2009-10-10 Chris Demetriou <cgd@google.com>
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56 public:
57 // Token classification.
58 enum Classification
59 {
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
72 };
73
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
79
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
84 {
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
87 }
88
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
94 {
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
97 }
98
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
103 { }
104
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
109
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
114
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
119
120 // Return the line number at which the token starts.
121 int
122 lineno() const
123 { return this->lineno_; }
124
125 // Return the character position at this the token starts.
126 int
127 charpos() const
128 { return this->charpos_; }
129
130 // Get the value of a token.
131
132 const char*
133 string_value(size_t* length) const
134 {
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
139 }
140
141 int
142 operator_value() const
143 {
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
146 }
147
148 uint64_t
149 integer_value() const
150 {
151 gold_assert(this->classification_ == TOKEN_INTEGER);
152 // Null terminate.
153 std::string s(this->value_, this->value_length_);
154 return strtoull(s.c_str(), NULL, 0);
155 }
156
157 private:
158 // The token classification.
159 Classification classification_;
160 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
161 // TOKEN_INTEGER.
162 const char* value_;
163 // The length of the token value.
164 size_t value_length_;
165 // The token value, for TOKEN_OPERATOR.
166 int opcode_;
167 // The line number where this token started (one based).
168 int lineno_;
169 // The character position within the line where this token started
170 // (one based).
171 int charpos_;
172 };
173
174 // This class handles lexing a file into a sequence of tokens.
175
176 class Lex
177 {
178 public:
179 // We unfortunately have to support different lexing modes, because
180 // when reading different parts of a linker script we need to parse
181 // things differently.
182 enum Mode
183 {
184 // Reading an ordinary linker script.
185 LINKER_SCRIPT,
186 // Reading an expression in a linker script.
187 EXPRESSION,
188 // Reading a version script.
189 VERSION_SCRIPT,
190 // Reading a --dynamic-list file.
191 DYNAMIC_LIST
192 };
193
194 Lex(const char* input_string, size_t input_length, int parsing_token)
195 : input_string_(input_string), input_length_(input_length),
196 current_(input_string), mode_(LINKER_SCRIPT),
197 first_token_(parsing_token), token_(),
198 lineno_(1), linestart_(input_string)
199 { }
200
201 // Read a file into a string.
202 static void
203 read_file(Input_file*, std::string*);
204
205 // Return the next token.
206 const Token*
207 next_token();
208
209 // Return the current lexing mode.
210 Lex::Mode
211 mode() const
212 { return this->mode_; }
213
214 // Set the lexing mode.
215 void
216 set_mode(Mode mode)
217 { this->mode_ = mode; }
218
219 private:
220 Lex(const Lex&);
221 Lex& operator=(const Lex&);
222
223 // Make a general token with no value at the current location.
224 Token
225 make_token(Token::Classification c, const char* start) const
226 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
227
228 // Make a general token with a value at the current location.
229 Token
230 make_token(Token::Classification c, const char* v, size_t len,
231 const char* start)
232 const
233 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
234
235 // Make an operator token at the current location.
236 Token
237 make_token(int opcode, const char* start) const
238 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
239
240 // Make an invalid token at the current location.
241 Token
242 make_invalid_token(const char* start)
243 { return this->make_token(Token::TOKEN_INVALID, start); }
244
245 // Make an EOF token at the current location.
246 Token
247 make_eof_token(const char* start)
248 { return this->make_token(Token::TOKEN_EOF, start); }
249
250 // Return whether C can be the first character in a name. C2 is the
251 // next character, since we sometimes need that.
252 inline bool
253 can_start_name(char c, char c2);
254
255 // If C can appear in a name which has already started, return a
256 // pointer to a character later in the token or just past
257 // it. Otherwise, return NULL.
258 inline const char*
259 can_continue_name(const char* c);
260
261 // Return whether C, C2, C3 can start a hex number.
262 inline bool
263 can_start_hex(char c, char c2, char c3);
264
265 // If C can appear in a hex number which has already started, return
266 // a pointer to a character later in the token or just past
267 // it. Otherwise, return NULL.
268 inline const char*
269 can_continue_hex(const char* c);
270
271 // Return whether C can start a non-hex number.
272 static inline bool
273 can_start_number(char c);
274
275 // If C can appear in a decimal number which has already started,
276 // return a pointer to a character later in the token or just past
277 // it. Otherwise, return NULL.
278 inline const char*
279 can_continue_number(const char* c)
280 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
281
282 // If C1 C2 C3 form a valid three character operator, return the
283 // opcode. Otherwise return 0.
284 static inline int
285 three_char_operator(char c1, char c2, char c3);
286
287 // If C1 C2 form a valid two character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 two_char_operator(char c1, char c2);
291
292 // If C1 is a valid one character operator, return the opcode.
293 // Otherwise return 0.
294 static inline int
295 one_char_operator(char c1);
296
297 // Read the next token.
298 Token
299 get_token(const char**);
300
301 // Skip a C style /* */ comment. Return false if the comment did
302 // not end.
303 bool
304 skip_c_comment(const char**);
305
306 // Skip a line # comment. Return false if there was no newline.
307 bool
308 skip_line_comment(const char**);
309
310 // Build a token CLASSIFICATION from all characters that match
311 // CAN_CONTINUE_FN. The token starts at START. Start matching from
312 // MATCH. Set *PP to the character following the token.
313 inline Token
314 gather_token(Token::Classification,
315 const char* (Lex::*can_continue_fn)(const char*),
316 const char* start, const char* match, const char** pp);
317
318 // Build a token from a quoted string.
319 Token
320 gather_quoted_string(const char** pp);
321
322 // The string we are tokenizing.
323 const char* input_string_;
324 // The length of the string.
325 size_t input_length_;
326 // The current offset into the string.
327 const char* current_;
328 // The current lexing mode.
329 Mode mode_;
330 // The code to use for the first token. This is set to 0 after it
331 // is used.
332 int first_token_;
333 // The current token.
334 Token token_;
335 // The current line number.
336 int lineno_;
337 // The start of the current line in the string.
338 const char* linestart_;
339 };
340
341 // Read the whole file into memory. We don't expect linker scripts to
342 // be large, so we just use a std::string as a buffer. We ignore the
343 // data we've already read, so that we read aligned buffers.
344
345 void
346 Lex::read_file(Input_file* input_file, std::string* contents)
347 {
348 off_t filesize = input_file->file().filesize();
349 contents->clear();
350 contents->reserve(filesize);
351
352 off_t off = 0;
353 unsigned char buf[BUFSIZ];
354 while (off < filesize)
355 {
356 off_t get = BUFSIZ;
357 if (get > filesize - off)
358 get = filesize - off;
359 input_file->file().read(off, get, buf);
360 contents->append(reinterpret_cast<char*>(&buf[0]), get);
361 off += get;
362 }
363 }
364
365 // Return whether C can be the start of a name, if the next character
366 // is C2. A name can being with a letter, underscore, period, or
367 // dollar sign. Because a name can be a file name, we also permit
368 // forward slash, backslash, and tilde. Tilde is the tricky case
369 // here; GNU ld also uses it as a bitwise not operator. It is only
370 // recognized as the operator if it is not immediately followed by
371 // some character which can appear in a symbol. That is, when we
372 // don't know that we are looking at an expression, "~0" is a file
373 // name, and "~ 0" is an expression using bitwise not. We are
374 // compatible.
375
376 inline bool
377 Lex::can_start_name(char c, char c2)
378 {
379 switch (c)
380 {
381 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
382 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
383 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
384 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
385 case 'Y': case 'Z':
386 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
387 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
388 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
389 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
390 case 'y': case 'z':
391 case '_': case '.': case '$':
392 return true;
393
394 case '/': case '\\':
395 return this->mode_ == LINKER_SCRIPT;
396
397 case '~':
398 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
399
400 case '*': case '[':
401 return (this->mode_ == VERSION_SCRIPT
402 || this->mode_ == DYNAMIC_LIST
403 || (this->mode_ == LINKER_SCRIPT
404 && can_continue_name(&c2)));
405
406 default:
407 return false;
408 }
409 }
410
411 // Return whether C can continue a name which has already started.
412 // Subsequent characters in a name are the same as the leading
413 // characters, plus digits and "=+-:[],?*". So in general the linker
414 // script language requires spaces around operators, unless we know
415 // that we are parsing an expression.
416
417 inline const char*
418 Lex::can_continue_name(const char* c)
419 {
420 switch (*c)
421 {
422 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
423 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
424 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
425 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
426 case 'Y': case 'Z':
427 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
428 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
429 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
430 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
431 case 'y': case 'z':
432 case '_': case '.': case '$':
433 case '0': case '1': case '2': case '3': case '4':
434 case '5': case '6': case '7': case '8': case '9':
435 return c + 1;
436
437 // TODO(csilvers): why not allow ~ in names for version-scripts?
438 case '/': case '\\': case '~':
439 case '=': case '+':
440 case ',':
441 if (this->mode_ == LINKER_SCRIPT)
442 return c + 1;
443 return NULL;
444
445 case '[': case ']': case '*': case '?': case '-':
446 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
447 || this->mode_ == DYNAMIC_LIST)
448 return c + 1;
449 return NULL;
450
451 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
452 case '^':
453 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
454 return c + 1;
455 return NULL;
456
457 case ':':
458 if (this->mode_ == LINKER_SCRIPT)
459 return c + 1;
460 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
461 && (c[1] == ':'))
462 {
463 // A name can have '::' in it, as that's a c++ namespace
464 // separator. But a single colon is not part of a name.
