Fix problem where TLS common symbols are not allocated properly during LTO.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Set the symbol's output segment. This is used for pre-defined
531 // symbols whose segments aren't known until after layout is done
532 // (e.g., __ehdr_start).
533
534 void
535 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
536 {
537 gold_assert(this->is_predefined_);
538 this->source_ = IN_OUTPUT_SEGMENT;
539 this->u_.in_output_segment.output_segment = os;
540 this->u_.in_output_segment.offset_base = base;
541 }
542
543 // Set the symbol to undefined. This is used for pre-defined
544 // symbols whose segments aren't known until after layout is done
545 // (e.g., __ehdr_start).
546
547 void
548 Symbol::set_undefined()
549 {
550 gold_assert(this->is_predefined_);
551 this->source_ = IS_UNDEFINED;
552 this->is_predefined_ = false;
553 }
554
555 // Class Symbol_table.
556
557 Symbol_table::Symbol_table(unsigned int count,
558 const Version_script_info& version_script)
559 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
560 forwarders_(), commons_(), tls_commons_(), small_commons_(),
561 large_commons_(), forced_locals_(), warnings_(),
562 version_script_(version_script), gc_(NULL), icf_(NULL)
563 {
564 namepool_.reserve(count);
565 }
566
567 Symbol_table::~Symbol_table()
568 {
569 }
570
571 // The symbol table key equality function. This is called with
572 // Stringpool keys.
573
574 inline bool
575 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
576 const Symbol_table_key& k2) const
577 {
578 return k1.first == k2.first && k1.second == k2.second;
579 }
580
581 bool
582 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
583 {
584 return (parameters->options().icf_enabled()
585 && this->icf_->is_section_folded(obj, shndx));
586 }
587
588 // For symbols that have been listed with a -u or --export-dynamic-symbol
589 // option, add them to the work list to avoid gc'ing them.
590
591 void
592 Symbol_table::gc_mark_undef_symbols(Layout* layout)
593 {
594 for (options::String_set::const_iterator p =
595 parameters->options().undefined_begin();
596 p != parameters->options().undefined_end();
597 ++p)
598 {
599 const char* name = p->c_str();
600 Symbol* sym = this->lookup(name);
601 gold_assert(sym != NULL);
602 if (sym->source() == Symbol::FROM_OBJECT
603 && !sym->object()->is_dynamic())
604 {
605 this->gc_mark_symbol(sym);
606 }
607 }
608
609 for (options::String_set::const_iterator p =
610 parameters->options().export_dynamic_symbol_begin();
611 p != parameters->options().export_dynamic_symbol_end();
612 ++p)
613 {
614 const char* name = p->c_str();
615 Symbol* sym = this->lookup(name);
616 // It's not an error if a symbol named by --export-dynamic-symbol
617 // is undefined.
618 if (sym != NULL
619 && sym->source() == Symbol::FROM_OBJECT
620 && !sym->object()->is_dynamic())
621 {
622 this->gc_mark_symbol(sym);
623 }
624 }
625
626 for (Script_options::referenced_const_iterator p =
627 layout->script_options()->referenced_begin();
628 p != layout->script_options()->referenced_end();
629 ++p)
630 {
631 Symbol* sym = this->lookup(p->c_str());
632 gold_assert(sym != NULL);
633 if (sym->source() == Symbol::FROM_OBJECT
634 && !sym->object()->is_dynamic())
635 {
636 this->gc_mark_symbol(sym);
637 }
638 }
639 }
640
641 void
642 Symbol_table::gc_mark_symbol(Symbol* sym)
643 {
644 // Add the object and section to the work list.
645 bool is_ordinary;
646 unsigned int shndx = sym->shndx(&is_ordinary);
647 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
648 {
649 gold_assert(this->gc_!= NULL);
650 this->gc_->worklist().push(Section_id(sym->object(), shndx));
651 }
652 parameters->target().gc_mark_symbol(this, sym);
653 }
654
655 // When doing garbage collection, keep symbols that have been seen in
656 // dynamic objects.
657 inline void
658 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
659 {
660 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
661 && !sym->object()->is_dynamic())
662 this->gc_mark_symbol(sym);
663 }
664
665 // Make TO a symbol which forwards to FROM.
666
667 void
668 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
669 {
670 gold_assert(from != to);
671 gold_assert(!from->is_forwarder() && !to->is_forwarder());
672 this->forwarders_[from] = to;
673 from->set_forwarder();
674 }
675
676 // Resolve the forwards from FROM, returning the real symbol.
677
678 Symbol*
679 Symbol_table::resolve_forwards(const Symbol* from) const
680 {
681 gold_assert(from->is_forwarder());
682 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
683 this->forwarders_.find(from);
684 gold_assert(p != this->forwarders_.end());
685 return p->second;
686 }
687
688 // Look up a symbol by name.
689
690 Symbol*
691 Symbol_table::lookup(const char* name, const char* version) const
692 {
693 Stringpool::Key name_key;
694 name = this->namepool_.find(name, &name_key);
695 if (name == NULL)
696 return NULL;
697
698 Stringpool::Key version_key = 0;
699 if (version != NULL)
700 {
701 version = this->namepool_.find(version, &version_key);
702 if (version == NULL)
703 return NULL;
704 }
705
706 Symbol_table_key key(name_key, version_key);
707 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
708 if (p == this->table_.end())
709 return NULL;
710 return p->second;
711 }
712
713 // Resolve a Symbol with another Symbol. This is only used in the
714 // unusual case where there are references to both an unversioned
715 // symbol and a symbol with a version, and we then discover that that
716 // version is the default version. Because this is unusual, we do
717 // this the slow way, by converting back to an ELF symbol.
718
719 template<int size, bool big_endian>
720 void
721 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
722 {
723 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
724 elfcpp::Sym_write<size, big_endian> esym(buf);
725 // We don't bother to set the st_name or the st_shndx field.
726 esym.put_st_value(from->value());
727 esym.put_st_size(from->symsize());
728 esym.put_st_info(from->binding(), from->type());
729 esym.put_st_other(from->visibility(), from->nonvis());
730 bool is_ordinary;
731 unsigned int shndx = from->shndx(&is_ordinary);
732 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
733 from->version());
734 if (from->in_reg())
735 to->set_in_reg();
736 if (from->in_dyn())
737 to->set_in_dyn();
738 if (parameters->options().gc_sections())
739 this->gc_mark_dyn_syms(to);
740 }
741
742 // Record that a symbol is forced to be local by a version script or
743 // by visibility.
744
745 void
746 Symbol_table::force_local(Symbol* sym)
747 {
748 if (!sym->is_defined() && !sym->is_common())
749 return;
750 if (sym->is_forced_local())
751 {
752 // We already got this one.
753 return;
754 }
755 sym->set_is_forced_local();
756 this->forced_locals_.push_back(sym);
757 }
758
759 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
760 // is only called for undefined symbols, when at least one --wrap
761 // option was used.
762
763 const char*
764 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
765 {
766 // For some targets, we need to ignore a specific character when
767 // wrapping, and add it back later.
768 char prefix = '\0';
769 if (name[0] == parameters->target().wrap_char())
770 {
771 prefix = name[0];
772 ++name;
773 }
774
775 if (parameters->options().is_wrap(name))
776 {
777 // Turn NAME into __wrap_NAME.
778 std::string s;
779 if (prefix != '\0')
780 s += prefix;
781 s += "__wrap_";
782 s += name;
783
784 // This will give us both the old and new name in NAMEPOOL_, but
785 // that is OK. Only the versions we need will wind up in the
786 // real string table in the output file.
787 return this->namepool_.add(s.c_str(), true, name_key);
788 }
789
790 const char* const real_prefix = "__real_";
791 const size_t real_prefix_length = strlen(real_prefix);
792 if (strncmp(name, real_prefix, real_prefix_length) == 0
793 && parameters->options().is_wrap(name + real_prefix_length))
794 {
795 // Turn __real_NAME into NAME.
796 std::string s;
797 if (prefix != '\0')
798 s += prefix;
799 s += name + real_prefix_length;
800 return this->namepool_.add(s.c_str(), true, name_key);
801 }
802
803 return name;
804 }
805
806 // This is called when we see a symbol NAME/VERSION, and the symbol
807 // already exists in the symbol table, and VERSION is marked as being
808 // the default version. SYM is the NAME/VERSION symbol we just added.
809 // DEFAULT_IS_NEW is true if this is the first time we have seen the
810 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
811
812 template<int size, bool big_endian>
813 void
814 Symbol_table::define_default_version(Sized_symbol<size>* sym,
815 bool default_is_new,
816 Symbol_table_type::iterator pdef)
817 {
818 if (default_is_new)
819 {
820 // This is the first time we have seen NAME/NULL. Make
821 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
822 // version.
823 pdef->second = sym;
824 sym->set_is_default();
825 }
826 else if (pdef->second == sym)
827 {
828 // NAME/NULL already points to NAME/VERSION. Don't mark the
829 // symbol as the default if it is not already the default.
830 }
831 else
832 {
833 // This is the unfortunate case where we already have entries
834 // for both NAME/VERSION and NAME/NULL. We now see a symbol
835 // NAME/VERSION where VERSION is the default version. We have
836 // already resolved this new symbol with the existing
837 // NAME/VERSION symbol.
838
839 // It's possible that NAME/NULL and NAME/VERSION are both
840 // defined in regular objects. This can only happen if one
841 // object file defines foo and another defines foo@@ver. This
842 // is somewhat obscure, but we call it a multiple definition
843 // error.
844
845 // It's possible that NAME/NULL actually has a version, in which
846 // case it won't be the same as VERSION. This happens with
847 // ver_test_7.so in the testsuite for the symbol t2_2. We see
848 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
849 // then see an unadorned t2_2 in an object file and give it
850 // version VER1 from the version script. This looks like a
851 // default definition for VER1, so it looks like we should merge
852 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
853 // not obvious that this is an error, either. So we just punt.
