* script.cc (class Lazy_demangler): Recreate--revert part of patch
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56 public:
57 // Token classification.
58 enum Classification
59 {
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
72 };
73
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
79
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
84 {
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
87 }
88
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
94 {
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
97 }
98
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
103 { }
104
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
109
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
114
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
119
120 // Return the line number at which the token starts.
121 int
122 lineno() const
123 { return this->lineno_; }
124
125 // Return the character position at this the token starts.
126 int
127 charpos() const
128 { return this->charpos_; }
129
130 // Get the value of a token.
131
132 const char*
133 string_value(size_t* length) const
134 {
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
139 }
140
141 int
142 operator_value() const
143 {
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
146 }
147
148 uint64_t
149 integer_value() const
150 {
151 gold_assert(this->classification_ == TOKEN_INTEGER);
152 // Null terminate.
153 std::string s(this->value_, this->value_length_);
154 return strtoull(s.c_str(), NULL, 0);
155 }
156
157 private:
158 // The token classification.
159 Classification classification_;
160 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
161 // TOKEN_INTEGER.
162 const char* value_;
163 // The length of the token value.
164 size_t value_length_;
165 // The token value, for TOKEN_OPERATOR.
166 int opcode_;
167 // The line number where this token started (one based).
168 int lineno_;
169 // The character position within the line where this token started
170 // (one based).
171 int charpos_;
172 };
173
174 // This class handles lexing a file into a sequence of tokens.
175
176 class Lex
177 {
178 public:
179 // We unfortunately have to support different lexing modes, because
180 // when reading different parts of a linker script we need to parse
181 // things differently.
182 enum Mode
183 {
184 // Reading an ordinary linker script.
185 LINKER_SCRIPT,
186 // Reading an expression in a linker script.
187 EXPRESSION,
188 // Reading a version script.
189 VERSION_SCRIPT,
190 // Reading a --dynamic-list file.
191 DYNAMIC_LIST
192 };
193
194 Lex(const char* input_string, size_t input_length, int parsing_token)
195 : input_string_(input_string), input_length_(input_length),
196 current_(input_string), mode_(LINKER_SCRIPT),
197 first_token_(parsing_token), token_(),
198 lineno_(1), linestart_(input_string)
199 { }
200
201 // Read a file into a string.
202 static void
203 read_file(Input_file*, std::string*);
204
205 // Return the next token.
206 const Token*
207 next_token();
208
209 // Return the current lexing mode.
210 Lex::Mode
211 mode() const
212 { return this->mode_; }
213
214 // Set the lexing mode.
215 void
216 set_mode(Mode mode)
217 { this->mode_ = mode; }
218
219 private:
220 Lex(const Lex&);
221 Lex& operator=(const Lex&);
222
223 // Make a general token with no value at the current location.
224 Token
225 make_token(Token::Classification c, const char* start) const
226 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
227
228 // Make a general token with a value at the current location.
229 Token
230 make_token(Token::Classification c, const char* v, size_t len,
231 const char* start)
232 const
233 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
234
235 // Make an operator token at the current location.
236 Token
237 make_token(int opcode, const char* start) const
238 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
239
240 // Make an invalid token at the current location.
241 Token
242 make_invalid_token(const char* start)
243 { return this->make_token(Token::TOKEN_INVALID, start); }
244
245 // Make an EOF token at the current location.
246 Token
247 make_eof_token(const char* start)
248 { return this->make_token(Token::TOKEN_EOF, start); }
249
250 // Return whether C can be the first character in a name. C2 is the
251 // next character, since we sometimes need that.
252 inline bool
253 can_start_name(char c, char c2);
254
255 // If C can appear in a name which has already started, return a
256 // pointer to a character later in the token or just past
257 // it. Otherwise, return NULL.
258 inline const char*
259 can_continue_name(const char* c);
260
261 // Return whether C, C2, C3 can start a hex number.
262 inline bool
263 can_start_hex(char c, char c2, char c3);
264
265 // If C can appear in a hex number which has already started, return
266 // a pointer to a character later in the token or just past
267 // it. Otherwise, return NULL.
268 inline const char*
269 can_continue_hex(const char* c);
270
271 // Return whether C can start a non-hex number.
272 static inline bool
273 can_start_number(char c);
274
275 // If C can appear in a decimal number which has already started,
276 // return a pointer to a character later in the token or just past
277 // it. Otherwise, return NULL.
278 inline const char*
279 can_continue_number(const char* c)
280 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
281
282 // If C1 C2 C3 form a valid three character operator, return the
283 // opcode. Otherwise return 0.
284 static inline int
285 three_char_operator(char c1, char c2, char c3);
286
287 // If C1 C2 form a valid two character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 two_char_operator(char c1, char c2);
291
292 // If C1 is a valid one character operator, return the opcode.
293 // Otherwise return 0.
294 static inline int
295 one_char_operator(char c1);
296
297 // Read the next token.
298 Token
299 get_token(const char**);
300
301 // Skip a C style /* */ comment. Return false if the comment did
302 // not end.
303 bool
304 skip_c_comment(const char**);
305
306 // Skip a line # comment. Return false if there was no newline.
307 bool
308 skip_line_comment(const char**);
309
310 // Build a token CLASSIFICATION from all characters that match
311 // CAN_CONTINUE_FN. The token starts at START. Start matching from
312 // MATCH. Set *PP to the character following the token.
313 inline Token
314 gather_token(Token::Classification,
315 const char* (Lex::*can_continue_fn)(const char*),
316 const char* start, const char* match, const char** pp);
317
318 // Build a token from a quoted string.
319 Token
320 gather_quoted_string(const char** pp);
321
322 // The string we are tokenizing.
323 const char* input_string_;
324 // The length of the string.
325 size_t input_length_;
326 // The current offset into the string.
327 const char* current_;
328 // The current lexing mode.
329 Mode mode_;
330 // The code to use for the first token. This is set to 0 after it
331 // is used.
332 int first_token_;
333 // The current token.
334 Token token_;
335 // The current line number.
336 int lineno_;
337 // The start of the current line in the string.
338 const char* linestart_;
339 };
340
341 // Read the whole file into memory. We don't expect linker scripts to
342 // be large, so we just use a std::string as a buffer. We ignore the
343 // data we've already read, so that we read aligned buffers.
344
345 void
346 Lex::read_file(Input_file* input_file, std::string* contents)
347 {
348 off_t filesize = input_file->file().filesize();
349 contents->clear();
350 contents->reserve(filesize);
351
352 off_t off = 0;
353 unsigned char buf[BUFSIZ];
354 while (off < filesize)
355 {
356 off_t get = BUFSIZ;
357 if (get > filesize - off)
358 get = filesize - off;
359 input_file->file().read(off, get, buf);
360 contents->append(reinterpret_cast<char*>(&buf[0]), get);
361 off += get;
362 }
363 }
364
365 // Return whether C can be the start of a name, if the next character
366 // is C2. A name can being with a letter, underscore, period, or
367 // dollar sign. Because a name can be a file name, we also permit
368 // forward slash, backslash, and tilde. Tilde is the tricky case
369 // here; GNU ld also uses it as a bitwise not operator. It is only
370 // recognized as the operator if it is not immediately followed by
371 // some character which can appear in a symbol. That is, when we
372 // don't know that we are looking at an expression, "~0" is a file
373 // name, and "~ 0" is an expression using bitwise not. We are
374 // compatible.
375
376 inline bool
377 Lex::can_start_name(char c, char c2)
378 {
379 switch (c)
380 {
381 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
382 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
383 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
384 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
385 case 'Y': case 'Z':
386 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
387 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
388 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
389 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
390 case 'y': case 'z':
391 case '_': case '.': case '$':
392 return true;
393
394 case '/': case '\\':
395 return this->mode_ == LINKER_SCRIPT;
396
397 case '~':
398 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
399
400 case '*': case '[':
401 return (this->mode_ == VERSION_SCRIPT
402 || this->mode_ == DYNAMIC_LIST
403 || (this->mode_ == LINKER_SCRIPT
404 && can_continue_name(&c2)));
405
406 default:
407 return false;
408 }
409 }
410
411 // Return whether C can continue a name which has already started.
412 // Subsequent characters in a name are the same as the leading
413 // characters, plus digits and "=+-:[],?*". So in general the linker
414 // script language requires spaces around operators, unless we know
415 // that we are parsing an expression.
416
417 inline const char*
418 Lex::can_continue_name(const char* c)
419 {
420 switch (*c)
421 {
422 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
423 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
424 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
425 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
426 case 'Y': case 'Z':
427 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
428 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
429 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
430 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
431 case 'y': case 'z':
432 case '_': case '.': case '$':
433 case '0': case '1': case '2': case '3': case '4':
434 case '5': case '6': case '7': case '8': case '9':
435 return c + 1;
436
437 // TODO(csilvers): why not allow ~ in names for version-scripts?
438 case '/': case '\\': case '~':
439 case '=': case '+':
440 case ',':
441 if (this->mode_ == LINKER_SCRIPT)
442 return c + 1;
443 return NULL;
444
445 case '[': case ']': case '*': case '?': case '-':
446 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
447 || this->mode_ == DYNAMIC_LIST)
448 return c + 1;
449 return NULL;
450
451 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
452 case '^':
453 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
454 return c + 1;
455 return NULL;
456
457 case ':':
458 if (this->mode_ == LINKER_SCRIPT)
459 return c + 1;
460 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
461 && (c[1] == ':'))
462 {
463 // A name can have '::' in it, as that's a c++ namespace
464 // separator. But a single colon is not part of a name.
465 return c + 2;
466 }
467 return NULL;
468
469 default:
470 return NULL;
471 }
472 }
473
474 // For a number we accept 0x followed by hex digits, or any sequence
475 // of digits. The old linker accepts leading '$' for hex, and
476 // trailing HXBOD. Those are for MRI compatibility and we don't
477 // accept them. The old linker also accepts trailing MK for mega or
478 // kilo. FIXME: Those are mentioned in the documentation, and we
479 // should accept them.
480
481 // Return whether C1 C2 C3 can start a hex number.
482
483 inline bool
484 Lex::can_start_hex(char c1, char c2, char c3)
485 {
486 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
487 return this->can_continue_hex(&c3);
488 return false;
489 }
490
491 // Return whether C can appear in a hex number.
492
493 inline const char*
494 Lex::can_continue_hex(const char* c)
495 {
496 switch (*c)
497 {
498 case '0': case '1': case '2': case '3': case '4':
499 case '5': case '6': case '7': case '8': case '9':
500 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
501 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
502 return c + 1;
503
504 default:
505 return NULL;
506 }
507 }
508
509 // Return whether C can start a non-hex number.
510
511 inline bool
512 Lex::can_start_number(char c)
513 {
514 switch (c)
515 {
516 case '0': case '1': case '2': case '3': case '4':
517 case '5': case '6': case '7': case '8': case '9':
518 return true;
519
520 default:
521 return false;
522 }
523 }
524
525 // If C1 C2 C3 form a valid three character operator, return the
526 // opcode (defined in the yyscript.h file generated from yyscript.y).
527 // Otherwise return 0.
