791
792 Output_section_element_input::Output_section_element_input(
793 const Input_section_spec* spec,
794 bool keep)
795 : filename_pattern_(),
796 filename_is_wildcard_(false),
797 filename_sort_(spec->file.sort),
798 filename_exclusions_(),
799 input_section_patterns_(),
800 keep_(keep),
801 final_dot_value_(0),
802 final_dot_section_(NULL)
803 {
804 // The filename pattern "*" is common, and matches all files. Turn
805 // it into the empty string.
806 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
807 this->filename_pattern_.assign(spec->file.name.value,
808 spec->file.name.length);
809 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
810
811 if (spec->input_sections.exclude != NULL)
812 {
813 for (String_list::const_iterator p =
814 spec->input_sections.exclude->begin();
815 p != spec->input_sections.exclude->end();
816 ++p)
817 {
818 bool is_wildcard = is_wildcard_string(*p);
819 this->filename_exclusions_.push_back(std::make_pair(*p,
820 is_wildcard));
821 }
822 }
823
824 if (spec->input_sections.sections != NULL)
825 {
826 Input_section_patterns& isp(this->input_section_patterns_);
827 for (String_sort_list::const_iterator p =
828 spec->input_sections.sections->begin();
829 p != spec->input_sections.sections->end();
830 ++p)
831 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
832 p->sort));
833 }
834 }
835
836 // See whether we match FILE_NAME.
837
838 bool
839 Output_section_element_input::match_file_name(const char* file_name) const
840 {
841 if (!this->filename_pattern_.empty())
842 {
843 // If we were called with no filename, we refuse to match a
844 // pattern which requires a file name.
845 if (file_name == NULL)
846 return false;
847
848 if (!match(file_name, this->filename_pattern_.c_str(),
849 this->filename_is_wildcard_))
850 return false;
851 }
852
853 if (file_name != NULL)
854 {
855 // Now we have to see whether FILE_NAME matches one of the
856 // exclusion patterns, if any.
857 for (Filename_exclusions::const_iterator p =
858 this->filename_exclusions_.begin();
859 p != this->filename_exclusions_.end();
860 ++p)
861 {
862 if (match(file_name, p->first.c_str(), p->second))
863 return false;
864 }
865 }
866
867 return true;
868 }
869
870 // See whether we match FILE_NAME and SECTION_NAME.
871
872 bool
873 Output_section_element_input::match_name(const char* file_name,
874 const char* section_name) const
875 {
876 if (!this->match_file_name(file_name))
877 return false;
878
879 // If there are no section name patterns, then we match.
880 if (this->input_section_patterns_.empty())
881 return true;
882
883 // See whether we match the section name patterns.
884 for (Input_section_patterns::const_iterator p =
885 this->input_section_patterns_.begin();
886 p != this->input_section_patterns_.end();
887 ++p)
888 {
889 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
890 return true;
891 }
892
893 // We didn't match any section names, so we didn't match.
894 return false;
895 }
896
897 // Information we use to sort the input sections.
898
899 struct Input_section_info
900 {
901 Relobj* relobj;
902 unsigned int shndx;
903 std::string section_name;
904 uint64_t size;
905 uint64_t addralign;
906 };
907
908 // A class to sort the input sections.
909
910 class Input_section_sorter
911 {
912 public:
913 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
914 : filename_sort_(filename_sort), section_sort_(section_sort)
915 { }
916
917 bool
918 operator()(const Input_section_info&, const Input_section_info&) const;
919
920 private:
921 Sort_wildcard filename_sort_;
922 Sort_wildcard section_sort_;
923 };
924
925 bool
926 Input_section_sorter::operator()(const Input_section_info& isi1,
927 const Input_section_info& isi2) const
928 {
929 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
930 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
931 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
932 && isi1.addralign == isi2.addralign))
933 {
934 if (isi1.section_name != isi2.section_name)
935 return isi1.section_name < isi2.section_name;
936 }
937 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
938 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
939 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
940 {
941 if (isi1.addralign != isi2.addralign)
942 return isi1.addralign < isi2.addralign;
943 }
944 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
945 {
946 if (isi1.relobj->name() != isi2.relobj->name())
947 return isi1.relobj->name() < isi2.relobj->name();
948 }
949
950 // Otherwise we leave them in the same order.
951 return false;
952 }
953
954 // Set the section address. Look in INPUT_SECTIONS for sections which
955 // match this spec, sort them as specified, and add them to the output
956 // section.
957
958 void
959 Output_section_element_input::set_section_addresses(
960 Symbol_table*,
961 Layout*,
962 Output_section* output_section,
963 uint64_t subalign,
964 uint64_t* dot_value,
965 Output_section** dot_section,
966 std::string* fill,
967 Input_section_list* input_sections)
968 {
969 // We build a list of sections which match each
970 // Input_section_pattern.
971
972 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
973 size_t input_pattern_count = this->input_section_patterns_.size();
974 if (input_pattern_count == 0)
975 input_pattern_count = 1;
976 Matching_sections matching_sections(input_pattern_count);
977
978 // Look through the list of sections for this output section. Add
979 // each one which matches to one of the elements of
980 // MATCHING_SECTIONS.
981
982 Input_section_list::iterator p = input_sections->begin();
983 while (p != input_sections->end())
984 {
985 // Calling section_name and section_addralign is not very
986 // efficient.
987 Input_section_info isi;
988 isi.relobj = p->first;
989 isi.shndx = p->second;
990
991 // Lock the object so that we can get information about the
992 // section. This is OK since we know we are single-threaded
993 // here.
994 {
995 const Task* task = reinterpret_cast<const Task*>(-1);
996 Task_lock_obj<Object> tl(task, p->first);
997
998 isi.section_name = p->first->section_name(p->second);
999 isi.size = p->first->section_size(p->second);
1000 isi.addralign = p->first->section_addralign(p->second);
1001 }
1002
1003 if (!this->match_file_name(isi.relobj->name().c_str()))
1004 ++p;
1005 else if (this->input_section_patterns_.empty())
1006 {
1007 matching_sections[0].push_back(isi);
1008 p = input_sections->erase(p);
1009 }
1010 else
1011 {
1012 size_t i;
1013 for (i = 0; i < input_pattern_count; ++i)
1014 {
1015 const Input_section_pattern&
1016 isp(this->input_section_patterns_[i]);
1017 if (match(isi.section_name.c_str(), isp.pattern.c_str(),
1018 isp.pattern_is_wildcard))
1019 break;
1020 }
1021
1022 if (i >= this->input_section_patterns_.size())
1023 ++p;
1024 else
1025 {
1026 matching_sections[i].push_back(isi);
1027 p = input_sections->erase(p);
1028 }
1029 }
1030 }
1031
1032 // Look through MATCHING_SECTIONS. Sort each one as specified,
1033 // using a stable sort so that we get the default order when
1034 // sections are otherwise equal. Add each input section to the
1035 // output section.
1036
1037 for (size_t i = 0; i < input_pattern_count; ++i)
1038 {
1039 if (matching_sections[i].empty())
1040 continue;
1041
1042 gold_assert(output_section != NULL);
1043
1044 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1045 if (isp.sort != SORT_WILDCARD_NONE
1046 || this->filename_sort_ != SORT_WILDCARD_NONE)
1047 std::stable_sort(matching_sections[i].begin(),
1048 matching_sections[i].end(),
1049 Input_section_sorter(this->filename_sort_,
1050 isp.sort));
1051
1052 for (std::vector<Input_section_info>::const_iterator p =
1053 matching_sections[i].begin();
1054 p != matching_sections[i].end();
1055 ++p)
1056 {
1057 uint64_t this_subalign = p->addralign;
1058 if (this_subalign < subalign)
1059 this_subalign = subalign;
1060
1061 uint64_t address = align_address(*dot_value, this_subalign);
1062
1063 if (address > *dot_value && !fill->empty())
1064 {
1065 section_size_type length =
1066 convert_to_section_size_type(address - *dot_value);
1067 std::string this_fill = this->get_fill_string(fill, length);
1068 Output_section_data* posd = new Output_data_const(this_fill, 0);
1069 output_section->add_output_section_data(posd);
1070 }
1071
1072 output_section->add_input_section_for_script(p->relobj,
1073 p->shndx,
1074 p->size,
1075 this_subalign);
1076
1077 *dot_value = address + p->size;
1078 }
1079 }
1080
1081 this->final_dot_value_ = *dot_value;
1082 this->final_dot_section_ = *dot_section;
1083 }
1084
1085 // Print for debugging.
