* archive.cc (Archive::include_member): Adjust call to
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56 public:
57 // Token classification.
58 enum Classification
59 {
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
72 };
73
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
79
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
84 {
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
87 }
88
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
94 {
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
97 }
98
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
103 { }
104
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
109
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
114
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
119
120 // Return the line number at which the token starts.
121 int
122 lineno() const
123 { return this->lineno_; }
124
125 // Return the character position at this the token starts.
126 int
127 charpos() const
128 { return this->charpos_; }
129
130 // Get the value of a token.
131
132 const char*
133 string_value(size_t* length) const
134 {
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
139 }
140
141 int
142 operator_value() const
143 {
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
146 }
147
148 uint64_t
149 integer_value() const
150 {
151 gold_assert(this->classification_ == TOKEN_INTEGER);
152 // Null terminate.
153 std::string s(this->value_, this->value_length_);
154 return strtoull(s.c_str(), NULL, 0);
155 }
156
157 private:
158 // The token classification.
159 Classification classification_;
160 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
161 // TOKEN_INTEGER.
162 const char* value_;
163 // The length of the token value.
164 size_t value_length_;
165 // The token value, for TOKEN_OPERATOR.
166 int opcode_;
167 // The line number where this token started (one based).
168 int lineno_;
169 // The character position within the line where this token started
170 // (one based).
171 int charpos_;
172 };
173
174 // This class handles lexing a file into a sequence of tokens.
175
176 class Lex
177 {
178 public:
179 // We unfortunately have to support different lexing modes, because
180 // when reading different parts of a linker script we need to parse
181 // things differently.
182 enum Mode
183 {
184 // Reading an ordinary linker script.
185 LINKER_SCRIPT,
186 // Reading an expression in a linker script.
187 EXPRESSION,
188 // Reading a version script.
189 VERSION_SCRIPT,
190 // Reading a --dynamic-list file.
191 DYNAMIC_LIST
192 };
193
194 Lex(const char* input_string, size_t input_length, int parsing_token)
195 : input_string_(input_string), input_length_(input_length),
196 current_(input_string), mode_(LINKER_SCRIPT),
197 first_token_(parsing_token), token_(),
198 lineno_(1), linestart_(input_string)
199 { }
200
201 // Read a file into a string.
202 static void
203 read_file(Input_file*, std::string*);
204
205 // Return the next token.
206 const Token*
207 next_token();
208
209 // Return the current lexing mode.
210 Lex::Mode
211 mode() const
212 { return this->mode_; }
213
214 // Set the lexing mode.
215 void
216 set_mode(Mode mode)
217 { this->mode_ = mode; }
218
219 private:
220 Lex(const Lex&);
221 Lex& operator=(const Lex&);
222
223 // Make a general token with no value at the current location.
224 Token
225 make_token(Token::Classification c, const char* start) const
226 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
227
228 // Make a general token with a value at the current location.
229 Token
230 make_token(Token::Classification c, const char* v, size_t len,
231 const char* start)
232 const
233 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
234
235 // Make an operator token at the current location.
236 Token
237 make_token(int opcode, const char* start) const
238 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
239
240 // Make an invalid token at the current location.
241 Token
242 make_invalid_token(const char* start)
243 { return this->make_token(Token::TOKEN_INVALID, start); }
244
245 // Make an EOF token at the current location.
246 Token
247 make_eof_token(const char* start)
248 { return this->make_token(Token::TOKEN_EOF, start); }
249
250 // Return whether C can be the first character in a name. C2 is the
251 // next character, since we sometimes need that.
252 inline bool
253 can_start_name(char c, char c2);
254
255 // If C can appear in a name which has already started, return a
256 // pointer to a character later in the token or just past
257 // it. Otherwise, return NULL.
258 inline const char*
259 can_continue_name(const char* c);
260
261 // Return whether C, C2, C3 can start a hex number.
262 inline bool
263 can_start_hex(char c, char c2, char c3);
264
265 // If C can appear in a hex number which has already started, return
266 // a pointer to a character later in the token or just past
267 // it. Otherwise, return NULL.
268 inline const char*
269 can_continue_hex(const char* c);
270
271 // Return whether C can start a non-hex number.
272 static inline bool
273 can_start_number(char c);
274
275 // If C can appear in a decimal number which has already started,
276 // return a pointer to a character later in the token or just past
277 // it. Otherwise, return NULL.
278 inline const char*
279 can_continue_number(const char* c)
280 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
281
282 // If C1 C2 C3 form a valid three character operator, return the
283 // opcode. Otherwise return 0.
284 static inline int
285 three_char_operator(char c1, char c2, char c3);
286
287 // If C1 C2 form a valid two character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 two_char_operator(char c1, char c2);
291
292 // If C1 is a valid one character operator, return the opcode.
293 // Otherwise return 0.
294 static inline int
295 one_char_operator(char c1);
296
297 // Read the next token.
298 Token
299 get_token(const char**);
300
301 // Skip a C style /* */ comment. Return false if the comment did
302 // not end.
303 bool
304 skip_c_comment(const char**);
305
306 // Skip a line # comment. Return false if there was no newline.
307 bool
308 skip_line_comment(const char**);
309
310 // Build a token CLASSIFICATION from all characters that match
311 // CAN_CONTINUE_FN. The token starts at START. Start matching from
312 // MATCH. Set *PP to the character following the token.
313 inline Token
314 gather_token(Token::Classification,
315 const char* (Lex::*can_continue_fn)(const char*),
316 const char* start, const char* match, const char** pp);
317
318 // Build a token from a quoted string.
319 Token
320 gather_quoted_string(const char** pp);
321
322 // The string we are tokenizing.
323 const char* input_string_;
324 // The length of the string.
325 size_t input_length_;
326 // The current offset into the string.
327 const char* current_;
328 // The current lexing mode.
329 Mode mode_;
330 // The code to use for the first token. This is set to 0 after it
331 // is used.
332 int first_token_;
333 // The current token.
334 Token token_;
335 // The current line number.
336 int lineno_;
337 // The start of the current line in the string.
338 const char* linestart_;
339 };
340
341 // Read the whole file into memory. We don't expect linker scripts to
342 // be large, so we just use a std::string as a buffer. We ignore the
343 // data we've already read, so that we read aligned buffers.
344
345 void
346 Lex::read_file(Input_file* input_file, std::string* contents)
347 {
348 off_t filesize = input_file->file().filesize();
349 contents->clear();
350 contents->reserve(filesize);
351
352 off_t off = 0;
353 unsigned char buf[BUFSIZ];
354 while (off < filesize)
355 {
356 off_t get = BUFSIZ;
357 if (get > filesize - off)
358 get = filesize - off;
359 input_file->file().read(off, get, buf);
360 contents->append(reinterpret_cast<char*>(&buf[0]), get);
361 off += get;
362 }
363 }
364
365 // Return whether C can be the start of a name, if the next character
366 // is C2. A name can being with a letter, underscore, period, or
367 // dollar sign. Because a name can be a file name, we also permit
368 // forward slash, backslash, and tilde. Tilde is the tricky case
369 // here; GNU ld also uses it as a bitwise not operator. It is only
370 // recognized as the operator if it is not immediately followed by
371 // some character which can appear in a symbol. That is, when we
372 // don't know that we are looking at an expression, "~0" is a file
373 // name, and "~ 0" is an expression using bitwise not. We are
374 // compatible.
375
376 inline bool
377 Lex::can_start_name(char c, char c2)
378 {
379 switch (c)
380 {
381 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
382 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
383 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
384 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
385 case 'Y': case 'Z':
386 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
387 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
388 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
389 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
390 case 'y': case 'z':
391 case '_': case '.': case '$':
392 return true;
393
394 case '/': case '\\':
395 return this->mode_ == LINKER_SCRIPT;
396
397 case '~':
398 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
399
400 case '*': case '[':
401 return (this->mode_ == VERSION_SCRIPT
402 || this->mode_ == DYNAMIC_LIST
403 || (this->mode_ == LINKER_SCRIPT
404 && can_continue_name(&c2)));
405
406 default:
407 return false;
408 }
409 }
410
411 // Return whether C can continue a name which has already started.
412 // Subsequent characters in a name are the same as the leading
413 // characters, plus digits and "=+-:[],?*". So in general the linker
414 // script language requires spaces around operators, unless we know
415 // that we are parsing an expression.
416
417 inline const char*
418 Lex::can_continue_name(const char* c)
419 {
420 switch (*c)
421 {
422 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
423 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
424 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
425 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
426 case 'Y': case 'Z':
427 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
428 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
429 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
430 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
431 case 'y': case 'z':
432 case '_': case '.': case '$':
433 case '0': case '1': case '2': case '3': case '4':
434 case '5': case '6': case '7': case '8': case '9':
435 return c + 1;
436
437 // TODO(csilvers): why not allow ~ in names for version-scripts?
438 case '/': case '\\': case '~':
439 case '=': case '+':
440 case ',':
441 if (this->mode_ == LINKER_SCRIPT)
442 return c + 1;
443 return NULL;
444
445 case '[': case ']': case '*': case '?': case '-':
446 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
447 || this->mode_ == DYNAMIC_LIST)
448 return c + 1;
449 return NULL;
450
451 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
452 case '^':
453 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
454 return c + 1;
455 return NULL;
456
457 case ':':
458 if (this->mode_ == LINKER_SCRIPT)
459 return c + 1;
460 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
461 && (c[1] == ':'))
462 {
463 // A name can have '::' in it, as that's a c++ namespace
464 // separator. But a single colon is not part of a name.
465 return c + 2;
466 }
467 return NULL;
468
469 default:
470 return NULL;
471 }
472 }
473
474 // For a number we accept 0x followed by hex digits, or any sequence
475 // of digits. The old linker accepts leading '$' for hex, and
476 // trailing HXBOD. Those are for MRI compatibility and we don't
477 // accept them. The old linker also accepts trailing MK for mega or
478 // kilo. FIXME: Those are mentioned in the documentation, and we
479 // should accept them.
480
481 // Return whether C1 C2 C3 can start a hex number.
482
483 inline bool
484 Lex::can_start_hex(char c1, char c2, char c3)
485 {
486 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
487 return this->can_continue_hex(&c3);
488 return false;
489 }
490
491 // Return whether C can appear in a hex number.
492
493 inline const char*
494 Lex::can_continue_hex(const char* c)
495 {
496 switch (*c)
497 {
498 case '0': case '1': case '2': case '3': case '4':
499 case '5': case '6': case '7': case '8': case '9':
500 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
501 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
502 return c + 1;
503
504 default:
505 return NULL;
506 }
507 }
508
509 // Return whether C can start a non-hex number.
510
511 inline bool
512 Lex::can_start_number(char c)
513 {
514 switch (c)
515 {
516 case '0': case '1': case '2': case '3': case '4':
517 case '5': case '6': case '7': case '8': case '9':
518 return true;
519
520 default:
521 return false;
522 }
523 }
524
525 // If C1 C2 C3 form a valid three character operator, return the
526 // opcode (defined in the yyscript.h file generated from yyscript.y).
527 // Otherwise return 0.
528
529 inline int
530 Lex::three_char_operator(char c1, char c2, char c3)
531 {
532 switch (c1)
533 {
534 case '<':
535 if (c2 == '<' && c3 == '=')
536 return LSHIFTEQ;
537 break;
538 case '>':
539 if (c2 == '>' && c3 == '=')
540 return RSHIFTEQ;
541 break;
542 default:
543 break;
544 }
545 return 0;
546 }
547
548 // If C1 C2 form a valid two character operator, return the opcode
549 // (defined in the yyscript.h file generated from yyscript.y).
550 // Otherwise return 0.