528
529 inline int
530 Lex::three_char_operator(char c1, char c2, char c3)
531 {
532 switch (c1)
533 {
534 case '<':
535 if (c2 == '<' && c3 == '=')
536 return LSHIFTEQ;
537 break;
538 case '>':
539 if (c2 == '>' && c3 == '=')
540 return RSHIFTEQ;
541 break;
542 default:
543 break;
544 }
545 return 0;
546 }
547
548 // If C1 C2 form a valid two character operator, return the opcode
549 // (defined in the yyscript.h file generated from yyscript.y).
550 // Otherwise return 0.
551
552 inline int
553 Lex::two_char_operator(char c1, char c2)
554 {
555 switch (c1)
556 {
557 case '=':
558 if (c2 == '=')
559 return EQ;
560 break;
561 case '!':
562 if (c2 == '=')
563 return NE;
564 break;
565 case '+':
566 if (c2 == '=')
567 return PLUSEQ;
568 break;
569 case '-':
570 if (c2 == '=')
571 return MINUSEQ;
572 break;
573 case '*':
574 if (c2 == '=')
575 return MULTEQ;
576 break;
577 case '/':
578 if (c2 == '=')
579 return DIVEQ;
580 break;
581 case '|':
582 if (c2 == '=')
583 return OREQ;
584 if (c2 == '|')
585 return OROR;
586 break;
587 case '&':
588 if (c2 == '=')
589 return ANDEQ;
590 if (c2 == '&')
591 return ANDAND;
592 break;
593 case '>':
594 if (c2 == '=')
595 return GE;
596 if (c2 == '>')
597 return RSHIFT;
598 break;
599 case '<':
600 if (c2 == '=')
601 return LE;
602 if (c2 == '<')
603 return LSHIFT;
604 break;
605 default:
606 break;
607 }
608 return 0;
609 }
610
611 // If C1 is a valid operator, return the opcode. Otherwise return 0.
612
613 inline int
614 Lex::one_char_operator(char c1)
615 {
616 switch (c1)
617 {
618 case '+':
619 case '-':
620 case '*':
621 case '/':
622 case '%':
623 case '!':
624 case '&':
625 case '|':
626 case '^':
627 case '~':
628 case '<':
629 case '>':
630 case '=':
631 case '?':
632 case ',':
633 case '(':
634 case ')':
635 case '{':
636 case '}':
637 case '[':
638 case ']':
639 case ':':
640 case ';':
641 return c1;
642 default:
643 return 0;
644 }
645 }
646
647 // Skip a C style comment. *PP points to just after the "/*". Return
648 // false if the comment did not end.
649
650 bool
651 Lex::skip_c_comment(const char** pp)
652 {
653 const char* p = *pp;
654 while (p[0] != '*' || p[1] != '/')
655 {
656 if (*p == '\0')
657 {
658 *pp = p;
659 return false;
660 }
661
662 if (*p == '\n')
663 {
664 ++this->lineno_;
665 this->linestart_ = p + 1;
666 }
667 ++p;
668 }
669
670 *pp = p + 2;
671 return true;
672 }
673
674 // Skip a line # comment. Return false if there was no newline.
675
676 bool
677 Lex::skip_line_comment(const char** pp)
678 {
679 const char* p = *pp;
680 size_t skip = strcspn(p, "\n");
681 if (p[skip] == '\0')
682 {
683 *pp = p + skip;
684 return false;
685 }
686
687 p += skip + 1;
688 ++this->lineno_;
689 this->linestart_ = p;
690 *pp = p;
691
692 return true;
693 }
694
695 // Build a token CLASSIFICATION from all characters that match
696 // CAN_CONTINUE_FN. Update *PP.
697
698 inline Token
699 Lex::gather_token(Token::Classification classification,
700 const char* (Lex::*can_continue_fn)(const char*),
701 const char* start,
702 const char* match,
703 const char **pp)
704 {
705 const char* new_match = NULL;
706 while ((new_match = (this->*can_continue_fn)(match)))
707 match = new_match;
708 *pp = match;
709 return this->make_token(classification, start, match - start, start);
710 }
711
712 // Build a token from a quoted string.
713
714 Token
715 Lex::gather_quoted_string(const char** pp)
716 {
717 const char* start = *pp;
718 const char* p = start;
719 ++p;
720 size_t skip = strcspn(p, "\"\n");
721 if (p[skip] != '"')
722 return this->make_invalid_token(start);
723 *pp = p + skip + 1;
724 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
725 }
726
727 // Return the next token at *PP. Update *PP. General guideline: we
728 // require linker scripts to be simple ASCII. No unicode linker
729 // scripts. In particular we can assume that any '\0' is the end of
730 // the input.
731
732 Token
733 Lex::get_token(const char** pp)
734 {
735 const char* p = *pp;
736
737 while (true)
738 {
739 if (*p == '\0')
740 {
741 *pp = p;
742 return this->make_eof_token(p);
743 }
744
745 // Skip whitespace quickly.
746 while (*p == ' ' || *p == '\t' || *p == '\r')
747 ++p;
748
749 if (*p == '\n')
750 {
751 ++p;
752 ++this->lineno_;
753 this->linestart_ = p;
754 continue;
755 }
756
757 // Skip C style comments.
758 if (p[0] == '/' && p[1] == '*')
759 {
760 int lineno = this->lineno_;
761 int charpos = p - this->linestart_ + 1;
762
763 *pp = p + 2;
764 if (!this->skip_c_comment(pp))
765 return Token(Token::TOKEN_INVALID, lineno, charpos);
766 p = *pp;
767
768 continue;
769 }
770
771 // Skip line comments.
772 if (*p == '#')
773 {
774 *pp = p + 1;
775 if (!this->skip_line_comment(pp))
776 return this->make_eof_token(p);
777 p = *pp;
778 continue;
779 }
780
781 // Check for a name.
782 if (this->can_start_name(p[0], p[1]))
783 return this->gather_token(Token::TOKEN_STRING,
784 &Lex::can_continue_name,
785 p, p + 1, pp);
786
787 // We accept any arbitrary name in double quotes, as long as it
788 // does not cross a line boundary.
789 if (*p == '"')
790 {
791 *pp = p;
792 return this->gather_quoted_string(pp);
793 }
794
795 // Check for a number.
796
797 if (this->can_start_hex(p[0], p[1], p[2]))
798 return this->gather_token(Token::TOKEN_INTEGER,
799 &Lex::can_continue_hex,
800 p, p + 3, pp);
801
802 if (Lex::can_start_number(p[0]))
803 return this->gather_token(Token::TOKEN_INTEGER,
804 &Lex::can_continue_number,
805 p, p + 1, pp);
806
807 // Check for operators.
808
809 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
810 if (opcode != 0)
811 {
812 *pp = p + 3;
813 return this->make_token(opcode, p);
814 }
815
816 opcode = Lex::two_char_operator(p[0], p[1]);
817 if (opcode != 0)
818 {
819 *pp = p + 2;
820 return this->make_token(opcode, p);
821 }
822
823 opcode = Lex::one_char_operator(p[0]);
824 if (opcode != 0)
825 {
826 *pp = p + 1;
827 return this->make_token(opcode, p);
828 }
829
830 return this->make_token(Token::TOKEN_INVALID, p);
831 }
832 }
833
834 // Return the next token.
835
836 const Token*
837 Lex::next_token()
838 {
839 // The first token is special.
840 if (this->first_token_ != 0)
841 {
842 this->token_ = Token(this->first_token_, 0, 0);
843 this->first_token_ = 0;
844 return &this->token_;
845 }
846
847 this->token_ = this->get_token(&this->current_);
848
849 // Don't let an early null byte fool us into thinking that we've
850 // reached the end of the file.
851 if (this->token_.is_eof()
852 && (static_cast<size_t>(this->current_ - this->input_string_)
853 < this->input_length_))
854 this->token_ = this->make_invalid_token(this->current_);
855
856 return &this->token_;
857 }
858
859 // class Symbol_assignment.
860
861 // Add the symbol to the symbol table. This makes sure the symbol is
862 // there and defined. The actual value is stored later. We can't
863 // determine the actual value at this point, because we can't
864 // necessarily evaluate the expression until all ordinary symbols have
865 // been finalized.
866
867 // The GNU linker lets symbol assignments in the linker script
868 // silently override defined symbols in object files. We are
869 // compatible. FIXME: Should we issue a warning?
870
871 void
872 Symbol_assignment::add_to_table(Symbol_table* symtab)
873 {
874 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
875 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
876 NULL, // version
877 (this->is_defsym_
878 ? Symbol_table::DEFSYM
879 : Symbol_table::SCRIPT),
880 0, // value
881 0, // size
882 elfcpp::STT_NOTYPE,
883 elfcpp::STB_GLOBAL,
884 vis,
885 0, // nonvis
886 this->provide_,
887 true); // force_override
888 }
889
890 // Finalize a symbol value.
891
892 void
893 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
894 {
895 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
896 }
897
898 // Finalize a symbol value which can refer to the dot symbol.
899
900 void
901 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
902 const Layout* layout,
903 uint64_t dot_value,
904 Output_section* dot_section)
905 {
906 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
907 }
908
909 // Finalize a symbol value, internal version.
910
911 void
912 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
913 const Layout* layout,
914 bool is_dot_available,
915 uint64_t dot_value,
916 Output_section* dot_section)
917 {
918 // If we were only supposed to provide this symbol, the sym_ field
919 // will be NULL if the symbol was not referenced.
920 if (this->sym_ == NULL)
921 {
922 gold_assert(this->provide_);
923 return;
924 }
925
926 if (parameters->target().get_size() == 32)
927 {
928 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
929 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
930 dot_section);
931 #else
932 gold_unreachable();
933 #endif
934 }
935 else if (parameters->target().get_size() == 64)
936 {
937 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
938 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
939 dot_section);
940 #else
941 gold_unreachable();
942 #endif
943 }
944 else
945 gold_unreachable();
946 }
947
948 template<int size>
949 void
950 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
951 bool is_dot_available, uint64_t dot_value,
952 Output_section* dot_section)
953 {
954 Output_section* section;
955 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
956 is_dot_available,
957 dot_value, dot_section,
958 &section);
959 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
960 ssym->set_value(final_val);
961 if (section != NULL)
962 ssym->set_output_section(section);
963 }
964
965 // Set the symbol value if the expression yields an absolute value.
966
967 void
968 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
969 bool is_dot_available, uint64_t dot_value)
970 {
971 if (this->sym_ == NULL)
972 return;
973
974 Output_section* val_section;
975 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
976 is_dot_available, dot_value,
977 NULL, &val_section);
978 if (val_section != NULL)
979 return;
980
981 if (parameters->target().get_size() == 32)
982 {
983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
984 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
985 ssym->set_value(val);
986 #else
987 gold_unreachable();
988 #endif
989 }
990 else if (parameters->target().get_size() == 64)
991 {
992 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
993 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
994 ssym->set_value(val);
995 #else
996 gold_unreachable();
997 #endif
998 }
999 else
1000 gold_unreachable();
1001 }
1002
1003 // Print for debugging.
1004
1005 void
1006 Symbol_assignment::print(FILE* f) const
1007 {
1008 if (this->provide_ && this->hidden_)
1009 fprintf(f, "PROVIDE_HIDDEN(");
1010 else if (this->provide_)
1011 fprintf(f, "PROVIDE(");
1012 else if (this->hidden_)
1013 gold_unreachable();
1014
1015 fprintf(f, "%s = ", this->name_.c_str());
1016 this->val_->print(f);
1017
1018 if (this->provide_ || this->hidden_)
1019 fprintf(f, ")");
1020
1021 fprintf(f, "\n");
1022 }
1023
1024 // Class Script_assertion.
