powerpc gold, work around pr17670
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Set the symbol's output segment. This is used for pre-defined
531 // symbols whose segments aren't known until after layout is done
532 // (e.g., __ehdr_start).
533
534 void
535 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
536 {
537 gold_assert(this->is_predefined_);
538 this->source_ = IN_OUTPUT_SEGMENT;
539 this->u_.in_output_segment.output_segment = os;
540 this->u_.in_output_segment.offset_base = base;
541 }
542
543 // Set the symbol to undefined. This is used for pre-defined
544 // symbols whose segments aren't known until after layout is done
545 // (e.g., __ehdr_start).
546
547 void
548 Symbol::set_undefined()
549 {
550 this->source_ = IS_UNDEFINED;
551 this->is_predefined_ = false;
552 }
553
554 // Class Symbol_table.
555
556 Symbol_table::Symbol_table(unsigned int count,
557 const Version_script_info& version_script)
558 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
559 forwarders_(), commons_(), tls_commons_(), small_commons_(),
560 large_commons_(), forced_locals_(), warnings_(),
561 version_script_(version_script), gc_(NULL), icf_(NULL)
562 {
563 namepool_.reserve(count);
564 }
565
566 Symbol_table::~Symbol_table()
567 {
568 }
569
570 // The symbol table key equality function. This is called with
571 // Stringpool keys.
572
573 inline bool
574 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
575 const Symbol_table_key& k2) const
576 {
577 return k1.first == k2.first && k1.second == k2.second;
578 }
579
580 bool
581 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
582 {
583 return (parameters->options().icf_enabled()
584 && this->icf_->is_section_folded(obj, shndx));
585 }
586
587 // For symbols that have been listed with a -u or --export-dynamic-symbol
588 // option, add them to the work list to avoid gc'ing them.
589
590 void
591 Symbol_table::gc_mark_undef_symbols(Layout* layout)
592 {
593 for (options::String_set::const_iterator p =
594 parameters->options().undefined_begin();
595 p != parameters->options().undefined_end();
596 ++p)
597 {
598 const char* name = p->c_str();
599 Symbol* sym = this->lookup(name);
600 gold_assert(sym != NULL);
601 if (sym->source() == Symbol::FROM_OBJECT
602 && !sym->object()->is_dynamic())
603 {
604 this->gc_mark_symbol(sym);
605 }
606 }
607
608 for (options::String_set::const_iterator p =
609 parameters->options().export_dynamic_symbol_begin();
610 p != parameters->options().export_dynamic_symbol_end();
611 ++p)
612 {
613 const char* name = p->c_str();
614 Symbol* sym = this->lookup(name);
615 // It's not an error if a symbol named by --export-dynamic-symbol
616 // is undefined.
617 if (sym != NULL
618 && sym->source() == Symbol::FROM_OBJECT
619 && !sym->object()->is_dynamic())
620 {
621 this->gc_mark_symbol(sym);
622 }
623 }
624
625 for (Script_options::referenced_const_iterator p =
626 layout->script_options()->referenced_begin();
627 p != layout->script_options()->referenced_end();
628 ++p)
629 {
630 Symbol* sym = this->lookup(p->c_str());
631 gold_assert(sym != NULL);
632 if (sym->source() == Symbol::FROM_OBJECT
633 && !sym->object()->is_dynamic())
634 {
635 this->gc_mark_symbol(sym);
636 }
637 }
638 }
639
640 void
641 Symbol_table::gc_mark_symbol(Symbol* sym)
642 {
643 // Add the object and section to the work list.
644 bool is_ordinary;
645 unsigned int shndx = sym->shndx(&is_ordinary);
646 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
647 {
648 gold_assert(this->gc_!= NULL);
649 this->gc_->worklist().push(Section_id(sym->object(), shndx));
650 }
651 parameters->target().gc_mark_symbol(this, sym);
652 }
653
654 // When doing garbage collection, keep symbols that have been seen in
655 // dynamic objects.
656 inline void
657 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
658 {
659 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
660 && !sym->object()->is_dynamic())
661 this->gc_mark_symbol(sym);
662 }
663
664 // Make TO a symbol which forwards to FROM.
665
666 void
667 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
668 {
669 gold_assert(from != to);
670 gold_assert(!from->is_forwarder() && !to->is_forwarder());
671 this->forwarders_[from] = to;
672 from->set_forwarder();
673 }
674
675 // Resolve the forwards from FROM, returning the real symbol.
676
677 Symbol*
678 Symbol_table::resolve_forwards(const Symbol* from) const
679 {
680 gold_assert(from->is_forwarder());
681 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
682 this->forwarders_.find(from);
683 gold_assert(p != this->forwarders_.end());
684 return p->second;
685 }
686
687 // Look up a symbol by name.
688
689 Symbol*
690 Symbol_table::lookup(const char* name, const char* version) const
691 {
692 Stringpool::Key name_key;
693 name = this->namepool_.find(name, &name_key);
694 if (name == NULL)
695 return NULL;
696
697 Stringpool::Key version_key = 0;
698 if (version != NULL)
699 {
700 version = this->namepool_.find(version, &version_key);
701 if (version == NULL)
702 return NULL;
703 }
704
705 Symbol_table_key key(name_key, version_key);
706 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
707 if (p == this->table_.end())
708 return NULL;
709 return p->second;
710 }
711
712 // Resolve a Symbol with another Symbol. This is only used in the
713 // unusual case where there are references to both an unversioned
714 // symbol and a symbol with a version, and we then discover that that
715 // version is the default version. Because this is unusual, we do
716 // this the slow way, by converting back to an ELF symbol.
717
718 template<int size, bool big_endian>
719 void
720 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
721 {
722 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
723 elfcpp::Sym_write<size, big_endian> esym(buf);
724 // We don't bother to set the st_name or the st_shndx field.
725 esym.put_st_value(from->value());
726 esym.put_st_size(from->symsize());
727 esym.put_st_info(from->binding(), from->type());
728 esym.put_st_other(from->visibility(), from->nonvis());
729 bool is_ordinary;
730 unsigned int shndx = from->shndx(&is_ordinary);
731 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
732 from->version());
733 if (from->in_reg())
734 to->set_in_reg();
735 if (from->in_dyn())
736 to->set_in_dyn();
737 if (parameters->options().gc_sections())
738 this->gc_mark_dyn_syms(to);
739 }
740
741 // Record that a symbol is forced to be local by a version script or
742 // by visibility.
743
744 void
745 Symbol_table::force_local(Symbol* sym)
746 {
747 if (!sym->is_defined() && !sym->is_common())
748 return;
749 if (sym->is_forced_local())
750 {
751 // We already got this one.
752 return;
753 }
754 sym->set_is_forced_local();
755 this->forced_locals_.push_back(sym);
756 }
757
758 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
759 // is only called for undefined symbols, when at least one --wrap
760 // option was used.
761
762 const char*
763 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
764 {
765 // For some targets, we need to ignore a specific character when
766 // wrapping, and add it back later.
767 char prefix = '\0';
768 if (name[0] == parameters->target().wrap_char())
769 {
770 prefix = name[0];
771 ++name;
772 }
773
774 if (parameters->options().is_wrap(name))
775 {
776 // Turn NAME into __wrap_NAME.
777 std::string s;
778 if (prefix != '\0')
779 s += prefix;
780 s += "__wrap_";
781 s += name;
782
783 // This will give us both the old and new name in NAMEPOOL_, but
784 // that is OK. Only the versions we need will wind up in the
785 // real string table in the output file.
786 return this->namepool_.add(s.c_str(), true, name_key);
787 }
788
789 const char* const real_prefix = "__real_";
790 const size_t real_prefix_length = strlen(real_prefix);
791 if (strncmp(name, real_prefix, real_prefix_length) == 0
792 && parameters->options().is_wrap(name + real_prefix_length))
793 {
794 // Turn __real_NAME into NAME.
795 std::string s;
796 if (prefix != '\0')
797 s += prefix;
798 s += name + real_prefix_length;
799 return this->namepool_.add(s.c_str(), true, name_key);
800 }
801
802 return name;
803 }
804
805 // This is called when we see a symbol NAME/VERSION, and the symbol
806 // already exists in the symbol table, and VERSION is marked as being
807 // the default version. SYM is the NAME/VERSION symbol we just added.
808 // DEFAULT_IS_NEW is true if this is the first time we have seen the
809 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
810
811 template<int size, bool big_endian>
812 void
813 Symbol_table::define_default_version(Sized_symbol<size>* sym,
814 bool default_is_new,
815 Symbol_table_type::iterator pdef)
816 {
817 if (default_is_new)
818 {
819 // This is the first time we have seen NAME/NULL. Make
820 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
821 // version.
822 pdef->second = sym;
823 sym->set_is_default();
824 }
825 else if (pdef->second == sym)
826 {
827 // NAME/NULL already points to NAME/VERSION. Don't mark the
828 // symbol as the default if it is not already the default.
829 }
830 else
831 {
832 // This is the unfortunate case where we already have entries
833 // for both NAME/VERSION and NAME/NULL. We now see a symbol
834 // NAME/VERSION where VERSION is the default version. We have
835 // already resolved this new symbol with the existing
836 // NAME/VERSION symbol.
837
838 // It's possible that NAME/NULL and NAME/VERSION are both
839 // defined in regular objects. This can only happen if one
840 // object file defines foo and another defines foo@@ver. This
841 // is somewhat obscure, but we call it a multiple definition
842 // error.
843
844 // It's possible that NAME/NULL actually has a version, in which
845 // case it won't be the same as VERSION. This happens with
846 // ver_test_7.so in the testsuite for the symbol t2_2. We see
847 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
848 // then see an unadorned t2_2 in an object file and give it
849 // version VER1 from the version script. This looks like a
850 // default definition for VER1, so it looks like we should merge
851 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
852 // not obvious that this is an error, either. So we just punt.
853
854 // If one of the symbols has non-default visibility, and the
855 // other is defined in a shared object, then they are different
856 // symbols.
857
858 // Otherwise, we just resolve the symbols as though they were
859 // the same.
860
861 if (pdef->second->version() != NULL)
862 gold_assert(pdef->second->version() != sym->version());
863 else if (sym->visibility() != elfcpp::STV_DEFAULT
864 && pdef->second->is_from_dynobj())
865 ;
866 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
867 && sym->is_from_dynobj())
868 ;
869 else
870 {
871 const Sized_symbol<size>* symdef;
872 symdef = this->get_sized_symbol<size>(pdef->second);
873 Symbol_table::resolve<size, big_endian>(sym, symdef);
874 this->make_forwarder(pdef->second, sym);
875 pdef->second = sym;
876 sym->set_is_default();
877 }
878 }
879 }
880
881 // Add one symbol from OBJECT to the symbol table. NAME is symbol
882 // name and VERSION is the version; both are canonicalized. DEF is
883 // whether this is the default version. ST_SHNDX is the symbol's
884 // section index; IS_ORDINARY is whether this is a normal section
885 // rather than a special code.
886
887 // If IS_DEFAULT_VERSION is true, then this is the definition of a
888 // default version of a symbol. That means that any lookup of
889 // NAME/NULL and any lookup of NAME/VERSION should always return the
890 // same symbol. This is obvious for references, but in particular we
891 // want to do this for definitions: overriding NAME/NULL should also
892 // override NAME/VERSION. If we don't do that, it would be very hard
893 // to override functions in a shared library which uses versioning.
894
895 // We implement this by simply making both entries in the hash table
896 // point to the same Symbol structure. That is easy enough if this is
897 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
898 // that we have seen both already, in which case they will both have
899 // independent entries in the symbol table. We can't simply change
900 // the symbol table entry, because we have pointers to the entries
901 // attached to the object files. So we mark the entry attached to the
902 // object file as a forwarder, and record it in the forwarders_ map.
903 // Note that entries in the hash table will never be marked as
904 // forwarders.
905 //
906 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
907 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
908 // for a special section code. ST_SHNDX may be modified if the symbol
909 // is defined in a section being discarded.
910
911 template<int size, bool big_endian>
912 Sized_symbol<size>*
913 Symbol_table::add_from_object(Object* object,
914 const char* name,
915 Stringpool::Key name_key,
916 const char* version,
917 Stringpool::Key version_key,
918 bool is_default_version,
919 const elfcpp::Sym<size, big_endian>& sym,
920 unsigned int st_shndx,
921 bool is_ordinary,
922 unsigned int orig_st_shndx)
923 {
924 // Print a message if this symbol is being traced.