465 return c + 2;
466 }
467 return NULL;
468
469 default:
470 return NULL;
471 }
472 }
473
474 // For a number we accept 0x followed by hex digits, or any sequence
475 // of digits. The old linker accepts leading '$' for hex, and
476 // trailing HXBOD. Those are for MRI compatibility and we don't
477 // accept them. The old linker also accepts trailing MK for mega or
478 // kilo. FIXME: Those are mentioned in the documentation, and we
479 // should accept them.
480
481 // Return whether C1 C2 C3 can start a hex number.
482
483 inline bool
484 Lex::can_start_hex(char c1, char c2, char c3)
485 {
486 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
487 return this->can_continue_hex(&c3);
488 return false;
489 }
490
491 // Return whether C can appear in a hex number.
492
493 inline const char*
494 Lex::can_continue_hex(const char* c)
495 {
496 switch (*c)
497 {
498 case '0': case '1': case '2': case '3': case '4':
499 case '5': case '6': case '7': case '8': case '9':
500 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
501 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
502 return c + 1;
503
504 default:
505 return NULL;
506 }
507 }
508
509 // Return whether C can start a non-hex number.
510
511 inline bool
512 Lex::can_start_number(char c)
513 {
514 switch (c)
515 {
516 case '0': case '1': case '2': case '3': case '4':
517 case '5': case '6': case '7': case '8': case '9':
518 return true;
519
520 default:
521 return false;
522 }
523 }
524
525 // If C1 C2 C3 form a valid three character operator, return the
526 // opcode (defined in the yyscript.h file generated from yyscript.y).
527 // Otherwise return 0.
528
529 inline int
530 Lex::three_char_operator(char c1, char c2, char c3)
531 {
532 switch (c1)
533 {
534 case '<':
535 if (c2 == '<' && c3 == '=')
536 return LSHIFTEQ;
537 break;
538 case '>':
539 if (c2 == '>' && c3 == '=')
540 return RSHIFTEQ;
541 break;
542 default:
543 break;
544 }
545 return 0;
546 }
547
548 // If C1 C2 form a valid two character operator, return the opcode
549 // (defined in the yyscript.h file generated from yyscript.y).
550 // Otherwise return 0.
551
552 inline int
553 Lex::two_char_operator(char c1, char c2)
554 {
555 switch (c1)
556 {
557 case '=':
558 if (c2 == '=')
559 return EQ;
560 break;
561 case '!':
562 if (c2 == '=')
563 return NE;
564 break;
565 case '+':
566 if (c2 == '=')
567 return PLUSEQ;
568 break;
569 case '-':
570 if (c2 == '=')
571 return MINUSEQ;
572 break;
573 case '*':
574 if (c2 == '=')
575 return MULTEQ;
576 break;
577 case '/':
578 if (c2 == '=')
579 return DIVEQ;
580 break;
581 case '|':
582 if (c2 == '=')
583 return OREQ;
584 if (c2 == '|')
585 return OROR;
586 break;
587 case '&':
588 if (c2 == '=')
589 return ANDEQ;
590 if (c2 == '&')
591 return ANDAND;
592 break;
593 case '>':
594 if (c2 == '=')
595 return GE;
596 if (c2 == '>')
597 return RSHIFT;
598 break;
599 case '<':
600 if (c2 == '=')
601 return LE;
602 if (c2 == '<')
603 return LSHIFT;
604 break;
605 default:
606 break;
607 }
608 return 0;
609 }
610
611 // If C1 is a valid operator, return the opcode. Otherwise return 0.
612
613 inline int
614 Lex::one_char_operator(char c1)
615 {
616 switch (c1)
617 {
618 case '+':
619 case '-':
620 case '*':
621 case '/':
622 case '%':
623 case '!':
624 case '&':
625 case '|':
626 case '^':
627 case '~':
628 case '<':
629 case '>':
630 case '=':
631 case '?':
632 case ',':
633 case '(':
634 case ')':
635 case '{':
636 case '}':
637 case '[':
638 case ']':
639 case ':':
640 case ';':
641 return c1;
642 default:
643 return 0;
644 }
645 }
646
647 // Skip a C style comment. *PP points to just after the "/*". Return
648 // false if the comment did not end.
649
650 bool
651 Lex::skip_c_comment(const char** pp)
652 {
653 const char* p = *pp;
654 while (p[0] != '*' || p[1] != '/')
655 {
656 if (*p == '\0')
657 {
658 *pp = p;
659 return false;
660 }
661
662 if (*p == '\n')
663 {
664 ++this->lineno_;
665 this->linestart_ = p + 1;
666 }
667 ++p;
668 }
669
670 *pp = p + 2;
671 return true;
672 }
673
674 // Skip a line # comment. Return false if there was no newline.
675
676 bool
677 Lex::skip_line_comment(const char** pp)
678 {
679 const char* p = *pp;
680 size_t skip = strcspn(p, "\n");
681 if (p[skip] == '\0')
682 {
683 *pp = p + skip;
684 return false;
685 }
686
687 p += skip + 1;
688 ++this->lineno_;
689 this->linestart_ = p;
690 *pp = p;
691
692 return true;
693 }
694
695 // Build a token CLASSIFICATION from all characters that match
696 // CAN_CONTINUE_FN. Update *PP.
697
698 inline Token
699 Lex::gather_token(Token::Classification classification,
700 const char* (Lex::*can_continue_fn)(const char*),
701 const char* start,
702 const char* match,
703 const char **pp)
704 {
705 const char* new_match = NULL;
706 while ((new_match = (this->*can_continue_fn)(match)))
707 match = new_match;
708 *pp = match;
709 return this->make_token(classification, start, match - start, start);
710 }
711
712 // Build a token from a quoted string.
713
714 Token
715 Lex::gather_quoted_string(const char** pp)
716 {
717 const char* start = *pp;
718 const char* p = start;
719 ++p;
720 size_t skip = strcspn(p, "\"\n");
721 if (p[skip] != '"')
722 return this->make_invalid_token(start);
723 *pp = p + skip + 1;
724 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
725 }
726
727 // Return the next token at *PP. Update *PP. General guideline: we
728 // require linker scripts to be simple ASCII. No unicode linker
729 // scripts. In particular we can assume that any '\0' is the end of
730 // the input.
731
732 Token
733 Lex::get_token(const char** pp)
734 {
735 const char* p = *pp;
736
737 while (true)
738 {
739 if (*p == '\0')
740 {
741 *pp = p;
742 return this->make_eof_token(p);
743 }
744
745 // Skip whitespace quickly.
746 while (*p == ' ' || *p == '\t' || *p == '\r')
747 ++p;
748
749 if (*p == '\n')
750 {
751 ++p;
752 ++this->lineno_;
753 this->linestart_ = p;
754 continue;
755 }
756
757 // Skip C style comments.
758 if (p[0] == '/' && p[1] == '*')
759 {
760 int lineno = this->lineno_;
761 int charpos = p - this->linestart_ + 1;
762
763 *pp = p + 2;
764 if (!this->skip_c_comment(pp))
765 return Token(Token::TOKEN_INVALID, lineno, charpos);
766 p = *pp;
767
768 continue;
769 }
770
771 // Skip line comments.
772 if (*p == '#')
773 {
774 *pp = p + 1;
775 if (!this->skip_line_comment(pp))
776 return this->make_eof_token(p);
777 p = *pp;
778 continue;
779 }
780
781 // Check for a name.
782 if (this->can_start_name(p[0], p[1]))
783 return this->gather_token(Token::TOKEN_STRING,
784 &Lex::can_continue_name,
785 p, p + 1, pp);
786
787 // We accept any arbitrary name in double quotes, as long as it
788 // does not cross a line boundary.
789 if (*p == '"')
790 {
791 *pp = p;
792 return this->gather_quoted_string(pp);
793 }
794
795 // Check for a number.
796
797 if (this->can_start_hex(p[0], p[1], p[2]))
798 return this->gather_token(Token::TOKEN_INTEGER,
799 &Lex::can_continue_hex,
800 p, p + 3, pp);
801
802 if (Lex::can_start_number(p[0]))
803 return this->gather_token(Token::TOKEN_INTEGER,
804 &Lex::can_continue_number,
805 p, p + 1, pp);
806
807 // Check for operators.
808
809 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
810 if (opcode != 0)
811 {
812 *pp = p + 3;
813 return this->make_token(opcode, p);
814 }
815
816 opcode = Lex::two_char_operator(p[0], p[1]);
817 if (opcode != 0)
818 {
819 *pp = p + 2;
820 return this->make_token(opcode, p);
821 }
822
823 opcode = Lex::one_char_operator(p[0]);
824 if (opcode != 0)
825 {
826 *pp = p + 1;
827 return this->make_token(opcode, p);
828 }
829
830 return this->make_token(Token::TOKEN_INVALID, p);
831 }
832 }
833
834 // Return the next token.
835
836 const Token*
837 Lex::next_token()
838 {
839 // The first token is special.
840 if (this->first_token_ != 0)
841 {
842 this->token_ = Token(this->first_token_, 0, 0);
843 this->first_token_ = 0;
844 return &this->token_;
845 }
846
847 this->token_ = this->get_token(&this->current_);
848
849 // Don't let an early null byte fool us into thinking that we've
850 // reached the end of the file.
851 if (this->token_.is_eof()
852 && (static_cast<size_t>(this->current_ - this->input_string_)
853 < this->input_length_))
854 this->token_ = this->make_invalid_token(this->current_);
855
856 return &this->token_;
857 }
858
859 // class Symbol_assignment.