1025
1026 // Check the assertion.
1027
1028 void
1029 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1030 {
1031 if (!this->check_->eval(symtab, layout, true))
1032 gold_error("%s", this->message_.c_str());
1033 }
1034
1035 // Print for debugging.
1036
1037 void
1038 Script_assertion::print(FILE* f) const
1039 {
1040 fprintf(f, "ASSERT(");
1041 this->check_->print(f);
1042 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1043 }
1044
1045 // Class Script_options.
1046
1047 Script_options::Script_options()
1048 : entry_(), symbol_assignments_(), version_script_info_(),
1049 script_sections_()
1050 {
1051 }
1052
1053 // Add a symbol to be defined.
1054
1055 void
1056 Script_options::add_symbol_assignment(const char* name, size_t length,
1057 bool is_defsym, Expression* value,
1058 bool provide, bool hidden)
1059 {
1060 if (length != 1 || name[0] != '.')
1061 {
1062 if (this->script_sections_.in_sections_clause())
1063 {
1064 gold_assert(!is_defsym);
1065 this->script_sections_.add_symbol_assignment(name, length, value,
1066 provide, hidden);
1067 }
1068 else
1069 {
1070 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1071 value, provide, hidden);
1072 this->symbol_assignments_.push_back(p);
1073 }
1074 }
1075 else
1076 {
1077 if (provide || hidden)
1078 gold_error(_("invalid use of PROVIDE for dot symbol"));
1079
1080 // The GNU linker permits assignments to dot outside of SECTIONS
1081 // clauses and treats them as occurring inside, so we don't
1082 // check in_sections_clause here.
1083 this->script_sections_.add_dot_assignment(value);
1084 }
1085 }
1086
1087 // Add an assertion.
1088
1089 void
1090 Script_options::add_assertion(Expression* check, const char* message,
1091 size_t messagelen)
1092 {
1093 if (this->script_sections_.in_sections_clause())
1094 this->script_sections_.add_assertion(check, message, messagelen);
1095 else
1096 {
1097 Script_assertion* p = new Script_assertion(check, message, messagelen);
1098 this->assertions_.push_back(p);
1099 }
1100 }
1101
1102 // Create sections required by any linker scripts.
1103
1104 void
1105 Script_options::create_script_sections(Layout* layout)
1106 {
1107 if (this->saw_sections_clause())
1108 this->script_sections_.create_sections(layout);
1109 }
1110
1111 // Add any symbols we are defining to the symbol table.
1112
1113 void
1114 Script_options::add_symbols_to_table(Symbol_table* symtab)
1115 {
1116 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1117 p != this->symbol_assignments_.end();
1118 ++p)
1119 (*p)->add_to_table(symtab);
1120 this->script_sections_.add_symbols_to_table(symtab);
1121 }
1122
1123 // Finalize symbol values. Also check assertions.
1124
1125 void
1126 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1127 {
1128 // We finalize the symbols defined in SECTIONS first, because they
1129 // are the ones which may have changed. This way if symbol outside
1130 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1131 // will get the right value.
1132 this->script_sections_.finalize_symbols(symtab, layout);
1133
1134 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1135 p != this->symbol_assignments_.end();
1136 ++p)
1137 (*p)->finalize(symtab, layout);
1138
1139 for (Assertions::iterator p = this->assertions_.begin();
1140 p != this->assertions_.end();
1141 ++p)
1142 (*p)->check(symtab, layout);
1143 }
1144
1145 // Set section addresses. We set all the symbols which have absolute
1146 // values. Then we let the SECTIONS clause do its thing. This
1147 // returns the segment which holds the file header and segment
1148 // headers, if any.
1149
1150 Output_segment*
1151 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1152 {
1153 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1154 p != this->symbol_assignments_.end();
1155 ++p)
1156 (*p)->set_if_absolute(symtab, layout, false, 0);
1157
1158 return this->script_sections_.set_section_addresses(symtab, layout);
1159 }
1160
1161 // This class holds data passed through the parser to the lexer and to
1162 // the parser support functions. This avoids global variables. We
1163 // can't use global variables because we need not be called by a
1164 // singleton thread.
1165
1166 class Parser_closure
1167 {
1168 public:
1169 Parser_closure(const char* filename,
1170 const Position_dependent_options& posdep_options,
1171 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1172 Command_line* command_line,
1173 Script_options* script_options,
1174 Lex* lex,
1175 bool skip_on_incompatible_target)
1176 : filename_(filename), posdep_options_(posdep_options),
1177 parsing_defsym_(parsing_defsym), in_group_(in_group),
1178 is_in_sysroot_(is_in_sysroot),
1179 skip_on_incompatible_target_(skip_on_incompatible_target),
1180 found_incompatible_target_(false),
1181 command_line_(command_line), script_options_(script_options),
1182 version_script_info_(script_options->version_script_info()),
1183 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1184 {
1185 // We start out processing C symbols in the default lex mode.
1186 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1187 this->lex_mode_stack_.push_back(lex->mode());
1188 }
1189
1190 // Return the file name.
1191 const char*
1192 filename() const
1193 { return this->filename_; }
1194
1195 // Return the position dependent options. The caller may modify
1196 // this.
1197 Position_dependent_options&
1198 position_dependent_options()
1199 { return this->posdep_options_; }
1200
1201 // Whether we are parsing a --defsym.
1202 bool
1203 parsing_defsym() const
1204 { return this->parsing_defsym_; }
1205
1206 // Return whether this script is being run in a group.
1207 bool
1208 in_group() const
1209 { return this->in_group_; }
1210
1211 // Return whether this script was found using a directory in the
1212 // sysroot.
1213 bool
1214 is_in_sysroot() const
1215 { return this->is_in_sysroot_; }
1216
1217 // Whether to skip to the next file with the same name if we find an
1218 // incompatible target in an OUTPUT_FORMAT statement.
1219 bool
1220 skip_on_incompatible_target() const
1221 { return this->skip_on_incompatible_target_; }
1222
1223 // Stop skipping to the next file on an incompatible target. This
1224 // is called when we make some unrevocable change to the data
1225 // structures.
1226 void
1227 clear_skip_on_incompatible_target()
1228 { this->skip_on_incompatible_target_ = false; }
1229
1230 // Whether we found an incompatible target in an OUTPUT_FORMAT
1231 // statement.
1232 bool
1233 found_incompatible_target() const
1234 { return this->found_incompatible_target_; }
1235
1236 // Note that we found an incompatible target.
1237 void
1238 set_found_incompatible_target()
1239 { this->found_incompatible_target_ = true; }
1240
1241 // Returns the Command_line structure passed in at constructor time.
1242 // This value may be NULL. The caller may modify this, which modifies
1243 // the passed-in Command_line object (not a copy).
1244 Command_line*
1245 command_line()
1246 { return this->command_line_; }
1247
1248 // Return the options which may be set by a script.
1249 Script_options*
1250 script_options()
1251 { return this->script_options_; }
1252
1253 // Return the object in which version script information should be stored.
1254 Version_script_info*
1255 version_script()
1256 { return this->version_script_info_; }
1257
1258 // Return the next token, and advance.
1259 const Token*
1260 next_token()
1261 {
1262 const Token* token = this->lex_->next_token();
1263 this->lineno_ = token->lineno();
1264 this->charpos_ = token->charpos();
1265 return token;
1266 }
1267
1268 // Set a new lexer mode, pushing the current one.
1269 void
1270 push_lex_mode(Lex::Mode mode)
1271 {
1272 this->lex_mode_stack_.push_back(this->lex_->mode());
1273 this->lex_->set_mode(mode);
1274 }
1275
1276 // Pop the lexer mode.
1277 void
1278 pop_lex_mode()
1279 {
1280 gold_assert(!this->lex_mode_stack_.empty());
1281 this->lex_->set_mode(this->lex_mode_stack_.back());
1282 this->lex_mode_stack_.pop_back();
1283 }
1284
1285 // Return the current lexer mode.
1286 Lex::Mode
1287 lex_mode() const
1288 { return this->lex_mode_stack_.back(); }
1289
1290 // Return the line number of the last token.
1291 int
1292 lineno() const
1293 { return this->lineno_; }
1294
1295 // Return the character position in the line of the last token.
1296 int
1297 charpos() const
1298 { return this->charpos_; }
1299
1300 // Return the list of input files, creating it if necessary. This
1301 // is a space leak--we never free the INPUTS_ pointer.
1302 Input_arguments*
1303 inputs()
1304 {
1305 if (this->inputs_ == NULL)
1306 this->inputs_ = new Input_arguments();
1307 return this->inputs_;
1308 }
1309
1310 // Return whether we saw any input files.
1311 bool
1312 saw_inputs() const
1313 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1314
1315 // Return the current language being processed in a version script
1316 // (eg, "C++"). The empty string represents unmangled C names.
1317 Version_script_info::Language
1318 get_current_language() const
1319 { return this->language_stack_.back(); }
1320
1321 // Push a language onto the stack when entering an extern block.
1322 void
1323 push_language(Version_script_info::Language lang)
1324 { this->language_stack_.push_back(lang); }
1325
1326 // Pop a language off of the stack when exiting an extern block.
1327 void
1328 pop_language()
1329 {
1330 gold_assert(!this->language_stack_.empty());
1331 this->language_stack_.pop_back();
1332 }
1333
1334 private:
1335 // The name of the file we are reading.
1336 const char* filename_;
1337 // The position dependent options.
1338 Position_dependent_options posdep_options_;
1339 // True if we are parsing a --defsym.
1340 bool parsing_defsym_;
1341 // Whether we are currently in a --start-group/--end-group.
1342 bool in_group_;
1343 // Whether the script was found in a sysrooted directory.
1344 bool is_in_sysroot_;
1345 // If this is true, then if we find an OUTPUT_FORMAT with an
1346 // incompatible target, then we tell the parser to abort so that we
1347 // can search for the next file with the same name.
1348 bool skip_on_incompatible_target_;
1349 // True if we found an OUTPUT_FORMAT with an incompatible target.
1350 bool found_incompatible_target_;
1351 // May be NULL if the user chooses not to pass one in.
1352 Command_line* command_line_;
1353 // Options which may be set from any linker script.
1354 Script_options* script_options_;
1355 // Information parsed from a version script.
1356 Version_script_info* version_script_info_;
1357 // The lexer.
1358 Lex* lex_;
1359 // The line number of the last token returned by next_token.
1360 int lineno_;
1361 // The column number of the last token returned by next_token.
1362 int charpos_;
1363 // A stack of lexer modes.
1364 std::vector<Lex::Mode> lex_mode_stack_;
1365 // A stack of which extern/language block we're inside. Can be C++,
1366 // java, or empty for C.
1367 std::vector<Version_script_info::Language> language_stack_;
1368 // New input files found to add to the link.
1369 Input_arguments* inputs_;
1370 };
1371
1372 // FILE was found as an argument on the command line. Try to read it
1373 // as a script. Return true if the file was handled.
