Implement SIZEOF_HEADERS, section constraints, other minor linker
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <fnmatch.h>
26 #include <string>
27 #include <vector>
28 #include <cstdio>
29 #include <cstdlib>
30 #include "filenames.h"
31
32 #include "elfcpp.h"
33 #include "demangle.h"
34 #include "dirsearch.h"
35 #include "options.h"
36 #include "fileread.h"
37 #include "workqueue.h"
38 #include "readsyms.h"
39 #include "parameters.h"
40 #include "layout.h"
41 #include "symtab.h"
42 #include "script.h"
43 #include "script-c.h"
44
45 namespace gold
46 {
47
48 // A token read from a script file. We don't implement keywords here;
49 // all keywords are simply represented as a string.
50
51 class Token
52 {
53 public:
54 // Token classification.
55 enum Classification
56 {
57 // Token is invalid.
58 TOKEN_INVALID,
59 // Token indicates end of input.
60 TOKEN_EOF,
61 // Token is a string of characters.
62 TOKEN_STRING,
63 // Token is a quoted string of characters.
64 TOKEN_QUOTED_STRING,
65 // Token is an operator.
66 TOKEN_OPERATOR,
67 // Token is a number (an integer).
68 TOKEN_INTEGER
69 };
70
71 // We need an empty constructor so that we can put this STL objects.
72 Token()
73 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
74 opcode_(0), lineno_(0), charpos_(0)
75 { }
76
77 // A general token with no value.
78 Token(Classification classification, int lineno, int charpos)
79 : classification_(classification), value_(NULL), value_length_(0),
80 opcode_(0), lineno_(lineno), charpos_(charpos)
81 {
82 gold_assert(classification == TOKEN_INVALID
83 || classification == TOKEN_EOF);
84 }
85
86 // A general token with a value.
87 Token(Classification classification, const char* value, size_t length,
88 int lineno, int charpos)
89 : classification_(classification), value_(value), value_length_(length),
90 opcode_(0), lineno_(lineno), charpos_(charpos)
91 {
92 gold_assert(classification != TOKEN_INVALID
93 && classification != TOKEN_EOF);
94 }
95
96 // A token representing an operator.
97 Token(int opcode, int lineno, int charpos)
98 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
99 opcode_(opcode), lineno_(lineno), charpos_(charpos)
100 { }
101
102 // Return whether the token is invalid.
103 bool
104 is_invalid() const
105 { return this->classification_ == TOKEN_INVALID; }
106
107 // Return whether this is an EOF token.
108 bool
109 is_eof() const
110 { return this->classification_ == TOKEN_EOF; }
111
112 // Return the token classification.
113 Classification
114 classification() const
115 { return this->classification_; }
116
117 // Return the line number at which the token starts.
118 int
119 lineno() const
120 { return this->lineno_; }
121
122 // Return the character position at this the token starts.
123 int
124 charpos() const
125 { return this->charpos_; }
126
127 // Get the value of a token.
128
129 const char*
130 string_value(size_t* length) const
131 {
132 gold_assert(this->classification_ == TOKEN_STRING
133 || this->classification_ == TOKEN_QUOTED_STRING);
134 *length = this->value_length_;
135 return this->value_;
136 }
137
138 int
139 operator_value() const
140 {
141 gold_assert(this->classification_ == TOKEN_OPERATOR);
142 return this->opcode_;
143 }
144
145 uint64_t
146 integer_value() const
147 {
148 gold_assert(this->classification_ == TOKEN_INTEGER);
149 // Null terminate.
150 std::string s(this->value_, this->value_length_);
151 return strtoull(s.c_str(), NULL, 0);
152 }
153
154 private:
155 // The token classification.
156 Classification classification_;
157 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
158 // TOKEN_INTEGER.
159 const char* value_;
160 // The length of the token value.
161 size_t value_length_;
162 // The token value, for TOKEN_OPERATOR.
163 int opcode_;
164 // The line number where this token started (one based).
165 int lineno_;
166 // The character position within the line where this token started
167 // (one based).
168 int charpos_;
169 };
170
171 // This class handles lexing a file into a sequence of tokens.
172
173 class Lex
174 {
175 public:
176 // We unfortunately have to support different lexing modes, because
177 // when reading different parts of a linker script we need to parse
178 // things differently.
179 enum Mode
180 {
181 // Reading an ordinary linker script.
182 LINKER_SCRIPT,
183 // Reading an expression in a linker script.
184 EXPRESSION,
185 // Reading a version script.
186 VERSION_SCRIPT
187 };
188
189 Lex(const char* input_string, size_t input_length, int parsing_token)
190 : input_string_(input_string), input_length_(input_length),
191 current_(input_string), mode_(LINKER_SCRIPT),
192 first_token_(parsing_token), token_(),
193 lineno_(1), linestart_(input_string)
194 { }
195
196 // Read a file into a string.
197 static void
198 read_file(Input_file*, std::string*);
199
200 // Return the next token.
201 const Token*
202 next_token();
203
204 // Return the current lexing mode.
205 Lex::Mode
206 mode() const
207 { return this->mode_; }
208
209 // Set the lexing mode.
210 void
211 set_mode(Mode mode)
212 { this->mode_ = mode; }
213
214 private:
215 Lex(const Lex&);
216 Lex& operator=(const Lex&);
217
218 // Make a general token with no value at the current location.
219 Token
220 make_token(Token::Classification c, const char* start) const
221 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
222
223 // Make a general token with a value at the current location.
224 Token
225 make_token(Token::Classification c, const char* v, size_t len,
226 const char* start)
227 const
228 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
229
230 // Make an operator token at the current location.
231 Token
232 make_token(int opcode, const char* start) const
233 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
234
235 // Make an invalid token at the current location.
236 Token
237 make_invalid_token(const char* start)
238 { return this->make_token(Token::TOKEN_INVALID, start); }
239
240 // Make an EOF token at the current location.
241 Token
242 make_eof_token(const char* start)
243 { return this->make_token(Token::TOKEN_EOF, start); }
244
245 // Return whether C can be the first character in a name. C2 is the
246 // next character, since we sometimes need that.
247 inline bool
248 can_start_name(char c, char c2);
249
250 // If C can appear in a name which has already started, return a
251 // pointer to a character later in the token or just past
252 // it. Otherwise, return NULL.
253 inline const char*
254 can_continue_name(const char* c);
255
256 // Return whether C, C2, C3 can start a hex number.
257 inline bool
258 can_start_hex(char c, char c2, char c3);
259
260 // If C can appear in a hex number which has already started, return
261 // a pointer to a character later in the token or just past
262 // it. Otherwise, return NULL.
263 inline const char*
264 can_continue_hex(const char* c);
265
266 // Return whether C can start a non-hex number.
267 static inline bool
268 can_start_number(char c);
269
270 // If C can appear in a decimal number which has already started,
271 // return a pointer to a character later in the token or just past
272 // it. Otherwise, return NULL.
273 inline const char*
274 can_continue_number(const char* c)
275 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
276
277 // If C1 C2 C3 form a valid three character operator, return the
278 // opcode. Otherwise return 0.
279 static inline int
280 three_char_operator(char c1, char c2, char c3);
281
282 // If C1 C2 form a valid two character operator, return the opcode.
283 // Otherwise return 0.
284 static inline int
285 two_char_operator(char c1, char c2);
286
287 // If C1 is a valid one character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 one_char_operator(char c1);
291
292 // Read the next token.
293 Token
294 get_token(const char**);
295
296 // Skip a C style /* */ comment. Return false if the comment did
297 // not end.
298 bool
299 skip_c_comment(const char**);
300
301 // Skip a line # comment. Return false if there was no newline.
302 bool
303 skip_line_comment(const char**);
304
305 // Build a token CLASSIFICATION from all characters that match
306 // CAN_CONTINUE_FN. The token starts at START. Start matching from
307 // MATCH. Set *PP to the character following the token.
308 inline Token
309 gather_token(Token::Classification,
310 const char* (Lex::*can_continue_fn)(const char*),
311 const char* start, const char* match, const char** pp);
312
313 // Build a token from a quoted string.
314 Token
315 gather_quoted_string(const char** pp);
316
317 // The string we are tokenizing.
318 const char* input_string_;
319 // The length of the string.
320 size_t input_length_;
321 // The current offset into the string.
322 const char* current_;
323 // The current lexing mode.
324 Mode mode_;
325 // The code to use for the first token. This is set to 0 after it
326 // is used.
327 int first_token_;
328 // The current token.
329 Token token_;
330 // The current line number.
331 int lineno_;
332 // The start of the current line in the string.
333 const char* linestart_;
334 };
335
336 // Read the whole file into memory. We don't expect linker scripts to
337 // be large, so we just use a std::string as a buffer. We ignore the
338 // data we've already read, so that we read aligned buffers.