925 if (parameters->options().is_trace_symbol(name))
926 {
927 if (orig_st_shndx == elfcpp::SHN_UNDEF)
928 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
929 else
930 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
931 }
932
933 // For an undefined symbol, we may need to adjust the name using
934 // --wrap.
935 if (orig_st_shndx == elfcpp::SHN_UNDEF
936 && parameters->options().any_wrap())
937 {
938 const char* wrap_name = this->wrap_symbol(name, &name_key);
939 if (wrap_name != name)
940 {
941 // If we see a reference to malloc with version GLIBC_2.0,
942 // and we turn it into a reference to __wrap_malloc, then we
943 // discard the version number. Otherwise the user would be
944 // required to specify the correct version for
945 // __wrap_malloc.
946 version = NULL;
947 version_key = 0;
948 name = wrap_name;
949 }
950 }
951
952 Symbol* const snull = NULL;
953 std::pair<typename Symbol_table_type::iterator, bool> ins =
954 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
955 snull));
956
957 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
958 std::make_pair(this->table_.end(), false);
959 if (is_default_version)
960 {
961 const Stringpool::Key vnull_key = 0;
962 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
963 vnull_key),
964 snull));
965 }
966
967 // ins.first: an iterator, which is a pointer to a pair.
968 // ins.first->first: the key (a pair of name and version).
969 // ins.first->second: the value (Symbol*).
970 // ins.second: true if new entry was inserted, false if not.
971
972 Sized_symbol<size>* ret;
973 bool was_undefined;
974 bool was_common;
975 if (!ins.second)
976 {
977 // We already have an entry for NAME/VERSION.
978 ret = this->get_sized_symbol<size>(ins.first->second);
979 gold_assert(ret != NULL);
980
981 was_undefined = ret->is_undefined();
982 // Commons from plugins are just placeholders.
983 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
984
985 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
986 version);
987 if (parameters->options().gc_sections())
988 this->gc_mark_dyn_syms(ret);
989
990 if (is_default_version)
991 this->define_default_version<size, big_endian>(ret, insdefault.second,
992 insdefault.first);
993 }
994 else
995 {
996 // This is the first time we have seen NAME/VERSION.
997 gold_assert(ins.first->second == NULL);
998
999 if (is_default_version && !insdefault.second)
1000 {
1001 // We already have an entry for NAME/NULL. If we override
1002 // it, then change it to NAME/VERSION.
1003 ret = this->get_sized_symbol<size>(insdefault.first->second);
1004
1005 was_undefined = ret->is_undefined();
1006 // Commons from plugins are just placeholders.
1007 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1008
1009 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1010 version);
1011 if (parameters->options().gc_sections())
1012 this->gc_mark_dyn_syms(ret);
1013 ins.first->second = ret;
1014 }
1015 else
1016 {
1017 was_undefined = false;
1018 was_common = false;
1019
1020 Sized_target<size, big_endian>* target =
1021 parameters->sized_target<size, big_endian>();
1022 if (!target->has_make_symbol())
1023 ret = new Sized_symbol<size>();
1024 else
1025 {
1026 ret = target->make_symbol();
1027 if (ret == NULL)
1028 {
1029 // This means that we don't want a symbol table
1030 // entry after all.
1031 if (!is_default_version)
1032 this->table_.erase(ins.first);
1033 else
1034 {
1035 this->table_.erase(insdefault.first);
1036 // Inserting INSDEFAULT invalidated INS.
1037 this->table_.erase(std::make_pair(name_key,
1038 version_key));
1039 }
1040 return NULL;
1041 }
1042 }
1043
1044 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1045
1046 ins.first->second = ret;
1047 if (is_default_version)
1048 {
1049 // This is the first time we have seen NAME/NULL. Point
1050 // it at the new entry for NAME/VERSION.
1051 gold_assert(insdefault.second);
1052 insdefault.first->second = ret;
1053 }
1054 }
1055
1056 if (is_default_version)
1057 ret->set_is_default();
1058 }
1059
1060 // Record every time we see a new undefined symbol, to speed up
1061 // archive groups.
1062 if (!was_undefined && ret->is_undefined())
1063 {
1064 ++this->saw_undefined_;
1065 if (parameters->options().has_plugins())
1066 parameters->options().plugins()->new_undefined_symbol(ret);
1067 }
1068
1069 // Keep track of common symbols, to speed up common symbol
1070 // allocation. Don't record commons from plugin objects;
1071 // we need to wait until we see the real symbol in the
1072 // replacement file.
1073 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1074 {
1075 if (ret->type() == elfcpp::STT_TLS)
1076 this->tls_commons_.push_back(ret);
1077 else if (!is_ordinary
1078 && st_shndx == parameters->target().small_common_shndx())
1079 this->small_commons_.push_back(ret);
1080 else if (!is_ordinary
1081 && st_shndx == parameters->target().large_common_shndx())
1082 this->large_commons_.push_back(ret);
1083 else
1084 this->commons_.push_back(ret);
1085 }
1086
1087 // If we're not doing a relocatable link, then any symbol with
1088 // hidden or internal visibility is local.
1089 if ((ret->visibility() == elfcpp::STV_HIDDEN
1090 || ret->visibility() == elfcpp::STV_INTERNAL)
1091 && (ret->binding() == elfcpp::STB_GLOBAL
1092 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1093 || ret->binding() == elfcpp::STB_WEAK)
1094 && !parameters->options().relocatable())
1095 this->force_local(ret);
1096
1097 return ret;
1098 }
1099
1100 // Add all the symbols in a relocatable object to the hash table.
1101
1102 template<int size, bool big_endian>
1103 void
1104 Symbol_table::add_from_relobj(
1105 Sized_relobj_file<size, big_endian>* relobj,
1106 const unsigned char* syms,
1107 size_t count,
1108 size_t symndx_offset,
1109 const char* sym_names,
1110 size_t sym_name_size,
1111 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1112 size_t* defined)
1113 {
1114 *defined = 0;
1115
1116 gold_assert(size == parameters->target().get_size());
1117
1118 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1119
1120 const bool just_symbols = relobj->just_symbols();
1121
1122 const unsigned char* p = syms;
1123 for (size_t i = 0; i < count; ++i, p += sym_size)
1124 {
1125 (*sympointers)[i] = NULL;
1126
1127 elfcpp::Sym<size, big_endian> sym(p);
1128
1129 unsigned int st_name = sym.get_st_name();
1130 if (st_name >= sym_name_size)
1131 {
1132 relobj->error(_("bad global symbol name offset %u at %zu"),
1133 st_name, i);
1134 continue;
1135 }
1136
1137 const char* name = sym_names + st_name;
1138
1139 if (strcmp (name, "__gnu_lto_slim") == 0)
1140 gold_info(_("%s: plugin needed to handle lto object"),
1141 relobj->name().c_str());
1142
1143 bool is_ordinary;
1144 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1145 sym.get_st_shndx(),
1146 &is_ordinary);
1147 unsigned int orig_st_shndx = st_shndx;
1148 if (!is_ordinary)
1149 orig_st_shndx = elfcpp::SHN_UNDEF;
1150
1151 if (st_shndx != elfcpp::SHN_UNDEF)
1152 ++*defined;
1153
1154 // A symbol defined in a section which we are not including must
1155 // be treated as an undefined symbol.
1156 bool is_defined_in_discarded_section = false;
1157 if (st_shndx != elfcpp::SHN_UNDEF
1158 && is_ordinary
1159 && !relobj->is_section_included(st_shndx)
1160 && !this->is_section_folded(relobj, st_shndx))
1161 {
1162 st_shndx = elfcpp::SHN_UNDEF;
1163 is_defined_in_discarded_section = true;
1164 }
1165
1166 // In an object file, an '@' in the name separates the symbol
1167 // name from the version name. If there are two '@' characters,
1168 // this is the default version.
1169 const char* ver = strchr(name, '@');
1170 Stringpool::Key ver_key = 0;
1171 int namelen = 0;
1172 // IS_DEFAULT_VERSION: is the version default?
1173 // IS_FORCED_LOCAL: is the symbol forced local?
1174 bool is_default_version = false;
1175 bool is_forced_local = false;
1176
1177 // FIXME: For incremental links, we don't store version information,
1178 // so we need to ignore version symbols for now.
1179 if (parameters->incremental_update() && ver != NULL)
1180 {
1181 namelen = ver - name;
1182 ver = NULL;
1183 }
1184
1185 if (ver != NULL)
1186 {
1187 // The symbol name is of the form foo@VERSION or foo@@VERSION
1188 namelen = ver - name;
1189 ++ver;
1190 if (*ver == '@')
1191 {
1192 is_default_version = true;
1193 ++ver;
1194 }
1195 ver = this->namepool_.add(ver, true, &ver_key);
1196 }
1197 // We don't want to assign a version to an undefined symbol,
1198 // even if it is listed in the version script. FIXME: What
1199 // about a common symbol?
1200 else
1201 {
1202 namelen = strlen(name);
1203 if (!this->version_script_.empty()
1204 && st_shndx != elfcpp::SHN_UNDEF)
1205 {
1206 // The symbol name did not have a version, but the
1207 // version script may assign a version anyway.
1208 std::string version;
1209 bool is_global;
1210 if (this->version_script_.get_symbol_version(name, &version,
1211 &is_global))
1212 {
1213 if (!is_global)
1214 is_forced_local = true;
1215 else if (!version.empty())
1216 {
1217 ver = this->namepool_.add_with_length(version.c_str(),
1218 version.length(),
1219 true,
1220 &ver_key);
1221 is_default_version = true;
1222 }
1223 }
1224 }
1225 }
1226
1227 elfcpp::Sym<size, big_endian>* psym = &sym;
1228 unsigned char symbuf[sym_size];
1229 elfcpp::Sym<size, big_endian> sym2(symbuf);
1230 if (just_symbols)
1231 {
1232 memcpy(symbuf, p, sym_size);
1233 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1234 if (orig_st_shndx != elfcpp::SHN_UNDEF
1235 && is_ordinary
1236 && relobj->e_type() == elfcpp::ET_REL)
1237 {
1238 // Symbol values in relocatable object files are section
1239 // relative. This is normally what we want, but since here
1240 // we are converting the symbol to absolute we need to add
1241 // the section address. The section address in an object
1242 // file is normally zero, but people can use a linker
1243 // script to change it.
1244 sw.put_st_value(sym.get_st_value()
1245 + relobj->section_address(orig_st_shndx));
1246 }
1247 st_shndx = elfcpp::SHN_ABS;
1248 is_ordinary = false;
1249 psym = &sym2;
1250 }
1251
1252 // Fix up visibility if object has no-export set.
1253 if (relobj->no_export()
1254 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1255 {
1256 // We may have copied symbol already above.
1257 if (psym != &sym2)
1258 {
1259 memcpy(symbuf, p, sym_size);
1260 psym = &sym2;
1261 }
1262
1263 elfcpp::STV visibility = sym2.get_st_visibility();
1264 if (visibility == elfcpp::STV_DEFAULT
1265 || visibility == elfcpp::STV_PROTECTED)
1266 {
1267 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1268 unsigned char nonvis = sym2.get_st_nonvis();
1269 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1270 }
1271 }
1272
1273 Stringpool::Key name_key;
1274 name = this->namepool_.add_with_length(name, namelen, true,
1275 &name_key);
1276
1277 Sized_symbol<size>* res;
1278 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1279 is_default_version, *psym, st_shndx,
1280 is_ordinary, orig_st_shndx);
1281
1282 if (is_forced_local)
1283 this->force_local(res);
1284
1285 // Do not treat this symbol as garbage if this symbol will be
1286 // exported to the dynamic symbol table. This is true when
1287 // building a shared library or using --export-dynamic and
1288 // the symbol is externally visible.
1289 if (parameters->options().gc_sections()
1290 && res->is_externally_visible()
1291 && !res->is_from_dynobj()
1292 && (parameters->options().shared()
1293 || parameters->options().export_dynamic()
1294 || parameters->options().in_dynamic_list(res->name())))
1295 this->gc_mark_symbol(res);
1296
1297 if (is_defined_in_discarded_section)
1298 res->set_is_defined_in_discarded_section();
1299
1300 (*sympointers)[i] = res;
1301 }
1302 }
1303
1304 // Add a symbol from a plugin-claimed file.