860
861 // Add the symbol to the symbol table. This makes sure the symbol is
862 // there and defined. The actual value is stored later. We can't
863 // determine the actual value at this point, because we can't
864 // necessarily evaluate the expression until all ordinary symbols have
865 // been finalized.
866
867 // The GNU linker lets symbol assignments in the linker script
868 // silently override defined symbols in object files. We are
869 // compatible. FIXME: Should we issue a warning?
870
871 void
872 Symbol_assignment::add_to_table(Symbol_table* symtab)
873 {
874 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
875 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
876 NULL, // version
877 0, // value
878 0, // size
879 elfcpp::STT_NOTYPE,
880 elfcpp::STB_GLOBAL,
881 vis,
882 0, // nonvis
883 this->provide_,
884 true); // force_override
885 }
886
887 // Finalize a symbol value.
888
889 void
890 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
891 {
892 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
893 }
894
895 // Finalize a symbol value which can refer to the dot symbol.
896
897 void
898 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
899 const Layout* layout,
900 uint64_t dot_value,
901 Output_section* dot_section)
902 {
903 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
904 }
905
906 // Finalize a symbol value, internal version.
907
908 void
909 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
910 const Layout* layout,
911 bool is_dot_available,
912 uint64_t dot_value,
913 Output_section* dot_section)
914 {
915 // If we were only supposed to provide this symbol, the sym_ field
916 // will be NULL if the symbol was not referenced.
917 if (this->sym_ == NULL)
918 {
919 gold_assert(this->provide_);
920 return;
921 }
922
923 if (parameters->target().get_size() == 32)
924 {
925 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
926 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
927 dot_section);
928 #else
929 gold_unreachable();
930 #endif
931 }
932 else if (parameters->target().get_size() == 64)
933 {
934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
935 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
936 dot_section);
937 #else
938 gold_unreachable();
939 #endif
940 }
941 else
942 gold_unreachable();
943 }
944
945 template<int size>
946 void
947 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
948 bool is_dot_available, uint64_t dot_value,
949 Output_section* dot_section)
950 {
951 Output_section* section;
952 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
953 is_dot_available,
954 dot_value, dot_section,
955 &section);
956 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
957 ssym->set_value(final_val);
958 if (section != NULL)
959 ssym->set_output_section(section);
960 }
961
962 // Set the symbol value if the expression yields an absolute value.
963
964 void
965 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
966 bool is_dot_available, uint64_t dot_value)
967 {
968 if (this->sym_ == NULL)
969 return;
970
971 Output_section* val_section;
972 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
973 is_dot_available, dot_value,
974 NULL, &val_section);
975 if (val_section != NULL)
976 return;
977
978 if (parameters->target().get_size() == 32)
979 {
980 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
981 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
982 ssym->set_value(val);
983 #else
984 gold_unreachable();
985 #endif
986 }
987 else if (parameters->target().get_size() == 64)
988 {
989 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
990 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
991 ssym->set_value(val);
992 #else
993 gold_unreachable();
994 #endif
995 }
996 else
997 gold_unreachable();
998 }
999
1000 // Print for debugging.
1001
1002 void
1003 Symbol_assignment::print(FILE* f) const
1004 {
1005 if (this->provide_ && this->hidden_)
1006 fprintf(f, "PROVIDE_HIDDEN(");
1007 else if (this->provide_)
1008 fprintf(f, "PROVIDE(");
1009 else if (this->hidden_)
1010 gold_unreachable();
1011
1012 fprintf(f, "%s = ", this->name_.c_str());
1013 this->val_->print(f);
1014
1015 if (this->provide_ || this->hidden_)
1016 fprintf(f, ")");
1017
1018 fprintf(f, "\n");
1019 }
1020
1021 // Class Script_assertion.
1022
1023 // Check the assertion.
1024
1025 void
1026 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1027 {
1028 if (!this->check_->eval(symtab, layout, true))
1029 gold_error("%s", this->message_.c_str());
1030 }
1031
1032 // Print for debugging.
1033
1034 void
1035 Script_assertion::print(FILE* f) const
1036 {
1037 fprintf(f, "ASSERT(");
1038 this->check_->print(f);
1039 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1040 }
1041
1042 // Class Script_options.
1043
1044 Script_options::Script_options()
1045 : entry_(), symbol_assignments_(), version_script_info_(),
1046 script_sections_()
1047 {
1048 }
1049
1050 // Add a symbol to be defined.
1051
1052 void
1053 Script_options::add_symbol_assignment(const char* name, size_t length,
1054 Expression* value, bool provide,
1055 bool hidden)
1056 {
1057 if (length != 1 || name[0] != '.')
1058 {
1059 if (this->script_sections_.in_sections_clause())
1060 this->script_sections_.add_symbol_assignment(name, length, value,
1061 provide, hidden);
1062 else
1063 {
1064 Symbol_assignment* p = new Symbol_assignment(name, length, value,
1065 provide, hidden);
1066 this->symbol_assignments_.push_back(p);
1067 }
1068 }
1069 else
1070 {
1071 if (provide || hidden)
1072 gold_error(_("invalid use of PROVIDE for dot symbol"));
1073 if (!this->script_sections_.in_sections_clause())
1074 gold_error(_("invalid assignment to dot outside of SECTIONS"));
1075 else
1076 this->script_sections_.add_dot_assignment(value);
1077 }
1078 }
1079
1080 // Add an assertion.
1081
1082 void
1083 Script_options::add_assertion(Expression* check, const char* message,
1084 size_t messagelen)
1085 {
1086 if (this->script_sections_.in_sections_clause())
1087 this->script_sections_.add_assertion(check, message, messagelen);
1088 else
1089 {
1090 Script_assertion* p = new Script_assertion(check, message, messagelen);
1091 this->assertions_.push_back(p);
1092 }
1093 }
1094
1095 // Create sections required by any linker scripts.
1096
1097 void
1098 Script_options::create_script_sections(Layout* layout)
1099 {
1100 if (this->saw_sections_clause())
1101 this->script_sections_.create_sections(layout);
1102 }
1103
1104 // Add any symbols we are defining to the symbol table.
1105
1106 void
1107 Script_options::add_symbols_to_table(Symbol_table* symtab)
1108 {
1109 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1110 p != this->symbol_assignments_.end();
1111 ++p)
1112 (*p)->add_to_table(symtab);
1113 this->script_sections_.add_symbols_to_table(symtab);
1114 }
1115
1116 // Finalize symbol values. Also check assertions.
1117
1118 void
1119 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1120 {
1121 // We finalize the symbols defined in SECTIONS first, because they
1122 // are the ones which may have changed. This way if symbol outside
1123 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1124 // will get the right value.
1125 this->script_sections_.finalize_symbols(symtab, layout);
1126
1127 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1128 p != this->symbol_assignments_.end();
1129 ++p)
1130 (*p)->finalize(symtab, layout);
1131
1132 for (Assertions::iterator p = this->assertions_.begin();
1133 p != this->assertions_.end();
1134 ++p)
1135 (*p)->check(symtab, layout);
1136 }
1137
1138 // Set section addresses. We set all the symbols which have absolute
1139 // values. Then we let the SECTIONS clause do its thing. This
1140 // returns the segment which holds the file header and segment
1141 // headers, if any.
1142
1143 Output_segment*
1144 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1145 {
1146 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1147 p != this->symbol_assignments_.end();
1148 ++p)
1149 (*p)->set_if_absolute(symtab, layout, false, 0);
1150
1151 return this->script_sections_.set_section_addresses(symtab, layout);
1152 }
1153
1154 // This class holds data passed through the parser to the lexer and to
1155 // the parser support functions. This avoids global variables. We
1156 // can't use global variables because we need not be called by a
1157 // singleton thread.
1158
1159 class Parser_closure
1160 {
1161 public:
1162 Parser_closure(const char* filename,
1163 const Position_dependent_options& posdep_options,
1164 bool in_group, bool is_in_sysroot,
1165 Command_line* command_line,
1166 Script_options* script_options,
1167 Lex* lex,
1168 bool skip_on_incompatible_target)
1169 : filename_(filename), posdep_options_(posdep_options),
1170 in_group_(in_group), is_in_sysroot_(is_in_sysroot),
1171 skip_on_incompatible_target_(skip_on_incompatible_target),
1172 found_incompatible_target_(false),
1173 command_line_(command_line), script_options_(script_options),
1174 version_script_info_(script_options->version_script_info()),
1175 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1176 {
1177 // We start out processing C symbols in the default lex mode.
1178 language_stack_.push_back("");
1179 lex_mode_stack_.push_back(lex->mode());
1180 }
1181
1182 // Return the file name.
1183 const char*
1184 filename() const
1185 { return this->filename_; }
1186
1187 // Return the position dependent options. The caller may modify
1188 // this.
1189 Position_dependent_options&
1190 position_dependent_options()
1191 { return this->posdep_options_; }
1192
1193 // Return whether this script is being run in a group.
1194 bool
1195 in_group() const
1196 { return this->in_group_; }
1197
1198 // Return whether this script was found using a directory in the
1199 // sysroot.
1200 bool
1201 is_in_sysroot() const
1202 { return this->is_in_sysroot_; }
1203
1204 // Whether to skip to the next file with the same name if we find an
1205 // incompatible target in an OUTPUT_FORMAT statement.
1206 bool
1207 skip_on_incompatible_target() const
1208 { return this->skip_on_incompatible_target_; }
1209
1210 // Stop skipping to the next file on an incompatible target. This
1211 // is called when we make some unrevocable change to the data
1212 // structures.