1374
1375 bool
1376 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1377 Dirsearch* dirsearch, int dirindex,
1378 Input_objects* input_objects, Mapfile* mapfile,
1379 Input_group* input_group,
1380 const Input_argument* input_argument,
1381 Input_file* input_file, Task_token* next_blocker,
1382 bool* used_next_blocker)
1383 {
1384 *used_next_blocker = false;
1385
1386 std::string input_string;
1387 Lex::read_file(input_file, &input_string);
1388
1389 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1390
1391 Parser_closure closure(input_file->filename().c_str(),
1392 input_argument->file().options(),
1393 false,
1394 input_group != NULL,
1395 input_file->is_in_sysroot(),
1396 NULL,
1397 layout->script_options(),
1398 &lex,
1399 input_file->will_search_for());
1400
1401 bool old_saw_sections_clause =
1402 layout->script_options()->saw_sections_clause();
1403
1404 if (yyparse(&closure) != 0)
1405 {
1406 if (closure.found_incompatible_target())
1407 {
1408 Read_symbols::incompatible_warning(input_argument, input_file);
1409 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1410 dirsearch, dirindex, mapfile, input_argument,
1411 input_group, next_blocker);
1412 return true;
1413 }
1414 return false;
1415 }
1416
1417 if (!old_saw_sections_clause
1418 && layout->script_options()->saw_sections_clause()
1419 && layout->have_added_input_section())
1420 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1421 input_file->filename().c_str());
1422
1423 if (!closure.saw_inputs())
1424 return true;
1425
1426 Task_token* this_blocker = NULL;
1427 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1428 p != closure.inputs()->end();
1429 ++p)
1430 {
1431 Task_token* nb;
1432 if (p + 1 == closure.inputs()->end())
1433 nb = next_blocker;
1434 else
1435 {
1436 nb = new Task_token(true);
1437 nb->add_blocker();
1438 }
1439 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1440 layout, dirsearch, 0, mapfile, &*p,
1441 input_group, this_blocker, nb));
1442 this_blocker = nb;
1443 }
1444
1445 if (layout->incremental_inputs())
1446 {
1447 // Like new Read_symbols(...) above, we rely on close.inputs()
1448 // getting leaked by closure.
1449 Script_info* info = new Script_info(closure.inputs());
1450 layout->incremental_inputs()->report_script(
1451 input_argument,
1452 input_file->file().get_mtime(),
1453 info);
1454 }
1455 *used_next_blocker = true;
1456
1457 return true;
1458 }
1459
1460 // Helper function for read_version_script() and
1461 // read_commandline_script(). Processes the given file in the mode
1462 // indicated by first_token and lex_mode.
1463
1464 static bool
1465 read_script_file(const char* filename, Command_line* cmdline,
1466 Script_options* script_options,
1467 int first_token, Lex::Mode lex_mode)
1468 {
1469 // TODO: if filename is a relative filename, search for it manually
1470 // using "." + cmdline->options()->search_path() -- not dirsearch.
1471 Dirsearch dirsearch;
1472
1473 // The file locking code wants to record a Task, but we haven't
1474 // started the workqueue yet. This is only for debugging purposes,
1475 // so we invent a fake value.
1476 const Task* task = reinterpret_cast<const Task*>(-1);
1477
1478 // We don't want this file to be opened in binary mode.
1479 Position_dependent_options posdep = cmdline->position_dependent_options();
1480 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1481 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1482 Input_file_argument input_argument(filename,
1483 Input_file_argument::INPUT_FILE_TYPE_FILE,
1484 "", false, posdep);
1485 Input_file input_file(&input_argument);
1486 int dummy = 0;
1487 if (!input_file.open(dirsearch, task, &dummy))
1488 return false;
1489
1490 std::string input_string;
1491 Lex::read_file(&input_file, &input_string);
1492
1493 Lex lex(input_string.c_str(), input_string.length(), first_token);
1494 lex.set_mode(lex_mode);
1495
1496 Parser_closure closure(filename,
1497 cmdline->position_dependent_options(),
1498 first_token == Lex::DYNAMIC_LIST,
1499 false,
1500 input_file.is_in_sysroot(),
1501 cmdline,
1502 script_options,
1503 &lex,
1504 false);
1505 if (yyparse(&closure) != 0)
1506 {
1507 input_file.file().unlock(task);
1508 return false;
1509 }
1510
1511 input_file.file().unlock(task);
1512
1513 gold_assert(!closure.saw_inputs());
1514
1515 return true;
1516 }
1517
1518 // FILENAME was found as an argument to --script (-T).
1519 // Read it as a script, and execute its contents immediately.
1520
1521 bool
1522 read_commandline_script(const char* filename, Command_line* cmdline)
1523 {
1524 return read_script_file(filename, cmdline, &cmdline->script_options(),
1525 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1526 }
1527
1528 // FILENAME was found as an argument to --version-script. Read it as
1529 // a version script, and store its contents in
1530 // cmdline->script_options()->version_script_info().
1531
1532 bool
1533 read_version_script(const char* filename, Command_line* cmdline)
1534 {
1535 return read_script_file(filename, cmdline, &cmdline->script_options(),
1536 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1537 }
1538
1539 // FILENAME was found as an argument to --dynamic-list. Read it as a
1540 // list of symbols, and store its contents in DYNAMIC_LIST.
1541
1542 bool
1543 read_dynamic_list(const char* filename, Command_line* cmdline,
1544 Script_options* dynamic_list)
1545 {
1546 return read_script_file(filename, cmdline, dynamic_list,
1547 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1548 }
1549
1550 // Implement the --defsym option on the command line. Return true if
1551 // all is well.
1552
1553 bool
1554 Script_options::define_symbol(const char* definition)
1555 {
1556 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1557 lex.set_mode(Lex::EXPRESSION);
1558
1559 // Dummy value.
1560 Position_dependent_options posdep_options;
1561
1562 Parser_closure closure("command line", posdep_options, true,
1563 false, false, NULL, this, &lex, false);
1564
1565 if (yyparse(&closure) != 0)
1566 return false;
1567
1568 gold_assert(!closure.saw_inputs());
1569
1570 return true;
1571 }
1572
1573 // Print the script to F for debugging.
1574
1575 void
1576 Script_options::print(FILE* f) const
1577 {
1578 fprintf(f, "%s: Dumping linker script\n", program_name);
1579
1580 if (!this->entry_.empty())
1581 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1582
1583 for (Symbol_assignments::const_iterator p =
1584 this->symbol_assignments_.begin();
1585 p != this->symbol_assignments_.end();
1586 ++p)
1587 (*p)->print(f);
1588
1589 for (Assertions::const_iterator p = this->assertions_.begin();
1590 p != this->assertions_.end();
1591 ++p)
1592 (*p)->print(f);
1593
1594 this->script_sections_.print(f);
1595
1596 this->version_script_info_.print(f);
1597 }
1598
1599 // Manage mapping from keywords to the codes expected by the bison
1600 // parser. We construct one global object for each lex mode with
1601 // keywords.
1602
1603 class Keyword_to_parsecode
1604 {
1605 public:
1606 // The structure which maps keywords to parsecodes.
1607 struct Keyword_parsecode
1608 {
1609 // Keyword.
1610 const char* keyword;
1611 // Corresponding parsecode.
1612 int parsecode;
1613 };
1614
1615 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1616 int keyword_count)
1617 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1618 { }
1619
1620 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1621 // keyword.
1622 int
1623 keyword_to_parsecode(const char* keyword, size_t len) const;
1624
1625 private:
1626 const Keyword_parsecode* keyword_parsecodes_;
1627 const int keyword_count_;
1628 };
1629
1630 // Mapping from keyword string to keyword parsecode. This array must
1631 // be kept in sorted order. Parsecodes are looked up using bsearch.
1632 // This array must correspond to the list of parsecodes in yyscript.y.
1633
1634 static const Keyword_to_parsecode::Keyword_parsecode
1635 script_keyword_parsecodes[] =
1636 {
1637 { "ABSOLUTE", ABSOLUTE },
1638 { "ADDR", ADDR },
1639 { "ALIGN", ALIGN_K },
1640 { "ALIGNOF", ALIGNOF },
1641 { "ASSERT", ASSERT_K },
1642 { "AS_NEEDED", AS_NEEDED },
1643 { "AT", AT },
1644 { "BIND", BIND },
1645 { "BLOCK", BLOCK },
1646 { "BYTE", BYTE },
1647 { "CONSTANT", CONSTANT },
1648 { "CONSTRUCTORS", CONSTRUCTORS },
1649 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1650 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1651 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1652 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1653 { "DEFINED", DEFINED },
1654 { "ENTRY", ENTRY },
1655 { "EXCLUDE_FILE", EXCLUDE_FILE },
1656 { "EXTERN", EXTERN },
1657 { "FILL", FILL },
1658 { "FLOAT", FLOAT },
1659 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1660 { "GROUP", GROUP },
1661 { "HLL", HLL },
1662 { "INCLUDE", INCLUDE },
1663 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1664 { "INPUT", INPUT },
1665 { "KEEP", KEEP },
1666 { "LENGTH", LENGTH },
1667 { "LOADADDR", LOADADDR },
1668 { "LONG", LONG },
1669 { "MAP", MAP },
1670 { "MAX", MAX_K },
1671 { "MEMORY", MEMORY },
1672 { "MIN", MIN_K },
1673 { "NEXT", NEXT },
1674 { "NOCROSSREFS", NOCROSSREFS },
1675 { "NOFLOAT", NOFLOAT },
1676 { "ONLY_IF_RO", ONLY_IF_RO },
1677 { "ONLY_IF_RW", ONLY_IF_RW },
1678 { "OPTION", OPTION },
1679 { "ORIGIN", ORIGIN },
1680 { "OUTPUT", OUTPUT },
1681 { "OUTPUT_ARCH", OUTPUT_ARCH },
1682 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1683 { "OVERLAY", OVERLAY },
1684 { "PHDRS", PHDRS },
1685 { "PROVIDE", PROVIDE },
1686 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1687 { "QUAD", QUAD },
1688 { "SEARCH_DIR", SEARCH_DIR },
1689 { "SECTIONS", SECTIONS },
1690 { "SEGMENT_START", SEGMENT_START },
1691 { "SHORT", SHORT },
1692 { "SIZEOF", SIZEOF },
1693 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1694 { "SORT", SORT_BY_NAME },
1695 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1696 { "SORT_BY_NAME", SORT_BY_NAME },
1697 { "SPECIAL", SPECIAL },
1698 { "SQUAD", SQUAD },
1699 { "STARTUP", STARTUP },
1700 { "SUBALIGN", SUBALIGN },
1701 { "SYSLIB", SYSLIB },
1702 { "TARGET", TARGET_K },
1703 { "TRUNCATE", TRUNCATE },
1704 { "VERSION", VERSIONK },
1705 { "global", GLOBAL },
1706 { "l", LENGTH },
1707 { "len", LENGTH },
1708 { "local", LOCAL },
1709 { "o", ORIGIN },
1710 { "org", ORIGIN },
1711 { "sizeof_headers", SIZEOF_HEADERS },
1712 };
1713
1714 static const Keyword_to_parsecode
1715 script_keywords(&script_keyword_parsecodes[0],
1716 (sizeof(script_keyword_parsecodes)
1717 / sizeof(script_keyword_parsecodes[0])));
1718
1719 static const Keyword_to_parsecode::Keyword_parsecode
1720 version_script_keyword_parsecodes[] =
1721 {
1722 { "extern", EXTERN },
1723 { "global", GLOBAL },
1724 { "local", LOCAL },
1725 };
1726
1727 static const Keyword_to_parsecode
1728 version_script_keywords(&version_script_keyword_parsecodes[0],
1729 (sizeof(version_script_keyword_parsecodes)
1730 / sizeof(version_script_keyword_parsecodes[0])));
1731
1732 static const Keyword_to_parsecode::Keyword_parsecode
1733 dynamic_list_keyword_parsecodes[] =
1734 {
1735 { "extern", EXTERN },
1736 };
1737
1738 static const Keyword_to_parsecode
1739 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1740 (sizeof(dynamic_list_keyword_parsecodes)
1741 / sizeof(dynamic_list_keyword_parsecodes[0])));
1742
1743
1744
1745 // Comparison function passed to bsearch.
