Don't pass around the target in order to define symbols; get it from
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <fnmatch.h>
26 #include <string>
27 #include <vector>
28 #include <cstdio>
29 #include <cstdlib>
30 #include "filenames.h"
31
32 #include "elfcpp.h"
33 #include "demangle.h"
34 #include "dirsearch.h"
35 #include "options.h"
36 #include "fileread.h"
37 #include "workqueue.h"
38 #include "readsyms.h"
39 #include "parameters.h"
40 #include "layout.h"
41 #include "symtab.h"
42 #include "script.h"
43 #include "script-c.h"
44
45 namespace gold
46 {
47
48 // A token read from a script file. We don't implement keywords here;
49 // all keywords are simply represented as a string.
50
51 class Token
52 {
53 public:
54 // Token classification.
55 enum Classification
56 {
57 // Token is invalid.
58 TOKEN_INVALID,
59 // Token indicates end of input.
60 TOKEN_EOF,
61 // Token is a string of characters.
62 TOKEN_STRING,
63 // Token is a quoted string of characters.
64 TOKEN_QUOTED_STRING,
65 // Token is an operator.
66 TOKEN_OPERATOR,
67 // Token is a number (an integer).
68 TOKEN_INTEGER
69 };
70
71 // We need an empty constructor so that we can put this STL objects.
72 Token()
73 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
74 opcode_(0), lineno_(0), charpos_(0)
75 { }
76
77 // A general token with no value.
78 Token(Classification classification, int lineno, int charpos)
79 : classification_(classification), value_(NULL), value_length_(0),
80 opcode_(0), lineno_(lineno), charpos_(charpos)
81 {
82 gold_assert(classification == TOKEN_INVALID
83 || classification == TOKEN_EOF);
84 }
85
86 // A general token with a value.
87 Token(Classification classification, const char* value, size_t length,
88 int lineno, int charpos)
89 : classification_(classification), value_(value), value_length_(length),
90 opcode_(0), lineno_(lineno), charpos_(charpos)
91 {
92 gold_assert(classification != TOKEN_INVALID
93 && classification != TOKEN_EOF);
94 }
95
96 // A token representing an operator.
97 Token(int opcode, int lineno, int charpos)
98 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
99 opcode_(opcode), lineno_(lineno), charpos_(charpos)
100 { }
101
102 // Return whether the token is invalid.
103 bool
104 is_invalid() const
105 { return this->classification_ == TOKEN_INVALID; }
106
107 // Return whether this is an EOF token.
108 bool
109 is_eof() const
110 { return this->classification_ == TOKEN_EOF; }
111
112 // Return the token classification.
113 Classification
114 classification() const
115 { return this->classification_; }
116
117 // Return the line number at which the token starts.
118 int
119 lineno() const
120 { return this->lineno_; }
121
122 // Return the character position at this the token starts.
123 int
124 charpos() const
125 { return this->charpos_; }
126
127 // Get the value of a token.
128
129 const char*
130 string_value(size_t* length) const
131 {
132 gold_assert(this->classification_ == TOKEN_STRING
133 || this->classification_ == TOKEN_QUOTED_STRING);
134 *length = this->value_length_;
135 return this->value_;
136 }
137
138 int
139 operator_value() const
140 {
141 gold_assert(this->classification_ == TOKEN_OPERATOR);
142 return this->opcode_;
143 }
144
145 uint64_t
146 integer_value() const
147 {
148 gold_assert(this->classification_ == TOKEN_INTEGER);
149 // Null terminate.
150 std::string s(this->value_, this->value_length_);
151 return strtoull(s.c_str(), NULL, 0);
152 }
153
154 private:
155 // The token classification.
156 Classification classification_;
157 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
158 // TOKEN_INTEGER.
159 const char* value_;
160 // The length of the token value.
161 size_t value_length_;
162 // The token value, for TOKEN_OPERATOR.
163 int opcode_;
164 // The line number where this token started (one based).
165 int lineno_;
166 // The character position within the line where this token started
167 // (one based).
168 int charpos_;
169 };
170
171 // This class handles lexing a file into a sequence of tokens.
172
173 class Lex
174 {
175 public:
176 // We unfortunately have to support different lexing modes, because
177 // when reading different parts of a linker script we need to parse
178 // things differently.
179 enum Mode
180 {
181 // Reading an ordinary linker script.
182 LINKER_SCRIPT,
183 // Reading an expression in a linker script.
184 EXPRESSION,
185 // Reading a version script.
186 VERSION_SCRIPT
187 };
188
189 Lex(const char* input_string, size_t input_length, int parsing_token)
190 : input_string_(input_string), input_length_(input_length),
191 current_(input_string), mode_(LINKER_SCRIPT),
192 first_token_(parsing_token), token_(),
193 lineno_(1), linestart_(input_string)
194 { }
195
196 // Read a file into a string.
197 static void
198 read_file(Input_file*, std::string*);
199
200 // Return the next token.
201 const Token*
202 next_token();
203
204 // Return the current lexing mode.
205 Lex::Mode
206 mode() const
207 { return this->mode_; }
208
209 // Set the lexing mode.
210 void
211 set_mode(Mode mode)
212 { this->mode_ = mode; }
213
214 private:
215 Lex(const Lex&);
216 Lex& operator=(const Lex&);
217
218 // Make a general token with no value at the current location.
219 Token
220 make_token(Token::Classification c, const char* start) const
221 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
222
223 // Make a general token with a value at the current location.
224 Token
225 make_token(Token::Classification c, const char* v, size_t len,
226 const char* start)
227 const
228 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
229
230 // Make an operator token at the current location.
231 Token
232 make_token(int opcode, const char* start) const
233 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
234
235 // Make an invalid token at the current location.
236 Token
237 make_invalid_token(const char* start)
238 { return this->make_token(Token::TOKEN_INVALID, start); }
239
240 // Make an EOF token at the current location.
241 Token
242 make_eof_token(const char* start)
243 { return this->make_token(Token::TOKEN_EOF, start); }
244
245 // Return whether C can be the first character in a name. C2 is the
246 // next character, since we sometimes need that.
247 inline bool
248 can_start_name(char c, char c2);
249
250 // If C can appear in a name which has already started, return a
251 // pointer to a character later in the token or just past
252 // it. Otherwise, return NULL.
253 inline const char*
254 can_continue_name(const char* c);
255
256 // Return whether C, C2, C3 can start a hex number.
257 inline bool
258 can_start_hex(char c, char c2, char c3);
259
260 // If C can appear in a hex number which has already started, return
261 // a pointer to a character later in the token or just past
262 // it. Otherwise, return NULL.
263 inline const char*
264 can_continue_hex(const char* c);
265
266 // Return whether C can start a non-hex number.
267 static inline bool
268 can_start_number(char c);
269
270 // If C can appear in a decimal number which has already started,
271 // return a pointer to a character later in the token or just past
272 // it. Otherwise, return NULL.
273 inline const char*
274 can_continue_number(const char* c)
275 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
276
277 // If C1 C2 C3 form a valid three character operator, return the
278 // opcode. Otherwise return 0.
279 static inline int
280 three_char_operator(char c1, char c2, char c3);
281
282 // If C1 C2 form a valid two character operator, return the opcode.
283 // Otherwise return 0.
284 static inline int
285 two_char_operator(char c1, char c2);
286
287 // If C1 is a valid one character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 one_char_operator(char c1);
291
292 // Read the next token.
293 Token
294 get_token(const char**);
295
296 // Skip a C style /* */ comment. Return false if the comment did
297 // not end.
298 bool
299 skip_c_comment(const char**);
300
301 // Skip a line # comment. Return false if there was no newline.
302 bool
303 skip_line_comment(const char**);
304
305 // Build a token CLASSIFICATION from all characters that match
306 // CAN_CONTINUE_FN. The token starts at START. Start matching from
307 // MATCH. Set *PP to the character following the token.
308 inline Token
309 gather_token(Token::Classification,
310 const char* (Lex::*can_continue_fn)(const char*),
311 const char* start, const char* match, const char** pp);
312
313 // Build a token from a quoted string.
314 Token
315 gather_quoted_string(const char** pp);
316
317 // The string we are tokenizing.
318 const char* input_string_;
319 // The length of the string.
320 size_t input_length_;
321 // The current offset into the string.
322 const char* current_;
323 // The current lexing mode.
