PR gold/13023
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56 public:
57 // Token classification.
58 enum Classification
59 {
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
72 };
73
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
79
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
84 {
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
87 }
88
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
94 {
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
97 }
98
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
103 { }
104
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
109
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
114
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
119
120 // Return the line number at which the token starts.
121 int
122 lineno() const
123 { return this->lineno_; }
124
125 // Return the character position at this the token starts.
126 int
127 charpos() const
128 { return this->charpos_; }
129
130 // Get the value of a token.
131
132 const char*
133 string_value(size_t* length) const
134 {
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
139 }
140
141 int
142 operator_value() const
143 {
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
146 }
147
148 uint64_t
149 integer_value() const;
150
151 private:
152 // The token classification.
153 Classification classification_;
154 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
155 // TOKEN_INTEGER.
156 const char* value_;
157 // The length of the token value.
158 size_t value_length_;
159 // The token value, for TOKEN_OPERATOR.
160 int opcode_;
161 // The line number where this token started (one based).
162 int lineno_;
163 // The character position within the line where this token started
164 // (one based).
165 int charpos_;
166 };
167
168 // Return the value of a TOKEN_INTEGER.
169
170 uint64_t
171 Token::integer_value() const
172 {
173 gold_assert(this->classification_ == TOKEN_INTEGER);
174
175 size_t len = this->value_length_;
176
177 uint64_t multiplier = 1;
178 char last = this->value_[len - 1];
179 if (last == 'm' || last == 'M')
180 {
181 multiplier = 1024 * 1024;
182 --len;
183 }
184 else if (last == 'k' || last == 'K')
185 {
186 multiplier = 1024;
187 --len;
188 }
189
190 char *end;
191 uint64_t ret = strtoull(this->value_, &end, 0);
192 gold_assert(static_cast<size_t>(end - this->value_) == len);
193
194 return ret * multiplier;
195 }
196
197 // This class handles lexing a file into a sequence of tokens.
198
199 class Lex
200 {
201 public:
202 // We unfortunately have to support different lexing modes, because
203 // when reading different parts of a linker script we need to parse
204 // things differently.
205 enum Mode
206 {
207 // Reading an ordinary linker script.
208 LINKER_SCRIPT,
209 // Reading an expression in a linker script.
210 EXPRESSION,
211 // Reading a version script.
212 VERSION_SCRIPT,
213 // Reading a --dynamic-list file.
214 DYNAMIC_LIST
215 };
216
217 Lex(const char* input_string, size_t input_length, int parsing_token)
218 : input_string_(input_string), input_length_(input_length),
219 current_(input_string), mode_(LINKER_SCRIPT),
220 first_token_(parsing_token), token_(),
221 lineno_(1), linestart_(input_string)
222 { }
223
224 // Read a file into a string.
225 static void
226 read_file(Input_file*, std::string*);
227
228 // Return the next token.
229 const Token*
230 next_token();
231
232 // Return the current lexing mode.
233 Lex::Mode
234 mode() const
235 { return this->mode_; }
236
237 // Set the lexing mode.
238 void
239 set_mode(Mode mode)
240 { this->mode_ = mode; }
241
242 private:
243 Lex(const Lex&);
244 Lex& operator=(const Lex&);
245
246 // Make a general token with no value at the current location.
247 Token
248 make_token(Token::Classification c, const char* start) const
249 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
250
251 // Make a general token with a value at the current location.
252 Token
253 make_token(Token::Classification c, const char* v, size_t len,
254 const char* start)
255 const
256 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
257
258 // Make an operator token at the current location.
259 Token
260 make_token(int opcode, const char* start) const
261 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
262
263 // Make an invalid token at the current location.
264 Token
265 make_invalid_token(const char* start)
266 { return this->make_token(Token::TOKEN_INVALID, start); }
267
268 // Make an EOF token at the current location.
269 Token
270 make_eof_token(const char* start)
271 { return this->make_token(Token::TOKEN_EOF, start); }
272
273 // Return whether C can be the first character in a name. C2 is the
274 // next character, since we sometimes need that.
275 inline bool
276 can_start_name(char c, char c2);
277
278 // If C can appear in a name which has already started, return a
279 // pointer to a character later in the token or just past
280 // it. Otherwise, return NULL.
281 inline const char*
282 can_continue_name(const char* c);
283
284 // Return whether C, C2, C3 can start a hex number.
285 inline bool
286 can_start_hex(char c, char c2, char c3);
287
288 // If C can appear in a hex number which has already started, return
289 // a pointer to a character later in the token or just past
290 // it. Otherwise, return NULL.
291 inline const char*
292 can_continue_hex(const char* c);
293
294 // Return whether C can start a non-hex number.
295 static inline bool
296 can_start_number(char c);
297
298 // If C can appear in a decimal number which has already started,
299 // return a pointer to a character later in the token or just past
300 // it. Otherwise, return NULL.
301 inline const char*
302 can_continue_number(const char* c)
303 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
304
305 // If C1 C2 C3 form a valid three character operator, return the
306 // opcode. Otherwise return 0.
307 static inline int
308 three_char_operator(char c1, char c2, char c3);
309
310 // If C1 C2 form a valid two character operator, return the opcode.
311 // Otherwise return 0.
312 static inline int
313 two_char_operator(char c1, char c2);
314
315 // If C1 is a valid one character operator, return the opcode.
316 // Otherwise return 0.
317 static inline int
318 one_char_operator(char c1);
319
320 // Read the next token.
321 Token
322 get_token(const char**);
323
324 // Skip a C style /* */ comment. Return false if the comment did
325 // not end.
326 bool
327 skip_c_comment(const char**);
328
329 // Skip a line # comment. Return false if there was no newline.
330 bool
331 skip_line_comment(const char**);
332
333 // Build a token CLASSIFICATION from all characters that match
334 // CAN_CONTINUE_FN. The token starts at START. Start matching from
335 // MATCH. Set *PP to the character following the token.
336 inline Token
337 gather_token(Token::Classification,
338 const char* (Lex::*can_continue_fn)(const char*),
339 const char* start, const char* match, const char** pp);
340
341 // Build a token from a quoted string.
342 Token
343 gather_quoted_string(const char** pp);
344
345 // The string we are tokenizing.
346 const char* input_string_;
347 // The length of the string.
348 size_t input_length_;
349 // The current offset into the string.
350 const char* current_;
351 // The current lexing mode.
352 Mode mode_;
353 // The code to use for the first token. This is set to 0 after it
354 // is used.
355 int first_token_;
356 // The current token.
357 Token token_;
358 // The current line number.
359 int lineno_;
360 // The start of the current line in the string.
361 const char* linestart_;
362 };
363
364 // Read the whole file into memory. We don't expect linker scripts to
365 // be large, so we just use a std::string as a buffer. We ignore the
366 // data we've already read, so that we read aligned buffers.
367
368 void
369 Lex::read_file(Input_file* input_file, std::string* contents)
370 {
371 off_t filesize = input_file->file().filesize();
372 contents->clear();
373 contents->reserve(filesize);
374
375 off_t off = 0;
376 unsigned char buf[BUFSIZ];
377 while (off < filesize)
378 {
379 off_t get = BUFSIZ;
380 if (get > filesize - off)
381 get = filesize - off;
382 input_file->file().read(off, get, buf);
383 contents->append(reinterpret_cast<char*>(&buf[0]), get);
384 off += get;
385 }
386 }
387
388 // Return whether C can be the start of a name, if the next character
389 // is C2. A name can being with a letter, underscore, period, or
390 // dollar sign. Because a name can be a file name, we also permit
391 // forward slash, backslash, and tilde. Tilde is the tricky case
392 // here; GNU ld also uses it as a bitwise not operator. It is only
393 // recognized as the operator if it is not immediately followed by
394 // some character which can appear in a symbol. That is, when we
395 // don't know that we are looking at an expression, "~0" is a file
396 // name, and "~ 0" is an expression using bitwise not. We are
397 // compatible.
398
399 inline bool
400 Lex::can_start_name(char c, char c2)
401 {
402 switch (c)
403 {
404 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
405 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
406 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
407 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
408 case 'Y': case 'Z':
409 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
410 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
411 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
412 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
413 case 'y': case 'z':
414 case '_': case '.': case '$':
415 return true;
416
417 case '/': case '\\':
418 return this->mode_ == LINKER_SCRIPT;
419
420 case '~':
421 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
422
423 case '*': case '[':
424 return (this->mode_ == VERSION_SCRIPT
425 || this->mode_ == DYNAMIC_LIST
426 || (this->mode_ == LINKER_SCRIPT
427 && can_continue_name(&c2)));
428
429 default:
430 return false;
431 }
432 }
433
434 // Return whether C can continue a name which has already started.
435 // Subsequent characters in a name are the same as the leading
436 // characters, plus digits and "=+-:[],?*". So in general the linker
437 // script language requires spaces around operators, unless we know
438 // that we are parsing an expression.
439
440 inline const char*
441 Lex::can_continue_name(const char* c)
442 {
443 switch (*c)
444 {
445 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
446 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
447 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
448 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
449 case 'Y': case 'Z':
450 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
451 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
452 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
453 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
454 case 'y': case 'z':
455 case '_': case '.': case '$':
456 case '0': case '1': case '2': case '3': case '4':
457 case '5': case '6': case '7': case '8': case '9':
458 return c + 1;
459
460 // TODO(csilvers): why not allow ~ in names for version-scripts?
461 case '/': case '\\': case '~':
462 case '=': case '+':
463 case ',':
464 if (this->mode_ == LINKER_SCRIPT)
465 return c + 1;
466 return NULL;
467
468 case '[': case ']': case '*': case '?': case '-':
469 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
470 || this->mode_ == DYNAMIC_LIST)
471 return c + 1;
472 return NULL;
473
474 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
475 case '^':
476 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
477 return c + 1;
478 return NULL;
479
480 case ':':
481 if (this->mode_ == LINKER_SCRIPT)
482 return c + 1;
483 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
484 && (c[1] == ':'))
485 {
486 // A name can have '::' in it, as that's a c++ namespace
487 // separator. But a single colon is not part of a name.
488 return c + 2;
489 }
490 return NULL;
491
492 default:
493 return NULL;
494 }
495 }
496
497 // For a number we accept 0x followed by hex digits, or any sequence
498 // of digits. The old linker accepts leading '$' for hex, and
499 // trailing HXBOD. Those are for MRI compatibility and we don't
500 // accept them.
501
502 // Return whether C1 C2 C3 can start a hex number.
503
504 inline bool
505 Lex::can_start_hex(char c1, char c2, char c3)
506 {
507 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
508 return this->can_continue_hex(&c3);
509 return false;
510 }
511
512 // Return whether C can appear in a hex number.
513
514 inline const char*
515 Lex::can_continue_hex(const char* c)
516 {
517 switch (*c)
518 {
519 case '0': case '1': case '2': case '3': case '4':
520 case '5': case '6': case '7': case '8': case '9':
521 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
522 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
523 return c + 1;
524
525 default:
526 return NULL;
527 }
528 }
529
530 // Return whether C can start a non-hex number.
531
532 inline bool
533 Lex::can_start_number(char c)
534 {
535 switch (c)
536 {
537 case '0': case '1': case '2': case '3': case '4':
538 case '5': case '6': case '7': case '8': case '9':
539 return true;
540
541 default:
542 return false;
543 }
544 }
545
546 // If C1 C2 C3 form a valid three character operator, return the
547 // opcode (defined in the yyscript.h file generated from yyscript.y).
548 // Otherwise return 0.
549
550 inline int
551 Lex::three_char_operator(char c1, char c2, char c3)
552 {
553 switch (c1)
554 {
555 case '<':
556 if (c2 == '<' && c3 == '=')
557 return LSHIFTEQ;
558 break;
559 case '>':
560 if (c2 == '>' && c3 == '=')
561 return RSHIFTEQ;
562 break;
563 default:
564 break;
565 }
566 return 0;
567 }
568
569 // If C1 C2 form a valid two character operator, return the opcode
570 // (defined in the yyscript.h file generated from yyscript.y).
571 // Otherwise return 0.