339
340 void
341 Lex::read_file(Input_file* input_file, std::string* contents)
342 {
343 off_t filesize = input_file->file().filesize();
344 contents->clear();
345 contents->reserve(filesize);
346
347 off_t off = 0;
348 unsigned char buf[BUFSIZ];
349 while (off < filesize)
350 {
351 off_t get = BUFSIZ;
352 if (get > filesize - off)
353 get = filesize - off;
354 input_file->file().read(off, get, buf);
355 contents->append(reinterpret_cast<char*>(&buf[0]), get);
356 off += get;
357 }
358 }
359
360 // Return whether C can be the start of a name, if the next character
361 // is C2. A name can being with a letter, underscore, period, or
362 // dollar sign. Because a name can be a file name, we also permit
363 // forward slash, backslash, and tilde. Tilde is the tricky case
364 // here; GNU ld also uses it as a bitwise not operator. It is only
365 // recognized as the operator if it is not immediately followed by
366 // some character which can appear in a symbol. That is, when we
367 // don't know that we are looking at an expression, "~0" is a file
368 // name, and "~ 0" is an expression using bitwise not. We are
369 // compatible.
370
371 inline bool
372 Lex::can_start_name(char c, char c2)
373 {
374 switch (c)
375 {
376 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
377 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
378 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
379 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
380 case 'Y': case 'Z':
381 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
382 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
383 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
384 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
385 case 'y': case 'z':
386 case '_': case '.': case '$':
387 return true;
388
389 case '/': case '\\':
390 return this->mode_ == LINKER_SCRIPT;
391
392 case '~':
393 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
394
395 case '*': case '[':
396 return (this->mode_ == VERSION_SCRIPT
397 || (this->mode_ == LINKER_SCRIPT
398 && can_continue_name(&c2)));
399
400 default:
401 return false;
402 }
403 }
404
405 // Return whether C can continue a name which has already started.
406 // Subsequent characters in a name are the same as the leading
407 // characters, plus digits and "=+-:[],?*". So in general the linker
408 // script language requires spaces around operators, unless we know
409 // that we are parsing an expression.
410
411 inline const char*
412 Lex::can_continue_name(const char* c)
413 {
414 switch (*c)
415 {
416 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
417 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
418 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
419 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
420 case 'Y': case 'Z':
421 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
422 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
423 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
424 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
425 case 'y': case 'z':
426 case '_': case '.': case '$':
427 case '0': case '1': case '2': case '3': case '4':
428 case '5': case '6': case '7': case '8': case '9':
429 return c + 1;
430
431 case '/': case '\\': case '~':
432 case '=': case '+':
433 case ',': case '?':
434 if (this->mode_ == LINKER_SCRIPT)
435 return c + 1;
436 return NULL;
437
438 case '[': case ']': case '*': case '-':
439 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT)
440 return c + 1;
441 return NULL;
442
443 case '^':
444 if (this->mode_ == VERSION_SCRIPT)
445 return c + 1;
446 return NULL;
447
448 case ':':
449 if (this->mode_ == LINKER_SCRIPT)
450 return c + 1;
451 else if (this->mode_ == VERSION_SCRIPT && (c[1] == ':'))
452 {
453 // A name can have '::' in it, as that's a c++ namespace
454 // separator. But a single colon is not part of a name.
455 return c + 2;
456 }
457 return NULL;
458
459 default:
460 return NULL;
461 }
462 }
463
464 // For a number we accept 0x followed by hex digits, or any sequence
465 // of digits. The old linker accepts leading '$' for hex, and
466 // trailing HXBOD. Those are for MRI compatibility and we don't
467 // accept them. The old linker also accepts trailing MK for mega or
468 // kilo. FIXME: Those are mentioned in the documentation, and we
469 // should accept them.
470
471 // Return whether C1 C2 C3 can start a hex number.
472
473 inline bool
474 Lex::can_start_hex(char c1, char c2, char c3)
475 {
476 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
477 return this->can_continue_hex(&c3);
478 return false;
479 }
480
481 // Return whether C can appear in a hex number.
482
483 inline const char*
484 Lex::can_continue_hex(const char* c)
485 {
486 switch (*c)
487 {
488 case '0': case '1': case '2': case '3': case '4':
489 case '5': case '6': case '7': case '8': case '9':
490 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
491 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
492 return c + 1;
493
494 default:
495 return NULL;
496 }
497 }
498
499 // Return whether C can start a non-hex number.
500
501 inline bool
502 Lex::can_start_number(char c)
503 {
504 switch (c)
505 {
506 case '0': case '1': case '2': case '3': case '4':
507 case '5': case '6': case '7': case '8': case '9':
508 return true;
509
510 default:
511 return false;
512 }
513 }
514
515 // If C1 C2 C3 form a valid three character operator, return the
516 // opcode (defined in the yyscript.h file generated from yyscript.y).
517 // Otherwise return 0.
518
519 inline int
520 Lex::three_char_operator(char c1, char c2, char c3)
521 {
522 switch (c1)
523 {
524 case '<':
525 if (c2 == '<' && c3 == '=')
526 return LSHIFTEQ;
527 break;
528 case '>':
529 if (c2 == '>' && c3 == '=')
530 return RSHIFTEQ;
531 break;
532 default:
533 break;
534 }
535 return 0;
536 }
537
538 // If C1 C2 form a valid two character operator, return the opcode
539 // (defined in the yyscript.h file generated from yyscript.y).
540 // Otherwise return 0.
541
542 inline int
543 Lex::two_char_operator(char c1, char c2)
544 {
545 switch (c1)
546 {
547 case '=':
548 if (c2 == '=')
549 return EQ;
550 break;
551 case '!':
552 if (c2 == '=')
553 return NE;
554 break;
555 case '+':
556 if (c2 == '=')
557 return PLUSEQ;
558 break;
559 case '-':
560 if (c2 == '=')
561 return MINUSEQ;
562 break;
563 case '*':
564 if (c2 == '=')
565 return MULTEQ;
566 break;
567 case '/':
568 if (c2 == '=')
569 return DIVEQ;
570 break;
571 case '|':
572 if (c2 == '=')
573 return OREQ;
574 if (c2 == '|')
575 return OROR;
576 break;
577 case '&':
578 if (c2 == '=')
579 return ANDEQ;
580 if (c2 == '&')
581 return ANDAND;
582 break;
583 case '>':
584 if (c2 == '=')
585 return GE;
586 if (c2 == '>')
587 return RSHIFT;
588 break;
589 case '<':
590 if (c2 == '=')
591 return LE;
592 if (c2 == '<')
593 return LSHIFT;
594 break;
595 default:
596 break;
597 }
598 return 0;
599 }
600
601 // If C1 is a valid operator, return the opcode. Otherwise return 0.
602
603 inline int
604 Lex::one_char_operator(char c1)
605 {
606 switch (c1)
607 {
608 case '+':
609 case '-':
610 case '*':
611 case '/':
612 case '%':
613 case '!':
614 case '&':
615 case '|':
616 case '^':
617 case '~':
618 case '<':
619 case '>':
620 case '=':
621 case '?':
622 case ',':
623 case '(':
624 case ')':
625 case '{':
626 case '}':
627 case '[':
628 case ']':
629 case ':':
630 case ';':
631 return c1;
632 default:
633 return 0;
634 }
635 }
636
637 // Skip a C style comment. *PP points to just after the "/*". Return
638 // false if the comment did not end.
639
640 bool
641 Lex::skip_c_comment(const char** pp)
642 {
643 const char* p = *pp;
644 while (p[0] != '*' || p[1] != '/')
645 {
646 if (*p == '\0')
647 {
648 *pp = p;
649 return false;
650 }
651
652 if (*p == '\n')
653 {
654 ++this->lineno_;
655 this->linestart_ = p + 1;
656 }
657 ++p;
658 }
659
660 *pp = p + 2;
661 return true;
662 }
663
664 // Skip a line # comment. Return false if there was no newline.
665
666 bool
667 Lex::skip_line_comment(const char** pp)
668 {
669 const char* p = *pp;
670 size_t skip = strcspn(p, "\n");
671 if (p[skip] == '\0')
672 {
673 *pp = p + skip;
674 return false;
675 }
676
677 p += skip + 1;
678 ++this->lineno_;
679 this->linestart_ = p;
680 *pp = p;
681
682 return true;
683 }
684
685 // Build a token CLASSIFICATION from all characters that match
686 // CAN_CONTINUE_FN. Update *PP.
687
688 inline Token
689 Lex::gather_token(Token::Classification classification,
690 const char* (Lex::*can_continue_fn)(const char*),
691 const char* start,
692 const char* match,
693 const char **pp)
694 {
695 const char* new_match = NULL;
696 while ((new_match = (this->*can_continue_fn)(match)))
697 match = new_match;
698 *pp = match;
699 return this->make_token(classification, start, match - start, start);
700 }
701
702 // Build a token from a quoted string.