324 Mode mode_;
325 // The code to use for the first token. This is set to 0 after it
326 // is used.
327 int first_token_;
328 // The current token.
329 Token token_;
330 // The current line number.
331 int lineno_;
332 // The start of the current line in the string.
333 const char* linestart_;
334 };
335
336 // Read the whole file into memory. We don't expect linker scripts to
337 // be large, so we just use a std::string as a buffer. We ignore the
338 // data we've already read, so that we read aligned buffers.
339
340 void
341 Lex::read_file(Input_file* input_file, std::string* contents)
342 {
343 off_t filesize = input_file->file().filesize();
344 contents->clear();
345 contents->reserve(filesize);
346
347 off_t off = 0;
348 unsigned char buf[BUFSIZ];
349 while (off < filesize)
350 {
351 off_t get = BUFSIZ;
352 if (get > filesize - off)
353 get = filesize - off;
354 input_file->file().read(off, get, buf);
355 contents->append(reinterpret_cast<char*>(&buf[0]), get);
356 off += get;
357 }
358 }
359
360 // Return whether C can be the start of a name, if the next character
361 // is C2. A name can being with a letter, underscore, period, or
362 // dollar sign. Because a name can be a file name, we also permit
363 // forward slash, backslash, and tilde. Tilde is the tricky case
364 // here; GNU ld also uses it as a bitwise not operator. It is only
365 // recognized as the operator if it is not immediately followed by
366 // some character which can appear in a symbol. That is, when we
367 // don't know that we are looking at an expression, "~0" is a file
368 // name, and "~ 0" is an expression using bitwise not. We are
369 // compatible.
370
371 inline bool
372 Lex::can_start_name(char c, char c2)
373 {
374 switch (c)
375 {
376 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
377 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
378 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
379 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
380 case 'Y': case 'Z':
381 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
382 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
383 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
384 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
385 case 'y': case 'z':
386 case '_': case '.': case '$':
387 return true;
388
389 case '/': case '\\':
390 return this->mode_ == LINKER_SCRIPT;
391
392 case '~':
393 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
394
395 case '*': case '[':
396 return this->mode_ == VERSION_SCRIPT;
397
398 default:
399 return false;
400 }
401 }
402
403 // Return whether C can continue a name which has already started.
404 // Subsequent characters in a name are the same as the leading
405 // characters, plus digits and "=+-:[],?*". So in general the linker
406 // script language requires spaces around operators, unless we know
407 // that we are parsing an expression.
408
409 inline const char*
410 Lex::can_continue_name(const char* c)
411 {
412 switch (*c)
413 {
414 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
415 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
416 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
417 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
418 case 'Y': case 'Z':
419 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
420 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
421 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
422 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
423 case 'y': case 'z':
424 case '_': case '.': case '$':
425 case '0': case '1': case '2': case '3': case '4':
426 case '5': case '6': case '7': case '8': case '9':
427 return c + 1;
428
429 case '/': case '\\': case '~':
430 case '=': case '+':
431 case ',': case '?':
432 if (this->mode_ == LINKER_SCRIPT)
433 return c + 1;
434 return NULL;
435
436 case '[': case ']': case '*': case '-':
437 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT)
438 return c + 1;
439 return NULL;
440
441 case '^':
442 if (this->mode_ == VERSION_SCRIPT)
443 return c + 1;
444 return NULL;
445
446 case ':':
447 if (this->mode_ == LINKER_SCRIPT)
448 return c + 1;
449 else if (this->mode_ == VERSION_SCRIPT && (c[1] == ':'))
450 {
451 // A name can have '::' in it, as that's a c++ namespace
452 // separator. But a single colon is not part of a name.
453 return c + 2;
454 }
455 return NULL;
456
457 default:
458 return NULL;
459 }
460 }
461
462 // For a number we accept 0x followed by hex digits, or any sequence
463 // of digits. The old linker accepts leading '$' for hex, and
464 // trailing HXBOD. Those are for MRI compatibility and we don't
465 // accept them. The old linker also accepts trailing MK for mega or
466 // kilo. FIXME: Those are mentioned in the documentation, and we
467 // should accept them.
468
469 // Return whether C1 C2 C3 can start a hex number.
470
471 inline bool
472 Lex::can_start_hex(char c1, char c2, char c3)
473 {
474 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
475 return this->can_continue_hex(&c3);
476 return false;
477 }
478
479 // Return whether C can appear in a hex number.
480
481 inline const char*
482 Lex::can_continue_hex(const char* c)
483 {
484 switch (*c)
485 {
486 case '0': case '1': case '2': case '3': case '4':
487 case '5': case '6': case '7': case '8': case '9':
488 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
489 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
490 return c + 1;
491
492 default:
493 return NULL;
494 }
495 }
496
497 // Return whether C can start a non-hex number.
498
499 inline bool
500 Lex::can_start_number(char c)
501 {
502 switch (c)
503 {
504 case '0': case '1': case '2': case '3': case '4':
505 case '5': case '6': case '7': case '8': case '9':
506 return true;
507
508 default:
509 return false;
510 }
511 }
512
513 // If C1 C2 C3 form a valid three character operator, return the
514 // opcode (defined in the yyscript.h file generated from yyscript.y).
515 // Otherwise return 0.
516
517 inline int
518 Lex::three_char_operator(char c1, char c2, char c3)
519 {
520 switch (c1)
521 {
522 case '<':
523 if (c2 == '<' && c3 == '=')
524 return LSHIFTEQ;
525 break;
526 case '>':
527 if (c2 == '>' && c3 == '=')
528 return RSHIFTEQ;
529 break;
530 default:
531 break;
532 }
533 return 0;
534 }
535
536 // If C1 C2 form a valid two character operator, return the opcode
537 // (defined in the yyscript.h file generated from yyscript.y).
538 // Otherwise return 0.
539
540 inline int
541 Lex::two_char_operator(char c1, char c2)
542 {
543 switch (c1)
544 {
545 case '=':
546 if (c2 == '=')
547 return EQ;
548 break;
549 case '!':
550 if (c2 == '=')
551 return NE;
552 break;
553 case '+':
554 if (c2 == '=')
555 return PLUSEQ;
556 break;
557 case '-':
558 if (c2 == '=')
559 return MINUSEQ;
560 break;
561 case '*':
562 if (c2 == '=')
563 return MULTEQ;
564 break;
565 case '/':
566 if (c2 == '=')
567 return DIVEQ;
568 break;
569 case '|':
570 if (c2 == '=')
571 return OREQ;
572 if (c2 == '|')
573 return OROR;
574 break;
575 case '&':
576 if (c2 == '=')
577 return ANDEQ;
578 if (c2 == '&')
579 return ANDAND;
580 break;
581 case '>':
582 if (c2 == '=')
583 return GE;
584 if (c2 == '>')
585 return RSHIFT;
586 break;
587 case '<':
588 if (c2 == '=')
589 return LE;
590 if (c2 == '<')
591 return LSHIFT;
592 break;
593 default:
594 break;
595 }
596 return 0;
597 }
598
599 // If C1 is a valid operator, return the opcode. Otherwise return 0.
600
601 inline int
602 Lex::one_char_operator(char c1)
603 {
604 switch (c1)
605 {
606 case '+':
607 case '-':
608 case '*':
609 case '/':
610 case '%':
611 case '!':
612 case '&':
613 case '|':
614 case '^':
615 case '~':
616 case '<':
617 case '>':
618 case '=':
619 case '?':
620 case ',':
621 case '(':
622 case ')':
623 case '{':
624 case '}':
625 case '[':
626 case ']':
627 case ':':
628 case ';':
629 return c1;
630 default:
631 return 0;
632 }
633 }
634
635 // Skip a C style comment. *PP points to just after the "/*". Return
636 // false if the comment did not end.
637
638 bool
639 Lex::skip_c_comment(const char** pp)
640 {
641 const char* p = *pp;
642 while (p[0] != '*' || p[1] != '/')
643 {
644 if (*p == '\0')
645 {
646 *pp = p;
647 return false;
648 }
649
650 if (*p == '\n')
651 {
652 ++this->lineno_;
653 this->linestart_ = p + 1;
654 }
655 ++p;
656 }
657
658 *pp = p + 2;
659 return true;
660 }
661
662 // Skip a line # comment. Return false if there was no newline.