551
552 inline int
553 Lex::two_char_operator(char c1, char c2)
554 {
555 switch (c1)
556 {
557 case '=':
558 if (c2 == '=')
559 return EQ;
560 break;
561 case '!':
562 if (c2 == '=')
563 return NE;
564 break;
565 case '+':
566 if (c2 == '=')
567 return PLUSEQ;
568 break;
569 case '-':
570 if (c2 == '=')
571 return MINUSEQ;
572 break;
573 case '*':
574 if (c2 == '=')
575 return MULTEQ;
576 break;
577 case '/':
578 if (c2 == '=')
579 return DIVEQ;
580 break;
581 case '|':
582 if (c2 == '=')
583 return OREQ;
584 if (c2 == '|')
585 return OROR;
586 break;
587 case '&':
588 if (c2 == '=')
589 return ANDEQ;
590 if (c2 == '&')
591 return ANDAND;
592 break;
593 case '>':
594 if (c2 == '=')
595 return GE;
596 if (c2 == '>')
597 return RSHIFT;
598 break;
599 case '<':
600 if (c2 == '=')
601 return LE;
602 if (c2 == '<')
603 return LSHIFT;
604 break;
605 default:
606 break;
607 }
608 return 0;
609 }
610
611 // If C1 is a valid operator, return the opcode. Otherwise return 0.
612
613 inline int
614 Lex::one_char_operator(char c1)
615 {
616 switch (c1)
617 {
618 case '+':
619 case '-':
620 case '*':
621 case '/':
622 case '%':
623 case '!':
624 case '&':
625 case '|':
626 case '^':
627 case '~':
628 case '<':
629 case '>':
630 case '=':
631 case '?':
632 case ',':
633 case '(':
634 case ')':
635 case '{':
636 case '}':
637 case '[':
638 case ']':
639 case ':':
640 case ';':
641 return c1;
642 default:
643 return 0;
644 }
645 }
646
647 // Skip a C style comment. *PP points to just after the "/*". Return
648 // false if the comment did not end.
649
650 bool
651 Lex::skip_c_comment(const char** pp)
652 {
653 const char* p = *pp;
654 while (p[0] != '*' || p[1] != '/')
655 {
656 if (*p == '\0')
657 {
658 *pp = p;
659 return false;
660 }
661
662 if (*p == '\n')
663 {
664 ++this->lineno_;
665 this->linestart_ = p + 1;
666 }
667 ++p;
668 }
669
670 *pp = p + 2;
671 return true;
672 }
673
674 // Skip a line # comment. Return false if there was no newline.
675
676 bool
677 Lex::skip_line_comment(const char** pp)
678 {
679 const char* p = *pp;
680 size_t skip = strcspn(p, "\n");
681 if (p[skip] == '\0')
682 {
683 *pp = p + skip;
684 return false;
685 }
686
687 p += skip + 1;
688 ++this->lineno_;
689 this->linestart_ = p;
690 *pp = p;
691
692 return true;
693 }
694
695 // Build a token CLASSIFICATION from all characters that match
696 // CAN_CONTINUE_FN. Update *PP.
697
698 inline Token
699 Lex::gather_token(Token::Classification classification,
700 const char* (Lex::*can_continue_fn)(const char*),
701 const char* start,
702 const char* match,
703 const char** pp)
704 {
705 const char* new_match = NULL;
706 while ((new_match = (this->*can_continue_fn)(match)))
707 match = new_match;
708 *pp = match;
709 return this->make_token(classification, start, match - start, start);
710 }
711
712 // Build a token from a quoted string.
713
714 Token
715 Lex::gather_quoted_string(const char** pp)
716 {
717 const char* start = *pp;
718 const char* p = start;
719 ++p;
720 size_t skip = strcspn(p, "\"\n");
721 if (p[skip] != '"')
722 return this->make_invalid_token(start);
723 *pp = p + skip + 1;
724 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
725 }
726
727 // Return the next token at *PP. Update *PP. General guideline: we
728 // require linker scripts to be simple ASCII. No unicode linker
729 // scripts. In particular we can assume that any '\0' is the end of
730 // the input.
731
732 Token
733 Lex::get_token(const char** pp)
734 {
735 const char* p = *pp;
736
737 while (true)
738 {
739 if (*p == '\0')
740 {
741 *pp = p;
742 return this->make_eof_token(p);
743 }
744
745 // Skip whitespace quickly.
746 while (*p == ' ' || *p == '\t' || *p == '\r')
747 ++p;
748
749 if (*p == '\n')
750 {
751 ++p;
752 ++this->lineno_;
753 this->linestart_ = p;
754 continue;
755 }
756
757 // Skip C style comments.
758 if (p[0] == '/' && p[1] == '*')
759 {
760 int lineno = this->lineno_;
761 int charpos = p - this->linestart_ + 1;
762
763 *pp = p + 2;
764 if (!this->skip_c_comment(pp))
765 return Token(Token::TOKEN_INVALID, lineno, charpos);
766 p = *pp;
767
768 continue;
769 }
770
771 // Skip line comments.
772 if (*p == '#')
773 {
774 *pp = p + 1;
775 if (!this->skip_line_comment(pp))
776 return this->make_eof_token(p);
777 p = *pp;
778 continue;
779 }
780
781 // Check for a name.
782 if (this->can_start_name(p[0], p[1]))
783 return this->gather_token(Token::TOKEN_STRING,
784 &Lex::can_continue_name,
785 p, p + 1, pp);
786
787 // We accept any arbitrary name in double quotes, as long as it
788 // does not cross a line boundary.
789 if (*p == '"')
790 {
791 *pp = p;
792 return this->gather_quoted_string(pp);
793 }
794
795 // Check for a number.
796
797 if (this->can_start_hex(p[0], p[1], p[2]))
798 return this->gather_token(Token::TOKEN_INTEGER,
799 &Lex::can_continue_hex,
800 p, p + 3, pp);
801
802 if (Lex::can_start_number(p[0]))
803 return this->gather_token(Token::TOKEN_INTEGER,
804 &Lex::can_continue_number,
805 p, p + 1, pp);
806
807 // Check for operators.
808
809 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
810 if (opcode != 0)
811 {
812 *pp = p + 3;
813 return this->make_token(opcode, p);
814 }
815
816 opcode = Lex::two_char_operator(p[0], p[1]);
817 if (opcode != 0)
818 {
819 *pp = p + 2;
820 return this->make_token(opcode, p);
821 }
822
823 opcode = Lex::one_char_operator(p[0]);
824 if (opcode != 0)
825 {
826 *pp = p + 1;
827 return this->make_token(opcode, p);
828 }
829
830 return this->make_token(Token::TOKEN_INVALID, p);
831 }
832 }
833
834 // Return the next token.
835
836 const Token*
837 Lex::next_token()
838 {
839 // The first token is special.
840 if (this->first_token_ != 0)
841 {
842 this->token_ = Token(this->first_token_, 0, 0);
843 this->first_token_ = 0;
844 return &this->token_;
845 }
846
847 this->token_ = this->get_token(&this->current_);
848
849 // Don't let an early null byte fool us into thinking that we've
850 // reached the end of the file.
851 if (this->token_.is_eof()
852 && (static_cast<size_t>(this->current_ - this->input_string_)
853 < this->input_length_))
854 this->token_ = this->make_invalid_token(this->current_);
855
856 return &this->token_;
857 }
858
859 // class Symbol_assignment.
860
861 // Add the symbol to the symbol table. This makes sure the symbol is
862 // there and defined. The actual value is stored later. We can't
863 // determine the actual value at this point, because we can't
864 // necessarily evaluate the expression until all ordinary symbols have
865 // been finalized.
866
867 // The GNU linker lets symbol assignments in the linker script
868 // silently override defined symbols in object files. We are
869 // compatible. FIXME: Should we issue a warning?
870
871 void
872 Symbol_assignment::add_to_table(Symbol_table* symtab)
873 {
874 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
875 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
876 NULL, // version
877 (this->is_defsym_
878 ? Symbol_table::DEFSYM
879 : Symbol_table::SCRIPT),
880 0, // value
881 0, // size
882 elfcpp::STT_NOTYPE,
883 elfcpp::STB_GLOBAL,
884 vis,
885 0, // nonvis
886 this->provide_,
887 true); // force_override
888 }
889
890 // Finalize a symbol value.
891
892 void
893 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
894 {
895 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
896 }
897
898 // Finalize a symbol value which can refer to the dot symbol.
899
900 void
901 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
902 const Layout* layout,
903 uint64_t dot_value,
904 Output_section* dot_section)
905 {
906 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
907 }
908
909 // Finalize a symbol value, internal version.
910
911 void
912 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
913 const Layout* layout,
914 bool is_dot_available,
915 uint64_t dot_value,
916 Output_section* dot_section)
917 {
918 // If we were only supposed to provide this symbol, the sym_ field
919 // will be NULL if the symbol was not referenced.
920 if (this->sym_ == NULL)
921 {
922 gold_assert(this->provide_);
923 return;
924 }
925
926 if (parameters->target().get_size() == 32)
927 {
928 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
929 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
930 dot_section);
931 #else
932 gold_unreachable();
933 #endif
934 }
935 else if (parameters->target().get_size() == 64)
936 {
937 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
938 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
939 dot_section);
940 #else
941 gold_unreachable();
942 #endif
943 }
944 else
945 gold_unreachable();
946 }
947
948 template<int size>
949 void
950 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
951 bool is_dot_available, uint64_t dot_value,
952 Output_section* dot_section)
953 {
954 Output_section* section;
955 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
956 is_dot_available,
957 dot_value, dot_section,
958 &section, NULL);
959 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
960 ssym->set_value(final_val);
961 if (section != NULL)
962 ssym->set_output_section(section);
963 }
964
965 // Set the symbol value if the expression yields an absolute value.
966
967 void
968 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
969 bool is_dot_available, uint64_t dot_value)
970 {
971 if (this->sym_ == NULL)
972 return;
973
974 Output_section* val_section;
975 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
976 is_dot_available, dot_value,
977 NULL, &val_section, NULL);
978 if (val_section != NULL)
979 return;
980
981 if (parameters->target().get_size() == 32)
982 {
983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
984 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
985 ssym->set_value(val);
986 #else
987 gold_unreachable();
988 #endif
989 }
990 else if (parameters->target().get_size() == 64)
991 {
992 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
993 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
994 ssym->set_value(val);
995 #else
996 gold_unreachable();
997 #endif
998 }
999 else
1000 gold_unreachable();
1001 }
1002
1003 // Print for debugging.
1004
1005 void
1006 Symbol_assignment::print(FILE* f) const
1007 {
1008 if (this->provide_ && this->hidden_)
1009 fprintf(f, "PROVIDE_HIDDEN(");
1010 else if (this->provide_)
1011 fprintf(f, "PROVIDE(");
1012 else if (this->hidden_)
1013 gold_unreachable();
1014
1015 fprintf(f, "%s = ", this->name_.c_str());
1016 this->val_->print(f);
1017
1018 if (this->provide_ || this->hidden_)
1019 fprintf(f, ")");
1020
1021 fprintf(f, "\n");
1022 }
1023
1024 // Class Script_assertion.
1025
1026 // Check the assertion.
1027
1028 void
1029 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1030 {
1031 if (!this->check_->eval(symtab, layout, true))
1032 gold_error("%s", this->message_.c_str());
1033 }
1034
1035 // Print for debugging.
1036
1037 void
1038 Script_assertion::print(FILE* f) const
1039 {
1040 fprintf(f, "ASSERT(");
1041 this->check_->print(f);
1042 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1043 }
1044
1045 // Class Script_options.
1046
1047 Script_options::Script_options()
1048 : entry_(), symbol_assignments_(), symbol_definitions_(),
1049 symbol_references_(), version_script_info_(), script_sections_()
1050 {
1051 }
1052
1053 // Returns true if NAME is on the list of symbol assignments waiting
1054 // to be processed.
1055
1056 bool
1057 Script_options::is_pending_assignment(const char* name)
1058 {
1059 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1060 p != this->symbol_assignments_.end();
1061 ++p)
1062 if ((*p)->name() == name)
1063 return true;
1064 return false;
1065 }
1066
1067 // Add a symbol to be defined.
1068
1069 void
1070 Script_options::add_symbol_assignment(const char* name, size_t length,
1071 bool is_defsym, Expression* value,
1072 bool provide, bool hidden)
1073 {
1074 if (length != 1 || name[0] != '.')