1746
1747 extern "C"
1748 {
1749
1750 struct Ktt_key
1751 {
1752 const char* str;
1753 size_t len;
1754 };
1755
1756 static int
1757 ktt_compare(const void* keyv, const void* kttv)
1758 {
1759 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1760 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1761 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1762 int i = strncmp(key->str, ktt->keyword, key->len);
1763 if (i != 0)
1764 return i;
1765 if (ktt->keyword[key->len] != '\0')
1766 return -1;
1767 return 0;
1768 }
1769
1770 } // End extern "C".
1771
1772 int
1773 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1774 size_t len) const
1775 {
1776 Ktt_key key;
1777 key.str = keyword;
1778 key.len = len;
1779 void* kttv = bsearch(&key,
1780 this->keyword_parsecodes_,
1781 this->keyword_count_,
1782 sizeof(this->keyword_parsecodes_[0]),
1783 ktt_compare);
1784 if (kttv == NULL)
1785 return 0;
1786 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1787 return ktt->parsecode;
1788 }
1789
1790 // The following structs are used within the VersionInfo class as well
1791 // as in the bison helper functions. They store the information
1792 // parsed from the version script.
1793
1794 // A single version expression.
1795 // For example, pattern="std::map*" and language="C++".
1796 struct Version_expression
1797 {
1798 Version_expression(const std::string& a_pattern,
1799 Version_script_info::Language a_language,
1800 bool a_exact_match)
1801 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1802 was_matched_by_symbol(false)
1803 { }
1804
1805 std::string pattern;
1806 Version_script_info::Language language;
1807 // If false, we use glob() to match pattern. If true, we use strcmp().
1808 bool exact_match;
1809 // True if --no-undefined-version is in effect and we found this
1810 // version in get_symbol_version. We use mutable because this
1811 // struct is generally not modifiable after it has been created.
1812 mutable bool was_matched_by_symbol;
1813 };
1814
1815 // A list of expressions.
1816 struct Version_expression_list
1817 {
1818 std::vector<struct Version_expression> expressions;
1819 };
1820
1821 // A list of which versions upon which another version depends.
1822 // Strings should be from the Stringpool.
1823 struct Version_dependency_list
1824 {
1825 std::vector<std::string> dependencies;
1826 };
1827
1828 // The total definition of a version. It includes the tag for the
1829 // version, its global and local expressions, and any dependencies.
1830 struct Version_tree
1831 {
1832 Version_tree()
1833 : tag(), global(NULL), local(NULL), dependencies(NULL)
1834 { }
1835
1836 std::string tag;
1837 const struct Version_expression_list* global;
1838 const struct Version_expression_list* local;
1839 const struct Version_dependency_list* dependencies;
1840 };
1841
1842 // Helper class that calls cplus_demangle when needed and takes care of freeing
1843 // the result.
1844
1845 class Lazy_demangler
1846 {
1847 public:
1848 Lazy_demangler(const char* symbol, int options)
1849 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1850 { }
1851
1852 ~Lazy_demangler()
1853 { free(this->demangled_); }
1854
1855 // Return the demangled name. The actual demangling happens on the first call,
1856 // and the result is later cached.
1857 inline char*
1858 get();
1859
1860 private:
1861 // The symbol to demangle.
1862 const char *symbol_;
1863 // Option flags to pass to cplus_demagle.
1864 const int options_;
1865 // The cached demangled value, or NULL if demangling didn't happen yet or
1866 // failed.
1867 char *demangled_;
1868 // Whether we already called cplus_demangle
1869 bool did_demangle_;
1870 };
1871
1872 // Return the demangled name. The actual demangling happens on the first call,
1873 // and the result is later cached. Returns NULL if the symbol cannot be
1874 // demangled.
1875
1876 inline char*
1877 Lazy_demangler::get()
1878 {
1879 if (!this->did_demangle_)
1880 {
1881 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1882 this->did_demangle_ = true;
1883 }
1884 return this->demangled_;
1885 }
1886
1887 // Class Version_script_info.
1888
1889 Version_script_info::Version_script_info()
1890 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1891 default_version_(NULL), default_is_global_(false), is_finalized_(false)
1892 {
1893 for (int i = 0; i < LANGUAGE_COUNT; ++i)
1894 this->exact_[i] = NULL;
1895 }
1896
1897 Version_script_info::~Version_script_info()
1898 {
1899 }
1900
1901 // Forget all the known version script information.
1902
1903 void
1904 Version_script_info::clear()
1905 {
1906 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
1907 delete this->dependency_lists_[k];
1908 this->dependency_lists_.clear();
1909 for (size_t k = 0; k < this->version_trees_.size(); ++k)
1910 delete this->version_trees_[k];
1911 this->version_trees_.clear();
1912 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
1913 delete this->expression_lists_[k];
1914 this->expression_lists_.clear();
1915 }
1916
1917 // Finalize the version script information.
1918
1919 void
1920 Version_script_info::finalize()
1921 {
1922 if (!this->is_finalized_)
1923 {
1924 this->build_lookup_tables();
1925 this->is_finalized_ = true;
1926 }
1927 }
1928
1929 // Return all the versions.
1930
1931 std::vector<std::string>
1932 Version_script_info::get_versions() const
1933 {
1934 std::vector<std::string> ret;
1935 for (size_t j = 0; j < this->version_trees_.size(); ++j)
1936 if (!this->version_trees_[j]->tag.empty())
1937 ret.push_back(this->version_trees_[j]->tag);
1938 return ret;
1939 }
1940
1941 // Return the dependencies of VERSION.
1942
1943 std::vector<std::string>
1944 Version_script_info::get_dependencies(const char* version) const
1945 {
1946 std::vector<std::string> ret;
1947 for (size_t j = 0; j < this->version_trees_.size(); ++j)
1948 if (this->version_trees_[j]->tag == version)
1949 {
1950 const struct Version_dependency_list* deps =
1951 this->version_trees_[j]->dependencies;
1952 if (deps != NULL)
1953 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1954 ret.push_back(deps->dependencies[k]);
1955 return ret;
1956 }
1957 return ret;
1958 }
1959
1960 // A version script essentially maps a symbol name to a version tag
1961 // and an indication of whether symbol is global or local within that
1962 // version tag. Each symbol maps to at most one version tag.
1963 // Unfortunately, in practice, version scripts are ambiguous, and list
1964 // symbols multiple times. Thus, we have to document the matching
1965 // process.
1966
1967 // This is a description of what the GNU linker does as of 2010-01-11.
1968 // It walks through the version tags in the order in which they appear
1969 // in the version script. For each tag, it first walks through the
1970 // global patterns for that tag, then the local patterns. When
1971 // looking at a single pattern, it first applies any language specific
1972 // demangling as specified for the pattern, and then matches the
1973 // resulting symbol name to the pattern. If it finds an exact match
1974 // for a literal pattern (a pattern enclosed in quotes or with no
1975 // wildcard characters), then that is the match that it uses. If
1976 // finds a match with a wildcard pattern, then it saves it and
1977 // continues searching. Wildcard patterns that are exactly "*" are
1978 // saved separately.
1979
1980 // If no exact match with a literal pattern is ever found, then if a
1981 // wildcard match with a global pattern was found it is used,
1982 // otherwise if a wildcard match with a local pattern was found it is
1983 // used.
1984
1985 // This is the result:
1986 // * If there is an exact match, then we use the first tag in the
1987 // version script where it matches.
1988 // + If the exact match in that tag is global, it is used.
1989 // + Otherwise the exact match in that tag is local, and is used.
1990 // * Otherwise, if there is any match with a global wildcard pattern:
1991 // + If there is any match with a wildcard pattern which is not
1992 // "*", then we use the tag in which the *last* such pattern
1993 // appears.
1994 // + Otherwise, we matched "*". If there is no match with a local
1995 // wildcard pattern which is not "*", then we use the *last*
1996 // match with a global "*". Otherwise, continue.
1997 // * Otherwise, if there is any match with a local wildcard pattern:
1998 // + If there is any match with a wildcard pattern which is not
1999 // "*", then we use the tag in which the *last* such pattern
2000 // appears.
2001 // + Otherwise, we matched "*", and we use the tag in which the
2002 // *last* such match occurred.
2003
2004 // There is an additional wrinkle. When the GNU linker finds a symbol
2005 // with a version defined in an object file due to a .symver
2006 // directive, it looks up that symbol name in that version tag. If it
2007 // finds it, it matches the symbol name against the patterns for that
2008 // version. If there is no match with a global pattern, but there is
2009 // a match with a local pattern, then the GNU linker marks the symbol
2010 // as local.
2011
2012 // We want gold to be generally compatible, but we also want gold to
2013 // be fast. These are the rules that gold implements:
2014 // * If there is an exact match for the mangled name, we use it.
2015 // + If there is more than one exact match, we give a warning, and
2016 // we use the first tag in the script which matches.
2017 // + If a symbol has an exact match as both global and local for
2018 // the same version tag, we give an error.
2019 // * Otherwise, we look for an extern C++ or an extern Java exact
2020 // match. If we find an exact match, we use it.
2021 // + If there is more than one exact match, we give a warning, and
2022 // we use the first tag in the script which matches.
2023 // + If a symbol has an exact match as both global and local for
2024 // the same version tag, we give an error.
2025 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2026 // patterns. We look through the version tags in reverse order.
2027 // For each version tag, we look through the global patterns and
2028 // then the local patterns. We use the first match we find (i.e.,
2029 // the last matching version tag in the file).
2030 // * Otherwise, we use the "*" pattern if there is one. We give an
2031 // error if there are multiple "*" patterns.
2032
2033 // At least for now, gold does not look up the version tag for a
2034 // symbol version found in an object file to see if it should be
2035 // forced local. There are other ways to force a symbol to be local,
2036 // and I don't understand why this one is useful.
2037
2038 // Build a set of fast lookup tables for a version script.
2039
2040 void
2041 Version_script_info::build_lookup_tables()
2042 {
2043 size_t size = this->version_trees_.size();
2044 for (size_t j = 0; j < size; ++j)
2045 {
2046 const Version_tree* v = this->version_trees_[j];
2047 this->build_expression_list_lookup(v->local, v, false);
2048 this->build_expression_list_lookup(v->global, v, true);
2049 }
2050 }
2051
2052 // If a pattern has backlashes but no unquoted wildcard characters,
2053 // then we apply backslash unquoting and look for an exact match.
