* script.cc (script_add_extern): Rewrite to use
[deliverable/binutils-gdb.git] / gold / script.cc
1 // script.cc -- handle linker scripts for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdio>
26 #include <cstdlib>
27 #include <cstring>
28 #include <fnmatch.h>
29 #include <string>
30 #include <vector>
31 #include "filenames.h"
32
33 #include "elfcpp.h"
34 #include "demangle.h"
35 #include "dirsearch.h"
36 #include "options.h"
37 #include "fileread.h"
38 #include "workqueue.h"
39 #include "readsyms.h"
40 #include "parameters.h"
41 #include "layout.h"
42 #include "symtab.h"
43 #include "target-select.h"
44 #include "script.h"
45 #include "script-c.h"
46 #include "incremental.h"
47
48 namespace gold
49 {
50
51 // A token read from a script file. We don't implement keywords here;
52 // all keywords are simply represented as a string.
53
54 class Token
55 {
56 public:
57 // Token classification.
58 enum Classification
59 {
60 // Token is invalid.
61 TOKEN_INVALID,
62 // Token indicates end of input.
63 TOKEN_EOF,
64 // Token is a string of characters.
65 TOKEN_STRING,
66 // Token is a quoted string of characters.
67 TOKEN_QUOTED_STRING,
68 // Token is an operator.
69 TOKEN_OPERATOR,
70 // Token is a number (an integer).
71 TOKEN_INTEGER
72 };
73
74 // We need an empty constructor so that we can put this STL objects.
75 Token()
76 : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77 opcode_(0), lineno_(0), charpos_(0)
78 { }
79
80 // A general token with no value.
81 Token(Classification classification, int lineno, int charpos)
82 : classification_(classification), value_(NULL), value_length_(0),
83 opcode_(0), lineno_(lineno), charpos_(charpos)
84 {
85 gold_assert(classification == TOKEN_INVALID
86 || classification == TOKEN_EOF);
87 }
88
89 // A general token with a value.
90 Token(Classification classification, const char* value, size_t length,
91 int lineno, int charpos)
92 : classification_(classification), value_(value), value_length_(length),
93 opcode_(0), lineno_(lineno), charpos_(charpos)
94 {
95 gold_assert(classification != TOKEN_INVALID
96 && classification != TOKEN_EOF);
97 }
98
99 // A token representing an operator.
100 Token(int opcode, int lineno, int charpos)
101 : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102 opcode_(opcode), lineno_(lineno), charpos_(charpos)
103 { }
104
105 // Return whether the token is invalid.
106 bool
107 is_invalid() const
108 { return this->classification_ == TOKEN_INVALID; }
109
110 // Return whether this is an EOF token.
111 bool
112 is_eof() const
113 { return this->classification_ == TOKEN_EOF; }
114
115 // Return the token classification.
116 Classification
117 classification() const
118 { return this->classification_; }
119
120 // Return the line number at which the token starts.
121 int
122 lineno() const
123 { return this->lineno_; }
124
125 // Return the character position at this the token starts.
126 int
127 charpos() const
128 { return this->charpos_; }
129
130 // Get the value of a token.
131
132 const char*
133 string_value(size_t* length) const
134 {
135 gold_assert(this->classification_ == TOKEN_STRING
136 || this->classification_ == TOKEN_QUOTED_STRING);
137 *length = this->value_length_;
138 return this->value_;
139 }
140
141 int
142 operator_value() const
143 {
144 gold_assert(this->classification_ == TOKEN_OPERATOR);
145 return this->opcode_;
146 }
147
148 uint64_t
149 integer_value() const
150 {
151 gold_assert(this->classification_ == TOKEN_INTEGER);
152 // Null terminate.
153 std::string s(this->value_, this->value_length_);
154 return strtoull(s.c_str(), NULL, 0);
155 }
156
157 private:
158 // The token classification.
159 Classification classification_;
160 // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
161 // TOKEN_INTEGER.
162 const char* value_;
163 // The length of the token value.
164 size_t value_length_;
165 // The token value, for TOKEN_OPERATOR.
166 int opcode_;
167 // The line number where this token started (one based).
168 int lineno_;
169 // The character position within the line where this token started
170 // (one based).
171 int charpos_;
172 };
173
174 // This class handles lexing a file into a sequence of tokens.
175
176 class Lex
177 {
178 public:
179 // We unfortunately have to support different lexing modes, because
180 // when reading different parts of a linker script we need to parse
181 // things differently.
182 enum Mode
183 {
184 // Reading an ordinary linker script.
185 LINKER_SCRIPT,
186 // Reading an expression in a linker script.
187 EXPRESSION,
188 // Reading a version script.
189 VERSION_SCRIPT,
190 // Reading a --dynamic-list file.
191 DYNAMIC_LIST
192 };
193
194 Lex(const char* input_string, size_t input_length, int parsing_token)
195 : input_string_(input_string), input_length_(input_length),
196 current_(input_string), mode_(LINKER_SCRIPT),
197 first_token_(parsing_token), token_(),
198 lineno_(1), linestart_(input_string)
199 { }
200
201 // Read a file into a string.
202 static void
203 read_file(Input_file*, std::string*);
204
205 // Return the next token.
206 const Token*
207 next_token();
208
209 // Return the current lexing mode.
210 Lex::Mode
211 mode() const
212 { return this->mode_; }
213
214 // Set the lexing mode.
215 void
216 set_mode(Mode mode)
217 { this->mode_ = mode; }
218
219 private:
220 Lex(const Lex&);
221 Lex& operator=(const Lex&);
222
223 // Make a general token with no value at the current location.
224 Token
225 make_token(Token::Classification c, const char* start) const
226 { return Token(c, this->lineno_, start - this->linestart_ + 1); }
227
228 // Make a general token with a value at the current location.
229 Token
230 make_token(Token::Classification c, const char* v, size_t len,
231 const char* start)
232 const
233 { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
234
235 // Make an operator token at the current location.
236 Token
237 make_token(int opcode, const char* start) const
238 { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
239
240 // Make an invalid token at the current location.
241 Token
242 make_invalid_token(const char* start)
243 { return this->make_token(Token::TOKEN_INVALID, start); }
244
245 // Make an EOF token at the current location.
246 Token
247 make_eof_token(const char* start)
248 { return this->make_token(Token::TOKEN_EOF, start); }
249
250 // Return whether C can be the first character in a name. C2 is the
251 // next character, since we sometimes need that.
252 inline bool
253 can_start_name(char c, char c2);
254
255 // If C can appear in a name which has already started, return a
256 // pointer to a character later in the token or just past
257 // it. Otherwise, return NULL.
258 inline const char*
259 can_continue_name(const char* c);
260
261 // Return whether C, C2, C3 can start a hex number.
262 inline bool
263 can_start_hex(char c, char c2, char c3);
264
265 // If C can appear in a hex number which has already started, return
266 // a pointer to a character later in the token or just past
267 // it. Otherwise, return NULL.
268 inline const char*
269 can_continue_hex(const char* c);
270
271 // Return whether C can start a non-hex number.
272 static inline bool
273 can_start_number(char c);
274
275 // If C can appear in a decimal number which has already started,
276 // return a pointer to a character later in the token or just past
277 // it. Otherwise, return NULL.
278 inline const char*
279 can_continue_number(const char* c)
280 { return Lex::can_start_number(*c) ? c + 1 : NULL; }
281
282 // If C1 C2 C3 form a valid three character operator, return the
283 // opcode. Otherwise return 0.
284 static inline int
285 three_char_operator(char c1, char c2, char c3);
286
287 // If C1 C2 form a valid two character operator, return the opcode.
288 // Otherwise return 0.
289 static inline int
290 two_char_operator(char c1, char c2);
291
292 // If C1 is a valid one character operator, return the opcode.
293 // Otherwise return 0.
294 static inline int
295 one_char_operator(char c1);
296
297 // Read the next token.
298 Token
299 get_token(const char**);
300
301 // Skip a C style /* */ comment. Return false if the comment did
302 // not end.
303 bool
304 skip_c_comment(const char**);
305
306 // Skip a line # comment. Return false if there was no newline.
307 bool
308 skip_line_comment(const char**);
309
310 // Build a token CLASSIFICATION from all characters that match
311 // CAN_CONTINUE_FN. The token starts at START. Start matching from
312 // MATCH. Set *PP to the character following the token.
313 inline Token
314 gather_token(Token::Classification,
315 const char* (Lex::*can_continue_fn)(const char*),
316 const char* start, const char* match, const char** pp);
317
318 // Build a token from a quoted string.
319 Token
320 gather_quoted_string(const char** pp);
321
322 // The string we are tokenizing.
323 const char* input_string_;
324 // The length of the string.
325 size_t input_length_;
326 // The current offset into the string.
327 const char* current_;
328 // The current lexing mode.
329 Mode mode_;
330 // The code to use for the first token. This is set to 0 after it
331 // is used.
332 int first_token_;
333 // The current token.
334 Token token_;
335 // The current line number.
336 int lineno_;
337 // The start of the current line in the string.
338 const char* linestart_;
339 };
340
341 // Read the whole file into memory. We don't expect linker scripts to
342 // be large, so we just use a std::string as a buffer. We ignore the
343 // data we've already read, so that we read aligned buffers.
344
345 void
346 Lex::read_file(Input_file* input_file, std::string* contents)
347 {
348 off_t filesize = input_file->file().filesize();
349 contents->clear();
350 contents->reserve(filesize);
351
352 off_t off = 0;
353 unsigned char buf[BUFSIZ];
354 while (off < filesize)
355 {
356 off_t get = BUFSIZ;
357 if (get > filesize - off)
358 get = filesize - off;
359 input_file->file().read(off, get, buf);
360 contents->append(reinterpret_cast<char*>(&buf[0]), get);
361 off += get;
362 }
363 }
364
365 // Return whether C can be the start of a name, if the next character
366 // is C2. A name can being with a letter, underscore, period, or
367 // dollar sign. Because a name can be a file name, we also permit
368 // forward slash, backslash, and tilde. Tilde is the tricky case
369 // here; GNU ld also uses it as a bitwise not operator. It is only
370 // recognized as the operator if it is not immediately followed by
371 // some character which can appear in a symbol. That is, when we
372 // don't know that we are looking at an expression, "~0" is a file
373 // name, and "~ 0" is an expression using bitwise not. We are
374 // compatible.
375
376 inline bool
377 Lex::can_start_name(char c, char c2)
378 {
379 switch (c)
380 {
381 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
382 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
383 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
384 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
385 case 'Y': case 'Z':
386 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
387 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
388 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
389 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
390 case 'y': case 'z':
391 case '_': case '.': case '$':
392 return true;
393
394 case '/': case '\\':
395 return this->mode_ == LINKER_SCRIPT;
396
397 case '~':
398 return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
399
400 case '*': case '[':
401 return (this->mode_ == VERSION_SCRIPT
402 || this->mode_ == DYNAMIC_LIST
403 || (this->mode_ == LINKER_SCRIPT
404 && can_continue_name(&c2)));
405
406 default:
407 return false;
408 }
409 }
410
411 // Return whether C can continue a name which has already started.
412 // Subsequent characters in a name are the same as the leading
413 // characters, plus digits and "=+-:[],?*". So in general the linker
414 // script language requires spaces around operators, unless we know
415 // that we are parsing an expression.
416
417 inline const char*
418 Lex::can_continue_name(const char* c)
419 {
420 switch (*c)
421 {
422 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
423 case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
424 case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
425 case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
426 case 'Y': case 'Z':
427 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
428 case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
429 case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
430 case 's': case 't': case 'u': case 'v': case 'w': case 'x':
431 case 'y': case 'z':
432 case '_': case '.': case '$':
433 case '0': case '1': case '2': case '3': case '4':
434 case '5': case '6': case '7': case '8': case '9':
435 return c + 1;
436
437 // TODO(csilvers): why not allow ~ in names for version-scripts?
438 case '/': case '\\': case '~':
439 case '=': case '+':
440 case ',':
441 if (this->mode_ == LINKER_SCRIPT)
442 return c + 1;
443 return NULL;
444
445 case '[': case ']': case '*': case '?': case '-':
446 if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
447 || this->mode_ == DYNAMIC_LIST)
448 return c + 1;
449 return NULL;
450
451 // TODO(csilvers): why allow this? ^ is meaningless in version scripts.
452 case '^':
453 if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
454 return c + 1;
455 return NULL;
456
457 case ':':
458 if (this->mode_ == LINKER_SCRIPT)
459 return c + 1;
460 else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
461 && (c[1] == ':'))
462 {
463 // A name can have '::' in it, as that's a c++ namespace
464 // separator. But a single colon is not part of a name.