663
664 bool
665 Lex::skip_line_comment(const char** pp)
666 {
667 const char* p = *pp;
668 size_t skip = strcspn(p, "\n");
669 if (p[skip] == '\0')
670 {
671 *pp = p + skip;
672 return false;
673 }
674
675 p += skip + 1;
676 ++this->lineno_;
677 this->linestart_ = p;
678 *pp = p;
679
680 return true;
681 }
682
683 // Build a token CLASSIFICATION from all characters that match
684 // CAN_CONTINUE_FN. Update *PP.
685
686 inline Token
687 Lex::gather_token(Token::Classification classification,
688 const char* (Lex::*can_continue_fn)(const char*),
689 const char* start,
690 const char* match,
691 const char **pp)
692 {
693 const char* new_match = NULL;
694 while ((new_match = (this->*can_continue_fn)(match)))
695 match = new_match;
696 *pp = match;
697 return this->make_token(classification, start, match - start, start);
698 }
699
700 // Build a token from a quoted string.
701
702 Token
703 Lex::gather_quoted_string(const char** pp)
704 {
705 const char* start = *pp;
706 const char* p = start;
707 ++p;
708 size_t skip = strcspn(p, "\"\n");
709 if (p[skip] != '"')
710 return this->make_invalid_token(start);
711 *pp = p + skip + 1;
712 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
713 }
714
715 // Return the next token at *PP. Update *PP. General guideline: we
716 // require linker scripts to be simple ASCII. No unicode linker
717 // scripts. In particular we can assume that any '\0' is the end of
718 // the input.
719
720 Token
721 Lex::get_token(const char** pp)
722 {
723 const char* p = *pp;
724
725 while (true)
726 {
727 if (*p == '\0')
728 {
729 *pp = p;
730 return this->make_eof_token(p);
731 }
732
733 // Skip whitespace quickly.
734 while (*p == ' ' || *p == '\t')
735 ++p;
736
737 if (*p == '\n')
738 {
739 ++p;
740 ++this->lineno_;
741 this->linestart_ = p;
742 continue;
743 }
744
745 // Skip C style comments.
746 if (p[0] == '/' && p[1] == '*')
747 {
748 int lineno = this->lineno_;
749 int charpos = p - this->linestart_ + 1;
750
751 *pp = p + 2;
752 if (!this->skip_c_comment(pp))
753 return Token(Token::TOKEN_INVALID, lineno, charpos);
754 p = *pp;
755
756 continue;
757 }
758
759 // Skip line comments.
760 if (*p == '#')
761 {
762 *pp = p + 1;
763 if (!this->skip_line_comment(pp))
764 return this->make_eof_token(p);
765 p = *pp;
766 continue;
767 }
768
769 // Check for a name.
770 if (this->can_start_name(p[0], p[1]))
771 return this->gather_token(Token::TOKEN_STRING,
772 &Lex::can_continue_name,
773 p, p + 1, pp);
774
775 // We accept any arbitrary name in double quotes, as long as it
776 // does not cross a line boundary.
777 if (*p == '"')
778 {
779 *pp = p;
780 return this->gather_quoted_string(pp);
781 }
782
783 // Check for a number.
784
785 if (this->can_start_hex(p[0], p[1], p[2]))
786 return this->gather_token(Token::TOKEN_INTEGER,
787 &Lex::can_continue_hex,
788 p, p + 3, pp);
789
790 if (Lex::can_start_number(p[0]))
791 return this->gather_token(Token::TOKEN_INTEGER,
792 &Lex::can_continue_number,
793 p, p + 1, pp);
794
795 // Check for operators.
796
797 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
798 if (opcode != 0)
799 {
800 *pp = p + 3;
801 return this->make_token(opcode, p);
802 }
803
804 opcode = Lex::two_char_operator(p[0], p[1]);
805 if (opcode != 0)
806 {
807 *pp = p + 2;
808 return this->make_token(opcode, p);
809 }
810
811 opcode = Lex::one_char_operator(p[0]);
812 if (opcode != 0)
813 {
814 *pp = p + 1;
815 return this->make_token(opcode, p);
816 }
817
818 return this->make_token(Token::TOKEN_INVALID, p);
819 }
820 }
821
822 // Return the next token.
823
824 const Token*
825 Lex::next_token()
826 {
827 // The first token is special.
828 if (this->first_token_ != 0)
829 {
830 this->token_ = Token(this->first_token_, 0, 0);
831 this->first_token_ = 0;
832 return &this->token_;
833 }
834
835 this->token_ = this->get_token(&this->current_);
836
837 // Don't let an early null byte fool us into thinking that we've
838 // reached the end of the file.
839 if (this->token_.is_eof()
840 && (static_cast<size_t>(this->current_ - this->input_string_)
841 < this->input_length_))
842 this->token_ = this->make_invalid_token(this->current_);
843
844 return &this->token_;
845 }
846
847 // A trivial task which waits for THIS_BLOCKER to be clear and then
848 // clears NEXT_BLOCKER. THIS_BLOCKER may be NULL.
849
850 class Script_unblock : public Task
851 {
852 public:
853 Script_unblock(Task_token* this_blocker, Task_token* next_blocker)
854 : this_blocker_(this_blocker), next_blocker_(next_blocker)
855 { }
856
857 ~Script_unblock()
858 {
859 if (this->this_blocker_ != NULL)
860 delete this->this_blocker_;
861 }
862
863 Task_token*
864 is_runnable()
865 {
866 if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
867 return this->this_blocker_;
868 return NULL;
869 }
870
871 void
872 locks(Task_locker* tl)
873 { tl->add(this, this->next_blocker_); }
874
875 void
876 run(Workqueue*)
877 { }
878
879 std::string
880 get_name() const
881 { return "Script_unblock"; }
882
883 private:
884 Task_token* this_blocker_;
885 Task_token* next_blocker_;
886 };
887
888 // class Symbol_assignment.
889
890 // Add the symbol to the symbol table. This makes sure the symbol is
891 // there and defined. The actual value is stored later. We can't
892 // determine the actual value at this point, because we can't
893 // necessarily evaluate the expression until all ordinary symbols have
894 // been finalized.
895
896 void
897 Symbol_assignment::add_to_table(Symbol_table* symtab)
898 {
899 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
900 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
901 NULL, // version
902 0, // value
903 0, // size
904 elfcpp::STT_NOTYPE,
905 elfcpp::STB_GLOBAL,
906 vis,
907 0, // nonvis
908 this->provide_);
909 }
910
911 // Finalize a symbol value.
912
913 void
914 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
915 {
916 // If we were only supposed to provide this symbol, the sym_ field
917 // will be NULL if the symbol was not referenced.
918 if (this->sym_ == NULL)
919 {
920 gold_assert(this->provide_);
921 return;
922 }
923
924 if (parameters->get_size() == 32)
925 {
926 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
927 this->sized_finalize<32>(symtab, layout);
928 #else
929 gold_unreachable();
930 #endif
931 }
932 else if (parameters->get_size() == 64)
933 {
934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
935 this->sized_finalize<64>(symtab, layout);
936 #else
937 gold_unreachable();
938 #endif
939 }
940 else
941 gold_unreachable();
942 }
943
944 template<int size>
945 void
946 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout)
947 {
948 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
949 ssym->set_value(this->val_->eval(symtab, layout));
950 }
951
952 // Print for debugging.
953
954 void
955 Symbol_assignment::print(FILE* f) const
956 {
957 if (this->provide_ && this->hidden_)
958 fprintf(f, "PROVIDE_HIDDEN(");
959 else if (this->provide_)
960 fprintf(f, "PROVIDE(");
961 else if (this->hidden_)
962 gold_unreachable();
963
964 fprintf(f, "%s = ", this->name_.c_str());
965 this->val_->print(f);
966
967 if (this->provide_ || this->hidden_)
968 fprintf(f, ")");
969
970 fprintf(f, "\n");
971 }
972
973 // Class Script_assertion.
974
975 // Check the assertion.
976
977 void
978 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
979 {
980 if (!this->check_->eval(symtab, layout))
981 gold_error("%s", this->message_.c_str());
982 }
983
984 // Print for debugging.
985
986 void
987 Script_assertion::print(FILE* f) const
988 {
989 fprintf(f, "ASSERT(");
990 this->check_->print(f);
991 fprintf(f, ", \"%s\")\n", this->message_.c_str());
992 }
993
994 // Class Script_options.