1305
1306 template<int size, bool big_endian>
1307 Symbol*
1308 Symbol_table::add_from_pluginobj(
1309 Sized_pluginobj<size, big_endian>* obj,
1310 const char* name,
1311 const char* ver,
1312 elfcpp::Sym<size, big_endian>* sym)
1313 {
1314 unsigned int st_shndx = sym->get_st_shndx();
1315 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1316
1317 Stringpool::Key ver_key = 0;
1318 bool is_default_version = false;
1319 bool is_forced_local = false;
1320
1321 if (ver != NULL)
1322 {
1323 ver = this->namepool_.add(ver, true, &ver_key);
1324 }
1325 // We don't want to assign a version to an undefined symbol,
1326 // even if it is listed in the version script. FIXME: What
1327 // about a common symbol?
1328 else
1329 {
1330 if (!this->version_script_.empty()
1331 && st_shndx != elfcpp::SHN_UNDEF)
1332 {
1333 // The symbol name did not have a version, but the
1334 // version script may assign a version anyway.
1335 std::string version;
1336 bool is_global;
1337 if (this->version_script_.get_symbol_version(name, &version,
1338 &is_global))
1339 {
1340 if (!is_global)
1341 is_forced_local = true;
1342 else if (!version.empty())
1343 {
1344 ver = this->namepool_.add_with_length(version.c_str(),
1345 version.length(),
1346 true,
1347 &ver_key);
1348 is_default_version = true;
1349 }
1350 }
1351 }
1352 }
1353
1354 Stringpool::Key name_key;
1355 name = this->namepool_.add(name, true, &name_key);
1356
1357 Sized_symbol<size>* res;
1358 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1359 is_default_version, *sym, st_shndx,
1360 is_ordinary, st_shndx);
1361
1362 if (is_forced_local)
1363 this->force_local(res);
1364
1365 return res;
1366 }
1367
1368 // Add all the symbols in a dynamic object to the hash table.
1369
1370 template<int size, bool big_endian>
1371 void
1372 Symbol_table::add_from_dynobj(
1373 Sized_dynobj<size, big_endian>* dynobj,
1374 const unsigned char* syms,
1375 size_t count,
1376 const char* sym_names,
1377 size_t sym_name_size,
1378 const unsigned char* versym,
1379 size_t versym_size,
1380 const std::vector<const char*>* version_map,
1381 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1382 size_t* defined)
1383 {
1384 *defined = 0;
1385
1386 gold_assert(size == parameters->target().get_size());
1387
1388 if (dynobj->just_symbols())
1389 {
1390 gold_error(_("--just-symbols does not make sense with a shared object"));
1391 return;
1392 }
1393
1394 // FIXME: For incremental links, we don't store version information,
1395 // so we need to ignore version symbols for now.
1396 if (parameters->incremental_update())
1397 versym = NULL;
1398
1399 if (versym != NULL && versym_size / 2 < count)
1400 {
1401 dynobj->error(_("too few symbol versions"));
1402 return;
1403 }
1404
1405 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1406
1407 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1408 // weak aliases. This is necessary because if the dynamic object
1409 // provides the same variable under two names, one of which is a
1410 // weak definition, and the regular object refers to the weak
1411 // definition, we have to put both the weak definition and the
1412 // strong definition into the dynamic symbol table. Given a weak
1413 // definition, the only way that we can find the corresponding
1414 // strong definition, if any, is to search the symbol table.
1415 std::vector<Sized_symbol<size>*> object_symbols;
1416
1417 const unsigned char* p = syms;
1418 const unsigned char* vs = versym;
1419 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1420 {
1421 elfcpp::Sym<size, big_endian> sym(p);
1422
1423 if (sympointers != NULL)
1424 (*sympointers)[i] = NULL;
1425
1426 // Ignore symbols with local binding or that have
1427 // internal or hidden visibility.
1428 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1429 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1430 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1431 continue;
1432
1433 // A protected symbol in a shared library must be treated as a
1434 // normal symbol when viewed from outside the shared library.
1435 // Implement this by overriding the visibility here.
1436 elfcpp::Sym<size, big_endian>* psym = &sym;
1437 unsigned char symbuf[sym_size];
1438 elfcpp::Sym<size, big_endian> sym2(symbuf);
1439 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1440 {
1441 memcpy(symbuf, p, sym_size);
1442 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1443 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1444 psym = &sym2;
1445 }
1446
1447 unsigned int st_name = psym->get_st_name();
1448 if (st_name >= sym_name_size)
1449 {
1450 dynobj->error(_("bad symbol name offset %u at %zu"),
1451 st_name, i);
1452 continue;
1453 }
1454
1455 const char* name = sym_names + st_name;
1456
1457 bool is_ordinary;
1458 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1459 &is_ordinary);
1460
1461 if (st_shndx != elfcpp::SHN_UNDEF)
1462 ++*defined;
1463
1464 Sized_symbol<size>* res;
1465
1466 if (versym == NULL)
1467 {
1468 Stringpool::Key name_key;
1469 name = this->namepool_.add(name, true, &name_key);
1470 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1471 false, *psym, st_shndx, is_ordinary,
1472 st_shndx);
1473 }
1474 else
1475 {
1476 // Read the version information.
1477
1478 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1479
1480 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1481 v &= elfcpp::VERSYM_VERSION;
1482
1483 // The Sun documentation says that V can be VER_NDX_LOCAL,
1484 // or VER_NDX_GLOBAL, or a version index. The meaning of
1485 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1486 // The old GNU linker will happily generate VER_NDX_LOCAL
1487 // for an undefined symbol. I don't know what the Sun
1488 // linker will generate.
1489
1490 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1491 && st_shndx != elfcpp::SHN_UNDEF)
1492 {
1493 // This symbol should not be visible outside the object.
1494 continue;
1495 }
1496
1497 // At this point we are definitely going to add this symbol.
1498 Stringpool::Key name_key;
1499 name = this->namepool_.add(name, true, &name_key);
1500
1501 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1502 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1503 {
1504 // This symbol does not have a version.
1505 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1506 false, *psym, st_shndx, is_ordinary,
1507 st_shndx);
1508 }
1509 else
1510 {
1511 if (v >= version_map->size())
1512 {
1513 dynobj->error(_("versym for symbol %zu out of range: %u"),
1514 i, v);
1515 continue;
1516 }
1517
1518 const char* version = (*version_map)[v];
1519 if (version == NULL)
1520 {
1521 dynobj->error(_("versym for symbol %zu has no name: %u"),
1522 i, v);
1523 continue;
1524 }
1525
1526 Stringpool::Key version_key;
1527 version = this->namepool_.add(version, true, &version_key);
1528
1529 // If this is an absolute symbol, and the version name
1530 // and symbol name are the same, then this is the
1531 // version definition symbol. These symbols exist to
1532 // support using -u to pull in particular versions. We
1533 // do not want to record a version for them.
1534 if (st_shndx == elfcpp::SHN_ABS
1535 && !is_ordinary
1536 && name_key == version_key)
1537 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1538 false, *psym, st_shndx, is_ordinary,
1539 st_shndx);
1540 else
1541 {
1542 const bool is_default_version =
1543 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1544 res = this->add_from_object(dynobj, name, name_key, version,
1545 version_key, is_default_version,
1546 *psym, st_shndx,
1547 is_ordinary, st_shndx);
1548 }
1549 }
1550 }
1551
1552 // Note that it is possible that RES was overridden by an
1553 // earlier object, in which case it can't be aliased here.
1554 if (st_shndx != elfcpp::SHN_UNDEF
1555 && is_ordinary
1556 && psym->get_st_type() == elfcpp::STT_OBJECT
1557 && res->source() == Symbol::FROM_OBJECT
1558 && res->object() == dynobj)
1559 object_symbols.push_back(res);
1560
1561 if (sympointers != NULL)
1562 (*sympointers)[i] = res;
1563 }
1564
1565 this->record_weak_aliases(&object_symbols);
1566 }
1567
1568 // Add a symbol from a incremental object file.
1569
1570 template<int size, bool big_endian>
1571 Sized_symbol<size>*
1572 Symbol_table::add_from_incrobj(
1573 Object* obj,
1574 const char* name,
1575 const char* ver,
1576 elfcpp::Sym<size, big_endian>* sym)
1577 {
1578 unsigned int st_shndx = sym->get_st_shndx();
1579 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1580
1581 Stringpool::Key ver_key = 0;
1582 bool is_default_version = false;
1583 bool is_forced_local = false;
1584
1585 Stringpool::Key name_key;
1586 name = this->namepool_.add(name, true, &name_key);
1587
1588 Sized_symbol<size>* res;
1589 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1590 is_default_version, *sym, st_shndx,
1591 is_ordinary, st_shndx);
1592
1593 if (is_forced_local)
1594 this->force_local(res);
1595
1596 return res;
1597 }
1598
1599 // This is used to sort weak aliases. We sort them first by section
1600 // index, then by offset, then by weak ahead of strong.
1601
1602 template<int size>
1603 class Weak_alias_sorter
1604 {
1605 public:
1606 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1607 };
1608
1609 template<int size>
1610 bool
1611 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1612 const Sized_symbol<size>* s2) const
1613 {
1614 bool is_ordinary;
1615 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1616 gold_assert(is_ordinary);
1617 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1618 gold_assert(is_ordinary);
1619 if (s1_shndx != s2_shndx)
1620 return s1_shndx < s2_shndx;
1621
1622 if (s1->value() != s2->value())
1623 return s1->value() < s2->value();
1624 if (s1->binding() != s2->binding())
1625 {
1626 if (s1->binding() == elfcpp::STB_WEAK)
1627 return true;
1628 if (s2->binding() == elfcpp::STB_WEAK)
1629 return false;
1630 }
1631 return std::string(s1->name()) < std::string(s2->name());
1632 }
1633
1634 // SYMBOLS is a list of object symbols from a dynamic object. Look
1635 // for any weak aliases, and record them so that if we add the weak
1636 // alias to the dynamic symbol table, we also add the corresponding
1637 // strong symbol.
1638
1639 template<int size>
1640 void
1641 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1642 {
1643 // Sort the vector by section index, then by offset, then by weak
1644 // ahead of strong.
1645 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1646
1647 // Walk through the vector. For each weak definition, record
1648 // aliases.
1649 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1650 symbols->begin();
1651 p != symbols->end();
1652 ++p)
1653 {
1654 if ((*p)->binding() != elfcpp::STB_WEAK)
1655 continue;
1656
1657 // Build a circular list of weak aliases. Each symbol points to
1658 // the next one in the circular list.
1659
1660 Sized_symbol<size>* from_sym = *p;
1661 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1662 for (q = p + 1; q != symbols->end(); ++q)
1663 {
1664 bool dummy;
1665 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1666 || (*q)->value() != from_sym->value())
1667 break;
1668
1669 this->weak_aliases_[from_sym] = *q;
1670 from_sym->set_has_alias();
1671 from_sym = *q;
1672 }
1673
1674 if (from_sym != *p)
1675 {
1676 this->weak_aliases_[from_sym] = *p;
1677 from_sym->set_has_alias();
1678 }
1679
1680 p = q - 1;
1681 }
1682 }
1683
1684 // Create and return a specially defined symbol. If ONLY_IF_REF is
1685 // true, then only create the symbol if there is a reference to it.
1686 // If this does not return NULL, it sets *POLDSYM to the existing
1687 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1688 // resolve the newly created symbol to the old one. This
1689 // canonicalizes *PNAME and *PVERSION.
1690
1691 template<int size, bool big_endian>
1692 Sized_symbol<size>*
1693 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1694 bool only_if_ref,
1695 Sized_symbol<size>** poldsym,
1696 bool* resolve_oldsym)
1697 {
1698 *resolve_oldsym = false;
1699 *poldsym = NULL;
1700
1701 // If the caller didn't give us a version, see if we get one from
1702 // the version script.
1703 std::string v;
1704 bool is_default_version = false;
1705 if (*pversion == NULL)
1706 {
1707 bool is_global;
1708 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1709 {
1710 if (is_global && !v.empty())
1711 {
1712 *pversion = v.c_str();
1713 // If we get the version from a version script, then we
1714 // are also the default version.
1715 is_default_version = true;
1716 }
1717 }
1718 }
1719
1720 Symbol* oldsym;
1721 Sized_symbol<size>* sym;
1722
1723 bool add_to_table = false;
1724 typename Symbol_table_type::iterator add_loc = this->table_.end();
1725 bool add_def_to_table = false;
1726 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1727
1728 if (only_if_ref)
1729 {
1730 oldsym = this->lookup(*pname, *pversion);
1731 if (oldsym == NULL && is_default_version)
1732 oldsym = this->lookup(*pname, NULL);
1733 if (oldsym == NULL || !oldsym->is_undefined())
1734 return NULL;
1735
1736 *pname = oldsym->name();
1737 if (is_default_version)
1738 *pversion = this->namepool_.add(*pversion, true, NULL);
1739 else
1740 *pversion = oldsym->version();
1741 }
1742 else
1743 {
1744 // Canonicalize NAME and VERSION.