465 return c + 2;
466 }
467 return NULL;
468
469 default:
470 return NULL;
471 }
472 }
473
474 // For a number we accept 0x followed by hex digits, or any sequence
475 // of digits. The old linker accepts leading '$' for hex, and
476 // trailing HXBOD. Those are for MRI compatibility and we don't
477 // accept them. The old linker also accepts trailing MK for mega or
478 // kilo. FIXME: Those are mentioned in the documentation, and we
479 // should accept them.
480
481 // Return whether C1 C2 C3 can start a hex number.
482
483 inline bool
484 Lex::can_start_hex(char c1, char c2, char c3)
485 {
486 if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
487 return this->can_continue_hex(&c3);
488 return false;
489 }
490
491 // Return whether C can appear in a hex number.
492
493 inline const char*
494 Lex::can_continue_hex(const char* c)
495 {
496 switch (*c)
497 {
498 case '0': case '1': case '2': case '3': case '4':
499 case '5': case '6': case '7': case '8': case '9':
500 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
501 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
502 return c + 1;
503
504 default:
505 return NULL;
506 }
507 }
508
509 // Return whether C can start a non-hex number.
510
511 inline bool
512 Lex::can_start_number(char c)
513 {
514 switch (c)
515 {
516 case '0': case '1': case '2': case '3': case '4':
517 case '5': case '6': case '7': case '8': case '9':
518 return true;
519
520 default:
521 return false;
522 }
523 }
524
525 // If C1 C2 C3 form a valid three character operator, return the
526 // opcode (defined in the yyscript.h file generated from yyscript.y).
527 // Otherwise return 0.
528
529 inline int
530 Lex::three_char_operator(char c1, char c2, char c3)
531 {
532 switch (c1)
533 {
534 case '<':
535 if (c2 == '<' && c3 == '=')
536 return LSHIFTEQ;
537 break;
538 case '>':
539 if (c2 == '>' && c3 == '=')
540 return RSHIFTEQ;
541 break;
542 default:
543 break;
544 }
545 return 0;
546 }
547
548 // If C1 C2 form a valid two character operator, return the opcode
549 // (defined in the yyscript.h file generated from yyscript.y).
550 // Otherwise return 0.
551
552 inline int
553 Lex::two_char_operator(char c1, char c2)
554 {
555 switch (c1)
556 {
557 case '=':
558 if (c2 == '=')
559 return EQ;
560 break;
561 case '!':
562 if (c2 == '=')
563 return NE;
564 break;
565 case '+':
566 if (c2 == '=')
567 return PLUSEQ;
568 break;
569 case '-':
570 if (c2 == '=')
571 return MINUSEQ;
572 break;
573 case '*':
574 if (c2 == '=')
575 return MULTEQ;
576 break;
577 case '/':
578 if (c2 == '=')
579 return DIVEQ;
580 break;
581 case '|':
582 if (c2 == '=')
583 return OREQ;
584 if (c2 == '|')
585 return OROR;
586 break;
587 case '&':
588 if (c2 == '=')
589 return ANDEQ;
590 if (c2 == '&')
591 return ANDAND;
592 break;
593 case '>':
594 if (c2 == '=')
595 return GE;
596 if (c2 == '>')
597 return RSHIFT;
598 break;
599 case '<':
600 if (c2 == '=')
601 return LE;
602 if (c2 == '<')
603 return LSHIFT;
604 break;
605 default:
606 break;
607 }
608 return 0;
609 }
610
611 // If C1 is a valid operator, return the opcode. Otherwise return 0.
612
613 inline int
614 Lex::one_char_operator(char c1)
615 {
616 switch (c1)
617 {
618 case '+':
619 case '-':
620 case '*':
621 case '/':
622 case '%':
623 case '!':
624 case '&':
625 case '|':
626 case '^':
627 case '~':
628 case '<':
629 case '>':
630 case '=':
631 case '?':
632 case ',':
633 case '(':
634 case ')':
635 case '{':
636 case '}':
637 case '[':
638 case ']':
639 case ':':
640 case ';':
641 return c1;
642 default:
643 return 0;
644 }
645 }
646
647 // Skip a C style comment. *PP points to just after the "/*". Return
648 // false if the comment did not end.
649
650 bool
651 Lex::skip_c_comment(const char** pp)
652 {
653 const char* p = *pp;
654 while (p[0] != '*' || p[1] != '/')
655 {
656 if (*p == '\0')
657 {
658 *pp = p;
659 return false;
660 }
661
662 if (*p == '\n')
663 {
664 ++this->lineno_;
665 this->linestart_ = p + 1;
666 }
667 ++p;
668 }
669
670 *pp = p + 2;
671 return true;
672 }
673
674 // Skip a line # comment. Return false if there was no newline.
675
676 bool
677 Lex::skip_line_comment(const char** pp)
678 {
679 const char* p = *pp;
680 size_t skip = strcspn(p, "\n");
681 if (p[skip] == '\0')
682 {
683 *pp = p + skip;
684 return false;
685 }
686
687 p += skip + 1;
688 ++this->lineno_;
689 this->linestart_ = p;
690 *pp = p;
691
692 return true;
693 }
694
695 // Build a token CLASSIFICATION from all characters that match
696 // CAN_CONTINUE_FN. Update *PP.
697
698 inline Token
699 Lex::gather_token(Token::Classification classification,
700 const char* (Lex::*can_continue_fn)(const char*),
701 const char* start,
702 const char* match,
703 const char** pp)
704 {
705 const char* new_match = NULL;
706 while ((new_match = (this->*can_continue_fn)(match)))
707 match = new_match;
708 *pp = match;
709 return this->make_token(classification, start, match - start, start);
710 }
711
712 // Build a token from a quoted string.
713
714 Token
715 Lex::gather_quoted_string(const char** pp)
716 {
717 const char* start = *pp;
718 const char* p = start;
719 ++p;
720 size_t skip = strcspn(p, "\"\n");
721 if (p[skip] != '"')
722 return this->make_invalid_token(start);
723 *pp = p + skip + 1;
724 return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
725 }
726
727 // Return the next token at *PP. Update *PP. General guideline: we
728 // require linker scripts to be simple ASCII. No unicode linker
729 // scripts. In particular we can assume that any '\0' is the end of
730 // the input.
731
732 Token
733 Lex::get_token(const char** pp)
734 {
735 const char* p = *pp;
736
737 while (true)
738 {
739 if (*p == '\0')
740 {
741 *pp = p;
742 return this->make_eof_token(p);
743 }
744
745 // Skip whitespace quickly.
746 while (*p == ' ' || *p == '\t' || *p == '\r')
747 ++p;
748
749 if (*p == '\n')
750 {
751 ++p;
752 ++this->lineno_;
753 this->linestart_ = p;
754 continue;
755 }
756
757 // Skip C style comments.
758 if (p[0] == '/' && p[1] == '*')
759 {
760 int lineno = this->lineno_;
761 int charpos = p - this->linestart_ + 1;
762
763 *pp = p + 2;
764 if (!this->skip_c_comment(pp))
765 return Token(Token::TOKEN_INVALID, lineno, charpos);
766 p = *pp;
767
768 continue;
769 }
770
771 // Skip line comments.
772 if (*p == '#')
773 {
774 *pp = p + 1;
775 if (!this->skip_line_comment(pp))
776 return this->make_eof_token(p);
777 p = *pp;
778 continue;
779 }
780
781 // Check for a name.
782 if (this->can_start_name(p[0], p[1]))
783 return this->gather_token(Token::TOKEN_STRING,
784 &Lex::can_continue_name,
785 p, p + 1, pp);
786
787 // We accept any arbitrary name in double quotes, as long as it
788 // does not cross a line boundary.
789 if (*p == '"')
790 {
791 *pp = p;
792 return this->gather_quoted_string(pp);
793 }
794
795 // Check for a number.
796
797 if (this->can_start_hex(p[0], p[1], p[2]))
798 return this->gather_token(Token::TOKEN_INTEGER,
799 &Lex::can_continue_hex,
800 p, p + 3, pp);
801
802 if (Lex::can_start_number(p[0]))
803 return this->gather_token(Token::TOKEN_INTEGER,
804 &Lex::can_continue_number,
805 p, p + 1, pp);
806
807 // Check for operators.
808
809 int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
810 if (opcode != 0)
811 {
812 *pp = p + 3;
813 return this->make_token(opcode, p);
814 }
815
816 opcode = Lex::two_char_operator(p[0], p[1]);
817 if (opcode != 0)
818 {
819 *pp = p + 2;
820 return this->make_token(opcode, p);
821 }
822
823 opcode = Lex::one_char_operator(p[0]);
824 if (opcode != 0)
825 {
826 *pp = p + 1;
827 return this->make_token(opcode, p);
828 }
829
830 return this->make_token(Token::TOKEN_INVALID, p);
831 }
832 }
833
834 // Return the next token.
835
836 const Token*
837 Lex::next_token()
838 {
839 // The first token is special.
840 if (this->first_token_ != 0)
841 {
842 this->token_ = Token(this->first_token_, 0, 0);
843 this->first_token_ = 0;
844 return &this->token_;
845 }
846
847 this->token_ = this->get_token(&this->current_);
848
849 // Don't let an early null byte fool us into thinking that we've
850 // reached the end of the file.
851 if (this->token_.is_eof()
852 && (static_cast<size_t>(this->current_ - this->input_string_)
853 < this->input_length_))
854 this->token_ = this->make_invalid_token(this->current_);
855
856 return &this->token_;
857 }
858
859 // class Symbol_assignment.
860
861 // Add the symbol to the symbol table. This makes sure the symbol is
862 // there and defined. The actual value is stored later. We can't
863 // determine the actual value at this point, because we can't
864 // necessarily evaluate the expression until all ordinary symbols have
865 // been finalized.
866
867 // The GNU linker lets symbol assignments in the linker script
868 // silently override defined symbols in object files. We are
869 // compatible. FIXME: Should we issue a warning?
870
871 void
872 Symbol_assignment::add_to_table(Symbol_table* symtab)
873 {
874 elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
875 this->sym_ = symtab->define_as_constant(this->name_.c_str(),
876 NULL, // version
877 (this->is_defsym_
878 ? Symbol_table::DEFSYM
879 : Symbol_table::SCRIPT),
880 0, // value
881 0, // size
882 elfcpp::STT_NOTYPE,
883 elfcpp::STB_GLOBAL,
884 vis,
885 0, // nonvis
886 this->provide_,
887 true); // force_override
888 }
889
890 // Finalize a symbol value.
891
892 void
893 Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
894 {
895 this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
896 }
897
898 // Finalize a symbol value which can refer to the dot symbol.
899
900 void
901 Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
902 const Layout* layout,
903 uint64_t dot_value,
904 Output_section* dot_section)
905 {
906 this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
907 }
908
909 // Finalize a symbol value, internal version.
910
911 void
912 Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
913 const Layout* layout,
914 bool is_dot_available,
915 uint64_t dot_value,
916 Output_section* dot_section)
917 {
918 // If we were only supposed to provide this symbol, the sym_ field
919 // will be NULL if the symbol was not referenced.
920 if (this->sym_ == NULL)
921 {
922 gold_assert(this->provide_);
923 return;
924 }
925
926 if (parameters->target().get_size() == 32)
927 {
928 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
929 this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
930 dot_section);
931 #else
932 gold_unreachable();
933 #endif
934 }
935 else if (parameters->target().get_size() == 64)
936 {
937 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
938 this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
939 dot_section);
940 #else
941 gold_unreachable();
942 #endif
943 }
944 else
945 gold_unreachable();
946 }
947
948 template<int size>
949 void
950 Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
951 bool is_dot_available, uint64_t dot_value,
952 Output_section* dot_section)
953 {
954 Output_section* section;
955 uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
956 is_dot_available,
957 dot_value, dot_section,
958 &section, NULL);
959 Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
960 ssym->set_value(final_val);
961 if (section != NULL)
962 ssym->set_output_section(section);
963 }
964
965 // Set the symbol value if the expression yields an absolute value.
966
967 void
968 Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
969 bool is_dot_available, uint64_t dot_value)
970 {
971 if (this->sym_ == NULL)
972 return;
973
974 Output_section* val_section;
975 uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
976 is_dot_available, dot_value,
977 NULL, &val_section, NULL);
978 if (val_section != NULL)
979 return;
980
981 if (parameters->target().get_size() == 32)
982 {
983 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
984 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
985 ssym->set_value(val);
986 #else
987 gold_unreachable();
988 #endif
989 }
990 else if (parameters->target().get_size() == 64)
991 {
992 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
993 Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
994 ssym->set_value(val);
995 #else
996 gold_unreachable();
997 #endif
998 }
999 else
1000 gold_unreachable();
1001 }
1002
1003 // Print for debugging.