1213 void
1214 clear_skip_on_incompatible_target()
1215 { this->skip_on_incompatible_target_ = false; }
1216
1217 // Whether we found an incompatible target in an OUTPUT_FORMAT
1218 // statement.
1219 bool
1220 found_incompatible_target() const
1221 { return this->found_incompatible_target_; }
1222
1223 // Note that we found an incompatible target.
1224 void
1225 set_found_incompatible_target()
1226 { this->found_incompatible_target_ = true; }
1227
1228 // Returns the Command_line structure passed in at constructor time.
1229 // This value may be NULL. The caller may modify this, which modifies
1230 // the passed-in Command_line object (not a copy).
1231 Command_line*
1232 command_line()
1233 { return this->command_line_; }
1234
1235 // Return the options which may be set by a script.
1236 Script_options*
1237 script_options()
1238 { return this->script_options_; }
1239
1240 // Return the object in which version script information should be stored.
1241 Version_script_info*
1242 version_script()
1243 { return this->version_script_info_; }
1244
1245 // Return the next token, and advance.
1246 const Token*
1247 next_token()
1248 {
1249 const Token* token = this->lex_->next_token();
1250 this->lineno_ = token->lineno();
1251 this->charpos_ = token->charpos();
1252 return token;
1253 }
1254
1255 // Set a new lexer mode, pushing the current one.
1256 void
1257 push_lex_mode(Lex::Mode mode)
1258 {
1259 this->lex_mode_stack_.push_back(this->lex_->mode());
1260 this->lex_->set_mode(mode);
1261 }
1262
1263 // Pop the lexer mode.
1264 void
1265 pop_lex_mode()
1266 {
1267 gold_assert(!this->lex_mode_stack_.empty());
1268 this->lex_->set_mode(this->lex_mode_stack_.back());
1269 this->lex_mode_stack_.pop_back();
1270 }
1271
1272 // Return the current lexer mode.
1273 Lex::Mode
1274 lex_mode() const
1275 { return this->lex_mode_stack_.back(); }
1276
1277 // Return the line number of the last token.
1278 int
1279 lineno() const
1280 { return this->lineno_; }
1281
1282 // Return the character position in the line of the last token.
1283 int
1284 charpos() const
1285 { return this->charpos_; }
1286
1287 // Return the list of input files, creating it if necessary. This
1288 // is a space leak--we never free the INPUTS_ pointer.
1289 Input_arguments*
1290 inputs()
1291 {
1292 if (this->inputs_ == NULL)
1293 this->inputs_ = new Input_arguments();
1294 return this->inputs_;
1295 }
1296
1297 // Return whether we saw any input files.
1298 bool
1299 saw_inputs() const
1300 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1301
1302 // Return the current language being processed in a version script
1303 // (eg, "C++"). The empty string represents unmangled C names.
1304 const std::string&
1305 get_current_language() const
1306 { return this->language_stack_.back(); }
1307
1308 // Push a language onto the stack when entering an extern block.
1309 void push_language(const std::string& lang)
1310 { this->language_stack_.push_back(lang); }
1311
1312 // Pop a language off of the stack when exiting an extern block.
1313 void pop_language()
1314 {
1315 gold_assert(!this->language_stack_.empty());
1316 this->language_stack_.pop_back();
1317 }
1318
1319 private:
1320 // The name of the file we are reading.
1321 const char* filename_;
1322 // The position dependent options.
1323 Position_dependent_options posdep_options_;
1324 // Whether we are currently in a --start-group/--end-group.
1325 bool in_group_;
1326 // Whether the script was found in a sysrooted directory.
1327 bool is_in_sysroot_;
1328 // If this is true, then if we find an OUTPUT_FORMAT with an
1329 // incompatible target, then we tell the parser to abort so that we
1330 // can search for the next file with the same name.
1331 bool skip_on_incompatible_target_;
1332 // True if we found an OUTPUT_FORMAT with an incompatible target.
1333 bool found_incompatible_target_;
1334 // May be NULL if the user chooses not to pass one in.
1335 Command_line* command_line_;
1336 // Options which may be set from any linker script.
1337 Script_options* script_options_;
1338 // Information parsed from a version script.
1339 Version_script_info* version_script_info_;
1340 // The lexer.
1341 Lex* lex_;
1342 // The line number of the last token returned by next_token.
1343 int lineno_;
1344 // The column number of the last token returned by next_token.
1345 int charpos_;
1346 // A stack of lexer modes.
1347 std::vector<Lex::Mode> lex_mode_stack_;
1348 // A stack of which extern/language block we're inside. Can be C++,
1349 // java, or empty for C.
1350 std::vector<std::string> language_stack_;
1351 // New input files found to add to the link.
1352 Input_arguments* inputs_;
1353 };
1354
1355 // FILE was found as an argument on the command line. Try to read it
1356 // as a script. Return true if the file was handled.
1357
1358 bool
1359 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1360 Dirsearch* dirsearch, int dirindex,
1361 Input_objects* input_objects, Mapfile* mapfile,
1362 Input_group* input_group,
1363 const Input_argument* input_argument,
1364 Input_file* input_file, Task_token* next_blocker,
1365 bool* used_next_blocker)
1366 {
1367 *used_next_blocker = false;
1368
1369 std::string input_string;
1370 Lex::read_file(input_file, &input_string);
1371
1372 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1373
1374 Parser_closure closure(input_file->filename().c_str(),
1375 input_argument->file().options(),
1376 input_group != NULL,
1377 input_file->is_in_sysroot(),
1378 NULL,
1379 layout->script_options(),
1380 &lex,
1381 input_file->will_search_for());
1382
1383 if (yyparse(&closure) != 0)
1384 {
1385 if (closure.found_incompatible_target())
1386 {
1387 Read_symbols::incompatible_warning(input_argument, input_file);
1388 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1389 dirsearch, dirindex, mapfile, input_argument,
1390 input_group, next_blocker);
1391 return true;
1392 }
1393 return false;
1394 }
1395
1396 if (!closure.saw_inputs())
1397 return true;
1398
1399 Task_token* this_blocker = NULL;
1400 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1401 p != closure.inputs()->end();
1402 ++p)
1403 {
1404 Task_token* nb;
1405 if (p + 1 == closure.inputs()->end())
1406 nb = next_blocker;
1407 else
1408 {
1409 nb = new Task_token(true);
1410 nb->add_blocker();
1411 }
1412 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1413 layout, dirsearch, 0, mapfile, &*p,
1414 input_group, this_blocker, nb));
1415 this_blocker = nb;
1416 }
1417
1418 if (layout->incremental_inputs())
1419 {
1420 // Like new Read_symbols(...) above, we rely on close.inputs()
1421 // getting leaked by closure.
1422 Script_info* info = new Script_info(closure.inputs());
1423 layout->incremental_inputs()->report_script(
1424 input_argument,
1425 input_file->file().get_mtime(),
1426 info);
1427 }
1428 *used_next_blocker = true;
1429
1430 return true;
1431 }
1432
1433 // Helper function for read_version_script() and
1434 // read_commandline_script(). Processes the given file in the mode
1435 // indicated by first_token and lex_mode.
1436
1437 static bool
1438 read_script_file(const char* filename, Command_line* cmdline,
1439 Script_options* script_options,
1440 int first_token, Lex::Mode lex_mode)
1441 {
1442 // TODO: if filename is a relative filename, search for it manually
1443 // using "." + cmdline->options()->search_path() -- not dirsearch.
1444 Dirsearch dirsearch;
1445
1446 // The file locking code wants to record a Task, but we haven't
1447 // started the workqueue yet. This is only for debugging purposes,
1448 // so we invent a fake value.
1449 const Task* task = reinterpret_cast<const Task*>(-1);
1450
1451 // We don't want this file to be opened in binary mode.
1452 Position_dependent_options posdep = cmdline->position_dependent_options();
1453 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1454 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1455 Input_file_argument input_argument(filename,
1456 Input_file_argument::INPUT_FILE_TYPE_FILE,
1457 "", false, posdep);
1458 Input_file input_file(&input_argument);
1459 int dummy = 0;
1460 if (!input_file.open(dirsearch, task, &dummy))
1461 return false;
1462
1463 std::string input_string;
1464 Lex::read_file(&input_file, &input_string);
1465
1466 Lex lex(input_string.c_str(), input_string.length(), first_token);
1467 lex.set_mode(lex_mode);
1468
1469 Parser_closure closure(filename,
1470 cmdline->position_dependent_options(),
1471 false,
1472 input_file.is_in_sysroot(),
1473 cmdline,
1474 script_options,
1475 &lex,
1476 false);
1477 if (yyparse(&closure) != 0)
1478 {
1479 input_file.file().unlock(task);
1480 return false;
1481 }
1482
1483 input_file.file().unlock(task);
1484
1485 gold_assert(!closure.saw_inputs());
1486
1487 return true;
1488 }
1489
1490 // FILENAME was found as an argument to --script (-T).
1491 // Read it as a script, and execute its contents immediately.
1492
1493 bool
1494 read_commandline_script(const char* filename, Command_line* cmdline)
1495 {
1496 return read_script_file(filename, cmdline, &cmdline->script_options(),
1497 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1498 }
1499
1500 // FILENAME was found as an argument to --version-script. Read it as
1501 // a version script, and store its contents in
1502 // cmdline->script_options()->version_script_info().
1503
1504 bool
1505 read_version_script(const char* filename, Command_line* cmdline)
1506 {
1507 return read_script_file(filename, cmdline, &cmdline->script_options(),
1508 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1509 }
1510
1511 // FILENAME was found as an argument to --dynamic-list. Read it as a
1512 // list of symbols, and store its contents in DYNAMIC_LIST.