854
855 // If one of the symbols has non-default visibility, and the
856 // other is defined in a shared object, then they are different
857 // symbols.
858
859 // Otherwise, we just resolve the symbols as though they were
860 // the same.
861
862 if (pdef->second->version() != NULL)
863 gold_assert(pdef->second->version() != sym->version());
864 else if (sym->visibility() != elfcpp::STV_DEFAULT
865 && pdef->second->is_from_dynobj())
866 ;
867 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
868 && sym->is_from_dynobj())
869 ;
870 else
871 {
872 const Sized_symbol<size>* symdef;
873 symdef = this->get_sized_symbol<size>(pdef->second);
874 Symbol_table::resolve<size, big_endian>(sym, symdef);
875 this->make_forwarder(pdef->second, sym);
876 pdef->second = sym;
877 sym->set_is_default();
878 }
879 }
880 }
881
882 // Add one symbol from OBJECT to the symbol table. NAME is symbol
883 // name and VERSION is the version; both are canonicalized. DEF is
884 // whether this is the default version. ST_SHNDX is the symbol's
885 // section index; IS_ORDINARY is whether this is a normal section
886 // rather than a special code.
887
888 // If IS_DEFAULT_VERSION is true, then this is the definition of a
889 // default version of a symbol. That means that any lookup of
890 // NAME/NULL and any lookup of NAME/VERSION should always return the
891 // same symbol. This is obvious for references, but in particular we
892 // want to do this for definitions: overriding NAME/NULL should also
893 // override NAME/VERSION. If we don't do that, it would be very hard
894 // to override functions in a shared library which uses versioning.
895
896 // We implement this by simply making both entries in the hash table
897 // point to the same Symbol structure. That is easy enough if this is
898 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
899 // that we have seen both already, in which case they will both have
900 // independent entries in the symbol table. We can't simply change
901 // the symbol table entry, because we have pointers to the entries
902 // attached to the object files. So we mark the entry attached to the
903 // object file as a forwarder, and record it in the forwarders_ map.
904 // Note that entries in the hash table will never be marked as
905 // forwarders.
906 //
907 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
908 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
909 // for a special section code. ST_SHNDX may be modified if the symbol
910 // is defined in a section being discarded.
911
912 template<int size, bool big_endian>
913 Sized_symbol<size>*
914 Symbol_table::add_from_object(Object* object,
915 const char* name,
916 Stringpool::Key name_key,
917 const char* version,
918 Stringpool::Key version_key,
919 bool is_default_version,
920 const elfcpp::Sym<size, big_endian>& sym,
921 unsigned int st_shndx,
922 bool is_ordinary,
923 unsigned int orig_st_shndx)
924 {
925 // Print a message if this symbol is being traced.
926 if (parameters->options().is_trace_symbol(name))
927 {
928 if (orig_st_shndx == elfcpp::SHN_UNDEF)
929 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
930 else
931 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
932 }
933
934 // For an undefined symbol, we may need to adjust the name using
935 // --wrap.
936 if (orig_st_shndx == elfcpp::SHN_UNDEF
937 && parameters->options().any_wrap())
938 {
939 const char* wrap_name = this->wrap_symbol(name, &name_key);
940 if (wrap_name != name)
941 {
942 // If we see a reference to malloc with version GLIBC_2.0,
943 // and we turn it into a reference to __wrap_malloc, then we
944 // discard the version number. Otherwise the user would be
945 // required to specify the correct version for
946 // __wrap_malloc.
947 version = NULL;
948 version_key = 0;
949 name = wrap_name;
950 }
951 }
952
953 Symbol* const snull = NULL;
954 std::pair<typename Symbol_table_type::iterator, bool> ins =
955 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
956 snull));
957
958 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
959 std::make_pair(this->table_.end(), false);
960 if (is_default_version)
961 {
962 const Stringpool::Key vnull_key = 0;
963 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
964 vnull_key),
965 snull));
966 }
967
968 // ins.first: an iterator, which is a pointer to a pair.
969 // ins.first->first: the key (a pair of name and version).
970 // ins.first->second: the value (Symbol*).
971 // ins.second: true if new entry was inserted, false if not.
972
973 Sized_symbol<size>* ret;
974 bool was_undefined;
975 bool was_common;
976 if (!ins.second)
977 {
978 // We already have an entry for NAME/VERSION.
979 ret = this->get_sized_symbol<size>(ins.first->second);
980 gold_assert(ret != NULL);
981
982 was_undefined = ret->is_undefined();
983 // Commons from plugins are just placeholders.
984 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
985
986 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
987 version);
988 if (parameters->options().gc_sections())
989 this->gc_mark_dyn_syms(ret);
990
991 if (is_default_version)
992 this->define_default_version<size, big_endian>(ret, insdefault.second,
993 insdefault.first);
994 }
995 else
996 {
997 // This is the first time we have seen NAME/VERSION.
998 gold_assert(ins.first->second == NULL);
999
1000 if (is_default_version && !insdefault.second)
1001 {
1002 // We already have an entry for NAME/NULL. If we override
1003 // it, then change it to NAME/VERSION.
1004 ret = this->get_sized_symbol<size>(insdefault.first->second);
1005
1006 was_undefined = ret->is_undefined();
1007 // Commons from plugins are just placeholders.
1008 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1009
1010 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1011 version);
1012 if (parameters->options().gc_sections())
1013 this->gc_mark_dyn_syms(ret);
1014 ins.first->second = ret;
1015 }
1016 else
1017 {
1018 was_undefined = false;
1019 was_common = false;
1020
1021 Sized_target<size, big_endian>* target =
1022 parameters->sized_target<size, big_endian>();
1023 if (!target->has_make_symbol())
1024 ret = new Sized_symbol<size>();
1025 else
1026 {
1027 ret = target->make_symbol();
1028 if (ret == NULL)
1029 {
1030 // This means that we don't want a symbol table
1031 // entry after all.
1032 if (!is_default_version)
1033 this->table_.erase(ins.first);
1034 else
1035 {
1036 this->table_.erase(insdefault.first);
1037 // Inserting INSDEFAULT invalidated INS.
1038 this->table_.erase(std::make_pair(name_key,
1039 version_key));
1040 }
1041 return NULL;
1042 }
1043 }
1044
1045 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1046
1047 ins.first->second = ret;
1048 if (is_default_version)
1049 {
1050 // This is the first time we have seen NAME/NULL. Point
1051 // it at the new entry for NAME/VERSION.
1052 gold_assert(insdefault.second);
1053 insdefault.first->second = ret;
1054 }
1055 }
1056
1057 if (is_default_version)
1058 ret->set_is_default();
1059 }
1060
1061 // Record every time we see a new undefined symbol, to speed up
1062 // archive groups.
1063 if (!was_undefined && ret->is_undefined())
1064 {
1065 ++this->saw_undefined_;
1066 if (parameters->options().has_plugins())
1067 parameters->options().plugins()->new_undefined_symbol(ret);
1068 }
1069
1070 // Keep track of common symbols, to speed up common symbol
1071 // allocation. Don't record commons from plugin objects;
1072 // we need to wait until we see the real symbol in the
1073 // replacement file.
1074 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1075 {
1076 if (ret->type() == elfcpp::STT_TLS)
1077 this->tls_commons_.push_back(ret);
1078 else if (!is_ordinary
1079 && st_shndx == parameters->target().small_common_shndx())
1080 this->small_commons_.push_back(ret);
1081 else if (!is_ordinary
1082 && st_shndx == parameters->target().large_common_shndx())
1083 this->large_commons_.push_back(ret);
1084 else
1085 this->commons_.push_back(ret);
1086 }
1087
1088 // If we're not doing a relocatable link, then any symbol with
1089 // hidden or internal visibility is local.
1090 if ((ret->visibility() == elfcpp::STV_HIDDEN
1091 || ret->visibility() == elfcpp::STV_INTERNAL)
1092 && (ret->binding() == elfcpp::STB_GLOBAL
1093 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1094 || ret->binding() == elfcpp::STB_WEAK)
1095 && !parameters->options().relocatable())
1096 this->force_local(ret);
1097
1098 return ret;
1099 }
1100
1101 // Add all the symbols in a relocatable object to the hash table.
1102
1103 template<int size, bool big_endian>
1104 void
1105 Symbol_table::add_from_relobj(
1106 Sized_relobj_file<size, big_endian>* relobj,
1107 const unsigned char* syms,
1108 size_t count,
1109 size_t symndx_offset,
1110 const char* sym_names,
1111 size_t sym_name_size,
1112 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1113 size_t* defined)
1114 {
1115 *defined = 0;
1116
1117 gold_assert(size == parameters->target().get_size());
1118
1119 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1120
1121 const bool just_symbols = relobj->just_symbols();
1122
1123 const unsigned char* p = syms;
1124 for (size_t i = 0; i < count; ++i, p += sym_size)
1125 {
1126 (*sympointers)[i] = NULL;
1127
1128 elfcpp::Sym<size, big_endian> sym(p);
1129
1130 unsigned int st_name = sym.get_st_name();
1131 if (st_name >= sym_name_size)
1132 {
1133 relobj->error(_("bad global symbol name offset %u at %zu"),
1134 st_name, i);
1135 continue;
1136 }
1137
1138 const char* name = sym_names + st_name;
1139
1140 if (strcmp (name, "__gnu_lto_slim") == 0)
1141 gold_info(_("%s: plugin needed to handle lto object"),
1142 relobj->name().c_str());
1143
1144 bool is_ordinary;
1145 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1146 sym.get_st_shndx(),
1147 &is_ordinary);
1148 unsigned int orig_st_shndx = st_shndx;
1149 if (!is_ordinary)
1150 orig_st_shndx = elfcpp::SHN_UNDEF;
1151
1152 if (st_shndx != elfcpp::SHN_UNDEF)
1153 ++*defined;
1154
1155 // A symbol defined in a section which we are not including must
1156 // be treated as an undefined symbol.
