Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56 public:
57 // Token classification.
58 enum Classification
59 {
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
72 };
73
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
79
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
84 {
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
87 }
88
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
94 {
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
97 }
98
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
103 { }
104
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
109
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
114
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
119
120 // Return the line number at which the token starts.
121 int
122 lineno() const
123 { return this->lineno_; }
124
125 // Return the character position at this the token starts.
126 int
127 charpos() const
128 { return this->charpos_; }
129
130 // Get the value of a token.
131
132 const char*
133 string_value(size_t* length) const
134 {
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
139 }
140
141 int
142 operator_value() const
143 {
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
146 }
147
148 uint64_t
149 integer_value() const;
150
151 private:
152 // The token classification.
153 Classification classification_;
154 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155 // TOKEN_INTEGER.
156 const char* value_;
157 // The length of the token value.
158 size_t value_length_;
159 // The token value, for TOKEN_OPERATOR.
160 int opcode_;
161 // The line number where this token started (one based).
162 int lineno_;
163 // The character position within the line where this token started
164 // (one based).
165 int charpos_;
166 };
167
168 // Return the value of a TOKEN_INTEGER.
169
170 uint64_t
171 Token::integer_value() const
172 {
173 gold_assert(this->classification_ == TOKEN_INTEGER);
174
175 size_t len = this->value_length_;
176
177 uint64_t multiplier = 1;
178 char last = this->value_[len - 1];
179 if (last == 'm' || last == 'M')
180 {
181 multiplier = 1024 * 1024;
182 --len;
183 }
184 else if (last == 'k' || last == 'K')
185 {
186 multiplier = 1024;
187 --len;
188 }
189
190 char *end;
191 uint64_t ret = strtoull(this->value_, &end, 0);
192 gold_assert(static_cast<size_t>(end - this->value_) == len);
193
194 return ret * multiplier;
195 }
196
197 // This class handles lexing a file into a sequence of tokens.
198
199 class Lex
200 {
201 public:
202 // We unfortunately have to support different lexing modes, because
203 // when reading different parts of a linker script we need to parse
204 // things differently.
205 enum Mode
206 {
207 // Reading an ordinary linker script.
208 LINKER_SCRIPT,
209 // Reading an expression in a linker script.
210 EXPRESSION,
211 // Reading a version script.
212 VERSION_SCRIPT,
213 // Reading a --dynamic-list file.
214 DYNAMIC_LIST
215 };
216
217 Lex(const char* input_string, size_t input_length, int parsing_token)
218 : input_string_(input_string), input_length_(input_length),
219 current_(input_string), mode_(LINKER_SCRIPT),
220 first_token_(parsing_token), token_(),
221 lineno_(1), linestart_(input_string)
222 { }
223
224 // Read a file into a string.
225 static void
226 read_file(Input_file*, std::string*);
227
228 // Return the next token.
229 const Token*
230 next_token();
231
232 // Return the current lexing mode.
233 Lex::Mode
234 mode() const
235 { return this->mode_; }
236
237 // Set the lexing mode.
238 void
239 set_mode(Mode mode)
240 { this->mode_ = mode; }
241
242 private:
243 Lex(const Lex&);
244 Lex& operator=(const Lex&);
245
246 // Make a general token with no value at the current location.
247 Token
248 make_token(Token::Classification c, const char* start) const
249 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250
251 // Make a general token with a value at the current location.
252 Token
253 make_token(Token::Classification c, const char* v, size_t len,
254 const char* start)
255 const
256 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257
258 // Make an operator token at the current location.
259 Token
260 make_token(int opcode, const char* start) const
261 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262
263 // Make an invalid token at the current location.
264 Token
265 make_invalid_token(const char* start)
266 { return this->make_token(Token::TOKEN_INVALID, start); }
267
268 // Make an EOF token at the current location.
269 Token
270 make_eof_token(const char* start)
271 { return this->make_token(Token::TOKEN_EOF, start); }
272
273 // Return whether C can be the first character in a name. C2 is the
274 // next character, since we sometimes need that.
275 inline bool
276 can_start_name(char c, char c2);
277
278 // If C can appear in a name which has already started, return a
279 // pointer to a character later in the token or just past
280 // it. Otherwise, return NULL.
281 inline const char*
282 can_continue_name(const char* c);
283
284 // Return whether C, C2, C3 can start a hex number.
285 inline bool
286 can_start_hex(char c, char c2, char c3);
287
288 // If C can appear in a hex number which has already started, return
289 // a pointer to a character later in the token or just past
290 // it. Otherwise, return NULL.
291 inline const char*
292 can_continue_hex(const char* c);
293
294 // Return whether C can start a non-hex number.
295 static inline bool
296 can_start_number(char c);
297
298 // If C can appear in a decimal number which has already started,
299 // return a pointer to a character later in the token or just past
300 // it. Otherwise, return NULL.
301 inline const char*
302 can_continue_number(const char* c)
303 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304
305 // If C1 C2 C3 form a valid three character operator, return the
306 // opcode. Otherwise return 0.
307 static inline int
308 three_char_operator(char c1, char c2, char c3);
309
310 // If C1 C2 form a valid two character operator, return the opcode.
311 // Otherwise return 0.
312 static inline int
313 two_char_operator(char c1, char c2);
314
315 // If C1 is a valid one character operator, return the opcode.
316 // Otherwise return 0.
317 static inline int
318 one_char_operator(char c1);
319
320 // Read the next token.
321 Token
322 get_token(const char**);
323
324 // Skip a C style /* */ comment. Return false if the comment did
325 // not end.
326 bool
327 skip_c_comment(const char**);
328
329 // Skip a line # comment. Return false if there was no newline.
330 bool
331 skip_line_comment(const char**);
332
333 // Build a token CLASSIFICATION from all characters that match
334 // CAN_CONTINUE_FN. The token starts at START. Start matching from
335 // MATCH. Set *PP to the character following the token.
336 inline Token
337 gather_token(Token::Classification,
338 const char* (Lex::*can_continue_fn)(const char*),
339 const char* start, const char* match, const char** pp);
340
341 // Build a token from a quoted string.
342 Token
343 gather_quoted_string(const char** pp);
344
345 // The string we are tokenizing.
346 const char* input_string_;
347 // The length of the string.
348 size_t input_length_;
349 // The current offset into the string.
350 const char* current_;
351 // The current lexing mode.
352 Mode mode_;
353 // The code to use for the first token. This is set to 0 after it
354 // is used.
355 int first_token_;
356 // The current token.
357 Token token_;
358 // The current line number.
359 int lineno_;
360 // The start of the current line in the string.
361 const char* linestart_;
362 };
363
364 // Read the whole file into memory. We don't expect linker scripts to
365 // be large, so we just use a std::string as a buffer. We ignore the
366 // data we've already read, so that we read aligned buffers.
367
368 void
369 Lex::read_file(Input_file* input_file, std::string* contents)
370 {
371 off_t filesize = input_file->file().filesize();
372 contents->clear();
373 contents->reserve(filesize);
374
375 off_t off = 0;
376 unsigned char buf[BUFSIZ];
377 while (off < filesize)
378 {
379 off_t get = BUFSIZ;
380 if (get > filesize - off)
381 get = filesize - off;
382 input_file->file().read(off, get, buf);
383 contents->append(reinterpret_cast<char*>(&buf[0]), get);
384 off += get;
385 }
386 }
387
388 // Return whether C can be the start of a name, if the next character
389 // is C2. A name can being with a letter, underscore, period, or
390 // dollar sign. Because a name can be a file name, we also permit
391 // forward slash, backslash, and tilde. Tilde is the tricky case
392 // here; GNU ld also uses it as a bitwise not operator. It is only
393 // recognized as the operator if it is not immediately followed by
394 // some character which can appear in a symbol. That is, when we
395 // don't know that we are looking at an expression, "~0" is a file
396 // name, and "~ 0" is an expression using bitwise not. We are
397 // compatible.
398
399 inline bool
400 Lex::can_start_name(char c, char c2)
401 {
402 switch (c)
403 {
404 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408 case 'Y': case 'Z':
409 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413 case 'y': case 'z':
414 case '_': case '.': case '$':
415 return true;
416
417 case '/': case '\\':
418 return this->mode_ == LINKER_SCRIPT;
419
420 case '~':
421 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422
423 case '*': case '[':
424 return (this->mode_ == VERSION_SCRIPT
425 || this->mode_ == DYNAMIC_LIST
426 || (this->mode_ == LINKER_SCRIPT
427 && can_continue_name(&c2)));
428
429 default:
430 return false;
431 }
432 }
433
434 // Return whether C can continue a name which has already started.
435 // Subsequent characters in a name are the same as the leading
436 // characters, plus digits and "=+-:[],?*". So in general the linker
437 // script language requires spaces around operators, unless we know
438 // that we are parsing an expression.
439
440 inline const char*
441 Lex::can_continue_name(const char* c)
442 {
443 switch (*c)
444 {
445 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449 case 'Y': case 'Z':
450 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454 case 'y': case 'z':
455 case '_': case '.': case '$':
456 case '0': case '1': case '2': case '3': case '4':
457 case '5': case '6': case '7': case '8': case '9':
458 return c + 1;
459
460 // TODO(csilvers): why not allow ~ in names for version-scripts?
461 case '/': case '\\': case '~':
462 case '=': case '+':
463 case ',':
464 if (this->mode_ == LINKER_SCRIPT)
465 return c + 1;
466 return NULL;
467
468 case '[': case ']': case '*': case '?': case '-':
469 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470 || this->mode_ == DYNAMIC_LIST)
471 return c + 1;
472 return NULL;
473
474 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
475 case '^':
476 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477 return c + 1;
478 return NULL;
479
480 case ':':
481 if (this->mode_ == LINKER_SCRIPT)
482 return c + 1;
483 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484 && (c[1] == ':'))
485 {
486 // A name can have '::' in it, as that's a c++ namespace
487 // separator. But a single colon is not part of a name.
488 return c + 2;
489 }
490 return NULL;
491
492 default:
493 return NULL;
494 }
495 }
496
497 // For a number we accept 0x followed by hex digits, or any sequence
498 // of digits. The old linker accepts leading '$' for hex, and
499 // trailing HXBOD. Those are for MRI compatibility and we don't
500 // accept them.
501
502 // Return whether C1 C2 C3 can start a hex number.
503
504 inline bool
505 Lex::can_start_hex(char c1, char c2, char c3)
506 {
507 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508 return this->can_continue_hex(&c3);
509 return false;
510 }
511
512 // Return whether C can appear in a hex number.
513
514 inline const char*
515 Lex::can_continue_hex(const char* c)
516 {
517 switch (*c)
518 {
519 case '0': case '1': case '2': case '3': case '4':
520 case '5': case '6': case '7': case '8': case '9':
521 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523 return c + 1;
524
525 default:
526 return NULL;
527 }
528 }
529
530 // Return whether C can start a non-hex number.
531
532 inline bool
533 Lex::can_start_number(char c)
534 {
535 switch (c)
536 {
537 case '0': case '1': case '2': case '3': case '4':
538 case '5': case '6': case '7': case '8': case '9':
539 return true;
540
541 default:
542 return false;
543 }
544 }
545
546 // If C1 C2 C3 form a valid three character operator, return the
547 // opcode (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
549
550 inline int
551 Lex::three_char_operator(char c1, char c2, char c3)
552 {
553 switch (c1)
554 {
555 case '<':
556 if (c2 == '<' && c3 == '=')
557 return LSHIFTEQ;
558 break;
559 case '>':
560 if (c2 == '>' && c3 == '=')
561 return RSHIFTEQ;
562 break;
563 default:
564 break;
565 }
566 return 0;
567 }
568
569 // If C1 C2 form a valid two character operator, return the opcode
570 // (defined in the yyscript.h file generated from yyscript.y).
571 // Otherwise return 0.