2054 // Otherwise we treat it as a wildcard pattern. This function returns
2055 // true for a wildcard pattern. Otherwise, it does backslash
2056 // unquoting on *PATTERN and returns false. If this returns true,
2057 // *PATTERN may have been partially unquoted.
2058
2059 bool
2060 Version_script_info::unquote(std::string* pattern) const
2061 {
2062 bool saw_backslash = false;
2063 size_t len = pattern->length();
2064 size_t j = 0;
2065 for (size_t i = 0; i < len; ++i)
2066 {
2067 if (saw_backslash)
2068 saw_backslash = false;
2069 else
2070 {
2071 switch ((*pattern)[i])
2072 {
2073 case '?': case '[': case '*':
2074 return true;
2075 case '\\':
2076 saw_backslash = true;
2077 continue;
2078 default:
2079 break;
2080 }
2081 }
2082
2083 if (i != j)
2084 (*pattern)[j] = (*pattern)[i];
2085 ++j;
2086 }
2087 return false;
2088 }
2089
2090 // Add an exact match for MATCH to *PE. The result of the match is
2091 // V/IS_GLOBAL.
2092
2093 void
2094 Version_script_info::add_exact_match(const std::string& match,
2095 const Version_tree* v, bool is_global,
2096 const Version_expression* ve,
2097 Exact *pe)
2098 {
2099 std::pair<Exact::iterator, bool> ins =
2100 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2101 if (ins.second)
2102 {
2103 // This is the first time we have seen this match.
2104 return;
2105 }
2106
2107 Version_tree_match& vtm(ins.first->second);
2108 if (vtm.real->tag != v->tag)
2109 {
2110 // This is an ambiguous match. We still return the
2111 // first version that we found in the script, but we
2112 // record the new version to issue a warning if we
2113 // wind up looking up this symbol.
2114 if (vtm.ambiguous == NULL)
2115 vtm.ambiguous = v;
2116 }
2117 else if (is_global != vtm.is_global)
2118 {
2119 // We have a match for both the global and local entries for a
2120 // version tag. That's got to be wrong.
2121 gold_error(_("'%s' appears as both a global and a local symbol "
2122 "for version '%s' in script"),
2123 match.c_str(), v->tag.c_str());
2124 }
2125 }
2126
2127 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2128 // All matches go to V, and IS_GLOBAL is true if they are global
2129 // matches.
2130
2131 void
2132 Version_script_info::build_expression_list_lookup(
2133 const Version_expression_list* explist,
2134 const Version_tree* v,
2135 bool is_global)
2136 {
2137 if (explist == NULL)
2138 return;
2139 size_t size = explist->expressions.size();
2140 for (size_t i = 0; i < size; ++i)
2141 {
2142 const Version_expression& exp(explist->expressions[i]);
2143
2144 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2145 {
2146 if (this->default_version_ != NULL
2147 && this->default_version_->tag != v->tag)
2148 gold_error(_("wildcard match appears in both version '%s' "
2149 "and '%s' in script"),
2150 this->default_version_->tag.c_str(), v->tag.c_str());
2151 else if (this->default_version_ != NULL
2152 && this->default_is_global_ != is_global)
2153 gold_error(_("wildcard match appears as both global and local "
2154 "in version '%s' in script"),
2155 v->tag.c_str());
2156 this->default_version_ = v;
2157 this->default_is_global_ = is_global;
2158 continue;
2159 }
2160
2161 std::string pattern = exp.pattern;
2162 if (!exp.exact_match)
2163 {
2164 if (this->unquote(&pattern))
2165 {
2166 this->globs_.push_back(Glob(&exp, v, is_global));
2167 continue;
2168 }
2169 }
2170
2171 if (this->exact_[exp.language] == NULL)
2172 this->exact_[exp.language] = new Exact();
2173 this->add_exact_match(pattern, v, is_global, &exp,
2174 this->exact_[exp.language]);
2175 }
2176 }
2177
2178 // Return the name to match given a name, a language code, and two
2179 // lazy demanglers.
2180
2181 const char*
2182 Version_script_info::get_name_to_match(const char* name,
2183 int language,
2184 Lazy_demangler* cpp_demangler,
2185 Lazy_demangler* java_demangler) const
2186 {
2187 switch (language)
2188 {
2189 case LANGUAGE_C:
2190 return name;
2191 case LANGUAGE_CXX:
2192 return cpp_demangler->get();
2193 case LANGUAGE_JAVA:
2194 return java_demangler->get();
2195 default:
2196 gold_unreachable();
2197 }
2198 }
2199
2200 // Look up SYMBOL_NAME in the list of versions. Return true if the
2201 // symbol is found, false if not. If the symbol is found, then if
2202 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2203 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2204 // symbol is global or not.
2205
2206 bool
2207 Version_script_info::get_symbol_version(const char* symbol_name,
2208 std::string* pversion,
2209 bool* p_is_global) const
2210 {
2211 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2212 Lazy_demangler java_demangled_name(symbol_name,
2213 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2214
2215 gold_assert(this->is_finalized_);
2216 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2217 {
2218 Exact* exact = this->exact_[i];
2219 if (exact == NULL)
2220 continue;
2221
2222 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2223 &cpp_demangled_name,
2224 &java_demangled_name);
2225 if (name_to_match == NULL)
2226 {
2227 // If the name can not be demangled, the GNU linker goes
2228 // ahead and tries to match it anyhow. That does not
2229 // make sense to me and I have not implemented it.
2230 continue;
2231 }
2232
2233 Exact::const_iterator pe = exact->find(name_to_match);
2234 if (pe != exact->end())
2235 {
2236 const Version_tree_match& vtm(pe->second);
2237 if (vtm.ambiguous != NULL)
2238 gold_warning(_("using '%s' as version for '%s' which is also "
2239 "named in version '%s' in script"),
2240 vtm.real->tag.c_str(), name_to_match,
2241 vtm.ambiguous->tag.c_str());
2242
2243 if (pversion != NULL)
2244 *pversion = vtm.real->tag;
2245 if (p_is_global != NULL)
2246 *p_is_global = vtm.is_global;
2247
2248 // If we are using --no-undefined-version, and this is a
2249 // global symbol, we have to record that we have found this
2250 // symbol, so that we don't warn about it. We have to do
2251 // this now, because otherwise we have no way to get from a
2252 // non-C language back to the demangled name that we
2253 // matched.
2254 if (p_is_global != NULL && vtm.is_global)
2255 vtm.expression->was_matched_by_symbol = true;
2256
2257 return true;
2258 }
2259 }
2260
2261 // Look through the glob patterns in reverse order.
2262
2263 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2264 p != this->globs_.rend();
2265 ++p)
2266 {
2267 int language = p->expression->language;
2268 const char* name_to_match = this->get_name_to_match(symbol_name,
2269 language,
2270 &cpp_demangled_name,
2271 &java_demangled_name);
2272 if (name_to_match == NULL)
2273 continue;
2274
2275 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2276 FNM_NOESCAPE) == 0)
2277 {
2278 if (pversion != NULL)
2279 *pversion = p->version->tag;
2280 if (p_is_global != NULL)
2281 *p_is_global = p->is_global;
2282 return true;
2283 }
2284 }
2285
2286 // Finally, there may be a wildcard.
2287 if (this->default_version_ != NULL)
2288 {
2289 if (pversion != NULL)
2290 *pversion = this->default_version_->tag;
2291 if (p_is_global != NULL)
2292 *p_is_global = this->default_is_global_;
2293 return true;
2294 }
2295
2296 return false;
2297 }
2298
2299 // Give an error if any exact symbol names (not wildcards) appear in a
2300 // version script, but there is no such symbol.
2301
2302 void
2303 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2304 {
2305 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2306 {
2307 const Version_tree* vt = this->version_trees_[i];
2308 if (vt->global == NULL)
2309 continue;
2310 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2311 {
2312 const Version_expression& expression(vt->global->expressions[j]);
2313
2314 // Ignore cases where we used the version because we saw a
2315 // symbol that we looked up. Note that
2316 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2317 // not a definition. That's OK as in that case we most
2318 // likely gave an undefined symbol error anyhow.
2319 if (expression.was_matched_by_symbol)
2320 continue;
2321
2322 // Just ignore names which are in languages other than C.
2323 // We have no way to look them up in the symbol table.
2324 if (expression.language != LANGUAGE_C)
2325 continue;
2326
2327 // Remove backslash quoting, and ignore wildcard patterns.
2328 std::string pattern = expression.pattern;
2329 if (!expression.exact_match)
2330 {
2331 if (this->unquote(&pattern))
2332 continue;
2333 }
2334
2335 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2336 gold_error(_("version script assignment of %s to symbol %s "
2337 "failed: symbol not defined"),
2338 vt->tag.c_str(), pattern.c_str());
2339 }
2340 }
2341 }
2342
2343 struct Version_dependency_list*
2344 Version_script_info::allocate_dependency_list()
2345 {
2346 dependency_lists_.push_back(new Version_dependency_list);
2347 return dependency_lists_.back();
2348 }
2349
2350 struct Version_expression_list*
2351 Version_script_info::allocate_expression_list()
2352 {
2353 expression_lists_.push_back(new Version_expression_list);
2354 return expression_lists_.back();
2355 }
2356
2357 struct Version_tree*
2358 Version_script_info::allocate_version_tree()
2359 {
2360 version_trees_.push_back(new Version_tree);
2361 return version_trees_.back();
2362 }
2363
2364 // Print for debugging.
2365
2366 void
2367 Version_script_info::print(FILE* f) const
2368 {
2369 if (this->empty())
2370 return;
2371
2372 fprintf(f, "VERSION {");
2373
2374 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2375 {
2376 const Version_tree* vt = this->version_trees_[i];
2377
2378 if (vt->tag.empty())
2379 fprintf(f, " {\n");
2380 else
2381 fprintf(f, " %s {\n", vt->tag.c_str());
2382
2383 if (vt->global != NULL)
2384 {
2385 fprintf(f, " global :\n");
2386 this->print_expression_list(f, vt->global);
2387 }
2388
2389 if (vt->local != NULL)
2390 {
2391 fprintf(f, " local :\n");
2392 this->print_expression_list(f, vt->local);
2393 }
2394
2395 fprintf(f, " }");
2396 if (vt->dependencies != NULL)
2397 {
2398 const Version_dependency_list* deps = vt->dependencies;
2399 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2400 {
2401 if (j < deps->dependencies.size() - 1)
2402 fprintf(f, "\n");
2403 fprintf(f, " %s", deps->dependencies[j].c_str());
2404 }
2405 }
2406 fprintf(f, ";\n");
2407 }
2408
2409 fprintf(f, "}\n");
2410 }
2411
2412 void
2413 Version_script_info::print_expression_list(
2414 FILE* f,
2415 const Version_expression_list* vel) const
2416 {
2417 Version_script_info::Language current_language = LANGUAGE_C;
2418 for (size_t i = 0; i < vel->expressions.size(); ++i)
2419 {
2420 const Version_expression& ve(vel->expressions[i]);
2421
2422 if (ve.language != current_language)
2423 {
2424 if (current_language != LANGUAGE_C)
2425 fprintf(f, " }\n");
2426 switch (ve.language)
2427 {
2428 case LANGUAGE_C:
2429 break;
2430 case LANGUAGE_CXX:
2431 fprintf(f, " extern \"C++\" {\n");
2432 break;
2433 case LANGUAGE_JAVA:
2434 fprintf(f, " extern \"Java\" {\n");
2435 break;
2436 default:
2437 gold_unreachable();
2438 }
2439 current_language = ve.language;
2440 }
2441
2442 fprintf(f, " ");
2443 if (current_language != LANGUAGE_C)
2444 fprintf(f, " ");
2445
2446 if (ve.exact_match)
2447 fprintf(f, "\"");
2448 fprintf(f, "%s", ve.pattern.c_str());
2449 if (ve.exact_match)
2450 fprintf(f, "\"");
2451
2452 fprintf(f, "\n");
2453 }
2454
2455 if (current_language != LANGUAGE_C)
2456 fprintf(f, " }\n");
2457 }
2458
2459 } // End namespace gold.