1157 bool is_defined_in_discarded_section = false;
1158 if (st_shndx != elfcpp::SHN_UNDEF
1159 && is_ordinary
1160 && !relobj->is_section_included(st_shndx)
1161 && !this->is_section_folded(relobj, st_shndx))
1162 {
1163 st_shndx = elfcpp::SHN_UNDEF;
1164 is_defined_in_discarded_section = true;
1165 }
1166
1167 // In an object file, an '@' in the name separates the symbol
1168 // name from the version name. If there are two '@' characters,
1169 // this is the default version.
1170 const char* ver = strchr(name, '@');
1171 Stringpool::Key ver_key = 0;
1172 int namelen = 0;
1173 // IS_DEFAULT_VERSION: is the version default?
1174 // IS_FORCED_LOCAL: is the symbol forced local?
1175 bool is_default_version = false;
1176 bool is_forced_local = false;
1177
1178 // FIXME: For incremental links, we don't store version information,
1179 // so we need to ignore version symbols for now.
1180 if (parameters->incremental_update() && ver != NULL)
1181 {
1182 namelen = ver - name;
1183 ver = NULL;
1184 }
1185
1186 if (ver != NULL)
1187 {
1188 // The symbol name is of the form foo@VERSION or foo@@VERSION
1189 namelen = ver - name;
1190 ++ver;
1191 if (*ver == '@')
1192 {
1193 is_default_version = true;
1194 ++ver;
1195 }
1196 ver = this->namepool_.add(ver, true, &ver_key);
1197 }
1198 // We don't want to assign a version to an undefined symbol,
1199 // even if it is listed in the version script. FIXME: What
1200 // about a common symbol?
1201 else
1202 {
1203 namelen = strlen(name);
1204 if (!this->version_script_.empty()
1205 && st_shndx != elfcpp::SHN_UNDEF)
1206 {
1207 // The symbol name did not have a version, but the
1208 // version script may assign a version anyway.
1209 std::string version;
1210 bool is_global;
1211 if (this->version_script_.get_symbol_version(name, &version,
1212 &is_global))
1213 {
1214 if (!is_global)
1215 is_forced_local = true;
1216 else if (!version.empty())
1217 {
1218 ver = this->namepool_.add_with_length(version.c_str(),
1219 version.length(),
1220 true,
1221 &ver_key);
1222 is_default_version = true;
1223 }
1224 }
1225 }
1226 }
1227
1228 elfcpp::Sym<size, big_endian>* psym = &sym;
1229 unsigned char symbuf[sym_size];
1230 elfcpp::Sym<size, big_endian> sym2(symbuf);
1231 if (just_symbols)
1232 {
1233 memcpy(symbuf, p, sym_size);
1234 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1235 if (orig_st_shndx != elfcpp::SHN_UNDEF
1236 && is_ordinary
1237 && relobj->e_type() == elfcpp::ET_REL)
1238 {
1239 // Symbol values in relocatable object files are section
1240 // relative. This is normally what we want, but since here
1241 // we are converting the symbol to absolute we need to add
1242 // the section address. The section address in an object
1243 // file is normally zero, but people can use a linker
1244 // script to change it.
1245 sw.put_st_value(sym.get_st_value()
1246 + relobj->section_address(orig_st_shndx));
1247 }
1248 st_shndx = elfcpp::SHN_ABS;
1249 is_ordinary = false;
1250 psym = &sym2;
1251 }
1252
1253 // Fix up visibility if object has no-export set.
1254 if (relobj->no_export()
1255 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1256 {
1257 // We may have copied symbol already above.
1258 if (psym != &sym2)
1259 {
1260 memcpy(symbuf, p, sym_size);
1261 psym = &sym2;
1262 }
1263
1264 elfcpp::STV visibility = sym2.get_st_visibility();
1265 if (visibility == elfcpp::STV_DEFAULT
1266 || visibility == elfcpp::STV_PROTECTED)
1267 {
1268 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1269 unsigned char nonvis = sym2.get_st_nonvis();
1270 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1271 }
1272 }
1273
1274 Stringpool::Key name_key;
1275 name = this->namepool_.add_with_length(name, namelen, true,
1276 &name_key);
1277
1278 Sized_symbol<size>* res;
1279 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1280 is_default_version, *psym, st_shndx,
1281 is_ordinary, orig_st_shndx);
1282
1283 if (is_forced_local)
1284 this->force_local(res);
1285
1286 // Do not treat this symbol as garbage if this symbol will be
1287 // exported to the dynamic symbol table. This is true when
1288 // building a shared library or using --export-dynamic and
1289 // the symbol is externally visible.
1290 if (parameters->options().gc_sections()
1291 && res->is_externally_visible()
1292 && !res->is_from_dynobj()
1293 && (parameters->options().shared()
1294 || parameters->options().export_dynamic()
1295 || parameters->options().in_dynamic_list(res->name())))
1296 this->gc_mark_symbol(res);
1297
1298 if (is_defined_in_discarded_section)
1299 res->set_is_defined_in_discarded_section();
1300
1301 (*sympointers)[i] = res;
1302 }
1303 }
1304
1305 // Add a symbol from a plugin-claimed file.
1306
1307 template<int size, bool big_endian>
1308 Symbol*
1309 Symbol_table::add_from_pluginobj(
1310 Sized_pluginobj<size, big_endian>* obj,
1311 const char* name,
1312 const char* ver,
1313 elfcpp::Sym<size, big_endian>* sym)
1314 {
1315 unsigned int st_shndx = sym->get_st_shndx();
1316 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1317
1318 Stringpool::Key ver_key = 0;
1319 bool is_default_version = false;
1320 bool is_forced_local = false;
1321
1322 if (ver != NULL)
1323 {
1324 ver = this->namepool_.add(ver, true, &ver_key);
1325 }
1326 // We don't want to assign a version to an undefined symbol,
1327 // even if it is listed in the version script. FIXME: What
1328 // about a common symbol?
1329 else
1330 {
1331 if (!this->version_script_.empty()
1332 && st_shndx != elfcpp::SHN_UNDEF)
1333 {
1334 // The symbol name did not have a version, but the
1335 // version script may assign a version anyway.
1336 std::string version;
1337 bool is_global;
1338 if (this->version_script_.get_symbol_version(name, &version,
1339 &is_global))
1340 {
1341 if (!is_global)
1342 is_forced_local = true;
1343 else if (!version.empty())
1344 {
1345 ver = this->namepool_.add_with_length(version.c_str(),
1346 version.length(),
1347 true,
1348 &ver_key);
1349 is_default_version = true;
1350 }
1351 }
1352 }
1353 }
1354
1355 Stringpool::Key name_key;
1356 name = this->namepool_.add(name, true, &name_key);
1357
1358 Sized_symbol<size>* res;
1359 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1360 is_default_version, *sym, st_shndx,
1361 is_ordinary, st_shndx);
1362
1363 if (is_forced_local)
1364 this->force_local(res);
1365
1366 return res;
1367 }
1368
1369 // Add all the symbols in a dynamic object to the hash table.
1370
1371 template<int size, bool big_endian>
1372 void
1373 Symbol_table::add_from_dynobj(
1374 Sized_dynobj<size, big_endian>* dynobj,
1375 const unsigned char* syms,
1376 size_t count,
1377 const char* sym_names,
1378 size_t sym_name_size,
1379 const unsigned char* versym,
1380 size_t versym_size,
1381 const std::vector<const char*>* version_map,
1382 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1383 size_t* defined)
1384 {
1385 *defined = 0;
1386
1387 gold_assert(size == parameters->target().get_size());
1388
1389 if (dynobj->just_symbols())
1390 {
1391 gold_error(_("--just-symbols does not make sense with a shared object"));
1392 return;
1393 }
1394
1395 // FIXME: For incremental links, we don't store version information,
1396 // so we need to ignore version symbols for now.
1397 if (parameters->incremental_update())
1398 versym = NULL;
1399
1400 if (versym != NULL && versym_size / 2 < count)
1401 {
1402 dynobj->error(_("too few symbol versions"));
1403 return;
1404 }
1405
1406 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1407
1408 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1409 // weak aliases. This is necessary because if the dynamic object
1410 // provides the same variable under two names, one of which is a
1411 // weak definition, and the regular object refers to the weak
1412 // definition, we have to put both the weak definition and the
1413 // strong definition into the dynamic symbol table. Given a weak
1414 // definition, the only way that we can find the corresponding
1415 // strong definition, if any, is to search the symbol table.
1416 std::vector<Sized_symbol<size>*> object_symbols;
1417
1418 const unsigned char* p = syms;
1419 const unsigned char* vs = versym;
1420 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1421 {
1422 elfcpp::Sym<size, big_endian> sym(p);
1423
1424 if (sympointers != NULL)
1425 (*sympointers)[i] = NULL;
1426
1427 // Ignore symbols with local binding or that have
1428 // internal or hidden visibility.
1429 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1430 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1431 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1432 continue;
1433
1434 // A protected symbol in a shared library must be treated as a
1435 // normal symbol when viewed from outside the shared library.
1436 // Implement this by overriding the visibility here.
1437 elfcpp::Sym<size, big_endian>* psym = &sym;
1438 unsigned char symbuf[sym_size];
1439 elfcpp::Sym<size, big_endian> sym2(symbuf);
1440 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1441 {
1442 memcpy(symbuf, p, sym_size);
1443 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1444 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1445 psym = &sym2;
1446 }
1447
1448 unsigned int st_name = psym->get_st_name();
1449 if (st_name >= sym_name_size)
1450 {
1451 dynobj->error(_("bad symbol name offset %u at %zu"),
1452 st_name, i);
1453 continue;
1454 }
1455
1456 const char* name = sym_names + st_name;
1457
1458 bool is_ordinary;
1459 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1460 &is_ordinary);
1461
1462 if (st_shndx != elfcpp::SHN_UNDEF)
1463 ++*defined;
1464
1465 Sized_symbol<size>* res;
1466
1467 if (versym == NULL)
1468 {
1469 Stringpool::Key name_key;
1470 name = this->namepool_.add(name, true, &name_key);
1471 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1472 false, *psym, st_shndx, is_ordinary,
1473 st_shndx);
1474 }
1475 else
1476 {
1477 // Read the version information.