1075 {
1076 if (this->script_sections_.in_sections_clause())
1077 {
1078 gold_assert(!is_defsym);
1079 this->script_sections_.add_symbol_assignment(name, length, value,
1080 provide, hidden);
1081 }
1082 else
1083 {
1084 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1085 value, provide, hidden);
1086 this->symbol_assignments_.push_back(p);
1087 }
1088
1089 if (!provide)
1090 {
1091 std::string n(name, length);
1092 this->symbol_definitions_.insert(n);
1093 this->symbol_references_.erase(n);
1094 }
1095 }
1096 else
1097 {
1098 if (provide || hidden)
1099 gold_error(_("invalid use of PROVIDE for dot symbol"));
1100
1101 // The GNU linker permits assignments to dot outside of SECTIONS
1102 // clauses and treats them as occurring inside, so we don't
1103 // check in_sections_clause here.
1104 this->script_sections_.add_dot_assignment(value);
1105 }
1106 }
1107
1108 // Add a reference to a symbol.
1109
1110 void
1111 Script_options::add_symbol_reference(const char* name, size_t length)
1112 {
1113 if (length != 1 || name[0] != '.')
1114 {
1115 std::string n(name, length);
1116 if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1117 this->symbol_references_.insert(n);
1118 }
1119 }
1120
1121 // Add an assertion.
1122
1123 void
1124 Script_options::add_assertion(Expression* check, const char* message,
1125 size_t messagelen)
1126 {
1127 if (this->script_sections_.in_sections_clause())
1128 this->script_sections_.add_assertion(check, message, messagelen);
1129 else
1130 {
1131 Script_assertion* p = new Script_assertion(check, message, messagelen);
1132 this->assertions_.push_back(p);
1133 }
1134 }
1135
1136 // Create sections required by any linker scripts.
1137
1138 void
1139 Script_options::create_script_sections(Layout* layout)
1140 {
1141 if (this->saw_sections_clause())
1142 this->script_sections_.create_sections(layout);
1143 }
1144
1145 // Add any symbols we are defining to the symbol table.
1146
1147 void
1148 Script_options::add_symbols_to_table(Symbol_table* symtab)
1149 {
1150 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1151 p != this->symbol_assignments_.end();
1152 ++p)
1153 (*p)->add_to_table(symtab);
1154 this->script_sections_.add_symbols_to_table(symtab);
1155 }
1156
1157 // Finalize symbol values. Also check assertions.
1158
1159 void
1160 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1161 {
1162 // We finalize the symbols defined in SECTIONS first, because they
1163 // are the ones which may have changed. This way if symbol outside
1164 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1165 // will get the right value.
1166 this->script_sections_.finalize_symbols(symtab, layout);
1167
1168 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1169 p != this->symbol_assignments_.end();
1170 ++p)
1171 (*p)->finalize(symtab, layout);
1172
1173 for (Assertions::iterator p = this->assertions_.begin();
1174 p != this->assertions_.end();
1175 ++p)
1176 (*p)->check(symtab, layout);
1177 }
1178
1179 // Set section addresses. We set all the symbols which have absolute
1180 // values. Then we let the SECTIONS clause do its thing. This
1181 // returns the segment which holds the file header and segment
1182 // headers, if any.
1183
1184 Output_segment*
1185 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1186 {
1187 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1188 p != this->symbol_assignments_.end();
1189 ++p)
1190 (*p)->set_if_absolute(symtab, layout, false, 0);
1191
1192 return this->script_sections_.set_section_addresses(symtab, layout);
1193 }
1194
1195 // This class holds data passed through the parser to the lexer and to
1196 // the parser support functions. This avoids global variables. We
1197 // can't use global variables because we need not be called by a
1198 // singleton thread.
1199
1200 class Parser_closure
1201 {
1202 public:
1203 Parser_closure(const char* filename,
1204 const Position_dependent_options& posdep_options,
1205 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1206 Command_line* command_line,
1207 Script_options* script_options,
1208 Lex* lex,
1209 bool skip_on_incompatible_target,
1210 Script_info* script_info)
1211 : filename_(filename), posdep_options_(posdep_options),
1212 parsing_defsym_(parsing_defsym), in_group_(in_group),
1213 is_in_sysroot_(is_in_sysroot),
1214 skip_on_incompatible_target_(skip_on_incompatible_target),
1215 found_incompatible_target_(false),
1216 command_line_(command_line), script_options_(script_options),
1217 version_script_info_(script_options->version_script_info()),
1218 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL),
1219 script_info_(script_info)
1220 {
1221 // We start out processing C symbols in the default lex mode.
1222 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1223 this->lex_mode_stack_.push_back(lex->mode());
1224 }
1225
1226 // Return the file name.
1227 const char*
1228 filename() const
1229 { return this->filename_; }
1230
1231 // Return the position dependent options. The caller may modify
1232 // this.
1233 Position_dependent_options&
1234 position_dependent_options()
1235 { return this->posdep_options_; }
1236
1237 // Whether we are parsing a --defsym.
1238 bool
1239 parsing_defsym() const
1240 { return this->parsing_defsym_; }
1241
1242 // Return whether this script is being run in a group.
1243 bool
1244 in_group() const
1245 { return this->in_group_; }
1246
1247 // Return whether this script was found using a directory in the
1248 // sysroot.
1249 bool
1250 is_in_sysroot() const
1251 { return this->is_in_sysroot_; }
1252
1253 // Whether to skip to the next file with the same name if we find an
1254 // incompatible target in an OUTPUT_FORMAT statement.
1255 bool
1256 skip_on_incompatible_target() const
1257 { return this->skip_on_incompatible_target_; }
1258
1259 // Stop skipping to the next file on an incompatible target. This
1260 // is called when we make some unrevocable change to the data
1261 // structures.
1262 void
1263 clear_skip_on_incompatible_target()
1264 { this->skip_on_incompatible_target_ = false; }
1265
1266 // Whether we found an incompatible target in an OUTPUT_FORMAT
1267 // statement.
1268 bool
1269 found_incompatible_target() const
1270 { return this->found_incompatible_target_; }
1271
1272 // Note that we found an incompatible target.
1273 void
1274 set_found_incompatible_target()
1275 { this->found_incompatible_target_ = true; }
1276
1277 // Returns the Command_line structure passed in at constructor time.
1278 // This value may be NULL. The caller may modify this, which modifies
1279 // the passed-in Command_line object (not a copy).
1280 Command_line*
1281 command_line()
1282 { return this->command_line_; }
1283
1284 // Return the options which may be set by a script.
1285 Script_options*
1286 script_options()
1287 { return this->script_options_; }
1288
1289 // Return the object in which version script information should be stored.
1290 Version_script_info*
1291 version_script()
1292 { return this->version_script_info_; }
1293
1294 // Return the next token, and advance.
1295 const Token*
1296 next_token()
1297 {
1298 const Token* token = this->lex_->next_token();
1299 this->lineno_ = token->lineno();
1300 this->charpos_ = token->charpos();
1301 return token;
1302 }
1303
1304 // Set a new lexer mode, pushing the current one.
1305 void
1306 push_lex_mode(Lex::Mode mode)
1307 {
1308 this->lex_mode_stack_.push_back(this->lex_->mode());
1309 this->lex_->set_mode(mode);
1310 }
1311
1312 // Pop the lexer mode.
1313 void
1314 pop_lex_mode()
1315 {
1316 gold_assert(!this->lex_mode_stack_.empty());
1317 this->lex_->set_mode(this->lex_mode_stack_.back());
1318 this->lex_mode_stack_.pop_back();
1319 }
1320
1321 // Return the current lexer mode.
1322 Lex::Mode
1323 lex_mode() const
1324 { return this->lex_mode_stack_.back(); }
1325
1326 // Return the line number of the last token.
1327 int
1328 lineno() const
1329 { return this->lineno_; }
1330
1331 // Return the character position in the line of the last token.
1332 int
1333 charpos() const
1334 { return this->charpos_; }
1335
1336 // Return the list of input files, creating it if necessary. This
1337 // is a space leak--we never free the INPUTS_ pointer.
1338 Input_arguments*
1339 inputs()
1340 {
1341 if (this->inputs_ == NULL)
1342 this->inputs_ = new Input_arguments();
1343 return this->inputs_;
1344 }
1345
1346 // Return whether we saw any input files.
1347 bool
1348 saw_inputs() const
1349 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1350
1351 // Return the current language being processed in a version script
1352 // (eg, "C++"). The empty string represents unmangled C names.
1353 Version_script_info::Language
1354 get_current_language() const
1355 { return this->language_stack_.back(); }
1356
1357 // Push a language onto the stack when entering an extern block.
1358 void
1359 push_language(Version_script_info::Language lang)
1360 { this->language_stack_.push_back(lang); }
1361
1362 // Pop a language off of the stack when exiting an extern block.
1363 void
1364 pop_language()
1365 {
1366 gold_assert(!this->language_stack_.empty());
1367 this->language_stack_.pop_back();
1368 }
1369
1370 // Return a pointer to the incremental info.
1371 Script_info*
1372 script_info()
1373 { return this->script_info_; }
1374
1375 private:
1376 // The name of the file we are reading.
1377 const char* filename_;
1378 // The position dependent options.
1379 Position_dependent_options posdep_options_;
1380 // True if we are parsing a --defsym.
1381 bool parsing_defsym_;
1382 // Whether we are currently in a --start-group/--end-group.
1383 bool in_group_;
1384 // Whether the script was found in a sysrooted directory.
1385 bool is_in_sysroot_;
1386 // If this is true, then if we find an OUTPUT_FORMAT with an
1387 // incompatible target, then we tell the parser to abort so that we
1388 // can search for the next file with the same name.
1389 bool skip_on_incompatible_target_;
1390 // True if we found an OUTPUT_FORMAT with an incompatible target.
1391 bool found_incompatible_target_;
1392 // May be NULL if the user chooses not to pass one in.
1393 Command_line* command_line_;
1394 // Options which may be set from any linker script.
1395 Script_options* script_options_;
1396 // Information parsed from a version script.
1397 Version_script_info* version_script_info_;
1398 // The lexer.
1399 Lex* lex_;
1400 // The line number of the last token returned by next_token.
1401 int lineno_;
1402 // The column number of the last token returned by next_token.
1403 int charpos_;
1404 // A stack of lexer modes.
1405 std::vector<Lex::Mode> lex_mode_stack_;
1406 // A stack of which extern/language block we're inside. Can be C++,
1407 // java, or empty for C.
1408 std::vector<Version_script_info::Language> language_stack_;
1409 // New input files found to add to the link.
1410 Input_arguments* inputs_;
1411 // Pointer to incremental linking info.
1412 Script_info* script_info_;
1413 };
1414
1415 // FILE was found as an argument on the command line. Try to read it
1416 // as a script. Return true if the file was handled.