1745 Stringpool::Key name_key;
1746 *pname = this->namepool_.add(*pname, true, &name_key);
1747
1748 Stringpool::Key version_key = 0;
1749 if (*pversion != NULL)
1750 *pversion = this->namepool_.add(*pversion, true, &version_key);
1751
1752 Symbol* const snull = NULL;
1753 std::pair<typename Symbol_table_type::iterator, bool> ins =
1754 this->table_.insert(std::make_pair(std::make_pair(name_key,
1755 version_key),
1756 snull));
1757
1758 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1759 std::make_pair(this->table_.end(), false);
1760 if (is_default_version)
1761 {
1762 const Stringpool::Key vnull = 0;
1763 insdefault =
1764 this->table_.insert(std::make_pair(std::make_pair(name_key,
1765 vnull),
1766 snull));
1767 }
1768
1769 if (!ins.second)
1770 {
1771 // We already have a symbol table entry for NAME/VERSION.
1772 oldsym = ins.first->second;
1773 gold_assert(oldsym != NULL);
1774
1775 if (is_default_version)
1776 {
1777 Sized_symbol<size>* soldsym =
1778 this->get_sized_symbol<size>(oldsym);
1779 this->define_default_version<size, big_endian>(soldsym,
1780 insdefault.second,
1781 insdefault.first);
1782 }
1783 }
1784 else
1785 {
1786 // We haven't seen this symbol before.
1787 gold_assert(ins.first->second == NULL);
1788
1789 add_to_table = true;
1790 add_loc = ins.first;
1791
1792 if (is_default_version && !insdefault.second)
1793 {
1794 // We are adding NAME/VERSION, and it is the default
1795 // version. We already have an entry for NAME/NULL.
1796 oldsym = insdefault.first->second;
1797 *resolve_oldsym = true;
1798 }
1799 else
1800 {
1801 oldsym = NULL;
1802
1803 if (is_default_version)
1804 {
1805 add_def_to_table = true;
1806 add_def_loc = insdefault.first;
1807 }
1808 }
1809 }
1810 }
1811
1812 const Target& target = parameters->target();
1813 if (!target.has_make_symbol())
1814 sym = new Sized_symbol<size>();
1815 else
1816 {
1817 Sized_target<size, big_endian>* sized_target =
1818 parameters->sized_target<size, big_endian>();
1819 sym = sized_target->make_symbol();
1820 if (sym == NULL)
1821 return NULL;
1822 }
1823
1824 if (add_to_table)
1825 add_loc->second = sym;
1826 else
1827 gold_assert(oldsym != NULL);
1828
1829 if (add_def_to_table)
1830 add_def_loc->second = sym;
1831
1832 *poldsym = this->get_sized_symbol<size>(oldsym);
1833
1834 return sym;
1835 }
1836
1837 // Define a symbol based on an Output_data.
1838
1839 Symbol*
1840 Symbol_table::define_in_output_data(const char* name,
1841 const char* version,
1842 Defined defined,
1843 Output_data* od,
1844 uint64_t value,
1845 uint64_t symsize,
1846 elfcpp::STT type,
1847 elfcpp::STB binding,
1848 elfcpp::STV visibility,
1849 unsigned char nonvis,
1850 bool offset_is_from_end,
1851 bool only_if_ref)
1852 {
1853 if (parameters->target().get_size() == 32)
1854 {
1855 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1856 return this->do_define_in_output_data<32>(name, version, defined, od,
1857 value, symsize, type, binding,
1858 visibility, nonvis,
1859 offset_is_from_end,
1860 only_if_ref);
1861 #else
1862 gold_unreachable();
1863 #endif
1864 }
1865 else if (parameters->target().get_size() == 64)
1866 {
1867 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1868 return this->do_define_in_output_data<64>(name, version, defined, od,
1869 value, symsize, type, binding,
1870 visibility, nonvis,
1871 offset_is_from_end,
1872 only_if_ref);
1873 #else
1874 gold_unreachable();
1875 #endif
1876 }
1877 else
1878 gold_unreachable();
1879 }
1880
1881 // Define a symbol in an Output_data, sized version.
1882
1883 template<int size>
1884 Sized_symbol<size>*
1885 Symbol_table::do_define_in_output_data(
1886 const char* name,
1887 const char* version,
1888 Defined defined,
1889 Output_data* od,
1890 typename elfcpp::Elf_types<size>::Elf_Addr value,
1891 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1892 elfcpp::STT type,
1893 elfcpp::STB binding,
1894 elfcpp::STV visibility,
1895 unsigned char nonvis,
1896 bool offset_is_from_end,
1897 bool only_if_ref)
1898 {
1899 Sized_symbol<size>* sym;
1900 Sized_symbol<size>* oldsym;
1901 bool resolve_oldsym;
1902
1903 if (parameters->target().is_big_endian())
1904 {
1905 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1906 sym = this->define_special_symbol<size, true>(&name, &version,
1907 only_if_ref, &oldsym,
1908 &resolve_oldsym);
1909 #else
1910 gold_unreachable();
1911 #endif
1912 }
1913 else
1914 {
1915 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1916 sym = this->define_special_symbol<size, false>(&name, &version,
1917 only_if_ref, &oldsym,
1918 &resolve_oldsym);
1919 #else
1920 gold_unreachable();
1921 #endif
1922 }
1923
1924 if (sym == NULL)
1925 return NULL;
1926
1927 sym->init_output_data(name, version, od, value, symsize, type, binding,
1928 visibility, nonvis, offset_is_from_end,
1929 defined == PREDEFINED);
1930
1931 if (oldsym == NULL)
1932 {
1933 if (binding == elfcpp::STB_LOCAL
1934 || this->version_script_.symbol_is_local(name))
1935 this->force_local(sym);
1936 else if (version != NULL)
1937 sym->set_is_default();
1938 return sym;
1939 }
1940
1941 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1942 this->override_with_special(oldsym, sym);
1943
1944 if (resolve_oldsym)
1945 return sym;
1946 else
1947 {
1948 delete sym;
1949 return oldsym;
1950 }
1951 }
1952
1953 // Define a symbol based on an Output_segment.
1954
1955 Symbol*
1956 Symbol_table::define_in_output_segment(const char* name,
1957 const char* version,
1958 Defined defined,
1959 Output_segment* os,
1960 uint64_t value,
1961 uint64_t symsize,
1962 elfcpp::STT type,
1963 elfcpp::STB binding,
1964 elfcpp::STV visibility,
1965 unsigned char nonvis,
1966 Symbol::Segment_offset_base offset_base,
1967 bool only_if_ref)
1968 {
1969 if (parameters->target().get_size() == 32)
1970 {
1971 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1972 return this->do_define_in_output_segment<32>(name, version, defined, os,
1973 value, symsize, type,
1974 binding, visibility, nonvis,
1975 offset_base, only_if_ref);
1976 #else
1977 gold_unreachable();
1978 #endif
1979 }
1980 else if (parameters->target().get_size() == 64)
1981 {
1982 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1983 return this->do_define_in_output_segment<64>(name, version, defined, os,
1984 value, symsize, type,
1985 binding, visibility, nonvis,
1986 offset_base, only_if_ref);
1987 #else
1988 gold_unreachable();
1989 #endif
1990 }
1991 else
1992 gold_unreachable();
1993 }
1994
1995 // Define a symbol in an Output_segment, sized version.
1996
1997 template<int size>
1998 Sized_symbol<size>*
1999 Symbol_table::do_define_in_output_segment(
2000 const char* name,
2001 const char* version,
2002 Defined defined,
2003 Output_segment* os,
2004 typename elfcpp::Elf_types<size>::Elf_Addr value,
2005 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2006 elfcpp::STT type,
2007 elfcpp::STB binding,
2008 elfcpp::STV visibility,
2009 unsigned char nonvis,
2010 Symbol::Segment_offset_base offset_base,
2011 bool only_if_ref)
2012 {
2013 Sized_symbol<size>* sym;
2014 Sized_symbol<size>* oldsym;
2015 bool resolve_oldsym;
2016
2017 if (parameters->target().is_big_endian())
2018 {
2019 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2020 sym = this->define_special_symbol<size, true>(&name, &version,
2021 only_if_ref, &oldsym,
2022 &resolve_oldsym);
2023 #else
2024 gold_unreachable();
2025 #endif
2026 }
2027 else
2028 {
2029 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2030 sym = this->define_special_symbol<size, false>(&name, &version,
2031 only_if_ref, &oldsym,
2032 &resolve_oldsym);
2033 #else
2034 gold_unreachable();
2035 #endif
2036 }
2037
2038 if (sym == NULL)
2039 return NULL;
2040
2041 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2042 visibility, nonvis, offset_base,
2043 defined == PREDEFINED);
2044
2045 if (oldsym == NULL)
2046 {
2047 if (binding == elfcpp::STB_LOCAL
2048 || this->version_script_.symbol_is_local(name))
2049 this->force_local(sym);
2050 else if (version != NULL)
2051 sym->set_is_default();
2052 return sym;
2053 }
2054
2055 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2056 this->override_with_special(oldsym, sym);
2057
2058 if (resolve_oldsym)
2059 return sym;
2060 else
2061 {
2062 delete sym;
2063 return oldsym;
2064 }
2065 }
2066
2067 // Define a special symbol with a constant value. It is a multiple
2068 // definition error if this symbol is already defined.
2069
2070 Symbol*
2071 Symbol_table::define_as_constant(const char* name,
2072 const char* version,
2073 Defined defined,
2074 uint64_t value,
2075 uint64_t symsize,
2076 elfcpp::STT type,
2077 elfcpp::STB binding,
2078 elfcpp::STV visibility,
2079 unsigned char nonvis,
2080 bool only_if_ref,
2081 bool force_override)
2082 {
2083 if (parameters->target().get_size() == 32)
2084 {
2085 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2086 return this->do_define_as_constant<32>(name, version, defined, value,
2087 symsize, type, binding,
2088 visibility, nonvis, only_if_ref,
2089 force_override);
2090 #else
2091 gold_unreachable();
2092 #endif
2093 }
2094 else if (parameters->target().get_size() == 64)
2095 {
2096 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2097 return this->do_define_as_constant<64>(name, version, defined, value,
2098 symsize, type, binding,
2099 visibility, nonvis, only_if_ref,
2100 force_override);
2101 #else
2102 gold_unreachable();
2103 #endif
2104 }
2105 else
2106 gold_unreachable();
2107 }
2108
2109 // Define a symbol as a constant, sized version.
2110
2111 template<int size>
2112 Sized_symbol<size>*
2113 Symbol_table::do_define_as_constant(
2114 const char* name,
2115 const char* version,
2116 Defined defined,
2117 typename elfcpp::Elf_types<size>::Elf_Addr value,
2118 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2119 elfcpp::STT type,
2120 elfcpp::STB binding,
2121 elfcpp::STV visibility,
2122 unsigned char nonvis,
2123 bool only_if_ref,
2124 bool force_override)
2125 {
2126 Sized_symbol<size>* sym;
2127 Sized_symbol<size>* oldsym;
2128 bool resolve_oldsym;
2129
2130 if (parameters->target().is_big_endian())
2131 {
2132 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2133 sym = this->define_special_symbol<size, true>(&name, &version,
2134 only_if_ref, &oldsym,
2135 &resolve_oldsym);
2136 #else
2137 gold_unreachable();
2138 #endif
2139 }
2140 else
2141 {
2142 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2143 sym = this->define_special_symbol<size, false>(&name, &version,
2144 only_if_ref, &oldsym,
2145 &resolve_oldsym);
2146 #else
2147 gold_unreachable();
2148 #endif
2149 }
2150
2151 if (sym == NULL)
2152 return NULL;
2153
2154 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2155 nonvis, defined == PREDEFINED);
2156
2157 if (oldsym == NULL)
2158 {
2159 // Version symbols are absolute symbols with name == version.
2160 // We don't want to force them to be local.