1478
1479 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1480
1481 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1482 v &= elfcpp::VERSYM_VERSION;
1483
1484 // The Sun documentation says that V can be VER_NDX_LOCAL,
1485 // or VER_NDX_GLOBAL, or a version index. The meaning of
1486 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1487 // The old GNU linker will happily generate VER_NDX_LOCAL
1488 // for an undefined symbol. I don't know what the Sun
1489 // linker will generate.
1490
1491 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1492 && st_shndx != elfcpp::SHN_UNDEF)
1493 {
1494 // This symbol should not be visible outside the object.
1495 continue;
1496 }
1497
1498 // At this point we are definitely going to add this symbol.
1499 Stringpool::Key name_key;
1500 name = this->namepool_.add(name, true, &name_key);
1501
1502 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1503 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1504 {
1505 // This symbol does not have a version.
1506 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1507 false, *psym, st_shndx, is_ordinary,
1508 st_shndx);
1509 }
1510 else
1511 {
1512 if (v >= version_map->size())
1513 {
1514 dynobj->error(_("versym for symbol %zu out of range: %u"),
1515 i, v);
1516 continue;
1517 }
1518
1519 const char* version = (*version_map)[v];
1520 if (version == NULL)
1521 {
1522 dynobj->error(_("versym for symbol %zu has no name: %u"),
1523 i, v);
1524 continue;
1525 }
1526
1527 Stringpool::Key version_key;
1528 version = this->namepool_.add(version, true, &version_key);
1529
1530 // If this is an absolute symbol, and the version name
1531 // and symbol name are the same, then this is the
1532 // version definition symbol. These symbols exist to
1533 // support using -u to pull in particular versions. We
1534 // do not want to record a version for them.
1535 if (st_shndx == elfcpp::SHN_ABS
1536 && !is_ordinary
1537 && name_key == version_key)
1538 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1539 false, *psym, st_shndx, is_ordinary,
1540 st_shndx);
1541 else
1542 {
1543 const bool is_default_version =
1544 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1545 res = this->add_from_object(dynobj, name, name_key, version,
1546 version_key, is_default_version,
1547 *psym, st_shndx,
1548 is_ordinary, st_shndx);
1549 }
1550 }
1551 }
1552
1553 // Note that it is possible that RES was overridden by an
1554 // earlier object, in which case it can't be aliased here.
1555 if (st_shndx != elfcpp::SHN_UNDEF
1556 && is_ordinary
1557 && psym->get_st_type() == elfcpp::STT_OBJECT
1558 && res->source() == Symbol::FROM_OBJECT
1559 && res->object() == dynobj)
1560 object_symbols.push_back(res);
1561
1562 if (sympointers != NULL)
1563 (*sympointers)[i] = res;
1564 }
1565
1566 this->record_weak_aliases(&object_symbols);
1567 }
1568
1569 // Add a symbol from a incremental object file.
1570
1571 template<int size, bool big_endian>
1572 Sized_symbol<size>*
1573 Symbol_table::add_from_incrobj(
1574 Object* obj,
1575 const char* name,
1576 const char* ver,
1577 elfcpp::Sym<size, big_endian>* sym)
1578 {
1579 unsigned int st_shndx = sym->get_st_shndx();
1580 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1581
1582 Stringpool::Key ver_key = 0;
1583 bool is_default_version = false;
1584 bool is_forced_local = false;
1585
1586 Stringpool::Key name_key;
1587 name = this->namepool_.add(name, true, &name_key);
1588
1589 Sized_symbol<size>* res;
1590 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1591 is_default_version, *sym, st_shndx,
1592 is_ordinary, st_shndx);
1593
1594 if (is_forced_local)
1595 this->force_local(res);
1596
1597 return res;
1598 }
1599
1600 // This is used to sort weak aliases. We sort them first by section
1601 // index, then by offset, then by weak ahead of strong.
1602
1603 template<int size>
1604 class Weak_alias_sorter
1605 {
1606 public:
1607 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1608 };
1609
1610 template<int size>
1611 bool
1612 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1613 const Sized_symbol<size>* s2) const
1614 {
1615 bool is_ordinary;
1616 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1617 gold_assert(is_ordinary);
1618 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1619 gold_assert(is_ordinary);
1620 if (s1_shndx != s2_shndx)
1621 return s1_shndx < s2_shndx;
1622
1623 if (s1->value() != s2->value())
1624 return s1->value() < s2->value();
1625 if (s1->binding() != s2->binding())
1626 {
1627 if (s1->binding() == elfcpp::STB_WEAK)
1628 return true;
1629 if (s2->binding() == elfcpp::STB_WEAK)
1630 return false;
1631 }
1632 return std::string(s1->name()) < std::string(s2->name());
1633 }
1634
1635 // SYMBOLS is a list of object symbols from a dynamic object. Look
1636 // for any weak aliases, and record them so that if we add the weak
1637 // alias to the dynamic symbol table, we also add the corresponding
1638 // strong symbol.
1639
1640 template<int size>
1641 void
1642 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1643 {
1644 // Sort the vector by section index, then by offset, then by weak
1645 // ahead of strong.
1646 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1647
1648 // Walk through the vector. For each weak definition, record
1649 // aliases.
1650 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1651 symbols->begin();
1652 p != symbols->end();
1653 ++p)
1654 {
1655 if ((*p)->binding() != elfcpp::STB_WEAK)
1656 continue;
1657
1658 // Build a circular list of weak aliases. Each symbol points to
1659 // the next one in the circular list.
1660
1661 Sized_symbol<size>* from_sym = *p;
1662 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1663 for (q = p + 1; q != symbols->end(); ++q)
1664 {
1665 bool dummy;
1666 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1667 || (*q)->value() != from_sym->value())
1668 break;
1669
1670 this->weak_aliases_[from_sym] = *q;
1671 from_sym->set_has_alias();
1672 from_sym = *q;
1673 }
1674
1675 if (from_sym != *p)
1676 {
1677 this->weak_aliases_[from_sym] = *p;
1678 from_sym->set_has_alias();
1679 }
1680
1681 p = q - 1;
1682 }
1683 }
1684
1685 // Create and return a specially defined symbol. If ONLY_IF_REF is
1686 // true, then only create the symbol if there is a reference to it.
1687 // If this does not return NULL, it sets *POLDSYM to the existing
1688 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1689 // resolve the newly created symbol to the old one. This
1690 // canonicalizes *PNAME and *PVERSION.
1691
1692 template<int size, bool big_endian>
1693 Sized_symbol<size>*
1694 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1695 bool only_if_ref,
1696 Sized_symbol<size>** poldsym,
1697 bool* resolve_oldsym)
1698 {
1699 *resolve_oldsym = false;
1700 *poldsym = NULL;
1701
1702 // If the caller didn't give us a version, see if we get one from
1703 // the version script.
1704 std::string v;
1705 bool is_default_version = false;
1706 if (*pversion == NULL)
1707 {
1708 bool is_global;
1709 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1710 {
1711 if (is_global && !v.empty())
1712 {
1713 *pversion = v.c_str();
1714 // If we get the version from a version script, then we
1715 // are also the default version.
1716 is_default_version = true;
1717 }
1718 }
1719 }
1720
1721 Symbol* oldsym;
1722 Sized_symbol<size>* sym;
1723
1724 bool add_to_table = false;
1725 typename Symbol_table_type::iterator add_loc = this->table_.end();
1726 bool add_def_to_table = false;
1727 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1728
1729 if (only_if_ref)
1730 {
1731 oldsym = this->lookup(*pname, *pversion);
1732 if (oldsym == NULL && is_default_version)
1733 oldsym = this->lookup(*pname, NULL);
1734 if (oldsym == NULL || !oldsym->is_undefined())
1735 return NULL;
1736
1737 *pname = oldsym->name();
1738 if (is_default_version)
1739 *pversion = this->namepool_.add(*pversion, true, NULL);
1740 else
1741 *pversion = oldsym->version();
1742 }
1743 else
1744 {
1745 // Canonicalize NAME and VERSION.
1746 Stringpool::Key name_key;
1747 *pname = this->namepool_.add(*pname, true, &name_key);
1748
1749 Stringpool::Key version_key = 0;
1750 if (*pversion != NULL)
1751 *pversion = this->namepool_.add(*pversion, true, &version_key);
1752
1753 Symbol* const snull = NULL;
1754 std::pair<typename Symbol_table_type::iterator, bool> ins =
1755 this->table_.insert(std::make_pair(std::make_pair(name_key,
1756 version_key),
1757 snull));
1758
1759 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1760 std::make_pair(this->table_.end(), false);
1761 if (is_default_version)
1762 {
1763 const Stringpool::Key vnull = 0;
1764 insdefault =
1765 this->table_.insert(std::make_pair(std::make_pair(name_key,
1766 vnull),
1767 snull));
1768 }
1769
1770 if (!ins.second)
1771 {
1772 // We already have a symbol table entry for NAME/VERSION.
1773 oldsym = ins.first->second;
1774 gold_assert(oldsym != NULL);
1775
1776 if (is_default_version)
1777 {
1778 Sized_symbol<size>* soldsym =
1779 this->get_sized_symbol<size>(oldsym);
1780 this->define_default_version<size, big_endian>(soldsym,
1781 insdefault.second,
1782 insdefault.first);
1783 }
1784 }
1785 else
1786 {
1787 // We haven't seen this symbol before.
1788 gold_assert(ins.first->second == NULL);
1789
1790 add_to_table = true;
1791 add_loc = ins.first;
1792
1793 if (is_default_version && !insdefault.second)
1794 {
1795 // We are adding NAME/VERSION, and it is the default
1796 // version. We already have an entry for NAME/NULL.