1513
1514 bool
1515 read_dynamic_list(const char* filename, Command_line* cmdline,
1516 Script_options* dynamic_list)
1517 {
1518 return read_script_file(filename, cmdline, dynamic_list,
1519 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1520 }
1521
1522 // Implement the --defsym option on the command line. Return true if
1523 // all is well.
1524
1525 bool
1526 Script_options::define_symbol(const char* definition)
1527 {
1528 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1529 lex.set_mode(Lex::EXPRESSION);
1530
1531 // Dummy value.
1532 Position_dependent_options posdep_options;
1533
1534 Parser_closure closure("command line", posdep_options, false, false, NULL,
1535 this, &lex, false);
1536
1537 if (yyparse(&closure) != 0)
1538 return false;
1539
1540 gold_assert(!closure.saw_inputs());
1541
1542 return true;
1543 }
1544
1545 // Print the script to F for debugging.
1546
1547 void
1548 Script_options::print(FILE* f) const
1549 {
1550 fprintf(f, "%s: Dumping linker script\n", program_name);
1551
1552 if (!this->entry_.empty())
1553 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1554
1555 for (Symbol_assignments::const_iterator p =
1556 this->symbol_assignments_.begin();
1557 p != this->symbol_assignments_.end();
1558 ++p)
1559 (*p)->print(f);
1560
1561 for (Assertions::const_iterator p = this->assertions_.begin();
1562 p != this->assertions_.end();
1563 ++p)
1564 (*p)->print(f);
1565
1566 this->script_sections_.print(f);
1567
1568 this->version_script_info_.print(f);
1569 }
1570
1571 // Manage mapping from keywords to the codes expected by the bison
1572 // parser. We construct one global object for each lex mode with
1573 // keywords.
1574
1575 class Keyword_to_parsecode
1576 {
1577 public:
1578 // The structure which maps keywords to parsecodes.
1579 struct Keyword_parsecode
1580 {
1581 // Keyword.
1582 const char* keyword;
1583 // Corresponding parsecode.
1584 int parsecode;
1585 };
1586
1587 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1588 int keyword_count)
1589 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1590 { }
1591
1592 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1593 // keyword.
1594 int
1595 keyword_to_parsecode(const char* keyword, size_t len) const;
1596
1597 private:
1598 const Keyword_parsecode* keyword_parsecodes_;
1599 const int keyword_count_;
1600 };
1601
1602 // Mapping from keyword string to keyword parsecode. This array must
1603 // be kept in sorted order. Parsecodes are looked up using bsearch.
1604 // This array must correspond to the list of parsecodes in yyscript.y.
1605
1606 static const Keyword_to_parsecode::Keyword_parsecode
1607 script_keyword_parsecodes[] =
1608 {
1609 { "ABSOLUTE", ABSOLUTE },
1610 { "ADDR", ADDR },
1611 { "ALIGN", ALIGN_K },
1612 { "ALIGNOF", ALIGNOF },
1613 { "ASSERT", ASSERT_K },
1614 { "AS_NEEDED", AS_NEEDED },
1615 { "AT", AT },
1616 { "BIND", BIND },
1617 { "BLOCK", BLOCK },
1618 { "BYTE", BYTE },
1619 { "CONSTANT", CONSTANT },
1620 { "CONSTRUCTORS", CONSTRUCTORS },
1621 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1622 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1623 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1624 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1625 { "DEFINED", DEFINED },
1626 { "ENTRY", ENTRY },
1627 { "EXCLUDE_FILE", EXCLUDE_FILE },
1628 { "EXTERN", EXTERN },
1629 { "FILL", FILL },
1630 { "FLOAT", FLOAT },
1631 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1632 { "GROUP", GROUP },
1633 { "HLL", HLL },
1634 { "INCLUDE", INCLUDE },
1635 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1636 { "INPUT", INPUT },
1637 { "KEEP", KEEP },
1638 { "LENGTH", LENGTH },
1639 { "LOADADDR", LOADADDR },
1640 { "LONG", LONG },
1641 { "MAP", MAP },
1642 { "MAX", MAX_K },
1643 { "MEMORY", MEMORY },
1644 { "MIN", MIN_K },
1645 { "NEXT", NEXT },
1646 { "NOCROSSREFS", NOCROSSREFS },
1647 { "NOFLOAT", NOFLOAT },
1648 { "ONLY_IF_RO", ONLY_IF_RO },
1649 { "ONLY_IF_RW", ONLY_IF_RW },
1650 { "OPTION", OPTION },
1651 { "ORIGIN", ORIGIN },
1652 { "OUTPUT", OUTPUT },
1653 { "OUTPUT_ARCH", OUTPUT_ARCH },
1654 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1655 { "OVERLAY", OVERLAY },
1656 { "PHDRS", PHDRS },
1657 { "PROVIDE", PROVIDE },
1658 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1659 { "QUAD", QUAD },
1660 { "SEARCH_DIR", SEARCH_DIR },
1661 { "SECTIONS", SECTIONS },
1662 { "SEGMENT_START", SEGMENT_START },
1663 { "SHORT", SHORT },
1664 { "SIZEOF", SIZEOF },
1665 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1666 { "SORT", SORT_BY_NAME },
1667 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1668 { "SORT_BY_NAME", SORT_BY_NAME },
1669 { "SPECIAL", SPECIAL },
1670 { "SQUAD", SQUAD },
1671 { "STARTUP", STARTUP },
1672 { "SUBALIGN", SUBALIGN },
1673 { "SYSLIB", SYSLIB },
1674 { "TARGET", TARGET_K },
1675 { "TRUNCATE", TRUNCATE },
1676 { "VERSION", VERSIONK },
1677 { "global", GLOBAL },
1678 { "l", LENGTH },
1679 { "len", LENGTH },
1680 { "local", LOCAL },
1681 { "o", ORIGIN },
1682 { "org", ORIGIN },
1683 { "sizeof_headers", SIZEOF_HEADERS },
1684 };
1685
1686 static const Keyword_to_parsecode
1687 script_keywords(&script_keyword_parsecodes[0],
1688 (sizeof(script_keyword_parsecodes)
1689 / sizeof(script_keyword_parsecodes[0])));
1690
1691 static const Keyword_to_parsecode::Keyword_parsecode
1692 version_script_keyword_parsecodes[] =
1693 {
1694 { "extern", EXTERN },
1695 { "global", GLOBAL },
1696 { "local", LOCAL },
1697 };
1698
1699 static const Keyword_to_parsecode
1700 version_script_keywords(&version_script_keyword_parsecodes[0],
1701 (sizeof(version_script_keyword_parsecodes)
1702 / sizeof(version_script_keyword_parsecodes[0])));
1703
1704 static const Keyword_to_parsecode::Keyword_parsecode
1705 dynamic_list_keyword_parsecodes[] =
1706 {
1707 { "extern", EXTERN },
1708 };
1709
1710 static const Keyword_to_parsecode
1711 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1712 (sizeof(dynamic_list_keyword_parsecodes)
1713 / sizeof(dynamic_list_keyword_parsecodes[0])));
1714
1715
1716
1717 // Comparison function passed to bsearch.
1718
1719 extern "C"
1720 {
1721
1722 struct Ktt_key
1723 {
1724 const char* str;
1725 size_t len;
1726 };
1727
1728 static int
1729 ktt_compare(const void* keyv, const void* kttv)
1730 {
1731 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1732 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1733 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1734 int i = strncmp(key->str, ktt->keyword, key->len);
1735 if (i != 0)
1736 return i;
1737 if (ktt->keyword[key->len] != '\0')
1738 return -1;
1739 return 0;
1740 }
1741
1742 } // End extern "C".
1743
1744 int
1745 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1746 size_t len) const
1747 {
1748 Ktt_key key;
1749 key.str = keyword;
1750 key.len = len;
1751 void* kttv = bsearch(&key,
1752 this->keyword_parsecodes_,
1753 this->keyword_count_,
1754 sizeof(this->keyword_parsecodes_[0]),
1755 ktt_compare);
1756 if (kttv == NULL)
1757 return 0;
1758 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1759 return ktt->parsecode;
1760 }
1761
1762 // Helper class that calls cplus_demangle when needed and takes care of freeing
1763 // the result.
1764
1765 class Lazy_demangler
1766 {
1767 public:
1768 Lazy_demangler(const char* symbol, int options)
1769 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1770 { }
1771
1772 ~Lazy_demangler()
1773 { free(this->demangled_); }
1774
1775 // Return the demangled name. The actual demangling happens on the first call,
1776 // and the result is later cached.
1777
1778 inline char*
1779 get();
1780
1781 private:
1782 // The symbol to demangle.
1783 const char *symbol_;
1784 // Option flags to pass to cplus_demagle.
1785 const int options_;
1786 // The cached demangled value, or NULL if demangling didn't happen yet or
1787 // failed.
1788 char *demangled_;
1789 // Whether we already called cplus_demangle
1790 bool did_demangle_;
1791 };
1792
1793 // Return the demangled name. The actual demangling happens on the first call,
1794 // and the result is later cached. Returns NULL if the symbol cannot be
1795 // demangled.
1796
1797 inline char*
1798 Lazy_demangler::get()
1799 {
1800 if (!this->did_demangle_)
1801 {
1802 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1803 this->did_demangle_ = true;
1804 }
1805 return this->demangled_;
1806 }
1807
1808 // The following structs are used within the VersionInfo class as well
1809 // as in the bison helper functions. They store the information
1810 // parsed from the version script.
1811
1812 // A single version expression.
1813 // For example, pattern="std::map*" and language="C++".