1004
1005 void
1006 Symbol_assignment::print(FILE* f) const
1007 {
1008 if (this->provide_ && this->hidden_)
1009 fprintf(f, "PROVIDE_HIDDEN(");
1010 else if (this->provide_)
1011 fprintf(f, "PROVIDE(");
1012 else if (this->hidden_)
1013 gold_unreachable();
1014
1015 fprintf(f, "%s = ", this->name_.c_str());
1016 this->val_->print(f);
1017
1018 if (this->provide_ || this->hidden_)
1019 fprintf(f, ")");
1020
1021 fprintf(f, "\n");
1022 }
1023
1024 // Class Script_assertion.
1025
1026 // Check the assertion.
1027
1028 void
1029 Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1030 {
1031 if (!this->check_->eval(symtab, layout, true))
1032 gold_error("%s", this->message_.c_str());
1033 }
1034
1035 // Print for debugging.
1036
1037 void
1038 Script_assertion::print(FILE* f) const
1039 {
1040 fprintf(f, "ASSERT(");
1041 this->check_->print(f);
1042 fprintf(f, ", \"%s\")\n", this->message_.c_str());
1043 }
1044
1045 // Class Script_options.
1046
1047 Script_options::Script_options()
1048 : entry_(), symbol_assignments_(), symbol_definitions_(),
1049 symbol_references_(), version_script_info_(), script_sections_()
1050 {
1051 }
1052
1053 // Returns true if NAME is on the list of symbol assignments waiting
1054 // to be processed.
1055
1056 bool
1057 Script_options::is_pending_assignment(const char* name)
1058 {
1059 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1060 p != this->symbol_assignments_.end();
1061 ++p)
1062 if ((*p)->name() == name)
1063 return true;
1064 return false;
1065 }
1066
1067 // Add a symbol to be defined.
1068
1069 void
1070 Script_options::add_symbol_assignment(const char* name, size_t length,
1071 bool is_defsym, Expression* value,
1072 bool provide, bool hidden)
1073 {
1074 if (length != 1 || name[0] != '.')
1075 {
1076 if (this->script_sections_.in_sections_clause())
1077 {
1078 gold_assert(!is_defsym);
1079 this->script_sections_.add_symbol_assignment(name, length, value,
1080 provide, hidden);
1081 }
1082 else
1083 {
1084 Symbol_assignment* p = new Symbol_assignment(name, length, is_defsym,
1085 value, provide, hidden);
1086 this->symbol_assignments_.push_back(p);
1087 }
1088
1089 if (!provide)
1090 {
1091 std::string n(name, length);
1092 this->symbol_definitions_.insert(n);
1093 this->symbol_references_.erase(n);
1094 }
1095 }
1096 else
1097 {
1098 if (provide || hidden)
1099 gold_error(_("invalid use of PROVIDE for dot symbol"));
1100
1101 // The GNU linker permits assignments to dot outside of SECTIONS
1102 // clauses and treats them as occurring inside, so we don't
1103 // check in_sections_clause here.
1104 this->script_sections_.add_dot_assignment(value);
1105 }
1106 }
1107
1108 // Add a reference to a symbol.
1109
1110 void
1111 Script_options::add_symbol_reference(const char* name, size_t length)
1112 {
1113 if (length != 1 || name[0] != '.')
1114 {
1115 std::string n(name, length);
1116 if (this->symbol_definitions_.find(n) == this->symbol_definitions_.end())
1117 this->symbol_references_.insert(n);
1118 }
1119 }
1120
1121 // Add an assertion.
1122
1123 void
1124 Script_options::add_assertion(Expression* check, const char* message,
1125 size_t messagelen)
1126 {
1127 if (this->script_sections_.in_sections_clause())
1128 this->script_sections_.add_assertion(check, message, messagelen);
1129 else
1130 {
1131 Script_assertion* p = new Script_assertion(check, message, messagelen);
1132 this->assertions_.push_back(p);
1133 }
1134 }
1135
1136 // Create sections required by any linker scripts.
1137
1138 void
1139 Script_options::create_script_sections(Layout* layout)
1140 {
1141 if (this->saw_sections_clause())
1142 this->script_sections_.create_sections(layout);
1143 }
1144
1145 // Add any symbols we are defining to the symbol table.
1146
1147 void
1148 Script_options::add_symbols_to_table(Symbol_table* symtab)
1149 {
1150 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1151 p != this->symbol_assignments_.end();
1152 ++p)
1153 (*p)->add_to_table(symtab);
1154 this->script_sections_.add_symbols_to_table(symtab);
1155 }
1156
1157 // Finalize symbol values. Also check assertions.
1158
1159 void
1160 Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1161 {
1162 // We finalize the symbols defined in SECTIONS first, because they
1163 // are the ones which may have changed. This way if symbol outside
1164 // SECTIONS are defined in terms of symbols inside SECTIONS, they
1165 // will get the right value.
1166 this->script_sections_.finalize_symbols(symtab, layout);
1167
1168 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1169 p != this->symbol_assignments_.end();
1170 ++p)
1171 (*p)->finalize(symtab, layout);
1172
1173 for (Assertions::iterator p = this->assertions_.begin();
1174 p != this->assertions_.end();
1175 ++p)
1176 (*p)->check(symtab, layout);
1177 }
1178
1179 // Set section addresses. We set all the symbols which have absolute
1180 // values. Then we let the SECTIONS clause do its thing. This
1181 // returns the segment which holds the file header and segment
1182 // headers, if any.
1183
1184 Output_segment*
1185 Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1186 {
1187 for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1188 p != this->symbol_assignments_.end();
1189 ++p)
1190 (*p)->set_if_absolute(symtab, layout, false, 0);
1191
1192 return this->script_sections_.set_section_addresses(symtab, layout);
1193 }
1194
1195 // This class holds data passed through the parser to the lexer and to
1196 // the parser support functions. This avoids global variables. We
1197 // can't use global variables because we need not be called by a
1198 // singleton thread.
1199
1200 class Parser_closure
1201 {
1202 public:
1203 Parser_closure(const char* filename,
1204 const Position_dependent_options& posdep_options,
1205 bool parsing_defsym, bool in_group, bool is_in_sysroot,
1206 Command_line* command_line,
1207 Script_options* script_options,
1208 Lex* lex,
1209 bool skip_on_incompatible_target)
1210 : filename_(filename), posdep_options_(posdep_options),
1211 parsing_defsym_(parsing_defsym), in_group_(in_group),
1212 is_in_sysroot_(is_in_sysroot),
1213 skip_on_incompatible_target_(skip_on_incompatible_target),
1214 found_incompatible_target_(false),
1215 command_line_(command_line), script_options_(script_options),
1216 version_script_info_(script_options->version_script_info()),
1217 lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1218 {
1219 // We start out processing C symbols in the default lex mode.
1220 this->language_stack_.push_back(Version_script_info::LANGUAGE_C);
1221 this->lex_mode_stack_.push_back(lex->mode());
1222 }
1223
1224 // Return the file name.
1225 const char*
1226 filename() const
1227 { return this->filename_; }
1228
1229 // Return the position dependent options. The caller may modify
1230 // this.
1231 Position_dependent_options&
1232 position_dependent_options()
1233 { return this->posdep_options_; }
1234
1235 // Whether we are parsing a --defsym.
1236 bool
1237 parsing_defsym() const
1238 { return this->parsing_defsym_; }
1239
1240 // Return whether this script is being run in a group.
1241 bool
1242 in_group() const
1243 { return this->in_group_; }
1244
1245 // Return whether this script was found using a directory in the
1246 // sysroot.
1247 bool
1248 is_in_sysroot() const
1249 { return this->is_in_sysroot_; }
1250
1251 // Whether to skip to the next file with the same name if we find an
1252 // incompatible target in an OUTPUT_FORMAT statement.
1253 bool
1254 skip_on_incompatible_target() const
1255 { return this->skip_on_incompatible_target_; }
1256
1257 // Stop skipping to the next file on an incompatible target. This
1258 // is called when we make some unrevocable change to the data
1259 // structures.
1260 void
1261 clear_skip_on_incompatible_target()
1262 { this->skip_on_incompatible_target_ = false; }
1263
1264 // Whether we found an incompatible target in an OUTPUT_FORMAT
1265 // statement.
1266 bool
1267 found_incompatible_target() const
1268 { return this->found_incompatible_target_; }
1269
1270 // Note that we found an incompatible target.
1271 void
1272 set_found_incompatible_target()
1273 { this->found_incompatible_target_ = true; }
1274
1275 // Returns the Command_line structure passed in at constructor time.
1276 // This value may be NULL. The caller may modify this, which modifies
1277 // the passed-in Command_line object (not a copy).
1278 Command_line*
1279 command_line()
1280 { return this->command_line_; }
1281
1282 // Return the options which may be set by a script.
1283 Script_options*
1284 script_options()
1285 { return this->script_options_; }
1286
1287 // Return the object in which version script information should be stored.
1288 Version_script_info*
1289 version_script()
1290 { return this->version_script_info_; }
1291
1292 // Return the next token, and advance.
1293 const Token*
1294 next_token()
1295 {
1296 const Token* token = this->lex_->next_token();
1297 this->lineno_ = token->lineno();
1298 this->charpos_ = token->charpos();
1299 return token;
1300 }
1301
1302 // Set a new lexer mode, pushing the current one.
1303 void
1304 push_lex_mode(Lex::Mode mode)
1305 {
1306 this->lex_mode_stack_.push_back(this->lex_->mode());
1307 this->lex_->set_mode(mode);
1308 }
1309
1310 // Pop the lexer mode.
1311 void
1312 pop_lex_mode()
1313 {
1314 gold_assert(!this->lex_mode_stack_.empty());
1315 this->lex_->set_mode(this->lex_mode_stack_.back());
1316 this->lex_mode_stack_.pop_back();
1317 }
1318
1319 // Return the current lexer mode.
1320 Lex::Mode
1321 lex_mode() const
1322 { return this->lex_mode_stack_.back(); }
1323
1324 // Return the line number of the last token.
1325 int
1326 lineno() const
1327 { return this->lineno_; }
1328
1329 // Return the character position in the line of the last token.
1330 int
1331 charpos() const
1332 { return this->charpos_; }
1333
1334 // Return the list of input files, creating it if necessary. This
1335 // is a space leak--we never free the INPUTS_ pointer.
1336 Input_arguments*
1337 inputs()
1338 {
1339 if (this->inputs_ == NULL)
1340 this->inputs_ = new Input_arguments();
1341 return this->inputs_;
1342 }
1343
1344 // Return whether we saw any input files.
1345 bool
1346 saw_inputs() const
1347 { return this->inputs_ != NULL && !this->inputs_->empty(); }
1348
1349 // Return the current language being processed in a version script
1350 // (eg, "C++"). The empty string represents unmangled C names.
1351 Version_script_info::Language
1352 get_current_language() const
1353 { return this->language_stack_.back(); }
1354
1355 // Push a language onto the stack when entering an extern block.
1356 void
1357 push_language(Version_script_info::Language lang)
1358 { this->language_stack_.push_back(lang); }
1359
1360 // Pop a language off of the stack when exiting an extern block.
1361 void
1362 pop_language()
1363 {
1364 gold_assert(!this->language_stack_.empty());
1365 this->language_stack_.pop_back();
1366 }
1367
1368 private:
1369 // The name of the file we are reading.
1370 const char* filename_;
1371 // The position dependent options.
1372 Position_dependent_options posdep_options_;
1373 // True if we are parsing a --defsym.
1374 bool parsing_defsym_;
1375 // Whether we are currently in a --start-group/--end-group.
1376 bool in_group_;
1377 // Whether the script was found in a sysrooted directory.
1378 bool is_in_sysroot_;
1379 // If this is true, then if we find an OUTPUT_FORMAT with an
1380 // incompatible target, then we tell the parser to abort so that we
1381 // can search for the next file with the same name.
1382 bool skip_on_incompatible_target_;
1383 // True if we found an OUTPUT_FORMAT with an incompatible target.
1384 bool found_incompatible_target_;
1385 // May be NULL if the user chooses not to pass one in.
1386 Command_line* command_line_;
1387 // Options which may be set from any linker script.
1388 Script_options* script_options_;
1389 // Information parsed from a version script.
1390 Version_script_info* version_script_info_;
1391 // The lexer.
1392 Lex* lex_;
1393 // The line number of the last token returned by next_token.
1394 int lineno_;
1395 // The column number of the last token returned by next_token.
1396 int charpos_;
1397 // A stack of lexer modes.
1398 std::vector<Lex::Mode> lex_mode_stack_;
1399 // A stack of which extern/language block we're inside. Can be C++,
1400 // java, or empty for C.
1401 std::vector<Version_script_info::Language> language_stack_;
1402 // New input files found to add to the link.
1403 Input_arguments* inputs_;
1404 };
1405
1406 // FILE was found as an argument on the command line. Try to read it
1407 // as a script. Return true if the file was handled.