1086
1087 void
1088 Output_section_element_input::print(FILE* f) const
1089 {
1090 fprintf(f, " ");
1091
1092 if (this->keep_)
1093 fprintf(f, "KEEP(");
1094
1095 if (!this->filename_pattern_.empty())
1096 {
1097 bool need_close_paren = false;
1098 switch (this->filename_sort_)
1099 {
1100 case SORT_WILDCARD_NONE:
1101 break;
1102 case SORT_WILDCARD_BY_NAME:
1103 fprintf(f, "SORT_BY_NAME(");
1104 need_close_paren = true;
1105 break;
1106 default:
1107 gold_unreachable();
1108 }
1109
1110 fprintf(f, "%s", this->filename_pattern_.c_str());
1111
1112 if (need_close_paren)
1113 fprintf(f, ")");
1114 }
1115
1116 if (!this->input_section_patterns_.empty()
1117 || !this->filename_exclusions_.empty())
1118 {
1119 fprintf(f, "(");
1120
1121 bool need_space = false;
1122 if (!this->filename_exclusions_.empty())
1123 {
1124 fprintf(f, "EXCLUDE_FILE(");
1125 bool need_comma = false;
1126 for (Filename_exclusions::const_iterator p =
1127 this->filename_exclusions_.begin();
1128 p != this->filename_exclusions_.end();
1129 ++p)
1130 {
1131 if (need_comma)
1132 fprintf(f, ", ");
1133 fprintf(f, "%s", p->first.c_str());
1134 need_comma = true;
1135 }
1136 fprintf(f, ")");
1137 need_space = true;
1138 }
1139
1140 for (Input_section_patterns::const_iterator p =
1141 this->input_section_patterns_.begin();
1142 p != this->input_section_patterns_.end();
1143 ++p)
1144 {
1145 if (need_space)
1146 fprintf(f, " ");
1147
1148 int close_parens = 0;
1149 switch (p->sort)
1150 {
1151 case SORT_WILDCARD_NONE:
1152 break;
1153 case SORT_WILDCARD_BY_NAME:
1154 fprintf(f, "SORT_BY_NAME(");
1155 close_parens = 1;
1156 break;
1157 case SORT_WILDCARD_BY_ALIGNMENT:
1158 fprintf(f, "SORT_BY_ALIGNMENT(");
1159 close_parens = 1;
1160 break;
1161 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1162 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1163 close_parens = 2;
1164 break;
1165 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1166 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1167 close_parens = 2;
1168 break;
1169 default:
1170 gold_unreachable();
1171 }
1172
1173 fprintf(f, "%s", p->pattern.c_str());
1174
1175 for (int i = 0; i < close_parens; ++i)
1176 fprintf(f, ")");
1177
1178 need_space = true;
1179 }
1180
1181 fprintf(f, ")");
1182 }
1183
1184 if (this->keep_)
1185 fprintf(f, ")");
1186
1187 fprintf(f, "\n");
1188 }
1189
1190 // An output section.
1191
1192 class Output_section_definition : public Sections_element
1193 {
1194 public:
1195 typedef Output_section_element::Input_section_list Input_section_list;
1196
1197 Output_section_definition(const char* name, size_t namelen,
1198 const Parser_output_section_header* header);
1199
1200 // Finish the output section with the information in the trailer.
1201 void
1202 finish(const Parser_output_section_trailer* trailer);
1203
1204 // Add a symbol to be defined.
1205 void
1206 add_symbol_assignment(const char* name, size_t length, Expression* value,
1207 bool provide, bool hidden);
1208
1209 // Add an assignment to the special dot symbol.
1210 void
1211 add_dot_assignment(Expression* value);
1212
1213 // Add an assertion.
1214 void
1215 add_assertion(Expression* check, const char* message, size_t messagelen);
1216
1217 // Add a data item to the current output section.
1218 void
1219 add_data(int size, bool is_signed, Expression* val);
1220
1221 // Add a setting for the fill value.
1222 void
1223 add_fill(Expression* val);
1224
1225 // Add an input section specification.
1226 void
1227 add_input_section(const Input_section_spec* spec, bool keep);
1228
1229 // Create any required output sections.
1230 void
1231 create_sections(Layout*);
1232
1233 // Add any symbols being defined to the symbol table.
1234 void
1235 add_symbols_to_table(Symbol_table* symtab);
1236
1237 // Finalize symbols and check assertions.
1238 void
1239 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1240
1241 // Return the output section name to use for an input file name and
1242 // section name.
1243 const char*
1244 output_section_name(const char* file_name, const char* section_name,
1245 Output_section***);
1246
1247 // Return whether to place an orphan section after this one.
1248 bool
1249 place_orphan_here(const Output_section *os, bool* exact) const;
1250
1251 // Set the section address.
1252 void
1253 set_section_addresses(Symbol_table* symtab, Layout* layout,
1254 uint64_t* dot_value, uint64_t* load_address);
1255
1256 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1257 // this section is constrained, and the input sections do not match,
1258 // return the constraint, and set *POSD.
1259 Section_constraint
1260 check_constraint(Output_section_definition** posd);
1261
1262 // See if this is the alternate output section for a constrained
1263 // output section. If it is, transfer the Output_section and return
1264 // true. Otherwise return false.
1265 bool
1266 alternate_constraint(Output_section_definition*, Section_constraint);
1267
1268 // Get the list of segments to use for an allocated section when
1269 // using a PHDRS clause.
1270 Output_section*
1271 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1272
1273 // Look for an output section by name and return the address, the
1274 // load address, the alignment, and the size. This is used when an
1275 // expression refers to an output section which was not actually
1276 // created. This returns true if the section was found, false
1277 // otherwise.
1278 bool
1279 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1280 uint64_t*) const;
1281
1282 // Print the contents to the FILE. This is for debugging.
1283 void
1284 print(FILE*) const;
1285
1286 private:
1287 typedef std::vector<Output_section_element*> Output_section_elements;
1288
1289 // The output section name.
1290 std::string name_;
1291 // The address. This may be NULL.
1292 Expression* address_;
1293 // The load address. This may be NULL.
1294 Expression* load_address_;
1295 // The alignment. This may be NULL.
1296 Expression* align_;
1297 // The input section alignment. This may be NULL.
1298 Expression* subalign_;
1299 // The constraint, if any.
1300 Section_constraint constraint_;
1301 // The fill value. This may be NULL.
1302 Expression* fill_;
1303 // The list of segments this section should go into. This may be
1304 // NULL.
1305 String_list* phdrs_;
1306 // The list of elements defining the section.
1307 Output_section_elements elements_;
1308 // The Output_section created for this definition. This will be
1309 // NULL if none was created.
1310 Output_section* output_section_;
1311 // The address after it has been evaluated.
1312 uint64_t evaluated_address_;
1313 // The load address after it has been evaluated.
1314 uint64_t evaluated_load_address_;
1315 // The alignment after it has been evaluated.
1316 uint64_t evaluated_addralign_;
1317 };
1318
1319 // Constructor.
1320
1321 Output_section_definition::Output_section_definition(
1322 const char* name,
1323 size_t namelen,
1324 const Parser_output_section_header* header)
1325 : name_(name, namelen),
1326 address_(header->address),
1327 load_address_(header->load_address),
1328 align_(header->align),
1329 subalign_(header->subalign),
1330 constraint_(header->constraint),
1331 fill_(NULL),
1332 phdrs_(NULL),
1333 elements_(),
1334 output_section_(NULL)
1335 {
1336 }
1337
1338 // Finish an output section.
1339
1340 void
1341 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1342 {
1343 this->fill_ = trailer->fill;
1344 this->phdrs_ = trailer->phdrs;
1345 }
1346
1347 // Add a symbol to be defined.
1348
1349 void
1350 Output_section_definition::add_symbol_assignment(const char* name,
1351 size_t length,
1352 Expression* value,
1353 bool provide,
1354 bool hidden)
1355 {
1356 Output_section_element* p = new Output_section_element_assignment(name,
1357 length,
1358 value,
1359 provide,
1360 hidden);
1361 this->elements_.push_back(p);
1362 }
1363
1364 // Add an assignment to the special dot symbol.
1365
1366 void
1367 Output_section_definition::add_dot_assignment(Expression* value)
1368 {
1369 Output_section_element* p = new Output_section_element_dot_assignment(value);
1370 this->elements_.push_back(p);
1371 }
1372
1373 // Add an assertion.