1417
1418 bool
1419 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1420 Dirsearch* dirsearch, int dirindex,
1421 Input_objects* input_objects, Mapfile* mapfile,
1422 Input_group* input_group,
1423 const Input_argument* input_argument,
1424 Input_file* input_file, Task_token* next_blocker,
1425 bool* used_next_blocker)
1426 {
1427 *used_next_blocker = false;
1428
1429 std::string input_string;
1430 Lex::read_file(input_file, &input_string);
1431
1432 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1433
1434 Script_info* script_info = NULL;
1435 if (layout->incremental_inputs() != NULL)
1436 {
1437 const std::string& filename = input_file->filename();
1438 Timespec mtime = input_file->file().get_mtime();
1439 unsigned int arg_serial = input_argument->file().arg_serial();
1440 script_info = new Script_info(filename);
1441 layout->incremental_inputs()->report_script(script_info, arg_serial,
1442 mtime);
1443 }
1444
1445 Parser_closure closure(input_file->filename().c_str(),
1446 input_argument->file().options(),
1447 false,
1448 input_group != NULL,
1449 input_file->is_in_sysroot(),
1450 NULL,
1451 layout->script_options(),
1452 &lex,
1453 input_file->will_search_for(),
1454 script_info);
1455
1456 bool old_saw_sections_clause =
1457 layout->script_options()->saw_sections_clause();
1458
1459 if (yyparse(&closure) != 0)
1460 {
1461 if (closure.found_incompatible_target())
1462 {
1463 Read_symbols::incompatible_warning(input_argument, input_file);
1464 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1465 dirsearch, dirindex, mapfile, input_argument,
1466 input_group, next_blocker);
1467 return true;
1468 }
1469 return false;
1470 }
1471
1472 if (!old_saw_sections_clause
1473 && layout->script_options()->saw_sections_clause()
1474 && layout->have_added_input_section())
1475 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1476 input_file->filename().c_str());
1477
1478 if (!closure.saw_inputs())
1479 return true;
1480
1481 Task_token* this_blocker = NULL;
1482 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1483 p != closure.inputs()->end();
1484 ++p)
1485 {
1486 Task_token* nb;
1487 if (p + 1 == closure.inputs()->end())
1488 nb = next_blocker;
1489 else
1490 {
1491 nb = new Task_token(true);
1492 nb->add_blocker();
1493 }
1494 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1495 layout, dirsearch, 0, mapfile, &*p,
1496 input_group, NULL, this_blocker, nb));
1497 this_blocker = nb;
1498 }
1499
1500 *used_next_blocker = true;
1501
1502 return true;
1503 }
1504
1505 // Helper function for read_version_script() and
1506 // read_commandline_script(). Processes the given file in the mode
1507 // indicated by first_token and lex_mode.
1508
1509 static bool
1510 read_script_file(const char* filename, Command_line* cmdline,
1511 Script_options* script_options,
1512 int first_token, Lex::Mode lex_mode)
1513 {
1514 // TODO: if filename is a relative filename, search for it manually
1515 // using "." + cmdline->options()->search_path() -- not dirsearch.
1516 Dirsearch dirsearch;
1517
1518 // The file locking code wants to record a Task, but we haven't
1519 // started the workqueue yet. This is only for debugging purposes,
1520 // so we invent a fake value.
1521 const Task* task = reinterpret_cast<const Task*>(-1);
1522
1523 // We don't want this file to be opened in binary mode.
1524 Position_dependent_options posdep = cmdline->position_dependent_options();
1525 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1526 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1527 Input_file_argument input_argument(filename,
1528 Input_file_argument::INPUT_FILE_TYPE_FILE,
1529 "", false, posdep);
1530 Input_file input_file(&input_argument);
1531 int dummy = 0;
1532 if (!input_file.open(dirsearch, task, &dummy))
1533 return false;
1534
1535 std::string input_string;
1536 Lex::read_file(&input_file, &input_string);
1537
1538 Lex lex(input_string.c_str(), input_string.length(), first_token);
1539 lex.set_mode(lex_mode);
1540
1541 Parser_closure closure(filename,
1542 cmdline->position_dependent_options(),
1543 first_token == Lex::DYNAMIC_LIST,
1544 false,
1545 input_file.is_in_sysroot(),
1546 cmdline,
1547 script_options,
1548 &lex,
1549 false,
1550 NULL);
1551 if (yyparse(&closure) != 0)
1552 {
1553 input_file.file().unlock(task);
1554 return false;
1555 }
1556
1557 input_file.file().unlock(task);
1558
1559 gold_assert(!closure.saw_inputs());
1560
1561 return true;
1562 }
1563
1564 // FILENAME was found as an argument to --script (-T).
1565 // Read it as a script, and execute its contents immediately.
1566
1567 bool
1568 read_commandline_script(const char* filename, Command_line* cmdline)
1569 {
1570 return read_script_file(filename, cmdline, &cmdline->script_options(),
1571 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1572 }
1573
1574 // FILENAME was found as an argument to --version-script. Read it as
1575 // a version script, and store its contents in
1576 // cmdline->script_options()->version_script_info().
1577
1578 bool
1579 read_version_script(const char* filename, Command_line* cmdline)
1580 {
1581 return read_script_file(filename, cmdline, &cmdline->script_options(),
1582 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1583 }
1584
1585 // FILENAME was found as an argument to --dynamic-list. Read it as a
1586 // list of symbols, and store its contents in DYNAMIC_LIST.
1587
1588 bool
1589 read_dynamic_list(const char* filename, Command_line* cmdline,
1590 Script_options* dynamic_list)
1591 {
1592 return read_script_file(filename, cmdline, dynamic_list,
1593 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1594 }
1595
1596 // Implement the --defsym option on the command line. Return true if
1597 // all is well.
1598
1599 bool
1600 Script_options::define_symbol(const char* definition)
1601 {
1602 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1603 lex.set_mode(Lex::EXPRESSION);
1604
1605 // Dummy value.
1606 Position_dependent_options posdep_options;
1607
1608 Parser_closure closure("command line", posdep_options, true,
1609 false, false, NULL, this, &lex, false, NULL);
1610
1611 if (yyparse(&closure) != 0)
1612 return false;
1613
1614 gold_assert(!closure.saw_inputs());
1615
1616 return true;
1617 }
1618
1619 // Print the script to F for debugging.
1620
1621 void
1622 Script_options::print(FILE* f) const
1623 {
1624 fprintf(f, "%s: Dumping linker script\n", program_name);
1625
1626 if (!this->entry_.empty())
1627 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1628
1629 for (Symbol_assignments::const_iterator p =
1630 this->symbol_assignments_.begin();
1631 p != this->symbol_assignments_.end();
1632 ++p)
1633 (*p)->print(f);
1634
1635 for (Assertions::const_iterator p = this->assertions_.begin();
1636 p != this->assertions_.end();
1637 ++p)
1638 (*p)->print(f);
1639
1640 this->script_sections_.print(f);
1641
1642 this->version_script_info_.print(f);
1643 }
1644
1645 // Manage mapping from keywords to the codes expected by the bison
1646 // parser. We construct one global object for each lex mode with
1647 // keywords.
1648
1649 class Keyword_to_parsecode
1650 {
1651 public:
1652 // The structure which maps keywords to parsecodes.
1653 struct Keyword_parsecode
1654 {
1655 // Keyword.
1656 const char* keyword;
1657 // Corresponding parsecode.
1658 int parsecode;
1659 };
1660
1661 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1662 int keyword_count)
1663 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1664 { }
1665
1666 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1667 // keyword.
1668 int
1669 keyword_to_parsecode(const char* keyword, size_t len) const;
1670
1671 private:
1672 const Keyword_parsecode* keyword_parsecodes_;
1673 const int keyword_count_;
1674 };
1675
1676 // Mapping from keyword string to keyword parsecode. This array must
1677 // be kept in sorted order. Parsecodes are looked up using bsearch.
1678 // This array must correspond to the list of parsecodes in yyscript.y.
1679
1680 static const Keyword_to_parsecode::Keyword_parsecode
1681 script_keyword_parsecodes[] =
1682 {
1683 { "ABSOLUTE", ABSOLUTE },
1684 { "ADDR", ADDR },
1685 { "ALIGN", ALIGN_K },
1686 { "ALIGNOF", ALIGNOF },
1687 { "ASSERT", ASSERT_K },
1688 { "AS_NEEDED", AS_NEEDED },
1689 { "AT", AT },
1690 { "BIND", BIND },
1691 { "BLOCK", BLOCK },
1692 { "BYTE", BYTE },
1693 { "CONSTANT", CONSTANT },
1694 { "CONSTRUCTORS", CONSTRUCTORS },
1695 { "COPY", COPY },
1696 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1697 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1698 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1699 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1700 { "DEFINED", DEFINED },
1701 { "DSECT", DSECT },
1702 { "ENTRY", ENTRY },
1703 { "EXCLUDE_FILE", EXCLUDE_FILE },
1704 { "EXTERN", EXTERN },
1705 { "FILL", FILL },
1706 { "FLOAT", FLOAT },
1707 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1708 { "GROUP", GROUP },
1709 { "HLL", HLL },
1710 { "INCLUDE", INCLUDE },
1711 { "INFO", INFO },
1712 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1713 { "INPUT", INPUT },
1714 { "KEEP", KEEP },
1715 { "LENGTH", LENGTH },
1716 { "LOADADDR", LOADADDR },
1717 { "LONG", LONG },
1718 { "MAP", MAP },
1719 { "MAX", MAX_K },
1720 { "MEMORY", MEMORY },
1721 { "MIN", MIN_K },
1722 { "NEXT", NEXT },
1723 { "NOCROSSREFS", NOCROSSREFS },
1724 { "NOFLOAT", NOFLOAT },
1725 { "NOLOAD", NOLOAD },
1726 { "ONLY_IF_RO", ONLY_IF_RO },
1727 { "ONLY_IF_RW", ONLY_IF_RW },
1728 { "OPTION", OPTION },
1729 { "ORIGIN", ORIGIN },
1730 { "OUTPUT", OUTPUT },
1731 { "OUTPUT_ARCH", OUTPUT_ARCH },
1732 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1733 { "OVERLAY", OVERLAY },
1734 { "PHDRS", PHDRS },
1735 { "PROVIDE", PROVIDE },
1736 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1737 { "QUAD", QUAD },
1738 { "SEARCH_DIR", SEARCH_DIR },
1739 { "SECTIONS", SECTIONS },
1740 { "SEGMENT_START", SEGMENT_START },
1741 { "SHORT", SHORT },
1742 { "SIZEOF", SIZEOF },
1743 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1744 { "SORT", SORT_BY_NAME },
1745 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1746 { "SORT_BY_NAME", SORT_BY_NAME },
1747 { "SPECIAL", SPECIAL },
1748 { "SQUAD", SQUAD },
1749 { "STARTUP", STARTUP },
1750 { "SUBALIGN", SUBALIGN },
1751 { "SYSLIB", SYSLIB },
1752 { "TARGET", TARGET_K },
1753 { "TRUNCATE", TRUNCATE },
1754 { "VERSION", VERSIONK },
1755 { "global", GLOBAL },
1756 { "l", LENGTH },
1757 { "len", LENGTH },
1758 { "local", LOCAL },
1759 { "o", ORIGIN },
1760 { "org", ORIGIN },
1761 { "sizeof_headers", SIZEOF_HEADERS },
1762 };
1763
1764 static const Keyword_to_parsecode
1765 script_keywords(&script_keyword_parsecodes[0],
1766 (sizeof(script_keyword_parsecodes)
1767 / sizeof(script_keyword_parsecodes[0])));
1768
1769 static const Keyword_to_parsecode::Keyword_parsecode
1770 version_script_keyword_parsecodes[] =
1771 {
1772 { "extern", EXTERN },
1773 { "global", GLOBAL },
1774 { "local", LOCAL },
1775 };
1776
1777 static const Keyword_to_parsecode
1778 version_script_keywords(&version_script_keyword_parsecodes[0],
1779 (sizeof(version_script_keyword_parsecodes)
1780 / sizeof(version_script_keyword_parsecodes[0])));
1781
1782 static const Keyword_to_parsecode::Keyword_parsecode
1783 dynamic_list_keyword_parsecodes[] =
1784 {
1785 { "extern", EXTERN },
1786 };
1787
1788 static const Keyword_to_parsecode
1789 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1790 (sizeof(dynamic_list_keyword_parsecodes)
1791 / sizeof(dynamic_list_keyword_parsecodes[0])));
1792
1793
1794
1795 // Comparison function passed to bsearch.
1796
1797 extern "C"
1798 {
1799
1800 struct Ktt_key
1801 {
1802 const char* str;
1803 size_t len;
1804 };
1805
1806 static int
1807 ktt_compare(const void* keyv, const void* kttv)
1808 {
1809 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1810 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1811 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1812 int i = strncmp(key->str, ktt->keyword, key->len);
1813 if (i != 0)
1814 return i;
1815 if (ktt->keyword[key->len] != '\0')
1816 return -1;
1817 return 0;
1818 }
1819
1820 } // End extern "C".