2161 if ((version == NULL
2162 || name != version
2163 || value != 0)
2164 && (binding == elfcpp::STB_LOCAL
2165 || this->version_script_.symbol_is_local(name)))
2166 this->force_local(sym);
2167 else if (version != NULL
2168 && (name != version || value != 0))
2169 sym->set_is_default();
2170 return sym;
2171 }
2172
2173 if (force_override
2174 || Symbol_table::should_override_with_special(oldsym, type, defined))
2175 this->override_with_special(oldsym, sym);
2176
2177 if (resolve_oldsym)
2178 return sym;
2179 else
2180 {
2181 delete sym;
2182 return oldsym;
2183 }
2184 }
2185
2186 // Define a set of symbols in output sections.
2187
2188 void
2189 Symbol_table::define_symbols(const Layout* layout, int count,
2190 const Define_symbol_in_section* p,
2191 bool only_if_ref)
2192 {
2193 for (int i = 0; i < count; ++i, ++p)
2194 {
2195 Output_section* os = layout->find_output_section(p->output_section);
2196 if (os != NULL)
2197 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2198 p->size, p->type, p->binding,
2199 p->visibility, p->nonvis,
2200 p->offset_is_from_end,
2201 only_if_ref || p->only_if_ref);
2202 else
2203 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2204 p->type, p->binding, p->visibility, p->nonvis,
2205 only_if_ref || p->only_if_ref,
2206 false);
2207 }
2208 }
2209
2210 // Define a set of symbols in output segments.
2211
2212 void
2213 Symbol_table::define_symbols(const Layout* layout, int count,
2214 const Define_symbol_in_segment* p,
2215 bool only_if_ref)
2216 {
2217 for (int i = 0; i < count; ++i, ++p)
2218 {
2219 Output_segment* os = layout->find_output_segment(p->segment_type,
2220 p->segment_flags_set,
2221 p->segment_flags_clear);
2222 if (os != NULL)
2223 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2224 p->size, p->type, p->binding,
2225 p->visibility, p->nonvis,
2226 p->offset_base,
2227 only_if_ref || p->only_if_ref);
2228 else
2229 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2230 p->type, p->binding, p->visibility, p->nonvis,
2231 only_if_ref || p->only_if_ref,
2232 false);
2233 }
2234 }
2235
2236 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2237 // symbol should be defined--typically a .dyn.bss section. VALUE is
2238 // the offset within POSD.
2239
2240 template<int size>
2241 void
2242 Symbol_table::define_with_copy_reloc(
2243 Sized_symbol<size>* csym,
2244 Output_data* posd,
2245 typename elfcpp::Elf_types<size>::Elf_Addr value)
2246 {
2247 gold_assert(csym->is_from_dynobj());
2248 gold_assert(!csym->is_copied_from_dynobj());
2249 Object* object = csym->object();
2250 gold_assert(object->is_dynamic());
2251 Dynobj* dynobj = static_cast<Dynobj*>(object);
2252
2253 // Our copied variable has to override any variable in a shared
2254 // library.
2255 elfcpp::STB binding = csym->binding();
2256 if (binding == elfcpp::STB_WEAK)
2257 binding = elfcpp::STB_GLOBAL;
2258
2259 this->define_in_output_data(csym->name(), csym->version(), COPY,
2260 posd, value, csym->symsize(),
2261 csym->type(), binding,
2262 csym->visibility(), csym->nonvis(),
2263 false, false);
2264
2265 csym->set_is_copied_from_dynobj();
2266 csym->set_needs_dynsym_entry();
2267
2268 this->copied_symbol_dynobjs_[csym] = dynobj;
2269
2270 // We have now defined all aliases, but we have not entered them all
2271 // in the copied_symbol_dynobjs_ map.
2272 if (csym->has_alias())
2273 {
2274 Symbol* sym = csym;
2275 while (true)
2276 {
2277 sym = this->weak_aliases_[sym];
2278 if (sym == csym)
2279 break;
2280 gold_assert(sym->output_data() == posd);
2281
2282 sym->set_is_copied_from_dynobj();
2283 this->copied_symbol_dynobjs_[sym] = dynobj;
2284 }
2285 }
2286 }
2287
2288 // SYM is defined using a COPY reloc. Return the dynamic object where
2289 // the original definition was found.
2290
2291 Dynobj*
2292 Symbol_table::get_copy_source(const Symbol* sym) const
2293 {
2294 gold_assert(sym->is_copied_from_dynobj());
2295 Copied_symbol_dynobjs::const_iterator p =
2296 this->copied_symbol_dynobjs_.find(sym);
2297 gold_assert(p != this->copied_symbol_dynobjs_.end());
2298 return p->second;
2299 }
2300
2301 // Add any undefined symbols named on the command line.
2302
2303 void
2304 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2305 {
2306 if (parameters->options().any_undefined()
2307 || layout->script_options()->any_unreferenced())
2308 {
2309 if (parameters->target().get_size() == 32)
2310 {
2311 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2312 this->do_add_undefined_symbols_from_command_line<32>(layout);
2313 #else
2314 gold_unreachable();
2315 #endif
2316 }
2317 else if (parameters->target().get_size() == 64)
2318 {
2319 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2320 this->do_add_undefined_symbols_from_command_line<64>(layout);
2321 #else
2322 gold_unreachable();
2323 #endif
2324 }
2325 else
2326 gold_unreachable();
2327 }
2328 }
2329
2330 template<int size>
2331 void
2332 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2333 {
2334 for (options::String_set::const_iterator p =
2335 parameters->options().undefined_begin();
2336 p != parameters->options().undefined_end();
2337 ++p)
2338 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2339
2340 for (options::String_set::const_iterator p =
2341 parameters->options().export_dynamic_symbol_begin();
2342 p != parameters->options().export_dynamic_symbol_end();
2343 ++p)
2344 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2345
2346 for (Script_options::referenced_const_iterator p =
2347 layout->script_options()->referenced_begin();
2348 p != layout->script_options()->referenced_end();
2349 ++p)
2350 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2351 }
2352
2353 template<int size>
2354 void
2355 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2356 {
2357 if (this->lookup(name) != NULL)
2358 return;
2359
2360 const char* version = NULL;
2361
2362 Sized_symbol<size>* sym;
2363 Sized_symbol<size>* oldsym;
2364 bool resolve_oldsym;
2365 if (parameters->target().is_big_endian())
2366 {
2367 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2368 sym = this->define_special_symbol<size, true>(&name, &version,
2369 false, &oldsym,
2370 &resolve_oldsym);
2371 #else
2372 gold_unreachable();
2373 #endif
2374 }
2375 else
2376 {
2377 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2378 sym = this->define_special_symbol<size, false>(&name, &version,
2379 false, &oldsym,
2380 &resolve_oldsym);
2381 #else
2382 gold_unreachable();
2383 #endif
2384 }
2385
2386 gold_assert(oldsym == NULL);
2387
2388 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2389 elfcpp::STV_DEFAULT, 0);
2390 ++this->saw_undefined_;
2391 }
2392
2393 // Set the dynamic symbol indexes. INDEX is the index of the first
2394 // global dynamic symbol. Pointers to the symbols are stored into the
2395 // vector SYMS. The names are added to DYNPOOL. This returns an
2396 // updated dynamic symbol index.
2397
2398 unsigned int
2399 Symbol_table::set_dynsym_indexes(unsigned int index,
2400 std::vector<Symbol*>* syms,
2401 Stringpool* dynpool,
2402 Versions* versions)
2403 {
2404 std::vector<Symbol*> as_needed_sym;
2405
2406 // Allow a target to set dynsym indexes.
2407 if (parameters->target().has_custom_set_dynsym_indexes())
2408 {
2409 std::vector<Symbol*> dyn_symbols;
2410 for (Symbol_table_type::iterator p = this->table_.begin();
2411 p != this->table_.end();
2412 ++p)
2413 {
2414 Symbol* sym = p->second;
2415 if (!sym->should_add_dynsym_entry(this))
2416 sym->set_dynsym_index(-1U);
2417 else
2418 dyn_symbols.push_back(sym);
2419 }
2420
2421 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2422 dynpool, versions, this);
2423 }
2424
2425 for (Symbol_table_type::iterator p = this->table_.begin();
2426 p != this->table_.end();
2427 ++p)
2428 {
2429 Symbol* sym = p->second;
2430
2431 // Note that SYM may already have a dynamic symbol index, since
2432 // some symbols appear more than once in the symbol table, with
2433 // and without a version.
2434
2435 if (!sym->should_add_dynsym_entry(this))
2436 sym->set_dynsym_index(-1U);
2437 else if (!sym->has_dynsym_index())
2438 {
2439 sym->set_dynsym_index(index);
2440 ++index;
2441 syms->push_back(sym);
2442 dynpool->add(sym->name(), false, NULL);
2443
2444 // If the symbol is defined in a dynamic object and is
2445 // referenced strongly in a regular object, then mark the
2446 // dynamic object as needed. This is used to implement
2447 // --as-needed.
2448 if (sym->is_from_dynobj()
2449 && sym->in_reg()
2450 && !sym->is_undef_binding_weak())
2451 sym->object()->set_is_needed();
2452
2453 // Record any version information, except those from
2454 // as-needed libraries not seen to be needed. Note that the
2455 // is_needed state for such libraries can change in this loop.
2456 if (sym->version() != NULL)
2457 {
2458 if (!sym->is_from_dynobj()
2459 || !sym->object()->as_needed()
2460 || sym->object()->is_needed())
2461 versions->record_version(this, dynpool, sym);
2462 else
2463 as_needed_sym.push_back(sym);
2464 }
2465 }
2466 }
2467
2468 // Process version information for symbols from as-needed libraries.
2469 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2470 p != as_needed_sym.end();
2471 ++p)
2472 {
2473 Symbol* sym = *p;
2474
2475 if (sym->object()->is_needed())
2476 versions->record_version(this, dynpool, sym);
2477 else
2478 sym->clear_version();
2479 }
2480
2481 // Finish up the versions. In some cases this may add new dynamic
2482 // symbols.
2483 index = versions->finalize(this, index, syms);
2484
2485 return index;
2486 }
2487
2488 // Set the final values for all the symbols. The index of the first
2489 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2490 // file offset OFF. Add their names to POOL. Return the new file
2491 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2492
2493 off_t
2494 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2495 size_t dyncount, Stringpool* pool,
2496 unsigned int* plocal_symcount)
2497 {
2498 off_t ret;
2499
2500 gold_assert(*plocal_symcount != 0);
2501 this->first_global_index_ = *plocal_symcount;
2502
2503 this->dynamic_offset_ = dynoff;
2504 this->first_dynamic_global_index_ = dyn_global_index;
2505 this->dynamic_count_ = dyncount;
2506
2507 if (parameters->target().get_size() == 32)
2508 {
2509 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2510 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2511 #else
2512 gold_unreachable();
2513 #endif
2514 }
2515 else if (parameters->target().get_size() == 64)
2516 {
2517 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2518 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2519 #else
2520 gold_unreachable();
2521 #endif
2522 }
2523 else
2524 gold_unreachable();
2525
2526 // Now that we have the final symbol table, we can reliably note
2527 // which symbols should get warnings.
2528 this->warnings_.note_warnings(this);
2529
2530 return ret;
2531 }
2532
2533 // SYM is going into the symbol table at *PINDEX. Add the name to
2534 // POOL, update *PINDEX and *POFF.
2535
2536 template<int size>
2537 void
2538 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2539 unsigned int* pindex, off_t* poff)
2540 {
2541 sym->set_symtab_index(*pindex);
2542 if (sym->version() == NULL || !parameters->options().relocatable())
2543 pool->add(sym->name(), false, NULL);
2544 else
2545 pool->add(sym->versioned_name(), true, NULL);
2546 ++*pindex;
2547 *poff += elfcpp::Elf_sizes<size>::sym_size;
2548 }
2549
2550 // Set the final value for all the symbols. This is called after
2551 // Layout::finalize, so all the output sections have their final
2552 // address.
2553
2554 template<int size>
2555 off_t
2556 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2557 unsigned int* plocal_symcount)
2558 {
2559 off = align_address(off, size >> 3);
2560 this->offset_ = off;
2561
2562 unsigned int index = *plocal_symcount;
2563 const unsigned int orig_index = index;
2564
2565 // First do all the symbols which have been forced to be local, as
2566 // they must appear before all global symbols.
2567 for (Forced_locals::iterator p = this->forced_locals_.begin();
2568 p != this->forced_locals_.end();
2569 ++p)
2570 {
2571 Symbol* sym = *p;
2572 gold_assert(sym->is_forced_local());
2573 if (this->sized_finalize_symbol<size>(sym))
2574 {
2575 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2576 ++*plocal_symcount;
2577 }
2578 }
2579
2580 // Now do all the remaining symbols.