1374
1375 void
1376 Output_section_definition::add_assertion(Expression* check,
1377 const char* message,
1378 size_t messagelen)
1379 {
1380 Output_section_element* p = new Output_section_element_assertion(check,
1381 message,
1382 messagelen);
1383 this->elements_.push_back(p);
1384 }
1385
1386 // Add a data item to the current output section.
1387
1388 void
1389 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1390 {
1391 Output_section_element* p = new Output_section_element_data(size, is_signed,
1392 val);
1393 this->elements_.push_back(p);
1394 }
1395
1396 // Add a setting for the fill value.
1397
1398 void
1399 Output_section_definition::add_fill(Expression* val)
1400 {
1401 Output_section_element* p = new Output_section_element_fill(val);
1402 this->elements_.push_back(p);
1403 }
1404
1405 // Add an input section specification.
1406
1407 void
1408 Output_section_definition::add_input_section(const Input_section_spec* spec,
1409 bool keep)
1410 {
1411 Output_section_element* p = new Output_section_element_input(spec, keep);
1412 this->elements_.push_back(p);
1413 }
1414
1415 // Create any required output sections. We need an output section if
1416 // there is a data statement here.
1417
1418 void
1419 Output_section_definition::create_sections(Layout* layout)
1420 {
1421 if (this->output_section_ != NULL)
1422 return;
1423 for (Output_section_elements::const_iterator p = this->elements_.begin();
1424 p != this->elements_.end();
1425 ++p)
1426 {
1427 if ((*p)->needs_output_section())
1428 {
1429 const char* name = this->name_.c_str();
1430 this->output_section_ = layout->make_output_section_for_script(name);
1431 return;
1432 }
1433 }
1434 }
1435
1436 // Add any symbols being defined to the symbol table.
1437
1438 void
1439 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1440 {
1441 for (Output_section_elements::iterator p = this->elements_.begin();
1442 p != this->elements_.end();
1443 ++p)
1444 (*p)->add_symbols_to_table(symtab);
1445 }
1446
1447 // Finalize symbols and check assertions.
1448
1449 void
1450 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1451 const Layout* layout,
1452 uint64_t* dot_value)
1453 {
1454 if (this->output_section_ != NULL)
1455 *dot_value = this->output_section_->address();
1456 else
1457 {
1458 uint64_t address = *dot_value;
1459 if (this->address_ != NULL)
1460 {
1461 Output_section* dummy;
1462 address = this->address_->eval_with_dot(symtab, layout, true,
1463 *dot_value, NULL,
1464 &dummy);
1465 }
1466 if (this->align_ != NULL)
1467 {
1468 Output_section* dummy;
1469 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1470 *dot_value,
1471 NULL,
1472 &dummy);
1473 address = align_address(address, align);
1474 }
1475 *dot_value = address;
1476 }
1477
1478 Output_section* dot_section = this->output_section_;
1479 for (Output_section_elements::iterator p = this->elements_.begin();
1480 p != this->elements_.end();
1481 ++p)
1482 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1483 }
1484
1485 // Return the output section name to use for an input section name.
1486
1487 const char*
1488 Output_section_definition::output_section_name(const char* file_name,
1489 const char* section_name,
1490 Output_section*** slot)
1491 {
1492 // Ask each element whether it matches NAME.
1493 for (Output_section_elements::const_iterator p = this->elements_.begin();
1494 p != this->elements_.end();
1495 ++p)
1496 {
1497 if ((*p)->match_name(file_name, section_name))
1498 {
1499 // We found a match for NAME, which means that it should go
1500 // into this output section.
1501 *slot = &this->output_section_;
1502 return this->name_.c_str();
1503 }
1504 }
1505
1506 // We don't know about this section name.
1507 return NULL;
1508 }
1509
1510 // Return whether to place an orphan output section after this
1511 // section.
1512
1513 bool
1514 Output_section_definition::place_orphan_here(const Output_section *os,
1515 bool* exact) const
1516 {
1517 // Check for the simple case first.
1518 if (this->output_section_ != NULL
1519 && this->output_section_->type() == os->type()
1520 && this->output_section_->flags() == os->flags())
1521 {
1522 *exact = true;
1523 return true;
1524 }
1525
1526 // Otherwise use some heuristics.
1527
1528 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1529 return false;
1530
1531 if (os->type() == elfcpp::SHT_NOBITS)
1532 {
1533 if (this->name_ == ".bss")
1534 {
1535 *exact = true;
1536 return true;
1537 }
1538 if (this->output_section_ != NULL
1539 && this->output_section_->type() == elfcpp::SHT_NOBITS)
1540 return true;
1541 }
1542 else if (os->type() == elfcpp::SHT_NOTE)
1543 {
1544 if (this->output_section_ != NULL
1545 && this->output_section_->type() == elfcpp::SHT_NOTE)
1546 {
1547 *exact = true;
1548 return true;
1549 }
1550 if (this->name_.compare(0, 5, ".note") == 0)
1551 {
1552 *exact = true;
1553 return true;
1554 }
1555 if (this->name_ == ".interp")
1556 return true;
1557 if (this->output_section_ != NULL
1558 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1559 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1560 return true;
1561 }
1562 else if (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
1563 {
1564 if (this->name_.compare(0, 4, ".rel") == 0)
1565 {
1566 *exact = true;
1567 return true;
1568 }
1569 if (this->output_section_ != NULL
1570 && (this->output_section_->type() == elfcpp::SHT_REL
1571 || this->output_section_->type() == elfcpp::SHT_RELA))
1572 {
1573 *exact = true;
1574 return true;
1575 }
1576 if (this->output_section_ != NULL
1577 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1578 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1579 return true;
1580 }
1581 else if (os->type() == elfcpp::SHT_PROGBITS
1582 && (os->flags() & elfcpp::SHF_WRITE) != 0)
1583 {
1584 if (this->name_ == ".data")
1585 {
1586 *exact = true;
1587 return true;
1588 }
1589 if (this->output_section_ != NULL
1590 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1591 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1592 return true;
1593 }
1594 else if (os->type() == elfcpp::SHT_PROGBITS
1595 && (os->flags() & elfcpp::SHF_EXECINSTR) != 0)
1596 {
1597 if (this->name_ == ".text")
1598 {
1599 *exact = true;
1600 return true;
1601 }
1602 if (this->output_section_ != NULL
1603 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1604 && (this->output_section_->flags() & elfcpp::SHF_EXECINSTR) != 0)
1605 return true;
1606 }
1607 else if (os->type() == elfcpp::SHT_PROGBITS
1608 || (os->type() != elfcpp::SHT_PROGBITS
1609 && (os->flags() & elfcpp::SHF_WRITE) == 0))
1610 {
1611 if (this->name_ == ".rodata")
1612 {
1613 *exact = true;
1614 return true;
1615 }
1616 if (this->output_section_ != NULL
1617 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1618 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1619 return true;
1620 }
1621
1622 return false;
1623 }
1624
1625 // Set the section address. Note that the OUTPUT_SECTION_ field will
1626 // be NULL if no input sections were mapped to this output section.
1627 // We still have to adjust dot and process symbol assignments.
1628
1629 void
1630 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1631 Layout* layout,
1632 uint64_t* dot_value,
1633 uint64_t* load_address)
1634 {
1635 uint64_t address;
1636 if (this->address_ == NULL)
1637 address = *dot_value;
1638 else
1639 {
1640 Output_section* dummy;
1641 address = this->address_->eval_with_dot(symtab, layout, true,
1642 *dot_value, NULL, &dummy);
1643 }
1644
1645 uint64_t align;
1646 if (this->align_ == NULL)
1647 {
1648 if (this->output_section_ == NULL)
1649 align = 0;
1650 else
1651 align = this->output_section_->addralign();
1652 }
1653 else
1654 {
1655 Output_section* align_section;
1656 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1657 NULL, &align_section);
1658 if (align_section != NULL)
1659 gold_warning(_("alignment of section %s is not absolute"),
1660 this->name_.c_str());
1661 if (this->output_section_ != NULL)
1662 this->output_section_->set_addralign(align);
1663 }
1664
1665 address = align_address(address, align);
1666
1667 uint64_t start_address = address;
1668
1669 *dot_value = address;
1670
1671 // The address of non-SHF_ALLOC sections is forced to zero,
1672 // regardless of what the linker script wants.