703
704 Token
705 Lex::gather_quoted_string(const char** pp)
706 {
707 const char* start = *pp;
708 const char* p = start;
709 ++p;
710 size_t skip = strcspn(p, "\"\n");
711 if (p[skip] != '"')
712 return this->make_invalid_token(start);
713 *pp = p + skip + 1;
714 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
715 }
716
717 // Return the next token at *PP. Update *PP. General guideline: we
718 // require linker scripts to be simple ASCII. No unicode linker
719 // scripts. In particular we can assume that any '\0' is the end of
720 // the input.
721
722 Token
723 Lex::get_token(const char** pp)
724 {
725 const char* p = *pp;
726
727 while (true)
728 {
729 if (*p == '\0')
730 {
731 *pp = p;
732 return this->make_eof_token(p);
733 }
734
735 // Skip whitespace quickly.
736 while (*p == ' ' || *p == '\t')
737 ++p;
738
739 if (*p == '\n')
740 {
741 ++p;
742 ++this->lineno_;
743 this->linestart_ = p;
744 continue;
745 }
746
747 // Skip C style comments.
748 if (p[0] == '/' && p[1] == '*')
749 {
750 int lineno = this->lineno_;
751 int charpos = p - this->linestart_ + 1;
752
753 *pp = p + 2;
754 if (!this->skip_c_comment(pp))
755 return Token(Token::TOKEN_INVALID, lineno, charpos);
756 p = *pp;
757
758 continue;
759 }
760
761 // Skip line comments.
762 if (*p == '#')
763 {
764 *pp = p + 1;
765 if (!this->skip_line_comment(pp))
766 return this->make_eof_token(p);
767 p = *pp;
768 continue;
769 }
770
771 // Check for a name.
772 if (this->can_start_name(p[0], p[1]))
773 return this->gather_token(Token::TOKEN_STRING,
774 &Lex::can_continue_name,
775 p, p + 1, pp);
776
777 // We accept any arbitrary name in double quotes, as long as it
778 // does not cross a line boundary.
779 if (*p == '"')
780 {
781 *pp = p;
782 return this->gather_quoted_string(pp);
783 }
784
785 // Check for a number.
786
787 if (this->can_start_hex(p[0], p[1], p[2]))
788 return this->gather_token(Token::TOKEN_INTEGER,
789 &Lex::can_continue_hex,
790 p, p + 3, pp);
791
792 if (Lex::can_start_number(p[0]))
793 return this->gather_token(Token::TOKEN_INTEGER,
794 &Lex::can_continue_number,
795 p, p + 1, pp);
796
797 // Check for operators.
798
799 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
800 if (opcode != 0)
801 {
802 *pp = p + 3;
803 return this->make_token(opcode, p);
804 }
805
806 opcode = Lex::two_char_operator(p[0], p[1]);
807 if (opcode != 0)
808 {
809 *pp = p + 2;
810 return this->make_token(opcode, p);
811 }
812
813 opcode = Lex::one_char_operator(p[0]);
814 if (opcode != 0)
815 {
816 *pp = p + 1;
817 return this->make_token(opcode, p);
818 }
819
820 return this->make_token(Token::TOKEN_INVALID, p);
821 }
822 }
823
824 // Return the next token.
825
826 const Token*
827 Lex::next_token()
828 {
829 // The first token is special.
830 if (this->first_token_ != 0)
831 {
832 this->token_ = Token(this->first_token_, 0, 0);
833 this->first_token_ = 0;
834 return &this->token_;
835 }
836
837 this->token_ = this->get_token(&this->current_);
838
839 // Don't let an early null byte fool us into thinking that we've
840 // reached the end of the file.
841 if (this->token_.is_eof()
842 && (static_cast<size_t>(this->current_ - this->input_string_)
843 < this->input_length_))
844 this->token_ = this->make_invalid_token(this->current_);
845
846 return &this->token_;
847 }
848
849 // A trivial task which waits for THIS_BLOCKER to be clear and then
850 // clears NEXT_BLOCKER. THIS_BLOCKER may be NULL.
851
852 class Script_unblock : public Task
853 {
854 public:
855 Script_unblock(Task_token* this_blocker, Task_token* next_blocker)
856 : this_blocker_(this_blocker), next_blocker_(next_blocker)
857 { }
858
859 ~Script_unblock()
860 {
861 if (this->this_blocker_ != NULL)
862 delete this->this_blocker_;
863 }
864
865 Task_token*
866 is_runnable()
867 {
868 if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
869 return this->this_blocker_;
870 return NULL;
871 }
872
873 void
874 locks(Task_locker* tl)
875 { tl->add(this, this->next_blocker_); }
876
877 void
878 run(Workqueue*)
879 { }
880
881 std::string
882 get_name() const
883 { return "Script_unblock"; }
884
885 private:
886 Task_token* this_blocker_;
887 Task_token* next_blocker_;
888 };
889
890 // class Symbol_assignment.
891
892 // Add the symbol to the symbol table. This makes sure the symbol is
893 // there and defined. The actual value is stored later. We can't
894 // determine the actual value at this point, because we can't
895 // necessarily evaluate the expression until all ordinary symbols have
896 // been finalized.
897
898 void
899 Symbol_assignment::add_to_table(Symbol_table* symtab)
900 {
901 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
902 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
903 NULL, // version
904 0, // value
905 0, // size
906 elfcpp::STT_NOTYPE,
907 elfcpp::STB_GLOBAL,
908 vis,
909 0, // nonvis
910 this->provide_);
911 }
912
913 // Finalize a symbol value.
914
915 void
916 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
917 {
918 this->finalize_maybe_dot(symtab, layout, false, false, 0);
919 }
920
921 // Finalize a symbol value which can refer to the dot symbol.
922
923 void
924 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
925 const Layout* layout,
926 bool dot_has_value,
927 uint64_t dot_value)
928 {
929 this->finalize_maybe_dot(symtab, layout, true, dot_has_value, dot_value);
930 }
931
932 // Finalize a symbol value, internal version.
933
934 void
935 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
936 const Layout* layout,
937 bool is_dot_available,
938 bool dot_has_value,
939 uint64_t dot_value)
940 {
941 // If we were only supposed to provide this symbol, the sym_ field
942 // will be NULL if the symbol was not referenced.
943 if (this->sym_ == NULL)
944 {
945 gold_assert(this->provide_);
946 return;
947 }
948
949 if (parameters->get_size() == 32)
950 {
951 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
952 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_has_value,
953 dot_value);
954 #else
955 gold_unreachable();
956 #endif
957 }
958 else if (parameters->get_size() == 64)
959 {
960 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
961 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_has_value,
962 dot_value);
963 #else
964 gold_unreachable();
965 #endif
966 }
967 else
968 gold_unreachable();
969 }
970
971 template<int size>
972 void
973 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
974 bool is_dot_available, bool dot_has_value,
975 uint64_t dot_value)
976 {
977 bool dummy;
978 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout,
979 is_dot_available,
980 dot_has_value, dot_value,
981 &dummy);
982 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
983 ssym->set_value(final_val);
984 }
985
986 // Set the symbol value if the expression yields an absolute value.
987
988 void
989 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
990 bool is_dot_available, bool dot_has_value,
991 uint64_t dot_value)
992 {
993 if (this->sym_ == NULL)
994 return;
995
996 bool is_absolute;
997 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, is_dot_available,
998 dot_has_value, dot_value,
999 &is_absolute);
1000 if (!is_absolute)
1001 return;
1002
1003 if (parameters->get_size() == 32)
1004 {
1005 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1006 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
1007 ssym->set_value(val);
1008 #else
1009 gold_unreachable();
1010 #endif
1011 }
1012 else if (parameters->get_size() == 64)
1013 {
1014 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1015 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
1016 ssym->set_value(val);
1017 #else
1018 gold_unreachable();
1019 #endif
1020 }
1021 else
1022 gold_unreachable();
1023 }
1024
1025 // Print for debugging.
1026
1027 void
1028 Symbol_assignment::print(FILE* f) const
1029 {
1030 if (this->provide_ && this->hidden_)
1031 fprintf(f, "PROVIDE_HIDDEN(");
1032 else if (this->provide_)
1033 fprintf(f, "PROVIDE(");
1034 else if (this->hidden_)
1035 gold_unreachable();
1036
1037 fprintf(f, "%s = ", this->name_.c_str());
1038 this->val_->print(f);
1039
1040 if (this->provide_ || this->hidden_)
1041 fprintf(f, ")");
1042
1043 fprintf(f, "\n");
1044 }
1045
1046 // Class Script_assertion.
1047
1048 // Check the assertion.