2581 for (Symbol_table_type::iterator p = this->table_.begin();
2582 p != this->table_.end();
2583 ++p)
2584 {
2585 Symbol* sym = p->second;
2586 if (this->sized_finalize_symbol<size>(sym))
2587 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2588 }
2589
2590 this->output_count_ = index - orig_index;
2591
2592 return off;
2593 }
2594
2595 // Compute the final value of SYM and store status in location PSTATUS.
2596 // During relaxation, this may be called multiple times for a symbol to
2597 // compute its would-be final value in each relaxation pass.
2598
2599 template<int size>
2600 typename Sized_symbol<size>::Value_type
2601 Symbol_table::compute_final_value(
2602 const Sized_symbol<size>* sym,
2603 Compute_final_value_status* pstatus) const
2604 {
2605 typedef typename Sized_symbol<size>::Value_type Value_type;
2606 Value_type value;
2607
2608 switch (sym->source())
2609 {
2610 case Symbol::FROM_OBJECT:
2611 {
2612 bool is_ordinary;
2613 unsigned int shndx = sym->shndx(&is_ordinary);
2614
2615 if (!is_ordinary
2616 && shndx != elfcpp::SHN_ABS
2617 && !Symbol::is_common_shndx(shndx))
2618 {
2619 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2620 return 0;
2621 }
2622
2623 Object* symobj = sym->object();
2624 if (symobj->is_dynamic())
2625 {
2626 value = 0;
2627 shndx = elfcpp::SHN_UNDEF;
2628 }
2629 else if (symobj->pluginobj() != NULL)
2630 {
2631 value = 0;
2632 shndx = elfcpp::SHN_UNDEF;
2633 }
2634 else if (shndx == elfcpp::SHN_UNDEF)
2635 value = 0;
2636 else if (!is_ordinary
2637 && (shndx == elfcpp::SHN_ABS
2638 || Symbol::is_common_shndx(shndx)))
2639 value = sym->value();
2640 else
2641 {
2642 Relobj* relobj = static_cast<Relobj*>(symobj);
2643 Output_section* os = relobj->output_section(shndx);
2644
2645 if (this->is_section_folded(relobj, shndx))
2646 {
2647 gold_assert(os == NULL);
2648 // Get the os of the section it is folded onto.
2649 Section_id folded = this->icf_->get_folded_section(relobj,
2650 shndx);
2651 gold_assert(folded.first != NULL);
2652 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2653 unsigned folded_shndx = folded.second;
2654
2655 os = folded_obj->output_section(folded_shndx);
2656 gold_assert(os != NULL);
2657
2658 // Replace (relobj, shndx) with canonical ICF input section.
2659 shndx = folded_shndx;
2660 relobj = folded_obj;
2661 }
2662
2663 uint64_t secoff64 = relobj->output_section_offset(shndx);
2664 if (os == NULL)
2665 {
2666 bool static_or_reloc = (parameters->doing_static_link() ||
2667 parameters->options().relocatable());
2668 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2669
2670 *pstatus = CFVS_NO_OUTPUT_SECTION;
2671 return 0;
2672 }
2673
2674 if (secoff64 == -1ULL)
2675 {
2676 // The section needs special handling (e.g., a merge section).
2677
2678 value = os->output_address(relobj, shndx, sym->value());
2679 }
2680 else
2681 {
2682 Value_type secoff =
2683 convert_types<Value_type, uint64_t>(secoff64);
2684 if (sym->type() == elfcpp::STT_TLS)
2685 value = sym->value() + os->tls_offset() + secoff;
2686 else
2687 value = sym->value() + os->address() + secoff;
2688 }
2689 }
2690 }
2691 break;
2692
2693 case Symbol::IN_OUTPUT_DATA:
2694 {
2695 Output_data* od = sym->output_data();
2696 value = sym->value();
2697 if (sym->type() != elfcpp::STT_TLS)
2698 value += od->address();
2699 else
2700 {
2701 Output_section* os = od->output_section();
2702 gold_assert(os != NULL);
2703 value += os->tls_offset() + (od->address() - os->address());
2704 }
2705 if (sym->offset_is_from_end())
2706 value += od->data_size();
2707 }
2708 break;
2709
2710 case Symbol::IN_OUTPUT_SEGMENT:
2711 {
2712 Output_segment* os = sym->output_segment();
2713 value = sym->value();
2714 if (sym->type() != elfcpp::STT_TLS)
2715 value += os->vaddr();
2716 switch (sym->offset_base())
2717 {
2718 case Symbol::SEGMENT_START:
2719 break;
2720 case Symbol::SEGMENT_END:
2721 value += os->memsz();
2722 break;
2723 case Symbol::SEGMENT_BSS:
2724 value += os->filesz();
2725 break;
2726 default:
2727 gold_unreachable();
2728 }
2729 }
2730 break;
2731
2732 case Symbol::IS_CONSTANT:
2733 value = sym->value();
2734 break;
2735
2736 case Symbol::IS_UNDEFINED:
2737 value = 0;
2738 break;
2739
2740 default:
2741 gold_unreachable();
2742 }
2743
2744 *pstatus = CFVS_OK;
2745 return value;
2746 }
2747
2748 // Finalize the symbol SYM. This returns true if the symbol should be
2749 // added to the symbol table, false otherwise.
2750
2751 template<int size>
2752 bool
2753 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2754 {
2755 typedef typename Sized_symbol<size>::Value_type Value_type;
2756
2757 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2758
2759 // The default version of a symbol may appear twice in the symbol
2760 // table. We only need to finalize it once.
2761 if (sym->has_symtab_index())
2762 return false;
2763
2764 if (!sym->in_reg())
2765 {
2766 gold_assert(!sym->has_symtab_index());
2767 sym->set_symtab_index(-1U);
2768 gold_assert(sym->dynsym_index() == -1U);
2769 return false;
2770 }
2771
2772 // If the symbol is only present on plugin files, the plugin decided we
2773 // don't need it.
2774 if (!sym->in_real_elf())
2775 {
2776 gold_assert(!sym->has_symtab_index());
2777 sym->set_symtab_index(-1U);
2778 return false;
2779 }
2780
2781 // Compute final symbol value.
2782 Compute_final_value_status status;
2783 Value_type value = this->compute_final_value(sym, &status);
2784
2785 switch (status)
2786 {
2787 case CFVS_OK:
2788 break;
2789 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2790 {
2791 bool is_ordinary;
2792 unsigned int shndx = sym->shndx(&is_ordinary);
2793 gold_error(_("%s: unsupported symbol section 0x%x"),
2794 sym->demangled_name().c_str(), shndx);
2795 }
2796 break;
2797 case CFVS_NO_OUTPUT_SECTION:
2798 sym->set_symtab_index(-1U);
2799 return false;
2800 default:
2801 gold_unreachable();
2802 }
2803
2804 sym->set_value(value);
2805
2806 if (parameters->options().strip_all()
2807 || !parameters->options().should_retain_symbol(sym->name()))
2808 {
2809 sym->set_symtab_index(-1U);
2810 return false;
2811 }
2812
2813 return true;
2814 }
2815
2816 // Write out the global symbols.
2817
2818 void
2819 Symbol_table::write_globals(const Stringpool* sympool,
2820 const Stringpool* dynpool,
2821 Output_symtab_xindex* symtab_xindex,
2822 Output_symtab_xindex* dynsym_xindex,
2823 Output_file* of) const
2824 {
2825 switch (parameters->size_and_endianness())
2826 {
2827 #ifdef HAVE_TARGET_32_LITTLE
2828 case Parameters::TARGET_32_LITTLE:
2829 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2830 dynsym_xindex, of);
2831 break;
2832 #endif
2833 #ifdef HAVE_TARGET_32_BIG
2834 case Parameters::TARGET_32_BIG:
2835 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2836 dynsym_xindex, of);
2837 break;
2838 #endif
2839 #ifdef HAVE_TARGET_64_LITTLE
2840 case Parameters::TARGET_64_LITTLE:
2841 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2842 dynsym_xindex, of);
2843 break;
2844 #endif
2845 #ifdef HAVE_TARGET_64_BIG
2846 case Parameters::TARGET_64_BIG:
2847 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2848 dynsym_xindex, of);
2849 break;
2850 #endif
2851 default:
2852 gold_unreachable();
2853 }
2854 }
2855
2856 // Write out the global symbols.
2857
2858 template<int size, bool big_endian>
2859 void
2860 Symbol_table::sized_write_globals(const Stringpool* sympool,
2861 const Stringpool* dynpool,
2862 Output_symtab_xindex* symtab_xindex,
2863 Output_symtab_xindex* dynsym_xindex,
2864 Output_file* of) const
2865 {
2866 const Target& target = parameters->target();
2867
2868 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2869
2870 const unsigned int output_count = this->output_count_;
2871 const section_size_type oview_size = output_count * sym_size;
2872 const unsigned int first_global_index = this->first_global_index_;
2873 unsigned char* psyms;
2874 if (this->offset_ == 0 || output_count == 0)
2875 psyms = NULL;
2876 else
2877 psyms = of->get_output_view(this->offset_, oview_size);
2878
2879 const unsigned int dynamic_count = this->dynamic_count_;
2880 const section_size_type dynamic_size = dynamic_count * sym_size;
2881 const unsigned int first_dynamic_global_index =
2882 this->first_dynamic_global_index_;
2883 unsigned char* dynamic_view;
2884 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2885 dynamic_view = NULL;
2886 else
2887 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2888
2889 for (Symbol_table_type::const_iterator p = this->table_.begin();
2890 p != this->table_.end();
2891 ++p)
2892 {
2893 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2894
2895 // Possibly warn about unresolved symbols in shared libraries.
2896 this->warn_about_undefined_dynobj_symbol(sym);
2897
2898 unsigned int sym_index = sym->symtab_index();
2899 unsigned int dynsym_index;
2900 if (dynamic_view == NULL)
2901 dynsym_index = -1U;
2902 else
2903 dynsym_index = sym->dynsym_index();
2904
2905 if (sym_index == -1U && dynsym_index == -1U)
2906 {
2907 // This symbol is not included in the output file.
2908 continue;
2909 }
2910
2911 unsigned int shndx;
2912 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2913 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2914 elfcpp::STB binding = sym->binding();
2915
2916 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2917 if (binding == elfcpp::STB_GNU_UNIQUE
2918 && !parameters->options().gnu_unique())
2919 binding = elfcpp::STB_GLOBAL;
2920
2921 switch (sym->source())
2922 {
2923 case Symbol::FROM_OBJECT:
2924 {
2925 bool is_ordinary;
2926 unsigned int in_shndx = sym->shndx(&is_ordinary);
2927
2928 if (!is_ordinary
2929 && in_shndx != elfcpp::SHN_ABS
2930 && !Symbol::is_common_shndx(in_shndx))
2931 {
2932 gold_error(_("%s: unsupported symbol section 0x%x"),
2933 sym->demangled_name().c_str(), in_shndx);
2934 shndx = in_shndx;
2935 }
2936 else
2937 {
2938 Object* symobj = sym->object();
2939 if (symobj->is_dynamic())
2940 {
2941 if (sym->needs_dynsym_value())
2942 dynsym_value = target.dynsym_value(sym);
2943 shndx = elfcpp::SHN_UNDEF;
2944 if (sym->is_undef_binding_weak())
2945 binding = elfcpp::STB_WEAK;
2946 else
2947 binding = elfcpp::STB_GLOBAL;
2948 }
2949 else if (symobj->pluginobj() != NULL)
2950 shndx = elfcpp::SHN_UNDEF;
2951 else if (in_shndx == elfcpp::SHN_UNDEF
2952 || (!is_ordinary
2953 && (in_shndx == elfcpp::SHN_ABS
2954 || Symbol::is_common_shndx(in_shndx))))
2955 shndx = in_shndx;
2956 else
2957 {
2958 Relobj* relobj = static_cast<Relobj*>(symobj);
2959 Output_section* os = relobj->output_section(in_shndx);
2960 if (this->is_section_folded(relobj, in_shndx))
2961 {
2962 // This global symbol must be written out even though
2963 // it is folded.
2964 // Get the os of the section it is folded onto.