1408
1409 bool
1410 read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1411 Dirsearch* dirsearch, int dirindex,
1412 Input_objects* input_objects, Mapfile* mapfile,
1413 Input_group* input_group,
1414 const Input_argument* input_argument,
1415 Input_file* input_file, Task_token* next_blocker,
1416 bool* used_next_blocker)
1417 {
1418 *used_next_blocker = false;
1419
1420 std::string input_string;
1421 Lex::read_file(input_file, &input_string);
1422
1423 Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1424
1425 Parser_closure closure(input_file->filename().c_str(),
1426 input_argument->file().options(),
1427 false,
1428 input_group != NULL,
1429 input_file->is_in_sysroot(),
1430 NULL,
1431 layout->script_options(),
1432 &lex,
1433 input_file->will_search_for());
1434
1435 bool old_saw_sections_clause =
1436 layout->script_options()->saw_sections_clause();
1437
1438 if (yyparse(&closure) != 0)
1439 {
1440 if (closure.found_incompatible_target())
1441 {
1442 Read_symbols::incompatible_warning(input_argument, input_file);
1443 Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1444 dirsearch, dirindex, mapfile, input_argument,
1445 input_group, next_blocker);
1446 return true;
1447 }
1448 return false;
1449 }
1450
1451 if (!old_saw_sections_clause
1452 && layout->script_options()->saw_sections_clause()
1453 && layout->have_added_input_section())
1454 gold_error(_("%s: SECTIONS seen after other input files; try -T/--script"),
1455 input_file->filename().c_str());
1456
1457 if (!closure.saw_inputs())
1458 return true;
1459
1460 Task_token* this_blocker = NULL;
1461 for (Input_arguments::const_iterator p = closure.inputs()->begin();
1462 p != closure.inputs()->end();
1463 ++p)
1464 {
1465 Task_token* nb;
1466 if (p + 1 == closure.inputs()->end())
1467 nb = next_blocker;
1468 else
1469 {
1470 nb = new Task_token(true);
1471 nb->add_blocker();
1472 }
1473 workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1474 layout, dirsearch, 0, mapfile, &*p,
1475 input_group, NULL, this_blocker, nb));
1476 this_blocker = nb;
1477 }
1478
1479 if (layout->incremental_inputs() != NULL)
1480 {
1481 // Like new Read_symbols(...) above, we rely on closure.inputs()
1482 // getting leaked by closure.
1483 const std::string& filename = input_file->filename();
1484 Script_info* info = new Script_info(closure.inputs());
1485 Timespec mtime = input_file->file().get_mtime();
1486 layout->incremental_inputs()->report_script(filename, info, mtime);
1487 }
1488
1489 *used_next_blocker = true;
1490
1491 return true;
1492 }
1493
1494 // Helper function for read_version_script() and
1495 // read_commandline_script(). Processes the given file in the mode
1496 // indicated by first_token and lex_mode.
1497
1498 static bool
1499 read_script_file(const char* filename, Command_line* cmdline,
1500 Script_options* script_options,
1501 int first_token, Lex::Mode lex_mode)
1502 {
1503 // TODO: if filename is a relative filename, search for it manually
1504 // using "." + cmdline->options()->search_path() -- not dirsearch.
1505 Dirsearch dirsearch;
1506
1507 // The file locking code wants to record a Task, but we haven't
1508 // started the workqueue yet. This is only for debugging purposes,
1509 // so we invent a fake value.
1510 const Task* task = reinterpret_cast<const Task*>(-1);
1511
1512 // We don't want this file to be opened in binary mode.
1513 Position_dependent_options posdep = cmdline->position_dependent_options();
1514 if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1515 posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1516 Input_file_argument input_argument(filename,
1517 Input_file_argument::INPUT_FILE_TYPE_FILE,
1518 "", false, posdep);
1519 Input_file input_file(&input_argument);
1520 int dummy = 0;
1521 if (!input_file.open(dirsearch, task, &dummy))
1522 return false;
1523
1524 std::string input_string;
1525 Lex::read_file(&input_file, &input_string);
1526
1527 Lex lex(input_string.c_str(), input_string.length(), first_token);
1528 lex.set_mode(lex_mode);
1529
1530 Parser_closure closure(filename,
1531 cmdline->position_dependent_options(),
1532 first_token == Lex::DYNAMIC_LIST,
1533 false,
1534 input_file.is_in_sysroot(),
1535 cmdline,
1536 script_options,
1537 &lex,
1538 false);
1539 if (yyparse(&closure) != 0)
1540 {
1541 input_file.file().unlock(task);
1542 return false;
1543 }
1544
1545 input_file.file().unlock(task);
1546
1547 gold_assert(!closure.saw_inputs());
1548
1549 return true;
1550 }
1551
1552 // FILENAME was found as an argument to --script (-T).
1553 // Read it as a script, and execute its contents immediately.
1554
1555 bool
1556 read_commandline_script(const char* filename, Command_line* cmdline)
1557 {
1558 return read_script_file(filename, cmdline, &cmdline->script_options(),
1559 PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1560 }
1561
1562 // FILENAME was found as an argument to --version-script. Read it as
1563 // a version script, and store its contents in
1564 // cmdline->script_options()->version_script_info().
1565
1566 bool
1567 read_version_script(const char* filename, Command_line* cmdline)
1568 {
1569 return read_script_file(filename, cmdline, &cmdline->script_options(),
1570 PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1571 }
1572
1573 // FILENAME was found as an argument to --dynamic-list. Read it as a
1574 // list of symbols, and store its contents in DYNAMIC_LIST.
1575
1576 bool
1577 read_dynamic_list(const char* filename, Command_line* cmdline,
1578 Script_options* dynamic_list)
1579 {
1580 return read_script_file(filename, cmdline, dynamic_list,
1581 PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1582 }
1583
1584 // Implement the --defsym option on the command line. Return true if
1585 // all is well.
1586
1587 bool
1588 Script_options::define_symbol(const char* definition)
1589 {
1590 Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1591 lex.set_mode(Lex::EXPRESSION);
1592
1593 // Dummy value.
1594 Position_dependent_options posdep_options;
1595
1596 Parser_closure closure("command line", posdep_options, true,
1597 false, false, NULL, this, &lex, false);
1598
1599 if (yyparse(&closure) != 0)
1600 return false;
1601
1602 gold_assert(!closure.saw_inputs());
1603
1604 return true;
1605 }
1606
1607 // Print the script to F for debugging.
1608
1609 void
1610 Script_options::print(FILE* f) const
1611 {
1612 fprintf(f, "%s: Dumping linker script\n", program_name);
1613
1614 if (!this->entry_.empty())
1615 fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1616
1617 for (Symbol_assignments::const_iterator p =
1618 this->symbol_assignments_.begin();
1619 p != this->symbol_assignments_.end();
1620 ++p)
1621 (*p)->print(f);
1622
1623 for (Assertions::const_iterator p = this->assertions_.begin();
1624 p != this->assertions_.end();
1625 ++p)
1626 (*p)->print(f);
1627
1628 this->script_sections_.print(f);
1629
1630 this->version_script_info_.print(f);
1631 }
1632
1633 // Manage mapping from keywords to the codes expected by the bison
1634 // parser. We construct one global object for each lex mode with
1635 // keywords.
1636
1637 class Keyword_to_parsecode
1638 {
1639 public:
1640 // The structure which maps keywords to parsecodes.
1641 struct Keyword_parsecode
1642 {
1643 // Keyword.
1644 const char* keyword;
1645 // Corresponding parsecode.
1646 int parsecode;
1647 };
1648
1649 Keyword_to_parsecode(const Keyword_parsecode* keywords,
1650 int keyword_count)
1651 : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1652 { }
1653
1654 // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1655 // keyword.
1656 int
1657 keyword_to_parsecode(const char* keyword, size_t len) const;
1658
1659 private:
1660 const Keyword_parsecode* keyword_parsecodes_;
1661 const int keyword_count_;
1662 };
1663
1664 // Mapping from keyword string to keyword parsecode. This array must
1665 // be kept in sorted order. Parsecodes are looked up using bsearch.
1666 // This array must correspond to the list of parsecodes in yyscript.y.
1667
1668 static const Keyword_to_parsecode::Keyword_parsecode
1669 script_keyword_parsecodes[] =
1670 {
1671 { "ABSOLUTE", ABSOLUTE },
1672 { "ADDR", ADDR },
1673 { "ALIGN", ALIGN_K },
1674 { "ALIGNOF", ALIGNOF },
1675 { "ASSERT", ASSERT_K },
1676 { "AS_NEEDED", AS_NEEDED },
1677 { "AT", AT },
1678 { "BIND", BIND },
1679 { "BLOCK", BLOCK },
1680 { "BYTE", BYTE },
1681 { "CONSTANT", CONSTANT },
1682 { "CONSTRUCTORS", CONSTRUCTORS },
1683 { "COPY", COPY },
1684 { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1685 { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1686 { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1687 { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1688 { "DEFINED", DEFINED },
1689 { "DSECT", DSECT },
1690 { "ENTRY", ENTRY },
1691 { "EXCLUDE_FILE", EXCLUDE_FILE },
1692 { "EXTERN", EXTERN },
1693 { "FILL", FILL },
1694 { "FLOAT", FLOAT },
1695 { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1696 { "GROUP", GROUP },
1697 { "HLL", HLL },
1698 { "INCLUDE", INCLUDE },
1699 { "INFO", INFO },
1700 { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1701 { "INPUT", INPUT },
1702 { "KEEP", KEEP },
1703 { "LENGTH", LENGTH },
1704 { "LOADADDR", LOADADDR },
1705 { "LONG", LONG },
1706 { "MAP", MAP },
1707 { "MAX", MAX_K },
1708 { "MEMORY", MEMORY },
1709 { "MIN", MIN_K },
1710 { "NEXT", NEXT },
1711 { "NOCROSSREFS", NOCROSSREFS },
1712 { "NOFLOAT", NOFLOAT },
1713 { "NOLOAD", NOLOAD },
1714 { "ONLY_IF_RO", ONLY_IF_RO },
1715 { "ONLY_IF_RW", ONLY_IF_RW },
1716 { "OPTION", OPTION },
1717 { "ORIGIN", ORIGIN },
1718 { "OUTPUT", OUTPUT },
1719 { "OUTPUT_ARCH", OUTPUT_ARCH },
1720 { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1721 { "OVERLAY", OVERLAY },
1722 { "PHDRS", PHDRS },
1723 { "PROVIDE", PROVIDE },
1724 { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1725 { "QUAD", QUAD },
1726 { "SEARCH_DIR", SEARCH_DIR },
1727 { "SECTIONS", SECTIONS },
1728 { "SEGMENT_START", SEGMENT_START },
1729 { "SHORT", SHORT },
1730 { "SIZEOF", SIZEOF },
1731 { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1732 { "SORT", SORT_BY_NAME },
1733 { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1734 { "SORT_BY_NAME", SORT_BY_NAME },
1735 { "SPECIAL", SPECIAL },
1736 { "SQUAD", SQUAD },
1737 { "STARTUP", STARTUP },
1738 { "SUBALIGN", SUBALIGN },
1739 { "SYSLIB", SYSLIB },
1740 { "TARGET", TARGET_K },
1741 { "TRUNCATE", TRUNCATE },
1742 { "VERSION", VERSIONK },
1743 { "global", GLOBAL },
1744 { "l", LENGTH },
1745 { "len", LENGTH },
1746 { "local", LOCAL },
1747 { "o", ORIGIN },
1748 { "org", ORIGIN },
1749 { "sizeof_headers", SIZEOF_HEADERS },
1750 };
1751
1752 static const Keyword_to_parsecode
1753 script_keywords(&script_keyword_parsecodes[0],
1754 (sizeof(script_keyword_parsecodes)
1755 / sizeof(script_keyword_parsecodes[0])));
1756
1757 static const Keyword_to_parsecode::Keyword_parsecode
1758 version_script_keyword_parsecodes[] =
1759 {
1760 { "extern", EXTERN },
1761 { "global", GLOBAL },
1762 { "local", LOCAL },
1763 };
1764
1765 static const Keyword_to_parsecode
1766 version_script_keywords(&version_script_keyword_parsecodes[0],
1767 (sizeof(version_script_keyword_parsecodes)
1768 / sizeof(version_script_keyword_parsecodes[0])));
1769
1770 static const Keyword_to_parsecode::Keyword_parsecode
1771 dynamic_list_keyword_parsecodes[] =
1772 {
1773 { "extern", EXTERN },
1774 };
1775
1776 static const Keyword_to_parsecode
1777 dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1778 (sizeof(dynamic_list_keyword_parsecodes)
1779 / sizeof(dynamic_list_keyword_parsecodes[0])));
1780
1781
1782
1783 // Comparison function passed to bsearch.