2460
2461 // The remaining functions are extern "C", so it's clearer to not put
2462 // them in namespace gold.
2463
2464 using namespace gold;
2465
2466 // This function is called by the bison parser to return the next
2467 // token.
2468
2469 extern "C" int
2470 yylex(YYSTYPE* lvalp, void* closurev)
2471 {
2472 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2473 const Token* token = closure->next_token();
2474 switch (token->classification())
2475 {
2476 default:
2477 gold_unreachable();
2478
2479 case Token::TOKEN_INVALID:
2480 yyerror(closurev, "invalid character");
2481 return 0;
2482
2483 case Token::TOKEN_EOF:
2484 return 0;
2485
2486 case Token::TOKEN_STRING:
2487 {
2488 // This is either a keyword or a STRING.
2489 size_t len;
2490 const char* str = token->string_value(&len);
2491 int parsecode = 0;
2492 switch (closure->lex_mode())
2493 {
2494 case Lex::LINKER_SCRIPT:
2495 parsecode = script_keywords.keyword_to_parsecode(str, len);
2496 break;
2497 case Lex::VERSION_SCRIPT:
2498 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2499 break;
2500 case Lex::DYNAMIC_LIST:
2501 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2502 break;
2503 default:
2504 break;
2505 }
2506 if (parsecode != 0)
2507 return parsecode;
2508 lvalp->string.value = str;
2509 lvalp->string.length = len;
2510 return STRING;
2511 }
2512
2513 case Token::TOKEN_QUOTED_STRING:
2514 lvalp->string.value = token->string_value(&lvalp->string.length);
2515 return QUOTED_STRING;
2516
2517 case Token::TOKEN_OPERATOR:
2518 return token->operator_value();
2519
2520 case Token::TOKEN_INTEGER:
2521 lvalp->integer = token->integer_value();
2522 return INTEGER;
2523 }
2524 }
2525
2526 // This function is called by the bison parser to report an error.
2527
2528 extern "C" void
2529 yyerror(void* closurev, const char* message)
2530 {
2531 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2532 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2533 closure->charpos(), message);
2534 }
2535
2536 // Called by the bison parser to add an external symbol to the link.
2537
2538 extern "C" void
2539 script_add_extern(void* closurev, const char* name, size_t length)
2540 {
2541 // We treat exactly like -u NAME. FIXME: If it seems useful, we
2542 // could handle this after the command line has been read, by adding
2543 // entries to the symbol table directly.
2544 std::string arg("--undefined=");
2545 arg.append(name, length);
2546 script_parse_option(closurev, arg.c_str(), arg.size());
2547 }
2548
2549 // Called by the bison parser to add a file to the link.
2550
2551 extern "C" void
2552 script_add_file(void* closurev, const char* name, size_t length)
2553 {
2554 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2555
2556 // If this is an absolute path, and we found the script in the
2557 // sysroot, then we want to prepend the sysroot to the file name.
2558 // For example, this is how we handle a cross link to the x86_64
2559 // libc.so, which refers to /lib/libc.so.6.
2560 std::string name_string(name, length);
2561 const char* extra_search_path = ".";
2562 std::string script_directory;
2563 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2564 {
2565 if (closure->is_in_sysroot())
2566 {
2567 const std::string& sysroot(parameters->options().sysroot());
2568 gold_assert(!sysroot.empty());
2569 name_string = sysroot + name_string;
2570 }
2571 }
2572 else
2573 {
2574 // In addition to checking the normal library search path, we
2575 // also want to check in the script-directory.
2576 const char *slash = strrchr(closure->filename(), '/');
2577 if (slash != NULL)
2578 {
2579 script_directory.assign(closure->filename(),
2580 slash - closure->filename() + 1);
2581 extra_search_path = script_directory.c_str();
2582 }
2583 }
2584
2585 Input_file_argument file(name_string.c_str(),
2586 Input_file_argument::INPUT_FILE_TYPE_FILE,
2587 extra_search_path, false,
2588 closure->position_dependent_options());
2589 closure->inputs()->add_file(file);
2590 }
2591
2592 // Called by the bison parser to start a group. If we are already in
2593 // a group, that means that this script was invoked within a
2594 // --start-group --end-group sequence on the command line, or that
2595 // this script was found in a GROUP of another script. In that case,
2596 // we simply continue the existing group, rather than starting a new
2597 // one. It is possible to construct a case in which this will do
2598 // something other than what would happen if we did a recursive group,
2599 // but it's hard to imagine why the different behaviour would be
2600 // useful for a real program. Avoiding recursive groups is simpler
2601 // and more efficient.
2602
2603 extern "C" void
2604 script_start_group(void* closurev)
2605 {
2606 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2607 if (!closure->in_group())
2608 closure->inputs()->start_group();
2609 }
2610
2611 // Called by the bison parser at the end of a group.
2612
2613 extern "C" void
2614 script_end_group(void* closurev)
2615 {
2616 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2617 if (!closure->in_group())
2618 closure->inputs()->end_group();
2619 }
2620
2621 // Called by the bison parser to start an AS_NEEDED list.
2622
2623 extern "C" void
2624 script_start_as_needed(void* closurev)
2625 {
2626 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2627 closure->position_dependent_options().set_as_needed(true);
2628 }
2629
2630 // Called by the bison parser at the end of an AS_NEEDED list.
2631
2632 extern "C" void
2633 script_end_as_needed(void* closurev)
2634 {
2635 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2636 closure->position_dependent_options().set_as_needed(false);
2637 }
2638
2639 // Called by the bison parser to set the entry symbol.
2640
2641 extern "C" void
2642 script_set_entry(void* closurev, const char* entry, size_t length)
2643 {
2644 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2645 // TODO(csilvers): FIXME -- call set_entry directly.
2646 std::string arg("--entry=");
2647 arg.append(entry, length);
2648 script_parse_option(closurev, arg.c_str(), arg.size());
2649 }
2650
2651 // Called by the bison parser to set whether to define common symbols.
2652
2653 extern "C" void
2654 script_set_common_allocation(void* closurev, int set)
2655 {
2656 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2657 script_parse_option(closurev, arg, strlen(arg));
2658 }
2659
2660 // Called by the bison parser to define a symbol.
2661
2662 extern "C" void
2663 script_set_symbol(void* closurev, const char* name, size_t length,
2664 Expression* value, int providei, int hiddeni)
2665 {
2666 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2667 const bool provide = providei != 0;
2668 const bool hidden = hiddeni != 0;
2669 closure->script_options()->add_symbol_assignment(name, length,
2670 closure->parsing_defsym(),
2671 value, provide, hidden);
2672 closure->clear_skip_on_incompatible_target();
2673 }
2674
2675 // Called by the bison parser to add an assertion.
2676
2677 extern "C" void
2678 script_add_assertion(void* closurev, Expression* check, const char* message,
2679 size_t messagelen)
2680 {
2681 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2682 closure->script_options()->add_assertion(check, message, messagelen);
2683 closure->clear_skip_on_incompatible_target();
2684 }
2685
2686 // Called by the bison parser to parse an OPTION.
2687
2688 extern "C" void
2689 script_parse_option(void* closurev, const char* option, size_t length)
2690 {
2691 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2692 // We treat the option as a single command-line option, even if
2693 // it has internal whitespace.
2694 if (closure->command_line() == NULL)
2695 {
2696 // There are some options that we could handle here--e.g.,
2697 // -lLIBRARY. Should we bother?
2698 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2699 " for scripts specified via -T/--script"),
2700 closure->filename(), closure->lineno(), closure->charpos());
2701 }
2702 else
2703 {
2704 bool past_a_double_dash_option = false;
2705 const char* mutable_option = strndup(option, length);
2706 gold_assert(mutable_option != NULL);
2707 closure->command_line()->process_one_option(1, &mutable_option, 0,
2708 &past_a_double_dash_option);
2709 // The General_options class will quite possibly store a pointer
2710 // into mutable_option, so we can't free it. In cases the class
2711 // does not store such a pointer, this is a memory leak. Alas. :(
2712 }
2713 closure->clear_skip_on_incompatible_target();
2714 }
2715
2716 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2717 // takes either one or three arguments. In the three argument case,
2718 // the format depends on the endianness option, which we don't
2719 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2720 // wrong format, then we want to search for a new file. Returning 0
2721 // here will cause the parser to immediately abort.
2722
2723 extern "C" int
2724 script_check_output_format(void* closurev,
2725 const char* default_name, size_t default_length,
2726 const char*, size_t, const char*, size_t)
2727 {
2728 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2729 std::string name(default_name, default_length);
2730 Target* target = select_target_by_name(name.c_str());
2731 if (target == NULL || !parameters->is_compatible_target(target))
2732 {
2733 if (closure->skip_on_incompatible_target())
2734 {
2735 closure->set_found_incompatible_target();
2736 return 0;
2737 }
2738 // FIXME: Should we warn about the unknown target?
2739 }
2740 return 1;
2741 }
2742
2743 // Called by the bison parser to handle TARGET.
2744
2745 extern "C" void
2746 script_set_target(void* closurev, const char* target, size_t len)
2747 {
2748 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2749 std::string s(target, len);
2750 General_options::Object_format format_enum;
2751 format_enum = General_options::string_to_object_format(s.c_str());
2752 closure->position_dependent_options().set_format_enum(format_enum);
2753 }
2754
2755 // Called by the bison parser to handle SEARCH_DIR. This is handled
2756 // exactly like a -L option.
2757
2758 extern "C" void
2759 script_add_search_dir(void* closurev, const char* option, size_t length)
2760 {
2761 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2762 if (closure->command_line() == NULL)
2763 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2764 " for scripts specified via -T/--script"),
2765 closure->filename(), closure->lineno(), closure->charpos());
2766 else
2767 {
2768 std::string s = "-L" + std::string(option, length);
2769 script_parse_option(closurev, s.c_str(), s.size());
2770 }
2771 }
2772
2773 /* Called by the bison parser to push the lexer into expression
2774 mode. */
2775
2776 extern "C" void
2777 script_push_lex_into_expression_mode(void* closurev)
2778 {
2779 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2780 closure->push_lex_mode(Lex::EXPRESSION);
2781 }
2782
2783 /* Called by the bison parser to push the lexer into version
2784 mode. */
2785
2786 extern "C" void
2787 script_push_lex_into_version_mode(void* closurev)
2788 {
2789 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2790 if (closure->version_script()->is_finalized())
2791 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2792 closure->filename(), closure->lineno(), closure->charpos());
2793 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2794 }
2795
2796 /* Called by the bison parser to pop the lexer mode. */
2797
2798 extern "C" void
2799 script_pop_lex_mode(void* closurev)
2800 {
2801 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2802 closure->pop_lex_mode();
2803 }
2804
2805 // Register an entire version node. For example:
2806 //
2807 // GLIBC_2.1 {
2808 // global: foo;
2809 // } GLIBC_2.0;
2810 //
2811 // - tag is "GLIBC_2.1"
2812 // - tree contains the information "global: foo"
2813 // - deps contains "GLIBC_2.0"
2814
2815 extern "C" void
2816 script_register_vers_node(void*,
2817 const char* tag,
2818 int taglen,
2819 struct Version_tree *tree,
2820 struct Version_dependency_list *deps)
2821 {
2822 gold_assert(tree != NULL);
2823 tree->dependencies = deps;
2824 if (tag != NULL)
2825 tree->tag = std::string(tag, taglen);
2826 }
2827
2828 // Add a dependencies to the list of existing dependencies, if any,
2829 // and return the expanded list.