2965 Section_id folded =
2966 this->icf_->get_folded_section(relobj, in_shndx);
2967 gold_assert(folded.first !=NULL);
2968 Relobj* folded_obj =
2969 reinterpret_cast<Relobj*>(folded.first);
2970 os = folded_obj->output_section(folded.second);
2971 gold_assert(os != NULL);
2972 }
2973 gold_assert(os != NULL);
2974 shndx = os->out_shndx();
2975
2976 if (shndx >= elfcpp::SHN_LORESERVE)
2977 {
2978 if (sym_index != -1U)
2979 symtab_xindex->add(sym_index, shndx);
2980 if (dynsym_index != -1U)
2981 dynsym_xindex->add(dynsym_index, shndx);
2982 shndx = elfcpp::SHN_XINDEX;
2983 }
2984
2985 // In object files symbol values are section
2986 // relative.
2987 if (parameters->options().relocatable())
2988 sym_value -= os->address();
2989 }
2990 }
2991 }
2992 break;
2993
2994 case Symbol::IN_OUTPUT_DATA:
2995 {
2996 Output_data* od = sym->output_data();
2997
2998 shndx = od->out_shndx();
2999 if (shndx >= elfcpp::SHN_LORESERVE)
3000 {
3001 if (sym_index != -1U)
3002 symtab_xindex->add(sym_index, shndx);
3003 if (dynsym_index != -1U)
3004 dynsym_xindex->add(dynsym_index, shndx);
3005 shndx = elfcpp::SHN_XINDEX;
3006 }
3007
3008 // In object files symbol values are section
3009 // relative.
3010 if (parameters->options().relocatable())
3011 sym_value -= od->address();
3012 }
3013 break;
3014
3015 case Symbol::IN_OUTPUT_SEGMENT:
3016 shndx = elfcpp::SHN_ABS;
3017 break;
3018
3019 case Symbol::IS_CONSTANT:
3020 shndx = elfcpp::SHN_ABS;
3021 break;
3022
3023 case Symbol::IS_UNDEFINED:
3024 shndx = elfcpp::SHN_UNDEF;
3025 break;
3026
3027 default:
3028 gold_unreachable();
3029 }
3030
3031 if (sym_index != -1U)
3032 {
3033 sym_index -= first_global_index;
3034 gold_assert(sym_index < output_count);
3035 unsigned char* ps = psyms + (sym_index * sym_size);
3036 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3037 binding, sympool, ps);
3038 }
3039
3040 if (dynsym_index != -1U)
3041 {
3042 dynsym_index -= first_dynamic_global_index;
3043 gold_assert(dynsym_index < dynamic_count);
3044 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3045 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3046 binding, dynpool, pd);
3047 // Allow a target to adjust dynamic symbol value.
3048 parameters->target().adjust_dyn_symbol(sym, pd);
3049 }
3050 }
3051
3052 of->write_output_view(this->offset_, oview_size, psyms);
3053 if (dynamic_view != NULL)
3054 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3055 }
3056
3057 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3058 // strtab holding the name.
3059
3060 template<int size, bool big_endian>
3061 void
3062 Symbol_table::sized_write_symbol(
3063 Sized_symbol<size>* sym,
3064 typename elfcpp::Elf_types<size>::Elf_Addr value,
3065 unsigned int shndx,
3066 elfcpp::STB binding,
3067 const Stringpool* pool,
3068 unsigned char* p) const
3069 {
3070 elfcpp::Sym_write<size, big_endian> osym(p);
3071 if (sym->version() == NULL || !parameters->options().relocatable())
3072 osym.put_st_name(pool->get_offset(sym->name()));
3073 else
3074 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3075 osym.put_st_value(value);
3076 // Use a symbol size of zero for undefined symbols from shared libraries.
3077 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3078 osym.put_st_size(0);
3079 else
3080 osym.put_st_size(sym->symsize());
3081 elfcpp::STT type = sym->type();
3082 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3083 if (type == elfcpp::STT_GNU_IFUNC
3084 && sym->is_from_dynobj())
3085 type = elfcpp::STT_FUNC;
3086 // A version script may have overridden the default binding.
3087 if (sym->is_forced_local())
3088 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3089 else
3090 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3091 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3092 osym.put_st_shndx(shndx);
3093 }
3094
3095 // Check for unresolved symbols in shared libraries. This is
3096 // controlled by the --allow-shlib-undefined option.
3097
3098 // We only warn about libraries for which we have seen all the
3099 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3100 // which were not seen in this link. If we didn't see a DT_NEEDED
3101 // entry, we aren't going to be able to reliably report whether the
3102 // symbol is undefined.
3103
3104 // We also don't warn about libraries found in a system library
3105 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3106 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3107 // can have undefined references satisfied by ld-linux.so.
3108
3109 inline void
3110 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3111 {
3112 bool dummy;
3113 if (sym->source() == Symbol::FROM_OBJECT
3114 && sym->object()->is_dynamic()
3115 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3116 && sym->binding() != elfcpp::STB_WEAK
3117 && !parameters->options().allow_shlib_undefined()
3118 && !parameters->target().is_defined_by_abi(sym)
3119 && !sym->object()->is_in_system_directory())
3120 {
3121 // A very ugly cast.
3122 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3123 if (!dynobj->has_unknown_needed_entries())
3124 gold_undefined_symbol(sym);
3125 }
3126 }
3127
3128 // Write out a section symbol. Return the update offset.
3129
3130 void
3131 Symbol_table::write_section_symbol(const Output_section* os,
3132 Output_symtab_xindex* symtab_xindex,
3133 Output_file* of,
3134 off_t offset) const
3135 {
3136 switch (parameters->size_and_endianness())
3137 {
3138 #ifdef HAVE_TARGET_32_LITTLE
3139 case Parameters::TARGET_32_LITTLE:
3140 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3141 offset);
3142 break;
3143 #endif
3144 #ifdef HAVE_TARGET_32_BIG
3145 case Parameters::TARGET_32_BIG:
3146 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3147 offset);
3148 break;
3149 #endif
3150 #ifdef HAVE_TARGET_64_LITTLE
3151 case Parameters::TARGET_64_LITTLE:
3152 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3153 offset);
3154 break;
3155 #endif
3156 #ifdef HAVE_TARGET_64_BIG
3157 case Parameters::TARGET_64_BIG:
3158 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3159 offset);
3160 break;
3161 #endif
3162 default:
3163 gold_unreachable();
3164 }
3165 }
3166
3167 // Write out a section symbol, specialized for size and endianness.
3168
3169 template<int size, bool big_endian>
3170 void
3171 Symbol_table::sized_write_section_symbol(const Output_section* os,
3172 Output_symtab_xindex* symtab_xindex,
3173 Output_file* of,
3174 off_t offset) const
3175 {
3176 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3177
3178 unsigned char* pov = of->get_output_view(offset, sym_size);
3179
3180 elfcpp::Sym_write<size, big_endian> osym(pov);
3181 osym.put_st_name(0);
3182 if (parameters->options().relocatable())
3183 osym.put_st_value(0);
3184 else
3185 osym.put_st_value(os->address());
3186 osym.put_st_size(0);
3187 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3188 elfcpp::STT_SECTION));
3189 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3190
3191 unsigned int shndx = os->out_shndx();
3192 if (shndx >= elfcpp::SHN_LORESERVE)
3193 {
3194 symtab_xindex->add(os->symtab_index(), shndx);
3195 shndx = elfcpp::SHN_XINDEX;
3196 }
3197 osym.put_st_shndx(shndx);
3198
3199 of->write_output_view(offset, sym_size, pov);
3200 }
3201
3202 // Print statistical information to stderr. This is used for --stats.
3203
3204 void
3205 Symbol_table::print_stats() const
3206 {
3207 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3208 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3209 program_name, this->table_.size(), this->table_.bucket_count());
3210 #else
3211 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3212 program_name, this->table_.size());
3213 #endif
3214 this->namepool_.print_stats("symbol table stringpool");
3215 }
3216
3217 // We check for ODR violations by looking for symbols with the same
3218 // name for which the debugging information reports that they were
3219 // defined in disjoint source locations. When comparing the source
3220 // location, we consider instances with the same base filename to be
3221 // the same. This is because different object files/shared libraries
3222 // can include the same header file using different paths, and
3223 // different optimization settings can make the line number appear to
3224 // be a couple lines off, and we don't want to report an ODR violation
3225 // in those cases.
3226
3227 // This struct is used to compare line information, as returned by
3228 // Dwarf_line_info::one_addr2line. It implements a < comparison
3229 // operator used with std::sort.
3230
3231 struct Odr_violation_compare
3232 {
3233 bool
3234 operator()(const std::string& s1, const std::string& s2) const
3235 {
3236 // Inputs should be of the form "dirname/filename:linenum" where
3237 // "dirname/" is optional. We want to compare just the filename:linenum.
3238
3239 // Find the last '/' in each string.
3240 std::string::size_type s1begin = s1.rfind('/');
3241 std::string::size_type s2begin = s2.rfind('/');
3242 // If there was no '/' in a string, start at the beginning.
3243 if (s1begin == std::string::npos)
3244 s1begin = 0;
3245 if (s2begin == std::string::npos)
3246 s2begin = 0;
3247 return s1.compare(s1begin, std::string::npos,
3248 s2, s2begin, std::string::npos) < 0;
3249 }
3250 };
3251
3252 // Returns all of the lines attached to LOC, not just the one the
3253 // instruction actually came from.
3254 std::vector<std::string>
3255 Symbol_table::linenos_from_loc(const Task* task,
3256 const Symbol_location& loc)
3257 {
3258 // We need to lock the object in order to read it. This
3259 // means that we have to run in a singleton Task. If we
3260 // want to run this in a general Task for better
3261 // performance, we will need one Task for object, plus
3262 // appropriate locking to ensure that we don't conflict with
3263 // other uses of the object. Also note, one_addr2line is not
3264 // currently thread-safe.
3265 Task_lock_obj<Object> tl(task, loc.object);
3266
3267 std::vector<std::string> result;
3268 Symbol_location code_loc = loc;
3269 parameters->target().function_location(&code_loc);
3270 // 16 is the size of the object-cache that one_addr2line should use.
3271 std::string canonical_result = Dwarf_line_info::one_addr2line(
3272 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3273 if (!canonical_result.empty())
3274 result.push_back(canonical_result);
3275 return result;
3276 }
3277
3278 // OutputIterator that records if it was ever assigned to. This
3279 // allows it to be used with std::set_intersection() to check for
3280 // intersection rather than computing the intersection.
3281 struct Check_intersection
3282 {
3283 Check_intersection()
3284 : value_(false)
3285 {}
3286
3287 bool had_intersection() const
3288 { return this->value_; }
3289
3290 Check_intersection& operator++()
3291 { return *this; }
3292
3293 Check_intersection& operator*()
3294 { return *this; }
3295
3296 template<typename T>
3297 Check_intersection& operator=(const T&)
3298 {
3299 this->value_ = true;
3300 return *this;
3301 }
3302
3303 private:
3304 bool value_;
3305 };
3306
3307 // Check candidate_odr_violations_ to find symbols with the same name
3308 // but apparently different definitions (different source-file/line-no
3309 // for each line assigned to the first instruction).
3310
3311 void
3312 Symbol_table::detect_odr_violations(const Task* task,
3313 const char* output_file_name) const
3314 {
3315 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3316 it != candidate_odr_violations_.end();
3317 ++it)
3318 {
3319 const char* const symbol_name = it->first;
3320
3321 std::string first_object_name;
3322 std::vector<std::string> first_object_linenos;
3323
3324 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3325 locs = it->second.begin();
3326 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3327 locs_end = it->second.end();
3328 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3329 {
3330 // Save the line numbers from the first definition to
3331 // compare to the other definitions. Ideally, we'd compare
3332 // every definition to every other, but we don't want to
3333 // take O(N^2) time to do this. This shortcut may cause
3334 // false negatives that appear or disappear depending on the
3335 // link order, but it won't cause false positives.
3336 first_object_name = locs->object->name();
3337 first_object_linenos = this->linenos_from_loc(task, *locs);
3338 }
3339
3340 // Sort by Odr_violation_compare to make std::set_intersection work.
3341 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3342 Odr_violation_compare());
3343
3344 for (; locs != locs_end; ++locs)
3345 {
3346 std::vector<std::string> linenos =
3347 this->linenos_from_loc(task, *locs);
3348 // linenos will be empty if we couldn't parse the debug info.
3349 if (linenos.empty())
3350 continue;
3351 // Sort by Odr_violation_compare to make std::set_intersection work.