572
573 inline int
574 Lex::two_char_operator(char c1, char c2)
575 {
576 switch (c1)
577 {
578 case '=':
579 if (c2 == '=')
580 return EQ;
581 break;
582 case '!':
583 if (c2 == '=')
584 return NE;
585 break;
586 case '+':
587 if (c2 == '=')
588 return PLUSEQ;
589 break;
590 case '-':
591 if (c2 == '=')
592 return MINUSEQ;
593 break;
594 case '*':
595 if (c2 == '=')
596 return MULTEQ;
597 break;
598 case '/':
599 if (c2 == '=')
600 return DIVEQ;
601 break;
602 case '|':
603 if (c2 == '=')
604 return OREQ;
605 if (c2 == '|')
606 return OROR;
607 break;
608 case '&':
609 if (c2 == '=')
610 return ANDEQ;
611 if (c2 == '&')
612 return ANDAND;
613 break;
614 case '>':
615 if (c2 == '=')
616 return GE;
617 if (c2 == '>')
618 return RSHIFT;
619 break;
620 case '<':
621 if (c2 == '=')
622 return LE;
623 if (c2 == '<')
624 return LSHIFT;
625 break;
626 default:
627 break;
628 }
629 return 0;
630 }
631
632 // If C1 is a valid operator, return the opcode. Otherwise return 0.
633
634 inline int
635 Lex::one_char_operator(char c1)
636 {
637 switch (c1)
638 {
639 case '+':
640 case '-':
641 case '*':
642 case '/':
643 case '%':
644 case '!':
645 case '&':
646 case '|':
647 case '^':
648 case '~':
649 case '<':
650 case '>':
651 case '=':
652 case '?':
653 case ',':
654 case '(':
655 case ')':
656 case '{':
657 case '}':
658 case '[':
659 case ']':
660 case ':':
661 case ';':
662 return c1;
663 default:
664 return 0;
665 }
666 }
667
668 // Skip a C style comment. *PP points to just after the "/*". Return
669 // false if the comment did not end.
670
671 bool
672 Lex::skip_c_comment(const char** pp)
673 {
674 const char* p = *pp;
675 while (p[0] != '*' || p[1] != '/')
676 {
677 if (*p == '\0')
678 {
679 *pp = p;
680 return false;
681 }
682
683 if (*p == '\n')
684 {
685 ++this->lineno_;
686 this->linestart_ = p + 1;
687 }
688 ++p;
689 }
690
691 *pp = p + 2;
692 return true;
693 }
694
695 // Skip a line # comment. Return false if there was no newline.
696
697 bool
698 Lex::skip_line_comment(const char** pp)
699 {
700 const char* p = *pp;
701 size_t skip = strcspn(p, "\n");
702 if (p[skip] == '\0')
703 {
704 *pp = p + skip;
705 return false;
706 }
707
708 p += skip + 1;
709 ++this->lineno_;
710 this->linestart_ = p;
711 *pp = p;
712
713 return true;
714 }
715
716 // Build a token CLASSIFICATION from all characters that match
717 // CAN_CONTINUE_FN. Update *PP.
718
719 inline Token
720 Lex::gather_token(Token::Classification classification,
721 const char* (Lex::*can_continue_fn)(const char*),
722 const char* start,
723 const char* match,
724 const char** pp)
725 {
726 const char* new_match = NULL;
727 while ((new_match = (this->*can_continue_fn)(match)) != NULL)
728 match = new_match;
729
730 // A special case: integers may be followed by a single M or K,
731 // case-insensitive.
732 if (classification == Token::TOKEN_INTEGER
733 && (*match == 'm' || *match == 'M' || *match == 'k' || *match == 'K'))
734 ++match;
735
736 *pp = match;
737 return this->make_token(classification, start, match - start, start);
738 }
739
740 // Build a token from a quoted string.
741
742 Token
743 Lex::gather_quoted_string(const char** pp)
744 {
745 const char* start = *pp;
746 const char* p = start;
747 ++p;
748 size_t skip = strcspn(p, "\"\n");
749 if (p[skip] != '"')
750 return this->make_invalid_token(start);
751 *pp = p + skip + 1;
752 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
753 }
754
755 // Return the next token at *PP. Update *PP. General guideline: we
756 // require linker scripts to be simple ASCII. No unicode linker
757 // scripts. In particular we can assume that any '\0' is the end of
758 // the input.
759
760 Token
761 Lex::get_token(const char** pp)
762 {
763 const char* p = *pp;
764
765 while (true)
766 {
767 if (*p == '\0')
768 {
769 *pp = p;
770 return this->make_eof_token(p);
771 }
772
773 // Skip whitespace quickly.
774 while (*p == ' ' || *p == '\t' || *p == '\r')
775 ++p;
776
777 if (*p == '\n')
778 {
779 ++p;
780 ++this->lineno_;
781 this->linestart_ = p;
782 continue;
783 }
784
785 // Skip C style comments.
786 if (p[0] == '/' && p[1] == '*')
787 {
788 int lineno = this->lineno_;
789 int charpos = p - this->linestart_ + 1;
790
791 *pp = p + 2;
792 if (!this->skip_c_comment(pp))
793 return Token(Token::TOKEN_INVALID, lineno, charpos);
794 p = *pp;
795
796 continue;
797 }
798
799 // Skip line comments.
800 if (*p == '#')
801 {
802 *pp = p + 1;
803 if (!this->skip_line_comment(pp))
804 return this->make_eof_token(p);
805 p = *pp;
806 continue;
807 }
808
809 // Check for a name.
810 if (this->can_start_name(p[0], p[1]))
811 return this->gather_token(Token::TOKEN_STRING,
812 &Lex::can_continue_name,
813 p, p + 1, pp);
814
815 // We accept any arbitrary name in double quotes, as long as it
816 // does not cross a line boundary.
817 if (*p == '"')
818 {
819 *pp = p;
820 return this->gather_quoted_string(pp);
821 }
822
823 // Check for a number.
824
825 if (this->can_start_hex(p[0], p[1], p[2]))
826 return this->gather_token(Token::TOKEN_INTEGER,
827 &Lex::can_continue_hex,
828 p, p + 3, pp);
829
830 if (Lex::can_start_number(p[0]))
831 return this->gather_token(Token::TOKEN_INTEGER,
832 &Lex::can_continue_number,
833 p, p + 1, pp);
834
835 // Check for operators.
836
837 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
838 if (opcode != 0)
839 {
840 *pp = p + 3;
841 return this->make_token(opcode, p);
842 }
843
844 opcode = Lex::two_char_operator(p[0], p[1]);
845 if (opcode != 0)
846 {
847 *pp = p + 2;
848 return this->make_token(opcode, p);
849 }
850
851 opcode = Lex::one_char_operator(p[0]);
852 if (opcode != 0)
853 {
854 *pp = p + 1;
855 return this->make_token(opcode, p);
856 }
857
858 return this->make_token(Token::TOKEN_INVALID, p);
859 }
860 }
861
862 // Return the next token.
863
864 const Token*
865 Lex::next_token()
866 {
867 // The first token is special.
868 if (this->first_token_ != 0)
869 {
870 this->token_ = Token(this->first_token_, 0, 0);
871 this->first_token_ = 0;
872 return &this->token_;
873 }
874
875 this->token_ = this->get_token(&this->current_);
876
877 // Don't let an early null byte fool us into thinking that we've
878 // reached the end of the file.
879 if (this->token_.is_eof()
880 && (static_cast<size_t>(this->current_ - this->input_string_)
881 < this->input_length_))
882 this->token_ = this->make_invalid_token(this->current_);
883
884 return &this->token_;
885 }
886
887 // class Symbol_assignment.
888
889 // Add the symbol to the symbol table. This makes sure the symbol is
890 // there and defined. The actual value is stored later. We can't
891 // determine the actual value at this point, because we can't
892 // necessarily evaluate the expression until all ordinary symbols have
893 // been finalized.
894
895 // The GNU linker lets symbol assignments in the linker script
896 // silently override defined symbols in object files. We are
897 // compatible. FIXME: Should we issue a warning?
898
899 void
900 Symbol_assignment::add_to_table(Symbol_table* symtab)
901 {
902 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
903 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
904 NULL, // version
905 (this->is_defsym_
906 ? Symbol_table::DEFSYM
907 : Symbol_table::SCRIPT),
908 0, // value
909 0, // size
910 elfcpp::STT_NOTYPE,
911 elfcpp::STB_GLOBAL,
912 vis,
913 0, // nonvis
914 this->provide_,
915 true); // force_override
916 }
917
918 // Finalize a symbol value.
919
920 void
921 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
922 {
923 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
924 }
925
926 // Finalize a symbol value which can refer to the dot symbol.
927
928 void
929 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
930 const Layout* layout,
931 uint64_t dot_value,
932 Output_section* dot_section)
933 {
934 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
935 }
936
937 // Finalize a symbol value, internal version.
938
939 void
940 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
941 const Layout* layout,
942 bool is_dot_available,
943 uint64_t dot_value,
944 Output_section* dot_section)
945 {
946 // If we were only supposed to provide this symbol, the sym_ field
947 // will be NULL if the symbol was not referenced.
948 if (this->sym_ == NULL)
949 {
950 gold_assert(this->provide_);
951 return;
952 }
953
954 if (parameters->target().get_size() == 32)
955 {
956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
957 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
958 dot_section);
959 #else
960 gold_unreachable();
961 #endif
962 }
963 else if (parameters->target().get_size() == 64)
964 {
965 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
966 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
967 dot_section);
968 #else
969 gold_unreachable();
970 #endif
971 }
972 else
973 gold_unreachable();
974 }
975
976 template<int size>
977 void
978 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
979 bool is_dot_available, uint64_t dot_value,
980 Output_section* dot_section)
981 {
982 Output_section* section;
983 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
984 is_dot_available,
985 dot_value, dot_section,
986 &section, NULL, false);
987 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
988 ssym->set_value(final_val);
989 if (section != NULL)
990 ssym->set_output_section(section);
991 }
992
993 // Set the symbol value if the expression yields an absolute value or
994 // a value relative to DOT_SECTION.
995
996 void
997 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
998 bool is_dot_available, uint64_t dot_value,
999 Output_section* dot_section)
1000 {
1001 if (this->sym_ == NULL)
1002 return;
1003
1004 Output_section* val_section;
1005 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
1006 is_dot_available, dot_value,
1007 dot_section, &val_section, NULL,
1008 false);
1009 if (val_section != NULL && val_section != dot_section)
1010 return;
1011
1012 if (parameters->target().get_size() == 32)
1013 {
1014 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1015 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1016 ssym->set_value(val);
1017 #else
1018 gold_unreachable();
1019 #endif
1020 }
1021 else if (parameters->target().get_size() == 64)
1022 {
1023 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1024 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1025 ssym->set_value(val);
1026 #else
1027 gold_unreachable();
1028 #endif
1029 }
1030 else
1031 gold_unreachable();
1032 if (val_section != NULL)
1033 this->sym_->set_output_section(val_section);
1034 }
1035
1036 // Print for debugging.
1037
1038 void
1039 Symbol_assignment::print(FILE* f) const
1040 {
1041 if (this->provide_ && this->hidden_)
1042 fprintf(f, "PROVIDE_HIDDEN(");
1043 else if (this->provide_)
1044 fprintf(f, "PROVIDE(");
1045 else if (this->hidden_)
1046 gold_unreachable();
1047
1048 fprintf(f, "%s = ", this->name_.c_str());
1049 this->val_->print(f);
1050
1051 if (this->provide_ || this->hidden_)
1052 fprintf(f, ")");
1053
1054 fprintf(f, "\n");
1055 }
1056
1057 // Class Script_assertion.
1058
1059 // Check the assertion.
1060
1061 void
1062 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1063 {
1064 if (!this->check_->eval(symtab, layout, true))
1065 gold_error("%s", this->message_.c_str());
1066 }
1067
1068 // Print for debugging.
1069
1070 void
1071 Script_assertion::print(FILE* f) const
1072 {
1073 fprintf(f, "ASSERT(");
1074 this->check_->print(f);
1075 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1076 }
1077
1078 // Class Script_options.