1797 oldsym = insdefault.first->second;
1798 *resolve_oldsym = true;
1799 }
1800 else
1801 {
1802 oldsym = NULL;
1803
1804 if (is_default_version)
1805 {
1806 add_def_to_table = true;
1807 add_def_loc = insdefault.first;
1808 }
1809 }
1810 }
1811 }
1812
1813 const Target& target = parameters->target();
1814 if (!target.has_make_symbol())
1815 sym = new Sized_symbol<size>();
1816 else
1817 {
1818 Sized_target<size, big_endian>* sized_target =
1819 parameters->sized_target<size, big_endian>();
1820 sym = sized_target->make_symbol();
1821 if (sym == NULL)
1822 return NULL;
1823 }
1824
1825 if (add_to_table)
1826 add_loc->second = sym;
1827 else
1828 gold_assert(oldsym != NULL);
1829
1830 if (add_def_to_table)
1831 add_def_loc->second = sym;
1832
1833 *poldsym = this->get_sized_symbol<size>(oldsym);
1834
1835 return sym;
1836 }
1837
1838 // Define a symbol based on an Output_data.
1839
1840 Symbol*
1841 Symbol_table::define_in_output_data(const char* name,
1842 const char* version,
1843 Defined defined,
1844 Output_data* od,
1845 uint64_t value,
1846 uint64_t symsize,
1847 elfcpp::STT type,
1848 elfcpp::STB binding,
1849 elfcpp::STV visibility,
1850 unsigned char nonvis,
1851 bool offset_is_from_end,
1852 bool only_if_ref)
1853 {
1854 if (parameters->target().get_size() == 32)
1855 {
1856 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1857 return this->do_define_in_output_data<32>(name, version, defined, od,
1858 value, symsize, type, binding,
1859 visibility, nonvis,
1860 offset_is_from_end,
1861 only_if_ref);
1862 #else
1863 gold_unreachable();
1864 #endif
1865 }
1866 else if (parameters->target().get_size() == 64)
1867 {
1868 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1869 return this->do_define_in_output_data<64>(name, version, defined, od,
1870 value, symsize, type, binding,
1871 visibility, nonvis,
1872 offset_is_from_end,
1873 only_if_ref);
1874 #else
1875 gold_unreachable();
1876 #endif
1877 }
1878 else
1879 gold_unreachable();
1880 }
1881
1882 // Define a symbol in an Output_data, sized version.
1883
1884 template<int size>
1885 Sized_symbol<size>*
1886 Symbol_table::do_define_in_output_data(
1887 const char* name,
1888 const char* version,
1889 Defined defined,
1890 Output_data* od,
1891 typename elfcpp::Elf_types<size>::Elf_Addr value,
1892 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1893 elfcpp::STT type,
1894 elfcpp::STB binding,
1895 elfcpp::STV visibility,
1896 unsigned char nonvis,
1897 bool offset_is_from_end,
1898 bool only_if_ref)
1899 {
1900 Sized_symbol<size>* sym;
1901 Sized_symbol<size>* oldsym;
1902 bool resolve_oldsym;
1903
1904 if (parameters->target().is_big_endian())
1905 {
1906 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1907 sym = this->define_special_symbol<size, true>(&name, &version,
1908 only_if_ref, &oldsym,
1909 &resolve_oldsym);
1910 #else
1911 gold_unreachable();
1912 #endif
1913 }
1914 else
1915 {
1916 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1917 sym = this->define_special_symbol<size, false>(&name, &version,
1918 only_if_ref, &oldsym,
1919 &resolve_oldsym);
1920 #else
1921 gold_unreachable();
1922 #endif
1923 }
1924
1925 if (sym == NULL)
1926 return NULL;
1927
1928 sym->init_output_data(name, version, od, value, symsize, type, binding,
1929 visibility, nonvis, offset_is_from_end,
1930 defined == PREDEFINED);
1931
1932 if (oldsym == NULL)
1933 {
1934 if (binding == elfcpp::STB_LOCAL
1935 || this->version_script_.symbol_is_local(name))
1936 this->force_local(sym);
1937 else if (version != NULL)
1938 sym->set_is_default();
1939 return sym;
1940 }
1941
1942 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1943 this->override_with_special(oldsym, sym);
1944
1945 if (resolve_oldsym)
1946 return sym;
1947 else
1948 {
1949 delete sym;
1950 return oldsym;
1951 }
1952 }
1953
1954 // Define a symbol based on an Output_segment.
1955
1956 Symbol*
1957 Symbol_table::define_in_output_segment(const char* name,
1958 const char* version,
1959 Defined defined,
1960 Output_segment* os,
1961 uint64_t value,
1962 uint64_t symsize,
1963 elfcpp::STT type,
1964 elfcpp::STB binding,
1965 elfcpp::STV visibility,
1966 unsigned char nonvis,
1967 Symbol::Segment_offset_base offset_base,
1968 bool only_if_ref)
1969 {
1970 if (parameters->target().get_size() == 32)
1971 {
1972 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1973 return this->do_define_in_output_segment<32>(name, version, defined, os,
1974 value, symsize, type,
1975 binding, visibility, nonvis,
1976 offset_base, only_if_ref);
1977 #else
1978 gold_unreachable();
1979 #endif
1980 }
1981 else if (parameters->target().get_size() == 64)
1982 {
1983 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1984 return this->do_define_in_output_segment<64>(name, version, defined, os,
1985 value, symsize, type,
1986 binding, visibility, nonvis,
1987 offset_base, only_if_ref);
1988 #else
1989 gold_unreachable();
1990 #endif
1991 }
1992 else
1993 gold_unreachable();
1994 }
1995
1996 // Define a symbol in an Output_segment, sized version.
1997
1998 template<int size>
1999 Sized_symbol<size>*
2000 Symbol_table::do_define_in_output_segment(
2001 const char* name,
2002 const char* version,
2003 Defined defined,
2004 Output_segment* os,
2005 typename elfcpp::Elf_types<size>::Elf_Addr value,
2006 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2007 elfcpp::STT type,
2008 elfcpp::STB binding,
2009 elfcpp::STV visibility,
2010 unsigned char nonvis,
2011 Symbol::Segment_offset_base offset_base,
2012 bool only_if_ref)
2013 {
2014 Sized_symbol<size>* sym;
2015 Sized_symbol<size>* oldsym;
2016 bool resolve_oldsym;
2017
2018 if (parameters->target().is_big_endian())
2019 {
2020 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2021 sym = this->define_special_symbol<size, true>(&name, &version,
2022 only_if_ref, &oldsym,
2023 &resolve_oldsym);
2024 #else
2025 gold_unreachable();
2026 #endif
2027 }
2028 else
2029 {
2030 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2031 sym = this->define_special_symbol<size, false>(&name, &version,
2032 only_if_ref, &oldsym,
2033 &resolve_oldsym);
2034 #else
2035 gold_unreachable();
2036 #endif
2037 }
2038
2039 if (sym == NULL)
2040 return NULL;
2041
2042 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2043 visibility, nonvis, offset_base,
2044 defined == PREDEFINED);
2045
2046 if (oldsym == NULL)
2047 {
2048 if (binding == elfcpp::STB_LOCAL
2049 || this->version_script_.symbol_is_local(name))
2050 this->force_local(sym);
2051 else if (version != NULL)
2052 sym->set_is_default();
2053 return sym;
2054 }
2055
2056 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2057 this->override_with_special(oldsym, sym);
2058
2059 if (resolve_oldsym)
2060 return sym;
2061 else
2062 {
2063 delete sym;
2064 return oldsym;
2065 }
2066 }
2067
2068 // Define a special symbol with a constant value. It is a multiple
2069 // definition error if this symbol is already defined.
2070
2071 Symbol*
2072 Symbol_table::define_as_constant(const char* name,
2073 const char* version,
2074 Defined defined,
2075 uint64_t value,
2076 uint64_t symsize,
2077 elfcpp::STT type,
2078 elfcpp::STB binding,
2079 elfcpp::STV visibility,
2080 unsigned char nonvis,
2081 bool only_if_ref,
2082 bool force_override)
2083 {
2084 if (parameters->target().get_size() == 32)
2085 {
2086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2087 return this->do_define_as_constant<32>(name, version, defined, value,
2088 symsize, type, binding,
2089 visibility, nonvis, only_if_ref,
2090 force_override);
2091 #else
2092 gold_unreachable();
2093 #endif
2094 }
2095 else if (parameters->target().get_size() == 64)
2096 {
2097 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2098 return this->do_define_as_constant<64>(name, version, defined, value,
2099 symsize, type, binding,
2100 visibility, nonvis, only_if_ref,
2101 force_override);
2102 #else
2103 gold_unreachable();
2104 #endif
2105 }
2106 else
2107 gold_unreachable();
2108 }
2109
2110 // Define a symbol as a constant, sized version.
2111
2112 template<int size>
2113 Sized_symbol<size>*
2114 Symbol_table::do_define_as_constant(
2115 const char* name,
2116 const char* version,
2117 Defined defined,
2118 typename elfcpp::Elf_types<size>::Elf_Addr value,
2119 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2120 elfcpp::STT type,
2121 elfcpp::STB binding,
2122 elfcpp::STV visibility,
2123 unsigned char nonvis,
2124 bool only_if_ref,
2125 bool force_override)
2126 {
2127 Sized_symbol<size>* sym;
2128 Sized_symbol<size>* oldsym;
2129 bool resolve_oldsym;
2130
2131 if (parameters->target().is_big_endian())
2132 {
2133 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2134 sym = this->define_special_symbol<size, true>(&name, &version,
2135 only_if_ref, &oldsym,
2136 &resolve_oldsym);
2137 #else
2138 gold_unreachable();
2139 #endif
2140 }
2141 else
2142 {
2143 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2144 sym = this->define_special_symbol<size, false>(&name, &version,
2145 only_if_ref, &oldsym,
2146 &resolve_oldsym);
2147 #else
2148 gold_unreachable();
2149 #endif
2150 }
2151
2152 if (sym == NULL)
2153 return NULL;
2154
2155 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2156 nonvis, defined == PREDEFINED);
2157
2158 if (oldsym == NULL)
2159 {
2160 // Version symbols are absolute symbols with name == version.