572
573 inline int
574 Lex::two_char_operator(char c1, char c2)
575 {
576 switch (c1)
577 {
578 case '=':
579 if (c2 == '=')
580 return EQ;
581 break;
582 case '!':
583 if (c2 == '=')
584 return NE;
585 break;
586 case '+':
587 if (c2 == '=')
588 return PLUSEQ;
589 break;
590 case '-':
591 if (c2 == '=')
592 return MINUSEQ;
593 break;
594 case '*':
595 if (c2 == '=')
596 return MULTEQ;
597 break;
598 case '/':
599 if (c2 == '=')
600 return DIVEQ;
601 break;
602 case '|':
603 if (c2 == '=')
604 return OREQ;
605 if (c2 == '|')
606 return OROR;
607 break;
608 case '&':
609 if (c2 == '=')
610 return ANDEQ;
611 if (c2 == '&')
612 return ANDAND;
613 break;
614 case '>':
615 if (c2 == '=')
616 return GE;
617 if (c2 == '>')
618 return RSHIFT;
619 break;
620 case '<':
621 if (c2 == '=')
622 return LE;
623 if (c2 == '<')
624 return LSHIFT;
625 break;
626 default:
627 break;
628 }
629 return 0;
630 }
631
632 // If C1 is a valid operator, return the opcode. Otherwise return 0.
633
634 inline int
635 Lex::one_char_operator(char c1)
636 {
637 switch (c1)
638 {
639 case '+':
640 case '-':
641 case '*':
642 case '/':
643 case '%':
644 case '!':
645 case '&':
646 case '|':
647 case '^':
648 case '~':
649 case '<':
650 case '>':
651 case '=':
652 case '?':
653 case ',':
654 case '(':
655 case ')':
656 case '{':
657 case '}':
658 case '[':
659 case ']':
660 case ':':
661 case ';':
662 return c1;
663 default:
664 return 0;
665 }
666 }
667
668 // Skip a C style comment. *PP points to just after the "/*". Return
669 // false if the comment did not end.
670
671 bool
672 Lex::skip_c_comment(const char** pp)
673 {
674 const char* p = *pp;
675 while (p[0] != '*' || p[1] != '/')
676 {
677 if (*p == '\0')
678 {
679 *pp = p;
680 return false;
681 }
682
683 if (*p == '\n')
684 {
685 ++this->lineno_;
686 this->linestart_ = p + 1;
687 }
688 ++p;
689 }
690
691 *pp = p + 2;
692 return true;
693 }
694
695 // Skip a line # comment. Return false if there was no newline.
696
697 bool
698 Lex::skip_line_comment(const char** pp)
699 {
700 const char* p = *pp;
701 size_t skip = strcspn(p, "\n");
702 if (p[skip] == '\0')
703 {
704 *pp = p + skip;
705 return false;
706 }
707
708 p += skip + 1;
709 ++this->lineno_;
710 this->linestart_ = p;
711 *pp = p;
712
713 return true;
714 }
715
716 // Build a token CLASSIFICATION from all characters that match
717 // CAN_CONTINUE_FN. Update *PP.
718
719 inline Token
720 Lex::gather_token(Token::Classification classification,
721 const char* (Lex::*can_continue_fn)(const char*),
722 const char* start,
723 const char* match,
724 const char** pp)
725 {
726 const char* new_match = NULL;
727 while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728 match = new_match;
729
730 // A special case: integers may be followed by a single M or K,
731 // case-insensitive.
732 if (classification == Token::TOKEN_INTEGER
733 && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734 ++match;
735
736 *pp = match;
737 return this->make_token(classification, start, match - start, start);
738 }
739
740 // Build a token from a quoted string.
741
742 Token
743 Lex::gather_quoted_string(const char** pp)
744 {
745 const char* start = *pp;
746 const char* p = start;
747 ++p;
748 size_t skip = strcspn(p, "\"\n");
749 if (p[skip] != '"')
750 return this->make_invalid_token(start);
751 *pp = p + skip + 1;
752 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753 }
754
755 // Return the next token at *PP. Update *PP. General guideline: we
756 // require linker scripts to be simple ASCII. No unicode linker
757 // scripts. In particular we can assume that any '\0' is the end of
758 // the input.
759
760 Token
761 Lex::get_token(const char** pp)
762 {
763 const char* p = *pp;
764
765 while (true)
766 {
767 // Skip whitespace quickly.
768 while (*p == ' ' || *p == '\t' || *p == '\r')
769 ++p;
770
771 if (*p == '\n')
772 {
773 ++p;
774 ++this->lineno_;
775 this->linestart_ = p;
776 continue;
777 }
778
779 char c0 = *p;
780
781 if (c0 == '\0')
782 {
783 *pp = p;
784 return this->make_eof_token(p);
785 }
786
787 char c1 = p[1];
788
789 // Skip C style comments.
790 if (c0 == '/' && c1 == '*')
791 {
792 int lineno = this->lineno_;
793 int charpos = p - this->linestart_ + 1;
794
795 *pp = p + 2;
796 if (!this->skip_c_comment(pp))
797 return Token(Token::TOKEN_INVALID, lineno, charpos);
798 p = *pp;
799
800 continue;
801 }
802
803 // Skip line comments.
804 if (c0 == '#')
805 {
806 *pp = p + 1;
807 if (!this->skip_line_comment(pp))
808 return this->make_eof_token(p);
809 p = *pp;
810 continue;
811 }
812
813 // Check for a name.
814 if (this->can_start_name(c0, c1))
815 return this->gather_token(Token::TOKEN_STRING,
816 &Lex::can_continue_name,
817 p, p + 1, pp);
818
819 // We accept any arbitrary name in double quotes, as long as it
820 // does not cross a line boundary.
821 if (*p == '"')
822 {
823 *pp = p;
824 return this->gather_quoted_string(pp);
825 }
826
827 // Be careful not to lookahead past the end of the buffer.
828 char c2 = (c1 == '\0' ? '\0' : p[2]);
829
830 // Check for a number.
831
832 if (this->can_start_hex(c0, c1, c2))
833 return this->gather_token(Token::TOKEN_INTEGER,
834 &Lex::can_continue_hex,
835 p, p + 3, pp);
836
837 if (Lex::can_start_number(c0))
838 return this->gather_token(Token::TOKEN_INTEGER,
839 &Lex::can_continue_number,
840 p, p + 1, pp);
841
842 // Check for operators.
843
844 int opcode = Lex::three_char_operator(c0, c1, c2);
845 if (opcode != 0)
846 {
847 *pp = p + 3;
848 return this->make_token(opcode, p);
849 }
850
851 opcode = Lex::two_char_operator(c0, c1);
852 if (opcode != 0)
853 {
854 *pp = p + 2;
855 return this->make_token(opcode, p);
856 }
857
858 opcode = Lex::one_char_operator(c0);
859 if (opcode != 0)
860 {
861 *pp = p + 1;
862 return this->make_token(opcode, p);
863 }
864
865 return this->make_token(Token::TOKEN_INVALID, p);
866 }
867 }
868
869 // Return the next token.
870
871 const Token*
872 Lex::next_token()
873 {
874 // The first token is special.
875 if (this->first_token_ != 0)
876 {
877 this->token_ = Token(this->first_token_, 0, 0);
878 this->first_token_ = 0;
879 return &this->token_;
880 }
881
882 this->token_ = this->get_token(&this->current_);
883
884 // Don't let an early null byte fool us into thinking that we've
885 // reached the end of the file.
886 if (this->token_.is_eof()
887 && (static_cast<size_t>(this->current_ - this->input_string_)
888 < this->input_length_))
889 this->token_ = this->make_invalid_token(this->current_);
890
891 return &this->token_;
892 }
893
894 // class Symbol_assignment.
895
896 // Add the symbol to the symbol table. This makes sure the symbol is
897 // there and defined. The actual value is stored later. We can't
898 // determine the actual value at this point, because we can't
899 // necessarily evaluate the expression until all ordinary symbols have
900 // been finalized.
901
902 // The GNU linker lets symbol assignments in the linker script
903 // silently override defined symbols in object files. We are
904 // compatible. FIXME: Should we issue a warning?
905
906 void
907 Symbol_assignment::add_to_table(Symbol_table* symtab)
908 {
909 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
910 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
911 NULL, // version
912 (this->is_defsym_
913 ? Symbol_table::DEFSYM
914 : Symbol_table::SCRIPT),
915 0, // value
916 0, // size
917 elfcpp::STT_NOTYPE,
918 elfcpp::STB_GLOBAL,
919 vis,
920 0, // nonvis
921 this->provide_,
922 true); // force_override
923 }
924
925 // Finalize a symbol value.
926
927 void
928 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
929 {
930 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
931 }
932
933 // Finalize a symbol value which can refer to the dot symbol.
934
935 void
936 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
937 const Layout* layout,
938 uint64_t dot_value,
939 Output_section* dot_section)
940 {
941 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
942 }
943
944 // Finalize a symbol value, internal version.
945
946 void
947 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
948 const Layout* layout,
949 bool is_dot_available,
950 uint64_t dot_value,
951 Output_section* dot_section)
952 {
953 // If we were only supposed to provide this symbol, the sym_ field
954 // will be NULL if the symbol was not referenced.
955 if (this->sym_ == NULL)
956 {
957 gold_assert(this->provide_);
958 return;
959 }
960
961 if (parameters->target().get_size() == 32)
962 {
963 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
964 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
965 dot_section);
966 #else
967 gold_unreachable();
968 #endif
969 }
970 else if (parameters->target().get_size() == 64)
971 {
972 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
973 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
974 dot_section);
975 #else
976 gold_unreachable();
977 #endif
978 }
979 else
980 gold_unreachable();
981 }
982
983 template<int size>
984 void
985 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
986 bool is_dot_available, uint64_t dot_value,
987 Output_section* dot_section)
988 {
989 Output_section* section;
990 elfcpp::STT type = elfcpp::STT_NOTYPE;
991 elfcpp::STV vis = elfcpp::STV_DEFAULT;
992 unsigned char nonvis = 0;
993 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
994 is_dot_available,
995 dot_value, dot_section,
996 &section, NULL, &type,
997 &vis, &nonvis, false, NULL);
998 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
999 ssym->set_value(final_val);
1000 ssym->set_type(type);
1001 ssym->set_visibility(vis);
1002 ssym->set_nonvis(nonvis);
1003 if (section != NULL)
1004 ssym->set_output_section(section);
1005 }
1006
1007 // Set the symbol value if the expression yields an absolute value or
1008 // a value relative to DOT_SECTION.
1009
1010 void
1011 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
1012 bool is_dot_available, uint64_t dot_value,
1013 Output_section* dot_section)
1014 {
1015 if (this->sym_ == NULL)
1016 return;
1017
1018 Output_section* val_section;
1019 bool is_valid;
1020 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1021 is_dot_available, dot_value,
1022 dot_section, &val_section, NULL,
1023 NULL, NULL, NULL, false, &is_valid);
1024 if (!is_valid || (val_section != NULL && val_section != dot_section))
1025 return;
1026
1027 if (parameters->target().get_size() == 32)
1028 {
1029 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1030 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1031 ssym->set_value(val);
1032 #else
1033 gold_unreachable();
1034 #endif
1035 }
1036 else if (parameters->target().get_size() == 64)
1037 {
1038 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1039 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1040 ssym->set_value(val);
1041 #else
1042 gold_unreachable();
1043 #endif
1044 }
1045 else
1046 gold_unreachable();
1047 if (val_section != NULL)
1048 this->sym_->set_output_section(val_section);
1049 }
1050
1051 // Print for debugging.
1052
1053 void
1054 Symbol_assignment::print(FILE* f) const
1055 {
1056 if (this->provide_ && this->hidden_)
1057 fprintf(f, "PROVIDE_HIDDEN(");
1058 else if (this->provide_)
1059 fprintf(f, "PROVIDE(");
1060 else if (this->hidden_)
1061 gold_unreachable();
1062
1063 fprintf(f, "%s = ", this->name_.c_str());
1064 this->val_->print(f);
1065
1066 if (this->provide_ || this->hidden_)
1067 fprintf(f, ")");
1068
1069 fprintf(f, "\n");
1070 }
1071
1072 // Class Script_assertion.
1073
1074 // Check the assertion.
1075
1076 void
1077 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1078 {
1079 if (!this->check_->eval(symtab, layout, true))
1080 gold_error("%s", this->message_.c_str());
1081 }
1082
1083 // Print for debugging.