1079
1080 Script_options::Script_options()
1081 : entry_(), symbol_assignments_(), symbol_definitions_(),
1082 symbol_references_(), version_script_info_(), script_sections_()
1083 {
1084 }
1085
1086 // Returns true if NAME is on the list of symbol assignments waiting
1087 // to be processed.
1088
1089 bool
1090 Script_options::is_pending_assignment(const char* name)
1091 {
1092 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1093 p != this->symbol_assignments_.end();
1094 ++p)
1095 if ((*p)->name() == name)
1096 return true;
1097 return false;
1098 }
1099
1100 // Add a symbol to be defined.
1101
1102 void
1103 Script_options::add_symbol_assignment(const char* name, size_t length,
1104 bool is_defsym, Expression* value,
1105 bool provide, bool hidden)
1106 {
1107 if (length != 1 || name[0] != '.')
1108 {
1109 if (this->script_sections_.in_sections_clause())
1110 {
1111 gold_assert(!is_defsym);
1112 this->script_sections_.add_symbol_assignment(name, length, value,
1113 provide, hidden);
1114 }
1115 else
1116 {
1117 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1118 value, provide, hidden);
1119 this->symbol_assignments_.push_back(p);
1120 }
1121
1122 if (!provide)
1123 {
1124 std::string n(name, length);
1125 this->symbol_definitions_.insert(n);
1126 this->symbol_references_.erase(n);
1127 }
1128 }
1129 else
1130 {
1131 if (provide || hidden)
1132 gold_error(_("invalid use of PROVIDE for dot symbol"));
1133
1134 // The GNU linker permits assignments to dot outside of SECTIONS
1135 // clauses and treats them as occurring inside, so we don't
1136 // check in_sections_clause here.
1137 this->script_sections_.add_dot_assignment(value);
1138 }
1139 }
1140
1141 // Add a reference to a symbol.
1142
1143 void
1144 Script_options::add_symbol_reference(const char* name, size_t length)
1145 {
1146 if (length != 1 || name[0] != '.')
1147 {
1148 std::string n(name, length);
1149 if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1150 this->symbol_references_.insert(n);
1151 }
1152 }
1153
1154 // Add an assertion.
1155
1156 void
1157 Script_options::add_assertion(Expression* check, const char* message,
1158 size_t messagelen)
1159 {
1160 if (this->script_sections_.in_sections_clause())
1161 this->script_sections_.add_assertion(check, message, messagelen);
1162 else
1163 {
1164 Script_assertion* p = new Script_assertion(check, message, messagelen);
1165 this->assertions_.push_back(p);
1166 }
1167 }
1168
1169 // Create sections required by any linker scripts.
1170
1171 void
1172 Script_options::create_script_sections(Layout* layout)
1173 {
1174 if (this->saw_sections_clause())
1175 this->script_sections_.create_sections(layout);
1176 }
1177
1178 // Add any symbols we are defining to the symbol table.
1179
1180 void
1181 Script_options::add_symbols_to_table(Symbol_table* symtab)
1182 {
1183 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1184 p != this->symbol_assignments_.end();
1185 ++p)
1186 (*p)->add_to_table(symtab);
1187 this->script_sections_.add_symbols_to_table(symtab);
1188 }
1189
1190 // Finalize symbol values. Also check assertions.
1191
1192 void
1193 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1194 {
1195 // We finalize the symbols defined in SECTIONS first, because they
1196 // are the ones which may have changed. This way if symbol outside
1197 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1198 // will get the right value.
1199 this->script_sections_.finalize_symbols(symtab, layout);
1200
1201 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1202 p != this->symbol_assignments_.end();
1203 ++p)
1204 (*p)->finalize(symtab, layout);
1205
1206 for (Assertions::iterator p = this->assertions_.begin();
1207 p != this->assertions_.end();
1208 ++p)
1209 (*p)->check(symtab, layout);
1210 }
1211
1212 // Set section addresses. We set all the symbols which have absolute
1213 // values. Then we let the SECTIONS clause do its thing. This
1214 // returns the segment which holds the file header and segment
1215 // headers, if any.
1216
1217 Output_segment*
1218 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1219 {
1220 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1221 p != this->symbol_assignments_.end();
1222 ++p)
1223 (*p)->set_if_absolute(symtab, layout, false, 0, NULL);
1224
1225 return this->script_sections_.set_section_addresses(symtab, layout);
1226 }
1227
1228 // This class holds data passed through the parser to the lexer and to
1229 // the parser support functions. This avoids global variables. We
1230 // can't use global variables because we need not be called by a
1231 // singleton thread.
1232
1233 class Parser_closure
1234 {
1235 public:
1236 Parser_closure(const char* filename,
1237 const Position_dependent_options& posdep_options,
1238 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1239 Command_line* command_line,
1240 Script_options* script_options,
1241 Lex* lex,
1242 bool skip_on_incompatible_target,
1243 Script_info* script_info)
1244 : filename_(filename), posdep_options_(posdep_options),
1245 parsing_defsym_(parsing_defsym), in_group_(in_group),
1246 is_in_sysroot_(is_in_sysroot),
1247 skip_on_incompatible_target_(skip_on_incompatible_target),
1248 found_incompatible_target_(false),
1249 command_line_(command_line), script_options_(script_options),
1250 version_script_info_(script_options->version_script_info()),
1251 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1252 script_info_(script_info)
1253 {
1254 // We start out processing C symbols in the default lex mode.
1255 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1256 this->lex_mode_stack_.push_back(lex->mode());
1257 }
1258
1259 // Return the file name.
1260 const char*
1261 filename() const
1262 { return this->filename_; }
1263
1264 // Return the position dependent options. The caller may modify
1265 // this.
1266 Position_dependent_options&
1267 position_dependent_options()
1268 { return this->posdep_options_; }
1269
1270 // Whether we are parsing a --defsym.
1271 bool
1272 parsing_defsym() const
1273 { return this->parsing_defsym_; }
1274
1275 // Return whether this script is being run in a group.
1276 bool
1277 in_group() const
1278 { return this->in_group_; }
1279
1280 // Return whether this script was found using a directory in the
1281 // sysroot.
1282 bool
1283 is_in_sysroot() const
1284 { return this->is_in_sysroot_; }
1285
1286 // Whether to skip to the next file with the same name if we find an
1287 // incompatible target in an OUTPUT_FORMAT statement.
1288 bool
1289 skip_on_incompatible_target() const
1290 { return this->skip_on_incompatible_target_; }
1291
1292 // Stop skipping to the next file on an incompatible target. This
1293 // is called when we make some unrevocable change to the data
1294 // structures.
1295 void
1296 clear_skip_on_incompatible_target()
1297 { this->skip_on_incompatible_target_ = false; }
1298
1299 // Whether we found an incompatible target in an OUTPUT_FORMAT
1300 // statement.
1301 bool
1302 found_incompatible_target() const
1303 { return this->found_incompatible_target_; }
1304
1305 // Note that we found an incompatible target.
1306 void
1307 set_found_incompatible_target()
1308 { this->found_incompatible_target_ = true; }
1309
1310 // Returns the Command_line structure passed in at constructor time.
1311 // This value may be NULL. The caller may modify this, which modifies
1312 // the passed-in Command_line object (not a copy).
1313 Command_line*
1314 command_line()
1315 { return this->command_line_; }
1316
1317 // Return the options which may be set by a script.
1318 Script_options*
1319 script_options()
1320 { return this->script_options_; }
1321
1322 // Return the object in which version script information should be stored.
1323 Version_script_info*
1324 version_script()
1325 { return this->version_script_info_; }
1326
1327 // Return the next token, and advance.
1328 const Token*
1329 next_token()
1330 {
1331 const Token* token = this->lex_->next_token();
1332 this->lineno_ = token->lineno();
1333 this->charpos_ = token->charpos();
1334 return token;
1335 }
1336
1337 // Set a new lexer mode, pushing the current one.
1338 void
1339 push_lex_mode(Lex::Mode mode)
1340 {
1341 this->lex_mode_stack_.push_back(this->lex_->mode());
1342 this->lex_->set_mode(mode);
1343 }
1344
1345 // Pop the lexer mode.
1346 void
1347 pop_lex_mode()
1348 {
1349 gold_assert(!this->lex_mode_stack_.empty());
1350 this->lex_->set_mode(this->lex_mode_stack_.back());
1351 this->lex_mode_stack_.pop_back();
1352 }
1353
1354 // Return the current lexer mode.
1355 Lex::Mode
1356 lex_mode() const
1357 { return this->lex_mode_stack_.back(); }
1358
1359 // Return the line number of the last token.
1360 int
1361 lineno() const
1362 { return this->lineno_; }
1363
1364 // Return the character position in the line of the last token.
1365 int
1366 charpos() const
1367 { return this->charpos_; }
1368
1369 // Return the list of input files, creating it if necessary. This
1370 // is a space leak--we never free the INPUTS_ pointer.
1371 Input_arguments*
1372 inputs()
1373 {
1374 if (this->inputs_ == NULL)
1375 this->inputs_ = new Input_arguments();
1376 return this->inputs_;
1377 }
1378
1379 // Return whether we saw any input files.
1380 bool
1381 saw_inputs() const
1382 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1383
1384 // Return the current language being processed in a version script
1385 // (eg, "C++"). The empty string represents unmangled C names.
1386 Version_script_info::Language
1387 get_current_language() const
1388 { return this->language_stack_.back(); }
1389
1390 // Push a language onto the stack when entering an extern block.
1391 void
1392 push_language(Version_script_info::Language lang)
1393 { this->language_stack_.push_back(lang); }
1394
1395 // Pop a language off of the stack when exiting an extern block.
1396 void
1397 pop_language()
1398 {
1399 gold_assert(!this->language_stack_.empty());
1400 this->language_stack_.pop_back();
1401 }
1402
1403 // Return a pointer to the incremental info.
1404 Script_info*
1405 script_info()
1406 { return this->script_info_; }
1407
1408 private:
1409 // The name of the file we are reading.
1410 const char* filename_;
1411 // The position dependent options.
1412 Position_dependent_options posdep_options_;
1413 // True if we are parsing a --defsym.
1414 bool parsing_defsym_;
1415 // Whether we are currently in a --start-group/--end-group.
1416 bool in_group_;
1417 // Whether the script was found in a sysrooted directory.
1418 bool is_in_sysroot_;
1419 // If this is true, then if we find an OUTPUT_FORMAT with an
1420 // incompatible target, then we tell the parser to abort so that we
1421 // can search for the next file with the same name.
1422 bool skip_on_incompatible_target_;
1423 // True if we found an OUTPUT_FORMAT with an incompatible target.
1424 bool found_incompatible_target_;
1425 // May be NULL if the user chooses not to pass one in.
1426 Command_line* command_line_;
1427 // Options which may be set from any linker script.
1428 Script_options* script_options_;
1429 // Information parsed from a version script.
1430 Version_script_info* version_script_info_;
1431 // The lexer.
1432 Lex* lex_;
1433 // The line number of the last token returned by next_token.
1434 int lineno_;
1435 // The column number of the last token returned by next_token.
1436 int charpos_;
1437 // A stack of lexer modes.
1438 std::vector<Lex::Mode> lex_mode_stack_;
1439 // A stack of which extern/language block we're inside. Can be C++,
1440 // java, or empty for C.
1441 std::vector<Version_script_info::Language> language_stack_;
1442 // New input files found to add to the link.
1443 Input_arguments* inputs_;
1444 // Pointer to incremental linking info.
1445 Script_info* script_info_;
1446 };
1447
1448 // FILE was found as an argument on the command line. Try to read it
1449 // as a script. Return true if the file was handled.