2161 // We don't want to force them to be local.
2162 if ((version == NULL
2163 || name != version
2164 || value != 0)
2165 && (binding == elfcpp::STB_LOCAL
2166 || this->version_script_.symbol_is_local(name)))
2167 this->force_local(sym);
2168 else if (version != NULL
2169 && (name != version || value != 0))
2170 sym->set_is_default();
2171 return sym;
2172 }
2173
2174 if (force_override
2175 || Symbol_table::should_override_with_special(oldsym, type, defined))
2176 this->override_with_special(oldsym, sym);
2177
2178 if (resolve_oldsym)
2179 return sym;
2180 else
2181 {
2182 delete sym;
2183 return oldsym;
2184 }
2185 }
2186
2187 // Define a set of symbols in output sections.
2188
2189 void
2190 Symbol_table::define_symbols(const Layout* layout, int count,
2191 const Define_symbol_in_section* p,
2192 bool only_if_ref)
2193 {
2194 for (int i = 0; i < count; ++i, ++p)
2195 {
2196 Output_section* os = layout->find_output_section(p->output_section);
2197 if (os != NULL)
2198 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2199 p->size, p->type, p->binding,
2200 p->visibility, p->nonvis,
2201 p->offset_is_from_end,
2202 only_if_ref || p->only_if_ref);
2203 else
2204 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2205 p->type, p->binding, p->visibility, p->nonvis,
2206 only_if_ref || p->only_if_ref,
2207 false);
2208 }
2209 }
2210
2211 // Define a set of symbols in output segments.
2212
2213 void
2214 Symbol_table::define_symbols(const Layout* layout, int count,
2215 const Define_symbol_in_segment* p,
2216 bool only_if_ref)
2217 {
2218 for (int i = 0; i < count; ++i, ++p)
2219 {
2220 Output_segment* os = layout->find_output_segment(p->segment_type,
2221 p->segment_flags_set,
2222 p->segment_flags_clear);
2223 if (os != NULL)
2224 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2225 p->size, p->type, p->binding,
2226 p->visibility, p->nonvis,
2227 p->offset_base,
2228 only_if_ref || p->only_if_ref);
2229 else
2230 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2231 p->type, p->binding, p->visibility, p->nonvis,
2232 only_if_ref || p->only_if_ref,
2233 false);
2234 }
2235 }
2236
2237 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2238 // symbol should be defined--typically a .dyn.bss section. VALUE is
2239 // the offset within POSD.
2240
2241 template<int size>
2242 void
2243 Symbol_table::define_with_copy_reloc(
2244 Sized_symbol<size>* csym,
2245 Output_data* posd,
2246 typename elfcpp::Elf_types<size>::Elf_Addr value)
2247 {
2248 gold_assert(csym->is_from_dynobj());
2249 gold_assert(!csym->is_copied_from_dynobj());
2250 Object* object = csym->object();
2251 gold_assert(object->is_dynamic());
2252 Dynobj* dynobj = static_cast<Dynobj*>(object);
2253
2254 // Our copied variable has to override any variable in a shared
2255 // library.
2256 elfcpp::STB binding = csym->binding();
2257 if (binding == elfcpp::STB_WEAK)
2258 binding = elfcpp::STB_GLOBAL;
2259
2260 this->define_in_output_data(csym->name(), csym->version(), COPY,
2261 posd, value, csym->symsize(),
2262 csym->type(), binding,
2263 csym->visibility(), csym->nonvis(),
2264 false, false);
2265
2266 csym->set_is_copied_from_dynobj();
2267 csym->set_needs_dynsym_entry();
2268
2269 this->copied_symbol_dynobjs_[csym] = dynobj;
2270
2271 // We have now defined all aliases, but we have not entered them all
2272 // in the copied_symbol_dynobjs_ map.
2273 if (csym->has_alias())
2274 {
2275 Symbol* sym = csym;
2276 while (true)
2277 {
2278 sym = this->weak_aliases_[sym];
2279 if (sym == csym)
2280 break;
2281 gold_assert(sym->output_data() == posd);
2282
2283 sym->set_is_copied_from_dynobj();
2284 this->copied_symbol_dynobjs_[sym] = dynobj;
2285 }
2286 }
2287 }
2288
2289 // SYM is defined using a COPY reloc. Return the dynamic object where
2290 // the original definition was found.
2291
2292 Dynobj*
2293 Symbol_table::get_copy_source(const Symbol* sym) const
2294 {
2295 gold_assert(sym->is_copied_from_dynobj());
2296 Copied_symbol_dynobjs::const_iterator p =
2297 this->copied_symbol_dynobjs_.find(sym);
2298 gold_assert(p != this->copied_symbol_dynobjs_.end());
2299 return p->second;
2300 }
2301
2302 // Add any undefined symbols named on the command line.
2303
2304 void
2305 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2306 {
2307 if (parameters->options().any_undefined()
2308 || layout->script_options()->any_unreferenced())
2309 {
2310 if (parameters->target().get_size() == 32)
2311 {
2312 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2313 this->do_add_undefined_symbols_from_command_line<32>(layout);
2314 #else
2315 gold_unreachable();
2316 #endif
2317 }
2318 else if (parameters->target().get_size() == 64)
2319 {
2320 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2321 this->do_add_undefined_symbols_from_command_line<64>(layout);
2322 #else
2323 gold_unreachable();
2324 #endif
2325 }
2326 else
2327 gold_unreachable();
2328 }
2329 }
2330
2331 template<int size>
2332 void
2333 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2334 {
2335 for (options::String_set::const_iterator p =
2336 parameters->options().undefined_begin();
2337 p != parameters->options().undefined_end();
2338 ++p)
2339 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2340
2341 for (options::String_set::const_iterator p =
2342 parameters->options().export_dynamic_symbol_begin();
2343 p != parameters->options().export_dynamic_symbol_end();
2344 ++p)
2345 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2346
2347 for (Script_options::referenced_const_iterator p =
2348 layout->script_options()->referenced_begin();
2349 p != layout->script_options()->referenced_end();
2350 ++p)
2351 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2352 }
2353
2354 template<int size>
2355 void
2356 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2357 {
2358 if (this->lookup(name) != NULL)
2359 return;
2360
2361 const char* version = NULL;
2362
2363 Sized_symbol<size>* sym;
2364 Sized_symbol<size>* oldsym;
2365 bool resolve_oldsym;
2366 if (parameters->target().is_big_endian())
2367 {
2368 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2369 sym = this->define_special_symbol<size, true>(&name, &version,
2370 false, &oldsym,
2371 &resolve_oldsym);
2372 #else
2373 gold_unreachable();
2374 #endif
2375 }
2376 else
2377 {
2378 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2379 sym = this->define_special_symbol<size, false>(&name, &version,
2380 false, &oldsym,
2381 &resolve_oldsym);
2382 #else
2383 gold_unreachable();
2384 #endif
2385 }
2386
2387 gold_assert(oldsym == NULL);
2388
2389 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2390 elfcpp::STV_DEFAULT, 0);
2391 ++this->saw_undefined_;
2392 }
2393
2394 // Set the dynamic symbol indexes. INDEX is the index of the first
2395 // global dynamic symbol. Pointers to the symbols are stored into the
2396 // vector SYMS. The names are added to DYNPOOL. This returns an
2397 // updated dynamic symbol index.
2398
2399 unsigned int
2400 Symbol_table::set_dynsym_indexes(unsigned int index,
2401 std::vector<Symbol*>* syms,
2402 Stringpool* dynpool,
2403 Versions* versions)
2404 {
2405 std::vector<Symbol*> as_needed_sym;
2406
2407 // Allow a target to set dynsym indexes.
2408 if (parameters->target().has_custom_set_dynsym_indexes())
2409 {
2410 std::vector<Symbol*> dyn_symbols;
2411 for (Symbol_table_type::iterator p = this->table_.begin();
2412 p != this->table_.end();
2413 ++p)
2414 {
2415 Symbol* sym = p->second;
2416 if (!sym->should_add_dynsym_entry(this))
2417 sym->set_dynsym_index(-1U);
2418 else
2419 dyn_symbols.push_back(sym);
2420 }
2421
2422 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2423 dynpool, versions, this);
2424 }
2425
2426 for (Symbol_table_type::iterator p = this->table_.begin();
2427 p != this->table_.end();
2428 ++p)
2429 {
2430 Symbol* sym = p->second;
2431
2432 // Note that SYM may already have a dynamic symbol index, since
2433 // some symbols appear more than once in the symbol table, with
2434 // and without a version.
2435
2436 if (!sym->should_add_dynsym_entry(this))
2437 sym->set_dynsym_index(-1U);
2438 else if (!sym->has_dynsym_index())
2439 {
2440 sym->set_dynsym_index(index);
2441 ++index;
2442 syms->push_back(sym);
2443 dynpool->add(sym->name(), false, NULL);
2444
2445 // If the symbol is defined in a dynamic object and is
2446 // referenced strongly in a regular object, then mark the
2447 // dynamic object as needed. This is used to implement
2448 // --as-needed.
2449 if (sym->is_from_dynobj()
2450 && sym->in_reg()
2451 && !sym->is_undef_binding_weak())
2452 sym->object()->set_is_needed();
2453
2454 // Record any version information, except those from
2455 // as-needed libraries not seen to be needed. Note that the
2456 // is_needed state for such libraries can change in this loop.
2457 if (sym->version() != NULL)
2458 {
2459 if (!sym->is_from_dynobj()
2460 || !sym->object()->as_needed()
2461 || sym->object()->is_needed())
2462 versions->record_version(this, dynpool, sym);
2463 else
2464 as_needed_sym.push_back(sym);
2465 }
2466 }
2467 }
2468
2469 // Process version information for symbols from as-needed libraries.