1084
1085 void
1086 Script_assertion::print(FILE* f) const
1087 {
1088 fprintf(f, "ASSERT(");
1089 this->check_->print(f);
1090 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1091 }
1092
1093 // Class Script_options.
1094
1095 Script_options::Script_options()
1096 : entry_(), symbol_assignments_(), symbol_definitions_(),
1097 symbol_references_(), version_script_info_(), script_sections_()
1098 {
1099 }
1100
1101 // Returns true if NAME is on the list of symbol assignments waiting
1102 // to be processed.
1103
1104 bool
1105 Script_options::is_pending_assignment(const char* name)
1106 {
1107 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1108 p != this->symbol_assignments_.end();
1109 ++p)
1110 if ((*p)->name() == name)
1111 return true;
1112 return false;
1113 }
1114
1115 // Add a symbol to be defined.
1116
1117 void
1118 Script_options::add_symbol_assignment(const char* name, size_t length,
1119 bool is_defsym, Expression* value,
1120 bool provide, bool hidden)
1121 {
1122 if (length != 1 || name[0] != '.')
1123 {
1124 if (this->script_sections_.in_sections_clause())
1125 {
1126 gold_assert(!is_defsym);
1127 this->script_sections_.add_symbol_assignment(name, length, value,
1128 provide, hidden);
1129 }
1130 else
1131 {
1132 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1133 value, provide, hidden);
1134 this->symbol_assignments_.push_back(p);
1135 }
1136
1137 if (!provide)
1138 {
1139 std::string n(name, length);
1140 this->symbol_definitions_.insert(n);
1141 this->symbol_references_.erase(n);
1142 }
1143 }
1144 else
1145 {
1146 if (provide || hidden)
1147 gold_error(_("invalid use of PROVIDE for dot symbol"));
1148
1149 // The GNU linker permits assignments to dot outside of SECTIONS
1150 // clauses and treats them as occurring inside, so we don't
1151 // check in_sections_clause here.
1152 this->script_sections_.add_dot_assignment(value);
1153 }
1154 }
1155
1156 // Add a reference to a symbol.
1157
1158 void
1159 Script_options::add_symbol_reference(const char* name, size_t length)
1160 {
1161 if (length != 1 || name[0] != '.')
1162 {
1163 std::string n(name, length);
1164 if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1165 this->symbol_references_.insert(n);
1166 }
1167 }
1168
1169 // Add an assertion.
1170
1171 void
1172 Script_options::add_assertion(Expression* check, const char* message,
1173 size_t messagelen)
1174 {
1175 if (this->script_sections_.in_sections_clause())
1176 this->script_sections_.add_assertion(check, message, messagelen);
1177 else
1178 {
1179 Script_assertion* p = new Script_assertion(check, message, messagelen);
1180 this->assertions_.push_back(p);
1181 }
1182 }
1183
1184 // Create sections required by any linker scripts.
1185
1186 void
1187 Script_options::create_script_sections(Layout* layout)
1188 {
1189 if (this->saw_sections_clause())
1190 this->script_sections_.create_sections(layout);
1191 }
1192
1193 // Add any symbols we are defining to the symbol table.
1194
1195 void
1196 Script_options::add_symbols_to_table(Symbol_table* symtab)
1197 {
1198 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1199 p != this->symbol_assignments_.end();
1200 ++p)
1201 (*p)->add_to_table(symtab);
1202 this->script_sections_.add_symbols_to_table(symtab);
1203 }
1204
1205 // Finalize symbol values. Also check assertions.
1206
1207 void
1208 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1209 {
1210 // We finalize the symbols defined in SECTIONS first, because they
1211 // are the ones which may have changed. This way if symbol outside
1212 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1213 // will get the right value.
1214 this->script_sections_.finalize_symbols(symtab, layout);
1215
1216 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1217 p != this->symbol_assignments_.end();
1218 ++p)
1219 (*p)->finalize(symtab, layout);
1220
1221 for (Assertions::iterator p = this->assertions_.begin();
1222 p != this->assertions_.end();
1223 ++p)
1224 (*p)->check(symtab, layout);
1225 }
1226
1227 // Set section addresses. We set all the symbols which have absolute
1228 // values. Then we let the SECTIONS clause do its thing. This
1229 // returns the segment which holds the file header and segment
1230 // headers, if any.
1231
1232 Output_segment*
1233 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1234 {
1235 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1236 p != this->symbol_assignments_.end();
1237 ++p)
1238 (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1239
1240 return this->script_sections_.set_section_addresses(symtab, layout);
1241 }
1242
1243 // This class holds data passed through the parser to the lexer and to
1244 // the parser support functions. This avoids global variables. We
1245 // can't use global variables because we need not be called by a
1246 // singleton thread.
1247
1248 class Parser_closure
1249 {
1250 public:
1251 Parser_closure(const char* filename,
1252 const Position_dependent_options& posdep_options,
1253 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1254 Command_line* command_line,
1255 Script_options* script_options,
1256 Lex* lex,
1257 bool skip_on_incompatible_target,
1258 Script_info* script_info)
1259 : filename_(filename), posdep_options_(posdep_options),
1260 parsing_defsym_(parsing_defsym), in_group_(in_group),
1261 is_in_sysroot_(is_in_sysroot),
1262 skip_on_incompatible_target_(skip_on_incompatible_target),
1263 found_incompatible_target_(false),
1264 command_line_(command_line), script_options_(script_options),
1265 version_script_info_(script_options->version_script_info()),
1266 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1267 script_info_(script_info)
1268 {
1269 // We start out processing C symbols in the default lex mode.
1270 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1271 this->lex_mode_stack_.push_back(lex->mode());
1272 }
1273
1274 // Return the file name.
1275 const char*
1276 filename() const
1277 { return this->filename_; }
1278
1279 // Return the position dependent options. The caller may modify
1280 // this.
1281 Position_dependent_options&
1282 position_dependent_options()
1283 { return this->posdep_options_; }
1284
1285 // Whether we are parsing a --defsym.
1286 bool
1287 parsing_defsym() const
1288 { return this->parsing_defsym_; }
1289
1290 // Return whether this script is being run in a group.
1291 bool
1292 in_group() const
1293 { return this->in_group_; }
1294
1295 // Return whether this script was found using a directory in the
1296 // sysroot.
1297 bool
1298 is_in_sysroot() const
1299 { return this->is_in_sysroot_; }
1300
1301 // Whether to skip to the next file with the same name if we find an
1302 // incompatible target in an OUTPUT_FORMAT statement.
1303 bool
1304 skip_on_incompatible_target() const
1305 { return this->skip_on_incompatible_target_; }
1306
1307 // Stop skipping to the next file on an incompatible target. This
1308 // is called when we make some unrevocable change to the data
1309 // structures.
1310 void
1311 clear_skip_on_incompatible_target()
1312 { this->skip_on_incompatible_target_ = false; }
1313
1314 // Whether we found an incompatible target in an OUTPUT_FORMAT
1315 // statement.
1316 bool
1317 found_incompatible_target() const
1318 { return this->found_incompatible_target_; }
1319
1320 // Note that we found an incompatible target.
1321 void
1322 set_found_incompatible_target()
1323 { this->found_incompatible_target_ = true; }
1324
1325 // Returns the Command_line structure passed in at constructor time.
1326 // This value may be NULL. The caller may modify this, which modifies
1327 // the passed-in Command_line object (not a copy).
1328 Command_line*
1329 command_line()
1330 { return this->command_line_; }
1331
1332 // Return the options which may be set by a script.
1333 Script_options*
1334 script_options()
1335 { return this->script_options_; }
1336
1337 // Return the object in which version script information should be stored.
1338 Version_script_info*
1339 version_script()
1340 { return this->version_script_info_; }
1341
1342 // Return the next token, and advance.
1343 const Token*
1344 next_token()
1345 {
1346 const Token* token = this->lex_->next_token();
1347 this->lineno_ = token->lineno();
1348 this->charpos_ = token->charpos();
1349 return token;
1350 }
1351
1352 // Set a new lexer mode, pushing the current one.
1353 void
1354 push_lex_mode(Lex::Mode mode)
1355 {
1356 this->lex_mode_stack_.push_back(this->lex_->mode());
1357 this->lex_->set_mode(mode);
1358 }
1359
1360 // Pop the lexer mode.
1361 void
1362 pop_lex_mode()
1363 {
1364 gold_assert(!this->lex_mode_stack_.empty());
1365 this->lex_->set_mode(this->lex_mode_stack_.back());
1366 this->lex_mode_stack_.pop_back();
1367 }
1368
1369 // Return the current lexer mode.
1370 Lex::Mode
1371 lex_mode() const
1372 { return this->lex_mode_stack_.back(); }
1373
1374 // Return the line number of the last token.
1375 int
1376 lineno() const
1377 { return this->lineno_; }
1378
1379 // Return the character position in the line of the last token.
1380 int
1381 charpos() const
1382 { return this->charpos_; }
1383
1384 // Return the list of input files, creating it if necessary. This
1385 // is a space leak--we never free the INPUTS_ pointer.
1386 Input_arguments*
1387 inputs()
1388 {
1389 if (this->inputs_ == NULL)
1390 this->inputs_ = new Input_arguments();
1391 return this->inputs_;
1392 }
1393
1394 // Return whether we saw any input files.
1395 bool
1396 saw_inputs() const
1397 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1398
1399 // Return the current language being processed in a version script
1400 // (eg, "C++"). The empty string represents unmangled C names.
1401 Version_script_info::Language
1402 get_current_language() const
1403 { return this->language_stack_.back(); }
1404
1405 // Push a language onto the stack when entering an extern block.
1406 void
1407 push_language(Version_script_info::Language lang)
1408 { this->language_stack_.push_back(lang); }
1409
1410 // Pop a language off of the stack when exiting an extern block.
1411 void
1412 pop_language()
1413 {
1414 gold_assert(!this->language_stack_.empty());
1415 this->language_stack_.pop_back();
1416 }
1417
1418 // Return a pointer to the incremental info.
1419 Script_info*
1420 script_info()
1421 { return this->script_info_; }
1422
1423 private:
1424 // The name of the file we are reading.
1425 const char* filename_;
1426 // The position dependent options.
1427 Position_dependent_options posdep_options_;
1428 // True if we are parsing a --defsym.
1429 bool parsing_defsym_;
1430 // Whether we are currently in a --start-group/--end-group.
1431 bool in_group_;
1432 // Whether the script was found in a sysrooted directory.
1433 bool is_in_sysroot_;
1434 // If this is true, then if we find an OUTPUT_FORMAT with an
1435 // incompatible target, then we tell the parser to abort so that we
1436 // can search for the next file with the same name.
1437 bool skip_on_incompatible_target_;
1438 // True if we found an OUTPUT_FORMAT with an incompatible target.
1439 bool found_incompatible_target_;
1440 // May be NULL if the user chooses not to pass one in.
1441 Command_line* command_line_;
1442 // Options which may be set from any linker script.
1443 Script_options* script_options_;
1444 // Information parsed from a version script.
1445 Version_script_info* version_script_info_;
1446 // The lexer.
1447 Lex* lex_;
1448 // The line number of the last token returned by next_token.
1449 int lineno_;
1450 // The column number of the last token returned by next_token.
1451 int charpos_;
1452 // A stack of lexer modes.
1453 std::vector<Lex::Mode> lex_mode_stack_;
1454 // A stack of which extern/language block we're inside. Can be C++,
1455 // java, or empty for C.
1456 std::vector<Version_script_info::Language> language_stack_;
1457 // New input files found to add to the link.
1458 Input_arguments* inputs_;
1459 // Pointer to incremental linking info.
1460 Script_info* script_info_;
1461 };
1462
1463 // FILE was found as an argument on the command line. Try to read it
1464 // as a script. Return true if the file was handled.