1049
1050 void
1051 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1052 {
1053 if (!this->check_->eval(symtab, layout))
1054 gold_error("%s", this->message_.c_str());
1055 }
1056
1057 // Print for debugging.
1058
1059 void
1060 Script_assertion::print(FILE* f) const
1061 {
1062 fprintf(f, "ASSERT(");
1063 this->check_->print(f);
1064 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1065 }
1066
1067 // Class Script_options.
1068
1069 Script_options::Script_options()
1070 : entry_(), symbol_assignments_(), version_script_info_(),
1071 script_sections_()
1072 {
1073 }
1074
1075 // Add a symbol to be defined.
1076
1077 void
1078 Script_options::add_symbol_assignment(const char* name, size_t length,
1079 Expression* value, bool provide,
1080 bool hidden)
1081 {
1082 if (length != 1 || name[0] != '.')
1083 {
1084 if (this->script_sections_.in_sections_clause())
1085 this->script_sections_.add_symbol_assignment(name, length, value,
1086 provide, hidden);
1087 else
1088 {
1089 Symbol_assignment* p = new Symbol_assignment(name, length, value,
1090 provide, hidden);
1091 this->symbol_assignments_.push_back(p);
1092 }
1093 }
1094 else
1095 {
1096 if (provide || hidden)
1097 gold_error(_("invalid use of PROVIDE for dot symbol"));
1098 if (!this->script_sections_.in_sections_clause())
1099 gold_error(_("invalid assignment to dot outside of SECTIONS"));
1100 else
1101 this->script_sections_.add_dot_assignment(value);
1102 }
1103 }
1104
1105 // Add an assertion.
1106
1107 void
1108 Script_options::add_assertion(Expression* check, const char* message,
1109 size_t messagelen)
1110 {
1111 if (this->script_sections_.in_sections_clause())
1112 this->script_sections_.add_assertion(check, message, messagelen);
1113 else
1114 {
1115 Script_assertion* p = new Script_assertion(check, message, messagelen);
1116 this->assertions_.push_back(p);
1117 }
1118 }
1119
1120 // Add any symbols we are defining to the symbol table.
1121
1122 void
1123 Script_options::add_symbols_to_table(Symbol_table* symtab)
1124 {
1125 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1126 p != this->symbol_assignments_.end();
1127 ++p)
1128 (*p)->add_to_table(symtab);
1129 this->script_sections_.add_symbols_to_table(symtab);
1130 }
1131
1132 // Finalize symbol values. Also check assertions.
1133
1134 void
1135 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1136 {
1137 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1138 p != this->symbol_assignments_.end();
1139 ++p)
1140 (*p)->finalize(symtab, layout);
1141
1142 for (Assertions::iterator p = this->assertions_.begin();
1143 p != this->assertions_.end();
1144 ++p)
1145 (*p)->check(symtab, layout);
1146
1147 this->script_sections_.finalize_symbols(symtab, layout);
1148 }
1149
1150 // Set section addresses. We set all the symbols which have absolute
1151 // values. Then we let the SECTIONS clause do its thing. This
1152 // returns the segment which holds the file header and segment
1153 // headers, if any.
1154
1155 Output_segment*
1156 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1157 {
1158 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1159 p != this->symbol_assignments_.end();
1160 ++p)
1161 (*p)->set_if_absolute(symtab, layout, false, false, 0);
1162
1163 return this->script_sections_.set_section_addresses(symtab, layout);
1164 }
1165
1166 // This class holds data passed through the parser to the lexer and to
1167 // the parser support functions. This avoids global variables. We
1168 // can't use global variables because we need not be called by a
1169 // singleton thread.
1170
1171 class Parser_closure
1172 {
1173 public:
1174 Parser_closure(const char* filename,
1175 const Position_dependent_options& posdep_options,
1176 bool in_group, bool is_in_sysroot,
1177 Command_line* command_line,
1178 Script_options* script_options,
1179 Lex* lex)
1180 : filename_(filename), posdep_options_(posdep_options),
1181 in_group_(in_group), is_in_sysroot_(is_in_sysroot),
1182 command_line_(command_line), script_options_(script_options),
1183 version_script_info_(script_options->version_script_info()),
1184 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1185 {
1186 // We start out processing C symbols in the default lex mode.
1187 language_stack_.push_back("");
1188 lex_mode_stack_.push_back(lex->mode());
1189 }
1190
1191 // Return the file name.
1192 const char*
1193 filename() const
1194 { return this->filename_; }
1195
1196 // Return the position dependent options. The caller may modify
1197 // this.
1198 Position_dependent_options&
1199 position_dependent_options()
1200 { return this->posdep_options_; }
1201
1202 // Return whether this script is being run in a group.
1203 bool
1204 in_group() const
1205 { return this->in_group_; }
1206
1207 // Return whether this script was found using a directory in the
1208 // sysroot.
1209 bool
1210 is_in_sysroot() const
1211 { return this->is_in_sysroot_; }
1212
1213 // Returns the Command_line structure passed in at constructor time.
1214 // This value may be NULL. The caller may modify this, which modifies
1215 // the passed-in Command_line object (not a copy).
1216 Command_line*
1217 command_line()
1218 { return this->command_line_; }
1219
1220 // Return the options which may be set by a script.
1221 Script_options*
1222 script_options()
1223 { return this->script_options_; }
1224
1225 // Return the object in which version script information should be stored.
1226 Version_script_info*
1227 version_script()
1228 { return this->version_script_info_; }
1229
1230 // Return the next token, and advance.
1231 const Token*
1232 next_token()
1233 {
1234 const Token* token = this->lex_->next_token();
1235 this->lineno_ = token->lineno();
1236 this->charpos_ = token->charpos();
1237 return token;
1238 }
1239
1240 // Set a new lexer mode, pushing the current one.
1241 void
1242 push_lex_mode(Lex::Mode mode)
1243 {
1244 this->lex_mode_stack_.push_back(this->lex_->mode());
1245 this->lex_->set_mode(mode);
1246 }
1247
1248 // Pop the lexer mode.
1249 void
1250 pop_lex_mode()
1251 {
1252 gold_assert(!this->lex_mode_stack_.empty());
1253 this->lex_->set_mode(this->lex_mode_stack_.back());
1254 this->lex_mode_stack_.pop_back();
1255 }
1256
1257 // Return the current lexer mode.
1258 Lex::Mode
1259 lex_mode() const
1260 { return this->lex_mode_stack_.back(); }
1261
1262 // Return the line number of the last token.
1263 int
1264 lineno() const
1265 { return this->lineno_; }
1266
1267 // Return the character position in the line of the last token.
1268 int
1269 charpos() const
1270 { return this->charpos_; }
1271
1272 // Return the list of input files, creating it if necessary. This
1273 // is a space leak--we never free the INPUTS_ pointer.
1274 Input_arguments*
1275 inputs()
1276 {
1277 if (this->inputs_ == NULL)
1278 this->inputs_ = new Input_arguments();
1279 return this->inputs_;
1280 }
1281
1282 // Return whether we saw any input files.
1283 bool
1284 saw_inputs() const
1285 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1286
1287 // Return the current language being processed in a version script
1288 // (eg, "C++"). The empty string represents unmangled C names.
1289 const std::string&
1290 get_current_language() const
1291 { return this->language_stack_.back(); }
1292
1293 // Push a language onto the stack when entering an extern block.
1294 void push_language(const std::string& lang)
1295 { this->language_stack_.push_back(lang); }
1296
1297 // Pop a language off of the stack when exiting an extern block.
1298 void pop_language()
1299 {
1300 gold_assert(!this->language_stack_.empty());
1301 this->language_stack_.pop_back();
1302 }
1303
1304 private:
1305 // The name of the file we are reading.
1306 const char* filename_;
1307 // The position dependent options.
1308 Position_dependent_options posdep_options_;
1309 // Whether we are currently in a --start-group/--end-group.
1310 bool in_group_;
1311 // Whether the script was found in a sysrooted directory.
1312 bool is_in_sysroot_;
1313 // May be NULL if the user chooses not to pass one in.
1314 Command_line* command_line_;
1315 // Options which may be set from any linker script.
1316 Script_options* script_options_;
1317 // Information parsed from a version script.
1318 Version_script_info* version_script_info_;
1319 // The lexer.
1320 Lex* lex_;
1321 // The line number of the last token returned by next_token.
1322 int lineno_;
1323 // The column number of the last token returned by next_token.
1324 int charpos_;
1325 // A stack of lexer modes.
1326 std::vector<Lex::Mode> lex_mode_stack_;
1327 // A stack of which extern/language block we're inside. Can be C++,
1328 // java, or empty for C.
1329 std::vector<std::string> language_stack_;
1330 // New input files found to add to the link.