1821
1822 int
1823 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1824 size_t len) const
1825 {
1826 Ktt_key key;
1827 key.str = keyword;
1828 key.len = len;
1829 void* kttv = bsearch(&key,
1830 this->keyword_parsecodes_,
1831 this->keyword_count_,
1832 sizeof(this->keyword_parsecodes_[0]),
1833 ktt_compare);
1834 if (kttv == NULL)
1835 return 0;
1836 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1837 return ktt->parsecode;
1838 }
1839
1840 // The following structs are used within the VersionInfo class as well
1841 // as in the bison helper functions. They store the information
1842 // parsed from the version script.
1843
1844 // A single version expression.
1845 // For example, pattern="std::map*" and language="C++".
1846 struct Version_expression
1847 {
1848 Version_expression(const std::string& a_pattern,
1849 Version_script_info::Language a_language,
1850 bool a_exact_match)
1851 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1852 was_matched_by_symbol(false)
1853 { }
1854
1855 std::string pattern;
1856 Version_script_info::Language language;
1857 // If false, we use glob() to match pattern. If true, we use strcmp().
1858 bool exact_match;
1859 // True if --no-undefined-version is in effect and we found this
1860 // version in get_symbol_version. We use mutable because this
1861 // struct is generally not modifiable after it has been created.
1862 mutable bool was_matched_by_symbol;
1863 };
1864
1865 // A list of expressions.
1866 struct Version_expression_list
1867 {
1868 std::vector<struct Version_expression> expressions;
1869 };
1870
1871 // A list of which versions upon which another version depends.
1872 // Strings should be from the Stringpool.
1873 struct Version_dependency_list
1874 {
1875 std::vector<std::string> dependencies;
1876 };
1877
1878 // The total definition of a version. It includes the tag for the
1879 // version, its global and local expressions, and any dependencies.
1880 struct Version_tree
1881 {
1882 Version_tree()
1883 : tag(), global(NULL), local(NULL), dependencies(NULL)
1884 { }
1885
1886 std::string tag;
1887 const struct Version_expression_list* global;
1888 const struct Version_expression_list* local;
1889 const struct Version_dependency_list* dependencies;
1890 };
1891
1892 // Helper class that calls cplus_demangle when needed and takes care of freeing
1893 // the result.
1894
1895 class Lazy_demangler
1896 {
1897 public:
1898 Lazy_demangler(const char* symbol, int options)
1899 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1900 { }
1901
1902 ~Lazy_demangler()
1903 { free(this->demangled_); }
1904
1905 // Return the demangled name. The actual demangling happens on the first call,
1906 // and the result is later cached.
1907 inline char*
1908 get();
1909
1910 private:
1911 // The symbol to demangle.
1912 const char* symbol_;
1913 // Option flags to pass to cplus_demagle.
1914 const int options_;
1915 // The cached demangled value, or NULL if demangling didn't happen yet or
1916 // failed.
1917 char* demangled_;
1918 // Whether we already called cplus_demangle
1919 bool did_demangle_;
1920 };
1921
1922 // Return the demangled name. The actual demangling happens on the first call,
1923 // and the result is later cached. Returns NULL if the symbol cannot be
1924 // demangled.
1925
1926 inline char*
1927 Lazy_demangler::get()
1928 {
1929 if (!this->did_demangle_)
1930 {
1931 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1932 this->did_demangle_ = true;
1933 }
1934 return this->demangled_;
1935 }
1936
1937 // Class Version_script_info.
1938
1939 Version_script_info::Version_script_info()
1940 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1941 default_version_(NULL), default_is_global_(false), is_finalized_(false)
1942 {
1943 for (int i = 0; i < LANGUAGE_COUNT; ++i)
1944 this->exact_[i] = NULL;
1945 }
1946
1947 Version_script_info::~Version_script_info()
1948 {
1949 }
1950
1951 // Forget all the known version script information.
1952
1953 void
1954 Version_script_info::clear()
1955 {
1956 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
1957 delete this->dependency_lists_[k];
1958 this->dependency_lists_.clear();
1959 for (size_t k = 0; k < this->version_trees_.size(); ++k)
1960 delete this->version_trees_[k];
1961 this->version_trees_.clear();
1962 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
1963 delete this->expression_lists_[k];
1964 this->expression_lists_.clear();
1965 }
1966
1967 // Finalize the version script information.
1968
1969 void
1970 Version_script_info::finalize()
1971 {
1972 if (!this->is_finalized_)
1973 {
1974 this->build_lookup_tables();
1975 this->is_finalized_ = true;
1976 }
1977 }
1978
1979 // Return all the versions.
1980
1981 std::vector<std::string>
1982 Version_script_info::get_versions() const
1983 {
1984 std::vector<std::string> ret;
1985 for (size_t j = 0; j < this->version_trees_.size(); ++j)
1986 if (!this->version_trees_[j]->tag.empty())
1987 ret.push_back(this->version_trees_[j]->tag);
1988 return ret;
1989 }
1990
1991 // Return the dependencies of VERSION.
1992
1993 std::vector<std::string>
1994 Version_script_info::get_dependencies(const char* version) const
1995 {
1996 std::vector<std::string> ret;
1997 for (size_t j = 0; j < this->version_trees_.size(); ++j)
1998 if (this->version_trees_[j]->tag == version)
1999 {
2000 const struct Version_dependency_list* deps =
2001 this->version_trees_[j]->dependencies;
2002 if (deps != NULL)
2003 for (size_t k = 0; k < deps->dependencies.size(); ++k)
2004 ret.push_back(deps->dependencies[k]);
2005 return ret;
2006 }
2007 return ret;
2008 }
2009
2010 // A version script essentially maps a symbol name to a version tag
2011 // and an indication of whether symbol is global or local within that
2012 // version tag. Each symbol maps to at most one version tag.
2013 // Unfortunately, in practice, version scripts are ambiguous, and list
2014 // symbols multiple times. Thus, we have to document the matching
2015 // process.
2016
2017 // This is a description of what the GNU linker does as of 2010-01-11.
2018 // It walks through the version tags in the order in which they appear
2019 // in the version script. For each tag, it first walks through the
2020 // global patterns for that tag, then the local patterns. When
2021 // looking at a single pattern, it first applies any language specific
2022 // demangling as specified for the pattern, and then matches the
2023 // resulting symbol name to the pattern. If it finds an exact match
2024 // for a literal pattern (a pattern enclosed in quotes or with no
2025 // wildcard characters), then that is the match that it uses. If
2026 // finds a match with a wildcard pattern, then it saves it and
2027 // continues searching. Wildcard patterns that are exactly "*" are
2028 // saved separately.
2029
2030 // If no exact match with a literal pattern is ever found, then if a
2031 // wildcard match with a global pattern was found it is used,
2032 // otherwise if a wildcard match with a local pattern was found it is
2033 // used.
2034
2035 // This is the result:
2036 // * If there is an exact match, then we use the first tag in the
2037 // version script where it matches.
2038 // + If the exact match in that tag is global, it is used.
2039 // + Otherwise the exact match in that tag is local, and is used.
2040 // * Otherwise, if there is any match with a global wildcard pattern:
2041 // + If there is any match with a wildcard pattern which is not
2042 // "*", then we use the tag in which the *last* such pattern
2043 // appears.
2044 // + Otherwise, we matched "*". If there is no match with a local
2045 // wildcard pattern which is not "*", then we use the *last*
2046 // match with a global "*". Otherwise, continue.
2047 // * Otherwise, if there is any match with a local wildcard pattern:
2048 // + If there is any match with a wildcard pattern which is not
2049 // "*", then we use the tag in which the *last* such pattern
2050 // appears.
2051 // + Otherwise, we matched "*", and we use the tag in which the
2052 // *last* such match occurred.
2053
2054 // There is an additional wrinkle. When the GNU linker finds a symbol
2055 // with a version defined in an object file due to a .symver
2056 // directive, it looks up that symbol name in that version tag. If it
2057 // finds it, it matches the symbol name against the patterns for that
2058 // version. If there is no match with a global pattern, but there is
2059 // a match with a local pattern, then the GNU linker marks the symbol
2060 // as local.
2061
2062 // We want gold to be generally compatible, but we also want gold to
2063 // be fast. These are the rules that gold implements:
2064 // * If there is an exact match for the mangled name, we use it.
2065 // + If there is more than one exact match, we give a warning, and
2066 // we use the first tag in the script which matches.
2067 // + If a symbol has an exact match as both global and local for
2068 // the same version tag, we give an error.
2069 // * Otherwise, we look for an extern C++ or an extern Java exact
2070 // match. If we find an exact match, we use it.
2071 // + If there is more than one exact match, we give a warning, and
2072 // we use the first tag in the script which matches.
2073 // + If a symbol has an exact match as both global and local for
2074 // the same version tag, we give an error.
2075 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2076 // patterns. We look through the version tags in reverse order.
2077 // For each version tag, we look through the global patterns and
2078 // then the local patterns. We use the first match we find (i.e.,
2079 // the last matching version tag in the file).
2080 // * Otherwise, we use the "*" pattern if there is one. We give an
2081 // error if there are multiple "*" patterns.
2082
2083 // At least for now, gold does not look up the version tag for a
2084 // symbol version found in an object file to see if it should be
2085 // forced local. There are other ways to force a symbol to be local,
2086 // and I don't understand why this one is useful.
2087
2088 // Build a set of fast lookup tables for a version script.
2089
2090 void
2091 Version_script_info::build_lookup_tables()
2092 {
2093 size_t size = this->version_trees_.size();
2094 for (size_t j = 0; j < size; ++j)
2095 {
2096 const Version_tree* v = this->version_trees_[j];
2097 this->build_expression_list_lookup(v->local, v, false);
2098 this->build_expression_list_lookup(v->global, v, true);
2099 }
2100 }
2101
2102 // If a pattern has backlashes but no unquoted wildcard characters,
2103 // then we apply backslash unquoting and look for an exact match.
2104 // Otherwise we treat it as a wildcard pattern. This function returns
2105 // true for a wildcard pattern. Otherwise, it does backslash
2106 // unquoting on *PATTERN and returns false. If this returns true,
2107 // *PATTERN may have been partially unquoted.
2108
2109 bool
2110 Version_script_info::unquote(std::string* pattern) const
2111 {
2112 bool saw_backslash = false;
2113 size_t len = pattern->length();
2114 size_t j = 0;
2115 for (size_t i = 0; i < len; ++i)
2116 {
2117 if (saw_backslash)
2118 saw_backslash = false;
2119 else
2120 {
2121 switch ((*pattern)[i])
2122 {
2123 case '?': case '[': case '*':
2124 return true;
2125 case '\\':
2126 saw_backslash = true;
2127 continue;
2128 default:
2129 break;
2130 }
2131 }
2132
2133 if (i != j)
2134 (*pattern)[j] = (*pattern)[i];
2135 ++j;
2136 }
2137 return false;
2138 }
2139
2140 // Add an exact match for MATCH to *PE. The result of the match is
2141 // V/IS_GLOBAL.
2142
2143 void
2144 Version_script_info::add_exact_match(const std::string& match,
2145 const Version_tree* v, bool is_global,
2146 const Version_expression* ve,
2147 Exact* pe)
2148 {
2149 std::pair<Exact::iterator, bool> ins =
2150 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2151 if (ins.second)
2152 {
2153 // This is the first time we have seen this match.
2154 return;
2155 }
2156
2157 Version_tree_match& vtm(ins.first->second);
2158 if (vtm.real->tag != v->tag)
2159 {
2160 // This is an ambiguous match. We still return the
2161 // first version that we found in the script, but we
2162 // record the new version to issue a warning if we
2163 // wind up looking up this symbol.
2164 if (vtm.ambiguous == NULL)
2165 vtm.ambiguous = v;
2166 }
2167 else if (is_global != vtm.is_global)
2168 {
2169 // We have a match for both the global and local entries for a
2170 // version tag. That's got to be wrong.