1465
1466 bool
1467 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1468 Dirsearch* dirsearch, int dirindex,
1469 Input_objects* input_objects, Mapfile* mapfile,
1470 Input_group* input_group,
1471 const Input_argument* input_argument,
1472 Input_file* input_file, Task_token* next_blocker,
1473 bool* used_next_blocker)
1474 {
1475 *used_next_blocker = false;
1476
1477 std::string input_string;
1478 Lex::read_file(input_file, &input_string);
1479
1480 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1481
1482 Script_info* script_info = NULL;
1483 if (layout->incremental_inputs() != NULL)
1484 {
1485 const std::string& filename = input_file->filename();
1486 Timespec mtime = input_file->file().get_mtime();
1487 unsigned int arg_serial = input_argument->file().arg_serial();
1488 script_info = new Script_info(filename);
1489 layout->incremental_inputs()->report_script(script_info, arg_serial,
1490 mtime);
1491 }
1492
1493 Parser_closure closure(input_file->filename().c_str(),
1494 input_argument->file().options(),
1495 false,
1496 input_group != NULL,
1497 input_file->is_in_sysroot(),
1498 NULL,
1499 layout->script_options(),
1500 &lex,
1501 input_file->will_search_for(),
1502 script_info);
1503
1504 bool old_saw_sections_clause =
1505 layout->script_options()->saw_sections_clause();
1506
1507 if (yyparse(&closure) != 0)
1508 {
1509 if (closure.found_incompatible_target())
1510 {
1511 Read_symbols::incompatible_warning(input_argument, input_file);
1512 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1513 dirsearch, dirindex, mapfile, input_argument,
1514 input_group, next_blocker);
1515 return true;
1516 }
1517 return false;
1518 }
1519
1520 if (!old_saw_sections_clause
1521 && layout->script_options()->saw_sections_clause()
1522 && layout->have_added_input_section())
1523 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1524 input_file->filename().c_str());
1525
1526 if (!closure.saw_inputs())
1527 return true;
1528
1529 Task_token* this_blocker = NULL;
1530 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1531 p != closure.inputs()->end();
1532 ++p)
1533 {
1534 Task_token* nb;
1535 if (p + 1 == closure.inputs()->end())
1536 nb = next_blocker;
1537 else
1538 {
1539 nb = new Task_token(true);
1540 nb->add_blocker();
1541 }
1542 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1543 layout, dirsearch, 0, mapfile, &*p,
1544 input_group, NULL, this_blocker, nb));
1545 this_blocker = nb;
1546 }
1547
1548 *used_next_blocker = true;
1549
1550 return true;
1551 }
1552
1553 // Helper function for read_version_script(), read_commandline_script() and
1554 // script_include_directive(). Processes the given file in the mode indicated
1555 // by first_token and lex_mode.
1556
1557 static bool
1558 read_script_file(const char* filename, Command_line* cmdline,
1559 Script_options* script_options,
1560 int first_token, Lex::Mode lex_mode)
1561 {
1562 Dirsearch dirsearch;
1563 std::string name = filename;
1564
1565 // If filename is a relative filename, search for it manually using "." +
1566 // cmdline->options()->library_path() -- not dirsearch.
1567 if (!IS_ABSOLUTE_PATH(filename))
1568 {
1569 const General_options::Dir_list& search_path =
1570 cmdline->options().library_path();
1571 name = Dirsearch::find_file_in_dir_list(name, search_path, ".");
1572 }
1573
1574 // The file locking code wants to record a Task, but we haven't
1575 // started the workqueue yet. This is only for debugging purposes,
1576 // so we invent a fake value.
1577 const Task* task = reinterpret_cast<const Task*>(-1);
1578
1579 // We don't want this file to be opened in binary mode.
1580 Position_dependent_options posdep = cmdline->position_dependent_options();
1581 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1582 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1583 Input_file_argument input_argument(name.c_str(),
1584 Input_file_argument::INPUT_FILE_TYPE_FILE,
1585 "", false, posdep);
1586 Input_file input_file(&input_argument);
1587 int dummy = 0;
1588 if (!input_file.open(dirsearch, task, &dummy))
1589 return false;
1590
1591 std::string input_string;
1592 Lex::read_file(&input_file, &input_string);
1593
1594 Lex lex(input_string.c_str(), input_string.length(), first_token);
1595 lex.set_mode(lex_mode);
1596
1597 Parser_closure closure(filename,
1598 cmdline->position_dependent_options(),
1599 first_token == Lex::DYNAMIC_LIST,
1600 false,
1601 input_file.is_in_sysroot(),
1602 cmdline,
1603 script_options,
1604 &lex,
1605 false,
1606 NULL);
1607 if (yyparse(&closure) != 0)
1608 {
1609 input_file.file().unlock(task);
1610 return false;
1611 }
1612
1613 input_file.file().unlock(task);
1614
1615 gold_assert(!closure.saw_inputs());
1616
1617 return true;
1618 }
1619
1620 // FILENAME was found as an argument to --script (-T).
1621 // Read it as a script, and execute its contents immediately.
1622
1623 bool
1624 read_commandline_script(const char* filename, Command_line* cmdline)
1625 {
1626 return read_script_file(filename, cmdline, &cmdline->script_options(),
1627 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1628 }
1629
1630 // FILENAME was found as an argument to --version-script. Read it as
1631 // a version script, and store its contents in
1632 // cmdline->script_options()->version_script_info().
1633
1634 bool
1635 read_version_script(const char* filename, Command_line* cmdline)
1636 {
1637 return read_script_file(filename, cmdline, &cmdline->script_options(),
1638 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1639 }
1640
1641 // FILENAME was found as an argument to --dynamic-list. Read it as a
1642 // list of symbols, and store its contents in DYNAMIC_LIST.
1643
1644 bool
1645 read_dynamic_list(const char* filename, Command_line* cmdline,
1646 Script_options* dynamic_list)
1647 {
1648 return read_script_file(filename, cmdline, dynamic_list,
1649 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1650 }
1651
1652 // Implement the --defsym option on the command line. Return true if
1653 // all is well.
1654
1655 bool
1656 Script_options::define_symbol(const char* definition)
1657 {
1658 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1659 lex.set_mode(Lex::EXPRESSION);
1660
1661 // Dummy value.
1662 Position_dependent_options posdep_options;
1663
1664 Parser_closure closure("command line", posdep_options, true,
1665 false, false, NULL, this, &lex, false, NULL);
1666
1667 if (yyparse(&closure) != 0)
1668 return false;
1669
1670 gold_assert(!closure.saw_inputs());
1671
1672 return true;
1673 }
1674
1675 // Print the script to F for debugging.
1676
1677 void
1678 Script_options::print(FILE* f) const
1679 {
1680 fprintf(f, "%s: Dumping linker script\n", program_name);
1681
1682 if (!this->entry_.empty())
1683 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1684
1685 for (Symbol_assignments::const_iterator p =
1686 this->symbol_assignments_.begin();
1687 p != this->symbol_assignments_.end();
1688 ++p)
1689 (*p)->print(f);
1690
1691 for (Assertions::const_iterator p = this->assertions_.begin();
1692 p != this->assertions_.end();
1693 ++p)
1694 (*p)->print(f);
1695
1696 this->script_sections_.print(f);
1697
1698 this->version_script_info_.print(f);
1699 }
1700
1701 // Manage mapping from keywords to the codes expected by the bison
1702 // parser. We construct one global object for each lex mode with
1703 // keywords.
1704
1705 class Keyword_to_parsecode
1706 {
1707 public:
1708 // The structure which maps keywords to parsecodes.
1709 struct Keyword_parsecode
1710 {
1711 // Keyword.
1712 const char* keyword;
1713 // Corresponding parsecode.
1714 int parsecode;
1715 };
1716
1717 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1718 int keyword_count)
1719 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1720 { }
1721
1722 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1723 // keyword.
1724 int
1725 keyword_to_parsecode(const char* keyword, size_t len) const;
1726
1727 private:
1728 const Keyword_parsecode* keyword_parsecodes_;
1729 const int keyword_count_;
1730 };
1731
1732 // Mapping from keyword string to keyword parsecode. This array must
1733 // be kept in sorted order. Parsecodes are looked up using bsearch.
1734 // This array must correspond to the list of parsecodes in yyscript.y.
1735
1736 static const Keyword_to_parsecode::Keyword_parsecode
1737 script_keyword_parsecodes[] =
1738 {
1739 { "ABSOLUTE", ABSOLUTE },
1740 { "ADDR", ADDR },
1741 { "ALIGN", ALIGN_K },
1742 { "ALIGNOF", ALIGNOF },
1743 { "ASSERT", ASSERT_K },
1744 { "AS_NEEDED", AS_NEEDED },
1745 { "AT", AT },
1746 { "BIND", BIND },
1747 { "BLOCK", BLOCK },
1748 { "BYTE", BYTE },
1749 { "CONSTANT", CONSTANT },
1750 { "CONSTRUCTORS", CONSTRUCTORS },
1751 { "COPY", COPY },
1752 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1753 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1754 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1755 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1756 { "DEFINED", DEFINED },
1757 { "DSECT", DSECT },
1758 { "ENTRY", ENTRY },
1759 { "EXCLUDE_FILE", EXCLUDE_FILE },
1760 { "EXTERN", EXTERN },
1761 { "FILL", FILL },
1762 { "FLOAT", FLOAT },
1763 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1764 { "GROUP", GROUP },
1765 { "HIDDEN", HIDDEN },
1766 { "HLL", HLL },
1767 { "INCLUDE", INCLUDE },
1768 { "INFO", INFO },
1769 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1770 { "INPUT", INPUT },
1771 { "KEEP", KEEP },
1772 { "LENGTH", LENGTH },
1773 { "LOADADDR", LOADADDR },
1774 { "LONG", LONG },
1775 { "MAP", MAP },
1776 { "MAX", MAX_K },
1777 { "MEMORY", MEMORY },
1778 { "MIN", MIN_K },
1779 { "NEXT", NEXT },
1780 { "NOCROSSREFS", NOCROSSREFS },
1781 { "NOFLOAT", NOFLOAT },
1782 { "NOLOAD", NOLOAD },
1783 { "ONLY_IF_RO", ONLY_IF_RO },
1784 { "ONLY_IF_RW", ONLY_IF_RW },
1785 { "OPTION", OPTION },
1786 { "ORIGIN", ORIGIN },
1787 { "OUTPUT", OUTPUT },
1788 { "OUTPUT_ARCH", OUTPUT_ARCH },
1789 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1790 { "OVERLAY", OVERLAY },
1791 { "PHDRS", PHDRS },
1792 { "PROVIDE", PROVIDE },
1793 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1794 { "QUAD", QUAD },
1795 { "SEARCH_DIR", SEARCH_DIR },
1796 { "SECTIONS", SECTIONS },
1797 { "SEGMENT_START", SEGMENT_START },
1798 { "SHORT", SHORT },
1799 { "SIZEOF", SIZEOF },
1800 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1801 { "SORT", SORT_BY_NAME },
1802 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1803 { "SORT_BY_INIT_PRIORITY", SORT_BY_INIT_PRIORITY },
1804 { "SORT_BY_NAME", SORT_BY_NAME },
1805 { "SPECIAL", SPECIAL },
1806 { "SQUAD", SQUAD },
1807 { "STARTUP", STARTUP },
1808 { "SUBALIGN", SUBALIGN },
1809 { "SYSLIB", SYSLIB },
1810 { "TARGET", TARGET_K },
1811 { "TRUNCATE", TRUNCATE },
1812 { "VERSION", VERSIONK },
1813 { "global", GLOBAL },
1814 { "l", LENGTH },
1815 { "len", LENGTH },
1816 { "local", LOCAL },
1817 { "o", ORIGIN },
1818 { "org", ORIGIN },
1819 { "sizeof_headers", SIZEOF_HEADERS },
1820 };
1821
1822 static const Keyword_to_parsecode
1823 script_keywords(&script_keyword_parsecodes[0],
1824 (sizeof(script_keyword_parsecodes)
1825 / sizeof(script_keyword_parsecodes[0])));
1826
1827 static const Keyword_to_parsecode::Keyword_parsecode
1828 version_script_keyword_parsecodes[] =
1829 {
1830 { "extern", EXTERN },
1831 { "global", GLOBAL },
1832 { "local", LOCAL },
1833 };
1834
1835 static const Keyword_to_parsecode
1836 version_script_keywords(&version_script_keyword_parsecodes[0],
1837 (sizeof(version_script_keyword_parsecodes)
1838 / sizeof(version_script_keyword_parsecodes[0])));
1839
1840 static const Keyword_to_parsecode::Keyword_parsecode
1841 dynamic_list_keyword_parsecodes[] =
1842 {
1843 { "extern", EXTERN },
1844 };
1845
1846 static const Keyword_to_parsecode
1847 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1848 (sizeof(dynamic_list_keyword_parsecodes)
1849 / sizeof(dynamic_list_keyword_parsecodes[0])));
1850
1851
1852
1853 // Comparison function passed to bsearch.