1673 if (this->output_section_ != NULL
1674 && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1675 this->output_section_->set_address(address);
1676
1677 this->evaluated_address_ = address;
1678 this->evaluated_addralign_ = align;
1679
1680 if (this->load_address_ == NULL)
1681 this->evaluated_load_address_ = address;
1682 else
1683 {
1684 Output_section* dummy;
1685 uint64_t load_address =
1686 this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1687 this->output_section_, &dummy);
1688 if (this->output_section_ != NULL)
1689 this->output_section_->set_load_address(load_address);
1690 this->evaluated_load_address_ = load_address;
1691 }
1692
1693 uint64_t subalign;
1694 if (this->subalign_ == NULL)
1695 subalign = 0;
1696 else
1697 {
1698 Output_section* subalign_section;
1699 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1700 *dot_value, NULL,
1701 &subalign_section);
1702 if (subalign_section != NULL)
1703 gold_warning(_("subalign of section %s is not absolute"),
1704 this->name_.c_str());
1705 }
1706
1707 std::string fill;
1708 if (this->fill_ != NULL)
1709 {
1710 // FIXME: The GNU linker supports fill values of arbitrary
1711 // length.
1712 Output_section* fill_section;
1713 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1714 *dot_value,
1715 NULL,
1716 &fill_section);
1717 if (fill_section != NULL)
1718 gold_warning(_("fill of section %s is not absolute"),
1719 this->name_.c_str());
1720 unsigned char fill_buff[4];
1721 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1722 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1723 }
1724
1725 Input_section_list input_sections;
1726 if (this->output_section_ != NULL)
1727 {
1728 // Get the list of input sections attached to this output
1729 // section. This will leave the output section with only
1730 // Output_section_data entries.
1731 address += this->output_section_->get_input_sections(address,
1732 fill,
1733 &input_sections);
1734 *dot_value = address;
1735 }
1736
1737 Output_section* dot_section = this->output_section_;
1738 for (Output_section_elements::iterator p = this->elements_.begin();
1739 p != this->elements_.end();
1740 ++p)
1741 (*p)->set_section_addresses(symtab, layout, this->output_section_,
1742 subalign, dot_value, &dot_section, &fill,
1743 &input_sections);
1744
1745 gold_assert(input_sections.empty());
1746
1747 if (this->load_address_ == NULL || this->output_section_ == NULL)
1748 *load_address = *dot_value;
1749 else
1750 *load_address = (this->output_section_->load_address()
1751 + (*dot_value - start_address));
1752 }
1753
1754 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1755 // this section is constrained, and the input sections do not match,
1756 // return the constraint, and set *POSD.
1757
1758 Section_constraint
1759 Output_section_definition::check_constraint(Output_section_definition** posd)
1760 {
1761 switch (this->constraint_)
1762 {
1763 case CONSTRAINT_NONE:
1764 return CONSTRAINT_NONE;
1765
1766 case CONSTRAINT_ONLY_IF_RO:
1767 if (this->output_section_ != NULL
1768 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1769 {
1770 *posd = this;
1771 return CONSTRAINT_ONLY_IF_RO;
1772 }
1773 return CONSTRAINT_NONE;
1774
1775 case CONSTRAINT_ONLY_IF_RW:
1776 if (this->output_section_ != NULL
1777 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1778 {
1779 *posd = this;
1780 return CONSTRAINT_ONLY_IF_RW;
1781 }
1782 return CONSTRAINT_NONE;
1783
1784 case CONSTRAINT_SPECIAL:
1785 if (this->output_section_ != NULL)
1786 gold_error(_("SPECIAL constraints are not implemented"));
1787 return CONSTRAINT_NONE;
1788
1789 default:
1790 gold_unreachable();
1791 }
1792 }
1793
1794 // See if this is the alternate output section for a constrained
1795 // output section. If it is, transfer the Output_section and return
1796 // true. Otherwise return false.
1797
1798 bool
1799 Output_section_definition::alternate_constraint(
1800 Output_section_definition* posd,
1801 Section_constraint constraint)
1802 {
1803 if (this->name_ != posd->name_)
1804 return false;
1805
1806 switch (constraint)
1807 {
1808 case CONSTRAINT_ONLY_IF_RO:
1809 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
1810 return false;
1811 break;
1812
1813 case CONSTRAINT_ONLY_IF_RW:
1814 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
1815 return false;
1816 break;
1817
1818 default:
1819 gold_unreachable();
1820 }
1821
1822 // We have found the alternate constraint. We just need to move
1823 // over the Output_section. When constraints are used properly,
1824 // THIS should not have an output_section pointer, as all the input
1825 // sections should have matched the other definition.
1826
1827 if (this->output_section_ != NULL)
1828 gold_error(_("mismatched definition for constrained sections"));
1829
1830 this->output_section_ = posd->output_section_;
1831 posd->output_section_ = NULL;
1832
1833 return true;
1834 }
1835
1836 // Get the list of segments to use for an allocated section when using
1837 // a PHDRS clause.
1838
1839 Output_section*
1840 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
1841 bool* orphan)
1842 {
1843 if (this->output_section_ == NULL)
1844 return NULL;
1845 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
1846 return NULL;
1847 *orphan = false;
1848 if (this->phdrs_ != NULL)
1849 *phdrs_list = this->phdrs_;
1850 return this->output_section_;
1851 }
1852
1853 // Look for an output section by name and return the address, the load
1854 // address, the alignment, and the size. This is used when an
1855 // expression refers to an output section which was not actually
1856 // created. This returns true if the section was found, false
1857 // otherwise.
1858
1859 bool
1860 Output_section_definition::get_output_section_info(const char* name,
1861 uint64_t* address,
1862 uint64_t* load_address,
1863 uint64_t* addralign,
1864 uint64_t* size) const
1865 {
1866 if (this->name_ != name)
1867 return false;
1868
1869 if (this->output_section_ != NULL)
1870 {
1871 *address = this->output_section_->address();
1872 if (this->output_section_->has_load_address())
1873 *load_address = this->output_section_->load_address();
1874 else
1875 *load_address = *address;
1876 *addralign = this->output_section_->addralign();
1877 *size = this->output_section_->current_data_size();
1878 }
1879 else
1880 {
1881 *address = this->evaluated_address_;
1882 *load_address = this->evaluated_load_address_;
1883 *addralign = this->evaluated_addralign_;
1884 *size = 0;
1885 }
1886
1887 return true;
1888 }
1889
1890 // Print for debugging.
1891
1892 void
1893 Output_section_definition::print(FILE* f) const
1894 {
1895 fprintf(f, " %s ", this->name_.c_str());
1896
1897 if (this->address_ != NULL)
1898 {
1899 this->address_->print(f);
1900 fprintf(f, " ");
1901 }
1902
1903 fprintf(f, ": ");
1904
1905 if (this->load_address_ != NULL)
1906 {
1907 fprintf(f, "AT(");
1908 this->load_address_->print(f);
1909 fprintf(f, ") ");
1910 }
1911
1912 if (this->align_ != NULL)
1913 {
1914 fprintf(f, "ALIGN(");
1915 this->align_->print(f);
1916 fprintf(f, ") ");
1917 }
1918
1919 if (this->subalign_ != NULL)
1920 {
1921 fprintf(f, "SUBALIGN(");
1922 this->subalign_->print(f);
1923 fprintf(f, ") ");
1924 }
1925
1926 fprintf(f, "{\n");
1927
1928 for (Output_section_elements::const_iterator p = this->elements_.begin();
1929 p != this->elements_.end();
1930 ++p)
1931 (*p)->print(f);
1932
1933 fprintf(f, " }");
1934
1935 if (this->fill_ != NULL)
1936 {
1937 fprintf(f, " = ");
1938 this->fill_->print(f);
1939 }
1940
1941 if (this->phdrs_ != NULL)
1942 {
1943 for (String_list::const_iterator p = this->phdrs_->begin();
1944 p != this->phdrs_->end();
1945 ++p)
1946 fprintf(f, " :%s", p->c_str());
1947 }
1948
1949 fprintf(f, "\n");
1950 }
1951
1952 // An output section created to hold orphaned input sections. These
1953 // do not actually appear in linker scripts. However, for convenience
1954 // when setting the output section addresses, we put a marker to these
1955 // sections in the appropriate place in the list of SECTIONS elements.
1956
1957 class Orphan_output_section : public Sections_element
1958 {
1959 public:
1960 Orphan_output_section(Output_section* os)
1961 : os_(os)
1962 { }
1963
1964 // Return whether to place an orphan section after this one.