2171 gold_error(_("'%s' appears as both a global and a local symbol "
2172 "for version '%s' in script"),
2173 match.c_str(), v->tag.c_str());
2174 }
2175 }
2176
2177 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2178 // All matches go to V, and IS_GLOBAL is true if they are global
2179 // matches.
2180
2181 void
2182 Version_script_info::build_expression_list_lookup(
2183 const Version_expression_list* explist,
2184 const Version_tree* v,
2185 bool is_global)
2186 {
2187 if (explist == NULL)
2188 return;
2189 size_t size = explist->expressions.size();
2190 for (size_t i = 0; i < size; ++i)
2191 {
2192 const Version_expression& exp(explist->expressions[i]);
2193
2194 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2195 {
2196 if (this->default_version_ != NULL
2197 && this->default_version_->tag != v->tag)
2198 gold_warning(_("wildcard match appears in both version '%s' "
2199 "and '%s' in script"),
2200 this->default_version_->tag.c_str(), v->tag.c_str());
2201 else if (this->default_version_ != NULL
2202 && this->default_is_global_ != is_global)
2203 gold_error(_("wildcard match appears as both global and local "
2204 "in version '%s' in script"),
2205 v->tag.c_str());
2206 this->default_version_ = v;
2207 this->default_is_global_ = is_global;
2208 continue;
2209 }
2210
2211 std::string pattern = exp.pattern;
2212 if (!exp.exact_match)
2213 {
2214 if (this->unquote(&pattern))
2215 {
2216 this->globs_.push_back(Glob(&exp, v, is_global));
2217 continue;
2218 }
2219 }
2220
2221 if (this->exact_[exp.language] == NULL)
2222 this->exact_[exp.language] = new Exact();
2223 this->add_exact_match(pattern, v, is_global, &exp,
2224 this->exact_[exp.language]);
2225 }
2226 }
2227
2228 // Return the name to match given a name, a language code, and two
2229 // lazy demanglers.
2230
2231 const char*
2232 Version_script_info::get_name_to_match(const char* name,
2233 int language,
2234 Lazy_demangler* cpp_demangler,
2235 Lazy_demangler* java_demangler) const
2236 {
2237 switch (language)
2238 {
2239 case LANGUAGE_C:
2240 return name;
2241 case LANGUAGE_CXX:
2242 return cpp_demangler->get();
2243 case LANGUAGE_JAVA:
2244 return java_demangler->get();
2245 default:
2246 gold_unreachable();
2247 }
2248 }
2249
2250 // Look up SYMBOL_NAME in the list of versions. Return true if the
2251 // symbol is found, false if not. If the symbol is found, then if
2252 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2253 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2254 // symbol is global or not.
2255
2256 bool
2257 Version_script_info::get_symbol_version(const char* symbol_name,
2258 std::string* pversion,
2259 bool* p_is_global) const
2260 {
2261 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2262 Lazy_demangler java_demangled_name(symbol_name,
2263 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2264
2265 gold_assert(this->is_finalized_);
2266 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2267 {
2268 Exact* exact = this->exact_[i];
2269 if (exact == NULL)
2270 continue;
2271
2272 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2273 &cpp_demangled_name,
2274 &java_demangled_name);
2275 if (name_to_match == NULL)
2276 {
2277 // If the name can not be demangled, the GNU linker goes
2278 // ahead and tries to match it anyhow. That does not
2279 // make sense to me and I have not implemented it.
2280 continue;
2281 }
2282
2283 Exact::const_iterator pe = exact->find(name_to_match);
2284 if (pe != exact->end())
2285 {
2286 const Version_tree_match& vtm(pe->second);
2287 if (vtm.ambiguous != NULL)
2288 gold_warning(_("using '%s' as version for '%s' which is also "
2289 "named in version '%s' in script"),
2290 vtm.real->tag.c_str(), name_to_match,
2291 vtm.ambiguous->tag.c_str());
2292
2293 if (pversion != NULL)
2294 *pversion = vtm.real->tag;
2295 if (p_is_global != NULL)
2296 *p_is_global = vtm.is_global;
2297
2298 // If we are using --no-undefined-version, and this is a
2299 // global symbol, we have to record that we have found this
2300 // symbol, so that we don't warn about it. We have to do
2301 // this now, because otherwise we have no way to get from a
2302 // non-C language back to the demangled name that we
2303 // matched.
2304 if (p_is_global != NULL && vtm.is_global)
2305 vtm.expression->was_matched_by_symbol = true;
2306
2307 return true;
2308 }
2309 }
2310
2311 // Look through the glob patterns in reverse order.
2312
2313 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2314 p != this->globs_.rend();
2315 ++p)
2316 {
2317 int language = p->expression->language;
2318 const char* name_to_match = this->get_name_to_match(symbol_name,
2319 language,
2320 &cpp_demangled_name,
2321 &java_demangled_name);
2322 if (name_to_match == NULL)
2323 continue;
2324
2325 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2326 FNM_NOESCAPE) == 0)
2327 {
2328 if (pversion != NULL)
2329 *pversion = p->version->tag;
2330 if (p_is_global != NULL)
2331 *p_is_global = p->is_global;
2332 return true;
2333 }
2334 }
2335
2336 // Finally, there may be a wildcard.
2337 if (this->default_version_ != NULL)
2338 {
2339 if (pversion != NULL)
2340 *pversion = this->default_version_->tag;
2341 if (p_is_global != NULL)
2342 *p_is_global = this->default_is_global_;
2343 return true;
2344 }
2345
2346 return false;
2347 }
2348
2349 // Give an error if any exact symbol names (not wildcards) appear in a
2350 // version script, but there is no such symbol.
2351
2352 void
2353 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2354 {
2355 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2356 {
2357 const Version_tree* vt = this->version_trees_[i];
2358 if (vt->global == NULL)
2359 continue;
2360 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2361 {
2362 const Version_expression& expression(vt->global->expressions[j]);
2363
2364 // Ignore cases where we used the version because we saw a
2365 // symbol that we looked up. Note that
2366 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2367 // not a definition. That's OK as in that case we most
2368 // likely gave an undefined symbol error anyhow.
2369 if (expression.was_matched_by_symbol)
2370 continue;
2371
2372 // Just ignore names which are in languages other than C.
2373 // We have no way to look them up in the symbol table.
2374 if (expression.language != LANGUAGE_C)
2375 continue;
2376
2377 // Remove backslash quoting, and ignore wildcard patterns.
2378 std::string pattern = expression.pattern;
2379 if (!expression.exact_match)
2380 {
2381 if (this->unquote(&pattern))
2382 continue;
2383 }
2384
2385 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2386 gold_error(_("version script assignment of %s to symbol %s "
2387 "failed: symbol not defined"),
2388 vt->tag.c_str(), pattern.c_str());
2389 }
2390 }
2391 }
2392
2393 struct Version_dependency_list*
2394 Version_script_info::allocate_dependency_list()
2395 {
2396 dependency_lists_.push_back(new Version_dependency_list);
2397 return dependency_lists_.back();
2398 }
2399
2400 struct Version_expression_list*
2401 Version_script_info::allocate_expression_list()
2402 {
2403 expression_lists_.push_back(new Version_expression_list);
2404 return expression_lists_.back();
2405 }
2406
2407 struct Version_tree*
2408 Version_script_info::allocate_version_tree()
2409 {
2410 version_trees_.push_back(new Version_tree);
2411 return version_trees_.back();
2412 }
2413
2414 // Print for debugging.
2415
2416 void
2417 Version_script_info::print(FILE* f) const
2418 {
2419 if (this->empty())
2420 return;
2421
2422 fprintf(f, "VERSION {");
2423
2424 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2425 {
2426 const Version_tree* vt = this->version_trees_[i];
2427
2428 if (vt->tag.empty())
2429 fprintf(f, " {\n");
2430 else
2431 fprintf(f, " %s {\n", vt->tag.c_str());
2432
2433 if (vt->global != NULL)
2434 {
2435 fprintf(f, " global :\n");
2436 this->print_expression_list(f, vt->global);
2437 }
2438
2439 if (vt->local != NULL)
2440 {
2441 fprintf(f, " local :\n");
2442 this->print_expression_list(f, vt->local);
2443 }
2444
2445 fprintf(f, " }");
2446 if (vt->dependencies != NULL)
2447 {
2448 const Version_dependency_list* deps = vt->dependencies;
2449 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2450 {
2451 if (j < deps->dependencies.size() - 1)
2452 fprintf(f, "\n");
2453 fprintf(f, " %s", deps->dependencies[j].c_str());
2454 }
2455 }
2456 fprintf(f, ";\n");
2457 }
2458
2459 fprintf(f, "}\n");
2460 }
2461
2462 void
2463 Version_script_info::print_expression_list(
2464 FILE* f,
2465 const Version_expression_list* vel) const
2466 {
2467 Version_script_info::Language current_language = LANGUAGE_C;
2468 for (size_t i = 0; i < vel->expressions.size(); ++i)
2469 {
2470 const Version_expression& ve(vel->expressions[i]);
2471
2472 if (ve.language != current_language)
2473 {
2474 if (current_language != LANGUAGE_C)
2475 fprintf(f, " }\n");
2476 switch (ve.language)
2477 {
2478 case LANGUAGE_C:
2479 break;
2480 case LANGUAGE_CXX:
2481 fprintf(f, " extern \"C++\" {\n");
2482 break;
2483 case LANGUAGE_JAVA:
2484 fprintf(f, " extern \"Java\" {\n");
2485 break;
2486 default:
2487 gold_unreachable();
2488 }
2489 current_language = ve.language;
2490 }
2491
2492 fprintf(f, " ");
2493 if (current_language != LANGUAGE_C)
2494 fprintf(f, " ");
2495
2496 if (ve.exact_match)
2497 fprintf(f, "\"");
2498 fprintf(f, "%s", ve.pattern.c_str());
2499 if (ve.exact_match)
2500 fprintf(f, "\"");
2501
2502 fprintf(f, "\n");
2503 }
2504
2505 if (current_language != LANGUAGE_C)
2506 fprintf(f, " }\n");
2507 }
2508
2509 } // End namespace gold.
2510
2511 // The remaining functions are extern "C", so it's clearer to not put
2512 // them in namespace gold.
2513
2514 using namespace gold;
2515
2516 // This function is called by the bison parser to return the next
2517 // token.
2518
2519 extern "C" int
2520 yylex(YYSTYPE* lvalp, void* closurev)
2521 {
2522 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2523 const Token* token = closure->next_token();
2524 switch (token->classification())
2525 {
2526 default:
2527 gold_unreachable();
2528
2529 case Token::TOKEN_INVALID:
2530 yyerror(closurev, "invalid character");
2531 return 0;
2532
2533 case Token::TOKEN_EOF:
2534 return 0;
2535
2536 case Token::TOKEN_STRING:
2537 {
2538 // This is either a keyword or a STRING.
2539 size_t len;
2540 const char* str = token->string_value(&len);
2541 int parsecode = 0;
2542 switch (closure->lex_mode())
2543 {
2544 case Lex::LINKER_SCRIPT:
2545 parsecode = script_keywords.keyword_to_parsecode(str, len);
2546 break;
2547 case Lex::VERSION_SCRIPT:
2548 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2549 break;
2550 case Lex::DYNAMIC_LIST:
2551 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2552 break;
2553 default:
2554 break;
2555 }
2556 if (parsecode != 0)
2557 return parsecode;
2558 lvalp->string.value = str;
2559 lvalp->string.length = len;
2560 return STRING;
2561 }
2562
2563 case Token::TOKEN_QUOTED_STRING:
2564 lvalp->string.value = token->string_value(&lvalp->string.length);
2565 return QUOTED_STRING;
2566
2567 case Token::TOKEN_OPERATOR:
2568 return token->operator_value();
2569
2570 case Token::TOKEN_INTEGER:
2571 lvalp->integer = token->integer_value();
2572 return INTEGER;
2573 }
2574 }
2575
2576 // This function is called by the bison parser to report an error.