1854
1855 extern "C"
1856 {
1857
1858 struct Ktt_key
1859 {
1860 const char* str;
1861 size_t len;
1862 };
1863
1864 static int
1865 ktt_compare(const void* keyv, const void* kttv)
1866 {
1867 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1868 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1869 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1870 int i = strncmp(key->str, ktt->keyword, key->len);
1871 if (i != 0)
1872 return i;
1873 if (ktt->keyword[key->len] != '\0')
1874 return -1;
1875 return 0;
1876 }
1877
1878 } // End extern "C".
1879
1880 int
1881 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1882 size_t len) const
1883 {
1884 Ktt_key key;
1885 key.str = keyword;
1886 key.len = len;
1887 void* kttv = bsearch(&key,
1888 this->keyword_parsecodes_,
1889 this->keyword_count_,
1890 sizeof(this->keyword_parsecodes_[0]),
1891 ktt_compare);
1892 if (kttv == NULL)
1893 return 0;
1894 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1895 return ktt->parsecode;
1896 }
1897
1898 // The following structs are used within the VersionInfo class as well
1899 // as in the bison helper functions. They store the information
1900 // parsed from the version script.
1901
1902 // A single version expression.
1903 // For example, pattern="std::map*" and language="C++".
1904 struct Version_expression
1905 {
1906 Version_expression(const std::string& a_pattern,
1907 Version_script_info::Language a_language,
1908 bool a_exact_match)
1909 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1910 was_matched_by_symbol(false)
1911 { }
1912
1913 std::string pattern;
1914 Version_script_info::Language language;
1915 // If false, we use glob() to match pattern. If true, we use strcmp().
1916 bool exact_match;
1917 // True if --no-undefined-version is in effect and we found this
1918 // version in get_symbol_version. We use mutable because this
1919 // struct is generally not modifiable after it has been created.
1920 mutable bool was_matched_by_symbol;
1921 };
1922
1923 // A list of expressions.
1924 struct Version_expression_list
1925 {
1926 std::vector<struct Version_expression> expressions;
1927 };
1928
1929 // A list of which versions upon which another version depends.
1930 // Strings should be from the Stringpool.
1931 struct Version_dependency_list
1932 {
1933 std::vector<std::string> dependencies;
1934 };
1935
1936 // The total definition of a version. It includes the tag for the
1937 // version, its global and local expressions, and any dependencies.
1938 struct Version_tree
1939 {
1940 Version_tree()
1941 : tag(), global(NULL), local(NULL), dependencies(NULL)
1942 { }
1943
1944 std::string tag;
1945 const struct Version_expression_list* global;
1946 const struct Version_expression_list* local;
1947 const struct Version_dependency_list* dependencies;
1948 };
1949
1950 // Helper class that calls cplus_demangle when needed and takes care of freeing
1951 // the result.
1952
1953 class Lazy_demangler
1954 {
1955 public:
1956 Lazy_demangler(const char* symbol, int options)
1957 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1958 { }
1959
1960 ~Lazy_demangler()
1961 { free(this->demangled_); }
1962
1963 // Return the demangled name. The actual demangling happens on the first call,
1964 // and the result is later cached.
1965 inline char*
1966 get();
1967
1968 private:
1969 // The symbol to demangle.
1970 const char* symbol_;
1971 // Option flags to pass to cplus_demagle.
1972 const int options_;
1973 // The cached demangled value, or NULL if demangling didn't happen yet or
1974 // failed.
1975 char* demangled_;
1976 // Whether we already called cplus_demangle
1977 bool did_demangle_;
1978 };
1979
1980 // Return the demangled name. The actual demangling happens on the first call,
1981 // and the result is later cached. Returns NULL if the symbol cannot be
1982 // demangled.
1983
1984 inline char*
1985 Lazy_demangler::get()
1986 {
1987 if (!this->did_demangle_)
1988 {
1989 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1990 this->did_demangle_ = true;
1991 }
1992 return this->demangled_;
1993 }
1994
1995 // Class Version_script_info.
1996
1997 Version_script_info::Version_script_info()
1998 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1999 default_version_(NULL), default_is_global_(false), is_finalized_(false)
2000 {
2001 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2002 this->exact_[i] = NULL;
2003 }
2004
2005 Version_script_info::~Version_script_info()
2006 {
2007 }
2008
2009 // Forget all the known version script information.
2010
2011 void
2012 Version_script_info::clear()
2013 {
2014 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
2015 delete this->dependency_lists_[k];
2016 this->dependency_lists_.clear();
2017 for (size_t k = 0; k < this->version_trees_.size(); ++k)
2018 delete this->version_trees_[k];
2019 this->version_trees_.clear();
2020 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
2021 delete this->expression_lists_[k];
2022 this->expression_lists_.clear();
2023 }
2024
2025 // Finalize the version script information.
2026
2027 void
2028 Version_script_info::finalize()
2029 {
2030 if (!this->is_finalized_)
2031 {
2032 this->build_lookup_tables();
2033 this->is_finalized_ = true;
2034 }
2035 }
2036
2037 // Return all the versions.
2038
2039 std::vector<std::string>
2040 Version_script_info::get_versions() const
2041 {
2042 std::vector<std::string> ret;
2043 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2044 if (!this->version_trees_[j]->tag.empty())
2045 ret.push_back(this->version_trees_[j]->tag);
2046 return ret;
2047 }
2048
2049 // Return the dependencies of VERSION.
2050
2051 std::vector<std::string>
2052 Version_script_info::get_dependencies(const char* version) const
2053 {
2054 std::vector<std::string> ret;
2055 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2056 if (this->version_trees_[j]->tag == version)
2057 {
2058 const struct Version_dependency_list* deps =
2059 this->version_trees_[j]->dependencies;
2060 if (deps != NULL)
2061 for (size_t k = 0; k < deps->dependencies.size(); ++k)
2062 ret.push_back(deps->dependencies[k]);
2063 return ret;
2064 }
2065 return ret;
2066 }
2067
2068 // A version script essentially maps a symbol name to a version tag
2069 // and an indication of whether symbol is global or local within that
2070 // version tag. Each symbol maps to at most one version tag.
2071 // Unfortunately, in practice, version scripts are ambiguous, and list
2072 // symbols multiple times. Thus, we have to document the matching
2073 // process.
2074
2075 // This is a description of what the GNU linker does as of 2010-01-11.
2076 // It walks through the version tags in the order in which they appear
2077 // in the version script. For each tag, it first walks through the
2078 // global patterns for that tag, then the local patterns. When
2079 // looking at a single pattern, it first applies any language specific
2080 // demangling as specified for the pattern, and then matches the
2081 // resulting symbol name to the pattern. If it finds an exact match
2082 // for a literal pattern (a pattern enclosed in quotes or with no
2083 // wildcard characters), then that is the match that it uses. If
2084 // finds a match with a wildcard pattern, then it saves it and
2085 // continues searching. Wildcard patterns that are exactly "*" are
2086 // saved separately.
2087
2088 // If no exact match with a literal pattern is ever found, then if a
2089 // wildcard match with a global pattern was found it is used,
2090 // otherwise if a wildcard match with a local pattern was found it is
2091 // used.
2092
2093 // This is the result:
2094 // * If there is an exact match, then we use the first tag in the
2095 // version script where it matches.
2096 // + If the exact match in that tag is global, it is used.
2097 // + Otherwise the exact match in that tag is local, and is used.
2098 // * Otherwise, if there is any match with a global wildcard pattern:
2099 // + If there is any match with a wildcard pattern which is not
2100 // "*", then we use the tag in which the *last* such pattern
2101 // appears.
2102 // + Otherwise, we matched "*". If there is no match with a local
2103 // wildcard pattern which is not "*", then we use the *last*
2104 // match with a global "*". Otherwise, continue.
2105 // * Otherwise, if there is any match with a local wildcard pattern:
2106 // + If there is any match with a wildcard pattern which is not
2107 // "*", then we use the tag in which the *last* such pattern
2108 // appears.
2109 // + Otherwise, we matched "*", and we use the tag in which the
2110 // *last* such match occurred.
2111
2112 // There is an additional wrinkle. When the GNU linker finds a symbol
2113 // with a version defined in an object file due to a .symver
2114 // directive, it looks up that symbol name in that version tag. If it
2115 // finds it, it matches the symbol name against the patterns for that
2116 // version. If there is no match with a global pattern, but there is
2117 // a match with a local pattern, then the GNU linker marks the symbol
2118 // as local.
2119
2120 // We want gold to be generally compatible, but we also want gold to
2121 // be fast. These are the rules that gold implements:
2122 // * If there is an exact match for the mangled name, we use it.
2123 // + If there is more than one exact match, we give a warning, and
2124 // we use the first tag in the script which matches.
2125 // + If a symbol has an exact match as both global and local for
2126 // the same version tag, we give an error.
2127 // * Otherwise, we look for an extern C++ or an extern Java exact
2128 // match. If we find an exact match, we use it.
2129 // + If there is more than one exact match, we give a warning, and
2130 // we use the first tag in the script which matches.
2131 // + If a symbol has an exact match as both global and local for
2132 // the same version tag, we give an error.
2133 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2134 // patterns. We look through the version tags in reverse order.
2135 // For each version tag, we look through the global patterns and
2136 // then the local patterns. We use the first match we find (i.e.,
2137 // the last matching version tag in the file).
2138 // * Otherwise, we use the "*" pattern if there is one. We give an
2139 // error if there are multiple "*" patterns.
2140
2141 // At least for now, gold does not look up the version tag for a
2142 // symbol version found in an object file to see if it should be
2143 // forced local. There are other ways to force a symbol to be local,
2144 // and I don't understand why this one is useful.
2145
2146 // Build a set of fast lookup tables for a version script.
2147
2148 void
2149 Version_script_info::build_lookup_tables()
2150 {
2151 size_t size = this->version_trees_.size();
2152 for (size_t j = 0; j < size; ++j)
2153 {
2154 const Version_tree* v = this->version_trees_[j];
2155 this->build_expression_list_lookup(v->local, v, false);
2156 this->build_expression_list_lookup(v->global, v, true);
2157 }
2158 }
2159
2160 // If a pattern has backlashes but no unquoted wildcard characters,
2161 // then we apply backslash unquoting and look for an exact match.
2162 // Otherwise we treat it as a wildcard pattern. This function returns
2163 // true for a wildcard pattern. Otherwise, it does backslash
2164 // unquoting on *PATTERN and returns false. If this returns true,
2165 // *PATTERN may have been partially unquoted.
2166
2167 bool
2168 Version_script_info::unquote(std::string* pattern) const
2169 {
2170 bool saw_backslash = false;
2171 size_t len = pattern->length();
2172 size_t j = 0;
2173 for (size_t i = 0; i < len; ++i)
2174 {
2175 if (saw_backslash)
2176 saw_backslash = false;
2177 else
2178 {
2179 switch ((*pattern)[i])
2180 {
2181 case '?': case '[': case '*':
2182 return true;
2183 case '\\':
2184 saw_backslash = true;
2185 continue;
2186 default:
2187 break;
2188 }
2189 }
2190
2191 if (i != j)
2192 (*pattern)[j] = (*pattern)[i];
2193 ++j;
2194 }
2195 return false;
2196 }
2197
2198 // Add an exact match for MATCH to *PE. The result of the match is
2199 // V/IS_GLOBAL.
2200
2201 void
2202 Version_script_info::add_exact_match(const std::string& match,
2203 const Version_tree* v, bool is_global,
2204 const Version_expression* ve,
2205 Exact* pe)
2206 {
2207 std::pair<Exact::iterator, bool> ins =
2208 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2209 if (ins.second)
2210 {
2211 // This is the first time we have seen this match.
2212 return;
2213 }
2214
2215 Version_tree_match& vtm(ins.first->second);
2216 if (vtm.real->tag != v->tag)
2217 {
2218 // This is an ambiguous match. We still return the
2219 // first version that we found in the script, but we
2220 // record the new version to issue a warning if we
2221 // wind up looking up this symbol.