1965 bool
1966 place_orphan_here(const Output_section *os, bool* exact) const;
1967
1968 // Set section addresses.
1969 void
1970 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
1971
1972 // Get the list of segments to use for an allocated section when
1973 // using a PHDRS clause.
1974 Output_section*
1975 allocate_to_segment(String_list**, bool*);
1976
1977 // Print for debugging.
1978 void
1979 print(FILE* f) const
1980 {
1981 fprintf(f, " marker for orphaned output section %s\n",
1982 this->os_->name());
1983 }
1984
1985 private:
1986 Output_section* os_;
1987 };
1988
1989 // Whether to place another orphan section after this one.
1990
1991 bool
1992 Orphan_output_section::place_orphan_here(const Output_section* os,
1993 bool* exact) const
1994 {
1995 if (this->os_->type() == os->type()
1996 && this->os_->flags() == os->flags())
1997 {
1998 *exact = true;
1999 return true;
2000 }
2001 return false;
2002 }
2003
2004 // Set section addresses.
2005
2006 void
2007 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2008 uint64_t* dot_value,
2009 uint64_t* load_address)
2010 {
2011 typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
2012
2013 bool have_load_address = *load_address != *dot_value;
2014
2015 uint64_t address = *dot_value;
2016 address = align_address(address, this->os_->addralign());
2017
2018 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2019 {
2020 this->os_->set_address(address);
2021 if (have_load_address)
2022 this->os_->set_load_address(align_address(*load_address,
2023 this->os_->addralign()));
2024 }
2025
2026 Input_section_list input_sections;
2027 address += this->os_->get_input_sections(address, "", &input_sections);
2028
2029 for (Input_section_list::iterator p = input_sections.begin();
2030 p != input_sections.end();
2031 ++p)
2032 {
2033 uint64_t addralign;
2034 uint64_t size;
2035
2036 // We know what are single-threaded, so it is OK to lock the
2037 // object.
2038 {
2039 const Task* task = reinterpret_cast<const Task*>(-1);
2040 Task_lock_obj<Object> tl(task, p->first);
2041 addralign = p->first->section_addralign(p->second);
2042 size = p->first->section_size(p->second);
2043 }
2044
2045 address = align_address(address, addralign);
2046 this->os_->add_input_section_for_script(p->first, p->second, size,
2047 addralign);
2048 address += size;
2049 }
2050
2051 if (!have_load_address)
2052 *load_address = address;
2053 else
2054 *load_address += address - *dot_value;
2055
2056 *dot_value = address;
2057 }
2058
2059 // Get the list of segments to use for an allocated section when using
2060 // a PHDRS clause. If this is an allocated section, return the
2061 // Output_section. We don't change the list of segments.
2062
2063 Output_section*
2064 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2065 {
2066 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2067 return NULL;
2068 *orphan = true;
2069 return this->os_;
2070 }
2071
2072 // Class Phdrs_element. A program header from a PHDRS clause.
2073
2074 class Phdrs_element
2075 {
2076 public:
2077 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2078 bool includes_filehdr, bool includes_phdrs,
2079 bool is_flags_valid, unsigned int flags,
2080 Expression* load_address)
2081 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2082 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2083 flags_(flags), load_address_(load_address), load_address_value_(0),
2084 segment_(NULL)
2085 { }
2086
2087 // Return the name of this segment.
2088 const std::string&
2089 name() const
2090 { return this->name_; }
2091
2092 // Return the type of the segment.
2093 unsigned int
2094 type() const
2095 { return this->type_; }
2096
2097 // Whether to include the file header.
2098 bool
2099 includes_filehdr() const
2100 { return this->includes_filehdr_; }
2101
2102 // Whether to include the program headers.
2103 bool
2104 includes_phdrs() const
2105 { return this->includes_phdrs_; }
2106
2107 // Return whether there is a load address.
2108 bool
2109 has_load_address() const
2110 { return this->load_address_ != NULL; }
2111
2112 // Evaluate the load address expression if there is one.
2113 void
2114 eval_load_address(Symbol_table* symtab, Layout* layout)
2115 {
2116 if (this->load_address_ != NULL)
2117 this->load_address_value_ = this->load_address_->eval(symtab, layout,
2118 true);
2119 }
2120
2121 // Return the load address.
2122 uint64_t
2123 load_address() const
2124 {
2125 gold_assert(this->load_address_ != NULL);
2126 return this->load_address_value_;
2127 }
2128
2129 // Create the segment.
2130 Output_segment*
2131 create_segment(Layout* layout)
2132 {
2133 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2134 return this->segment_;
2135 }
2136
2137 // Return the segment.
2138 Output_segment*
2139 segment()
2140 { return this->segment_; }
2141
2142 // Set the segment flags if appropriate.
2143 void
2144 set_flags_if_valid()
2145 {
2146 if (this->is_flags_valid_)
2147 this->segment_->set_flags(this->flags_);
2148 }
2149
2150 // Print for debugging.
2151 void
2152 print(FILE*) const;
2153
2154 private:
2155 // The name used in the script.
2156 std::string name_;
2157 // The type of the segment (PT_LOAD, etc.).
2158 unsigned int type_;
2159 // Whether this segment includes the file header.
2160 bool includes_filehdr_;
2161 // Whether this segment includes the section headers.
2162 bool includes_phdrs_;
2163 // Whether the flags were explicitly specified.
2164 bool is_flags_valid_;
2165 // The flags for this segment (PF_R, etc.) if specified.
2166 unsigned int flags_;
2167 // The expression for the load address for this segment. This may
2168 // be NULL.
2169 Expression* load_address_;
2170 // The actual load address from evaluating the expression.
2171 uint64_t load_address_value_;
2172 // The segment itself.
2173 Output_segment* segment_;
2174 };
2175
2176 // Print for debugging.
2177
2178 void
2179 Phdrs_element::print(FILE* f) const
2180 {
2181 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
2182 if (this->includes_filehdr_)
2183 fprintf(f, " FILEHDR");
2184 if (this->includes_phdrs_)
2185 fprintf(f, " PHDRS");
2186 if (this->is_flags_valid_)
2187 fprintf(f, " FLAGS(%u)", this->flags_);
2188 if (this->load_address_ != NULL)
2189 {
2190 fprintf(f, " AT(");
2191 this->load_address_->print(f);
2192 fprintf(f, ")");
2193 }
2194 fprintf(f, ";\n");
2195 }
2196
2197 // Class Script_sections.
2198
2199 Script_sections::Script_sections()
2200 : saw_sections_clause_(false),
2201 in_sections_clause_(false),
2202 sections_elements_(NULL),
2203 output_section_(NULL),
2204 phdrs_elements_(NULL)
2205 {
2206 }
2207
2208 // Start a SECTIONS clause.
2209
2210 void
2211 Script_sections::start_sections()
2212 {
2213 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2214 this->saw_sections_clause_ = true;
2215 this->in_sections_clause_ = true;
2216 if (this->sections_elements_ == NULL)
2217 this->sections_elements_ = new Sections_elements;
2218 }
2219
2220 // Finish a SECTIONS clause.
2221
2222 void
2223 Script_sections::finish_sections()
2224 {
2225 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2226 this->in_sections_clause_ = false;
2227 }
2228
2229 // Add a symbol to be defined.
2230
2231 void
2232 Script_sections::add_symbol_assignment(const char* name, size_t length,
2233 Expression* val, bool provide,
2234 bool hidden)
2235 {
2236 if (this->output_section_ != NULL)
2237 this->output_section_->add_symbol_assignment(name, length, val,
2238 provide, hidden);
2239 else
2240 {
2241 Sections_element* p = new Sections_element_assignment(name, length,
2242 val, provide,
2243 hidden);
2244 this->sections_elements_->push_back(p);
2245 }
2246 }
2247
2248 // Add an assignment to the special dot symbol.
2249
2250 void
2251 Script_sections::add_dot_assignment(Expression* val)
2252 {
2253 if (this->output_section_ != NULL)
2254 this->output_section_->add_dot_assignment(val);
2255 else
2256 {
2257 Sections_element* p = new Sections_element_dot_assignment(val);
2258 this->sections_elements_->push_back(p);
2259 }
2260 }
2261
2262 // Add an assertion.
2263
2264 void
2265 Script_sections::add_assertion(Expression* check, const char* message,
2266 size_t messagelen)
2267 {
2268 if (this->output_section_ != NULL)
2269 this->output_section_->add_assertion(check, message, messagelen);
2270 else
2271 {
2272 Sections_element* p = new Sections_element_assertion(check, message,
2273 messagelen);
2274 this->sections_elements_->push_back(p);
2275 }
2276 }
2277
2278 // Start processing entries for an output section.