2577
2578 extern "C" void
2579 yyerror(void* closurev, const char* message)
2580 {
2581 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2582 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2583 closure->charpos(), message);
2584 }
2585
2586 // Called by the bison parser to add an external symbol to the link.
2587
2588 extern "C" void
2589 script_add_extern(void* closurev, const char* name, size_t length)
2590 {
2591 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2592 closure->script_options()->add_symbol_reference(name, length);
2593 }
2594
2595 // Called by the bison parser to add a file to the link.
2596
2597 extern "C" void
2598 script_add_file(void* closurev, const char* name, size_t length)
2599 {
2600 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2601
2602 // If this is an absolute path, and we found the script in the
2603 // sysroot, then we want to prepend the sysroot to the file name.
2604 // For example, this is how we handle a cross link to the x86_64
2605 // libc.so, which refers to /lib/libc.so.6.
2606 std::string name_string(name, length);
2607 const char* extra_search_path = ".";
2608 std::string script_directory;
2609 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2610 {
2611 if (closure->is_in_sysroot())
2612 {
2613 const std::string& sysroot(parameters->options().sysroot());
2614 gold_assert(!sysroot.empty());
2615 name_string = sysroot + name_string;
2616 }
2617 }
2618 else
2619 {
2620 // In addition to checking the normal library search path, we
2621 // also want to check in the script-directory.
2622 const char* slash = strrchr(closure->filename(), '/');
2623 if (slash != NULL)
2624 {
2625 script_directory.assign(closure->filename(),
2626 slash - closure->filename() + 1);
2627 extra_search_path = script_directory.c_str();
2628 }
2629 }
2630
2631 Input_file_argument file(name_string.c_str(),
2632 Input_file_argument::INPUT_FILE_TYPE_FILE,
2633 extra_search_path, false,
2634 closure->position_dependent_options());
2635 Input_argument& arg = closure->inputs()->add_file(file);
2636 arg.set_script_info(closure->script_info());
2637 }
2638
2639 // Called by the bison parser to add a library to the link.
2640
2641 extern "C" void
2642 script_add_library(void* closurev, const char* name, size_t length)
2643 {
2644 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2645 std::string name_string(name, length);
2646
2647 if (name_string[0] != 'l')
2648 gold_error(_("library name must be prefixed with -l"));
2649
2650 Input_file_argument file(name_string.c_str() + 1,
2651 Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2652 "", false,
2653 closure->position_dependent_options());
2654 Input_argument& arg = closure->inputs()->add_file(file);
2655 arg.set_script_info(closure->script_info());
2656 }
2657
2658 // Called by the bison parser to start a group. If we are already in
2659 // a group, that means that this script was invoked within a
2660 // --start-group --end-group sequence on the command line, or that
2661 // this script was found in a GROUP of another script. In that case,
2662 // we simply continue the existing group, rather than starting a new
2663 // one. It is possible to construct a case in which this will do
2664 // something other than what would happen if we did a recursive group,
2665 // but it's hard to imagine why the different behaviour would be
2666 // useful for a real program. Avoiding recursive groups is simpler
2667 // and more efficient.
2668
2669 extern "C" void
2670 script_start_group(void* closurev)
2671 {
2672 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2673 if (!closure->in_group())
2674 closure->inputs()->start_group();
2675 }
2676
2677 // Called by the bison parser at the end of a group.
2678
2679 extern "C" void
2680 script_end_group(void* closurev)
2681 {
2682 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2683 if (!closure->in_group())
2684 closure->inputs()->end_group();
2685 }
2686
2687 // Called by the bison parser to start an AS_NEEDED list.
2688
2689 extern "C" void
2690 script_start_as_needed(void* closurev)
2691 {
2692 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2693 closure->position_dependent_options().set_as_needed(true);
2694 }
2695
2696 // Called by the bison parser at the end of an AS_NEEDED list.
2697
2698 extern "C" void
2699 script_end_as_needed(void* closurev)
2700 {
2701 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2702 closure->position_dependent_options().set_as_needed(false);
2703 }
2704
2705 // Called by the bison parser to set the entry symbol.
2706
2707 extern "C" void
2708 script_set_entry(void* closurev, const char* entry, size_t length)
2709 {
2710 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2711 // TODO(csilvers): FIXME -- call set_entry directly.
2712 std::string arg("--entry=");
2713 arg.append(entry, length);
2714 script_parse_option(closurev, arg.c_str(), arg.size());
2715 }
2716
2717 // Called by the bison parser to set whether to define common symbols.
2718
2719 extern "C" void
2720 script_set_common_allocation(void* closurev, int set)
2721 {
2722 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2723 script_parse_option(closurev, arg, strlen(arg));
2724 }
2725
2726 // Called by the bison parser to refer to a symbol.
2727
2728 extern "C" Expression*
2729 script_symbol(void* closurev, const char* name, size_t length)
2730 {
2731 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2732 if (length != 1 || name[0] != '.')
2733 closure->script_options()->add_symbol_reference(name, length);
2734 return script_exp_string(name, length);
2735 }
2736
2737 // Called by the bison parser to define a symbol.
2738
2739 extern "C" void
2740 script_set_symbol(void* closurev, const char* name, size_t length,
2741 Expression* value, int providei, int hiddeni)
2742 {
2743 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2744 const bool provide = providei != 0;
2745 const bool hidden = hiddeni != 0;
2746 closure->script_options()->add_symbol_assignment(name, length,
2747 closure->parsing_defsym(),
2748 value, provide, hidden);
2749 closure->clear_skip_on_incompatible_target();
2750 }
2751
2752 // Called by the bison parser to add an assertion.
2753
2754 extern "C" void
2755 script_add_assertion(void* closurev, Expression* check, const char* message,
2756 size_t messagelen)
2757 {
2758 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2759 closure->script_options()->add_assertion(check, message, messagelen);
2760 closure->clear_skip_on_incompatible_target();
2761 }
2762
2763 // Called by the bison parser to parse an OPTION.
2764
2765 extern "C" void
2766 script_parse_option(void* closurev, const char* option, size_t length)
2767 {
2768 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2769 // We treat the option as a single command-line option, even if
2770 // it has internal whitespace.
2771 if (closure->command_line() == NULL)
2772 {
2773 // There are some options that we could handle here--e.g.,
2774 // -lLIBRARY. Should we bother?
2775 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2776 " for scripts specified via -T/--script"),
2777 closure->filename(), closure->lineno(), closure->charpos());
2778 }
2779 else
2780 {
2781 bool past_a_double_dash_option = false;
2782 const char* mutable_option = strndup(option, length);
2783 gold_assert(mutable_option != NULL);
2784 closure->command_line()->process_one_option(1, &mutable_option, 0,
2785 &past_a_double_dash_option);
2786 // The General_options class will quite possibly store a pointer
2787 // into mutable_option, so we can't free it. In cases the class
2788 // does not store such a pointer, this is a memory leak. Alas. :(
2789 }
2790 closure->clear_skip_on_incompatible_target();
2791 }
2792
2793 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2794 // takes either one or three arguments. In the three argument case,
2795 // the format depends on the endianness option, which we don't
2796 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2797 // wrong format, then we want to search for a new file. Returning 0
2798 // here will cause the parser to immediately abort.
2799
2800 extern "C" int
2801 script_check_output_format(void* closurev,
2802 const char* default_name, size_t default_length,
2803 const char*, size_t, const char*, size_t)
2804 {
2805 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2806 std::string name(default_name, default_length);
2807 Target* target = select_target_by_name(name.c_str());
2808 if (target == NULL || !parameters->is_compatible_target(target))
2809 {
2810 if (closure->skip_on_incompatible_target())
2811 {
2812 closure->set_found_incompatible_target();
2813 return 0;
2814 }
2815 // FIXME: Should we warn about the unknown target?
2816 }
2817 return 1;
2818 }
2819
2820 // Called by the bison parser to handle TARGET.
2821
2822 extern "C" void
2823 script_set_target(void* closurev, const char* target, size_t len)
2824 {
2825 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2826 std::string s(target, len);
2827 General_options::Object_format format_enum;
2828 format_enum = General_options::string_to_object_format(s.c_str());
2829 closure->position_dependent_options().set_format_enum(format_enum);
2830 }
2831
2832 // Called by the bison parser to handle SEARCH_DIR. This is handled
2833 // exactly like a -L option.
2834
2835 extern "C" void
2836 script_add_search_dir(void* closurev, const char* option, size_t length)
2837 {
2838 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2839 if (closure->command_line() == NULL)
2840 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2841 " for scripts specified via -T/--script"),
2842 closure->filename(), closure->lineno(), closure->charpos());
2843 else if (!closure->command_line()->options().nostdlib())
2844 {
2845 std::string s = "-L" + std::string(option, length);
2846 script_parse_option(closurev, s.c_str(), s.size());
2847 }
2848 }
2849
2850 /* Called by the bison parser to push the lexer into expression
2851 mode. */
2852
2853 extern "C" void
2854 script_push_lex_into_expression_mode(void* closurev)
2855 {
2856 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2857 closure->push_lex_mode(Lex::EXPRESSION);
2858 }
2859
2860 /* Called by the bison parser to push the lexer into version
2861 mode. */
2862
2863 extern "C" void
2864 script_push_lex_into_version_mode(void* closurev)
2865 {
2866 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2867 if (closure->version_script()->is_finalized())
2868 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2869 closure->filename(), closure->lineno(), closure->charpos());
2870 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2871 }
2872
2873 /* Called by the bison parser to pop the lexer mode. */
2874
2875 extern "C" void
2876 script_pop_lex_mode(void* closurev)
2877 {
2878 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2879 closure->pop_lex_mode();
2880 }
2881
2882 // Register an entire version node. For example:
2883 //
2884 // GLIBC_2.1 {
2885 // global: foo;
2886 // } GLIBC_2.0;
2887 //
2888 // - tag is "GLIBC_2.1"
2889 // - tree contains the information "global: foo"
2890 // - deps contains "GLIBC_2.0"
2891
2892 extern "C" void
2893 script_register_vers_node(void*,
2894 const char* tag,
2895 int taglen,
2896 struct Version_tree* tree,
2897 struct Version_dependency_list* deps)
2898 {
2899 gold_assert(tree != NULL);
2900 tree->dependencies = deps;
2901 if (tag != NULL)
2902 tree->tag = std::string(tag, taglen);
2903 }
2904
2905 // Add a dependencies to the list of existing dependencies, if any,
2906 // and return the expanded list.
2907
2908 extern "C" struct Version_dependency_list*
2909 script_add_vers_depend(void* closurev,
2910 struct Version_dependency_list* all_deps,
2911 const char* depend_to_add, int deplen)
2912 {
2913 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2914 if (all_deps == NULL)
2915 all_deps = closure->version_script()->allocate_dependency_list();
2916 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2917 return all_deps;
2918 }
2919
2920 // Add a pattern expression to an existing list of expressions, if any.
2921
2922 extern "C" struct Version_expression_list*
2923 script_new_vers_pattern(void* closurev,
2924 struct Version_expression_list* expressions,
2925 const char* pattern, int patlen, int exact_match)
2926 {
2927 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2928 if (expressions == NULL)
2929 expressions = closure->version_script()->allocate_expression_list();
2930 expressions->expressions.push_back(
2931 Version_expression(std::string(pattern, patlen),
2932 closure->get_current_language(),
2933 static_cast<bool>(exact_match)));
2934 return expressions;
2935 }
2936
2937 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2938
2939 extern "C" struct Version_expression_list*
2940 script_merge_expressions(struct Version_expression_list* a,
2941 struct Version_expression_list* b)
2942 {
2943 a->expressions.insert(a->expressions.end(),
2944 b->expressions.begin(), b->expressions.end());
2945 // We could delete b and remove it from expressions_lists_, but
2946 // that's a lot of work. This works just as well.
2947 b->expressions.clear();
2948 return a;
2949 }
2950
2951 // Combine the global and local expressions into a a Version_tree.