2222 if (vtm.ambiguous == NULL)
2223 vtm.ambiguous = v;
2224 }
2225 else if (is_global != vtm.is_global)
2226 {
2227 // We have a match for both the global and local entries for a
2228 // version tag. That's got to be wrong.
2229 gold_error(_("'%s' appears as both a global and a local symbol "
2230 "for version '%s' in script"),
2231 match.c_str(), v->tag.c_str());
2232 }
2233 }
2234
2235 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2236 // All matches go to V, and IS_GLOBAL is true if they are global
2237 // matches.
2238
2239 void
2240 Version_script_info::build_expression_list_lookup(
2241 const Version_expression_list* explist,
2242 const Version_tree* v,
2243 bool is_global)
2244 {
2245 if (explist == NULL)
2246 return;
2247 size_t size = explist->expressions.size();
2248 for (size_t i = 0; i < size; ++i)
2249 {
2250 const Version_expression& exp(explist->expressions[i]);
2251
2252 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2253 {
2254 if (this->default_version_ != NULL
2255 && this->default_version_->tag != v->tag)
2256 gold_warning(_("wildcard match appears in both version '%s' "
2257 "and '%s' in script"),
2258 this->default_version_->tag.c_str(), v->tag.c_str());
2259 else if (this->default_version_ != NULL
2260 && this->default_is_global_ != is_global)
2261 gold_error(_("wildcard match appears as both global and local "
2262 "in version '%s' in script"),
2263 v->tag.c_str());
2264 this->default_version_ = v;
2265 this->default_is_global_ = is_global;
2266 continue;
2267 }
2268
2269 std::string pattern = exp.pattern;
2270 if (!exp.exact_match)
2271 {
2272 if (this->unquote(&pattern))
2273 {
2274 this->globs_.push_back(Glob(&exp, v, is_global));
2275 continue;
2276 }
2277 }
2278
2279 if (this->exact_[exp.language] == NULL)
2280 this->exact_[exp.language] = new Exact();
2281 this->add_exact_match(pattern, v, is_global, &exp,
2282 this->exact_[exp.language]);
2283 }
2284 }
2285
2286 // Return the name to match given a name, a language code, and two
2287 // lazy demanglers.
2288
2289 const char*
2290 Version_script_info::get_name_to_match(const char* name,
2291 int language,
2292 Lazy_demangler* cpp_demangler,
2293 Lazy_demangler* java_demangler) const
2294 {
2295 switch (language)
2296 {
2297 case LANGUAGE_C:
2298 return name;
2299 case LANGUAGE_CXX:
2300 return cpp_demangler->get();
2301 case LANGUAGE_JAVA:
2302 return java_demangler->get();
2303 default:
2304 gold_unreachable();
2305 }
2306 }
2307
2308 // Look up SYMBOL_NAME in the list of versions. Return true if the
2309 // symbol is found, false if not. If the symbol is found, then if
2310 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2311 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2312 // symbol is global or not.
2313
2314 bool
2315 Version_script_info::get_symbol_version(const char* symbol_name,
2316 std::string* pversion,
2317 bool* p_is_global) const
2318 {
2319 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2320 Lazy_demangler java_demangled_name(symbol_name,
2321 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2322
2323 gold_assert(this->is_finalized_);
2324 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2325 {
2326 Exact* exact = this->exact_[i];
2327 if (exact == NULL)
2328 continue;
2329
2330 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2331 &cpp_demangled_name,
2332 &java_demangled_name);
2333 if (name_to_match == NULL)
2334 {
2335 // If the name can not be demangled, the GNU linker goes
2336 // ahead and tries to match it anyhow. That does not
2337 // make sense to me and I have not implemented it.
2338 continue;
2339 }
2340
2341 Exact::const_iterator pe = exact->find(name_to_match);
2342 if (pe != exact->end())
2343 {
2344 const Version_tree_match& vtm(pe->second);
2345 if (vtm.ambiguous != NULL)
2346 gold_warning(_("using '%s' as version for '%s' which is also "
2347 "named in version '%s' in script"),
2348 vtm.real->tag.c_str(), name_to_match,
2349 vtm.ambiguous->tag.c_str());
2350
2351 if (pversion != NULL)
2352 *pversion = vtm.real->tag;
2353 if (p_is_global != NULL)
2354 *p_is_global = vtm.is_global;
2355
2356 // If we are using --no-undefined-version, and this is a
2357 // global symbol, we have to record that we have found this
2358 // symbol, so that we don't warn about it. We have to do
2359 // this now, because otherwise we have no way to get from a
2360 // non-C language back to the demangled name that we
2361 // matched.
2362 if (p_is_global != NULL && vtm.is_global)
2363 vtm.expression->was_matched_by_symbol = true;
2364
2365 return true;
2366 }
2367 }
2368
2369 // Look through the glob patterns in reverse order.
2370
2371 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2372 p != this->globs_.rend();
2373 ++p)
2374 {
2375 int language = p->expression->language;
2376 const char* name_to_match = this->get_name_to_match(symbol_name,
2377 language,
2378 &cpp_demangled_name,
2379 &java_demangled_name);
2380 if (name_to_match == NULL)
2381 continue;
2382
2383 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2384 FNM_NOESCAPE) == 0)
2385 {
2386 if (pversion != NULL)
2387 *pversion = p->version->tag;
2388 if (p_is_global != NULL)
2389 *p_is_global = p->is_global;
2390 return true;
2391 }
2392 }
2393
2394 // Finally, there may be a wildcard.
2395 if (this->default_version_ != NULL)
2396 {
2397 if (pversion != NULL)
2398 *pversion = this->default_version_->tag;
2399 if (p_is_global != NULL)
2400 *p_is_global = this->default_is_global_;
2401 return true;
2402 }
2403
2404 return false;
2405 }
2406
2407 // Give an error if any exact symbol names (not wildcards) appear in a
2408 // version script, but there is no such symbol.
2409
2410 void
2411 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2412 {
2413 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2414 {
2415 const Version_tree* vt = this->version_trees_[i];
2416 if (vt->global == NULL)
2417 continue;
2418 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2419 {
2420 const Version_expression& expression(vt->global->expressions[j]);
2421
2422 // Ignore cases where we used the version because we saw a
2423 // symbol that we looked up. Note that
2424 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2425 // not a definition. That's OK as in that case we most
2426 // likely gave an undefined symbol error anyhow.
2427 if (expression.was_matched_by_symbol)
2428 continue;
2429
2430 // Just ignore names which are in languages other than C.
2431 // We have no way to look them up in the symbol table.
2432 if (expression.language != LANGUAGE_C)
2433 continue;
2434
2435 // Remove backslash quoting, and ignore wildcard patterns.
2436 std::string pattern = expression.pattern;
2437 if (!expression.exact_match)
2438 {
2439 if (this->unquote(&pattern))
2440 continue;
2441 }
2442
2443 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2444 gold_error(_("version script assignment of %s to symbol %s "
2445 "failed: symbol not defined"),
2446 vt->tag.c_str(), pattern.c_str());
2447 }
2448 }
2449 }
2450
2451 struct Version_dependency_list*
2452 Version_script_info::allocate_dependency_list()
2453 {
2454 dependency_lists_.push_back(new Version_dependency_list);
2455 return dependency_lists_.back();
2456 }
2457
2458 struct Version_expression_list*
2459 Version_script_info::allocate_expression_list()
2460 {
2461 expression_lists_.push_back(new Version_expression_list);
2462 return expression_lists_.back();
2463 }
2464
2465 struct Version_tree*
2466 Version_script_info::allocate_version_tree()
2467 {
2468 version_trees_.push_back(new Version_tree);
2469 return version_trees_.back();
2470 }
2471
2472 // Print for debugging.
2473
2474 void
2475 Version_script_info::print(FILE* f) const
2476 {
2477 if (this->empty())
2478 return;
2479
2480 fprintf(f, "VERSION {");
2481
2482 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2483 {
2484 const Version_tree* vt = this->version_trees_[i];
2485
2486 if (vt->tag.empty())
2487 fprintf(f, " {\n");
2488 else
2489 fprintf(f, " %s {\n", vt->tag.c_str());
2490
2491 if (vt->global != NULL)
2492 {
2493 fprintf(f, " global :\n");
2494 this->print_expression_list(f, vt->global);
2495 }
2496
2497 if (vt->local != NULL)
2498 {
2499 fprintf(f, " local :\n");
2500 this->print_expression_list(f, vt->local);
2501 }
2502
2503 fprintf(f, " }");
2504 if (vt->dependencies != NULL)
2505 {
2506 const Version_dependency_list* deps = vt->dependencies;
2507 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2508 {
2509 if (j < deps->dependencies.size() - 1)
2510 fprintf(f, "\n");
2511 fprintf(f, " %s", deps->dependencies[j].c_str());
2512 }
2513 }
2514 fprintf(f, ";\n");
2515 }
2516
2517 fprintf(f, "}\n");
2518 }
2519
2520 void
2521 Version_script_info::print_expression_list(
2522 FILE* f,
2523 const Version_expression_list* vel) const
2524 {
2525 Version_script_info::Language current_language = LANGUAGE_C;
2526 for (size_t i = 0; i < vel->expressions.size(); ++i)
2527 {
2528 const Version_expression& ve(vel->expressions[i]);
2529
2530 if (ve.language != current_language)
2531 {
2532 if (current_language != LANGUAGE_C)
2533 fprintf(f, " }\n");
2534 switch (ve.language)
2535 {
2536 case LANGUAGE_C:
2537 break;
2538 case LANGUAGE_CXX:
2539 fprintf(f, " extern \"C++\" {\n");
2540 break;
2541 case LANGUAGE_JAVA:
2542 fprintf(f, " extern \"Java\" {\n");
2543 break;
2544 default:
2545 gold_unreachable();
2546 }
2547 current_language = ve.language;
2548 }
2549
2550 fprintf(f, " ");
2551 if (current_language != LANGUAGE_C)
2552 fprintf(f, " ");
2553
2554 if (ve.exact_match)
2555 fprintf(f, "\"");
2556 fprintf(f, "%s", ve.pattern.c_str());
2557 if (ve.exact_match)
2558 fprintf(f, "\"");
2559
2560 fprintf(f, "\n");
2561 }
2562
2563 if (current_language != LANGUAGE_C)
2564 fprintf(f, " }\n");
2565 }
2566
2567 } // End namespace gold.
2568
2569 // The remaining functions are extern "C", so it's clearer to not put
2570 // them in namespace gold.
2571
2572 using namespace gold;
2573
2574 // This function is called by the bison parser to return the next
2575 // token.
2576
2577 extern "C" int
2578 yylex(YYSTYPE* lvalp, void* closurev)
2579 {
2580 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2581 const Token* token = closure->next_token();
2582 switch (token->classification())
2583 {
2584 default:
2585 gold_unreachable();
2586
2587 case Token::TOKEN_INVALID:
2588 yyerror(closurev, "invalid character");
2589 return 0;
2590
2591 case Token::TOKEN_EOF:
2592 return 0;
2593
2594 case Token::TOKEN_STRING:
2595 {
2596 // This is either a keyword or a STRING.
2597 size_t len;
2598 const char* str = token->string_value(&len);
2599 int parsecode = 0;
2600 switch (closure->lex_mode())
2601 {
2602 case Lex::LINKER_SCRIPT:
2603 parsecode = script_keywords.keyword_to_parsecode(str, len);
2604 break;
2605 case Lex::VERSION_SCRIPT:
2606 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2607 break;
2608 case Lex::DYNAMIC_LIST:
2609 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2610 break;
2611 default:
2612 break;
2613 }
2614 if (parsecode != 0)
2615 return parsecode;
2616 lvalp->string.value = str;
2617 lvalp->string.length = len;
2618 return STRING;
2619 }
2620
2621 case Token::TOKEN_QUOTED_STRING:
2622 lvalp->string.value = token->string_value(&lvalp->string.length);
2623 return QUOTED_STRING;
2624
2625 case Token::TOKEN_OPERATOR:
2626 return token->operator_value();
2627
2628 case Token::TOKEN_INTEGER:
2629 lvalp->integer = token->integer_value();
2630 return INTEGER;
2631 }
2632 }
2633
2634 // This function is called by the bison parser to report an error.