1814 // pattern and language should be from the stringpool
1815 struct Version_expression {
1816 Version_expression(const std::string& pattern,
1817 const std::string& language,
1818 bool exact_match)
1819 : pattern(pattern), language(language), exact_match(exact_match) {}
1820
1821 std::string pattern;
1822 std::string language;
1823 // If false, we use glob() to match pattern. If true, we use strcmp().
1824 bool exact_match;
1825 };
1826
1827
1828 // A list of expressions.
1829 struct Version_expression_list {
1830 std::vector<struct Version_expression> expressions;
1831 };
1832
1833
1834 // A list of which versions upon which another version depends.
1835 // Strings should be from the Stringpool.
1836 struct Version_dependency_list {
1837 std::vector<std::string> dependencies;
1838 };
1839
1840
1841 // The total definition of a version. It includes the tag for the
1842 // version, its global and local expressions, and any dependencies.
1843 struct Version_tree {
1844 Version_tree()
1845 : tag(), global(NULL), local(NULL), dependencies(NULL) {}
1846
1847 std::string tag;
1848 const struct Version_expression_list* global;
1849 const struct Version_expression_list* local;
1850 const struct Version_dependency_list* dependencies;
1851 };
1852
1853 Version_script_info::~Version_script_info()
1854 {
1855 this->clear();
1856 }
1857
1858 void
1859 Version_script_info::clear()
1860 {
1861 for (size_t k = 0; k < dependency_lists_.size(); ++k)
1862 delete dependency_lists_[k];
1863 this->dependency_lists_.clear();
1864 for (size_t k = 0; k < version_trees_.size(); ++k)
1865 delete version_trees_[k];
1866 this->version_trees_.clear();
1867 for (size_t k = 0; k < expression_lists_.size(); ++k)
1868 delete expression_lists_[k];
1869 this->expression_lists_.clear();
1870 }
1871
1872 std::vector<std::string>
1873 Version_script_info::get_versions() const
1874 {
1875 std::vector<std::string> ret;
1876 for (size_t j = 0; j < version_trees_.size(); ++j)
1877 if (!this->version_trees_[j]->tag.empty())
1878 ret.push_back(this->version_trees_[j]->tag);
1879 return ret;
1880 }
1881
1882 std::vector<std::string>
1883 Version_script_info::get_dependencies(const char* version) const
1884 {
1885 std::vector<std::string> ret;
1886 for (size_t j = 0; j < version_trees_.size(); ++j)
1887 if (version_trees_[j]->tag == version)
1888 {
1889 const struct Version_dependency_list* deps =
1890 version_trees_[j]->dependencies;
1891 if (deps != NULL)
1892 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1893 ret.push_back(deps->dependencies[k]);
1894 return ret;
1895 }
1896 return ret;
1897 }
1898
1899 // Look up SYMBOL_NAME in the list of versions. If CHECK_GLOBAL is
1900 // true look at the globally visible symbols, otherwise look at the
1901 // symbols listed as "local:". Return true if the symbol is found,
1902 // false otherwise. If the symbol is found, then if PVERSION is not
1903 // NULL, set *PVERSION to the version.
1904
1905 bool
1906 Version_script_info::get_symbol_version_helper(const char* symbol_name,
1907 bool check_global,
1908 std::string* pversion) const
1909 {
1910 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
1911 Lazy_demangler java_demangled_name(symbol_name,
1912 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1913 for (size_t j = 0; j < version_trees_.size(); ++j)
1914 {
1915 // Is it a global symbol for this version?
1916 const Version_expression_list* explist =
1917 check_global ? version_trees_[j]->global : version_trees_[j]->local;
1918 if (explist != NULL)
1919 for (size_t k = 0; k < explist->expressions.size(); ++k)
1920 {
1921 const char* name_to_match = symbol_name;
1922 const struct Version_expression& exp = explist->expressions[k];
1923 if (exp.language == "C++")
1924 {
1925 name_to_match = cpp_demangled_name.get();
1926 // This isn't a C++ symbol.
1927 if (name_to_match == NULL)
1928 continue;
1929 }
1930 else if (exp.language == "Java")
1931 {
1932 name_to_match = java_demangled_name.get();
1933 // This isn't a Java symbol.
1934 if (name_to_match == NULL)
1935 continue;
1936 }
1937 bool matched;
1938 if (exp.exact_match)
1939 matched = strcmp(exp.pattern.c_str(), name_to_match) == 0;
1940 else
1941 matched = fnmatch(exp.pattern.c_str(), name_to_match,
1942 FNM_NOESCAPE) == 0;
1943 if (matched)
1944 {
1945 if (pversion != NULL)
1946 *pversion = this->version_trees_[j]->tag;
1947 return true;
1948 }
1949 }
1950 }
1951 return false;
1952 }
1953
1954 struct Version_dependency_list*
1955 Version_script_info::allocate_dependency_list()
1956 {
1957 dependency_lists_.push_back(new Version_dependency_list);
1958 return dependency_lists_.back();
1959 }
1960
1961 struct Version_expression_list*
1962 Version_script_info::allocate_expression_list()
1963 {
1964 expression_lists_.push_back(new Version_expression_list);
1965 return expression_lists_.back();
1966 }
1967
1968 struct Version_tree*
1969 Version_script_info::allocate_version_tree()
1970 {
1971 version_trees_.push_back(new Version_tree);
1972 return version_trees_.back();
1973 }
1974
1975 // Print for debugging.
1976
1977 void
1978 Version_script_info::print(FILE* f) const
1979 {
1980 if (this->empty())
1981 return;
1982
1983 fprintf(f, "VERSION {");
1984
1985 for (size_t i = 0; i < this->version_trees_.size(); ++i)
1986 {
1987 const Version_tree* vt = this->version_trees_[i];
1988
1989 if (vt->tag.empty())
1990 fprintf(f, " {\n");
1991 else
1992 fprintf(f, " %s {\n", vt->tag.c_str());
1993
1994 if (vt->global != NULL)
1995 {
1996 fprintf(f, " global :\n");
1997 this->print_expression_list(f, vt->global);
1998 }
1999
2000 if (vt->local != NULL)
2001 {
2002 fprintf(f, " local :\n");
2003 this->print_expression_list(f, vt->local);
2004 }
2005
2006 fprintf(f, " }");
2007 if (vt->dependencies != NULL)
2008 {
2009 const Version_dependency_list* deps = vt->dependencies;
2010 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2011 {
2012 if (j < deps->dependencies.size() - 1)
2013 fprintf(f, "\n");
2014 fprintf(f, " %s", deps->dependencies[j].c_str());
2015 }
2016 }
2017 fprintf(f, ";\n");
2018 }
2019
2020 fprintf(f, "}\n");
2021 }
2022
2023 void
2024 Version_script_info::print_expression_list(
2025 FILE* f,
2026 const Version_expression_list* vel) const
2027 {
2028 std::string current_language;
2029 for (size_t i = 0; i < vel->expressions.size(); ++i)
2030 {
2031 const Version_expression& ve(vel->expressions[i]);
2032
2033 if (ve.language != current_language)
2034 {
2035 if (!current_language.empty())
2036 fprintf(f, " }\n");
2037 fprintf(f, " extern \"%s\" {\n", ve.language.c_str());
2038 current_language = ve.language;
2039 }
2040
2041 fprintf(f, " ");
2042 if (!current_language.empty())
2043 fprintf(f, " ");
2044
2045 if (ve.exact_match)
2046 fprintf(f, "\"");
2047 fprintf(f, "%s", ve.pattern.c_str());
2048 if (ve.exact_match)
2049 fprintf(f, "\"");
2050
2051 fprintf(f, "\n");
2052 }
2053
2054 if (!current_language.empty())
2055 fprintf(f, " }\n");
2056 }
2057
2058 } // End namespace gold.
2059
2060 // The remaining functions are extern "C", so it's clearer to not put
2061 // them in namespace gold.
2062
2063 using namespace gold;
2064
2065 // This function is called by the bison parser to return the next
2066 // token.
2067
2068 extern "C" int
2069 yylex(YYSTYPE* lvalp, void* closurev)
2070 {
2071 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2072 const Token* token = closure->next_token();
2073 switch (token->classification())
2074 {
2075 default:
2076 gold_unreachable();
2077
2078 case Token::TOKEN_INVALID:
2079 yyerror(closurev, "invalid character");
2080 return 0;
2081
2082 case Token::TOKEN_EOF:
2083 return 0;
2084
2085 case Token::TOKEN_STRING:
2086 {
2087 // This is either a keyword or a STRING.
2088 size_t len;
2089 const char* str = token->string_value(&len);
2090 int parsecode = 0;
2091 switch (closure->lex_mode())
2092 {
2093 case Lex::LINKER_SCRIPT:
2094 parsecode = script_keywords.keyword_to_parsecode(str, len);
2095 break;
2096 case Lex::VERSION_SCRIPT:
2097 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2098 break;
2099 case Lex::DYNAMIC_LIST:
2100 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2101 break;
2102 default:
2103 break;
2104 }
2105 if (parsecode != 0)
2106 return parsecode;
2107 lvalp->string.value = str;
2108 lvalp->string.length = len;
2109 return STRING;
2110 }
2111
2112 case Token::TOKEN_QUOTED_STRING:
2113 lvalp->string.value = token->string_value(&lvalp->string.length);
2114 return QUOTED_STRING;
2115
2116 case Token::TOKEN_OPERATOR:
2117 return token->operator_value();
2118
2119 case Token::TOKEN_INTEGER:
2120 lvalp->integer = token->integer_value();
2121 return INTEGER;
2122 }
2123 }
2124
2125 // This function is called by the bison parser to report an error.