1450
1451 bool
1452 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1453 Dirsearch* dirsearch, int dirindex,
1454 Input_objects* input_objects, Mapfile* mapfile,
1455 Input_group* input_group,
1456 const Input_argument* input_argument,
1457 Input_file* input_file, Task_token* next_blocker,
1458 bool* used_next_blocker)
1459 {
1460 *used_next_blocker = false;
1461
1462 std::string input_string;
1463 Lex::read_file(input_file, &input_string);
1464
1465 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1466
1467 Script_info* script_info = NULL;
1468 if (layout->incremental_inputs() != NULL)
1469 {
1470 const std::string& filename = input_file->filename();
1471 Timespec mtime = input_file->file().get_mtime();
1472 unsigned int arg_serial = input_argument->file().arg_serial();
1473 script_info = new Script_info(filename);
1474 layout->incremental_inputs()->report_script(script_info, arg_serial,
1475 mtime);
1476 }
1477
1478 Parser_closure closure(input_file->filename().c_str(),
1479 input_argument->file().options(),
1480 false,
1481 input_group != NULL,
1482 input_file->is_in_sysroot(),
1483 NULL,
1484 layout->script_options(),
1485 &lex,
1486 input_file->will_search_for(),
1487 script_info);
1488
1489 bool old_saw_sections_clause =
1490 layout->script_options()->saw_sections_clause();
1491
1492 if (yyparse(&closure) != 0)
1493 {
1494 if (closure.found_incompatible_target())
1495 {
1496 Read_symbols::incompatible_warning(input_argument, input_file);
1497 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1498 dirsearch, dirindex, mapfile, input_argument,
1499 input_group, next_blocker);
1500 return true;
1501 }
1502 return false;
1503 }
1504
1505 if (!old_saw_sections_clause
1506 && layout->script_options()->saw_sections_clause()
1507 && layout->have_added_input_section())
1508 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1509 input_file->filename().c_str());
1510
1511 if (!closure.saw_inputs())
1512 return true;
1513
1514 Task_token* this_blocker = NULL;
1515 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1516 p != closure.inputs()->end();
1517 ++p)
1518 {
1519 Task_token* nb;
1520 if (p + 1 == closure.inputs()->end())
1521 nb = next_blocker;
1522 else
1523 {
1524 nb = new Task_token(true);
1525 nb->add_blocker();
1526 }
1527 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1528 layout, dirsearch, 0, mapfile, &*p,
1529 input_group, NULL, this_blocker, nb));
1530 this_blocker = nb;
1531 }
1532
1533 *used_next_blocker = true;
1534
1535 return true;
1536 }
1537
1538 // Helper function for read_version_script() and
1539 // read_commandline_script(). Processes the given file in the mode
1540 // indicated by first_token and lex_mode.
1541
1542 static bool
1543 read_script_file(const char* filename, Command_line* cmdline,
1544 Script_options* script_options,
1545 int first_token, Lex::Mode lex_mode)
1546 {
1547 // TODO: if filename is a relative filename, search for it manually
1548 // using "." + cmdline->options()->search_path() -- not dirsearch.
1549 Dirsearch dirsearch;
1550
1551 // The file locking code wants to record a Task, but we haven't
1552 // started the workqueue yet. This is only for debugging purposes,
1553 // so we invent a fake value.
1554 const Task* task = reinterpret_cast<const Task*>(-1);
1555
1556 // We don't want this file to be opened in binary mode.
1557 Position_dependent_options posdep = cmdline->position_dependent_options();
1558 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1559 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1560 Input_file_argument input_argument(filename,
1561 Input_file_argument::INPUT_FILE_TYPE_FILE,
1562 "", false, posdep);
1563 Input_file input_file(&input_argument);
1564 int dummy = 0;
1565 if (!input_file.open(dirsearch, task, &dummy))
1566 return false;
1567
1568 std::string input_string;
1569 Lex::read_file(&input_file, &input_string);
1570
1571 Lex lex(input_string.c_str(), input_string.length(), first_token);
1572 lex.set_mode(lex_mode);
1573
1574 Parser_closure closure(filename,
1575 cmdline->position_dependent_options(),
1576 first_token == Lex::DYNAMIC_LIST,
1577 false,
1578 input_file.is_in_sysroot(),
1579 cmdline,
1580 script_options,
1581 &lex,
1582 false,
1583 NULL);
1584 if (yyparse(&closure) != 0)
1585 {
1586 input_file.file().unlock(task);
1587 return false;
1588 }
1589
1590 input_file.file().unlock(task);
1591
1592 gold_assert(!closure.saw_inputs());
1593
1594 return true;
1595 }
1596
1597 // FILENAME was found as an argument to --script (-T).
1598 // Read it as a script, and execute its contents immediately.
1599
1600 bool
1601 read_commandline_script(const char* filename, Command_line* cmdline)
1602 {
1603 return read_script_file(filename, cmdline, &cmdline->script_options(),
1604 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1605 }
1606
1607 // FILENAME was found as an argument to --version-script. Read it as
1608 // a version script, and store its contents in
1609 // cmdline->script_options()->version_script_info().
1610
1611 bool
1612 read_version_script(const char* filename, Command_line* cmdline)
1613 {
1614 return read_script_file(filename, cmdline, &cmdline->script_options(),
1615 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1616 }
1617
1618 // FILENAME was found as an argument to --dynamic-list. Read it as a
1619 // list of symbols, and store its contents in DYNAMIC_LIST.
1620
1621 bool
1622 read_dynamic_list(const char* filename, Command_line* cmdline,
1623 Script_options* dynamic_list)
1624 {
1625 return read_script_file(filename, cmdline, dynamic_list,
1626 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1627 }
1628
1629 // Implement the --defsym option on the command line. Return true if
1630 // all is well.
1631
1632 bool
1633 Script_options::define_symbol(const char* definition)
1634 {
1635 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1636 lex.set_mode(Lex::EXPRESSION);
1637
1638 // Dummy value.
1639 Position_dependent_options posdep_options;
1640
1641 Parser_closure closure("command line", posdep_options, true,
1642 false, false, NULL, this, &lex, false, NULL);
1643
1644 if (yyparse(&closure) != 0)
1645 return false;
1646
1647 gold_assert(!closure.saw_inputs());
1648
1649 return true;
1650 }
1651
1652 // Print the script to F for debugging.
1653
1654 void
1655 Script_options::print(FILE* f) const
1656 {
1657 fprintf(f, "%s: Dumping linker script\n", program_name);
1658
1659 if (!this->entry_.empty())
1660 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1661
1662 for (Symbol_assignments::const_iterator p =
1663 this->symbol_assignments_.begin();
1664 p != this->symbol_assignments_.end();
1665 ++p)
1666 (*p)->print(f);
1667
1668 for (Assertions::const_iterator p = this->assertions_.begin();
1669 p != this->assertions_.end();
1670 ++p)
1671 (*p)->print(f);
1672
1673 this->script_sections_.print(f);
1674
1675 this->version_script_info_.print(f);
1676 }
1677
1678 // Manage mapping from keywords to the codes expected by the bison
1679 // parser. We construct one global object for each lex mode with
1680 // keywords.
1681
1682 class Keyword_to_parsecode
1683 {
1684 public:
1685 // The structure which maps keywords to parsecodes.
1686 struct Keyword_parsecode
1687 {
1688 // Keyword.
1689 const char* keyword;
1690 // Corresponding parsecode.
1691 int parsecode;
1692 };
1693
1694 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1695 int keyword_count)
1696 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1697 { }
1698
1699 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1700 // keyword.
1701 int
1702 keyword_to_parsecode(const char* keyword, size_t len) const;
1703
1704 private:
1705 const Keyword_parsecode* keyword_parsecodes_;
1706 const int keyword_count_;
1707 };
1708
1709 // Mapping from keyword string to keyword parsecode. This array must
1710 // be kept in sorted order. Parsecodes are looked up using bsearch.
1711 // This array must correspond to the list of parsecodes in yyscript.y.
1712
1713 static const Keyword_to_parsecode::Keyword_parsecode
1714 script_keyword_parsecodes[] =
1715 {
1716 { "ABSOLUTE", ABSOLUTE },
1717 { "ADDR", ADDR },
1718 { "ALIGN", ALIGN_K },
1719 { "ALIGNOF", ALIGNOF },
1720 { "ASSERT", ASSERT_K },
1721 { "AS_NEEDED", AS_NEEDED },
1722 { "AT", AT },
1723 { "BIND", BIND },
1724 { "BLOCK", BLOCK },
1725 { "BYTE", BYTE },
1726 { "CONSTANT", CONSTANT },
1727 { "CONSTRUCTORS", CONSTRUCTORS },
1728 { "COPY", COPY },
1729 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1730 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1731 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1732 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1733 { "DEFINED", DEFINED },
1734 { "DSECT", DSECT },
1735 { "ENTRY", ENTRY },
1736 { "EXCLUDE_FILE", EXCLUDE_FILE },
1737 { "EXTERN", EXTERN },
1738 { "FILL", FILL },
1739 { "FLOAT", FLOAT },
1740 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1741 { "GROUP", GROUP },
1742 { "HLL", HLL },
1743 { "INCLUDE", INCLUDE },
1744 { "INFO", INFO },
1745 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1746 { "INPUT", INPUT },
1747 { "KEEP", KEEP },
1748 { "LENGTH", LENGTH },
1749 { "LOADADDR", LOADADDR },
1750 { "LONG", LONG },
1751 { "MAP", MAP },
1752 { "MAX", MAX_K },
1753 { "MEMORY", MEMORY },
1754 { "MIN", MIN_K },
1755 { "NEXT", NEXT },
1756 { "NOCROSSREFS", NOCROSSREFS },
1757 { "NOFLOAT", NOFLOAT },
1758 { "NOLOAD", NOLOAD },
1759 { "ONLY_IF_RO", ONLY_IF_RO },
1760 { "ONLY_IF_RW", ONLY_IF_RW },
1761 { "OPTION", OPTION },
1762 { "ORIGIN", ORIGIN },
1763 { "OUTPUT", OUTPUT },
1764 { "OUTPUT_ARCH", OUTPUT_ARCH },
1765 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1766 { "OVERLAY", OVERLAY },
1767 { "PHDRS", PHDRS },
1768 { "PROVIDE", PROVIDE },
1769 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1770 { "QUAD", QUAD },
1771 { "SEARCH_DIR", SEARCH_DIR },
1772 { "SECTIONS", SECTIONS },
1773 { "SEGMENT_START", SEGMENT_START },
1774 { "SHORT", SHORT },
1775 { "SIZEOF", SIZEOF },
1776 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1777 { "SORT", SORT_BY_NAME },
1778 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1779 { "SORT_BY_NAME", SORT_BY_NAME },
1780 { "SPECIAL", SPECIAL },
1781 { "SQUAD", SQUAD },
1782 { "STARTUP", STARTUP },
1783 { "SUBALIGN", SUBALIGN },
1784 { "SYSLIB", SYSLIB },
1785 { "TARGET", TARGET_K },
1786 { "TRUNCATE", TRUNCATE },
1787 { "VERSION", VERSIONK },
1788 { "global", GLOBAL },
1789 { "l", LENGTH },
1790 { "len", LENGTH },
1791 { "local", LOCAL },
1792 { "o", ORIGIN },
1793 { "org", ORIGIN },
1794 { "sizeof_headers", SIZEOF_HEADERS },
1795 };
1796
1797 static const Keyword_to_parsecode
1798 script_keywords(&script_keyword_parsecodes[0],
1799 (sizeof(script_keyword_parsecodes)
1800 / sizeof(script_keyword_parsecodes[0])));
1801
1802 static const Keyword_to_parsecode::Keyword_parsecode
1803 version_script_keyword_parsecodes[] =
1804 {
1805 { "extern", EXTERN },
1806 { "global", GLOBAL },
1807 { "local", LOCAL },
1808 };
1809
1810 static const Keyword_to_parsecode
1811 version_script_keywords(&version_script_keyword_parsecodes[0],
1812 (sizeof(version_script_keyword_parsecodes)
1813 / sizeof(version_script_keyword_parsecodes[0])));
1814
1815 static const Keyword_to_parsecode::Keyword_parsecode
1816 dynamic_list_keyword_parsecodes[] =
1817 {
1818 { "extern", EXTERN },
1819 };
1820
1821 static const Keyword_to_parsecode
1822 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1823 (sizeof(dynamic_list_keyword_parsecodes)
1824 / sizeof(dynamic_list_keyword_parsecodes[0])));
1825
1826
1827
1828 // Comparison function passed to bsearch.