1331 Input_arguments* inputs_;
1332 };
1333
1334 // FILE was found as an argument on the command line. Try to read it
1335 // as a script. We've already read BYTES of data into P, but we
1336 // ignore that. Return true if the file was handled.
1337
1338 bool
1339 read_input_script(Workqueue* workqueue, const General_options& options,
1340 Symbol_table* symtab, Layout* layout,
1341 Dirsearch* dirsearch, Input_objects* input_objects,
1342 Input_group* input_group,
1343 const Input_argument* input_argument,
1344 Input_file* input_file, const unsigned char*, off_t,
1345 Task_token* this_blocker, Task_token* next_blocker)
1346 {
1347 std::string input_string;
1348 Lex::read_file(input_file, &input_string);
1349
1350 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1351
1352 Parser_closure closure(input_file->filename().c_str(),
1353 input_argument->file().options(),
1354 input_group != NULL,
1355 input_file->is_in_sysroot(),
1356 NULL,
1357 layout->script_options(),
1358 &lex);
1359
1360 if (yyparse(&closure) != 0)
1361 return false;
1362
1363 // THIS_BLOCKER must be clear before we may add anything to the
1364 // symbol table. We are responsible for unblocking NEXT_BLOCKER
1365 // when we are done. We are responsible for deleting THIS_BLOCKER
1366 // when it is unblocked.
1367
1368 if (!closure.saw_inputs())
1369 {
1370 // The script did not add any files to read. Note that we are
1371 // not permitted to call NEXT_BLOCKER->unblock() here even if
1372 // THIS_BLOCKER is NULL, as we do not hold the workqueue lock.
1373 workqueue->queue(new Script_unblock(this_blocker, next_blocker));
1374 return true;
1375 }
1376
1377 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1378 p != closure.inputs()->end();
1379 ++p)
1380 {
1381 Task_token* nb;
1382 if (p + 1 == closure.inputs()->end())
1383 nb = next_blocker;
1384 else
1385 {
1386 nb = new Task_token(true);
1387 nb->add_blocker();
1388 }
1389 workqueue->queue(new Read_symbols(options, input_objects, symtab,
1390 layout, dirsearch, &*p,
1391 input_group, this_blocker, nb));
1392 this_blocker = nb;
1393 }
1394
1395 return true;
1396 }
1397
1398 // Helper function for read_version_script() and
1399 // read_commandline_script(). Processes the given file in the mode
1400 // indicated by first_token and lex_mode.
1401
1402 static bool
1403 read_script_file(const char* filename, Command_line* cmdline,
1404 int first_token, Lex::Mode lex_mode)
1405 {
1406 // TODO: if filename is a relative filename, search for it manually
1407 // using "." + cmdline->options()->search_path() -- not dirsearch.
1408 Dirsearch dirsearch;
1409
1410 // The file locking code wants to record a Task, but we haven't
1411 // started the workqueue yet. This is only for debugging purposes,
1412 // so we invent a fake value.
1413 const Task* task = reinterpret_cast<const Task*>(-1);
1414
1415 Input_file_argument input_argument(filename, false, "",
1416 cmdline->position_dependent_options());
1417 Input_file input_file(&input_argument);
1418 if (!input_file.open(cmdline->options(), dirsearch, task))
1419 return false;
1420
1421 std::string input_string;
1422 Lex::read_file(&input_file, &input_string);
1423
1424 Lex lex(input_string.c_str(), input_string.length(), first_token);
1425 lex.set_mode(lex_mode);
1426
1427 Parser_closure closure(filename,
1428 cmdline->position_dependent_options(),
1429 false,
1430 input_file.is_in_sysroot(),
1431 cmdline,
1432 cmdline->script_options(),
1433 &lex);
1434 if (yyparse(&closure) != 0)
1435 {
1436 input_file.file().unlock(task);
1437 return false;
1438 }
1439
1440 input_file.file().unlock(task);
1441
1442 gold_assert(!closure.saw_inputs());
1443
1444 return true;
1445 }
1446
1447 // FILENAME was found as an argument to --script (-T).
1448 // Read it as a script, and execute its contents immediately.
1449
1450 bool
1451 read_commandline_script(const char* filename, Command_line* cmdline)
1452 {
1453 return read_script_file(filename, cmdline,
1454 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1455 }
1456
1457 // FILE was found as an argument to --version-script. Read it as a
1458 // version script, and store its contents in
1459 // cmdline->script_options()->version_script_info().
1460
1461 bool
1462 read_version_script(const char* filename, Command_line* cmdline)
1463 {
1464 return read_script_file(filename, cmdline,
1465 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1466 }
1467
1468 // Implement the --defsym option on the command line. Return true if
1469 // all is well.
1470
1471 bool
1472 Script_options::define_symbol(const char* definition)
1473 {
1474 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1475 lex.set_mode(Lex::EXPRESSION);
1476
1477 // Dummy value.
1478 Position_dependent_options posdep_options;
1479
1480 Parser_closure closure("command line", posdep_options, false, false, NULL,
1481 this, &lex);
1482
1483 if (yyparse(&closure) != 0)
1484 return false;
1485
1486 gold_assert(!closure.saw_inputs());
1487
1488 return true;
1489 }
1490
1491 // Print the script to F for debugging.
1492
1493 void
1494 Script_options::print(FILE* f) const
1495 {
1496 fprintf(f, "%s: Dumping linker script\n", program_name);
1497
1498 if (!this->entry_.empty())
1499 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1500
1501 for (Symbol_assignments::const_iterator p =
1502 this->symbol_assignments_.begin();
1503 p != this->symbol_assignments_.end();
1504 ++p)
1505 (*p)->print(f);
1506
1507 for (Assertions::const_iterator p = this->assertions_.begin();
1508 p != this->assertions_.end();
1509 ++p)
1510 (*p)->print(f);
1511
1512 this->script_sections_.print(f);
1513
1514 this->version_script_info_.print(f);
1515 }
1516
1517 // Manage mapping from keywords to the codes expected by the bison
1518 // parser. We construct one global object for each lex mode with
1519 // keywords.
1520
1521 class Keyword_to_parsecode
1522 {
1523 public:
1524 // The structure which maps keywords to parsecodes.
1525 struct Keyword_parsecode
1526 {
1527 // Keyword.
1528 const char* keyword;
1529 // Corresponding parsecode.
1530 int parsecode;
1531 };
1532
1533 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1534 int keyword_count)
1535 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1536 { }
1537
1538 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1539 // keyword.
1540 int
1541 keyword_to_parsecode(const char* keyword, size_t len) const;
1542
1543 private:
1544 const Keyword_parsecode* keyword_parsecodes_;
1545 const int keyword_count_;
1546 };
1547
1548 // Mapping from keyword string to keyword parsecode. This array must
1549 // be kept in sorted order. Parsecodes are looked up using bsearch.
1550 // This array must correspond to the list of parsecodes in yyscript.y.