2635
2636 extern "C" void
2637 yyerror(void* closurev, const char* message)
2638 {
2639 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2640 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2641 closure->charpos(), message);
2642 }
2643
2644 // Called by the bison parser to add an external symbol to the link.
2645
2646 extern "C" void
2647 script_add_extern(void* closurev, const char* name, size_t length)
2648 {
2649 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2650 closure->script_options()->add_symbol_reference(name, length);
2651 }
2652
2653 // Called by the bison parser to add a file to the link.
2654
2655 extern "C" void
2656 script_add_file(void* closurev, const char* name, size_t length)
2657 {
2658 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2659
2660 // If this is an absolute path, and we found the script in the
2661 // sysroot, then we want to prepend the sysroot to the file name.
2662 // For example, this is how we handle a cross link to the x86_64
2663 // libc.so, which refers to /lib/libc.so.6.
2664 std::string name_string(name, length);
2665 const char* extra_search_path = ".";
2666 std::string script_directory;
2667 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2668 {
2669 if (closure->is_in_sysroot())
2670 {
2671 const std::string& sysroot(parameters->options().sysroot());
2672 gold_assert(!sysroot.empty());
2673 name_string = sysroot + name_string;
2674 }
2675 }
2676 else
2677 {
2678 // In addition to checking the normal library search path, we
2679 // also want to check in the script-directory.
2680 const char* slash = strrchr(closure->filename(), '/');
2681 if (slash != NULL)
2682 {
2683 script_directory.assign(closure->filename(),
2684 slash - closure->filename() + 1);
2685 extra_search_path = script_directory.c_str();
2686 }
2687 }
2688
2689 Input_file_argument file(name_string.c_str(),
2690 Input_file_argument::INPUT_FILE_TYPE_FILE,
2691 extra_search_path, false,
2692 closure->position_dependent_options());
2693 Input_argument& arg = closure->inputs()->add_file(file);
2694 arg.set_script_info(closure->script_info());
2695 }
2696
2697 // Called by the bison parser to add a library to the link.
2698
2699 extern "C" void
2700 script_add_library(void* closurev, const char* name, size_t length)
2701 {
2702 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2703 std::string name_string(name, length);
2704
2705 if (name_string[0] != 'l')
2706 gold_error(_("library name must be prefixed with -l"));
2707
2708 Input_file_argument file(name_string.c_str() + 1,
2709 Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2710 "", false,
2711 closure->position_dependent_options());
2712 Input_argument& arg = closure->inputs()->add_file(file);
2713 arg.set_script_info(closure->script_info());
2714 }
2715
2716 // Called by the bison parser to start a group. If we are already in
2717 // a group, that means that this script was invoked within a
2718 // --start-group --end-group sequence on the command line, or that
2719 // this script was found in a GROUP of another script. In that case,
2720 // we simply continue the existing group, rather than starting a new
2721 // one. It is possible to construct a case in which this will do
2722 // something other than what would happen if we did a recursive group,
2723 // but it's hard to imagine why the different behaviour would be
2724 // useful for a real program. Avoiding recursive groups is simpler
2725 // and more efficient.
2726
2727 extern "C" void
2728 script_start_group(void* closurev)
2729 {
2730 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2731 if (!closure->in_group())
2732 closure->inputs()->start_group();
2733 }
2734
2735 // Called by the bison parser at the end of a group.
2736
2737 extern "C" void
2738 script_end_group(void* closurev)
2739 {
2740 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2741 if (!closure->in_group())
2742 closure->inputs()->end_group();
2743 }
2744
2745 // Called by the bison parser to start an AS_NEEDED list.
2746
2747 extern "C" void
2748 script_start_as_needed(void* closurev)
2749 {
2750 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2751 closure->position_dependent_options().set_as_needed(true);
2752 }
2753
2754 // Called by the bison parser at the end of an AS_NEEDED list.
2755
2756 extern "C" void
2757 script_end_as_needed(void* closurev)
2758 {
2759 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2760 closure->position_dependent_options().set_as_needed(false);
2761 }
2762
2763 // Called by the bison parser to set the entry symbol.
2764
2765 extern "C" void
2766 script_set_entry(void* closurev, const char* entry, size_t length)
2767 {
2768 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2769 // TODO(csilvers): FIXME -- call set_entry directly.
2770 std::string arg("--entry=");
2771 arg.append(entry, length);
2772 script_parse_option(closurev, arg.c_str(), arg.size());
2773 }
2774
2775 // Called by the bison parser to set whether to define common symbols.
2776
2777 extern "C" void
2778 script_set_common_allocation(void* closurev, int set)
2779 {
2780 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2781 script_parse_option(closurev, arg, strlen(arg));
2782 }
2783
2784 // Called by the bison parser to refer to a symbol.
2785
2786 extern "C" Expression*
2787 script_symbol(void* closurev, const char* name, size_t length)
2788 {
2789 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2790 if (length != 1 || name[0] != '.')
2791 closure->script_options()->add_symbol_reference(name, length);
2792 return script_exp_string(name, length);
2793 }
2794
2795 // Called by the bison parser to define a symbol.
2796
2797 extern "C" void
2798 script_set_symbol(void* closurev, const char* name, size_t length,
2799 Expression* value, int providei, int hiddeni)
2800 {
2801 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2802 const bool provide = providei != 0;
2803 const bool hidden = hiddeni != 0;
2804 closure->script_options()->add_symbol_assignment(name, length,
2805 closure->parsing_defsym(),
2806 value, provide, hidden);
2807 closure->clear_skip_on_incompatible_target();
2808 }
2809
2810 // Called by the bison parser to add an assertion.
2811
2812 extern "C" void
2813 script_add_assertion(void* closurev, Expression* check, const char* message,
2814 size_t messagelen)
2815 {
2816 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2817 closure->script_options()->add_assertion(check, message, messagelen);
2818 closure->clear_skip_on_incompatible_target();
2819 }
2820
2821 // Called by the bison parser to parse an OPTION.
2822
2823 extern "C" void
2824 script_parse_option(void* closurev, const char* option, size_t length)
2825 {
2826 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2827 // We treat the option as a single command-line option, even if
2828 // it has internal whitespace.
2829 if (closure->command_line() == NULL)
2830 {
2831 // There are some options that we could handle here--e.g.,
2832 // -lLIBRARY. Should we bother?
2833 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2834 " for scripts specified via -T/--script"),
2835 closure->filename(), closure->lineno(), closure->charpos());
2836 }
2837 else
2838 {
2839 bool past_a_double_dash_option = false;
2840 const char* mutable_option = strndup(option, length);
2841 gold_assert(mutable_option != NULL);
2842 closure->command_line()->process_one_option(1, &mutable_option, 0,
2843 &past_a_double_dash_option);
2844 // The General_options class will quite possibly store a pointer
2845 // into mutable_option, so we can't free it. In cases the class
2846 // does not store such a pointer, this is a memory leak. Alas. :(
2847 }
2848 closure->clear_skip_on_incompatible_target();
2849 }
2850
2851 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2852 // takes either one or three arguments. In the three argument case,
2853 // the format depends on the endianness option, which we don't
2854 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2855 // wrong format, then we want to search for a new file. Returning 0
2856 // here will cause the parser to immediately abort.
2857
2858 extern "C" int
2859 script_check_output_format(void* closurev,
2860 const char* default_name, size_t default_length,
2861 const char*, size_t, const char*, size_t)
2862 {
2863 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2864 std::string name(default_name, default_length);
2865 Target* target = select_target_by_bfd_name(name.c_str());
2866 if (target == NULL || !parameters->is_compatible_target(target))
2867 {
2868 if (closure->skip_on_incompatible_target())
2869 {
2870 closure->set_found_incompatible_target();
2871 return 0;
2872 }
2873 // FIXME: Should we warn about the unknown target?
2874 }
2875 return 1;
2876 }
2877
2878 // Called by the bison parser to handle TARGET.
2879
2880 extern "C" void
2881 script_set_target(void* closurev, const char* target, size_t len)
2882 {
2883 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2884 std::string s(target, len);
2885 General_options::Object_format format_enum;
2886 format_enum = General_options::string_to_object_format(s.c_str());
2887 closure->position_dependent_options().set_format_enum(format_enum);
2888 }
2889
2890 // Called by the bison parser to handle SEARCH_DIR. This is handled
2891 // exactly like a -L option.
2892
2893 extern "C" void
2894 script_add_search_dir(void* closurev, const char* option, size_t length)
2895 {
2896 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2897 if (closure->command_line() == NULL)
2898 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2899 " for scripts specified via -T/--script"),
2900 closure->filename(), closure->lineno(), closure->charpos());
2901 else if (!closure->command_line()->options().nostdlib())
2902 {
2903 std::string s = "-L" + std::string(option, length);
2904 script_parse_option(closurev, s.c_str(), s.size());
2905 }
2906 }
2907
2908 /* Called by the bison parser to push the lexer into expression
2909 mode. */
2910
2911 extern "C" void
2912 script_push_lex_into_expression_mode(void* closurev)
2913 {
2914 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2915 closure->push_lex_mode(Lex::EXPRESSION);
2916 }
2917
2918 /* Called by the bison parser to push the lexer into version
2919 mode. */
2920
2921 extern "C" void
2922 script_push_lex_into_version_mode(void* closurev)
2923 {
2924 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2925 if (closure->version_script()->is_finalized())
2926 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2927 closure->filename(), closure->lineno(), closure->charpos());
2928 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2929 }
2930
2931 /* Called by the bison parser to pop the lexer mode. */
2932
2933 extern "C" void
2934 script_pop_lex_mode(void* closurev)
2935 {
2936 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2937 closure->pop_lex_mode();
2938 }
2939
2940 // Register an entire version node. For example:
2941 //
2942 // GLIBC_2.1 {
2943 // global: foo;
2944 // } GLIBC_2.0;
2945 //
2946 // - tag is "GLIBC_2.1"
2947 // - tree contains the information "global: foo"
2948 // - deps contains "GLIBC_2.0"
2949
2950 extern "C" void
2951 script_register_vers_node(void*,
2952 const char* tag,
2953 int taglen,
2954 struct Version_tree* tree,
2955 struct Version_dependency_list* deps)
2956 {
2957 gold_assert(tree != NULL);
2958 tree->dependencies = deps;
2959 if (tag != NULL)
2960 tree->tag = std::string(tag, taglen);
2961 }
2962
2963 // Add a dependencies to the list of existing dependencies, if any,
2964 // and return the expanded list.
2965
2966 extern "C" struct Version_dependency_list*
2967 script_add_vers_depend(void* closurev,
2968 struct Version_dependency_list* all_deps,
2969 const char* depend_to_add, int deplen)
2970 {
2971 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2972 if (all_deps == NULL)
2973 all_deps = closure->version_script()->allocate_dependency_list();
2974 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2975 return all_deps;
2976 }
2977
2978 // Add a pattern expression to an existing list of expressions, if any.
2979
2980 extern "C" struct Version_expression_list*
2981 script_new_vers_pattern(void* closurev,
2982 struct Version_expression_list* expressions,
2983 const char* pattern, int patlen, int exact_match)
2984 {
2985 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2986 if (expressions == NULL)
2987 expressions = closure->version_script()->allocate_expression_list();
2988 expressions->expressions.push_back(
2989 Version_expression(std::string(pattern, patlen),
2990 closure->get_current_language(),
2991 static_cast<bool>(exact_match)));
2992 return expressions;
2993 }
2994
2995 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2996
2997 extern "C" struct Version_expression_list*
2998 script_merge_expressions(struct Version_expression_list* a,
2999 struct Version_expression_list* b)
3000 {
3001 a->expressions.insert(a->expressions.end(),
3002 b->expressions.begin(), b->expressions.end());
3003 // We could delete b and remove it from expressions_lists_, but
3004 // that's a lot of work. This works just as well.
3005 b->expressions.clear();
3006 return a;
3007 }
3008
3009 // Combine the global and local expressions into a a Version_tree.