2952
2953 extern "C" struct Version_tree*
2954 script_new_vers_node(void* closurev,
2955 struct Version_expression_list* global,
2956 struct Version_expression_list* local)
2957 {
2958 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2959 Version_tree* tree = closure->version_script()->allocate_version_tree();
2960 tree->global = global;
2961 tree->local = local;
2962 return tree;
2963 }
2964
2965 // Handle a transition in language, such as at the
2966 // start or end of 'extern "C++"'
2967
2968 extern "C" void
2969 version_script_push_lang(void* closurev, const char* lang, int langlen)
2970 {
2971 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2972 std::string language(lang, langlen);
2973 Version_script_info::Language code;
2974 if (language.empty() || language == "C")
2975 code = Version_script_info::LANGUAGE_C;
2976 else if (language == "C++")
2977 code = Version_script_info::LANGUAGE_CXX;
2978 else if (language == "Java")
2979 code = Version_script_info::LANGUAGE_JAVA;
2980 else
2981 {
2982 char* buf = new char[langlen + 100];
2983 snprintf(buf, langlen + 100,
2984 _("unrecognized version script language '%s'"),
2985 language.c_str());
2986 yyerror(closurev, buf);
2987 delete[] buf;
2988 code = Version_script_info::LANGUAGE_C;
2989 }
2990 closure->push_language(code);
2991 }
2992
2993 extern "C" void
2994 version_script_pop_lang(void* closurev)
2995 {
2996 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2997 closure->pop_language();
2998 }
2999
3000 // Called by the bison parser to start a SECTIONS clause.
3001
3002 extern "C" void
3003 script_start_sections(void* closurev)
3004 {
3005 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3006 closure->script_options()->script_sections()->start_sections();
3007 closure->clear_skip_on_incompatible_target();
3008 }
3009
3010 // Called by the bison parser to finish a SECTIONS clause.
3011
3012 extern "C" void
3013 script_finish_sections(void* closurev)
3014 {
3015 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3016 closure->script_options()->script_sections()->finish_sections();
3017 }
3018
3019 // Start processing entries for an output section.
3020
3021 extern "C" void
3022 script_start_output_section(void* closurev, const char* name, size_t namelen,
3023 const struct Parser_output_section_header* header)
3024 {
3025 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3026 closure->script_options()->script_sections()->start_output_section(name,
3027 namelen,
3028 header);
3029 }
3030
3031 // Finish processing entries for an output section.
3032
3033 extern "C" void
3034 script_finish_output_section(void* closurev,
3035 const struct Parser_output_section_trailer* trail)
3036 {
3037 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3038 closure->script_options()->script_sections()->finish_output_section(trail);
3039 }
3040
3041 // Add a data item (e.g., "WORD (0)") to the current output section.
3042
3043 extern "C" void
3044 script_add_data(void* closurev, int data_token, Expression* val)
3045 {
3046 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3047 int size;
3048 bool is_signed = true;
3049 switch (data_token)
3050 {
3051 case QUAD:
3052 size = 8;
3053 is_signed = false;
3054 break;
3055 case SQUAD:
3056 size = 8;
3057 break;
3058 case LONG:
3059 size = 4;
3060 break;
3061 case SHORT:
3062 size = 2;
3063 break;
3064 case BYTE:
3065 size = 1;
3066 break;
3067 default:
3068 gold_unreachable();
3069 }
3070 closure->script_options()->script_sections()->add_data(size, is_signed, val);
3071 }
3072
3073 // Add a clause setting the fill value to the current output section.
3074
3075 extern "C" void
3076 script_add_fill(void* closurev, Expression* val)
3077 {
3078 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3079 closure->script_options()->script_sections()->add_fill(val);
3080 }
3081
3082 // Add a new input section specification to the current output
3083 // section.
3084
3085 extern "C" void
3086 script_add_input_section(void* closurev,
3087 const struct Input_section_spec* spec,
3088 int keepi)
3089 {
3090 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3091 bool keep = keepi != 0;
3092 closure->script_options()->script_sections()->add_input_section(spec, keep);
3093 }
3094
3095 // When we see DATA_SEGMENT_ALIGN we record that following output
3096 // sections may be relro.
3097
3098 extern "C" void
3099 script_data_segment_align(void* closurev)
3100 {
3101 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3102 if (!closure->script_options()->saw_sections_clause())
3103 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3104 closure->filename(), closure->lineno(), closure->charpos());
3105 else
3106 closure->script_options()->script_sections()->data_segment_align();
3107 }
3108
3109 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3110 // since DATA_SEGMENT_ALIGN should be relro.
3111
3112 extern "C" void
3113 script_data_segment_relro_end(void* closurev)
3114 {
3115 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3116 if (!closure->script_options()->saw_sections_clause())
3117 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3118 closure->filename(), closure->lineno(), closure->charpos());
3119 else
3120 closure->script_options()->script_sections()->data_segment_relro_end();
3121 }
3122
3123 // Create a new list of string/sort pairs.
3124
3125 extern "C" String_sort_list_ptr
3126 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3127 {
3128 return new String_sort_list(1, *string_sort);
3129 }
3130
3131 // Add an entry to a list of string/sort pairs. The way the parser
3132 // works permits us to simply modify the first parameter, rather than
3133 // copy the vector.
3134
3135 extern "C" String_sort_list_ptr
3136 script_string_sort_list_add(String_sort_list_ptr pv,
3137 const struct Wildcard_section* string_sort)
3138 {
3139 if (pv == NULL)
3140 return script_new_string_sort_list(string_sort);
3141 else
3142 {
3143 pv->push_back(*string_sort);
3144 return pv;
3145 }
3146 }
3147
3148 // Create a new list of strings.
3149
3150 extern "C" String_list_ptr
3151 script_new_string_list(const char* str, size_t len)
3152 {
3153 return new String_list(1, std::string(str, len));
3154 }
3155
3156 // Add an element to a list of strings. The way the parser works
3157 // permits us to simply modify the first parameter, rather than copy
3158 // the vector.
3159
3160 extern "C" String_list_ptr
3161 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3162 {
3163 if (pv == NULL)
3164 return script_new_string_list(str, len);
3165 else
3166 {
3167 pv->push_back(std::string(str, len));
3168 return pv;
3169 }
3170 }
3171
3172 // Concatenate two string lists. Either or both may be NULL. The way
3173 // the parser works permits us to modify the parameters, rather than
3174 // copy the vector.
3175
3176 extern "C" String_list_ptr
3177 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3178 {
3179 if (pv1 == NULL)
3180 return pv2;
3181 if (pv2 == NULL)
3182 return pv1;
3183 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3184 return pv1;
3185 }
3186
3187 // Add a new program header.
3188
3189 extern "C" void
3190 script_add_phdr(void* closurev, const char* name, size_t namelen,
3191 unsigned int type, const Phdr_info* info)
3192 {
3193 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3194 bool includes_filehdr = info->includes_filehdr != 0;
3195 bool includes_phdrs = info->includes_phdrs != 0;
3196 bool is_flags_valid = info->is_flags_valid != 0;
3197 Script_sections* ss = closure->script_options()->script_sections();
3198 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3199 is_flags_valid, info->flags, info->load_address);
3200 closure->clear_skip_on_incompatible_target();
3201 }
3202
3203 // Convert a program header string to a type.
3204
3205 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3206
3207 static struct
3208 {
3209 const char* name;
3210 size_t namelen;
3211 unsigned int val;
3212 } phdr_type_names[] =
3213 {
3214 PHDR_TYPE(PT_NULL),
3215 PHDR_TYPE(PT_LOAD),
3216 PHDR_TYPE(PT_DYNAMIC),
3217 PHDR_TYPE(PT_INTERP),
3218 PHDR_TYPE(PT_NOTE),
3219 PHDR_TYPE(PT_SHLIB),
3220 PHDR_TYPE(PT_PHDR),
3221 PHDR_TYPE(PT_TLS),
3222 PHDR_TYPE(PT_GNU_EH_FRAME),
3223 PHDR_TYPE(PT_GNU_STACK),
3224 PHDR_TYPE(PT_GNU_RELRO)
3225 };
3226
3227 extern "C" unsigned int
3228 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3229 {
3230 for (unsigned int i = 0;
3231 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3232 ++i)
3233 if (namelen == phdr_type_names[i].namelen
3234 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3235 return phdr_type_names[i].val;
3236 yyerror(closurev, _("unknown PHDR type (try integer)"));
3237 return elfcpp::PT_NULL;
3238 }
3239
3240 extern "C" void
3241 script_saw_segment_start_expression(void* closurev)
3242 {
3243 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3244 Script_sections* ss = closure->script_options()->script_sections();
3245 ss->set_saw_segment_start_expression(true);
3246 }
3247
3248 extern "C" void
3249 script_set_section_region(void* closurev, const char* name, size_t namelen,
3250 int set_vma)
3251 {
3252 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3253 if (!closure->script_options()->saw_sections_clause())
3254 {
3255 gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3256 "SECTIONS clause"),
3257 closure->filename(), closure->lineno(), closure->charpos(),
3258 static_cast<int>(namelen), name);
3259 return;
3260 }
3261
3262 Script_sections* ss = closure->script_options()->script_sections();
3263 Memory_region* mr = ss->find_memory_region(name, namelen);
3264 if (mr == NULL)
3265 {
3266 gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3267 closure->filename(), closure->lineno(), closure->charpos(),
3268 static_cast<int>(namelen), name);
3269 return;
3270 }
3271
3272 ss->set_memory_region(mr, set_vma);
3273 }
3274
3275 extern "C" void
3276 script_add_memory(void* closurev, const char* name, size_t namelen,
3277 unsigned int attrs, Expression* origin, Expression* length)
3278 {
3279 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3280 Script_sections* ss = closure->script_options()->script_sections();
3281 ss->add_memory_region(name, namelen, attrs, origin, length);
3282 }
3283
3284 extern "C" unsigned int
3285 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3286 int invert)
3287 {
3288 int attributes = 0;
3289
3290 while (attrlen--)
3291 switch (*attrs++)
3292 {
3293 case 'R':
3294 case 'r':
3295 attributes |= MEM_READABLE; break;
3296 case 'W':
3297 case 'w':
3298 attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3299 case 'X':
3300 case 'x':
3301 attributes |= MEM_EXECUTABLE; break;
3302 case 'A':
3303 case 'a':
3304 attributes |= MEM_ALLOCATABLE; break;
3305 case 'I':
3306 case 'i':
3307 case 'L':
3308 case 'l':
3309 attributes |= MEM_INITIALIZED; break;
3310 default:
3311 yyerror(closurev, _("unknown MEMORY attribute"));
3312 }
3313
3314 if (invert)
3315 attributes = (~ attributes) & MEM_ATTR_MASK;
3316
3317 return attributes;
3318 }
3319
3320 extern "C" void
3321 script_include_directive(void* closurev, const char*, size_t)
3322 {
3323 // FIXME: Implement ?
3324 yyerror (closurev, _("GOLD does not currently support INCLUDE directives"));
3325 }
3326
3327 // Functions for memory regions.
3328
3329 extern "C" Expression*
3330 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3331 {
3332 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3333 Script_sections* ss = closure->script_options()->script_sections();
3334 Expression* origin = ss->find_memory_region_origin(name, namelen);
3335
3336 if (origin == NULL)
3337 {
3338 gold_error(_("undefined memory region '%s' referenced "
3339 "in ORIGIN expression"),
3340 name);
3341 // Create a dummy expression to prevent crashes later on.
3342 origin = script_exp_integer(0);
3343 }
3344
3345 return origin;
3346 }
3347
3348 extern "C" Expression*
3349 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3350 {
3351 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3352 Script_sections* ss = closure->script_options()->script_sections();
3353 Expression* length = ss->find_memory_region_length(name, namelen);
3354
3355 if (length == NULL)
3356 {
3357 gold_error(_("undefined memory region '%s' referenced "
3358 "in LENGTH expression"),
3359 name);
3360 // Create a dummy expression to prevent crashes later on.
3361 length = script_exp_integer(0);
3362 }
3363
3364 return length;
3365 }
This page took 0.119549 seconds and 5 git commands to generate.