2279
2280 void
2281 Script_sections::start_output_section(
2282 const char* name,
2283 size_t namelen,
2284 const Parser_output_section_header *header)
2285 {
2286 Output_section_definition* posd = new Output_section_definition(name,
2287 namelen,
2288 header);
2289 this->sections_elements_->push_back(posd);
2290 gold_assert(this->output_section_ == NULL);
2291 this->output_section_ = posd;
2292 }
2293
2294 // Stop processing entries for an output section.
2295
2296 void
2297 Script_sections::finish_output_section(
2298 const Parser_output_section_trailer* trailer)
2299 {
2300 gold_assert(this->output_section_ != NULL);
2301 this->output_section_->finish(trailer);
2302 this->output_section_ = NULL;
2303 }
2304
2305 // Add a data item to the current output section.
2306
2307 void
2308 Script_sections::add_data(int size, bool is_signed, Expression* val)
2309 {
2310 gold_assert(this->output_section_ != NULL);
2311 this->output_section_->add_data(size, is_signed, val);
2312 }
2313
2314 // Add a fill value setting to the current output section.
2315
2316 void
2317 Script_sections::add_fill(Expression* val)
2318 {
2319 gold_assert(this->output_section_ != NULL);
2320 this->output_section_->add_fill(val);
2321 }
2322
2323 // Add an input section specification to the current output section.
2324
2325 void
2326 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2327 {
2328 gold_assert(this->output_section_ != NULL);
2329 this->output_section_->add_input_section(spec, keep);
2330 }
2331
2332 // Create any required sections.
2333
2334 void
2335 Script_sections::create_sections(Layout* layout)
2336 {
2337 if (!this->saw_sections_clause_)
2338 return;
2339 for (Sections_elements::iterator p = this->sections_elements_->begin();
2340 p != this->sections_elements_->end();
2341 ++p)
2342 (*p)->create_sections(layout);
2343 }
2344
2345 // Add any symbols we are defining to the symbol table.
2346
2347 void
2348 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2349 {
2350 if (!this->saw_sections_clause_)
2351 return;
2352 for (Sections_elements::iterator p = this->sections_elements_->begin();
2353 p != this->sections_elements_->end();
2354 ++p)
2355 (*p)->add_symbols_to_table(symtab);
2356 }
2357
2358 // Finalize symbols and check assertions.
2359
2360 void
2361 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2362 {
2363 if (!this->saw_sections_clause_)
2364 return;
2365 uint64_t dot_value = 0;
2366 for (Sections_elements::iterator p = this->sections_elements_->begin();
2367 p != this->sections_elements_->end();
2368 ++p)
2369 (*p)->finalize_symbols(symtab, layout, &dot_value);
2370 }
2371
2372 // Return the name of the output section to use for an input file name
2373 // and section name.
2374
2375 const char*
2376 Script_sections::output_section_name(const char* file_name,
2377 const char* section_name,
2378 Output_section*** output_section_slot)
2379 {
2380 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2381 p != this->sections_elements_->end();
2382 ++p)
2383 {
2384 const char* ret = (*p)->output_section_name(file_name, section_name,
2385 output_section_slot);
2386
2387 if (ret != NULL)
2388 {
2389 // The special name /DISCARD/ means that the input section
2390 // should be discarded.
2391 if (strcmp(ret, "/DISCARD/") == 0)
2392 {
2393 *output_section_slot = NULL;
2394 return NULL;
2395 }
2396 return ret;
2397 }
2398 }
2399
2400 // If we couldn't find a mapping for the name, the output section
2401 // gets the name of the input section.
2402
2403 *output_section_slot = NULL;
2404
2405 return section_name;
2406 }
2407
2408 // Place a marker for an orphan output section into the SECTIONS
2409 // clause.
2410
2411 void
2412 Script_sections::place_orphan(Output_section* os)
2413 {
2414 // Look for an output section definition which matches the output
2415 // section. Put a marker after that section.
2416 Sections_elements::iterator place = this->sections_elements_->end();
2417 for (Sections_elements::iterator p = this->sections_elements_->begin();
2418 p != this->sections_elements_->end();
2419 ++p)
2420 {
2421 bool exact;
2422 if ((*p)->place_orphan_here(os, &exact))
2423 {
2424 place = p;
2425 if (exact)
2426 break;
2427 }
2428 }
2429
2430 // The insert function puts the new element before the iterator.
2431 if (place != this->sections_elements_->end())
2432 ++place;
2433
2434 this->sections_elements_->insert(place, new Orphan_output_section(os));
2435 }
2436
2437 // Set the addresses of all the output sections. Walk through all the
2438 // elements, tracking the dot symbol. Apply assignments which set
2439 // absolute symbol values, in case they are used when setting dot.
2440 // Fill in data statement values. As we find output sections, set the
2441 // address, set the address of all associated input sections, and
2442 // update dot. Return the segment which should hold the file header
2443 // and segment headers, if any.
2444
2445 Output_segment*
2446 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2447 {
2448 gold_assert(this->saw_sections_clause_);
2449
2450 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
2451 // for our representation.
2452 for (Sections_elements::iterator p = this->sections_elements_->begin();
2453 p != this->sections_elements_->end();
2454 ++p)
2455 {
2456 Output_section_definition* posd;
2457 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2458 if (failed_constraint != CONSTRAINT_NONE)
2459 {
2460 Sections_elements::iterator q;
2461 for (q = this->sections_elements_->begin();
2462 q != this->sections_elements_->end();
2463 ++q)
2464 {
2465 if (q != p)
2466 {
2467 if ((*q)->alternate_constraint(posd, failed_constraint))
2468 break;
2469 }
2470 }
2471
2472 if (q == this->sections_elements_->end())
2473 gold_error(_("no matching section constraint"));
2474 }
2475 }
2476
2477 // For a relocatable link, we implicitly set dot to zero.
2478 uint64_t dot_value = 0;
2479 uint64_t load_address = 0;
2480 for (Sections_elements::iterator p = this->sections_elements_->begin();
2481 p != this->sections_elements_->end();
2482 ++p)
2483 (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2484
2485 if (this->phdrs_elements_ != NULL)
2486 {
2487 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2488 p != this->phdrs_elements_->end();
2489 ++p)
2490 (*p)->eval_load_address(symtab, layout);
2491 }
2492
2493 return this->create_segments(layout);
2494 }
2495
2496 // Sort the sections in order to put them into segments.
2497
2498 class Sort_output_sections
2499 {
2500 public:
2501 bool
2502 operator()(const Output_section* os1, const Output_section* os2) const;
2503 };
2504
2505 bool
2506 Sort_output_sections::operator()(const Output_section* os1,
2507 const Output_section* os2) const
2508 {
2509 // Sort first by the load address.
2510 uint64_t lma1 = (os1->has_load_address()
2511 ? os1->load_address()
2512 : os1->address());
2513 uint64_t lma2 = (os2->has_load_address()
2514 ? os2->load_address()
2515 : os2->address());
2516 if (lma1 != lma2)
2517 return lma1 < lma2;
2518
2519 // Then sort by the virtual address.
2520 if (os1->address() != os2->address())
2521 return os1->address() < os2->address();
2522
2523 // Sort TLS sections to the end.
2524 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2525 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2526 if (tls1 != tls2)
2527 return tls2;
2528
2529 // Sort PROGBITS before NOBITS.
2530 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2531 return true;
2532 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2533 return false;
2534
2535 // Otherwise we don't care.
2536 return false;
2537 }
2538
2539 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
2540 // We treat a section with the SHF_TLS flag set as taking up space
2541 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2542 // space for them in the file.
2543
2544 bool
2545 Script_sections::is_bss_section(const Output_section* os)
2546 {
2547 return (os->type() == elfcpp::SHT_NOBITS
2548 && (os->flags() & elfcpp::SHF_TLS) == 0);
2549 }
2550
2551 // Return the size taken by the file header and the program headers.
2552
2553 size_t
2554 Script_sections::total_header_size(Layout* layout) const
2555 {
2556 size_t segment_count = layout->segment_count();
2557 size_t file_header_size;
2558 size_t segment_headers_size;
2559 if (parameters->target().get_size() == 32)
2560 {
2561 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2562 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2563 }
2564 else if (parameters->target().get_size() == 64)
2565 {
2566 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2567 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2568 }
2569 else
2570 gold_unreachable();
2571
2572 return file_header_size + segment_headers_size;
2573 }
2574
2575 // Return the amount we have to subtract from the LMA to accomodate
2576 // headers of the given size. The complication is that the file
2577 // header have to be at the start of a page, as otherwise it will not
2578 // be at the start of the file.