1829
1830 extern "C"
1831 {
1832
1833 struct Ktt_key
1834 {
1835 const char* str;
1836 size_t len;
1837 };
1838
1839 static int
1840 ktt_compare(const void* keyv, const void* kttv)
1841 {
1842 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1843 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1844 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1845 int i = strncmp(key->str, ktt->keyword, key->len);
1846 if (i != 0)
1847 return i;
1848 if (ktt->keyword[key->len] != '\0')
1849 return -1;
1850 return 0;
1851 }
1852
1853 } // End extern "C".
1854
1855 int
1856 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1857 size_t len) const
1858 {
1859 Ktt_key key;
1860 key.str = keyword;
1861 key.len = len;
1862 void* kttv = bsearch(&key,
1863 this->keyword_parsecodes_,
1864 this->keyword_count_,
1865 sizeof(this->keyword_parsecodes_[0]),
1866 ktt_compare);
1867 if (kttv == NULL)
1868 return 0;
1869 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1870 return ktt->parsecode;
1871 }
1872
1873 // The following structs are used within the VersionInfo class as well
1874 // as in the bison helper functions. They store the information
1875 // parsed from the version script.
1876
1877 // A single version expression.
1878 // For example, pattern="std::map*" and language="C++".
1879 struct Version_expression
1880 {
1881 Version_expression(const std::string& a_pattern,
1882 Version_script_info::Language a_language,
1883 bool a_exact_match)
1884 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1885 was_matched_by_symbol(false)
1886 { }
1887
1888 std::string pattern;
1889 Version_script_info::Language language;
1890 // If false, we use glob() to match pattern. If true, we use strcmp().
1891 bool exact_match;
1892 // True if --no-undefined-version is in effect and we found this
1893 // version in get_symbol_version. We use mutable because this
1894 // struct is generally not modifiable after it has been created.
1895 mutable bool was_matched_by_symbol;
1896 };
1897
1898 // A list of expressions.
1899 struct Version_expression_list
1900 {
1901 std::vector<struct Version_expression> expressions;
1902 };
1903
1904 // A list of which versions upon which another version depends.
1905 // Strings should be from the Stringpool.
1906 struct Version_dependency_list
1907 {
1908 std::vector<std::string> dependencies;
1909 };
1910
1911 // The total definition of a version. It includes the tag for the
1912 // version, its global and local expressions, and any dependencies.
1913 struct Version_tree
1914 {
1915 Version_tree()
1916 : tag(), global(NULL), local(NULL), dependencies(NULL)
1917 { }
1918
1919 std::string tag;
1920 const struct Version_expression_list* global;
1921 const struct Version_expression_list* local;
1922 const struct Version_dependency_list* dependencies;
1923 };
1924
1925 // Helper class that calls cplus_demangle when needed and takes care of freeing
1926 // the result.
1927
1928 class Lazy_demangler
1929 {
1930 public:
1931 Lazy_demangler(const char* symbol, int options)
1932 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1933 { }
1934
1935 ~Lazy_demangler()
1936 { free(this->demangled_); }
1937
1938 // Return the demangled name. The actual demangling happens on the first call,
1939 // and the result is later cached.
1940 inline char*
1941 get();
1942
1943 private:
1944 // The symbol to demangle.
1945 const char* symbol_;
1946 // Option flags to pass to cplus_demagle.
1947 const int options_;
1948 // The cached demangled value, or NULL if demangling didn't happen yet or
1949 // failed.
1950 char* demangled_;
1951 // Whether we already called cplus_demangle
1952 bool did_demangle_;
1953 };
1954
1955 // Return the demangled name. The actual demangling happens on the first call,
1956 // and the result is later cached. Returns NULL if the symbol cannot be
1957 // demangled.
1958
1959 inline char*
1960 Lazy_demangler::get()
1961 {
1962 if (!this->did_demangle_)
1963 {
1964 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1965 this->did_demangle_ = true;
1966 }
1967 return this->demangled_;
1968 }
1969
1970 // Class Version_script_info.
1971
1972 Version_script_info::Version_script_info()
1973 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1974 default_version_(NULL), default_is_global_(false), is_finalized_(false)
1975 {
1976 for (int i = 0; i < LANGUAGE_COUNT; ++i)
1977 this->exact_[i] = NULL;
1978 }
1979
1980 Version_script_info::~Version_script_info()
1981 {
1982 }
1983
1984 // Forget all the known version script information.
1985
1986 void
1987 Version_script_info::clear()
1988 {
1989 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
1990 delete this->dependency_lists_[k];
1991 this->dependency_lists_.clear();
1992 for (size_t k = 0; k < this->version_trees_.size(); ++k)
1993 delete this->version_trees_[k];
1994 this->version_trees_.clear();
1995 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
1996 delete this->expression_lists_[k];
1997 this->expression_lists_.clear();
1998 }
1999
2000 // Finalize the version script information.
2001
2002 void
2003 Version_script_info::finalize()
2004 {
2005 if (!this->is_finalized_)
2006 {
2007 this->build_lookup_tables();
2008 this->is_finalized_ = true;
2009 }
2010 }
2011
2012 // Return all the versions.
2013
2014 std::vector<std::string>
2015 Version_script_info::get_versions() const
2016 {
2017 std::vector<std::string> ret;
2018 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2019 if (!this->version_trees_[j]->tag.empty())
2020 ret.push_back(this->version_trees_[j]->tag);
2021 return ret;
2022 }
2023
2024 // Return the dependencies of VERSION.
2025
2026 std::vector<std::string>
2027 Version_script_info::get_dependencies(const char* version) const
2028 {
2029 std::vector<std::string> ret;
2030 for (size_t j = 0; j < this->version_trees_.size(); ++j)
2031 if (this->version_trees_[j]->tag == version)
2032 {
2033 const struct Version_dependency_list* deps =
2034 this->version_trees_[j]->dependencies;
2035 if (deps != NULL)
2036 for (size_t k = 0; k < deps->dependencies.size(); ++k)
2037 ret.push_back(deps->dependencies[k]);
2038 return ret;
2039 }
2040 return ret;
2041 }
2042
2043 // A version script essentially maps a symbol name to a version tag
2044 // and an indication of whether symbol is global or local within that
2045 // version tag. Each symbol maps to at most one version tag.
2046 // Unfortunately, in practice, version scripts are ambiguous, and list
2047 // symbols multiple times. Thus, we have to document the matching
2048 // process.
2049
2050 // This is a description of what the GNU linker does as of 2010-01-11.
2051 // It walks through the version tags in the order in which they appear
2052 // in the version script. For each tag, it first walks through the
2053 // global patterns for that tag, then the local patterns. When
2054 // looking at a single pattern, it first applies any language specific
2055 // demangling as specified for the pattern, and then matches the
2056 // resulting symbol name to the pattern. If it finds an exact match
2057 // for a literal pattern (a pattern enclosed in quotes or with no
2058 // wildcard characters), then that is the match that it uses. If
2059 // finds a match with a wildcard pattern, then it saves it and
2060 // continues searching. Wildcard patterns that are exactly "*" are
2061 // saved separately.
2062
2063 // If no exact match with a literal pattern is ever found, then if a
2064 // wildcard match with a global pattern was found it is used,
2065 // otherwise if a wildcard match with a local pattern was found it is
2066 // used.
2067
2068 // This is the result:
2069 // * If there is an exact match, then we use the first tag in the
2070 // version script where it matches.
2071 // + If the exact match in that tag is global, it is used.
2072 // + Otherwise the exact match in that tag is local, and is used.
2073 // * Otherwise, if there is any match with a global wildcard pattern:
2074 // + If there is any match with a wildcard pattern which is not
2075 // "*", then we use the tag in which the *last* such pattern
2076 // appears.
2077 // + Otherwise, we matched "*". If there is no match with a local
2078 // wildcard pattern which is not "*", then we use the *last*
2079 // match with a global "*". Otherwise, continue.
2080 // * Otherwise, if there is any match with a local wildcard pattern:
2081 // + If there is any match with a wildcard pattern which is not
2082 // "*", then we use the tag in which the *last* such pattern
2083 // appears.
2084 // + Otherwise, we matched "*", and we use the tag in which the
2085 // *last* such match occurred.
2086
2087 // There is an additional wrinkle. When the GNU linker finds a symbol
2088 // with a version defined in an object file due to a .symver
2089 // directive, it looks up that symbol name in that version tag. If it
2090 // finds it, it matches the symbol name against the patterns for that
2091 // version. If there is no match with a global pattern, but there is
2092 // a match with a local pattern, then the GNU linker marks the symbol
2093 // as local.
2094
2095 // We want gold to be generally compatible, but we also want gold to
2096 // be fast. These are the rules that gold implements:
2097 // * If there is an exact match for the mangled name, we use it.
2098 // + If there is more than one exact match, we give a warning, and
2099 // we use the first tag in the script which matches.
2100 // + If a symbol has an exact match as both global and local for
2101 // the same version tag, we give an error.
2102 // * Otherwise, we look for an extern C++ or an extern Java exact
2103 // match. If we find an exact match, we use it.
2104 // + If there is more than one exact match, we give a warning, and
2105 // we use the first tag in the script which matches.
2106 // + If a symbol has an exact match as both global and local for
2107 // the same version tag, we give an error.
2108 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2109 // patterns. We look through the version tags in reverse order.
2110 // For each version tag, we look through the global patterns and
2111 // then the local patterns. We use the first match we find (i.e.,
2112 // the last matching version tag in the file).
2113 // * Otherwise, we use the "*" pattern if there is one. We give an
2114 // error if there are multiple "*" patterns.
2115
2116 // At least for now, gold does not look up the version tag for a
2117 // symbol version found in an object file to see if it should be
2118 // forced local. There are other ways to force a symbol to be local,
2119 // and I don't understand why this one is useful.
2120
2121 // Build a set of fast lookup tables for a version script.
2122
2123 void
2124 Version_script_info::build_lookup_tables()
2125 {
2126 size_t size = this->version_trees_.size();
2127 for (size_t j = 0; j < size; ++j)
2128 {
2129 const Version_tree* v = this->version_trees_[j];
2130 this->build_expression_list_lookup(v->local, v, false);
2131 this->build_expression_list_lookup(v->global, v, true);
2132 }
2133 }
2134
2135 // If a pattern has backlashes but no unquoted wildcard characters,
2136 // then we apply backslash unquoting and look for an exact match.
2137 // Otherwise we treat it as a wildcard pattern. This function returns
2138 // true for a wildcard pattern. Otherwise, it does backslash
2139 // unquoting on *PATTERN and returns false. If this returns true,
2140 // *PATTERN may have been partially unquoted.
2141
2142 bool
2143 Version_script_info::unquote(std::string* pattern) const
2144 {
2145 bool saw_backslash = false;
2146 size_t len = pattern->length();
2147 size_t j = 0;
2148 for (size_t i = 0; i < len; ++i)
2149 {
2150 if (saw_backslash)
2151 saw_backslash = false;
2152 else
2153 {
2154 switch ((*pattern)[i])
2155 {
2156 case '?': case '[': case '*':
2157 return true;
2158 case '\\':
2159 saw_backslash = true;
2160 continue;
2161 default:
2162 break;
2163 }
2164 }
2165
2166 if (i != j)
2167 (*pattern)[j] = (*pattern)[i];
2168 ++j;
2169 }
2170 return false;
2171 }
2172
2173 // Add an exact match for MATCH to *PE. The result of the match is
2174 // V/IS_GLOBAL.
2175
2176 void
2177 Version_script_info::add_exact_match(const std::string& match,
2178 const Version_tree* v, bool is_global,
2179 const Version_expression* ve,
2180 Exact* pe)
2181 {
2182 std::pair<Exact::iterator, bool> ins =
2183 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2184 if (ins.second)
2185 {
2186 // This is the first time we have seen this match.
2187 return;
2188 }
2189
2190 Version_tree_match& vtm(ins.first->second);
2191 if (vtm.real->tag != v->tag)
2192 {
2193 // This is an ambiguous match. We still return the
2194 // first version that we found in the script, but we
2195 // record the new version to issue a warning if we
2196 // wind up looking up this symbol.