3352 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3353
3354 Check_intersection intersection_result =
3355 std::set_intersection(first_object_linenos.begin(),
3356 first_object_linenos.end(),
3357 linenos.begin(),
3358 linenos.end(),
3359 Check_intersection(),
3360 Odr_violation_compare());
3361 if (!intersection_result.had_intersection())
3362 {
3363 gold_warning(_("while linking %s: symbol '%s' defined in "
3364 "multiple places (possible ODR violation):"),
3365 output_file_name, demangle(symbol_name).c_str());
3366 // This only prints one location from each definition,
3367 // which may not be the location we expect to intersect
3368 // with another definition. We could print the whole
3369 // set of locations, but that seems too verbose.
3370 gold_assert(!first_object_linenos.empty());
3371 gold_assert(!linenos.empty());
3372 fprintf(stderr, _(" %s from %s\n"),
3373 first_object_linenos[0].c_str(),
3374 first_object_name.c_str());
3375 fprintf(stderr, _(" %s from %s\n"),
3376 linenos[0].c_str(),
3377 locs->object->name().c_str());
3378 // Only print one broken pair, to avoid needing to
3379 // compare against a list of the disjoint definition
3380 // locations we've found so far. (If we kept comparing
3381 // against just the first one, we'd get a lot of
3382 // redundant complaints about the second definition
3383 // location.)
3384 break;
3385 }
3386 }
3387 }
3388 // We only call one_addr2line() in this function, so we can clear its cache.
3389 Dwarf_line_info::clear_addr2line_cache();
3390 }
3391
3392 // Warnings functions.
3393
3394 // Add a new warning.
3395
3396 void
3397 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3398 const std::string& warning)
3399 {
3400 name = symtab->canonicalize_name(name);
3401 this->warnings_[name].set(obj, warning);
3402 }
3403
3404 // Look through the warnings and mark the symbols for which we should
3405 // warn. This is called during Layout::finalize when we know the
3406 // sources for all the symbols.
3407
3408 void
3409 Warnings::note_warnings(Symbol_table* symtab)
3410 {
3411 for (Warning_table::iterator p = this->warnings_.begin();
3412 p != this->warnings_.end();
3413 ++p)
3414 {
3415 Symbol* sym = symtab->lookup(p->first, NULL);
3416 if (sym != NULL
3417 && sym->source() == Symbol::FROM_OBJECT
3418 && sym->object() == p->second.object)
3419 sym->set_has_warning();
3420 }
3421 }
3422
3423 // Issue a warning. This is called when we see a relocation against a
3424 // symbol for which has a warning.
3425
3426 template<int size, bool big_endian>
3427 void
3428 Warnings::issue_warning(const Symbol* sym,
3429 const Relocate_info<size, big_endian>* relinfo,
3430 size_t relnum, off_t reloffset) const
3431 {
3432 gold_assert(sym->has_warning());
3433
3434 // We don't want to issue a warning for a relocation against the
3435 // symbol in the same object file in which the symbol is defined.
3436 if (sym->object() == relinfo->object)
3437 return;
3438
3439 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3440 gold_assert(p != this->warnings_.end());
3441 gold_warning_at_location(relinfo, relnum, reloffset,
3442 "%s", p->second.text.c_str());
3443 }
3444
3445 // Instantiate the templates we need. We could use the configure
3446 // script to restrict this to only the ones needed for implemented
3447 // targets.
3448
3449 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3450 template
3451 void
3452 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3453 #endif
3454
3455 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3456 template
3457 void
3458 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3459 #endif
3460
3461 #ifdef HAVE_TARGET_32_LITTLE
3462 template
3463 void
3464 Symbol_table::add_from_relobj<32, false>(
3465 Sized_relobj_file<32, false>* relobj,
3466 const unsigned char* syms,
3467 size_t count,
3468 size_t symndx_offset,
3469 const char* sym_names,
3470 size_t sym_name_size,
3471 Sized_relobj_file<32, false>::Symbols* sympointers,
3472 size_t* defined);
3473 #endif
3474
3475 #ifdef HAVE_TARGET_32_BIG
3476 template
3477 void
3478 Symbol_table::add_from_relobj<32, true>(
3479 Sized_relobj_file<32, true>* relobj,
3480 const unsigned char* syms,
3481 size_t count,
3482 size_t symndx_offset,
3483 const char* sym_names,
3484 size_t sym_name_size,
3485 Sized_relobj_file<32, true>::Symbols* sympointers,
3486 size_t* defined);
3487 #endif
3488
3489 #ifdef HAVE_TARGET_64_LITTLE
3490 template
3491 void
3492 Symbol_table::add_from_relobj<64, false>(
3493 Sized_relobj_file<64, false>* relobj,
3494 const unsigned char* syms,
3495 size_t count,
3496 size_t symndx_offset,
3497 const char* sym_names,
3498 size_t sym_name_size,
3499 Sized_relobj_file<64, false>::Symbols* sympointers,
3500 size_t* defined);
3501 #endif
3502
3503 #ifdef HAVE_TARGET_64_BIG
3504 template
3505 void
3506 Symbol_table::add_from_relobj<64, true>(
3507 Sized_relobj_file<64, true>* relobj,
3508 const unsigned char* syms,
3509 size_t count,
3510 size_t symndx_offset,
3511 const char* sym_names,
3512 size_t sym_name_size,
3513 Sized_relobj_file<64, true>::Symbols* sympointers,
3514 size_t* defined);
3515 #endif
3516
3517 #ifdef HAVE_TARGET_32_LITTLE
3518 template
3519 Symbol*
3520 Symbol_table::add_from_pluginobj<32, false>(
3521 Sized_pluginobj<32, false>* obj,
3522 const char* name,
3523 const char* ver,
3524 elfcpp::Sym<32, false>* sym);
3525 #endif
3526
3527 #ifdef HAVE_TARGET_32_BIG
3528 template
3529 Symbol*
3530 Symbol_table::add_from_pluginobj<32, true>(
3531 Sized_pluginobj<32, true>* obj,
3532 const char* name,
3533 const char* ver,
3534 elfcpp::Sym<32, true>* sym);
3535 #endif
3536
3537 #ifdef HAVE_TARGET_64_LITTLE
3538 template
3539 Symbol*
3540 Symbol_table::add_from_pluginobj<64, false>(
3541 Sized_pluginobj<64, false>* obj,
3542 const char* name,
3543 const char* ver,
3544 elfcpp::Sym<64, false>* sym);
3545 #endif
3546
3547 #ifdef HAVE_TARGET_64_BIG
3548 template
3549 Symbol*
3550 Symbol_table::add_from_pluginobj<64, true>(
3551 Sized_pluginobj<64, true>* obj,
3552 const char* name,
3553 const char* ver,
3554 elfcpp::Sym<64, true>* sym);
3555 #endif
3556
3557 #ifdef HAVE_TARGET_32_LITTLE
3558 template
3559 void
3560 Symbol_table::add_from_dynobj<32, false>(
3561 Sized_dynobj<32, false>* dynobj,
3562 const unsigned char* syms,
3563 size_t count,
3564 const char* sym_names,
3565 size_t sym_name_size,
3566 const unsigned char* versym,
3567 size_t versym_size,
3568 const std::vector<const char*>* version_map,
3569 Sized_relobj_file<32, false>::Symbols* sympointers,
3570 size_t* defined);
3571 #endif
3572
3573 #ifdef HAVE_TARGET_32_BIG
3574 template
3575 void
3576 Symbol_table::add_from_dynobj<32, true>(
3577 Sized_dynobj<32, true>* dynobj,
3578 const unsigned char* syms,
3579 size_t count,
3580 const char* sym_names,
3581 size_t sym_name_size,
3582 const unsigned char* versym,
3583 size_t versym_size,
3584 const std::vector<const char*>* version_map,
3585 Sized_relobj_file<32, true>::Symbols* sympointers,
3586 size_t* defined);
3587 #endif
3588
3589 #ifdef HAVE_TARGET_64_LITTLE
3590 template
3591 void
3592 Symbol_table::add_from_dynobj<64, false>(
3593 Sized_dynobj<64, false>* dynobj,
3594 const unsigned char* syms,
3595 size_t count,
3596 const char* sym_names,
3597 size_t sym_name_size,
3598 const unsigned char* versym,
3599 size_t versym_size,
3600 const std::vector<const char*>* version_map,
3601 Sized_relobj_file<64, false>::Symbols* sympointers,
3602 size_t* defined);
3603 #endif
3604
3605 #ifdef HAVE_TARGET_64_BIG
3606 template
3607 void
3608 Symbol_table::add_from_dynobj<64, true>(
3609 Sized_dynobj<64, true>* dynobj,
3610 const unsigned char* syms,
3611 size_t count,
3612 const char* sym_names,
3613 size_t sym_name_size,
3614 const unsigned char* versym,
3615 size_t versym_size,
3616 const std::vector<const char*>* version_map,
3617 Sized_relobj_file<64, true>::Symbols* sympointers,
3618 size_t* defined);
3619 #endif
3620
3621 #ifdef HAVE_TARGET_32_LITTLE
3622 template
3623 Sized_symbol<32>*
3624 Symbol_table::add_from_incrobj(
3625 Object* obj,
3626 const char* name,
3627 const char* ver,
3628 elfcpp::Sym<32, false>* sym);
3629 #endif
3630
3631 #ifdef HAVE_TARGET_32_BIG
3632 template
3633 Sized_symbol<32>*
3634 Symbol_table::add_from_incrobj(
3635 Object* obj,
3636 const char* name,
3637 const char* ver,
3638 elfcpp::Sym<32, true>* sym);
3639 #endif
3640
3641 #ifdef HAVE_TARGET_64_LITTLE
3642 template
3643 Sized_symbol<64>*
3644 Symbol_table::add_from_incrobj(
3645 Object* obj,
3646 const char* name,
3647 const char* ver,
3648 elfcpp::Sym<64, false>* sym);
3649 #endif
3650
3651 #ifdef HAVE_TARGET_64_BIG
3652 template
3653 Sized_symbol<64>*
3654 Symbol_table::add_from_incrobj(
3655 Object* obj,
3656 const char* name,
3657 const char* ver,
3658 elfcpp::Sym<64, true>* sym);
3659 #endif
3660
3661 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3662 template
3663 void
3664 Symbol_table::define_with_copy_reloc<32>(
3665 Sized_symbol<32>* sym,
3666 Output_data* posd,
3667 elfcpp::Elf_types<32>::Elf_Addr value);
3668 #endif
3669
3670 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3671 template
3672 void
3673 Symbol_table::define_with_copy_reloc<64>(
3674 Sized_symbol<64>* sym,
3675 Output_data* posd,
3676 elfcpp::Elf_types<64>::Elf_Addr value);
3677 #endif
3678
3679 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3680 template
3681 void
3682 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3683 Output_data* od, Value_type value,
3684 Size_type symsize, elfcpp::STT type,
3685 elfcpp::STB binding,
3686 elfcpp::STV visibility,
3687 unsigned char nonvis,
3688 bool offset_is_from_end,
3689 bool is_predefined);
3690 #endif
3691
3692 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3693 template
3694 void
3695 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3696 Output_data* od, Value_type value,
3697 Size_type symsize, elfcpp::STT type,
3698 elfcpp::STB binding,
3699 elfcpp::STV visibility,
3700 unsigned char nonvis,
3701 bool offset_is_from_end,
3702 bool is_predefined);
3703 #endif
3704
3705 #ifdef HAVE_TARGET_32_LITTLE
3706 template
3707 void
3708 Warnings::issue_warning<32, false>(const Symbol* sym,
3709 const Relocate_info<32, false>* relinfo,
3710 size_t relnum, off_t reloffset) const;
3711 #endif
3712
3713 #ifdef HAVE_TARGET_32_BIG
3714 template
3715 void
3716 Warnings::issue_warning<32, true>(const Symbol* sym,
3717 const Relocate_info<32, true>* relinfo,
3718 size_t relnum, off_t reloffset) const;
3719 #endif
3720
3721 #ifdef HAVE_TARGET_64_LITTLE
3722 template
3723 void
3724 Warnings::issue_warning<64, false>(const Symbol* sym,
3725 const Relocate_info<64, false>* relinfo,
3726 size_t relnum, off_t reloffset) const;
3727 #endif
3728
3729 #ifdef HAVE_TARGET_64_BIG
3730 template
3731 void
3732 Warnings::issue_warning<64, true>(const Symbol* sym,
3733 const Relocate_info<64, true>* relinfo,
3734 size_t relnum, off_t reloffset) const;
3735 #endif
3736
3737 } // End namespace gold.
This page took 0.14522 seconds and 5 git commands to generate.