995
996 Script_options::Script_options()
997 : entry_(), symbol_assignments_(), version_script_info_(),
998 script_sections_()
999 {
1000 }
1001
1002 // Add a symbol to be defined.
1003
1004 void
1005 Script_options::add_symbol_assignment(const char* name, size_t length,
1006 Expression* value, bool provide,
1007 bool hidden)
1008 {
1009 if (this->script_sections_.in_sections_clause())
1010 this->script_sections_.add_symbol_assignment(name, length, value,
1011 provide, hidden);
1012 else
1013 {
1014 Symbol_assignment* p = new Symbol_assignment(name, length, value,
1015 provide, hidden);
1016 this->symbol_assignments_.push_back(p);
1017 }
1018 }
1019
1020 // Add an assertion.
1021
1022 void
1023 Script_options::add_assertion(Expression* check, const char* message,
1024 size_t messagelen)
1025 {
1026 if (this->script_sections_.in_sections_clause())
1027 this->script_sections_.add_assertion(check, message, messagelen);
1028 else
1029 {
1030 Script_assertion* p = new Script_assertion(check, message, messagelen);
1031 this->assertions_.push_back(p);
1032 }
1033 }
1034
1035 // Add any symbols we are defining to the symbol table.
1036
1037 void
1038 Script_options::add_symbols_to_table(Symbol_table* symtab)
1039 {
1040 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1041 p != this->symbol_assignments_.end();
1042 ++p)
1043 (*p)->add_to_table(symtab);
1044 }
1045
1046 // Finalize symbol values.
1047
1048 void
1049 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1050 {
1051 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1052 p != this->symbol_assignments_.end();
1053 ++p)
1054 (*p)->finalize(symtab, layout);
1055 }
1056
1057 // This class holds data passed through the parser to the lexer and to
1058 // the parser support functions. This avoids global variables. We
1059 // can't use global variables because we need not be called by a
1060 // singleton thread.
1061
1062 class Parser_closure
1063 {
1064 public:
1065 Parser_closure(const char* filename,
1066 const Position_dependent_options& posdep_options,
1067 bool in_group, bool is_in_sysroot,
1068 Command_line* command_line,
1069 Script_options* script_options,
1070 Lex* lex)
1071 : filename_(filename), posdep_options_(posdep_options),
1072 in_group_(in_group), is_in_sysroot_(is_in_sysroot),
1073 command_line_(command_line), script_options_(script_options),
1074 version_script_info_(script_options->version_script_info()),
1075 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1076 {
1077 // We start out processing C symbols in the default lex mode.
1078 language_stack_.push_back("");
1079 lex_mode_stack_.push_back(lex->mode());
1080 }
1081
1082 // Return the file name.
1083 const char*
1084 filename() const
1085 { return this->filename_; }
1086
1087 // Return the position dependent options. The caller may modify
1088 // this.
1089 Position_dependent_options&
1090 position_dependent_options()
1091 { return this->posdep_options_; }
1092
1093 // Return whether this script is being run in a group.
1094 bool
1095 in_group() const
1096 { return this->in_group_; }
1097
1098 // Return whether this script was found using a directory in the
1099 // sysroot.
1100 bool
1101 is_in_sysroot() const
1102 { return this->is_in_sysroot_; }
1103
1104 // Returns the Command_line structure passed in at constructor time.
1105 // This value may be NULL. The caller may modify this, which modifies
1106 // the passed-in Command_line object (not a copy).
1107 Command_line*
1108 command_line()
1109 { return this->command_line_; }
1110
1111 // Return the options which may be set by a script.
1112 Script_options*
1113 script_options()
1114 { return this->script_options_; }
1115
1116 // Return the object in which version script information should be stored.
1117 Version_script_info*
1118 version_script()
1119 { return this->version_script_info_; }
1120
1121 // Return the next token, and advance.
1122 const Token*
1123 next_token()
1124 {
1125 const Token* token = this->lex_->next_token();
1126 this->lineno_ = token->lineno();
1127 this->charpos_ = token->charpos();
1128 return token;
1129 }
1130
1131 // Set a new lexer mode, pushing the current one.
1132 void
1133 push_lex_mode(Lex::Mode mode)
1134 {
1135 this->lex_mode_stack_.push_back(this->lex_->mode());
1136 this->lex_->set_mode(mode);
1137 }
1138
1139 // Pop the lexer mode.
1140 void
1141 pop_lex_mode()
1142 {
1143 gold_assert(!this->lex_mode_stack_.empty());
1144 this->lex_->set_mode(this->lex_mode_stack_.back());
1145 this->lex_mode_stack_.pop_back();
1146 }
1147
1148 // Return the current lexer mode.
1149 Lex::Mode
1150 lex_mode() const
1151 { return this->lex_mode_stack_.back(); }
1152
1153 // Return the line number of the last token.
1154 int
1155 lineno() const
1156 { return this->lineno_; }
1157
1158 // Return the character position in the line of the last token.
1159 int
1160 charpos() const
1161 { return this->charpos_; }
1162
1163 // Return the list of input files, creating it if necessary. This
1164 // is a space leak--we never free the INPUTS_ pointer.
1165 Input_arguments*
1166 inputs()
1167 {
1168 if (this->inputs_ == NULL)
1169 this->inputs_ = new Input_arguments();
1170 return this->inputs_;
1171 }
1172
1173 // Return whether we saw any input files.
1174 bool
1175 saw_inputs() const
1176 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1177
1178 // Return the current language being processed in a version script
1179 // (eg, "C++"). The empty string represents unmangled C names.
1180 const std::string&
1181 get_current_language() const
1182 { return this->language_stack_.back(); }
1183
1184 // Push a language onto the stack when entering an extern block.
1185 void push_language(const std::string& lang)
1186 { this->language_stack_.push_back(lang); }
1187
1188 // Pop a language off of the stack when exiting an extern block.
1189 void pop_language()
1190 {
1191 gold_assert(!this->language_stack_.empty());
1192 this->language_stack_.pop_back();
1193 }
1194
1195 private:
1196 // The name of the file we are reading.
1197 const char* filename_;
1198 // The position dependent options.
1199 Position_dependent_options posdep_options_;
1200 // Whether we are currently in a --start-group/--end-group.
1201 bool in_group_;
1202 // Whether the script was found in a sysrooted directory.
1203 bool is_in_sysroot_;
1204 // May be NULL if the user chooses not to pass one in.
1205 Command_line* command_line_;
1206 // Options which may be set from any linker script.
1207 Script_options* script_options_;
1208 // Information parsed from a version script.
1209 Version_script_info* version_script_info_;
1210 // The lexer.
1211 Lex* lex_;
1212 // The line number of the last token returned by next_token.
1213 int lineno_;
1214 // The column number of the last token returned by next_token.
1215 int charpos_;
1216 // A stack of lexer modes.
1217 std::vector<Lex::Mode> lex_mode_stack_;
1218 // A stack of which extern/language block we're inside. Can be C++,
1219 // java, or empty for C.
1220 std::vector<std::string> language_stack_;
1221 // New input files found to add to the link.
1222 Input_arguments* inputs_;
1223 };
1224
1225 // FILE was found as an argument on the command line. Try to read it
1226 // as a script. We've already read BYTES of data into P, but we
1227 // ignore that. Return true if the file was handled.
1228
1229 bool
1230 read_input_script(Workqueue* workqueue, const General_options& options,
1231 Symbol_table* symtab, Layout* layout,
1232 Dirsearch* dirsearch, Input_objects* input_objects,
1233 Input_group* input_group,
1234 const Input_argument* input_argument,
1235 Input_file* input_file, const unsigned char*, off_t,
1236 Task_token* this_blocker, Task_token* next_blocker)
1237 {
1238 std::string input_string;
1239 Lex::read_file(input_file, &input_string);
1240
1241 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1242
1243 Parser_closure closure(input_file->filename().c_str(),
1244 input_argument->file().options(),
1245 input_group != NULL,
1246 input_file->is_in_sysroot(),
1247 NULL,
1248 layout->script_options(),
1249 &lex);
1250
1251 if (yyparse(&closure) != 0)
1252 return false;
1253
1254 // THIS_BLOCKER must be clear before we may add anything to the
1255 // symbol table. We are responsible for unblocking NEXT_BLOCKER
1256 // when we are done. We are responsible for deleting THIS_BLOCKER
1257 // when it is unblocked.