1784
1785 extern "C"
1786 {
1787
1788 struct Ktt_key
1789 {
1790 const char* str;
1791 size_t len;
1792 };
1793
1794 static int
1795 ktt_compare(const void* keyv, const void* kttv)
1796 {
1797 const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1798 const Keyword_to_parsecode::Keyword_parsecode* ktt =
1799 static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1800 int i = strncmp(key->str, ktt->keyword, key->len);
1801 if (i != 0)
1802 return i;
1803 if (ktt->keyword[key->len] != '\0')
1804 return -1;
1805 return 0;
1806 }
1807
1808 } // End extern "C".
1809
1810 int
1811 Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1812 size_t len) const
1813 {
1814 Ktt_key key;
1815 key.str = keyword;
1816 key.len = len;
1817 void* kttv = bsearch(&key,
1818 this->keyword_parsecodes_,
1819 this->keyword_count_,
1820 sizeof(this->keyword_parsecodes_[0]),
1821 ktt_compare);
1822 if (kttv == NULL)
1823 return 0;
1824 Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1825 return ktt->parsecode;
1826 }
1827
1828 // The following structs are used within the VersionInfo class as well
1829 // as in the bison helper functions. They store the information
1830 // parsed from the version script.
1831
1832 // A single version expression.
1833 // For example, pattern="std::map*" and language="C++".
1834 struct Version_expression
1835 {
1836 Version_expression(const std::string& a_pattern,
1837 Version_script_info::Language a_language,
1838 bool a_exact_match)
1839 : pattern(a_pattern), language(a_language), exact_match(a_exact_match),
1840 was_matched_by_symbol(false)
1841 { }
1842
1843 std::string pattern;
1844 Version_script_info::Language language;
1845 // If false, we use glob() to match pattern. If true, we use strcmp().
1846 bool exact_match;
1847 // True if --no-undefined-version is in effect and we found this
1848 // version in get_symbol_version. We use mutable because this
1849 // struct is generally not modifiable after it has been created.
1850 mutable bool was_matched_by_symbol;
1851 };
1852
1853 // A list of expressions.
1854 struct Version_expression_list
1855 {
1856 std::vector<struct Version_expression> expressions;
1857 };
1858
1859 // A list of which versions upon which another version depends.
1860 // Strings should be from the Stringpool.
1861 struct Version_dependency_list
1862 {
1863 std::vector<std::string> dependencies;
1864 };
1865
1866 // The total definition of a version. It includes the tag for the
1867 // version, its global and local expressions, and any dependencies.
1868 struct Version_tree
1869 {
1870 Version_tree()
1871 : tag(), global(NULL), local(NULL), dependencies(NULL)
1872 { }
1873
1874 std::string tag;
1875 const struct Version_expression_list* global;
1876 const struct Version_expression_list* local;
1877 const struct Version_dependency_list* dependencies;
1878 };
1879
1880 // Helper class that calls cplus_demangle when needed and takes care of freeing
1881 // the result.
1882
1883 class Lazy_demangler
1884 {
1885 public:
1886 Lazy_demangler(const char* symbol, int options)
1887 : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1888 { }
1889
1890 ~Lazy_demangler()
1891 { free(this->demangled_); }
1892
1893 // Return the demangled name. The actual demangling happens on the first call,
1894 // and the result is later cached.
1895 inline char*
1896 get();
1897
1898 private:
1899 // The symbol to demangle.
1900 const char* symbol_;
1901 // Option flags to pass to cplus_demagle.
1902 const int options_;
1903 // The cached demangled value, or NULL if demangling didn't happen yet or
1904 // failed.
1905 char* demangled_;
1906 // Whether we already called cplus_demangle
1907 bool did_demangle_;
1908 };
1909
1910 // Return the demangled name. The actual demangling happens on the first call,
1911 // and the result is later cached. Returns NULL if the symbol cannot be
1912 // demangled.
1913
1914 inline char*
1915 Lazy_demangler::get()
1916 {
1917 if (!this->did_demangle_)
1918 {
1919 this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1920 this->did_demangle_ = true;
1921 }
1922 return this->demangled_;
1923 }
1924
1925 // Class Version_script_info.
1926
1927 Version_script_info::Version_script_info()
1928 : dependency_lists_(), expression_lists_(), version_trees_(), globs_(),
1929 default_version_(NULL), default_is_global_(false), is_finalized_(false)
1930 {
1931 for (int i = 0; i < LANGUAGE_COUNT; ++i)
1932 this->exact_[i] = NULL;
1933 }
1934
1935 Version_script_info::~Version_script_info()
1936 {
1937 }
1938
1939 // Forget all the known version script information.
1940
1941 void
1942 Version_script_info::clear()
1943 {
1944 for (size_t k = 0; k < this->dependency_lists_.size(); ++k)
1945 delete this->dependency_lists_[k];
1946 this->dependency_lists_.clear();
1947 for (size_t k = 0; k < this->version_trees_.size(); ++k)
1948 delete this->version_trees_[k];
1949 this->version_trees_.clear();
1950 for (size_t k = 0; k < this->expression_lists_.size(); ++k)
1951 delete this->expression_lists_[k];
1952 this->expression_lists_.clear();
1953 }
1954
1955 // Finalize the version script information.
1956
1957 void
1958 Version_script_info::finalize()
1959 {
1960 if (!this->is_finalized_)
1961 {
1962 this->build_lookup_tables();
1963 this->is_finalized_ = true;
1964 }
1965 }
1966
1967 // Return all the versions.
1968
1969 std::vector<std::string>
1970 Version_script_info::get_versions() const
1971 {
1972 std::vector<std::string> ret;
1973 for (size_t j = 0; j < this->version_trees_.size(); ++j)
1974 if (!this->version_trees_[j]->tag.empty())
1975 ret.push_back(this->version_trees_[j]->tag);
1976 return ret;
1977 }
1978
1979 // Return the dependencies of VERSION.
1980
1981 std::vector<std::string>
1982 Version_script_info::get_dependencies(const char* version) const
1983 {
1984 std::vector<std::string> ret;
1985 for (size_t j = 0; j < this->version_trees_.size(); ++j)
1986 if (this->version_trees_[j]->tag == version)
1987 {
1988 const struct Version_dependency_list* deps =
1989 this->version_trees_[j]->dependencies;
1990 if (deps != NULL)
1991 for (size_t k = 0; k < deps->dependencies.size(); ++k)
1992 ret.push_back(deps->dependencies[k]);
1993 return ret;
1994 }
1995 return ret;
1996 }
1997
1998 // A version script essentially maps a symbol name to a version tag
1999 // and an indication of whether symbol is global or local within that
2000 // version tag. Each symbol maps to at most one version tag.
2001 // Unfortunately, in practice, version scripts are ambiguous, and list
2002 // symbols multiple times. Thus, we have to document the matching
2003 // process.
2004
2005 // This is a description of what the GNU linker does as of 2010-01-11.
2006 // It walks through the version tags in the order in which they appear
2007 // in the version script. For each tag, it first walks through the
2008 // global patterns for that tag, then the local patterns. When
2009 // looking at a single pattern, it first applies any language specific
2010 // demangling as specified for the pattern, and then matches the
2011 // resulting symbol name to the pattern. If it finds an exact match
2012 // for a literal pattern (a pattern enclosed in quotes or with no
2013 // wildcard characters), then that is the match that it uses. If
2014 // finds a match with a wildcard pattern, then it saves it and
2015 // continues searching. Wildcard patterns that are exactly "*" are
2016 // saved separately.
2017
2018 // If no exact match with a literal pattern is ever found, then if a
2019 // wildcard match with a global pattern was found it is used,
2020 // otherwise if a wildcard match with a local pattern was found it is
2021 // used.
2022
2023 // This is the result:
2024 // * If there is an exact match, then we use the first tag in the
2025 // version script where it matches.
2026 // + If the exact match in that tag is global, it is used.
2027 // + Otherwise the exact match in that tag is local, and is used.
2028 // * Otherwise, if there is any match with a global wildcard pattern:
2029 // + If there is any match with a wildcard pattern which is not
2030 // "*", then we use the tag in which the *last* such pattern
2031 // appears.
2032 // + Otherwise, we matched "*". If there is no match with a local
2033 // wildcard pattern which is not "*", then we use the *last*
2034 // match with a global "*". Otherwise, continue.
2035 // * Otherwise, if there is any match with a local wildcard pattern:
2036 // + If there is any match with a wildcard pattern which is not
2037 // "*", then we use the tag in which the *last* such pattern
2038 // appears.
2039 // + Otherwise, we matched "*", and we use the tag in which the
2040 // *last* such match occurred.
2041
2042 // There is an additional wrinkle. When the GNU linker finds a symbol
2043 // with a version defined in an object file due to a .symver
2044 // directive, it looks up that symbol name in that version tag. If it
2045 // finds it, it matches the symbol name against the patterns for that
2046 // version. If there is no match with a global pattern, but there is
2047 // a match with a local pattern, then the GNU linker marks the symbol
2048 // as local.
2049
2050 // We want gold to be generally compatible, but we also want gold to
2051 // be fast. These are the rules that gold implements:
2052 // * If there is an exact match for the mangled name, we use it.
2053 // + If there is more than one exact match, we give a warning, and
2054 // we use the first tag in the script which matches.
2055 // + If a symbol has an exact match as both global and local for
2056 // the same version tag, we give an error.
2057 // * Otherwise, we look for an extern C++ or an extern Java exact
2058 // match. If we find an exact match, we use it.
2059 // + If there is more than one exact match, we give a warning, and
2060 // we use the first tag in the script which matches.
2061 // + If a symbol has an exact match as both global and local for
2062 // the same version tag, we give an error.
2063 // * Otherwise, we look through the wildcard patterns, ignoring "*"
2064 // patterns. We look through the version tags in reverse order.
2065 // For each version tag, we look through the global patterns and
2066 // then the local patterns. We use the first match we find (i.e.,
2067 // the last matching version tag in the file).
2068 // * Otherwise, we use the "*" pattern if there is one. We give an
2069 // error if there are multiple "*" patterns.
2070
2071 // At least for now, gold does not look up the version tag for a
2072 // symbol version found in an object file to see if it should be
2073 // forced local. There are other ways to force a symbol to be local,
2074 // and I don't understand why this one is useful.
2075
2076 // Build a set of fast lookup tables for a version script.
2077
2078 void
2079 Version_script_info::build_lookup_tables()
2080 {
2081 size_t size = this->version_trees_.size();
2082 for (size_t j = 0; j < size; ++j)
2083 {
2084 const Version_tree* v = this->version_trees_[j];
2085 this->build_expression_list_lookup(v->local, v, false);
2086 this->build_expression_list_lookup(v->global, v, true);
2087 }
2088 }
2089
2090 // If a pattern has backlashes but no unquoted wildcard characters,
2091 // then we apply backslash unquoting and look for an exact match.
2092 // Otherwise we treat it as a wildcard pattern. This function returns
2093 // true for a wildcard pattern. Otherwise, it does backslash
2094 // unquoting on *PATTERN and returns false. If this returns true,
2095 // *PATTERN may have been partially unquoted.
2096
2097 bool
2098 Version_script_info::unquote(std::string* pattern) const
2099 {
2100 bool saw_backslash = false;
2101 size_t len = pattern->length();
2102 size_t j = 0;
2103 for (size_t i = 0; i < len; ++i)
2104 {
2105 if (saw_backslash)
2106 saw_backslash = false;
2107 else
2108 {
2109 switch ((*pattern)[i])
2110 {
2111 case '?': case '[': case '*':
2112 return true;
2113 case '\\':
2114 saw_backslash = true;
2115 continue;
2116 default:
2117 break;
2118 }
2119 }
2120
2121 if (i != j)
2122 (*pattern)[j] = (*pattern)[i];
2123 ++j;
2124 }
2125 return false;
2126 }
2127
2128 // Add an exact match for MATCH to *PE. The result of the match is
2129 // V/IS_GLOBAL.
2130
2131 void
2132 Version_script_info::add_exact_match(const std::string& match,
2133 const Version_tree* v, bool is_global,
2134 const Version_expression* ve,
2135 Exact* pe)
2136 {
2137 std::pair<Exact::iterator, bool> ins =
2138 pe->insert(std::make_pair(match, Version_tree_match(v, is_global, ve)));
2139 if (ins.second)
2140 {
2141 // This is the first time we have seen this match.
2142 return;
2143 }
2144
2145 Version_tree_match& vtm(ins.first->second);
2146 if (vtm.real->tag != v->tag)
2147 {
2148 // This is an ambiguous match. We still return the
2149 // first version that we found in the script, but we
2150 // record the new version to issue a warning if we
2151 // wind up looking up this symbol.
2152 if (vtm.ambiguous == NULL)
2153 vtm.ambiguous = v;
2154 }
2155 else if (is_global != vtm.is_global)
2156 {
2157 // We have a match for both the global and local entries for a
2158 // version tag. That's got to be wrong.