2579
2580 uint64_t
2581 Script_sections::header_size_adjustment(uint64_t lma,
2582 size_t sizeof_headers) const
2583 {
2584 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2585 uint64_t hdr_lma = lma - sizeof_headers;
2586 hdr_lma &= ~(abi_pagesize - 1);
2587 return lma - hdr_lma;
2588 }
2589
2590 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
2591 // the segment which should hold the file header and segment headers,
2592 // if any.
2593
2594 Output_segment*
2595 Script_sections::create_segments(Layout* layout)
2596 {
2597 gold_assert(this->saw_sections_clause_);
2598
2599 if (parameters->options().relocatable())
2600 return NULL;
2601
2602 if (this->saw_phdrs_clause())
2603 return create_segments_from_phdrs_clause(layout);
2604
2605 Layout::Section_list sections;
2606 layout->get_allocated_sections(&sections);
2607
2608 // Sort the sections by address.
2609 std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2610
2611 this->create_note_and_tls_segments(layout, &sections);
2612
2613 // Walk through the sections adding them to PT_LOAD segments.
2614 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2615 Output_segment* first_seg = NULL;
2616 Output_segment* current_seg = NULL;
2617 bool is_current_seg_readonly = true;
2618 Layout::Section_list::iterator plast = sections.end();
2619 uint64_t last_vma = 0;
2620 uint64_t last_lma = 0;
2621 uint64_t last_size = 0;
2622 for (Layout::Section_list::iterator p = sections.begin();
2623 p != sections.end();
2624 ++p)
2625 {
2626 const uint64_t vma = (*p)->address();
2627 const uint64_t lma = ((*p)->has_load_address()
2628 ? (*p)->load_address()
2629 : vma);
2630 const uint64_t size = (*p)->current_data_size();
2631
2632 bool need_new_segment;
2633 if (current_seg == NULL)
2634 need_new_segment = true;
2635 else if (lma - vma != last_lma - last_vma)
2636 {
2637 // This section has a different LMA relationship than the
2638 // last one; we need a new segment.
2639 need_new_segment = true;
2640 }
2641 else if (align_address(last_lma + last_size, abi_pagesize)
2642 < align_address(lma, abi_pagesize))
2643 {
2644 // Putting this section in the segment would require
2645 // skipping a page.
2646 need_new_segment = true;
2647 }
2648 else if (is_bss_section(*plast) && !is_bss_section(*p))
2649 {
2650 // A non-BSS section can not follow a BSS section in the
2651 // same segment.
2652 need_new_segment = true;
2653 }
2654 else if (is_current_seg_readonly
2655 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2656 {
2657 // Don't put a writable section in the same segment as a
2658 // non-writable section.
2659 need_new_segment = true;
2660 }
2661 else
2662 {
2663 // Otherwise, reuse the existing segment.
2664 need_new_segment = false;
2665 }
2666
2667 elfcpp::Elf_Word seg_flags =
2668 Layout::section_flags_to_segment((*p)->flags());
2669
2670 if (need_new_segment)
2671 {
2672 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2673 seg_flags);
2674 current_seg->set_addresses(vma, lma);
2675 if (first_seg == NULL)
2676 first_seg = current_seg;
2677 is_current_seg_readonly = true;
2678 }
2679
2680 current_seg->add_output_section(*p, seg_flags);
2681
2682 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2683 is_current_seg_readonly = false;
2684
2685 plast = p;
2686 last_vma = vma;
2687 last_lma = lma;
2688 last_size = size;
2689 }
2690
2691 // An ELF program should work even if the program headers are not in
2692 // a PT_LOAD segment. However, it appears that the Linux kernel
2693 // does not set the AT_PHDR auxiliary entry in that case. It sets
2694 // the load address to p_vaddr - p_offset of the first PT_LOAD
2695 // segment. It then sets AT_PHDR to the load address plus the
2696 // offset to the program headers, e_phoff in the file header. This
2697 // fails when the program headers appear in the file before the
2698 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
2699 // segment to hold the file header and the program headers. This is
2700 // effectively what the GNU linker does, and it is slightly more
2701 // efficient in any case. We try to use the first PT_LOAD segment
2702 // if we can, otherwise we make a new one.
2703
2704 if (first_seg == NULL)
2705 return NULL;
2706
2707 size_t sizeof_headers = this->total_header_size(layout);
2708
2709 uint64_t vma = first_seg->vaddr();
2710 uint64_t lma = first_seg->paddr();
2711
2712 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
2713
2714 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
2715 {
2716 first_seg->set_addresses(vma - subtract, lma - subtract);
2717 return first_seg;
2718 }
2719
2720 // If there is no room to squeeze in the headers, then punt. The
2721 // resulting executable probably won't run on GNU/Linux, but we
2722 // trust that the user knows what they are doing.
2723 if (lma < subtract || vma < subtract)
2724 return NULL;
2725
2726 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2727 elfcpp::PF_R);
2728 load_seg->set_addresses(vma - subtract, lma - subtract);
2729
2730 return load_seg;
2731 }
2732
2733 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
2734 // segment if there are any SHT_TLS sections.
2735
2736 void
2737 Script_sections::create_note_and_tls_segments(
2738 Layout* layout,
2739 const Layout::Section_list* sections)
2740 {
2741 gold_assert(!this->saw_phdrs_clause());
2742
2743 bool saw_tls = false;
2744 for (Layout::Section_list::const_iterator p = sections->begin();
2745 p != sections->end();
2746 ++p)
2747 {
2748 if ((*p)->type() == elfcpp::SHT_NOTE)
2749 {
2750 elfcpp::Elf_Word seg_flags =
2751 Layout::section_flags_to_segment((*p)->flags());
2752 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
2753 seg_flags);
2754 oseg->add_output_section(*p, seg_flags);
2755
2756 // Incorporate any subsequent SHT_NOTE sections, in the
2757 // hopes that the script is sensible.
2758 Layout::Section_list::const_iterator pnext = p + 1;
2759 while (pnext != sections->end()
2760 && (*pnext)->type() == elfcpp::SHT_NOTE)
2761 {
2762 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2763 oseg->add_output_section(*pnext, seg_flags);
2764 p = pnext;
2765 ++pnext;
2766 }
2767 }
2768
2769 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2770 {
2771 if (saw_tls)
2772 gold_error(_("TLS sections are not adjacent"));
2773
2774 elfcpp::Elf_Word seg_flags =
2775 Layout::section_flags_to_segment((*p)->flags());
2776 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
2777 seg_flags);
2778 oseg->add_output_section(*p, seg_flags);
2779
2780 Layout::Section_list::const_iterator pnext = p + 1;
2781 while (pnext != sections->end()
2782 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
2783 {
2784 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2785 oseg->add_output_section(*pnext, seg_flags);
2786 p = pnext;
2787 ++pnext;
2788 }
2789
2790 saw_tls = true;
2791 }
2792 }
2793 }
2794
2795 // Add a program header. The PHDRS clause is syntactically distinct
2796 // from the SECTIONS clause, but we implement it with the SECTIONS
2797 // support becauase PHDRS is useless if there is no SECTIONS clause.
2798
2799 void
2800 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
2801 bool includes_filehdr, bool includes_phdrs,
2802 bool is_flags_valid, unsigned int flags,
2803 Expression* load_address)
2804 {
2805 if (this->phdrs_elements_ == NULL)
2806 this->phdrs_elements_ = new Phdrs_elements();
2807 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
2808 includes_filehdr,
2809 includes_phdrs,
2810 is_flags_valid, flags,
2811 load_address));
2812 }
2813
2814 // Return the number of segments we expect to create based on the
2815 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
2816
2817 size_t
2818 Script_sections::expected_segment_count(const Layout* layout) const
2819 {
2820 if (this->saw_phdrs_clause())
2821 return this->phdrs_elements_->size();
2822
2823 Layout::Section_list sections;
2824 layout->get_allocated_sections(&sections);
2825
2826 // We assume that we will need two PT_LOAD segments.