1258
1259 if (!closure.saw_inputs())
1260 {
1261 // The script did not add any files to read. Note that we are
1262 // not permitted to call NEXT_BLOCKER->unblock() here even if
1263 // THIS_BLOCKER is NULL, as we do not hold the workqueue lock.
1264 workqueue->queue(new Script_unblock(this_blocker, next_blocker));
1265 return true;
1266 }
1267
1268 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1269 p != closure.inputs()->end();
1270 ++p)
1271 {
1272 Task_token* nb;
1273 if (p + 1 == closure.inputs()->end())
1274 nb = next_blocker;
1275 else
1276 {
1277 nb = new Task_token(true);
1278 nb->add_blocker();
1279 }
1280 workqueue->queue(new Read_symbols(options, input_objects, symtab,
1281 layout, dirsearch, &*p,
1282 input_group, this_blocker, nb));
1283 this_blocker = nb;
1284 }
1285
1286 return true;
1287 }
1288
1289 // Helper function for read_version_script() and
1290 // read_commandline_script(). Processes the given file in the mode
1291 // indicated by first_token and lex_mode.
1292
1293 static bool
1294 read_script_file(const char* filename, Command_line* cmdline,
1295 int first_token, Lex::Mode lex_mode)
1296 {
1297 // TODO: if filename is a relative filename, search for it manually
1298 // using "." + cmdline->options()->search_path() -- not dirsearch.
1299 Dirsearch dirsearch;
1300
1301 // The file locking code wants to record a Task, but we haven't
1302 // started the workqueue yet. This is only for debugging purposes,
1303 // so we invent a fake value.
1304 const Task* task = reinterpret_cast<const Task*>(-1);
1305
1306 Input_file_argument input_argument(filename, false, "",
1307 cmdline->position_dependent_options());
1308 Input_file input_file(&input_argument);
1309 if (!input_file.open(cmdline->options(), dirsearch, task))
1310 return false;
1311
1312 std::string input_string;
1313 Lex::read_file(&input_file, &input_string);
1314
1315 Lex lex(input_string.c_str(), input_string.length(), first_token);
1316 lex.set_mode(lex_mode);
1317
1318 Parser_closure closure(filename,
1319 cmdline->position_dependent_options(),
1320 false,
1321 input_file.is_in_sysroot(),
1322 cmdline,
1323 cmdline->script_options(),
1324 &lex);
1325 if (yyparse(&closure) != 0)
1326 {
1327 input_file.file().unlock(task);
1328 return false;
1329 }
1330
1331 input_file.file().unlock(task);
1332
1333 gold_assert(!closure.saw_inputs());
1334
1335 return true;
1336 }
1337
1338 // FILENAME was found as an argument to --script (-T).
1339 // Read it as a script, and execute its contents immediately.
1340
1341 bool
1342 read_commandline_script(const char* filename, Command_line* cmdline)
1343 {
1344 return read_script_file(filename, cmdline,
1345 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1346 }
1347
1348 // FILE was found as an argument to --version-script. Read it as a
1349 // version script, and store its contents in
1350 // cmdline->script_options()->version_script_info().
1351
1352 bool
1353 read_version_script(const char* filename, Command_line* cmdline)
1354 {
1355 return read_script_file(filename, cmdline,
1356 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1357 }
1358
1359 // Implement the --defsym option on the command line. Return true if
1360 // all is well.
1361
1362 bool
1363 Script_options::define_symbol(const char* definition)
1364 {
1365 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1366 lex.set_mode(Lex::EXPRESSION);
1367
1368 // Dummy value.
1369 Position_dependent_options posdep_options;
1370
1371 Parser_closure closure("command line", posdep_options, false, false, NULL,
1372 this, &lex);
1373
1374 if (yyparse(&closure) != 0)
1375 return false;
1376
1377 gold_assert(!closure.saw_inputs());
1378
1379 return true;
1380 }
1381
1382 // Print the script to F for debugging.
1383
1384 void
1385 Script_options::print(FILE* f) const
1386 {
1387 fprintf(f, "%s: Dumping linker script\n", program_name);
1388
1389 if (!this->entry_.empty())
1390 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1391
1392 for (Symbol_assignments::const_iterator p =
1393 this->symbol_assignments_.begin();
1394 p != this->symbol_assignments_.end();
1395 ++p)
1396 (*p)->print(f);
1397
1398 for (Assertions::const_iterator p = this->assertions_.begin();
1399 p != this->assertions_.end();
1400 ++p)
1401 (*p)->print(f);
1402
1403 this->script_sections_.print(f);
1404
1405 this->version_script_info_.print(f);
1406 }
1407
1408 // Manage mapping from keywords to the codes expected by the bison
1409 // parser. We construct one global object for each lex mode with
1410 // keywords.
1411
1412 class Keyword_to_parsecode
1413 {
1414 public:
1415 // The structure which maps keywords to parsecodes.
1416 struct Keyword_parsecode
1417 {
1418 // Keyword.
1419 const char* keyword;
1420 // Corresponding parsecode.
1421 int parsecode;
1422 };
1423
1424 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1425 int keyword_count)
1426 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1427 { }
1428
1429 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1430 // keyword.
1431 int
1432 keyword_to_parsecode(const char* keyword, size_t len) const;
1433
1434 private:
1435 const Keyword_parsecode* keyword_parsecodes_;
1436 const int keyword_count_;
1437 };
1438
1439 // Mapping from keyword string to keyword parsecode. This array must
1440 // be kept in sorted order. Parsecodes are looked up using bsearch.
1441 // This array must correspond to the list of parsecodes in yyscript.y.
1442
1443 static const Keyword_to_parsecode::Keyword_parsecode
1444 script_keyword_parsecodes[] =
1445 {
1446 { "ABSOLUTE", ABSOLUTE },
1447 { "ADDR", ADDR },
1448 { "ALIGN", ALIGN_K },
1449 { "ALIGNOF", ALIGNOF },
1450 { "ASSERT", ASSERT_K },
1451 { "AS_NEEDED", AS_NEEDED },
1452 { "AT", AT },
1453 { "BIND", BIND },
1454 { "BLOCK", BLOCK },
1455 { "BYTE", BYTE },
1456 { "CONSTANT", CONSTANT },
1457 { "CONSTRUCTORS", CONSTRUCTORS },
1458 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1459 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1460 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1461 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1462 { "DEFINED", DEFINED },
1463 { "ENTRY", ENTRY },
1464 { "EXCLUDE_FILE", EXCLUDE_FILE },
1465 { "EXTERN", EXTERN },
1466 { "FILL", FILL },
1467 { "FLOAT", FLOAT },
1468 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1469 { "GROUP", GROUP },
1470 { "HLL", HLL },
1471 { "INCLUDE", INCLUDE },
1472 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1473 { "INPUT", INPUT },
1474 { "KEEP", KEEP },
1475 { "LENGTH", LENGTH },
1476 { "LOADADDR", LOADADDR },
1477 { "LONG", LONG },
1478 { "MAP", MAP },
1479 { "MAX", MAX_K },
1480 { "MEMORY", MEMORY },
1481 { "MIN", MIN_K },
1482 { "NEXT", NEXT },
1483 { "NOCROSSREFS", NOCROSSREFS },
1484 { "NOFLOAT", NOFLOAT },
1485 { "ONLY_IF_RO", ONLY_IF_RO },
1486 { "ONLY_IF_RW", ONLY_IF_RW },
1487 { "OPTION", OPTION },
1488 { "ORIGIN", ORIGIN },
1489 { "OUTPUT", OUTPUT },
1490 { "OUTPUT_ARCH", OUTPUT_ARCH },
1491 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1492 { "OVERLAY", OVERLAY },
1493 { "PHDRS", PHDRS },
1494 { "PROVIDE", PROVIDE },
1495 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1496 { "QUAD", QUAD },
1497 { "SEARCH_DIR", SEARCH_DIR },
1498 { "SECTIONS", SECTIONS },
1499 { "SEGMENT_START", SEGMENT_START },
1500 { "SHORT", SHORT },
1501 { "SIZEOF", SIZEOF },
1502 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1503 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1504 { "SORT_BY_NAME", SORT_BY_NAME },
1505 { "SPECIAL", SPECIAL },
1506 { "SQUAD", SQUAD },
1507 { "STARTUP", STARTUP },
1508 { "SUBALIGN", SUBALIGN },
1509 { "SYSLIB", SYSLIB },
1510 { "TARGET", TARGET_K },
1511 { "TRUNCATE", TRUNCATE },
1512 { "VERSION", VERSIONK },
1513 { "global", GLOBAL },
1514 { "l", LENGTH },
1515 { "len", LENGTH },
1516 { "local", LOCAL },
1517 { "o", ORIGIN },
1518 { "org", ORIGIN },
1519 { "sizeof_headers", SIZEOF_HEADERS },
1520 };
1521
1522 static const Keyword_to_parsecode
1523 script_keywords(&script_keyword_parsecodes[0],
1524 (sizeof(script_keyword_parsecodes)
1525 / sizeof(script_keyword_parsecodes[0])));
1526
1527 static const Keyword_to_parsecode::Keyword_parsecode
1528 version_script_keyword_parsecodes[] =
1529 {
1530 { "extern", EXTERN },
1531 { "global", GLOBAL },
1532 { "local", LOCAL },
1533 };
1534
1535 static const Keyword_to_parsecode
1536 version_script_keywords(&version_script_keyword_parsecodes[0],
1537 (sizeof(version_script_keyword_parsecodes)
1538 / sizeof(version_script_keyword_parsecodes[0])));
1539
1540 // Comparison function passed to bsearch.