2197 if (vtm.ambiguous == NULL)
2198 vtm.ambiguous = v;
2199 }
2200 else if (is_global != vtm.is_global)
2201 {
2202 // We have a match for both the global and local entries for a
2203 // version tag. That's got to be wrong.
2204 gold_error(_("'%s' appears as both a global and a local symbol "
2205 "for version '%s' in script"),
2206 match.c_str(), v->tag.c_str());
2207 }
2208 }
2209
2210 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2211 // All matches go to V, and IS_GLOBAL is true if they are global
2212 // matches.
2213
2214 void
2215 Version_script_info::build_expression_list_lookup(
2216 const Version_expression_list* explist,
2217 const Version_tree* v,
2218 bool is_global)
2219 {
2220 if (explist == NULL)
2221 return;
2222 size_t size = explist->expressions.size();
2223 for (size_t i = 0; i < size; ++i)
2224 {
2225 const Version_expression& exp(explist->expressions[i]);
2226
2227 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2228 {
2229 if (this->default_version_ != NULL
2230 && this->default_version_->tag != v->tag)
2231 gold_warning(_("wildcard match appears in both version '%s' "
2232 "and '%s' in script"),
2233 this->default_version_->tag.c_str(), v->tag.c_str());
2234 else if (this->default_version_ != NULL
2235 && this->default_is_global_ != is_global)
2236 gold_error(_("wildcard match appears as both global and local "
2237 "in version '%s' in script"),
2238 v->tag.c_str());
2239 this->default_version_ = v;
2240 this->default_is_global_ = is_global;
2241 continue;
2242 }
2243
2244 std::string pattern = exp.pattern;
2245 if (!exp.exact_match)
2246 {
2247 if (this->unquote(&pattern))
2248 {
2249 this->globs_.push_back(Glob(&exp, v, is_global));
2250 continue;
2251 }
2252 }
2253
2254 if (this->exact_[exp.language] == NULL)
2255 this->exact_[exp.language] = new Exact();
2256 this->add_exact_match(pattern, v, is_global, &exp,
2257 this->exact_[exp.language]);
2258 }
2259 }
2260
2261 // Return the name to match given a name, a language code, and two
2262 // lazy demanglers.
2263
2264 const char*
2265 Version_script_info::get_name_to_match(const char* name,
2266 int language,
2267 Lazy_demangler* cpp_demangler,
2268 Lazy_demangler* java_demangler) const
2269 {
2270 switch (language)
2271 {
2272 case LANGUAGE_C:
2273 return name;
2274 case LANGUAGE_CXX:
2275 return cpp_demangler->get();
2276 case LANGUAGE_JAVA:
2277 return java_demangler->get();
2278 default:
2279 gold_unreachable();
2280 }
2281 }
2282
2283 // Look up SYMBOL_NAME in the list of versions. Return true if the
2284 // symbol is found, false if not. If the symbol is found, then if
2285 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2286 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2287 // symbol is global or not.
2288
2289 bool
2290 Version_script_info::get_symbol_version(const char* symbol_name,
2291 std::string* pversion,
2292 bool* p_is_global) const
2293 {
2294 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2295 Lazy_demangler java_demangled_name(symbol_name,
2296 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2297
2298 gold_assert(this->is_finalized_);
2299 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2300 {
2301 Exact* exact = this->exact_[i];
2302 if (exact == NULL)
2303 continue;
2304
2305 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2306 &cpp_demangled_name,
2307 &java_demangled_name);
2308 if (name_to_match == NULL)
2309 {
2310 // If the name can not be demangled, the GNU linker goes
2311 // ahead and tries to match it anyhow. That does not
2312 // make sense to me and I have not implemented it.
2313 continue;
2314 }
2315
2316 Exact::const_iterator pe = exact->find(name_to_match);
2317 if (pe != exact->end())
2318 {
2319 const Version_tree_match& vtm(pe->second);
2320 if (vtm.ambiguous != NULL)
2321 gold_warning(_("using '%s' as version for '%s' which is also "
2322 "named in version '%s' in script"),
2323 vtm.real->tag.c_str(), name_to_match,
2324 vtm.ambiguous->tag.c_str());
2325
2326 if (pversion != NULL)
2327 *pversion = vtm.real->tag;
2328 if (p_is_global != NULL)
2329 *p_is_global = vtm.is_global;
2330
2331 // If we are using --no-undefined-version, and this is a
2332 // global symbol, we have to record that we have found this
2333 // symbol, so that we don't warn about it. We have to do
2334 // this now, because otherwise we have no way to get from a
2335 // non-C language back to the demangled name that we
2336 // matched.
2337 if (p_is_global != NULL && vtm.is_global)
2338 vtm.expression->was_matched_by_symbol = true;
2339
2340 return true;
2341 }
2342 }
2343
2344 // Look through the glob patterns in reverse order.
2345
2346 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2347 p != this->globs_.rend();
2348 ++p)
2349 {
2350 int language = p->expression->language;
2351 const char* name_to_match = this->get_name_to_match(symbol_name,
2352 language,
2353 &cpp_demangled_name,
2354 &java_demangled_name);
2355 if (name_to_match == NULL)
2356 continue;
2357
2358 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2359 FNM_NOESCAPE) == 0)
2360 {
2361 if (pversion != NULL)
2362 *pversion = p->version->tag;
2363 if (p_is_global != NULL)
2364 *p_is_global = p->is_global;
2365 return true;
2366 }
2367 }
2368
2369 // Finally, there may be a wildcard.
2370 if (this->default_version_ != NULL)
2371 {
2372 if (pversion != NULL)
2373 *pversion = this->default_version_->tag;
2374 if (p_is_global != NULL)
2375 *p_is_global = this->default_is_global_;
2376 return true;
2377 }
2378
2379 return false;
2380 }
2381
2382 // Give an error if any exact symbol names (not wildcards) appear in a
2383 // version script, but there is no such symbol.
2384
2385 void
2386 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2387 {
2388 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2389 {
2390 const Version_tree* vt = this->version_trees_[i];
2391 if (vt->global == NULL)
2392 continue;
2393 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2394 {
2395 const Version_expression& expression(vt->global->expressions[j]);
2396
2397 // Ignore cases where we used the version because we saw a
2398 // symbol that we looked up. Note that
2399 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2400 // not a definition. That's OK as in that case we most
2401 // likely gave an undefined symbol error anyhow.
2402 if (expression.was_matched_by_symbol)
2403 continue;
2404
2405 // Just ignore names which are in languages other than C.
2406 // We have no way to look them up in the symbol table.
2407 if (expression.language != LANGUAGE_C)
2408 continue;
2409
2410 // Remove backslash quoting, and ignore wildcard patterns.
2411 std::string pattern = expression.pattern;
2412 if (!expression.exact_match)
2413 {
2414 if (this->unquote(&pattern))
2415 continue;
2416 }
2417
2418 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2419 gold_error(_("version script assignment of %s to symbol %s "
2420 "failed: symbol not defined"),
2421 vt->tag.c_str(), pattern.c_str());
2422 }
2423 }
2424 }
2425
2426 struct Version_dependency_list*
2427 Version_script_info::allocate_dependency_list()
2428 {
2429 dependency_lists_.push_back(new Version_dependency_list);
2430 return dependency_lists_.back();
2431 }
2432
2433 struct Version_expression_list*
2434 Version_script_info::allocate_expression_list()
2435 {
2436 expression_lists_.push_back(new Version_expression_list);
2437 return expression_lists_.back();
2438 }
2439
2440 struct Version_tree*
2441 Version_script_info::allocate_version_tree()
2442 {
2443 version_trees_.push_back(new Version_tree);
2444 return version_trees_.back();
2445 }
2446
2447 // Print for debugging.
2448
2449 void
2450 Version_script_info::print(FILE* f) const
2451 {
2452 if (this->empty())
2453 return;
2454
2455 fprintf(f, "VERSION {");
2456
2457 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2458 {
2459 const Version_tree* vt = this->version_trees_[i];
2460
2461 if (vt->tag.empty())
2462 fprintf(f, " {\n");
2463 else
2464 fprintf(f, " %s {\n", vt->tag.c_str());
2465
2466 if (vt->global != NULL)
2467 {
2468 fprintf(f, " global :\n");
2469 this->print_expression_list(f, vt->global);
2470 }
2471
2472 if (vt->local != NULL)
2473 {
2474 fprintf(f, " local :\n");
2475 this->print_expression_list(f, vt->local);
2476 }
2477
2478 fprintf(f, " }");
2479 if (vt->dependencies != NULL)
2480 {
2481 const Version_dependency_list* deps = vt->dependencies;
2482 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2483 {
2484 if (j < deps->dependencies.size() - 1)
2485 fprintf(f, "\n");
2486 fprintf(f, " %s", deps->dependencies[j].c_str());
2487 }
2488 }
2489 fprintf(f, ";\n");
2490 }
2491
2492 fprintf(f, "}\n");
2493 }
2494
2495 void
2496 Version_script_info::print_expression_list(
2497 FILE* f,
2498 const Version_expression_list* vel) const
2499 {
2500 Version_script_info::Language current_language = LANGUAGE_C;
2501 for (size_t i = 0; i < vel->expressions.size(); ++i)
2502 {
2503 const Version_expression& ve(vel->expressions[i]);
2504
2505 if (ve.language != current_language)
2506 {
2507 if (current_language != LANGUAGE_C)
2508 fprintf(f, " }\n");
2509 switch (ve.language)
2510 {
2511 case LANGUAGE_C:
2512 break;
2513 case LANGUAGE_CXX:
2514 fprintf(f, " extern \"C++\" {\n");
2515 break;
2516 case LANGUAGE_JAVA:
2517 fprintf(f, " extern \"Java\" {\n");
2518 break;
2519 default:
2520 gold_unreachable();
2521 }
2522 current_language = ve.language;
2523 }
2524
2525 fprintf(f, " ");
2526 if (current_language != LANGUAGE_C)
2527 fprintf(f, " ");
2528
2529 if (ve.exact_match)
2530 fprintf(f, "\"");
2531 fprintf(f, "%s", ve.pattern.c_str());
2532 if (ve.exact_match)
2533 fprintf(f, "\"");
2534
2535 fprintf(f, "\n");
2536 }
2537
2538 if (current_language != LANGUAGE_C)
2539 fprintf(f, " }\n");
2540 }
2541
2542 } // End namespace gold.
2543
2544 // The remaining functions are extern "C", so it's clearer to not put
2545 // them in namespace gold.
2546
2547 using namespace gold;
2548
2549 // This function is called by the bison parser to return the next
2550 // token.
2551
2552 extern "C" int
2553 yylex(YYSTYPE* lvalp, void* closurev)
2554 {
2555 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2556 const Token* token = closure->next_token();
2557 switch (token->classification())
2558 {
2559 default:
2560 gold_unreachable();
2561
2562 case Token::TOKEN_INVALID:
2563 yyerror(closurev, "invalid character");
2564 return 0;
2565
2566 case Token::TOKEN_EOF:
2567 return 0;
2568
2569 case Token::TOKEN_STRING:
2570 {
2571 // This is either a keyword or a STRING.
2572 size_t len;
2573 const char* str = token->string_value(&len);
2574 int parsecode = 0;
2575 switch (closure->lex_mode())
2576 {
2577 case Lex::LINKER_SCRIPT:
2578 parsecode = script_keywords.keyword_to_parsecode(str, len);
2579 break;
2580 case Lex::VERSION_SCRIPT:
2581 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2582 break;
2583 case Lex::DYNAMIC_LIST:
2584 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2585 break;
2586 default:
2587 break;
2588 }
2589 if (parsecode != 0)
2590 return parsecode;
2591 lvalp->string.value = str;
2592 lvalp->string.length = len;
2593 return STRING;
2594 }
2595
2596 case Token::TOKEN_QUOTED_STRING:
2597 lvalp->string.value = token->string_value(&lvalp->string.length);
2598 return QUOTED_STRING;
2599
2600 case Token::TOKEN_OPERATOR:
2601 return token->operator_value();
2602
2603 case Token::TOKEN_INTEGER:
2604 lvalp->integer = token->integer_value();
2605 return INTEGER;
2606 }
2607 }
2608
2609 // This function is called by the bison parser to report an error.