2827 size_t ret = 2;
2828
2829 bool saw_note = false;
2830 bool saw_tls = false;
2831 for (Layout::Section_list::const_iterator p = sections.begin();
2832 p != sections.end();
2833 ++p)
2834 {
2835 if ((*p)->type() == elfcpp::SHT_NOTE)
2836 {
2837 // Assume that all note sections will fit into a single
2838 // PT_NOTE segment.
2839 if (!saw_note)
2840 {
2841 ++ret;
2842 saw_note = true;
2843 }
2844 }
2845 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2846 {
2847 // There can only be one PT_TLS segment.
2848 if (!saw_tls)
2849 {
2850 ++ret;
2851 saw_tls = true;
2852 }
2853 }
2854 }
2855
2856 return ret;
2857 }
2858
2859 // Create the segments from a PHDRS clause. Return the segment which
2860 // should hold the file header and program headers, if any.
2861
2862 Output_segment*
2863 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
2864 {
2865 this->attach_sections_using_phdrs_clause(layout);
2866 return this->set_phdrs_clause_addresses(layout);
2867 }
2868
2869 // Create the segments from the PHDRS clause, and put the output
2870 // sections in them.
2871
2872 void
2873 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
2874 {
2875 typedef std::map<std::string, Output_segment*> Name_to_segment;
2876 Name_to_segment name_to_segment;
2877 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2878 p != this->phdrs_elements_->end();
2879 ++p)
2880 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
2881
2882 // Walk through the output sections and attach them to segments.
2883 // Output sections in the script which do not list segments are
2884 // attached to the same set of segments as the immediately preceding
2885 // output section.
2886 String_list* phdr_names = NULL;
2887 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2888 p != this->sections_elements_->end();
2889 ++p)
2890 {
2891 bool orphan;
2892 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
2893 if (os == NULL)
2894 continue;
2895
2896 if (phdr_names == NULL)
2897 {
2898 gold_error(_("allocated section not in any segment"));
2899 continue;
2900 }
2901
2902 // If this is an orphan section--one that was not explicitly
2903 // mentioned in the linker script--then it should not inherit
2904 // any segment type other than PT_LOAD. Otherwise, e.g., the
2905 // PT_INTERP segment will pick up following orphan sections,
2906 // which does not make sense. If this is not an orphan section,
2907 // we trust the linker script.
2908 if (orphan)
2909 {
2910 String_list::iterator q = phdr_names->begin();
2911 while (q != phdr_names->end())
2912 {
2913 Name_to_segment::const_iterator r = name_to_segment.find(*q);
2914 // We give errors about unknown segments below.
2915 if (r == name_to_segment.end()
2916 || r->second->type() == elfcpp::PT_LOAD)
2917 ++q;
2918 else
2919 q = phdr_names->erase(q);
2920 }
2921 }
2922
2923 bool in_load_segment = false;
2924 for (String_list::const_iterator q = phdr_names->begin();
2925 q != phdr_names->end();
2926 ++q)
2927 {
2928 Name_to_segment::const_iterator r = name_to_segment.find(*q);
2929 if (r == name_to_segment.end())
2930 gold_error(_("no segment %s"), q->c_str());
2931 else
2932 {
2933 elfcpp::Elf_Word seg_flags =
2934 Layout::section_flags_to_segment(os->flags());
2935 r->second->add_output_section(os, seg_flags);
2936
2937 if (r->second->type() == elfcpp::PT_LOAD)
2938 {
2939 if (in_load_segment)
2940 gold_error(_("section in two PT_LOAD segments"));
2941 in_load_segment = true;
2942 }
2943 }
2944 }
2945
2946 if (!in_load_segment)
2947 gold_error(_("allocated section not in any PT_LOAD segment"));
2948 }
2949 }
2950
2951 // Set the addresses for segments created from a PHDRS clause. Return
2952 // the segment which should hold the file header and program headers,
2953 // if any.
2954
2955 Output_segment*
2956 Script_sections::set_phdrs_clause_addresses(Layout* layout)
2957 {
2958 Output_segment* load_seg = NULL;
2959 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2960 p != this->phdrs_elements_->end();
2961 ++p)
2962 {
2963 // Note that we have to set the flags after adding the output
2964 // sections to the segment, as adding an output segment can
2965 // change the flags.
2966 (*p)->set_flags_if_valid();
2967
2968 Output_segment* oseg = (*p)->segment();
2969
2970 if (oseg->type() != elfcpp::PT_LOAD)
2971 {
2972 // The addresses of non-PT_LOAD segments are set from the
2973 // PT_LOAD segments.
2974 if ((*p)->has_load_address())
2975 gold_error(_("may only specify load address for PT_LOAD segment"));
2976 continue;
2977 }
2978
2979 // The output sections should have addresses from the SECTIONS
2980 // clause. The addresses don't have to be in order, so find the
2981 // one with the lowest load address. Use that to set the
2982 // address of the segment.
2983
2984 Output_section* osec = oseg->section_with_lowest_load_address();
2985 if (osec == NULL)
2986 {
2987 oseg->set_addresses(0, 0);
2988 continue;
2989 }
2990
2991 uint64_t vma = osec->address();
2992 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
2993
2994 // Override the load address of the section with the load
2995 // address specified for the segment.
2996 if ((*p)->has_load_address())
2997 {
2998 if (osec->has_load_address())
2999 gold_warning(_("PHDRS load address overrides "
3000 "section %s load address"),
3001 osec->name());
3002
3003 lma = (*p)->load_address();
3004 }
3005
3006 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3007 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3008 {
3009 // We could support this if we wanted to.
3010 gold_error(_("using only one of FILEHDR and PHDRS is "
3011 "not currently supported"));
3012 }
3013 if (headers)
3014 {
3015 size_t sizeof_headers = this->total_header_size(layout);
3016 uint64_t subtract = this->header_size_adjustment(lma,
3017 sizeof_headers);
3018 if (lma >= subtract && vma >= subtract)
3019 {
3020 lma -= subtract;
3021 vma -= subtract;
3022 }
3023 else
3024 {
3025 gold_error(_("sections loaded on first page without room "
3026 "for file and program headers "
3027 "are not supported"));
3028 }
3029
3030 if (load_seg != NULL)
3031 gold_error(_("using FILEHDR and PHDRS on more than one "
3032 "PT_LOAD segment is not currently supported"));
3033 load_seg = oseg;
3034 }
3035
3036 oseg->set_addresses(vma, lma);
3037 }
3038
3039 return load_seg;
3040 }
3041
3042 // Add the file header and segment headers to non-load segments
3043 // specified in the PHDRS clause.
3044
3045 void
3046 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3047 Output_data* segment_headers)
3048 {
3049 gold_assert(this->saw_phdrs_clause());
3050 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3051 p != this->phdrs_elements_->end();
3052 ++p)
3053 {
3054 if ((*p)->type() != elfcpp::PT_LOAD)
3055 {
3056 if ((*p)->includes_phdrs())
3057 (*p)->segment()->add_initial_output_data(segment_headers);
3058 if ((*p)->includes_filehdr())
3059 (*p)->segment()->add_initial_output_data(file_header);
3060 }
3061 }
3062 }
3063
3064 // Look for an output section by name and return the address, the load
3065 // address, the alignment, and the size. This is used when an
3066 // expression refers to an output section which was not actually
3067 // created. This returns true if the section was found, false
3068 // otherwise.
3069
3070 bool
3071 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3072 uint64_t* load_address,
3073 uint64_t* addralign,
3074 uint64_t* size) const
3075 {
3076 if (!this->saw_sections_clause_)
3077 return false;
3078 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3079 p != this->sections_elements_->end();
3080 ++p)
3081 if ((*p)->get_output_section_info(name, address, load_address, addralign,
3082 size))
3083 return true;
3084 return false;
3085 }
3086
3087 // Print the SECTIONS clause to F for debugging.
3088
3089 void
3090 Script_sections::print(FILE* f) const
3091 {
3092 if (!this->saw_sections_clause_)
3093 return;
3094
3095 fprintf(f, "SECTIONS {\n");
3096
3097 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3098 p != this->sections_elements_->end();
3099 ++p)
3100 (*p)->print(f);
3101
3102 fprintf(f, "}\n");
3103
3104 if (this->phdrs_elements_ != NULL)
3105 {
3106 fprintf(f, "PHDRS {\n");
3107 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3108 p != this->phdrs_elements_->end();
3109 ++p)
3110 (*p)->print(f);
3111 fprintf(f, "}\n");
3112 }
3113 }
3114
3115 } // End namespace gold.
This page took 0.144794 seconds and 5 git commands to generate.