1541
1542 extern "C"
1543 {
1544
1545 struct Ktt_key
1546 {
1547 const char* str;
1548 size_t len;
1549 };
1550
1551 static int
1552 ktt_compare(const void* keyv, const void* kttv)
1553 {
1554 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1555 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1556 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1557 int i = strncmp(key->str, ktt->keyword, key->len);
1558 if (i != 0)
1559 return i;
1560 if (ktt->keyword[key->len] != '\0')
1561 return -1;
1562 return 0;
1563 }
1564
1565 } // End extern "C".
1566
1567 int
1568 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1569 size_t len) const
1570 {
1571 Ktt_key key;
1572 key.str = keyword;
1573 key.len = len;
1574 void* kttv = bsearch(&key,
1575 this->keyword_parsecodes_,
1576 this->keyword_count_,
1577 sizeof(this->keyword_parsecodes_[0]),
1578 ktt_compare);
1579 if (kttv == NULL)
1580 return 0;
1581 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1582 return ktt->parsecode;
1583 }
1584
1585 // The following structs are used within the VersionInfo class as well
1586 // as in the bison helper functions. They store the information
1587 // parsed from the version script.
1588
1589 // A single version expression.
1590 // For example, pattern="std::map*" and language="C++".
1591 // pattern and language should be from the stringpool
1592 struct Version_expression {
1593 Version_expression(const std::string& pattern,
1594 const std::string& language,
1595 bool exact_match)
1596 : pattern(pattern), language(language), exact_match(exact_match) {}
1597
1598 std::string pattern;
1599 std::string language;
1600 // If false, we use glob() to match pattern. If true, we use strcmp().
1601 bool exact_match;
1602 };
1603
1604
1605 // A list of expressions.
1606 struct Version_expression_list {
1607 std::vector<struct Version_expression> expressions;
1608 };
1609
1610
1611 // A list of which versions upon which another version depends.
1612 // Strings should be from the Stringpool.
1613 struct Version_dependency_list {
1614 std::vector<std::string> dependencies;
1615 };
1616
1617
1618 // The total definition of a version. It includes the tag for the
1619 // version, its global and local expressions, and any dependencies.
1620 struct Version_tree {
1621 Version_tree()
1622 : tag(), global(NULL), local(NULL), dependencies(NULL) {}
1623
1624 std::string tag;
1625 const struct Version_expression_list* global;
1626 const struct Version_expression_list* local;
1627 const struct Version_dependency_list* dependencies;
1628 };
1629
1630 Version_script_info::~Version_script_info()
1631 {
1632 for (size_t k = 0; k < dependency_lists_.size(); ++k)
1633 delete dependency_lists_[k];
1634 for (size_t k = 0; k < version_trees_.size(); ++k)
1635 delete version_trees_[k];
1636 for (size_t k = 0; k < expression_lists_.size(); ++k)
1637 delete expression_lists_[k];
1638 }
1639
1640 std::vector<std::string>
1641 Version_script_info::get_versions() const
1642 {
1643 std::vector<std::string> ret;
1644 for (size_t j = 0; j < version_trees_.size(); ++j)
1645 ret.push_back(version_trees_[j]->tag);
1646 return ret;
1647 }
1648
1649 std::vector<std::string>
1650 Version_script_info::get_dependencies(const char* version) const
1651 {
1652 std::vector<std::string> ret;
1653 for (size_t j = 0; j < version_trees_.size(); ++j)
1654 if (version_trees_[j]->tag == version)
1655 {
1656 const struct Version_dependency_list* deps =
1657 version_trees_[j]->dependencies;
1658 if (deps != NULL)
1659 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1660 ret.push_back(deps->dependencies[k]);
1661 return ret;
1662 }
1663 return ret;
1664 }
1665
1666 const std::string&
1667 Version_script_info::get_symbol_version_helper(const char* symbol_name,
1668 bool check_global) const
1669 {
1670 for (size_t j = 0; j < version_trees_.size(); ++j)
1671 {
1672 // Is it a global symbol for this version?
1673 const Version_expression_list* explist =
1674 check_global ? version_trees_[j]->global : version_trees_[j]->local;
1675 if (explist != NULL)
1676 for (size_t k = 0; k < explist->expressions.size(); ++k)
1677 {
1678 const char* name_to_match = symbol_name;
1679 const struct Version_expression& exp = explist->expressions[k];
1680 char* demangled_name = NULL;
1681 if (exp.language == "C++")
1682 {
1683 demangled_name = cplus_demangle(symbol_name,
1684 DMGL_ANSI | DMGL_PARAMS);
1685 // This isn't a C++ symbol.
1686 if (demangled_name == NULL)
1687 continue;
1688 name_to_match = demangled_name;
1689 }
1690 else if (exp.language == "Java")
1691 {
1692 demangled_name = cplus_demangle(symbol_name,
1693 (DMGL_ANSI | DMGL_PARAMS
1694 | DMGL_JAVA));
1695 // This isn't a Java symbol.
1696 if (demangled_name == NULL)
1697 continue;
1698 name_to_match = demangled_name;
1699 }
1700 bool matched;
1701 if (exp.exact_match)
1702 matched = strcmp(exp.pattern.c_str(), name_to_match) == 0;
1703 else
1704 matched = fnmatch(exp.pattern.c_str(), name_to_match,
1705 FNM_NOESCAPE) == 0;
1706 if (demangled_name != NULL)
1707 free(demangled_name);
1708 if (matched)
1709 return version_trees_[j]->tag;
1710 }
1711 }
1712 static const std::string empty = "";
1713 return empty;
1714 }
1715
1716 struct Version_dependency_list*
1717 Version_script_info::allocate_dependency_list()
1718 {
1719 dependency_lists_.push_back(new Version_dependency_list);
1720 return dependency_lists_.back();
1721 }
1722
1723 struct Version_expression_list*
1724 Version_script_info::allocate_expression_list()
1725 {
1726 expression_lists_.push_back(new Version_expression_list);
1727 return expression_lists_.back();
1728 }
1729
1730 struct Version_tree*
1731 Version_script_info::allocate_version_tree()
1732 {
1733 version_trees_.push_back(new Version_tree);
1734 return version_trees_.back();
1735 }
1736
1737 // Print for debugging.