2159 gold_error(_("'%s' appears as both a global and a local symbol "
2160 "for version '%s' in script"),
2161 match.c_str(), v->tag.c_str());
2162 }
2163 }
2164
2165 // Build fast lookup information for EXPLIST and store it in LOOKUP.
2166 // All matches go to V, and IS_GLOBAL is true if they are global
2167 // matches.
2168
2169 void
2170 Version_script_info::build_expression_list_lookup(
2171 const Version_expression_list* explist,
2172 const Version_tree* v,
2173 bool is_global)
2174 {
2175 if (explist == NULL)
2176 return;
2177 size_t size = explist->expressions.size();
2178 for (size_t i = 0; i < size; ++i)
2179 {
2180 const Version_expression& exp(explist->expressions[i]);
2181
2182 if (exp.pattern.length() == 1 && exp.pattern[0] == '*')
2183 {
2184 if (this->default_version_ != NULL
2185 && this->default_version_->tag != v->tag)
2186 gold_warning(_("wildcard match appears in both version '%s' "
2187 "and '%s' in script"),
2188 this->default_version_->tag.c_str(), v->tag.c_str());
2189 else if (this->default_version_ != NULL
2190 && this->default_is_global_ != is_global)
2191 gold_error(_("wildcard match appears as both global and local "
2192 "in version '%s' in script"),
2193 v->tag.c_str());
2194 this->default_version_ = v;
2195 this->default_is_global_ = is_global;
2196 continue;
2197 }
2198
2199 std::string pattern = exp.pattern;
2200 if (!exp.exact_match)
2201 {
2202 if (this->unquote(&pattern))
2203 {
2204 this->globs_.push_back(Glob(&exp, v, is_global));
2205 continue;
2206 }
2207 }
2208
2209 if (this->exact_[exp.language] == NULL)
2210 this->exact_[exp.language] = new Exact();
2211 this->add_exact_match(pattern, v, is_global, &exp,
2212 this->exact_[exp.language]);
2213 }
2214 }
2215
2216 // Return the name to match given a name, a language code, and two
2217 // lazy demanglers.
2218
2219 const char*
2220 Version_script_info::get_name_to_match(const char* name,
2221 int language,
2222 Lazy_demangler* cpp_demangler,
2223 Lazy_demangler* java_demangler) const
2224 {
2225 switch (language)
2226 {
2227 case LANGUAGE_C:
2228 return name;
2229 case LANGUAGE_CXX:
2230 return cpp_demangler->get();
2231 case LANGUAGE_JAVA:
2232 return java_demangler->get();
2233 default:
2234 gold_unreachable();
2235 }
2236 }
2237
2238 // Look up SYMBOL_NAME in the list of versions. Return true if the
2239 // symbol is found, false if not. If the symbol is found, then if
2240 // PVERSION is not NULL, set *PVERSION to the version tag, and if
2241 // P_IS_GLOBAL is not NULL, set *P_IS_GLOBAL according to whether the
2242 // symbol is global or not.
2243
2244 bool
2245 Version_script_info::get_symbol_version(const char* symbol_name,
2246 std::string* pversion,
2247 bool* p_is_global) const
2248 {
2249 Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
2250 Lazy_demangler java_demangled_name(symbol_name,
2251 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
2252
2253 gold_assert(this->is_finalized_);
2254 for (int i = 0; i < LANGUAGE_COUNT; ++i)
2255 {
2256 Exact* exact = this->exact_[i];
2257 if (exact == NULL)
2258 continue;
2259
2260 const char* name_to_match = this->get_name_to_match(symbol_name, i,
2261 &cpp_demangled_name,
2262 &java_demangled_name);
2263 if (name_to_match == NULL)
2264 {
2265 // If the name can not be demangled, the GNU linker goes
2266 // ahead and tries to match it anyhow. That does not
2267 // make sense to me and I have not implemented it.
2268 continue;
2269 }
2270
2271 Exact::const_iterator pe = exact->find(name_to_match);
2272 if (pe != exact->end())
2273 {
2274 const Version_tree_match& vtm(pe->second);
2275 if (vtm.ambiguous != NULL)
2276 gold_warning(_("using '%s' as version for '%s' which is also "
2277 "named in version '%s' in script"),
2278 vtm.real->tag.c_str(), name_to_match,
2279 vtm.ambiguous->tag.c_str());
2280
2281 if (pversion != NULL)
2282 *pversion = vtm.real->tag;
2283 if (p_is_global != NULL)
2284 *p_is_global = vtm.is_global;
2285
2286 // If we are using --no-undefined-version, and this is a
2287 // global symbol, we have to record that we have found this
2288 // symbol, so that we don't warn about it. We have to do
2289 // this now, because otherwise we have no way to get from a
2290 // non-C language back to the demangled name that we
2291 // matched.
2292 if (p_is_global != NULL && vtm.is_global)
2293 vtm.expression->was_matched_by_symbol = true;
2294
2295 return true;
2296 }
2297 }
2298
2299 // Look through the glob patterns in reverse order.
2300
2301 for (Globs::const_reverse_iterator p = this->globs_.rbegin();
2302 p != this->globs_.rend();
2303 ++p)
2304 {
2305 int language = p->expression->language;
2306 const char* name_to_match = this->get_name_to_match(symbol_name,
2307 language,
2308 &cpp_demangled_name,
2309 &java_demangled_name);
2310 if (name_to_match == NULL)
2311 continue;
2312
2313 if (fnmatch(p->expression->pattern.c_str(), name_to_match,
2314 FNM_NOESCAPE) == 0)
2315 {
2316 if (pversion != NULL)
2317 *pversion = p->version->tag;
2318 if (p_is_global != NULL)
2319 *p_is_global = p->is_global;
2320 return true;
2321 }
2322 }
2323
2324 // Finally, there may be a wildcard.
2325 if (this->default_version_ != NULL)
2326 {
2327 if (pversion != NULL)
2328 *pversion = this->default_version_->tag;
2329 if (p_is_global != NULL)
2330 *p_is_global = this->default_is_global_;
2331 return true;
2332 }
2333
2334 return false;
2335 }
2336
2337 // Give an error if any exact symbol names (not wildcards) appear in a
2338 // version script, but there is no such symbol.
2339
2340 void
2341 Version_script_info::check_unmatched_names(const Symbol_table* symtab) const
2342 {
2343 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2344 {
2345 const Version_tree* vt = this->version_trees_[i];
2346 if (vt->global == NULL)
2347 continue;
2348 for (size_t j = 0; j < vt->global->expressions.size(); ++j)
2349 {
2350 const Version_expression& expression(vt->global->expressions[j]);
2351
2352 // Ignore cases where we used the version because we saw a
2353 // symbol that we looked up. Note that
2354 // WAS_MATCHED_BY_SYMBOL will be true even if the symbol was
2355 // not a definition. That's OK as in that case we most
2356 // likely gave an undefined symbol error anyhow.
2357 if (expression.was_matched_by_symbol)
2358 continue;
2359
2360 // Just ignore names which are in languages other than C.
2361 // We have no way to look them up in the symbol table.
2362 if (expression.language != LANGUAGE_C)
2363 continue;
2364
2365 // Remove backslash quoting, and ignore wildcard patterns.
2366 std::string pattern = expression.pattern;
2367 if (!expression.exact_match)
2368 {
2369 if (this->unquote(&pattern))
2370 continue;
2371 }
2372
2373 if (symtab->lookup(pattern.c_str(), vt->tag.c_str()) == NULL)
2374 gold_error(_("version script assignment of %s to symbol %s "
2375 "failed: symbol not defined"),
2376 vt->tag.c_str(), pattern.c_str());
2377 }
2378 }
2379 }
2380
2381 struct Version_dependency_list*
2382 Version_script_info::allocate_dependency_list()
2383 {
2384 dependency_lists_.push_back(new Version_dependency_list);
2385 return dependency_lists_.back();
2386 }
2387
2388 struct Version_expression_list*
2389 Version_script_info::allocate_expression_list()
2390 {
2391 expression_lists_.push_back(new Version_expression_list);
2392 return expression_lists_.back();
2393 }
2394
2395 struct Version_tree*
2396 Version_script_info::allocate_version_tree()
2397 {
2398 version_trees_.push_back(new Version_tree);
2399 return version_trees_.back();
2400 }
2401
2402 // Print for debugging.
2403
2404 void
2405 Version_script_info::print(FILE* f) const
2406 {
2407 if (this->empty())
2408 return;
2409
2410 fprintf(f, "VERSION {");
2411
2412 for (size_t i = 0; i < this->version_trees_.size(); ++i)
2413 {
2414 const Version_tree* vt = this->version_trees_[i];
2415
2416 if (vt->tag.empty())
2417 fprintf(f, " {\n");
2418 else
2419 fprintf(f, " %s {\n", vt->tag.c_str());
2420
2421 if (vt->global != NULL)
2422 {
2423 fprintf(f, " global :\n");
2424 this->print_expression_list(f, vt->global);
2425 }
2426
2427 if (vt->local != NULL)
2428 {
2429 fprintf(f, " local :\n");
2430 this->print_expression_list(f, vt->local);
2431 }
2432
2433 fprintf(f, " }");
2434 if (vt->dependencies != NULL)
2435 {
2436 const Version_dependency_list* deps = vt->dependencies;
2437 for (size_t j = 0; j < deps->dependencies.size(); ++j)
2438 {
2439 if (j < deps->dependencies.size() - 1)
2440 fprintf(f, "\n");
2441 fprintf(f, " %s", deps->dependencies[j].c_str());
2442 }
2443 }
2444 fprintf(f, ";\n");
2445 }
2446
2447 fprintf(f, "}\n");
2448 }
2449
2450 void
2451 Version_script_info::print_expression_list(
2452 FILE* f,
2453 const Version_expression_list* vel) const
2454 {
2455 Version_script_info::Language current_language = LANGUAGE_C;
2456 for (size_t i = 0; i < vel->expressions.size(); ++i)
2457 {
2458 const Version_expression& ve(vel->expressions[i]);
2459
2460 if (ve.language != current_language)
2461 {
2462 if (current_language != LANGUAGE_C)
2463 fprintf(f, " }\n");
2464 switch (ve.language)
2465 {
2466 case LANGUAGE_C:
2467 break;
2468 case LANGUAGE_CXX:
2469 fprintf(f, " extern \"C++\" {\n");
2470 break;
2471 case LANGUAGE_JAVA:
2472 fprintf(f, " extern \"Java\" {\n");
2473 break;
2474 default:
2475 gold_unreachable();
2476 }
2477 current_language = ve.language;
2478 }
2479
2480 fprintf(f, " ");
2481 if (current_language != LANGUAGE_C)
2482 fprintf(f, " ");
2483
2484 if (ve.exact_match)
2485 fprintf(f, "\"");
2486 fprintf(f, "%s", ve.pattern.c_str());
2487 if (ve.exact_match)
2488 fprintf(f, "\"");
2489
2490 fprintf(f, "\n");
2491 }
2492
2493 if (current_language != LANGUAGE_C)
2494 fprintf(f, " }\n");
2495 }
2496
2497 } // End namespace gold.
2498
2499 // The remaining functions are extern "C", so it's clearer to not put
2500 // them in namespace gold.
2501
2502 using namespace gold;
2503
2504 // This function is called by the bison parser to return the next
2505 // token.
2506
2507 extern "C" int
2508 yylex(YYSTYPE* lvalp, void* closurev)
2509 {
2510 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2511 const Token* token = closure->next_token();
2512 switch (token->classification())
2513 {
2514 default:
2515 gold_unreachable();
2516
2517 case Token::TOKEN_INVALID:
2518 yyerror(closurev, "invalid character");
2519 return 0;
2520
2521 case Token::TOKEN_EOF:
2522 return 0;
2523
2524 case Token::TOKEN_STRING:
2525 {
2526 // This is either a keyword or a STRING.
2527 size_t len;
2528 const char* str = token->string_value(&len);
2529 int parsecode = 0;
2530 switch (closure->lex_mode())
2531 {
2532 case Lex::LINKER_SCRIPT:
2533 parsecode = script_keywords.keyword_to_parsecode(str, len);
2534 break;
2535 case Lex::VERSION_SCRIPT:
2536 parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2537 break;
2538 case Lex::DYNAMIC_LIST:
2539 parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2540 break;
2541 default:
2542 break;
2543 }
2544 if (parsecode != 0)
2545 return parsecode;
2546 lvalp->string.value = str;
2547 lvalp->string.length = len;
2548 return STRING;
2549 }
2550
2551 case Token::TOKEN_QUOTED_STRING:
2552 lvalp->string.value = token->string_value(&lvalp->string.length);
2553 return QUOTED_STRING;
2554
2555 case Token::TOKEN_OPERATOR:
2556 return token->operator_value();
2557
2558 case Token::TOKEN_INTEGER:
2559 lvalp->integer = token->integer_value();
2560 return INTEGER;
2561 }
2562 }
2563
2564 // This function is called by the bison parser to report an error.