1551
1552 static const Keyword_to_parsecode::Keyword_parsecode
1553 script_keyword_parsecodes[] =
1554 {
1555 { "ABSOLUTE", ABSOLUTE },
1556 { "ADDR", ADDR },
1557 { "ALIGN", ALIGN_K },
1558 { "ALIGNOF", ALIGNOF },
1559 { "ASSERT", ASSERT_K },
1560 { "AS_NEEDED", AS_NEEDED },
1561 { "AT", AT },
1562 { "BIND", BIND },
1563 { "BLOCK", BLOCK },
1564 { "BYTE", BYTE },
1565 { "CONSTANT", CONSTANT },
1566 { "CONSTRUCTORS", CONSTRUCTORS },
1567 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1568 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1569 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1570 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1571 { "DEFINED", DEFINED },
1572 { "ENTRY", ENTRY },
1573 { "EXCLUDE_FILE", EXCLUDE_FILE },
1574 { "EXTERN", EXTERN },
1575 { "FILL", FILL },
1576 { "FLOAT", FLOAT },
1577 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1578 { "GROUP", GROUP },
1579 { "HLL", HLL },
1580 { "INCLUDE", INCLUDE },
1581 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1582 { "INPUT", INPUT },
1583 { "KEEP", KEEP },
1584 { "LENGTH", LENGTH },
1585 { "LOADADDR", LOADADDR },
1586 { "LONG", LONG },
1587 { "MAP", MAP },
1588 { "MAX", MAX_K },
1589 { "MEMORY", MEMORY },
1590 { "MIN", MIN_K },
1591 { "NEXT", NEXT },
1592 { "NOCROSSREFS", NOCROSSREFS },
1593 { "NOFLOAT", NOFLOAT },
1594 { "ONLY_IF_RO", ONLY_IF_RO },
1595 { "ONLY_IF_RW", ONLY_IF_RW },
1596 { "OPTION", OPTION },
1597 { "ORIGIN", ORIGIN },
1598 { "OUTPUT", OUTPUT },
1599 { "OUTPUT_ARCH", OUTPUT_ARCH },
1600 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1601 { "OVERLAY", OVERLAY },
1602 { "PHDRS", PHDRS },
1603 { "PROVIDE", PROVIDE },
1604 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1605 { "QUAD", QUAD },
1606 { "SEARCH_DIR", SEARCH_DIR },
1607 { "SECTIONS", SECTIONS },
1608 { "SEGMENT_START", SEGMENT_START },
1609 { "SHORT", SHORT },
1610 { "SIZEOF", SIZEOF },
1611 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1612 { "SORT", SORT_BY_NAME },
1613 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1614 { "SORT_BY_NAME", SORT_BY_NAME },
1615 { "SPECIAL", SPECIAL },
1616 { "SQUAD", SQUAD },
1617 { "STARTUP", STARTUP },
1618 { "SUBALIGN", SUBALIGN },
1619 { "SYSLIB", SYSLIB },
1620 { "TARGET", TARGET_K },
1621 { "TRUNCATE", TRUNCATE },
1622 { "VERSION", VERSIONK },
1623 { "global", GLOBAL },
1624 { "l", LENGTH },
1625 { "len", LENGTH },
1626 { "local", LOCAL },
1627 { "o", ORIGIN },
1628 { "org", ORIGIN },
1629 { "sizeof_headers", SIZEOF_HEADERS },
1630 };
1631
1632 static const Keyword_to_parsecode
1633 script_keywords(&script_keyword_parsecodes[0],
1634 (sizeof(script_keyword_parsecodes)
1635 / sizeof(script_keyword_parsecodes[0])));
1636
1637 static const Keyword_to_parsecode::Keyword_parsecode
1638 version_script_keyword_parsecodes[] =
1639 {
1640 { "extern", EXTERN },
1641 { "global", GLOBAL },
1642 { "local", LOCAL },
1643 };
1644
1645 static const Keyword_to_parsecode
1646 version_script_keywords(&version_script_keyword_parsecodes[0],
1647 (sizeof(version_script_keyword_parsecodes)
1648 / sizeof(version_script_keyword_parsecodes[0])));
1649
1650 // Comparison function passed to bsearch.
1651
1652 extern "C"
1653 {
1654
1655 struct Ktt_key
1656 {
1657 const char* str;
1658 size_t len;
1659 };
1660
1661 static int
1662 ktt_compare(const void* keyv, const void* kttv)
1663 {
1664 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1665 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1666 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1667 int i = strncmp(key->str, ktt->keyword, key->len);
1668 if (i != 0)
1669 return i;
1670 if (ktt->keyword[key->len] != '\0')
1671 return -1;
1672 return 0;
1673 }
1674
1675 } // End extern "C".
1676
1677 int
1678 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1679 size_t len) const
1680 {
1681 Ktt_key key;
1682 key.str = keyword;
1683 key.len = len;
1684 void* kttv = bsearch(&key,
1685 this->keyword_parsecodes_,
1686 this->keyword_count_,
1687 sizeof(this->keyword_parsecodes_[0]),
1688 ktt_compare);
1689 if (kttv == NULL)
1690 return 0;
1691 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1692 return ktt->parsecode;
1693 }
1694
1695 // The following structs are used within the VersionInfo class as well
1696 // as in the bison helper functions. They store the information
1697 // parsed from the version script.
1698
1699 // A single version expression.
1700 // For example, pattern="std::map*" and language="C++".
1701 // pattern and language should be from the stringpool
1702 struct Version_expression {
1703 Version_expression(const std::string& pattern,
1704 const std::string& language,
1705 bool exact_match)
1706 : pattern(pattern), language(language), exact_match(exact_match) {}
1707
1708 std::string pattern;
1709 std::string language;
1710 // If false, we use glob() to match pattern. If true, we use strcmp().
1711 bool exact_match;
1712 };
1713
1714
1715 // A list of expressions.
1716 struct Version_expression_list {
1717 std::vector<struct Version_expression> expressions;
1718 };
1719
1720
1721 // A list of which versions upon which another version depends.
1722 // Strings should be from the Stringpool.
1723 struct Version_dependency_list {
1724 std::vector<std::string> dependencies;
1725 };
1726
1727
1728 // The total definition of a version. It includes the tag for the
1729 // version, its global and local expressions, and any dependencies.
1730 struct Version_tree {
1731 Version_tree()
1732 : tag(), global(NULL), local(NULL), dependencies(NULL) {}
1733
1734 std::string tag;
1735 const struct Version_expression_list* global;
1736 const struct Version_expression_list* local;
1737 const struct Version_dependency_list* dependencies;
1738 };
1739
1740 Version_script_info::~Version_script_info()
1741 {
1742 for (size_t k = 0; k < dependency_lists_.size(); ++k)
1743 delete dependency_lists_[k];
1744 for (size_t k = 0; k < version_trees_.size(); ++k)
1745 delete version_trees_[k];
1746 for (size_t k = 0; k < expression_lists_.size(); ++k)
1747 delete expression_lists_[k];
1748 }
1749
1750 std::vector<std::string>
1751 Version_script_info::get_versions() const
1752 {
1753 std::vector<std::string> ret;
1754 for (size_t j = 0; j < version_trees_.size(); ++j)
1755 ret.push_back(version_trees_[j]->tag);
1756 return ret;
1757 }
1758
1759 std::vector<std::string>
1760 Version_script_info::get_dependencies(const char* version) const
1761 {
1762 std::vector<std::string> ret;
1763 for (size_t j = 0; j < version_trees_.size(); ++j)
1764 if (version_trees_[j]->tag == version)
1765 {
1766 const struct Version_dependency_list* deps =
1767 version_trees_[j]->dependencies;
1768 if (deps != NULL)
1769 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1770 ret.push_back(deps->dependencies[k]);
1771 return ret;
1772 }
1773 return ret;
1774 }
1775
1776 const std::string&
1777 Version_script_info::get_symbol_version_helper(const char* symbol_name,
1778 bool check_global) const
1779 {
1780 for (size_t j = 0; j < version_trees_.size(); ++j)
1781 {
1782 // Is it a global symbol for this version?
1783 const Version_expression_list* explist =
1784 check_global ? version_trees_[j]->global : version_trees_[j]->local;
1785 if (explist != NULL)
1786 for (size_t k = 0; k < explist->expressions.size(); ++k)
1787 {
1788 const char* name_to_match = symbol_name;
1789 const struct Version_expression& exp = explist->expressions[k];
1790 char* demangled_name = NULL;
1791 if (exp.language == "C++")
1792 {
1793 demangled_name = cplus_demangle(symbol_name,
1794 DMGL_ANSI | DMGL_PARAMS);
1795 // This isn't a C++ symbol.
1796 if (demangled_name == NULL)
1797 continue;
1798 name_to_match = demangled_name;
1799 }
1800 else if (exp.language == "Java")
1801 {
1802 demangled_name = cplus_demangle(symbol_name,
1803 (DMGL_ANSI | DMGL_PARAMS
1804 | DMGL_JAVA));
1805 // This isn't a Java symbol.
1806 if (demangled_name == NULL)
1807 continue;
1808 name_to_match = demangled_name;
1809 }
1810 bool matched;
1811 if (exp.exact_match)
1812 matched = strcmp(exp.pattern.c_str(), name_to_match) == 0;
1813 else
1814 matched = fnmatch(exp.pattern.c_str(), name_to_match,
1815 FNM_NOESCAPE) == 0;
1816 if (demangled_name != NULL)
1817 free(demangled_name);
1818 if (matched)
1819 return version_trees_[j]->tag;
1820 }
1821 }
1822 static const std::string empty = "";
1823 return empty;
1824 }
1825
1826 struct Version_dependency_list*
1827 Version_script_info::allocate_dependency_list()
1828 {
1829 dependency_lists_.push_back(new Version_dependency_list);
1830 return dependency_lists_.back();
1831 }
1832
1833 struct Version_expression_list*
1834 Version_script_info::allocate_expression_list()
1835 {
1836 expression_lists_.push_back(new Version_expression_list);
1837 return expression_lists_.back();
1838 }
1839
1840 struct Version_tree*
1841 Version_script_info::allocate_version_tree()
1842 {
1843 version_trees_.push_back(new Version_tree);
1844 return version_trees_.back();
1845 }
1846
1847 // Print for debugging.