1738
1739 void
1740 Version_script_info::print(FILE* f) const
1741 {
1742 if (this->empty())
1743 return;
1744
1745 fprintf(f, "VERSION {");
1746
1747 for (size_t i = 0; i < this->version_trees_.size(); ++i)
1748 {
1749 const Version_tree* vt = this->version_trees_[i];
1750
1751 if (vt->tag.empty())
1752 fprintf(f, " {\n");
1753 else
1754 fprintf(f, " %s {\n", vt->tag.c_str());
1755
1756 if (vt->global != NULL)
1757 {
1758 fprintf(f, " global :\n");
1759 this->print_expression_list(f, vt->global);
1760 }
1761
1762 if (vt->local != NULL)
1763 {
1764 fprintf(f, " local :\n");
1765 this->print_expression_list(f, vt->local);
1766 }
1767
1768 fprintf(f, " }");
1769 if (vt->dependencies != NULL)
1770 {
1771 const Version_dependency_list* deps = vt->dependencies;
1772 for (size_t j = 0; j < deps->dependencies.size(); ++j)
1773 {
1774 if (j < deps->dependencies.size() - 1)
1775 fprintf(f, "\n");
1776 fprintf(f, " %s", deps->dependencies[j].c_str());
1777 }
1778 }
1779 fprintf(f, ";\n");
1780 }
1781
1782 fprintf(f, "}\n");
1783 }
1784
1785 void
1786 Version_script_info::print_expression_list(
1787 FILE* f,
1788 const Version_expression_list* vel) const
1789 {
1790 std::string current_language;
1791 for (size_t i = 0; i < vel->expressions.size(); ++i)
1792 {
1793 const Version_expression& ve(vel->expressions[i]);
1794
1795 if (ve.language != current_language)
1796 {
1797 if (!current_language.empty())
1798 fprintf(f, " }\n");
1799 fprintf(f, " extern \"%s\" {\n", ve.language.c_str());
1800 current_language = ve.language;
1801 }
1802
1803 fprintf(f, " ");
1804 if (!current_language.empty())
1805 fprintf(f, " ");
1806
1807 if (ve.exact_match)
1808 fprintf(f, "\"");
1809 fprintf(f, "%s", ve.pattern.c_str());
1810 if (ve.exact_match)
1811 fprintf(f, "\"");
1812
1813 fprintf(f, "\n");
1814 }
1815
1816 if (!current_language.empty())
1817 fprintf(f, " }\n");
1818 }
1819
1820 } // End namespace gold.
1821
1822 // The remaining functions are extern "C", so it's clearer to not put
1823 // them in namespace gold.
1824
1825 using namespace gold;
1826
1827 // This function is called by the bison parser to return the next
1828 // token.
1829
1830 extern "C" int
1831 yylex(YYSTYPE* lvalp, void* closurev)
1832 {
1833 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1834 const Token* token = closure->next_token();
1835 switch (token->classification())
1836 {
1837 default:
1838 gold_unreachable();
1839
1840 case Token::TOKEN_INVALID:
1841 yyerror(closurev, "invalid character");
1842 return 0;
1843
1844 case Token::TOKEN_EOF:
1845 return 0;
1846
1847 case Token::TOKEN_STRING:
1848 {
1849 // This is either a keyword or a STRING.
1850 size_t len;
1851 const char* str = token->string_value(&len);
1852 int parsecode = 0;
1853 switch (closure->lex_mode())
1854 {
1855 case Lex::LINKER_SCRIPT:
1856 parsecode = script_keywords.keyword_to_parsecode(str, len);
1857 break;
1858 case Lex::VERSION_SCRIPT:
1859 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
1860 break;
1861 default:
1862 break;
1863 }
1864 if (parsecode != 0)
1865 return parsecode;
1866 lvalp->string.value = str;
1867 lvalp->string.length = len;
1868 return STRING;
1869 }
1870
1871 case Token::TOKEN_QUOTED_STRING:
1872 lvalp->string.value = token->string_value(&lvalp->string.length);
1873 return QUOTED_STRING;
1874
1875 case Token::TOKEN_OPERATOR:
1876 return token->operator_value();
1877
1878 case Token::TOKEN_INTEGER:
1879 lvalp->integer = token->integer_value();
1880 return INTEGER;
1881 }
1882 }
1883
1884 // This function is called by the bison parser to report an error.
1885
1886 extern "C" void
1887 yyerror(void* closurev, const char* message)
1888 {
1889 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1890 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
1891 closure->charpos(), message);
1892 }
1893
1894 // Called by the bison parser to add a file to the link.
1895
1896 extern "C" void
1897 script_add_file(void* closurev, const char* name, size_t length)
1898 {
1899 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1900
1901 // If this is an absolute path, and we found the script in the
1902 // sysroot, then we want to prepend the sysroot to the file name.
1903 // For example, this is how we handle a cross link to the x86_64
1904 // libc.so, which refers to /lib/libc.so.6.
1905 std::string name_string(name, length);
1906 const char* extra_search_path = ".";
1907 std::string script_directory;
1908 if (IS_ABSOLUTE_PATH(name_string.c_str()))
1909 {
1910 if (closure->is_in_sysroot())
1911 {
1912 const std::string& sysroot(parameters->sysroot());
1913 gold_assert(!sysroot.empty());
1914 name_string = sysroot + name_string;
1915 }
1916 }
1917 else
1918 {
1919 // In addition to checking the normal library search path, we
1920 // also want to check in the script-directory.
1921 const char *slash = strrchr(closure->filename(), '/');
1922 if (slash != NULL)
1923 {
1924 script_directory.assign(closure->filename(),
1925 slash - closure->filename() + 1);
1926 extra_search_path = script_directory.c_str();
1927 }
1928 }
1929
1930 Input_file_argument file(name_string.c_str(), false, extra_search_path,
1931 closure->position_dependent_options());
1932 closure->inputs()->add_file(file);
1933 }
1934
1935 // Called by the bison parser to start a group. If we are already in
1936 // a group, that means that this script was invoked within a
1937 // --start-group --end-group sequence on the command line, or that
1938 // this script was found in a GROUP of another script. In that case,
1939 // we simply continue the existing group, rather than starting a new
1940 // one. It is possible to construct a case in which this will do
1941 // something other than what would happen if we did a recursive group,
1942 // but it's hard to imagine why the different behaviour would be
1943 // useful for a real program. Avoiding recursive groups is simpler
1944 // and more efficient.
1945
1946 extern "C" void
1947 script_start_group(void* closurev)
1948 {
1949 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1950 if (!closure->in_group())
1951 closure->inputs()->start_group();
1952 }
1953
1954 // Called by the bison parser at the end of a group.
1955
1956 extern "C" void
1957 script_end_group(void* closurev)
1958 {
1959 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1960 if (!closure->in_group())
1961 closure->inputs()->end_group();
1962 }
1963
1964 // Called by the bison parser to start an AS_NEEDED list.
1965
1966 extern "C" void
1967 script_start_as_needed(void* closurev)
1968 {
1969 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1970 closure->position_dependent_options().set_as_needed();
1971 }
1972
1973 // Called by the bison parser at the end of an AS_NEEDED list.
1974
1975 extern "C" void
1976 script_end_as_needed(void* closurev)
1977 {
1978 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1979 closure->position_dependent_options().clear_as_needed();
1980 }
1981
1982 // Called by the bison parser to set the entry symbol.
1983
1984 extern "C" void
1985 script_set_entry(void* closurev, const char* entry, size_t length)
1986 {
1987 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1988 closure->script_options()->set_entry(entry, length);
1989 }
1990
1991 // Called by the bison parser to define a symbol.
1992
1993 extern "C" void
1994 script_set_symbol(void* closurev, const char* name, size_t length,
1995 Expression* value, int providei, int hiddeni)
1996 {
1997 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
1998 const bool provide = providei != 0;
1999 const bool hidden = hiddeni != 0;
2000 closure->script_options()->add_symbol_assignment(name, length, value,
2001 provide, hidden);
2002 }
2003
2004 // Called by the bison parser to add an assertion.
2005
2006 extern "C" void
2007 script_add_assertion(void* closurev, Expression* check, const char* message,
2008 size_t messagelen)
2009 {
2010 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2011 closure->script_options()->add_assertion(check, message, messagelen);
2012 }
2013
2014 // Called by the bison parser to parse an OPTION.
2015
2016 extern "C" void
2017 script_parse_option(void* closurev, const char* option, size_t length)
2018 {
2019 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2020 // We treat the option as a single command-line option, even if
2021 // it has internal whitespace.
2022 if (closure->command_line() == NULL)
2023 {
2024 // There are some options that we could handle here--e.g.,
2025 // -lLIBRARY. Should we bother?