2565
2566 extern "C" void
2567 yyerror(void* closurev, const char* message)
2568 {
2569 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2570 gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2571 closure->charpos(), message);
2572 }
2573
2574 // Called by the bison parser to add an external symbol to the link.
2575
2576 extern "C" void
2577 script_add_extern(void* closurev, const char* name, size_t length)
2578 {
2579 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2580 closure->script_options()->add_symbol_reference(name, length);
2581 }
2582
2583 // Called by the bison parser to add a file to the link.
2584
2585 extern "C" void
2586 script_add_file(void* closurev, const char* name, size_t length)
2587 {
2588 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2589
2590 // If this is an absolute path, and we found the script in the
2591 // sysroot, then we want to prepend the sysroot to the file name.
2592 // For example, this is how we handle a cross link to the x86_64
2593 // libc.so, which refers to /lib/libc.so.6.
2594 std::string name_string(name, length);
2595 const char* extra_search_path = ".";
2596 std::string script_directory;
2597 if (IS_ABSOLUTE_PATH(name_string.c_str()))
2598 {
2599 if (closure->is_in_sysroot())
2600 {
2601 const std::string& sysroot(parameters->options().sysroot());
2602 gold_assert(!sysroot.empty());
2603 name_string = sysroot + name_string;
2604 }
2605 }
2606 else
2607 {
2608 // In addition to checking the normal library search path, we
2609 // also want to check in the script-directory.
2610 const char* slash = strrchr(closure->filename(), '/');
2611 if (slash != NULL)
2612 {
2613 script_directory.assign(closure->filename(),
2614 slash - closure->filename() + 1);
2615 extra_search_path = script_directory.c_str();
2616 }
2617 }
2618
2619 Input_file_argument file(name_string.c_str(),
2620 Input_file_argument::INPUT_FILE_TYPE_FILE,
2621 extra_search_path, false,
2622 closure->position_dependent_options());
2623 closure->inputs()->add_file(file);
2624 }
2625
2626 // Called by the bison parser to add a library to the link.
2627
2628 extern "C" void
2629 script_add_library(void* closurev, const char* name, size_t length)
2630 {
2631 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2632 std::string name_string(name, length);
2633
2634 if (name_string[0] != 'l')
2635 gold_error(_("library name must be prefixed with -l"));
2636
2637 Input_file_argument file(name_string.c_str() + 1,
2638 Input_file_argument::INPUT_FILE_TYPE_LIBRARY,
2639 "", false,
2640 closure->position_dependent_options());
2641 closure->inputs()->add_file(file);
2642 }
2643
2644 // Called by the bison parser to start a group. If we are already in
2645 // a group, that means that this script was invoked within a
2646 // --start-group --end-group sequence on the command line, or that
2647 // this script was found in a GROUP of another script. In that case,
2648 // we simply continue the existing group, rather than starting a new
2649 // one. It is possible to construct a case in which this will do
2650 // something other than what would happen if we did a recursive group,
2651 // but it's hard to imagine why the different behaviour would be
2652 // useful for a real program. Avoiding recursive groups is simpler
2653 // and more efficient.
2654
2655 extern "C" void
2656 script_start_group(void* closurev)
2657 {
2658 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2659 if (!closure->in_group())
2660 closure->inputs()->start_group();
2661 }
2662
2663 // Called by the bison parser at the end of a group.
2664
2665 extern "C" void
2666 script_end_group(void* closurev)
2667 {
2668 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2669 if (!closure->in_group())
2670 closure->inputs()->end_group();
2671 }
2672
2673 // Called by the bison parser to start an AS_NEEDED list.
2674
2675 extern "C" void
2676 script_start_as_needed(void* closurev)
2677 {
2678 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2679 closure->position_dependent_options().set_as_needed(true);
2680 }
2681
2682 // Called by the bison parser at the end of an AS_NEEDED list.
2683
2684 extern "C" void
2685 script_end_as_needed(void* closurev)
2686 {
2687 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2688 closure->position_dependent_options().set_as_needed(false);
2689 }
2690
2691 // Called by the bison parser to set the entry symbol.
2692
2693 extern "C" void
2694 script_set_entry(void* closurev, const char* entry, size_t length)
2695 {
2696 // We'll parse this exactly the same as --entry=ENTRY on the commandline
2697 // TODO(csilvers): FIXME -- call set_entry directly.
2698 std::string arg("--entry=");
2699 arg.append(entry, length);
2700 script_parse_option(closurev, arg.c_str(), arg.size());
2701 }
2702
2703 // Called by the bison parser to set whether to define common symbols.
2704
2705 extern "C" void
2706 script_set_common_allocation(void* closurev, int set)
2707 {
2708 const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2709 script_parse_option(closurev, arg, strlen(arg));
2710 }
2711
2712 // Called by the bison parser to refer to a symbol.
2713
2714 extern "C" Expression*
2715 script_symbol(void* closurev, const char* name, size_t length)
2716 {
2717 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2718 if (length != 1 || name[0] != '.')
2719 closure->script_options()->add_symbol_reference(name, length);
2720 return script_exp_string(name, length);
2721 }
2722
2723 // Called by the bison parser to define a symbol.
2724
2725 extern "C" void
2726 script_set_symbol(void* closurev, const char* name, size_t length,
2727 Expression* value, int providei, int hiddeni)
2728 {
2729 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2730 const bool provide = providei != 0;
2731 const bool hidden = hiddeni != 0;
2732 closure->script_options()->add_symbol_assignment(name, length,
2733 closure->parsing_defsym(),
2734 value, provide, hidden);
2735 closure->clear_skip_on_incompatible_target();
2736 }
2737
2738 // Called by the bison parser to add an assertion.
2739
2740 extern "C" void
2741 script_add_assertion(void* closurev, Expression* check, const char* message,
2742 size_t messagelen)
2743 {
2744 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2745 closure->script_options()->add_assertion(check, message, messagelen);
2746 closure->clear_skip_on_incompatible_target();
2747 }
2748
2749 // Called by the bison parser to parse an OPTION.
2750
2751 extern "C" void
2752 script_parse_option(void* closurev, const char* option, size_t length)
2753 {
2754 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2755 // We treat the option as a single command-line option, even if
2756 // it has internal whitespace.
2757 if (closure->command_line() == NULL)
2758 {
2759 // There are some options that we could handle here--e.g.,
2760 // -lLIBRARY. Should we bother?
2761 gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2762 " for scripts specified via -T/--script"),
2763 closure->filename(), closure->lineno(), closure->charpos());
2764 }
2765 else
2766 {
2767 bool past_a_double_dash_option = false;
2768 const char* mutable_option = strndup(option, length);
2769 gold_assert(mutable_option != NULL);
2770 closure->command_line()->process_one_option(1, &mutable_option, 0,
2771 &past_a_double_dash_option);
2772 // The General_options class will quite possibly store a pointer
2773 // into mutable_option, so we can't free it. In cases the class
2774 // does not store such a pointer, this is a memory leak. Alas. :(
2775 }
2776 closure->clear_skip_on_incompatible_target();
2777 }
2778
2779 // Called by the bison parser to handle OUTPUT_FORMAT. OUTPUT_FORMAT
2780 // takes either one or three arguments. In the three argument case,
2781 // the format depends on the endianness option, which we don't
2782 // currently support (FIXME). If we see an OUTPUT_FORMAT for the
2783 // wrong format, then we want to search for a new file. Returning 0
2784 // here will cause the parser to immediately abort.
2785
2786 extern "C" int
2787 script_check_output_format(void* closurev,
2788 const char* default_name, size_t default_length,
2789 const char*, size_t, const char*, size_t)
2790 {
2791 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2792 std::string name(default_name, default_length);
2793 Target* target = select_target_by_name(name.c_str());
2794 if (target == NULL || !parameters->is_compatible_target(target))
2795 {
2796 if (closure->skip_on_incompatible_target())
2797 {
2798 closure->set_found_incompatible_target();
2799 return 0;
2800 }
2801 // FIXME: Should we warn about the unknown target?
2802 }
2803 return 1;
2804 }
2805
2806 // Called by the bison parser to handle TARGET.
2807
2808 extern "C" void
2809 script_set_target(void* closurev, const char* target, size_t len)
2810 {
2811 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2812 std::string s(target, len);
2813 General_options::Object_format format_enum;
2814 format_enum = General_options::string_to_object_format(s.c_str());
2815 closure->position_dependent_options().set_format_enum(format_enum);
2816 }
2817
2818 // Called by the bison parser to handle SEARCH_DIR. This is handled
2819 // exactly like a -L option.
2820
2821 extern "C" void
2822 script_add_search_dir(void* closurev, const char* option, size_t length)
2823 {
2824 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2825 if (closure->command_line() == NULL)
2826 gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2827 " for scripts specified via -T/--script"),
2828 closure->filename(), closure->lineno(), closure->charpos());
2829 else if (!closure->command_line()->options().nostdlib())
2830 {
2831 std::string s = "-L" + std::string(option, length);
2832 script_parse_option(closurev, s.c_str(), s.size());
2833 }
2834 }
2835
2836 /* Called by the bison parser to push the lexer into expression
2837 mode. */
2838
2839 extern "C" void
2840 script_push_lex_into_expression_mode(void* closurev)
2841 {
2842 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2843 closure->push_lex_mode(Lex::EXPRESSION);
2844 }
2845
2846 /* Called by the bison parser to push the lexer into version
2847 mode. */
2848
2849 extern "C" void
2850 script_push_lex_into_version_mode(void* closurev)
2851 {
2852 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2853 if (closure->version_script()->is_finalized())
2854 gold_error(_("%s:%d:%d: invalid use of VERSION in input file"),
2855 closure->filename(), closure->lineno(), closure->charpos());
2856 closure->push_lex_mode(Lex::VERSION_SCRIPT);
2857 }
2858
2859 /* Called by the bison parser to pop the lexer mode. */
2860
2861 extern "C" void
2862 script_pop_lex_mode(void* closurev)
2863 {
2864 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2865 closure->pop_lex_mode();
2866 }
2867
2868 // Register an entire version node. For example:
2869 //
2870 // GLIBC_2.1 {
2871 // global: foo;
2872 // } GLIBC_2.0;
2873 //
2874 // - tag is "GLIBC_2.1"
2875 // - tree contains the information "global: foo"
2876 // - deps contains "GLIBC_2.0"
2877
2878 extern "C" void
2879 script_register_vers_node(void*,
2880 const char* tag,
2881 int taglen,
2882 struct Version_tree* tree,
2883 struct Version_dependency_list* deps)
2884 {
2885 gold_assert(tree != NULL);
2886 tree->dependencies = deps;
2887 if (tag != NULL)
2888 tree->tag = std::string(tag, taglen);
2889 }
2890
2891 // Add a dependencies to the list of existing dependencies, if any,
2892 // and return the expanded list.
2893
2894 extern "C" struct Version_dependency_list*
2895 script_add_vers_depend(void* closurev,
2896 struct Version_dependency_list* all_deps,
2897 const char* depend_to_add, int deplen)
2898 {
2899 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2900 if (all_deps == NULL)
2901 all_deps = closure->version_script()->allocate_dependency_list();
2902 all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2903 return all_deps;
2904 }
2905
2906 // Add a pattern expression to an existing list of expressions, if any.
2907
2908 extern "C" struct Version_expression_list*
2909 script_new_vers_pattern(void* closurev,
2910 struct Version_expression_list* expressions,
2911 const char* pattern, int patlen, int exact_match)
2912 {
2913 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2914 if (expressions == NULL)
2915 expressions = closure->version_script()->allocate_expression_list();
2916 expressions->expressions.push_back(
2917 Version_expression(std::string(pattern, patlen),
2918 closure->get_current_language(),
2919 static_cast<bool>(exact_match)));
2920 return expressions;
2921 }
2922
2923 // Attaches b to the end of a, and clears b. So a = a + b and b = {}.
2924
2925 extern "C" struct Version_expression_list*
2926 script_merge_expressions(struct Version_expression_list* a,
2927 struct Version_expression_list* b)
2928 {
2929 a->expressions.insert(a->expressions.end(),
2930 b->expressions.begin(), b->expressions.end());
2931 // We could delete b and remove it from expressions_lists_, but
2932 // that's a lot of work. This works just as well.
2933 b->expressions.clear();
2934 return a;
2935 }
2936
2937 // Combine the global and local expressions into a a Version_tree.