2610
2611 extern "C" void
2612 yyerror(void* closurev, const char* message)
2613 {
2614 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2615 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2616 closure->charpos(), message);
2617 }
2618
2619 // Called by the bison parser to add an external symbol to the link.
2620
2621 extern "C" void
2622 script_add_extern(void* closurev, const char* name, size_t length)
2623 {
2624 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2625 closure->script_options()->add_symbol_reference(name, length);
2626 }
2627
2628 // Called by the bison parser to add a file to the link.
2629
2630 extern "C" void
2631 script_add_file(void* closurev, const char* name, size_t length)
2632 {
2633 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2634
2635 // If this is an absolute path, and we found the script in the
2636 // sysroot, then we want to prepend the sysroot to the file name.
2637 // For example, this is how we handle a cross link to the x86_64
2638 // libc.so, which refers to /lib/libc.so.6.
2639 std::string name_string(name, length);
2640 const char* extra_search_path = ".";
2641 std::string script_directory;
2642 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2643 {
2644 if (closure->is_in_sysroot())
2645 {
2646 const std::string& sysroot(parameters->options().sysroot());
2647 gold_assert(!sysroot.empty());
2648 name_string = sysroot + name_string;
2649 }
2650 }
2651 else
2652 {
2653 // In addition to checking the normal library search path, we
2654 // also want to check in the script-directory.
2655 const char* slash = strrchr(closure->filename(), '/');
2656 if (slash != NULL)
2657 {
2658 script_directory.assign(closure->filename(),
2659 slash - closure->filename() + 1);
2660 extra_search_path = script_directory.c_str();
2661 }
2662 }
2663
2664 Input_file_argument file(name_string.c_str(),
2665 Input_file_argument::INPUT_FILE_TYPE_FILE,
2666 extra_search_path, false,
2667 closure->position_dependent_options());
2668 Input_argument& arg = closure->inputs()->add_file(file);
2669 arg.set_script_info(closure->script_info());
2670 }
2671
2672 // Called by the bison parser to add a library to the link.
2673
2674 extern "C" void
2675 script_add_library(void* closurev, const char* name, size_t length)
2676 {
2677 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2678 std::string name_string(name, length);
2679
2680 if (name_string[0] != 'l')
2681 gold_error(_("library name must be prefixed with -l"));
2682
2683 Input_file_argument file(name_string.c_str() + 1,
2684 Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2685 "", false,
2686 closure->position_dependent_options());
2687 Input_argument& arg = closure->inputs()->add_file(file);
2688 arg.set_script_info(closure->script_info());
2689 }
2690
2691 // Called by the bison parser to start a group. If we are already in
2692 // a group, that means that this script was invoked within a
2693 // --start-group --end-group sequence on the command line, or that
2694 // this script was found in a GROUP of another script. In that case,
2695 // we simply continue the existing group, rather than starting a new
2696 // one. It is possible to construct a case in which this will do
2697 // something other than what would happen if we did a recursive group,
2698 // but it's hard to imagine why the different behaviour would be
2699 // useful for a real program. Avoiding recursive groups is simpler
2700 // and more efficient.
2701
2702 extern "C" void
2703 script_start_group(void* closurev)
2704 {
2705 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2706 if (!closure->in_group())
2707 closure->inputs()->start_group();
2708 }
2709
2710 // Called by the bison parser at the end of a group.
2711
2712 extern "C" void
2713 script_end_group(void* closurev)
2714 {
2715 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2716 if (!closure->in_group())
2717 closure->inputs()->end_group();
2718 }
2719
2720 // Called by the bison parser to start an AS_NEEDED list.
2721
2722 extern "C" void
2723 script_start_as_needed(void* closurev)
2724 {
2725 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2726 closure->position_dependent_options().set_as_needed(true);
2727 }
2728
2729 // Called by the bison parser at the end of an AS_NEEDED list.
2730
2731 extern "C" void
2732 script_end_as_needed(void* closurev)
2733 {
2734 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2735 closure->position_dependent_options().set_as_needed(false);
2736 }
2737
2738 // Called by the bison parser to set the entry symbol.
2739
2740 extern "C" void
2741 script_set_entry(void* closurev, const char* entry, size_t length)
2742 {
2743 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2744 // TODO(csilvers): FIXME -- call set_entry directly.
2745 std::string arg("--entry=");
2746 arg.append(entry, length);
2747 script_parse_option(closurev, arg.c_str(), arg.size());
2748 }
2749
2750 // Called by the bison parser to set whether to define common symbols.
2751
2752 extern "C" void
2753 script_set_common_allocation(void* closurev, int set)
2754 {
2755 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2756 script_parse_option(closurev, arg, strlen(arg));
2757 }
2758
2759 // Called by the bison parser to refer to a symbol.
2760
2761 extern "C" Expression*
2762 script_symbol(void* closurev, const char* name, size_t length)
2763 {
2764 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2765 if (length != 1 || name[0] != '.')
2766 closure->script_options()->add_symbol_reference(name, length);
2767 return script_exp_string(name, length);
2768 }
2769
2770 // Called by the bison parser to define a symbol.
2771
2772 extern "C" void
2773 script_set_symbol(void* closurev, const char* name, size_t length,
2774 Expression* value, int providei, int hiddeni)
2775 {
2776 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2777 const bool provide = providei != 0;
2778 const bool hidden = hiddeni != 0;
2779 closure->script_options()->add_symbol_assignment(name, length,
2780 closure->parsing_defsym(),
2781 value, provide, hidden);
2782 closure->clear_skip_on_incompatible_target();
2783 }
2784
2785 // Called by the bison parser to add an assertion.
2786
2787 extern "C" void
2788 script_add_assertion(void* closurev, Expression* check, const char* message,
2789 size_t messagelen)
2790 {
2791 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2792 closure->script_options()->add_assertion(check, message, messagelen);
2793 closure->clear_skip_on_incompatible_target();
2794 }
2795
2796 // Called by the bison parser to parse an OPTION.
2797
2798 extern "C" void
2799 script_parse_option(void* closurev, const char* option, size_t length)
2800 {
2801 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2802 // We treat the option as a single command-line option, even if
2803 // it has internal whitespace.
2804 if (closure->command_line() == NULL)
2805 {
2806 // There are some options that we could handle here--e.g.,
2807 // -lLIBRARY. Should we bother?
2808 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2809 " for scripts specified via -T/--script"),
2810 closure->filename(), closure->lineno(), closure->charpos());
2811 }
2812 else
2813 {
2814 bool past_a_double_dash_option = false;
2815 const char* mutable_option = strndup(option, length);
2816 gold_assert(mutable_option != NULL);
2817 closure->command_line()->process_one_option(1, &mutable_option, 0,
2818 &past_a_double_dash_option);
2819 // The General_options class will quite possibly store a pointer
2820 // into mutable_option, so we can't free it. In cases the class
2821 // does not store such a pointer, this is a memory leak. Alas. :(
2822 }
2823 closure->clear_skip_on_incompatible_target();
2824 }
2825
2826 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2827 // takes either one or three arguments. In the three argument case,
2828 // the format depends on the endianness option, which we don't
2829 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2830 // wrong format, then we want to search for a new file. Returning 0
2831 // here will cause the parser to immediately abort.
2832
2833 extern "C" int
2834 script_check_output_format(void* closurev,
2835 const char* default_name, size_t default_length,
2836 const char*, size_t, const char*, size_t)
2837 {
2838 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2839 std::string name(default_name, default_length);
2840 Target* target = select_target_by_bfd_name(name.c_str());
2841 if (target == NULL || !parameters->is_compatible_target(target))
2842 {
2843 if (closure->skip_on_incompatible_target())
2844 {
2845 closure->set_found_incompatible_target();
2846 return 0;
2847 }
2848 // FIXME: Should we warn about the unknown target?
2849 }
2850 return 1;
2851 }
2852
2853 // Called by the bison parser to handle TARGET.
2854
2855 extern "C" void
2856 script_set_target(void* closurev, const char* target, size_t len)
2857 {
2858 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2859 std::string s(target, len);
2860 General_options::Object_format format_enum;
2861 format_enum = General_options::string_to_object_format(s.c_str());
2862 closure->position_dependent_options().set_format_enum(format_enum);
2863 }
2864
2865 // Called by the bison parser to handle SEARCH_DIR. This is handled
2866 // exactly like a -L option.
2867
2868 extern "C" void
2869 script_add_search_dir(void* closurev, const char* option, size_t length)
2870 {
2871 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2872 if (closure->command_line() == NULL)
2873 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2874 " for scripts specified via -T/--script"),
2875 closure->filename(), closure->lineno(), closure->charpos());
2876 else if (!closure->command_line()->options().nostdlib())
2877 {
2878 std::string s = "-L" + std::string(option, length);
2879 script_parse_option(closurev, s.c_str(), s.size());
2880 }
2881 }
2882
2883 /* Called by the bison parser to push the lexer into expression
2884 mode. */
2885
2886 extern "C" void
2887 script_push_lex_into_expression_mode(void* closurev)
2888 {
2889 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2890 closure->push_lex_mode(Lex::EXPRESSION);
2891 }
2892
2893 /* Called by the bison parser to push the lexer into version
2894 mode. */
2895
2896 extern "C" void
2897 script_push_lex_into_version_mode(void* closurev)
2898 {
2899 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2900 if (closure->version_script()->is_finalized())
2901 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2902 closure->filename(), closure->lineno(), closure->charpos());
2903 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2904 }
2905
2906 /* Called by the bison parser to pop the lexer mode. */
2907
2908 extern "C" void
2909 script_pop_lex_mode(void* closurev)
2910 {
2911 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2912 closure->pop_lex_mode();
2913 }
2914
2915 // Register an entire version node. For example:
2916 //
2917 // GLIBC_2.1 {
2918 // global: foo;
2919 // } GLIBC_2.0;
2920 //
2921 // - tag is "GLIBC_2.1"
2922 // - tree contains the information "global: foo"
2923 // - deps contains "GLIBC_2.0"
2924
2925 extern "C" void
2926 script_register_vers_node(void*,
2927 const char* tag,
2928 int taglen,
2929 struct Version_tree* tree,
2930 struct Version_dependency_list* deps)
2931 {
2932 gold_assert(tree != NULL);
2933 tree->dependencies = deps;
2934 if (tag != NULL)
2935 tree->tag = std::string(tag, taglen);
2936 }
2937
2938 // Add a dependencies to the list of existing dependencies, if any,
2939 // and return the expanded list.
2940
2941 extern "C" struct Version_dependency_list*
2942 script_add_vers_depend(void* closurev,
2943 struct Version_dependency_list* all_deps,
2944 const char* depend_to_add, int deplen)
2945 {
2946 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2947 if (all_deps == NULL)
2948 all_deps = closure->version_script()->allocate_dependency_list();
2949 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2950 return all_deps;
2951 }
2952
2953 // Add a pattern expression to an existing list of expressions, if any.
2954
2955 extern "C" struct Version_expression_list*
2956 script_new_vers_pattern(void* closurev,
2957 struct Version_expression_list* expressions,
2958 const char* pattern, int patlen, int exact_match)
2959 {
2960 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2961 if (expressions == NULL)
2962 expressions = closure->version_script()->allocate_expression_list();
2963 expressions->expressions.push_back(
2964 Version_expression(std::string(pattern, patlen),
2965 closure->get_current_language(),
2966 static_cast<bool>(exact_match)));
2967 return expressions;
2968 }
2969
2970 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2971
2972 extern "C" struct Version_expression_list*
2973 script_merge_expressions(struct Version_expression_list* a,
2974 struct Version_expression_list* b)
2975 {
2976 a->expressions.insert(a->expressions.end(),
2977 b->expressions.begin(), b->expressions.end());
2978 // We could delete b and remove it from expressions_lists_, but
2979 // that's a lot of work. This works just as well.
2980 b->expressions.clear();
2981 return a;
2982 }
2983
2984 // Combine the global and local expressions into a a Version_tree.