2026 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2027 " for scripts specified via -T/--script"),
2028 closure->filename(), closure->lineno(), closure->charpos());
2029 }
2030 else
2031 {
2032 bool past_a_double_dash_option = false;
2033 char* mutable_option = strndup(option, length);
2034 gold_assert(mutable_option != NULL);
2035 closure->command_line()->process_one_option(1, &mutable_option, 0,
2036 &past_a_double_dash_option);
2037 free(mutable_option);
2038 }
2039 }
2040
2041 /* Called by the bison parser to push the lexer into expression
2042 mode. */
2043
2044 extern "C" void
2045 script_push_lex_into_expression_mode(void* closurev)
2046 {
2047 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2048 closure->push_lex_mode(Lex::EXPRESSION);
2049 }
2050
2051 /* Called by the bison parser to push the lexer into version
2052 mode. */
2053
2054 extern "C" void
2055 script_push_lex_into_version_mode(void* closurev)
2056 {
2057 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2058 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2059 }
2060
2061 /* Called by the bison parser to pop the lexer mode. */
2062
2063 extern "C" void
2064 script_pop_lex_mode(void* closurev)
2065 {
2066 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2067 closure->pop_lex_mode();
2068 }
2069
2070 // Register an entire version node. For example:
2071 //
2072 // GLIBC_2.1 {
2073 // global: foo;
2074 // } GLIBC_2.0;
2075 //
2076 // - tag is "GLIBC_2.1"
2077 // - tree contains the information "global: foo"
2078 // - deps contains "GLIBC_2.0"
2079
2080 extern "C" void
2081 script_register_vers_node(void*,
2082 const char* tag,
2083 int taglen,
2084 struct Version_tree *tree,
2085 struct Version_dependency_list *deps)
2086 {
2087 gold_assert(tree != NULL);
2088 gold_assert(tag != NULL);
2089 tree->dependencies = deps;
2090 tree->tag = std::string(tag, taglen);
2091 }
2092
2093 // Add a dependencies to the list of existing dependencies, if any,
2094 // and return the expanded list.
2095
2096 extern "C" struct Version_dependency_list *
2097 script_add_vers_depend(void* closurev,
2098 struct Version_dependency_list *all_deps,
2099 const char *depend_to_add, int deplen)
2100 {
2101 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2102 if (all_deps == NULL)
2103 all_deps = closure->version_script()->allocate_dependency_list();
2104 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2105 return all_deps;
2106 }
2107
2108 // Add a pattern expression to an existing list of expressions, if any.
2109 // TODO: In the old linker, the last argument used to be a bool, but I
2110 // don't know what it meant.
2111
2112 extern "C" struct Version_expression_list *
2113 script_new_vers_pattern(void* closurev,
2114 struct Version_expression_list *expressions,
2115 const char *pattern, int patlen, int exact_match)
2116 {
2117 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2118 if (expressions == NULL)
2119 expressions = closure->version_script()->allocate_expression_list();
2120 expressions->expressions.push_back(
2121 Version_expression(std::string(pattern, patlen),
2122 closure->get_current_language(),
2123 static_cast<bool>(exact_match)));
2124 return expressions;
2125 }
2126
2127 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2128
2129 extern "C" struct Version_expression_list*
2130 script_merge_expressions(struct Version_expression_list *a,
2131 struct Version_expression_list *b)
2132 {
2133 a->expressions.insert(a->expressions.end(),
2134 b->expressions.begin(), b->expressions.end());
2135 // We could delete b and remove it from expressions_lists_, but
2136 // that's a lot of work. This works just as well.
2137 b->expressions.clear();
2138 return a;
2139 }
2140
2141 // Combine the global and local expressions into a a Version_tree.
2142
2143 extern "C" struct Version_tree *
2144 script_new_vers_node(void* closurev,
2145 struct Version_expression_list *global,
2146 struct Version_expression_list *local)
2147 {
2148 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2149 Version_tree* tree = closure->version_script()->allocate_version_tree();
2150 tree->global = global;
2151 tree->local = local;
2152 return tree;
2153 }
2154
2155 // Handle a transition in language, such as at the
2156 // start or end of 'extern "C++"'
2157
2158 extern "C" void
2159 version_script_push_lang(void* closurev, const char* lang, int langlen)
2160 {
2161 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2162 closure->push_language(std::string(lang, langlen));
2163 }
2164
2165 extern "C" void
2166 version_script_pop_lang(void* closurev)
2167 {
2168 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2169 closure->pop_language();
2170 }
2171
2172 // Called by the bison parser to start a SECTIONS clause.
2173
2174 extern "C" void
2175 script_start_sections(void* closurev)
2176 {
2177 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2178 closure->script_options()->script_sections()->start_sections();
2179 }
2180
2181 // Called by the bison parser to finish a SECTIONS clause.
2182
2183 extern "C" void
2184 script_finish_sections(void* closurev)
2185 {
2186 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2187 closure->script_options()->script_sections()->finish_sections();
2188 }
2189
2190 // Start processing entries for an output section.
2191
2192 extern "C" void
2193 script_start_output_section(void* closurev, const char* name, size_t namelen,
2194 const struct Parser_output_section_header* header)
2195 {
2196 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2197 closure->script_options()->script_sections()->start_output_section(name,
2198 namelen,
2199 header);
2200 }
2201
2202 // Finish processing entries for an output section.
2203
2204 extern "C" void
2205 script_finish_output_section(void* closurev,
2206 const struct Parser_output_section_trailer* trail)
2207 {
2208 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2209 closure->script_options()->script_sections()->finish_output_section(trail);
2210 }
2211
2212 // Add a data item (e.g., "WORD (0)") to the current output section.
2213
2214 extern "C" void
2215 script_add_data(void* closurev, int data_token, Expression* val)
2216 {
2217 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2218 int size;
2219 bool is_signed = true;
2220 switch (data_token)
2221 {
2222 case QUAD:
2223 size = 8;
2224 is_signed = false;
2225 break;
2226 case SQUAD:
2227 size = 8;
2228 break;
2229 case LONG:
2230 size = 4;
2231 break;
2232 case SHORT:
2233 size = 2;
2234 break;
2235 case BYTE:
2236 size = 1;
2237 break;
2238 default:
2239 gold_unreachable();
2240 }
2241 closure->script_options()->script_sections()->add_data(size, is_signed, val);
2242 }
2243
2244 // Add a clause setting the fill value to the current output section.
2245
2246 extern "C" void
2247 script_add_fill(void* closurev, Expression* val)
2248 {
2249 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2250 closure->script_options()->script_sections()->add_fill(val);
2251 }
2252
2253 // Add a new input section specification to the current output
2254 // section.
2255
2256 extern "C" void
2257 script_add_input_section(void* closurev,
2258 const struct Input_section_spec* spec,
2259 int keepi)
2260 {
2261 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2262 bool keep = keepi != 0;
2263 closure->script_options()->script_sections()->add_input_section(spec, keep);
2264 }
2265
2266 // Create a new list of string/sort pairs.
2267
2268 extern "C" String_sort_list_ptr
2269 script_new_string_sort_list(const struct Wildcard_section* string_sort)
2270 {
2271 return new String_sort_list(1, *string_sort);
2272 }
2273
2274 // Add an entry to a list of string/sort pairs. The way the parser
2275 // works permits us to simply modify the first parameter, rather than
2276 // copy the vector.
2277
2278 extern "C" String_sort_list_ptr
2279 script_string_sort_list_add(String_sort_list_ptr pv,
2280 const struct Wildcard_section* string_sort)
2281 {
2282 pv->push_back(*string_sort);
2283 return pv;
2284 }
2285
2286 // Create a new list of strings.
2287
2288 extern "C" String_list_ptr
2289 script_new_string_list(const char* str, size_t len)
2290 {
2291 return new String_list(1, std::string(str, len));
2292 }
2293
2294 // Add an element to a list of strings. The way the parser works
2295 // permits us to simply modify the first parameter, rather than copy
2296 // the vector.
2297
2298 extern "C" String_list_ptr
2299 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
2300 {
2301 pv->push_back(std::string(str, len));
2302 return pv;
2303 }
2304
2305 // Concatenate two string lists. Either or both may be NULL. The way
2306 // the parser works permits us to modify the parameters, rather than
2307 // copy the vector.
2308
2309 extern "C" String_list_ptr
2310 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
2311 {
2312 if (pv1 == NULL)
2313 return pv2;
2314 if (pv2 == NULL)
2315 return pv1;
2316 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
2317 return pv1;
2318 }
This page took 0.076551 seconds and 5 git commands to generate.