2938
2939 extern "C" struct Version_tree*
2940 script_new_vers_node(void* closurev,
2941 struct Version_expression_list* global,
2942 struct Version_expression_list* local)
2943 {
2944 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2945 Version_tree* tree = closure->version_script()->allocate_version_tree();
2946 tree->global = global;
2947 tree->local = local;
2948 return tree;
2949 }
2950
2951 // Handle a transition in language, such as at the
2952 // start or end of 'extern "C++"'
2953
2954 extern "C" void
2955 version_script_push_lang(void* closurev, const char* lang, int langlen)
2956 {
2957 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2958 std::string language(lang, langlen);
2959 Version_script_info::Language code;
2960 if (language.empty() || language == "C")
2961 code = Version_script_info::LANGUAGE_C;
2962 else if (language == "C++")
2963 code = Version_script_info::LANGUAGE_CXX;
2964 else if (language == "Java")
2965 code = Version_script_info::LANGUAGE_JAVA;
2966 else
2967 {
2968 char* buf = new char[langlen + 100];
2969 snprintf(buf, langlen + 100,
2970 _("unrecognized version script language '%s'"),
2971 language.c_str());
2972 yyerror(closurev, buf);
2973 delete[] buf;
2974 code = Version_script_info::LANGUAGE_C;
2975 }
2976 closure->push_language(code);
2977 }
2978
2979 extern "C" void
2980 version_script_pop_lang(void* closurev)
2981 {
2982 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2983 closure->pop_language();
2984 }
2985
2986 // Called by the bison parser to start a SECTIONS clause.
2987
2988 extern "C" void
2989 script_start_sections(void* closurev)
2990 {
2991 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2992 closure->script_options()->script_sections()->start_sections();
2993 closure->clear_skip_on_incompatible_target();
2994 }
2995
2996 // Called by the bison parser to finish a SECTIONS clause.
2997
2998 extern "C" void
2999 script_finish_sections(void* closurev)
3000 {
3001 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3002 closure->script_options()->script_sections()->finish_sections();
3003 }
3004
3005 // Start processing entries for an output section.
3006
3007 extern "C" void
3008 script_start_output_section(void* closurev, const char* name, size_t namelen,
3009 const struct Parser_output_section_header* header)
3010 {
3011 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3012 closure->script_options()->script_sections()->start_output_section(name,
3013 namelen,
3014 header);
3015 }
3016
3017 // Finish processing entries for an output section.
3018
3019 extern "C" void
3020 script_finish_output_section(void* closurev,
3021 const struct Parser_output_section_trailer* trail)
3022 {
3023 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3024 closure->script_options()->script_sections()->finish_output_section(trail);
3025 }
3026
3027 // Add a data item (e.g., "WORD (0)") to the current output section.
3028
3029 extern "C" void
3030 script_add_data(void* closurev, int data_token, Expression* val)
3031 {
3032 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3033 int size;
3034 bool is_signed = true;
3035 switch (data_token)
3036 {
3037 case QUAD:
3038 size = 8;
3039 is_signed = false;
3040 break;
3041 case SQUAD:
3042 size = 8;
3043 break;
3044 case LONG:
3045 size = 4;
3046 break;
3047 case SHORT:
3048 size = 2;
3049 break;
3050 case BYTE:
3051 size = 1;
3052 break;
3053 default:
3054 gold_unreachable();
3055 }
3056 closure->script_options()->script_sections()->add_data(size, is_signed, val);
3057 }
3058
3059 // Add a clause setting the fill value to the current output section.
3060
3061 extern "C" void
3062 script_add_fill(void* closurev, Expression* val)
3063 {
3064 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3065 closure->script_options()->script_sections()->add_fill(val);
3066 }
3067
3068 // Add a new input section specification to the current output
3069 // section.
3070
3071 extern "C" void
3072 script_add_input_section(void* closurev,
3073 const struct Input_section_spec* spec,
3074 int keepi)
3075 {
3076 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3077 bool keep = keepi != 0;
3078 closure->script_options()->script_sections()->add_input_section(spec, keep);
3079 }
3080
3081 // When we see DATA_SEGMENT_ALIGN we record that following output
3082 // sections may be relro.
3083
3084 extern "C" void
3085 script_data_segment_align(void* closurev)
3086 {
3087 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3088 if (!closure->script_options()->saw_sections_clause())
3089 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3090 closure->filename(), closure->lineno(), closure->charpos());
3091 else
3092 closure->script_options()->script_sections()->data_segment_align();
3093 }
3094
3095 // When we see DATA_SEGMENT_RELRO_END we know that all output sections
3096 // since DATA_SEGMENT_ALIGN should be relro.
3097
3098 extern "C" void
3099 script_data_segment_relro_end(void* closurev)
3100 {
3101 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3102 if (!closure->script_options()->saw_sections_clause())
3103 gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
3104 closure->filename(), closure->lineno(), closure->charpos());
3105 else
3106 closure->script_options()->script_sections()->data_segment_relro_end();
3107 }
3108
3109 // Create a new list of string/sort pairs.
3110
3111 extern "C" String_sort_list_ptr
3112 script_new_string_sort_list(const struct Wildcard_section* string_sort)
3113 {
3114 return new String_sort_list(1, *string_sort);
3115 }
3116
3117 // Add an entry to a list of string/sort pairs. The way the parser
3118 // works permits us to simply modify the first parameter, rather than
3119 // copy the vector.
3120
3121 extern "C" String_sort_list_ptr
3122 script_string_sort_list_add(String_sort_list_ptr pv,
3123 const struct Wildcard_section* string_sort)
3124 {
3125 if (pv == NULL)
3126 return script_new_string_sort_list(string_sort);
3127 else
3128 {
3129 pv->push_back(*string_sort);
3130 return pv;
3131 }
3132 }
3133
3134 // Create a new list of strings.
3135
3136 extern "C" String_list_ptr
3137 script_new_string_list(const char* str, size_t len)
3138 {
3139 return new String_list(1, std::string(str, len));
3140 }
3141
3142 // Add an element to a list of strings. The way the parser works
3143 // permits us to simply modify the first parameter, rather than copy
3144 // the vector.
3145
3146 extern "C" String_list_ptr
3147 script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
3148 {
3149 if (pv == NULL)
3150 return script_new_string_list(str, len);
3151 else
3152 {
3153 pv->push_back(std::string(str, len));
3154 return pv;
3155 }
3156 }
3157
3158 // Concatenate two string lists. Either or both may be NULL. The way
3159 // the parser works permits us to modify the parameters, rather than
3160 // copy the vector.
3161
3162 extern "C" String_list_ptr
3163 script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
3164 {
3165 if (pv1 == NULL)
3166 return pv2;
3167 if (pv2 == NULL)
3168 return pv1;
3169 pv1->insert(pv1->end(), pv2->begin(), pv2->end());
3170 return pv1;
3171 }
3172
3173 // Add a new program header.
3174
3175 extern "C" void
3176 script_add_phdr(void* closurev, const char* name, size_t namelen,
3177 unsigned int type, const Phdr_info* info)
3178 {
3179 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3180 bool includes_filehdr = info->includes_filehdr != 0;
3181 bool includes_phdrs = info->includes_phdrs != 0;
3182 bool is_flags_valid = info->is_flags_valid != 0;
3183 Script_sections* ss = closure->script_options()->script_sections();
3184 ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
3185 is_flags_valid, info->flags, info->load_address);
3186 closure->clear_skip_on_incompatible_target();
3187 }
3188
3189 // Convert a program header string to a type.
3190
3191 #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
3192
3193 static struct
3194 {
3195 const char* name;
3196 size_t namelen;
3197 unsigned int val;
3198 } phdr_type_names[] =
3199 {
3200 PHDR_TYPE(PT_NULL),
3201 PHDR_TYPE(PT_LOAD),
3202 PHDR_TYPE(PT_DYNAMIC),
3203 PHDR_TYPE(PT_INTERP),
3204 PHDR_TYPE(PT_NOTE),
3205 PHDR_TYPE(PT_SHLIB),
3206 PHDR_TYPE(PT_PHDR),
3207 PHDR_TYPE(PT_TLS),
3208 PHDR_TYPE(PT_GNU_EH_FRAME),
3209 PHDR_TYPE(PT_GNU_STACK),
3210 PHDR_TYPE(PT_GNU_RELRO)
3211 };
3212
3213 extern "C" unsigned int
3214 script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
3215 {
3216 for (unsigned int i = 0;
3217 i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
3218 ++i)
3219 if (namelen == phdr_type_names[i].namelen
3220 && strncmp(name, phdr_type_names[i].name, namelen) == 0)
3221 return phdr_type_names[i].val;
3222 yyerror(closurev, _("unknown PHDR type (try integer)"));
3223 return elfcpp::PT_NULL;
3224 }
3225
3226 extern "C" void
3227 script_saw_segment_start_expression(void* closurev)
3228 {
3229 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3230 Script_sections* ss = closure->script_options()->script_sections();
3231 ss->set_saw_segment_start_expression(true);
3232 }
3233
3234 extern "C" void
3235 script_set_section_region(void* closurev, const char* name, size_t namelen,
3236 int set_vma)
3237 {
3238 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3239 if (!closure->script_options()->saw_sections_clause())
3240 {
3241 gold_error(_("%s:%d:%d: MEMORY region '%.*s' referred to outside of "
3242 "SECTIONS clause"),
3243 closure->filename(), closure->lineno(), closure->charpos(),
3244 static_cast<int>(namelen), name);
3245 return;
3246 }
3247
3248 Script_sections* ss = closure->script_options()->script_sections();
3249 Memory_region* mr = ss->find_memory_region(name, namelen);
3250 if (mr == NULL)
3251 {
3252 gold_error(_("%s:%d:%d: MEMORY region '%.*s' not declared"),
3253 closure->filename(), closure->lineno(), closure->charpos(),
3254 static_cast<int>(namelen), name);
3255 return;
3256 }
3257
3258 ss->set_memory_region(mr, set_vma);
3259 }
3260
3261 extern "C" void
3262 script_add_memory(void* closurev, const char* name, size_t namelen,
3263 unsigned int attrs, Expression* origin, Expression* length)
3264 {
3265 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3266 Script_sections* ss = closure->script_options()->script_sections();
3267 ss->add_memory_region(name, namelen, attrs, origin, length);
3268 }
3269
3270 extern "C" unsigned int
3271 script_parse_memory_attr(void* closurev, const char* attrs, size_t attrlen,
3272 int invert)
3273 {
3274 int attributes = 0;
3275
3276 while (attrlen--)
3277 switch (*attrs++)
3278 {
3279 case 'R':
3280 case 'r':
3281 attributes |= MEM_READABLE; break;
3282 case 'W':
3283 case 'w':
3284 attributes |= MEM_READABLE | MEM_WRITEABLE; break;
3285 case 'X':
3286 case 'x':
3287 attributes |= MEM_EXECUTABLE; break;
3288 case 'A':
3289 case 'a':
3290 attributes |= MEM_ALLOCATABLE; break;
3291 case 'I':
3292 case 'i':
3293 case 'L':
3294 case 'l':
3295 attributes |= MEM_INITIALIZED; break;
3296 default:
3297 yyerror(closurev, _("unknown MEMORY attribute"));
3298 }
3299
3300 if (invert)
3301 attributes = (~ attributes) & MEM_ATTR_MASK;
3302
3303 return attributes;
3304 }
3305
3306 extern "C" void
3307 script_include_directive(void* closurev, const char*, size_t)
3308 {
3309 // FIXME: Implement ?
3310 yyerror (closurev, _("GOLD does not currently support INCLUDE directives"));
3311 }
3312
3313 // Functions for memory regions.
3314
3315 extern "C" Expression*
3316 script_exp_function_origin(void* closurev, const char* name, size_t namelen)
3317 {
3318 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3319 Script_sections* ss = closure->script_options()->script_sections();
3320 Expression* origin = ss->find_memory_region_origin(name, namelen);
3321
3322 if (origin == NULL)
3323 {
3324 gold_error(_("undefined memory region '%s' referenced "
3325 "in ORIGIN expression"),
3326 name);
3327 // Create a dummy expression to prevent crashes later on.
3328 origin = script_exp_integer(0);
3329 }
3330
3331 return origin;
3332 }
3333
3334 extern "C" Expression*
3335 script_exp_function_length(void* closurev, const char* name, size_t namelen)
3336 {
3337 Parser_closure* closure = static_cast<Parser_closure*>(closurev);
3338 Script_sections* ss = closure->script_options()->script_sections();
3339 Expression* length = ss->find_memory_region_length(name, namelen);
3340
3341 if (length == NULL)
3342 {
3343 gold_error(_("undefined memory region '%s' referenced "
3344 "in LENGTH expression"),
3345 name);
3346 // Create a dummy expression to prevent crashes later on.
3347 length = script_exp_integer(0);
3348 }
3349
3350 return length;
3351 }
This page took 0.164211 seconds and 5 git commands to generate.