2126
2127 extern "C" void
2128 yyerror(void* closurev, const char* message)
2129 {
2130 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2131 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2132 closure->charpos(), message);
2133 }
2134
2135 // Called by the bison parser to add an external symbol to the link.
2136
2137 extern "C" void
2138 script_add_extern(void* closurev, const char* name, size_t length)
2139 {
2140 // We treat exactly like -u NAME. FIXME: If it seems useful, we
2141 // could handle this after the command line has been read, by adding
2142 // entries to the symbol table directly.
2143 std::string arg("--undefined=");
2144 arg.append(name, length);
2145 script_parse_option(closurev, arg.c_str(), arg.size());
2146 }
2147
2148 // Called by the bison parser to add a file to the link.
2149
2150 extern "C" void
2151 script_add_file(void* closurev, const char* name, size_t length)
2152 {
2153 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2154
2155 // If this is an absolute path, and we found the script in the
2156 // sysroot, then we want to prepend the sysroot to the file name.
2157 // For example, this is how we handle a cross link to the x86_64
2158 // libc.so, which refers to /lib/libc.so.6.
2159 std::string name_string(name, length);
2160 const char* extra_search_path = ".";
2161 std::string script_directory;
2162 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2163 {
2164 if (closure->is_in_sysroot())
2165 {
2166 const std::string& sysroot(parameters->options().sysroot());
2167 gold_assert(!sysroot.empty());
2168 name_string = sysroot + name_string;
2169 }
2170 }
2171 else
2172 {
2173 // In addition to checking the normal library search path, we
2174 // also want to check in the script-directory.
2175 const char *slash = strrchr(closure->filename(), '/');
2176 if (slash != NULL)
2177 {
2178 script_directory.assign(closure->filename(),
2179 slash - closure->filename() + 1);
2180 extra_search_path = script_directory.c_str();
2181 }
2182 }
2183
2184 Input_file_argument file(name_string.c_str(),
2185 Input_file_argument::INPUT_FILE_TYPE_FILE,
2186 extra_search_path, false,
2187 closure->position_dependent_options());
2188 closure->inputs()->add_file(file);
2189 }
2190
2191 // Called by the bison parser to start a group. If we are already in
2192 // a group, that means that this script was invoked within a
2193 // --start-group --end-group sequence on the command line, or that
2194 // this script was found in a GROUP of another script. In that case,
2195 // we simply continue the existing group, rather than starting a new
2196 // one. It is possible to construct a case in which this will do
2197 // something other than what would happen if we did a recursive group,
2198 // but it's hard to imagine why the different behaviour would be
2199 // useful for a real program. Avoiding recursive groups is simpler
2200 // and more efficient.
2201
2202 extern "C" void
2203 script_start_group(void* closurev)
2204 {
2205 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2206 if (!closure->in_group())
2207 closure->inputs()->start_group();
2208 }
2209
2210 // Called by the bison parser at the end of a group.
2211
2212 extern "C" void
2213 script_end_group(void* closurev)
2214 {
2215 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2216 if (!closure->in_group())
2217 closure->inputs()->end_group();
2218 }
2219
2220 // Called by the bison parser to start an AS_NEEDED list.
2221
2222 extern "C" void
2223 script_start_as_needed(void* closurev)
2224 {
2225 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2226 closure->position_dependent_options().set_as_needed(true);
2227 }
2228
2229 // Called by the bison parser at the end of an AS_NEEDED list.
2230
2231 extern "C" void
2232 script_end_as_needed(void* closurev)
2233 {
2234 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2235 closure->position_dependent_options().set_as_needed(false);
2236 }
2237
2238 // Called by the bison parser to set the entry symbol.
2239
2240 extern "C" void
2241 script_set_entry(void* closurev, const char* entry, size_t length)
2242 {
2243 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2244 // TODO(csilvers): FIXME -- call set_entry directly.
2245 std::string arg("--entry=");
2246 arg.append(entry, length);
2247 script_parse_option(closurev, arg.c_str(), arg.size());
2248 }
2249
2250 // Called by the bison parser to set whether to define common symbols.
2251
2252 extern "C" void
2253 script_set_common_allocation(void* closurev, int set)
2254 {
2255 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2256 script_parse_option(closurev, arg, strlen(arg));
2257 }
2258
2259 // Called by the bison parser to define a symbol.
2260
2261 extern "C" void
2262 script_set_symbol(void* closurev, const char* name, size_t length,
2263 Expression* value, int providei, int hiddeni)
2264 {
2265 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2266 const bool provide = providei != 0;
2267 const bool hidden = hiddeni != 0;
2268 closure->script_options()->add_symbol_assignment(name, length, value,
2269 provide, hidden);
2270 closure->clear_skip_on_incompatible_target();
2271 }
2272
2273 // Called by the bison parser to add an assertion.
2274
2275 extern "C" void
2276 script_add_assertion(void* closurev, Expression* check, const char* message,
2277 size_t messagelen)
2278 {
2279 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2280 closure->script_options()->add_assertion(check, message, messagelen);
2281 closure->clear_skip_on_incompatible_target();
2282 }
2283
2284 // Called by the bison parser to parse an OPTION.
2285
2286 extern "C" void
2287 script_parse_option(void* closurev, const char* option, size_t length)
2288 {
2289 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2290 // We treat the option as a single command-line option, even if
2291 // it has internal whitespace.
2292 if (closure->command_line() == NULL)
2293 {
2294 // There are some options that we could handle here--e.g.,
2295 // -lLIBRARY. Should we bother?
2296 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2297 " for scripts specified via -T/--script"),
2298 closure->filename(), closure->lineno(), closure->charpos());
2299 }
2300 else
2301 {
2302 bool past_a_double_dash_option = false;
2303 const char* mutable_option = strndup(option, length);
2304 gold_assert(mutable_option != NULL);
2305 closure->command_line()->process_one_option(1, &mutable_option, 0,
2306 &past_a_double_dash_option);
2307 // The General_options class will quite possibly store a pointer
2308 // into mutable_option, so we can't free it. In cases the class
2309 // does not store such a pointer, this is a memory leak. Alas. :(
2310 }
2311 closure->clear_skip_on_incompatible_target();
2312 }
2313
2314 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2315 // takes either one or three arguments. In the three argument case,
2316 // the format depends on the endianness option, which we don't
2317 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2318 // wrong format, then we want to search for a new file. Returning 0
2319 // here will cause the parser to immediately abort.
2320
2321 extern "C" int
2322 script_check_output_format(void* closurev,
2323 const char* default_name, size_t default_length,
2324 const char*, size_t, const char*, size_t)
2325 {
2326 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2327 std::string name(default_name, default_length);
2328 Target* target = select_target_by_name(name.c_str());
2329 if (target == NULL || !parameters->is_compatible_target(target))
2330 {
2331 if (closure->skip_on_incompatible_target())
2332 {
2333 closure->set_found_incompatible_target();
2334 return 0;
2335 }
2336 // FIXME: Should we warn about the unknown target?
2337 }
2338 return 1;
2339 }
2340
2341 // Called by the bison parser to handle TARGET.
2342
2343 extern "C" void
2344 script_set_target(void* closurev, const char* target, size_t len)
2345 {
2346 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2347 std::string s(target, len);
2348 General_options::Object_format format_enum;
2349 format_enum = General_options::string_to_object_format(s.c_str());
2350 closure->position_dependent_options().set_format_enum(format_enum);
2351 }
2352
2353 // Called by the bison parser to handle SEARCH_DIR. This is handled
2354 // exactly like a -L option.
2355
2356 extern "C" void
2357 script_add_search_dir(void* closurev, const char* option, size_t length)
2358 {
2359 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2360 if (closure->command_line() == NULL)
2361 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2362 " for scripts specified via -T/--script"),
2363 closure->filename(), closure->lineno(), closure->charpos());
2364 else
2365 {
2366 std::string s = "-L" + std::string(option, length);
2367 script_parse_option(closurev, s.c_str(), s.size());
2368 }
2369 }
2370
2371 /* Called by the bison parser to push the lexer into expression
2372 mode. */
2373
2374 extern "C" void
2375 script_push_lex_into_expression_mode(void* closurev)
2376 {
2377 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2378 closure->push_lex_mode(Lex::EXPRESSION);
2379 }
2380
2381 /* Called by the bison parser to push the lexer into version
2382 mode. */
2383
2384 extern "C" void
2385 script_push_lex_into_version_mode(void* closurev)
2386 {
2387 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2388 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2389 }
2390
2391 /* Called by the bison parser to pop the lexer mode. */
2392
2393 extern "C" void
2394 script_pop_lex_mode(void* closurev)
2395 {
2396 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2397 closure->pop_lex_mode();
2398 }
2399
2400 // Register an entire version node. For example:
2401 //
2402 // GLIBC_2.1 {
2403 // global: foo;
2404 // } GLIBC_2.0;
2405 //
2406 // - tag is "GLIBC_2.1"
2407 // - tree contains the information "global: foo"
2408 // - deps contains "GLIBC_2.0"
2409
2410 extern "C" void
2411 script_register_vers_node(void*,
2412 const char* tag,
2413 int taglen,
2414 struct Version_tree *tree,
2415 struct Version_dependency_list *deps)
2416 {
2417 gold_assert(tree != NULL);
2418 tree->dependencies = deps;
2419 if (tag != NULL)
2420 tree->tag = std::string(tag, taglen);
2421 }
2422
2423 // Add a dependencies to the list of existing dependencies, if any,
2424 // and return the expanded list.