1848
1849 void
1850 Version_script_info::print(FILE* f) const
1851 {
1852 if (this->empty())
1853 return;
1854
1855 fprintf(f, "VERSION {");
1856
1857 for (size_t i = 0; i < this->version_trees_.size(); ++i)
1858 {
1859 const Version_tree* vt = this->version_trees_[i];
1860
1861 if (vt->tag.empty())
1862 fprintf(f, " {\n");
1863 else
1864 fprintf(f, " %s {\n", vt->tag.c_str());
1865
1866 if (vt->global != NULL)
1867 {
1868 fprintf(f, " global :\n");
1869 this->print_expression_list(f, vt->global);
1870 }
1871
1872 if (vt->local != NULL)
1873 {
1874 fprintf(f, " local :\n");
1875 this->print_expression_list(f, vt->local);
1876 }
1877
1878 fprintf(f, " }");
1879 if (vt->dependencies != NULL)
1880 {
1881 const Version_dependency_list* deps = vt->dependencies;
1882 for (size_t j = 0; j < deps->dependencies.size(); ++j)
1883 {
1884 if (j < deps->dependencies.size() - 1)
1885 fprintf(f, "\n");
1886 fprintf(f, " %s", deps->dependencies[j].c_str());
1887 }
1888 }
1889 fprintf(f, ";\n");
1890 }
1891
1892 fprintf(f, "}\n");
1893 }
1894
1895 void
1896 Version_script_info::print_expression_list(
1897 FILE* f,
1898 const Version_expression_list* vel) const
1899 {
1900 std::string current_language;
1901 for (size_t i = 0; i < vel->expressions.size(); ++i)
1902 {
1903 const Version_expression& ve(vel->expressions[i]);
1904
1905 if (ve.language != current_language)
1906 {
1907 if (!current_language.empty())
1908 fprintf(f, " }\n");
1909 fprintf(f, " extern \"%s\" {\n", ve.language.c_str());
1910 current_language = ve.language;
1911 }
1912
1913 fprintf(f, " ");
1914 if (!current_language.empty())
1915 fprintf(f, " ");
1916
1917 if (ve.exact_match)
1918 fprintf(f, "\"");
1919 fprintf(f, "%s", ve.pattern.c_str());
1920 if (ve.exact_match)
1921 fprintf(f, "\"");
1922
1923 fprintf(f, "\n");
1924 }
1925
1926 if (!current_language.empty())
1927 fprintf(f, " }\n");
1928 }
1929
1930 } // End namespace gold.
1931
1932 // The remaining functions are extern "C", so it's clearer to not put
1933 // them in namespace gold.
1934
1935 using namespace gold;
1936
1937 // This function is called by the bison parser to return the next
1938 // token.
1939
1940 extern "C" int
1941 yylex(YYSTYPE* lvalp, void* closurev)
1942 {
1943 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1944 const Token* token = closure->next_token();
1945 switch (token->classification())
1946 {
1947 default:
1948 gold_unreachable();
1949
1950 case Token::TOKEN_INVALID:
1951 yyerror(closurev, "invalid character");
1952 return 0;
1953
1954 case Token::TOKEN_EOF:
1955 return 0;
1956
1957 case Token::TOKEN_STRING:
1958 {
1959 // This is either a keyword or a STRING.
1960 size_t len;
1961 const char* str = token->string_value(&len);
1962 int parsecode = 0;
1963 switch (closure->lex_mode())
1964 {
1965 case Lex::LINKER_SCRIPT:
1966 parsecode = script_keywords.keyword_to_parsecode(str, len);
1967 break;
1968 case Lex::VERSION_SCRIPT:
1969 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
1970 break;
1971 default:
1972 break;
1973 }
1974 if (parsecode != 0)
1975 return parsecode;
1976 lvalp->string.value = str;
1977 lvalp->string.length = len;
1978 return STRING;
1979 }
1980
1981 case Token::TOKEN_QUOTED_STRING:
1982 lvalp->string.value = token->string_value(&lvalp->string.length);
1983 return QUOTED_STRING;
1984
1985 case Token::TOKEN_OPERATOR:
1986 return token->operator_value();
1987
1988 case Token::TOKEN_INTEGER:
1989 lvalp->integer = token->integer_value();
1990 return INTEGER;
1991 }
1992 }
1993
1994 // This function is called by the bison parser to report an error.
1995
1996 extern "C" void
1997 yyerror(void* closurev, const char* message)
1998 {
1999 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2000 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2001 closure->charpos(), message);
2002 }
2003
2004 // Called by the bison parser to add a file to the link.
2005
2006 extern "C" void
2007 script_add_file(void* closurev, const char* name, size_t length)
2008 {
2009 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2010
2011 // If this is an absolute path, and we found the script in the
2012 // sysroot, then we want to prepend the sysroot to the file name.
2013 // For example, this is how we handle a cross link to the x86_64
2014 // libc.so, which refers to /lib/libc.so.6.
2015 std::string name_string(name, length);
2016 const char* extra_search_path = ".";
2017 std::string script_directory;
2018 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2019 {
2020 if (closure->is_in_sysroot())
2021 {
2022 const std::string& sysroot(parameters->sysroot());
2023 gold_assert(!sysroot.empty());
2024 name_string = sysroot + name_string;
2025 }
2026 }
2027 else
2028 {
2029 // In addition to checking the normal library search path, we
2030 // also want to check in the script-directory.
2031 const char *slash = strrchr(closure->filename(), '/');
2032 if (slash != NULL)
2033 {
2034 script_directory.assign(closure->filename(),
2035 slash - closure->filename() + 1);
2036 extra_search_path = script_directory.c_str();
2037 }
2038 }
2039
2040 Input_file_argument file(name_string.c_str(), false, extra_search_path,
2041 closure->position_dependent_options());
2042 closure->inputs()->add_file(file);
2043 }
2044
2045 // Called by the bison parser to start a group. If we are already in
2046 // a group, that means that this script was invoked within a
2047 // --start-group --end-group sequence on the command line, or that
2048 // this script was found in a GROUP of another script. In that case,
2049 // we simply continue the existing group, rather than starting a new
2050 // one. It is possible to construct a case in which this will do
2051 // something other than what would happen if we did a recursive group,
2052 // but it's hard to imagine why the different behaviour would be
2053 // useful for a real program. Avoiding recursive groups is simpler
2054 // and more efficient.
2055
2056 extern "C" void
2057 script_start_group(void* closurev)
2058 {
2059 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2060 if (!closure->in_group())
2061 closure->inputs()->start_group();
2062 }
2063
2064 // Called by the bison parser at the end of a group.
2065
2066 extern "C" void
2067 script_end_group(void* closurev)
2068 {
2069 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2070 if (!closure->in_group())
2071 closure->inputs()->end_group();
2072 }
2073
2074 // Called by the bison parser to start an AS_NEEDED list.
2075
2076 extern "C" void
2077 script_start_as_needed(void* closurev)
2078 {
2079 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2080 closure->position_dependent_options().set_as_needed();
2081 }
2082
2083 // Called by the bison parser at the end of an AS_NEEDED list.
2084
2085 extern "C" void
2086 script_end_as_needed(void* closurev)
2087 {
2088 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2089 closure->position_dependent_options().clear_as_needed();
2090 }
2091
2092 // Called by the bison parser to set the entry symbol.
2093
2094 extern "C" void
2095 script_set_entry(void* closurev, const char* entry, size_t length)
2096 {
2097 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2098 closure->script_options()->set_entry(entry, length);
2099 }
2100
2101 // Called by the bison parser to define a symbol.
2102
2103 extern "C" void
2104 script_set_symbol(void* closurev, const char* name, size_t length,
2105 Expression* value, int providei, int hiddeni)
2106 {
2107 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2108 const bool provide = providei != 0;
2109 const bool hidden = hiddeni != 0;
2110 closure->script_options()->add_symbol_assignment(name, length, value,
2111 provide, hidden);
2112 }
2113
2114 // Called by the bison parser to add an assertion.
2115
2116 extern "C" void
2117 script_add_assertion(void* closurev, Expression* check, const char* message,
2118 size_t messagelen)
2119 {
2120 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2121 closure->script_options()->add_assertion(check, message, messagelen);
2122 }
2123
2124 // Called by the bison parser to parse an OPTION.
2125
2126 extern "C" void
2127 script_parse_option(void* closurev, const char* option, size_t length)
2128 {
2129 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2130 // We treat the option as a single command-line option, even if
2131 // it has internal whitespace.
2132 if (closure->command_line() == NULL)
2133 {
2134 // There are some options that we could handle here--e.g.,
2135 // -lLIBRARY. Should we bother?
2136 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2137 " for scripts specified via -T/--script"),
2138 closure->filename(), closure->lineno(), closure->charpos());
2139 }
2140 else
2141 {
2142 bool past_a_double_dash_option = false;
2143 char* mutable_option = strndup(option, length);
2144 gold_assert(mutable_option != NULL);
2145 closure->command_line()->process_one_option(1, &mutable_option, 0,
2146 &past_a_double_dash_option);
2147 free(mutable_option);
2148 }
2149 }
2150
2151 // Called by the bison parser to handle SEARCH_DIR. This is handled
2152 // exactly like a -L option.