2830
2831 extern "C" struct Version_dependency_list *
2832 script_add_vers_depend(void* closurev,
2833 struct Version_dependency_list *all_deps,
2834 const char *depend_to_add, int deplen)
2835 {
2836 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2837 if (all_deps == NULL)
2838 all_deps = closure->version_script()->allocate_dependency_list();
2839 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2840 return all_deps;
2841 }
2842
2843 // Add a pattern expression to an existing list of expressions, if any.
2844
2845 extern "C" struct Version_expression_list *
2846 script_new_vers_pattern(void* closurev,
2847 struct Version_expression_list *expressions,
2848 const char *pattern, int patlen, int exact_match)
2849 {
2850 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2851 if (expressions == NULL)
2852 expressions = closure->version_script()->allocate_expression_list();
2853 expressions->expressions.push_back(
2854 Version_expression(std::string(pattern, patlen),
2855 closure->get_current_language(),
2856 static_cast<bool>(exact_match)));
2857 return expressions;
2858 }
2859
2860 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2861
2862 extern "C" struct Version_expression_list*
2863 script_merge_expressions(struct Version_expression_list *a,
2864 struct Version_expression_list *b)
2865 {
2866 a->expressions.insert(a->expressions.end(),
2867 b->expressions.begin(), b->expressions.end());
2868 // We could delete b and remove it from expressions_lists_, but
2869 // that's a lot of work. This works just as well.
2870 b->expressions.clear();
2871 return a;
2872 }
2873
2874 // Combine the global and local expressions into a a Version_tree.
2875
2876 extern "C" struct Version_tree *
2877 script_new_vers_node(void* closurev,
2878 struct Version_expression_list *global,
2879 struct Version_expression_list *local)
2880 {
2881 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2882 Version_tree* tree = closure->version_script()->allocate_version_tree();
2883 tree->global = global;
2884 tree->local = local;
2885 return tree;
2886 }
2887
2888 // Handle a transition in language, such as at the
2889 // start or end of 'extern "C++"'
2890
2891 extern "C" void
2892 version_script_push_lang(void* closurev, const char* lang, int langlen)
2893 {
2894 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2895 std::string language(lang, langlen);
2896 Version_script_info::Language code;
2897 if (language.empty() || language == "C")
2898 code = Version_script_info::LANGUAGE_C;
2899 else if (language == "C++")
2900 code = Version_script_info::LANGUAGE_CXX;
2901 else if (language == "Java")
2902 code = Version_script_info::LANGUAGE_JAVA;
2903 else
2904 {
2905 char* buf = new char[langlen + 100];
2906 snprintf(buf, langlen + 100,
2907 _("unrecognized version script language '%s'"),
2908 language.c_str());
2909 yyerror(closurev, buf);
2910 delete[] buf;
2911 code = Version_script_info::LANGUAGE_C;
2912 }
2913 closure->push_language(code);
2914 }
2915
2916 extern "C" void
2917 version_script_pop_lang(void* closurev)
2918 {
2919 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2920 closure->pop_language();
2921 }
2922
2923 // Called by the bison parser to start a SECTIONS clause.
2924
2925 extern "C" void
2926 script_start_sections(void* closurev)
2927 {
2928 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2929 closure->script_options()->script_sections()->start_sections();
2930 closure->clear_skip_on_incompatible_target();
2931 }
2932
2933 // Called by the bison parser to finish a SECTIONS clause.
2934
2935 extern "C" void
2936 script_finish_sections(void* closurev)
2937 {
2938 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2939 closure->script_options()->script_sections()->finish_sections();
2940 }
2941
2942 // Start processing entries for an output section.
2943
2944 extern "C" void
2945 script_start_output_section(void* closurev, const char* name, size_t namelen,
2946 const struct Parser_output_section_header* header)
2947 {
2948 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2949 closure->script_options()->script_sections()->start_output_section(name,
2950 namelen,
2951 header);
2952 }
2953
2954 // Finish processing entries for an output section.
2955
2956 extern "C" void
2957 script_finish_output_section(void* closurev,
2958 const struct Parser_output_section_trailer* trail)
2959 {
2960 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2961 closure->script_options()->script_sections()->finish_output_section(trail);
2962 }
2963
2964 // Add a data item (e.g., "WORD (0)") to the current output section.
2965
2966 extern "C" void
2967 script_add_data(void* closurev, int data_token, Expression* val)
2968 {
2969 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2970 int size;
2971 bool is_signed = true;
2972 switch (data_token)
2973 {
2974 case QUAD:
2975 size = 8;
2976 is_signed = false;
2977 break;
2978 case SQUAD:
2979 size = 8;
2980 break;
2981 case LONG:
2982 size = 4;
2983 break;
2984 case SHORT:
2985 size = 2;
2986 break;
2987 case BYTE:
2988 size = 1;
2989 break;
2990 default:
2991 gold_unreachable();
2992 }
2993 closure->script_options()->script_sections()->add_data(size, is_signed, val);
2994 }
2995
2996 // Add a clause setting the fill value to the current output section.
2997
2998 extern "C" void
2999 script_add_fill(void* closurev, Expression* val)
3000 {
3001 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3002 closure->script_options()->script_sections()->add_fill(val);
3003 }
3004
3005 // Add a new input section specification to the current output
3006 // section.
3007
3008 extern "C" void
3009 script_add_input_section(void* closurev,
3010 const struct Input_section_spec* spec,
3011 int keepi)
3012 {
3013 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3014 bool keep = keepi != 0;
3015 closure->script_options()->script_sections()->add_input_section(spec, keep);
3016 }
3017
3018 // When we see DATA_SEGMENT_ALIGN we record that following output
3019 // sections may be relro.
3020
3021 extern "C" void
3022 script_data_segment_align(void* closurev)
3023 {
3024 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3025 if (!closure->script_options()->saw_sections_clause())
3026 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3027 closure->filename(), closure->lineno(), closure->charpos());
3028 else
3029 closure->script_options()->script_sections()->data_segment_align();
3030 }
3031
3032 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3033 // since DATA_SEGMENT_ALIGN should be relro.
3034
3035 extern "C" void
3036 script_data_segment_relro_end(void* closurev)
3037 {
3038 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3039 if (!closure->script_options()->saw_sections_clause())
3040 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3041 closure->filename(), closure->lineno(), closure->charpos());
3042 else
3043 closure->script_options()->script_sections()->data_segment_relro_end();
3044 }
3045
3046 // Create a new list of string/sort pairs.
3047
3048 extern "C" String_sort_list_ptr
3049 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3050 {
3051 return new String_sort_list(1, *string_sort);
3052 }
3053
3054 // Add an entry to a list of string/sort pairs. The way the parser
3055 // works permits us to simply modify the first parameter, rather than
3056 // copy the vector.
3057
3058 extern "C" String_sort_list_ptr
3059 script_string_sort_list_add(String_sort_list_ptr pv,
3060 const struct Wildcard_section* string_sort)
3061 {
3062 if (pv == NULL)
3063 return script_new_string_sort_list(string_sort);
3064 else
3065 {
3066 pv->push_back(*string_sort);
3067 return pv;
3068 }
3069 }
3070
3071 // Create a new list of strings.
3072
3073 extern "C" String_list_ptr
3074 script_new_string_list(const char* str, size_t len)
3075 {
3076 return new String_list(1, std::string(str, len));
3077 }
3078
3079 // Add an element to a list of strings. The way the parser works
3080 // permits us to simply modify the first parameter, rather than copy
3081 // the vector.
3082
3083 extern "C" String_list_ptr
3084 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3085 {
3086 if (pv == NULL)
3087 return script_new_string_list(str, len);
3088 else
3089 {
3090 pv->push_back(std::string(str, len));
3091 return pv;
3092 }
3093 }
3094
3095 // Concatenate two string lists. Either or both may be NULL. The way
3096 // the parser works permits us to modify the parameters, rather than
3097 // copy the vector.
3098
3099 extern "C" String_list_ptr
3100 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3101 {
3102 if (pv1 == NULL)
3103 return pv2;
3104 if (pv2 == NULL)
3105 return pv1;
3106 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3107 return pv1;
3108 }
3109
3110 // Add a new program header.
3111
3112 extern "C" void
3113 script_add_phdr(void* closurev, const char* name, size_t namelen,
3114 unsigned int type, const Phdr_info* info)
3115 {
3116 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3117 bool includes_filehdr = info->includes_filehdr != 0;
3118 bool includes_phdrs = info->includes_phdrs != 0;
3119 bool is_flags_valid = info->is_flags_valid != 0;
3120 Script_sections* ss = closure->script_options()->script_sections();
3121 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3122 is_flags_valid, info->flags, info->load_address);
3123 closure->clear_skip_on_incompatible_target();
3124 }
3125
3126 // Convert a program header string to a type.
3127
3128 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3129
3130 static struct
3131 {
3132 const char* name;
3133 size_t namelen;
3134 unsigned int val;
3135 } phdr_type_names[] =
3136 {
3137 PHDR_TYPE(PT_NULL),
3138 PHDR_TYPE(PT_LOAD),
3139 PHDR_TYPE(PT_DYNAMIC),
3140 PHDR_TYPE(PT_INTERP),
3141 PHDR_TYPE(PT_NOTE),
3142 PHDR_TYPE(PT_SHLIB),
3143 PHDR_TYPE(PT_PHDR),
3144 PHDR_TYPE(PT_TLS),
3145 PHDR_TYPE(PT_GNU_EH_FRAME),
3146 PHDR_TYPE(PT_GNU_STACK),
3147 PHDR_TYPE(PT_GNU_RELRO)
3148 };
3149
3150 extern "C" unsigned int
3151 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3152 {
3153 for (unsigned int i = 0;
3154 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3155 ++i)
3156 if (namelen == phdr_type_names[i].namelen
3157 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3158 return phdr_type_names[i].val;
3159 yyerror(closurev, _("unknown PHDR type (try integer)"));
3160 return elfcpp::PT_NULL;
3161 }
3162
3163 extern "C" void
3164 script_saw_segment_start_expression(void* closurev)
3165 {
3166 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3167 Script_sections* ss = closure->script_options()->script_sections();
3168 ss->set_saw_segment_start_expression(true);
3169 }
This page took 0.137403 seconds and 5 git commands to generate.