2425
2426 extern "C" struct Version_dependency_list *
2427 script_add_vers_depend(void* closurev,
2428 struct Version_dependency_list *all_deps,
2429 const char *depend_to_add, int deplen)
2430 {
2431 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2432 if (all_deps == NULL)
2433 all_deps = closure->version_script()->allocate_dependency_list();
2434 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2435 return all_deps;
2436 }
2437
2438 // Add a pattern expression to an existing list of expressions, if any.
2439 // TODO: In the old linker, the last argument used to be a bool, but I
2440 // don't know what it meant.
2441
2442 extern "C" struct Version_expression_list *
2443 script_new_vers_pattern(void* closurev,
2444 struct Version_expression_list *expressions,
2445 const char *pattern, int patlen, int exact_match)
2446 {
2447 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2448 if (expressions == NULL)
2449 expressions = closure->version_script()->allocate_expression_list();
2450 expressions->expressions.push_back(
2451 Version_expression(std::string(pattern, patlen),
2452 closure->get_current_language(),
2453 static_cast<bool>(exact_match)));
2454 return expressions;
2455 }
2456
2457 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2458
2459 extern "C" struct Version_expression_list*
2460 script_merge_expressions(struct Version_expression_list *a,
2461 struct Version_expression_list *b)
2462 {
2463 a->expressions.insert(a->expressions.end(),
2464 b->expressions.begin(), b->expressions.end());
2465 // We could delete b and remove it from expressions_lists_, but
2466 // that's a lot of work. This works just as well.
2467 b->expressions.clear();
2468 return a;
2469 }
2470
2471 // Combine the global and local expressions into a a Version_tree.
2472
2473 extern "C" struct Version_tree *
2474 script_new_vers_node(void* closurev,
2475 struct Version_expression_list *global,
2476 struct Version_expression_list *local)
2477 {
2478 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2479 Version_tree* tree = closure->version_script()->allocate_version_tree();
2480 tree->global = global;
2481 tree->local = local;
2482 return tree;
2483 }
2484
2485 // Handle a transition in language, such as at the
2486 // start or end of 'extern "C++"'
2487
2488 extern "C" void
2489 version_script_push_lang(void* closurev, const char* lang, int langlen)
2490 {
2491 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2492 closure->push_language(std::string(lang, langlen));
2493 }
2494
2495 extern "C" void
2496 version_script_pop_lang(void* closurev)
2497 {
2498 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2499 closure->pop_language();
2500 }
2501
2502 // Called by the bison parser to start a SECTIONS clause.
2503
2504 extern "C" void
2505 script_start_sections(void* closurev)
2506 {
2507 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2508 closure->script_options()->script_sections()->start_sections();
2509 closure->clear_skip_on_incompatible_target();
2510 }
2511
2512 // Called by the bison parser to finish a SECTIONS clause.
2513
2514 extern "C" void
2515 script_finish_sections(void* closurev)
2516 {
2517 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2518 closure->script_options()->script_sections()->finish_sections();
2519 }
2520
2521 // Start processing entries for an output section.
2522
2523 extern "C" void
2524 script_start_output_section(void* closurev, const char* name, size_t namelen,
2525 const struct Parser_output_section_header* header)
2526 {
2527 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2528 closure->script_options()->script_sections()->start_output_section(name,
2529 namelen,
2530 header);
2531 }
2532
2533 // Finish processing entries for an output section.
2534
2535 extern "C" void
2536 script_finish_output_section(void* closurev,
2537 const struct Parser_output_section_trailer* trail)
2538 {
2539 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2540 closure->script_options()->script_sections()->finish_output_section(trail);
2541 }
2542
2543 // Add a data item (e.g., "WORD (0)") to the current output section.
2544
2545 extern "C" void
2546 script_add_data(void* closurev, int data_token, Expression* val)
2547 {
2548 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2549 int size;
2550 bool is_signed = true;
2551 switch (data_token)
2552 {
2553 case QUAD:
2554 size = 8;
2555 is_signed = false;
2556 break;
2557 case SQUAD:
2558 size = 8;
2559 break;
2560 case LONG:
2561 size = 4;
2562 break;
2563 case SHORT:
2564 size = 2;
2565 break;
2566 case BYTE:
2567 size = 1;
2568 break;
2569 default:
2570 gold_unreachable();
2571 }
2572 closure->script_options()->script_sections()->add_data(size, is_signed, val);
2573 }
2574
2575 // Add a clause setting the fill value to the current output section.
2576
2577 extern "C" void
2578 script_add_fill(void* closurev, Expression* val)
2579 {
2580 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2581 closure->script_options()->script_sections()->add_fill(val);
2582 }
2583
2584 // Add a new input section specification to the current output
2585 // section.
2586
2587 extern "C" void
2588 script_add_input_section(void* closurev,
2589 const struct Input_section_spec* spec,
2590 int keepi)
2591 {
2592 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2593 bool keep = keepi != 0;
2594 closure->script_options()->script_sections()->add_input_section(spec, keep);
2595 }
2596
2597 // When we see DATA_SEGMENT_ALIGN we record that following output
2598 // sections may be relro.
2599
2600 extern "C" void
2601 script_data_segment_align(void* closurev)
2602 {
2603 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2604 if (!closure->script_options()->saw_sections_clause())
2605 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
2606 closure->filename(), closure->lineno(), closure->charpos());
2607 else
2608 closure->script_options()->script_sections()->data_segment_align();
2609 }
2610
2611 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
2612 // since DATA_SEGMENT_ALIGN should be relro.
2613
2614 extern "C" void
2615 script_data_segment_relro_end(void* closurev)
2616 {
2617 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2618 if (!closure->script_options()->saw_sections_clause())
2619 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
2620 closure->filename(), closure->lineno(), closure->charpos());
2621 else
2622 closure->script_options()->script_sections()->data_segment_relro_end();
2623 }
2624
2625 // Create a new list of string/sort pairs.
2626
2627 extern "C" String_sort_list_ptr
2628 script_new_string_sort_list(const struct Wildcard_section* string_sort)
2629 {
2630 return new String_sort_list(1, *string_sort);
2631 }
2632
2633 // Add an entry to a list of string/sort pairs. The way the parser
2634 // works permits us to simply modify the first parameter, rather than
2635 // copy the vector.
2636
2637 extern "C" String_sort_list_ptr
2638 script_string_sort_list_add(String_sort_list_ptr pv,
2639 const struct Wildcard_section* string_sort)
2640 {
2641 if (pv == NULL)
2642 return script_new_string_sort_list(string_sort);
2643 else
2644 {
2645 pv->push_back(*string_sort);
2646 return pv;
2647 }
2648 }
2649
2650 // Create a new list of strings.
2651
2652 extern "C" String_list_ptr
2653 script_new_string_list(const char* str, size_t len)
2654 {
2655 return new String_list(1, std::string(str, len));
2656 }
2657
2658 // Add an element to a list of strings. The way the parser works
2659 // permits us to simply modify the first parameter, rather than copy
2660 // the vector.
2661
2662 extern "C" String_list_ptr
2663 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
2664 {
2665 if (pv == NULL)
2666 return script_new_string_list(str, len);
2667 else
2668 {
2669 pv->push_back(std::string(str, len));
2670 return pv;
2671 }
2672 }
2673
2674 // Concatenate two string lists. Either or both may be NULL. The way
2675 // the parser works permits us to modify the parameters, rather than
2676 // copy the vector.
2677
2678 extern "C" String_list_ptr
2679 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
2680 {
2681 if (pv1 == NULL)
2682 return pv2;
2683 if (pv2 == NULL)
2684 return pv1;
2685 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
2686 return pv1;
2687 }
2688
2689 // Add a new program header.
2690
2691 extern "C" void
2692 script_add_phdr(void* closurev, const char* name, size_t namelen,
2693 unsigned int type, const Phdr_info* info)
2694 {
2695 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2696 bool includes_filehdr = info->includes_filehdr != 0;
2697 bool includes_phdrs = info->includes_phdrs != 0;
2698 bool is_flags_valid = info->is_flags_valid != 0;
2699 Script_sections* ss = closure->script_options()->script_sections();
2700 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
2701 is_flags_valid, info->flags, info->load_address);
2702 closure->clear_skip_on_incompatible_target();
2703 }
2704
2705 // Convert a program header string to a type.
2706
2707 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
2708
2709 static struct
2710 {
2711 const char* name;
2712 size_t namelen;
2713 unsigned int val;
2714 } phdr_type_names[] =
2715 {
2716 PHDR_TYPE(PT_NULL),
2717 PHDR_TYPE(PT_LOAD),
2718 PHDR_TYPE(PT_DYNAMIC),
2719 PHDR_TYPE(PT_INTERP),
2720 PHDR_TYPE(PT_NOTE),
2721 PHDR_TYPE(PT_SHLIB),
2722 PHDR_TYPE(PT_PHDR),
2723 PHDR_TYPE(PT_TLS),
2724 PHDR_TYPE(PT_GNU_EH_FRAME),
2725 PHDR_TYPE(PT_GNU_STACK),
2726 PHDR_TYPE(PT_GNU_RELRO)
2727 };
2728
2729 extern "C" unsigned int
2730 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
2731 {
2732 for (unsigned int i = 0;
2733 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
2734 ++i)
2735 if (namelen == phdr_type_names[i].namelen
2736 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
2737 return phdr_type_names[i].val;
2738 yyerror(closurev, _("unknown PHDR type (try integer)"));
2739 return elfcpp::PT_NULL;
2740 }
This page took 0.083267 seconds and 5 git commands to generate.