3010
3011 extern "C" struct Version_tree*
3012 script_new_vers_node(void* closurev,
3013 struct Version_expression_list* global,
3014 struct Version_expression_list* local)
3015 {
3016 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3017 Version_tree* tree = closure->version_script()->allocate_version_tree();
3018 tree->global = global;
3019 tree->local = local;
3020 return tree;
3021 }
3022
3023 // Handle a transition in language, such as at the
3024 // start or end of 'extern "C++"'
3025
3026 extern "C" void
3027 version_script_push_lang(void* closurev, const char* lang, int langlen)
3028 {
3029 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3030 std::string language(lang, langlen);
3031 Version_script_info::Language code;
3032 if (language.empty() || language == "C")
3033 code = Version_script_info::LANGUAGE_C;
3034 else if (language == "C++")
3035 code = Version_script_info::LANGUAGE_CXX;
3036 else if (language == "Java")
3037 code = Version_script_info::LANGUAGE_JAVA;
3038 else
3039 {
3040 char* buf = new char[langlen + 100];
3041 snprintf(buf, langlen + 100,
3042 _("unrecognized version script language '%s'"),
3043 language.c_str());
3044 yyerror(closurev, buf);
3045 delete[] buf;
3046 code = Version_script_info::LANGUAGE_C;
3047 }
3048 closure->push_language(code);
3049 }
3050
3051 extern "C" void
3052 version_script_pop_lang(void* closurev)
3053 {
3054 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3055 closure->pop_language();
3056 }
3057
3058 // Called by the bison parser to start a SECTIONS clause.
3059
3060 extern "C" void
3061 script_start_sections(void* closurev)
3062 {
3063 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3064 closure->script_options()->script_sections()->start_sections();
3065 closure->clear_skip_on_incompatible_target();
3066 }
3067
3068 // Called by the bison parser to finish a SECTIONS clause.
3069
3070 extern "C" void
3071 script_finish_sections(void* closurev)
3072 {
3073 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3074 closure->script_options()->script_sections()->finish_sections();
3075 }
3076
3077 // Start processing entries for an output section.
3078
3079 extern "C" void
3080 script_start_output_section(void* closurev, const char* name, size_t namelen,
3081 const struct Parser_output_section_header* header)
3082 {
3083 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3084 closure->script_options()->script_sections()->start_output_section(name,
3085 namelen,
3086 header);
3087 }
3088
3089 // Finish processing entries for an output section.
3090
3091 extern "C" void
3092 script_finish_output_section(void* closurev,
3093 const struct Parser_output_section_trailer* trail)
3094 {
3095 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3096 closure->script_options()->script_sections()->finish_output_section(trail);
3097 }
3098
3099 // Add a data item (e.g., "WORD (0)") to the current output section.
3100
3101 extern "C" void
3102 script_add_data(void* closurev, int data_token, Expression* val)
3103 {
3104 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3105 int size;
3106 bool is_signed = true;
3107 switch (data_token)
3108 {
3109 case QUAD:
3110 size = 8;
3111 is_signed = false;
3112 break;
3113 case SQUAD:
3114 size = 8;
3115 break;
3116 case LONG:
3117 size = 4;
3118 break;
3119 case SHORT:
3120 size = 2;
3121 break;
3122 case BYTE:
3123 size = 1;
3124 break;
3125 default:
3126 gold_unreachable();
3127 }
3128 closure->script_options()->script_sections()->add_data(size, is_signed, val);
3129 }
3130
3131 // Add a clause setting the fill value to the current output section.
3132
3133 extern "C" void
3134 script_add_fill(void* closurev, Expression* val)
3135 {
3136 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3137 closure->script_options()->script_sections()->add_fill(val);
3138 }
3139
3140 // Add a new input section specification to the current output
3141 // section.
3142
3143 extern "C" void
3144 script_add_input_section(void* closurev,
3145 const struct Input_section_spec* spec,
3146 int keepi)
3147 {
3148 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3149 bool keep = keepi != 0;
3150 closure->script_options()->script_sections()->add_input_section(spec, keep);
3151 }
3152
3153 // When we see DATA_SEGMENT_ALIGN we record that following output
3154 // sections may be relro.
3155
3156 extern "C" void
3157 script_data_segment_align(void* closurev)
3158 {
3159 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3160 if (!closure->script_options()->saw_sections_clause())
3161 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3162 closure->filename(), closure->lineno(), closure->charpos());
3163 else
3164 closure->script_options()->script_sections()->data_segment_align();
3165 }
3166
3167 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3168 // since DATA_SEGMENT_ALIGN should be relro.
3169
3170 extern "C" void
3171 script_data_segment_relro_end(void* closurev)
3172 {
3173 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3174 if (!closure->script_options()->saw_sections_clause())
3175 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3176 closure->filename(), closure->lineno(), closure->charpos());
3177 else
3178 closure->script_options()->script_sections()->data_segment_relro_end();
3179 }
3180
3181 // Create a new list of string/sort pairs.
3182
3183 extern "C" String_sort_list_ptr
3184 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3185 {
3186 return new String_sort_list(1, *string_sort);
3187 }
3188
3189 // Add an entry to a list of string/sort pairs. The way the parser
3190 // works permits us to simply modify the first parameter, rather than
3191 // copy the vector.
3192
3193 extern "C" String_sort_list_ptr
3194 script_string_sort_list_add(String_sort_list_ptr pv,
3195 const struct Wildcard_section* string_sort)
3196 {
3197 if (pv == NULL)
3198 return script_new_string_sort_list(string_sort);
3199 else
3200 {
3201 pv->push_back(*string_sort);
3202 return pv;
3203 }
3204 }
3205
3206 // Create a new list of strings.
3207
3208 extern "C" String_list_ptr
3209 script_new_string_list(const char* str, size_t len)
3210 {
3211 return new String_list(1, std::string(str, len));
3212 }
3213
3214 // Add an element to a list of strings. The way the parser works
3215 // permits us to simply modify the first parameter, rather than copy
3216 // the vector.
3217
3218 extern "C" String_list_ptr
3219 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3220 {
3221 if (pv == NULL)
3222 return script_new_string_list(str, len);
3223 else
3224 {
3225 pv->push_back(std::string(str, len));
3226 return pv;
3227 }
3228 }
3229
3230 // Concatenate two string lists. Either or both may be NULL. The way
3231 // the parser works permits us to modify the parameters, rather than
3232 // copy the vector.
3233
3234 extern "C" String_list_ptr
3235 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3236 {
3237 if (pv1 == NULL)
3238 return pv2;
3239 if (pv2 == NULL)
3240 return pv1;
3241 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3242 return pv1;
3243 }
3244
3245 // Add a new program header.
3246
3247 extern "C" void
3248 script_add_phdr(void* closurev, const char* name, size_t namelen,
3249 unsigned int type, const Phdr_info* info)
3250 {
3251 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3252 bool includes_filehdr = info->includes_filehdr != 0;
3253 bool includes_phdrs = info->includes_phdrs != 0;
3254 bool is_flags_valid = info->is_flags_valid != 0;
3255 Script_sections* ss = closure->script_options()->script_sections();
3256 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3257 is_flags_valid, info->flags, info->load_address);
3258 closure->clear_skip_on_incompatible_target();
3259 }
3260
3261 // Convert a program header string to a type.
3262
3263 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3264
3265 static struct
3266 {
3267 const char* name;
3268 size_t namelen;
3269 unsigned int val;
3270 } phdr_type_names[] =
3271 {
3272 PHDR_TYPE(PT_NULL),
3273 PHDR_TYPE(PT_LOAD),
3274 PHDR_TYPE(PT_DYNAMIC),
3275 PHDR_TYPE(PT_INTERP),
3276 PHDR_TYPE(PT_NOTE),
3277 PHDR_TYPE(PT_SHLIB),
3278 PHDR_TYPE(PT_PHDR),
3279 PHDR_TYPE(PT_TLS),
3280 PHDR_TYPE(PT_GNU_EH_FRAME),
3281 PHDR_TYPE(PT_GNU_STACK),
3282 PHDR_TYPE(PT_GNU_RELRO)
3283 };
3284
3285 extern "C" unsigned int
3286 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3287 {
3288 for (unsigned int i = 0;
3289 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3290 ++i)
3291 if (namelen == phdr_type_names[i].namelen
3292 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3293 return phdr_type_names[i].val;
3294 yyerror(closurev, _("unknown PHDR type (try integer)"));
3295 return elfcpp::PT_NULL;
3296 }
3297
3298 extern "C" void
3299 script_saw_segment_start_expression(void* closurev)
3300 {
3301 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3302 Script_sections* ss = closure->script_options()->script_sections();
3303 ss->set_saw_segment_start_expression(true);
3304 }
3305
3306 extern "C" void
3307 script_set_section_region(void* closurev, const char* name, size_t namelen,
3308 int set_vma)
3309 {
3310 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3311 if (!closure->script_options()->saw_sections_clause())
3312 {
3313 gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3314 "SECTIONS clause"),
3315 closure->filename(), closure->lineno(), closure->charpos(),
3316 static_cast<int>(namelen), name);
3317 return;
3318 }
3319
3320 Script_sections* ss = closure->script_options()->script_sections();
3321 Memory_region* mr = ss->find_memory_region(name, namelen);
3322 if (mr == NULL)
3323 {
3324 gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3325 closure->filename(), closure->lineno(), closure->charpos(),
3326 static_cast<int>(namelen), name);
3327 return;
3328 }
3329
3330 ss->set_memory_region(mr, set_vma);
3331 }
3332
3333 extern "C" void
3334 script_add_memory(void* closurev, const char* name, size_t namelen,
3335 unsigned int attrs, Expression* origin, Expression* length)
3336 {
3337 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3338 Script_sections* ss = closure->script_options()->script_sections();
3339 ss->add_memory_region(name, namelen, attrs, origin, length);
3340 }
3341
3342 extern "C" unsigned int
3343 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3344 int invert)
3345 {
3346 int attributes = 0;
3347
3348 while (attrlen--)
3349 switch (*attrs++)
3350 {
3351 case 'R':
3352 case 'r':
3353 attributes |= MEM_READABLE; break;
3354 case 'W':
3355 case 'w':
3356 attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3357 case 'X':
3358 case 'x':
3359 attributes |= MEM_EXECUTABLE; break;
3360 case 'A':
3361 case 'a':
3362 attributes |= MEM_ALLOCATABLE; break;
3363 case 'I':
3364 case 'i':
3365 case 'L':
3366 case 'l':
3367 attributes |= MEM_INITIALIZED; break;
3368 default:
3369 yyerror(closurev, _("unknown MEMORY attribute"));
3370 }
3371
3372 if (invert)
3373 attributes = (~ attributes) & MEM_ATTR_MASK;
3374
3375 return attributes;
3376 }
3377
3378 extern "C" void
3379 script_include_directive(int first_token, void* closurev,
3380 const char* filename, size_t length)
3381 {
3382 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3383 std::string name(filename, length);
3384 Command_line* cmdline = closure->command_line();
3385 read_script_file(name.c_str(), cmdline, &cmdline->script_options(),
3386 first_token, Lex::LINKER_SCRIPT);
3387 }
3388
3389 // Functions for memory regions.
3390
3391 extern "C" Expression*
3392 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3393 {
3394 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3395 Script_sections* ss = closure->script_options()->script_sections();
3396 Expression* origin = ss->find_memory_region_origin(name, namelen);
3397
3398 if (origin == NULL)
3399 {
3400 gold_error(_("undefined memory region '%s' referenced "
3401 "in ORIGIN expression"),
3402 name);
3403 // Create a dummy expression to prevent crashes later on.
3404 origin = script_exp_integer(0);
3405 }
3406
3407 return origin;
3408 }
3409
3410 extern "C" Expression*
3411 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3412 {
3413 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3414 Script_sections* ss = closure->script_options()->script_sections();
3415 Expression* length = ss->find_memory_region_length(name, namelen);
3416
3417 if (length == NULL)
3418 {
3419 gold_error(_("undefined memory region '%s' referenced "
3420 "in LENGTH expression"),
3421 name);
3422 // Create a dummy expression to prevent crashes later on.
3423 length = script_exp_integer(0);
3424 }
3425
3426 return length;
3427 }
This page took 0.100233 seconds and 5 git commands to generate.