2985
2986 extern "C" struct Version_tree*
2987 script_new_vers_node(void* closurev,
2988 struct Version_expression_list* global,
2989 struct Version_expression_list* local)
2990 {
2991 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2992 Version_tree* tree = closure->version_script()->allocate_version_tree();
2993 tree->global = global;
2994 tree->local = local;
2995 return tree;
2996 }
2997
2998 // Handle a transition in language, such as at the
2999 // start or end of 'extern "C++"'
3000
3001 extern "C" void
3002 version_script_push_lang(void* closurev, const char* lang, int langlen)
3003 {
3004 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3005 std::string language(lang, langlen);
3006 Version_script_info::Language code;
3007 if (language.empty() || language == "C")
3008 code = Version_script_info::LANGUAGE_C;
3009 else if (language == "C++")
3010 code = Version_script_info::LANGUAGE_CXX;
3011 else if (language == "Java")
3012 code = Version_script_info::LANGUAGE_JAVA;
3013 else
3014 {
3015 char* buf = new char[langlen + 100];
3016 snprintf(buf, langlen + 100,
3017 _("unrecognized version script language '%s'"),
3018 language.c_str());
3019 yyerror(closurev, buf);
3020 delete[] buf;
3021 code = Version_script_info::LANGUAGE_C;
3022 }
3023 closure->push_language(code);
3024 }
3025
3026 extern "C" void
3027 version_script_pop_lang(void* closurev)
3028 {
3029 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3030 closure->pop_language();
3031 }
3032
3033 // Called by the bison parser to start a SECTIONS clause.
3034
3035 extern "C" void
3036 script_start_sections(void* closurev)
3037 {
3038 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3039 closure->script_options()->script_sections()->start_sections();
3040 closure->clear_skip_on_incompatible_target();
3041 }
3042
3043 // Called by the bison parser to finish a SECTIONS clause.
3044
3045 extern "C" void
3046 script_finish_sections(void* closurev)
3047 {
3048 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3049 closure->script_options()->script_sections()->finish_sections();
3050 }
3051
3052 // Start processing entries for an output section.
3053
3054 extern "C" void
3055 script_start_output_section(void* closurev, const char* name, size_t namelen,
3056 const struct Parser_output_section_header* header)
3057 {
3058 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3059 closure->script_options()->script_sections()->start_output_section(name,
3060 namelen,
3061 header);
3062 }
3063
3064 // Finish processing entries for an output section.
3065
3066 extern "C" void
3067 script_finish_output_section(void* closurev,
3068 const struct Parser_output_section_trailer* trail)
3069 {
3070 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3071 closure->script_options()->script_sections()->finish_output_section(trail);
3072 }
3073
3074 // Add a data item (e.g., "WORD (0)") to the current output section.
3075
3076 extern "C" void
3077 script_add_data(void* closurev, int data_token, Expression* val)
3078 {
3079 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3080 int size;
3081 bool is_signed = true;
3082 switch (data_token)
3083 {
3084 case QUAD:
3085 size = 8;
3086 is_signed = false;
3087 break;
3088 case SQUAD:
3089 size = 8;
3090 break;
3091 case LONG:
3092 size = 4;
3093 break;
3094 case SHORT:
3095 size = 2;
3096 break;
3097 case BYTE:
3098 size = 1;
3099 break;
3100 default:
3101 gold_unreachable();
3102 }
3103 closure->script_options()->script_sections()->add_data(size, is_signed, val);
3104 }
3105
3106 // Add a clause setting the fill value to the current output section.
3107
3108 extern "C" void
3109 script_add_fill(void* closurev, Expression* val)
3110 {
3111 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3112 closure->script_options()->script_sections()->add_fill(val);
3113 }
3114
3115 // Add a new input section specification to the current output
3116 // section.
3117
3118 extern "C" void
3119 script_add_input_section(void* closurev,
3120 const struct Input_section_spec* spec,
3121 int keepi)
3122 {
3123 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3124 bool keep = keepi != 0;
3125 closure->script_options()->script_sections()->add_input_section(spec, keep);
3126 }
3127
3128 // When we see DATA_SEGMENT_ALIGN we record that following output
3129 // sections may be relro.
3130
3131 extern "C" void
3132 script_data_segment_align(void* closurev)
3133 {
3134 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3135 if (!closure->script_options()->saw_sections_clause())
3136 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3137 closure->filename(), closure->lineno(), closure->charpos());
3138 else
3139 closure->script_options()->script_sections()->data_segment_align();
3140 }
3141
3142 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3143 // since DATA_SEGMENT_ALIGN should be relro.
3144
3145 extern "C" void
3146 script_data_segment_relro_end(void* closurev)
3147 {
3148 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3149 if (!closure->script_options()->saw_sections_clause())
3150 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3151 closure->filename(), closure->lineno(), closure->charpos());
3152 else
3153 closure->script_options()->script_sections()->data_segment_relro_end();
3154 }
3155
3156 // Create a new list of string/sort pairs.
3157
3158 extern "C" String_sort_list_ptr
3159 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3160 {
3161 return new String_sort_list(1, *string_sort);
3162 }
3163
3164 // Add an entry to a list of string/sort pairs. The way the parser
3165 // works permits us to simply modify the first parameter, rather than
3166 // copy the vector.
3167
3168 extern "C" String_sort_list_ptr
3169 script_string_sort_list_add(String_sort_list_ptr pv,
3170 const struct Wildcard_section* string_sort)
3171 {
3172 if (pv == NULL)
3173 return script_new_string_sort_list(string_sort);
3174 else
3175 {
3176 pv->push_back(*string_sort);
3177 return pv;
3178 }
3179 }
3180
3181 // Create a new list of strings.
3182
3183 extern "C" String_list_ptr
3184 script_new_string_list(const char* str, size_t len)
3185 {
3186 return new String_list(1, std::string(str, len));
3187 }
3188
3189 // Add an element to a list of strings. The way the parser works
3190 // permits us to simply modify the first parameter, rather than copy
3191 // the vector.
3192
3193 extern "C" String_list_ptr
3194 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3195 {
3196 if (pv == NULL)
3197 return script_new_string_list(str, len);
3198 else
3199 {
3200 pv->push_back(std::string(str, len));
3201 return pv;
3202 }
3203 }
3204
3205 // Concatenate two string lists. Either or both may be NULL. The way
3206 // the parser works permits us to modify the parameters, rather than
3207 // copy the vector.
3208
3209 extern "C" String_list_ptr
3210 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3211 {
3212 if (pv1 == NULL)
3213 return pv2;
3214 if (pv2 == NULL)
3215 return pv1;
3216 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3217 return pv1;
3218 }
3219
3220 // Add a new program header.
3221
3222 extern "C" void
3223 script_add_phdr(void* closurev, const char* name, size_t namelen,
3224 unsigned int type, const Phdr_info* info)
3225 {
3226 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3227 bool includes_filehdr = info->includes_filehdr != 0;
3228 bool includes_phdrs = info->includes_phdrs != 0;
3229 bool is_flags_valid = info->is_flags_valid != 0;
3230 Script_sections* ss = closure->script_options()->script_sections();
3231 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3232 is_flags_valid, info->flags, info->load_address);
3233 closure->clear_skip_on_incompatible_target();
3234 }
3235
3236 // Convert a program header string to a type.
3237
3238 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3239
3240 static struct
3241 {
3242 const char* name;
3243 size_t namelen;
3244 unsigned int val;
3245 } phdr_type_names[] =
3246 {
3247 PHDR_TYPE(PT_NULL),
3248 PHDR_TYPE(PT_LOAD),
3249 PHDR_TYPE(PT_DYNAMIC),
3250 PHDR_TYPE(PT_INTERP),
3251 PHDR_TYPE(PT_NOTE),
3252 PHDR_TYPE(PT_SHLIB),
3253 PHDR_TYPE(PT_PHDR),
3254 PHDR_TYPE(PT_TLS),
3255 PHDR_TYPE(PT_GNU_EH_FRAME),
3256 PHDR_TYPE(PT_GNU_STACK),
3257 PHDR_TYPE(PT_GNU_RELRO)
3258 };
3259
3260 extern "C" unsigned int
3261 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3262 {
3263 for (unsigned int i = 0;
3264 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3265 ++i)
3266 if (namelen == phdr_type_names[i].namelen
3267 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3268 return phdr_type_names[i].val;
3269 yyerror(closurev, _("unknown PHDR type (try integer)"));
3270 return elfcpp::PT_NULL;
3271 }
3272
3273 extern "C" void
3274 script_saw_segment_start_expression(void* closurev)
3275 {
3276 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3277 Script_sections* ss = closure->script_options()->script_sections();
3278 ss->set_saw_segment_start_expression(true);
3279 }
3280
3281 extern "C" void
3282 script_set_section_region(void* closurev, const char* name, size_t namelen,
3283 int set_vma)
3284 {
3285 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3286 if (!closure->script_options()->saw_sections_clause())
3287 {
3288 gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3289 "SECTIONS clause"),
3290 closure->filename(), closure->lineno(), closure->charpos(),
3291 static_cast<int>(namelen), name);
3292 return;
3293 }
3294
3295 Script_sections* ss = closure->script_options()->script_sections();
3296 Memory_region* mr = ss->find_memory_region(name, namelen);
3297 if (mr == NULL)
3298 {
3299 gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3300 closure->filename(), closure->lineno(), closure->charpos(),
3301 static_cast<int>(namelen), name);
3302 return;
3303 }
3304
3305 ss->set_memory_region(mr, set_vma);
3306 }
3307
3308 extern "C" void
3309 script_add_memory(void* closurev, const char* name, size_t namelen,
3310 unsigned int attrs, Expression* origin, Expression* length)
3311 {
3312 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3313 Script_sections* ss = closure->script_options()->script_sections();
3314 ss->add_memory_region(name, namelen, attrs, origin, length);
3315 }
3316
3317 extern "C" unsigned int
3318 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3319 int invert)
3320 {
3321 int attributes = 0;
3322
3323 while (attrlen--)
3324 switch (*attrs++)
3325 {
3326 case 'R':
3327 case 'r':
3328 attributes |= MEM_READABLE; break;
3329 case 'W':
3330 case 'w':
3331 attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3332 case 'X':
3333 case 'x':
3334 attributes |= MEM_EXECUTABLE; break;
3335 case 'A':
3336 case 'a':
3337 attributes |= MEM_ALLOCATABLE; break;
3338 case 'I':
3339 case 'i':
3340 case 'L':
3341 case 'l':
3342 attributes |= MEM_INITIALIZED; break;
3343 default:
3344 yyerror(closurev, _("unknown MEMORY attribute"));
3345 }
3346
3347 if (invert)
3348 attributes = (~ attributes) & MEM_ATTR_MASK;
3349
3350 return attributes;
3351 }
3352
3353 extern "C" void
3354 script_include_directive(void* closurev, const char*, size_t)
3355 {
3356 // FIXME: Implement ?
3357 yyerror (closurev, _("GOLD does not currently support INCLUDE directives"));
3358 }
3359
3360 // Functions for memory regions.
3361
3362 extern "C" Expression*
3363 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3364 {
3365 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3366 Script_sections* ss = closure->script_options()->script_sections();
3367 Expression* origin = ss->find_memory_region_origin(name, namelen);
3368
3369 if (origin == NULL)
3370 {
3371 gold_error(_("undefined memory region '%s' referenced "
3372 "in ORIGIN expression"),
3373 name);
3374 // Create a dummy expression to prevent crashes later on.
3375 origin = script_exp_integer(0);
3376 }
3377
3378 return origin;
3379 }
3380
3381 extern "C" Expression*
3382 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3383 {
3384 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3385 Script_sections* ss = closure->script_options()->script_sections();
3386 Expression* length = ss->find_memory_region_length(name, namelen);
3387
3388 if (length == NULL)
3389 {
3390 gold_error(_("undefined memory region '%s' referenced "
3391 "in LENGTH expression"),
3392 name);
3393 // Create a dummy expression to prevent crashes later on.
3394 length = script_exp_integer(0);
3395 }
3396
3397 return length;
3398 }
This page took 0.141147 seconds and 5 git commands to generate.