2470 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2471 p != as_needed_sym.end();
2472 ++p)
2473 {
2474 Symbol* sym = *p;
2475
2476 if (sym->object()->is_needed())
2477 versions->record_version(this, dynpool, sym);
2478 else
2479 sym->clear_version();
2480 }
2481
2482 // Finish up the versions. In some cases this may add new dynamic
2483 // symbols.
2484 index = versions->finalize(this, index, syms);
2485
2486 return index;
2487 }
2488
2489 // Set the final values for all the symbols. The index of the first
2490 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2491 // file offset OFF. Add their names to POOL. Return the new file
2492 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2493
2494 off_t
2495 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2496 size_t dyncount, Stringpool* pool,
2497 unsigned int* plocal_symcount)
2498 {
2499 off_t ret;
2500
2501 gold_assert(*plocal_symcount != 0);
2502 this->first_global_index_ = *plocal_symcount;
2503
2504 this->dynamic_offset_ = dynoff;
2505 this->first_dynamic_global_index_ = dyn_global_index;
2506 this->dynamic_count_ = dyncount;
2507
2508 if (parameters->target().get_size() == 32)
2509 {
2510 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2511 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2512 #else
2513 gold_unreachable();
2514 #endif
2515 }
2516 else if (parameters->target().get_size() == 64)
2517 {
2518 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2519 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2520 #else
2521 gold_unreachable();
2522 #endif
2523 }
2524 else
2525 gold_unreachable();
2526
2527 // Now that we have the final symbol table, we can reliably note
2528 // which symbols should get warnings.
2529 this->warnings_.note_warnings(this);
2530
2531 return ret;
2532 }
2533
2534 // SYM is going into the symbol table at *PINDEX. Add the name to
2535 // POOL, update *PINDEX and *POFF.
2536
2537 template<int size>
2538 void
2539 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2540 unsigned int* pindex, off_t* poff)
2541 {
2542 sym->set_symtab_index(*pindex);
2543 if (sym->version() == NULL || !parameters->options().relocatable())
2544 pool->add(sym->name(), false, NULL);
2545 else
2546 pool->add(sym->versioned_name(), true, NULL);
2547 ++*pindex;
2548 *poff += elfcpp::Elf_sizes<size>::sym_size;
2549 }
2550
2551 // Set the final value for all the symbols. This is called after
2552 // Layout::finalize, so all the output sections have their final
2553 // address.
2554
2555 template<int size>
2556 off_t
2557 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2558 unsigned int* plocal_symcount)
2559 {
2560 off = align_address(off, size >> 3);
2561 this->offset_ = off;
2562
2563 unsigned int index = *plocal_symcount;
2564 const unsigned int orig_index = index;
2565
2566 // First do all the symbols which have been forced to be local, as
2567 // they must appear before all global symbols.
2568 for (Forced_locals::iterator p = this->forced_locals_.begin();
2569 p != this->forced_locals_.end();
2570 ++p)
2571 {
2572 Symbol* sym = *p;
2573 gold_assert(sym->is_forced_local());
2574 if (this->sized_finalize_symbol<size>(sym))
2575 {
2576 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2577 ++*plocal_symcount;
2578 }
2579 }
2580
2581 // Now do all the remaining symbols.
2582 for (Symbol_table_type::iterator p = this->table_.begin();
2583 p != this->table_.end();
2584 ++p)
2585 {
2586 Symbol* sym = p->second;
2587 if (this->sized_finalize_symbol<size>(sym))
2588 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2589 }
2590
2591 this->output_count_ = index - orig_index;
2592
2593 return off;
2594 }
2595
2596 // Compute the final value of SYM and store status in location PSTATUS.
2597 // During relaxation, this may be called multiple times for a symbol to
2598 // compute its would-be final value in each relaxation pass.
2599
2600 template<int size>
2601 typename Sized_symbol<size>::Value_type
2602 Symbol_table::compute_final_value(
2603 const Sized_symbol<size>* sym,
2604 Compute_final_value_status* pstatus) const
2605 {
2606 typedef typename Sized_symbol<size>::Value_type Value_type;
2607 Value_type value;
2608
2609 switch (sym->source())
2610 {
2611 case Symbol::FROM_OBJECT:
2612 {
2613 bool is_ordinary;
2614 unsigned int shndx = sym->shndx(&is_ordinary);
2615
2616 if (!is_ordinary
2617 && shndx != elfcpp::SHN_ABS
2618 && !Symbol::is_common_shndx(shndx))
2619 {
2620 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2621 return 0;
2622 }
2623
2624 Object* symobj = sym->object();
2625 if (symobj->is_dynamic())
2626 {
2627 value = 0;
2628 shndx = elfcpp::SHN_UNDEF;
2629 }
2630 else if (symobj->pluginobj() != NULL)
2631 {
2632 value = 0;
2633 shndx = elfcpp::SHN_UNDEF;
2634 }
2635 else if (shndx == elfcpp::SHN_UNDEF)
2636 value = 0;
2637 else if (!is_ordinary
2638 && (shndx == elfcpp::SHN_ABS
2639 || Symbol::is_common_shndx(shndx)))
2640 value = sym->value();
2641 else
2642 {
2643 Relobj* relobj = static_cast<Relobj*>(symobj);
2644 Output_section* os = relobj->output_section(shndx);
2645
2646 if (this->is_section_folded(relobj, shndx))
2647 {
2648 gold_assert(os == NULL);
2649 // Get the os of the section it is folded onto.
2650 Section_id folded = this->icf_->get_folded_section(relobj,
2651 shndx);
2652 gold_assert(folded.first != NULL);
2653 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2654 unsigned folded_shndx = folded.second;
2655
2656 os = folded_obj->output_section(folded_shndx);
2657 gold_assert(os != NULL);
2658
2659 // Replace (relobj, shndx) with canonical ICF input section.
2660 shndx = folded_shndx;
2661 relobj = folded_obj;
2662 }
2663
2664 uint64_t secoff64 = relobj->output_section_offset(shndx);
2665 if (os == NULL)
2666 {
2667 bool static_or_reloc = (parameters->doing_static_link() ||
2668 parameters->options().relocatable());
2669 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2670
2671 *pstatus = CFVS_NO_OUTPUT_SECTION;
2672 return 0;
2673 }
2674
2675 if (secoff64 == -1ULL)
2676 {
2677 // The section needs special handling (e.g., a merge section).
2678
2679 value = os->output_address(relobj, shndx, sym->value());
2680 }
2681 else
2682 {
2683 Value_type secoff =
2684 convert_types<Value_type, uint64_t>(secoff64);
2685 if (sym->type() == elfcpp::STT_TLS)
2686 value = sym->value() + os->tls_offset() + secoff;
2687 else
2688 value = sym->value() + os->address() + secoff;
2689 }
2690 }
2691 }
2692 break;
2693
2694 case Symbol::IN_OUTPUT_DATA:
2695 {
2696 Output_data* od = sym->output_data();
2697 value = sym->value();
2698 if (sym->type() != elfcpp::STT_TLS)
2699 value += od->address();
2700 else
2701 {
2702 Output_section* os = od->output_section();
2703 gold_assert(os != NULL);
2704 value += os->tls_offset() + (od->address() - os->address());
2705 }
2706 if (sym->offset_is_from_end())
2707 value += od->data_size();
2708 }
2709 break;
2710
2711 case Symbol::IN_OUTPUT_SEGMENT:
2712 {
2713 Output_segment* os = sym->output_segment();
2714 value = sym->value();
2715 if (sym->type() != elfcpp::STT_TLS)
2716 value += os->vaddr();
2717 switch (sym->offset_base())
2718 {
2719 case Symbol::SEGMENT_START:
2720 break;
2721 case Symbol::SEGMENT_END:
2722 value += os->memsz();
2723 break;
2724 case Symbol::SEGMENT_BSS:
2725 value += os->filesz();
2726 break;
2727 default:
2728 gold_unreachable();
2729 }
2730 }
2731 break;
2732
2733 case Symbol::IS_CONSTANT:
2734 value = sym->value();
2735 break;
2736
2737 case Symbol::IS_UNDEFINED:
2738 value = 0;
2739 break;
2740
2741 default:
2742 gold_unreachable();
2743 }
2744
2745 *pstatus = CFVS_OK;
2746 return value;
2747 }
2748
2749 // Finalize the symbol SYM. This returns true if the symbol should be
2750 // added to the symbol table, false otherwise.
2751
2752 template<int size>
2753 bool
2754 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2755 {
2756 typedef typename Sized_symbol<size>::Value_type Value_type;
2757
2758 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2759
2760 // The default version of a symbol may appear twice in the symbol
2761 // table. We only need to finalize it once.
2762 if (sym->has_symtab_index())
2763 return false;
2764
2765 if (!sym->in_reg())
2766 {
2767 gold_assert(!sym->has_symtab_index());
2768 sym->set_symtab_index(-1U);
2769 gold_assert(sym->dynsym_index() == -1U);
2770 return false;
2771 }
2772
2773 // If the symbol is only present on plugin files, the plugin decided we
2774 // don't need it.
2775 if (!sym->in_real_elf())
2776 {
2777 gold_assert(!sym->has_symtab_index());
2778 sym->set_symtab_index(-1U);
2779 return false;
2780 }
2781
2782 // Compute final symbol value.
2783 Compute_final_value_status status;
2784 Value_type value = this->compute_final_value(sym, &status);
2785
2786 switch (status)
2787 {
2788 case CFVS_OK:
2789 break;
2790 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2791 {
2792 bool is_ordinary;
2793 unsigned int shndx = sym->shndx(&is_ordinary);
2794 gold_error(_("%s: unsupported symbol section 0x%x"),
2795 sym->demangled_name().c_str(), shndx);
2796 }
2797 break;
2798 case CFVS_NO_OUTPUT_SECTION:
2799 sym->set_symtab_index(-1U);
2800 return false;
2801 default:
2802 gold_unreachable();
2803 }
2804
2805 sym->set_value(value);
2806
2807 if (parameters->options().strip_all()
2808 || !parameters->options().should_retain_symbol(sym->name()))
2809 {
2810 sym->set_symtab_index(-1U);
2811 return false;
2812 }
2813
2814 return true;
2815 }
2816
2817 // Write out the global symbols.