2153
2154 extern "C" void
2155 script_add_search_dir(void* closurev, const char* option, size_t length)
2156 {
2157 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2158 if (closure->command_line() == NULL)
2159 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2160 " for scripts specified via -T/--script"),
2161 closure->filename(), closure->lineno(), closure->charpos());
2162 else
2163 {
2164 std::string s = "-L" + std::string(option, length);
2165 script_parse_option(closurev, s.c_str(), s.size());
2166 }
2167 }
2168
2169 /* Called by the bison parser to push the lexer into expression
2170 mode. */
2171
2172 extern "C" void
2173 script_push_lex_into_expression_mode(void* closurev)
2174 {
2175 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2176 closure->push_lex_mode(Lex::EXPRESSION);
2177 }
2178
2179 /* Called by the bison parser to push the lexer into version
2180 mode. */
2181
2182 extern "C" void
2183 script_push_lex_into_version_mode(void* closurev)
2184 {
2185 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2186 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2187 }
2188
2189 /* Called by the bison parser to pop the lexer mode. */
2190
2191 extern "C" void
2192 script_pop_lex_mode(void* closurev)
2193 {
2194 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2195 closure->pop_lex_mode();
2196 }
2197
2198 // Register an entire version node. For example:
2199 //
2200 // GLIBC_2.1 {
2201 // global: foo;
2202 // } GLIBC_2.0;
2203 //
2204 // - tag is "GLIBC_2.1"
2205 // - tree contains the information "global: foo"
2206 // - deps contains "GLIBC_2.0"
2207
2208 extern "C" void
2209 script_register_vers_node(void*,
2210 const char* tag,
2211 int taglen,
2212 struct Version_tree *tree,
2213 struct Version_dependency_list *deps)
2214 {
2215 gold_assert(tree != NULL);
2216 gold_assert(tag != NULL);
2217 tree->dependencies = deps;
2218 tree->tag = std::string(tag, taglen);
2219 }
2220
2221 // Add a dependencies to the list of existing dependencies, if any,
2222 // and return the expanded list.
2223
2224 extern "C" struct Version_dependency_list *
2225 script_add_vers_depend(void* closurev,
2226 struct Version_dependency_list *all_deps,
2227 const char *depend_to_add, int deplen)
2228 {
2229 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2230 if (all_deps == NULL)
2231 all_deps = closure->version_script()->allocate_dependency_list();
2232 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2233 return all_deps;
2234 }
2235
2236 // Add a pattern expression to an existing list of expressions, if any.
2237 // TODO: In the old linker, the last argument used to be a bool, but I
2238 // don't know what it meant.
2239
2240 extern "C" struct Version_expression_list *
2241 script_new_vers_pattern(void* closurev,
2242 struct Version_expression_list *expressions,
2243 const char *pattern, int patlen, int exact_match)
2244 {
2245 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2246 if (expressions == NULL)
2247 expressions = closure->version_script()->allocate_expression_list();
2248 expressions->expressions.push_back(
2249 Version_expression(std::string(pattern, patlen),
2250 closure->get_current_language(),
2251 static_cast<bool>(exact_match)));
2252 return expressions;
2253 }
2254
2255 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2256
2257 extern "C" struct Version_expression_list*
2258 script_merge_expressions(struct Version_expression_list *a,
2259 struct Version_expression_list *b)
2260 {
2261 a->expressions.insert(a->expressions.end(),
2262 b->expressions.begin(), b->expressions.end());
2263 // We could delete b and remove it from expressions_lists_, but
2264 // that's a lot of work. This works just as well.
2265 b->expressions.clear();
2266 return a;
2267 }
2268
2269 // Combine the global and local expressions into a a Version_tree.
2270
2271 extern "C" struct Version_tree *
2272 script_new_vers_node(void* closurev,
2273 struct Version_expression_list *global,
2274 struct Version_expression_list *local)
2275 {
2276 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2277 Version_tree* tree = closure->version_script()->allocate_version_tree();
2278 tree->global = global;
2279 tree->local = local;
2280 return tree;
2281 }
2282
2283 // Handle a transition in language, such as at the
2284 // start or end of 'extern "C++"'
2285
2286 extern "C" void
2287 version_script_push_lang(void* closurev, const char* lang, int langlen)
2288 {
2289 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2290 closure->push_language(std::string(lang, langlen));
2291 }
2292
2293 extern "C" void
2294 version_script_pop_lang(void* closurev)
2295 {
2296 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2297 closure->pop_language();
2298 }
2299
2300 // Called by the bison parser to start a SECTIONS clause.
2301
2302 extern "C" void
2303 script_start_sections(void* closurev)
2304 {
2305 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2306 closure->script_options()->script_sections()->start_sections();
2307 }
2308
2309 // Called by the bison parser to finish a SECTIONS clause.
2310
2311 extern "C" void
2312 script_finish_sections(void* closurev)
2313 {
2314 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2315 closure->script_options()->script_sections()->finish_sections();
2316 }
2317
2318 // Start processing entries for an output section.
2319
2320 extern "C" void
2321 script_start_output_section(void* closurev, const char* name, size_t namelen,
2322 const struct Parser_output_section_header* header)
2323 {
2324 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2325 closure->script_options()->script_sections()->start_output_section(name,
2326 namelen,
2327 header);
2328 }
2329
2330 // Finish processing entries for an output section.
2331
2332 extern "C" void
2333 script_finish_output_section(void* closurev,
2334 const struct Parser_output_section_trailer* trail)
2335 {
2336 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2337 closure->script_options()->script_sections()->finish_output_section(trail);
2338 }
2339
2340 // Add a data item (e.g., "WORD (0)") to the current output section.
2341
2342 extern "C" void
2343 script_add_data(void* closurev, int data_token, Expression* val)
2344 {
2345 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2346 int size;
2347 bool is_signed = true;
2348 switch (data_token)
2349 {
2350 case QUAD:
2351 size = 8;
2352 is_signed = false;
2353 break;
2354 case SQUAD:
2355 size = 8;
2356 break;
2357 case LONG:
2358 size = 4;
2359 break;
2360 case SHORT:
2361 size = 2;
2362 break;
2363 case BYTE:
2364 size = 1;
2365 break;
2366 default:
2367 gold_unreachable();
2368 }
2369 closure->script_options()->script_sections()->add_data(size, is_signed, val);
2370 }
2371
2372 // Add a clause setting the fill value to the current output section.
2373
2374 extern "C" void
2375 script_add_fill(void* closurev, Expression* val)
2376 {
2377 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2378 closure->script_options()->script_sections()->add_fill(val);
2379 }
2380
2381 // Add a new input section specification to the current output
2382 // section.
2383
2384 extern "C" void
2385 script_add_input_section(void* closurev,
2386 const struct Input_section_spec* spec,
2387 int keepi)
2388 {
2389 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2390 bool keep = keepi != 0;
2391 closure->script_options()->script_sections()->add_input_section(spec, keep);
2392 }
2393
2394 // Create a new list of string/sort pairs.
2395
2396 extern "C" String_sort_list_ptr
2397 script_new_string_sort_list(const struct Wildcard_section* string_sort)
2398 {
2399 return new String_sort_list(1, *string_sort);
2400 }
2401
2402 // Add an entry to a list of string/sort pairs. The way the parser
2403 // works permits us to simply modify the first parameter, rather than
2404 // copy the vector.
2405
2406 extern "C" String_sort_list_ptr
2407 script_string_sort_list_add(String_sort_list_ptr pv,
2408 const struct Wildcard_section* string_sort)
2409 {
2410 if (pv == NULL)
2411 return script_new_string_sort_list(string_sort);
2412 else
2413 {
2414 pv->push_back(*string_sort);
2415 return pv;
2416 }
2417 }
2418
2419 // Create a new list of strings.
2420
2421 extern "C" String_list_ptr
2422 script_new_string_list(const char* str, size_t len)
2423 {
2424 return new String_list(1, std::string(str, len));
2425 }
2426
2427 // Add an element to a list of strings. The way the parser works
2428 // permits us to simply modify the first parameter, rather than copy
2429 // the vector.
2430
2431 extern "C" String_list_ptr
2432 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
2433 {
2434 pv->push_back(std::string(str, len));
2435 return pv;
2436 }
2437
2438 // Concatenate two string lists. Either or both may be NULL. The way
2439 // the parser works permits us to modify the parameters, rather than
2440 // copy the vector.
2441
2442 extern "C" String_list_ptr
2443 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
2444 {
2445 if (pv1 == NULL)
2446 return pv2;
2447 if (pv2 == NULL)
2448 return pv1;
2449 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
2450 return pv1;
2451 }
This page took 0.102293 seconds and 5 git commands to generate.