2818
2819 void
2820 Symbol_table::write_globals(const Stringpool* sympool,
2821 const Stringpool* dynpool,
2822 Output_symtab_xindex* symtab_xindex,
2823 Output_symtab_xindex* dynsym_xindex,
2824 Output_file* of) const
2825 {
2826 switch (parameters->size_and_endianness())
2827 {
2828 #ifdef HAVE_TARGET_32_LITTLE
2829 case Parameters::TARGET_32_LITTLE:
2830 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2831 dynsym_xindex, of);
2832 break;
2833 #endif
2834 #ifdef HAVE_TARGET_32_BIG
2835 case Parameters::TARGET_32_BIG:
2836 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2837 dynsym_xindex, of);
2838 break;
2839 #endif
2840 #ifdef HAVE_TARGET_64_LITTLE
2841 case Parameters::TARGET_64_LITTLE:
2842 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2843 dynsym_xindex, of);
2844 break;
2845 #endif
2846 #ifdef HAVE_TARGET_64_BIG
2847 case Parameters::TARGET_64_BIG:
2848 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2849 dynsym_xindex, of);
2850 break;
2851 #endif
2852 default:
2853 gold_unreachable();
2854 }
2855 }
2856
2857 // Write out the global symbols.
2858
2859 template<int size, bool big_endian>
2860 void
2861 Symbol_table::sized_write_globals(const Stringpool* sympool,
2862 const Stringpool* dynpool,
2863 Output_symtab_xindex* symtab_xindex,
2864 Output_symtab_xindex* dynsym_xindex,
2865 Output_file* of) const
2866 {
2867 const Target& target = parameters->target();
2868
2869 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2870
2871 const unsigned int output_count = this->output_count_;
2872 const section_size_type oview_size = output_count * sym_size;
2873 const unsigned int first_global_index = this->first_global_index_;
2874 unsigned char* psyms;
2875 if (this->offset_ == 0 || output_count == 0)
2876 psyms = NULL;
2877 else
2878 psyms = of->get_output_view(this->offset_, oview_size);
2879
2880 const unsigned int dynamic_count = this->dynamic_count_;
2881 const section_size_type dynamic_size = dynamic_count * sym_size;
2882 const unsigned int first_dynamic_global_index =
2883 this->first_dynamic_global_index_;
2884 unsigned char* dynamic_view;
2885 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2886 dynamic_view = NULL;
2887 else
2888 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2889
2890 for (Symbol_table_type::const_iterator p = this->table_.begin();
2891 p != this->table_.end();
2892 ++p)
2893 {
2894 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2895
2896 // Possibly warn about unresolved symbols in shared libraries.
2897 this->warn_about_undefined_dynobj_symbol(sym);
2898
2899 unsigned int sym_index = sym->symtab_index();
2900 unsigned int dynsym_index;
2901 if (dynamic_view == NULL)
2902 dynsym_index = -1U;
2903 else
2904 dynsym_index = sym->dynsym_index();
2905
2906 if (sym_index == -1U && dynsym_index == -1U)
2907 {
2908 // This symbol is not included in the output file.
2909 continue;
2910 }
2911
2912 unsigned int shndx;
2913 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2914 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2915 elfcpp::STB binding = sym->binding();
2916
2917 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2918 if (binding == elfcpp::STB_GNU_UNIQUE
2919 && !parameters->options().gnu_unique())
2920 binding = elfcpp::STB_GLOBAL;
2921
2922 switch (sym->source())
2923 {
2924 case Symbol::FROM_OBJECT:
2925 {
2926 bool is_ordinary;
2927 unsigned int in_shndx = sym->shndx(&is_ordinary);
2928
2929 if (!is_ordinary
2930 && in_shndx != elfcpp::SHN_ABS
2931 && !Symbol::is_common_shndx(in_shndx))
2932 {
2933 gold_error(_("%s: unsupported symbol section 0x%x"),
2934 sym->demangled_name().c_str(), in_shndx);
2935 shndx = in_shndx;
2936 }
2937 else
2938 {
2939 Object* symobj = sym->object();
2940 if (symobj->is_dynamic())
2941 {
2942 if (sym->needs_dynsym_value())
2943 dynsym_value = target.dynsym_value(sym);
2944 shndx = elfcpp::SHN_UNDEF;
2945 if (sym->is_undef_binding_weak())
2946 binding = elfcpp::STB_WEAK;
2947 else
2948 binding = elfcpp::STB_GLOBAL;
2949 }
2950 else if (symobj->pluginobj() != NULL)
2951 shndx = elfcpp::SHN_UNDEF;
2952 else if (in_shndx == elfcpp::SHN_UNDEF
2953 || (!is_ordinary
2954 && (in_shndx == elfcpp::SHN_ABS
2955 || Symbol::is_common_shndx(in_shndx))))
2956 shndx = in_shndx;
2957 else
2958 {
2959 Relobj* relobj = static_cast<Relobj*>(symobj);
2960 Output_section* os = relobj->output_section(in_shndx);
2961 if (this->is_section_folded(relobj, in_shndx))
2962 {
2963 // This global symbol must be written out even though
2964 // it is folded.
2965 // Get the os of the section it is folded onto.
2966 Section_id folded =
2967 this->icf_->get_folded_section(relobj, in_shndx);
2968 gold_assert(folded.first !=NULL);
2969 Relobj* folded_obj =
2970 reinterpret_cast<Relobj*>(folded.first);
2971 os = folded_obj->output_section(folded.second);
2972 gold_assert(os != NULL);
2973 }
2974 gold_assert(os != NULL);
2975 shndx = os->out_shndx();
2976
2977 if (shndx >= elfcpp::SHN_LORESERVE)
2978 {
2979 if (sym_index != -1U)
2980 symtab_xindex->add(sym_index, shndx);
2981 if (dynsym_index != -1U)
2982 dynsym_xindex->add(dynsym_index, shndx);
2983 shndx = elfcpp::SHN_XINDEX;
2984 }
2985
2986 // In object files symbol values are section
2987 // relative.
2988 if (parameters->options().relocatable())
2989 sym_value -= os->address();
2990 }
2991 }
2992 }
2993 break;
2994
2995 case Symbol::IN_OUTPUT_DATA:
2996 {
2997 Output_data* od = sym->output_data();
2998
2999 shndx = od->out_shndx();
3000 if (shndx >= elfcpp::SHN_LORESERVE)
3001 {
3002 if (sym_index != -1U)
3003 symtab_xindex->add(sym_index, shndx);
3004 if (dynsym_index != -1U)
3005 dynsym_xindex->add(dynsym_index, shndx);
3006 shndx = elfcpp::SHN_XINDEX;
3007 }
3008
3009 // In object files symbol values are section
3010 // relative.
3011 if (parameters->options().relocatable())
3012 sym_value -= od->address();
3013 }
3014 break;
3015
3016 case Symbol::IN_OUTPUT_SEGMENT:
3017 shndx = elfcpp::SHN_ABS;
3018 break;
3019
3020 case Symbol::IS_CONSTANT:
3021 shndx = elfcpp::SHN_ABS;
3022 break;
3023
3024 case Symbol::IS_UNDEFINED:
3025 shndx = elfcpp::SHN_UNDEF;
3026 break;
3027
3028 default:
3029 gold_unreachable();
3030 }
3031
3032 if (sym_index != -1U)
3033 {
3034 sym_index -= first_global_index;
3035 gold_assert(sym_index < output_count);
3036 unsigned char* ps = psyms + (sym_index * sym_size);
3037 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3038 binding, sympool, ps);
3039 }
3040
3041 if (dynsym_index != -1U)
3042 {
3043 dynsym_index -= first_dynamic_global_index;
3044 gold_assert(dynsym_index < dynamic_count);
3045 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3046 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3047 binding, dynpool, pd);
3048 // Allow a target to adjust dynamic symbol value.
3049 parameters->target().adjust_dyn_symbol(sym, pd);
3050 }
3051 }
3052
3053 of->write_output_view(this->offset_, oview_size, psyms);
3054 if (dynamic_view != NULL)
3055 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3056 }
3057
3058 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3059 // strtab holding the name.
3060
3061 template<int size, bool big_endian>
3062 void
3063 Symbol_table::sized_write_symbol(
3064 Sized_symbol<size>* sym,
3065 typename elfcpp::Elf_types<size>::Elf_Addr value,
3066 unsigned int shndx,
3067 elfcpp::STB binding,
3068 const Stringpool* pool,
3069 unsigned char* p) const
3070 {
3071 elfcpp::Sym_write<size, big_endian> osym(p);
3072 if (sym->version() == NULL || !parameters->options().relocatable())
3073 osym.put_st_name(pool->get_offset(sym->name()));
3074 else
3075 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3076 osym.put_st_value(value);
3077 // Use a symbol size of zero for undefined symbols from shared libraries.
3078 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3079 osym.put_st_size(0);
3080 else
3081 osym.put_st_size(sym->symsize());
3082 elfcpp::STT type = sym->type();
3083 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3084 if (type == elfcpp::STT_GNU_IFUNC
3085 && sym->is_from_dynobj())
3086 type = elfcpp::STT_FUNC;
3087 // A version script may have overridden the default binding.
3088 if (sym->is_forced_local())
3089 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3090 else
3091 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3092 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3093 osym.put_st_shndx(shndx);
3094 }
3095
3096 // Check for unresolved symbols in shared libraries. This is
3097 // controlled by the --allow-shlib-undefined option.
3098
3099 // We only warn about libraries for which we have seen all the
3100 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3101 // which were not seen in this link. If we didn't see a DT_NEEDED
3102 // entry, we aren't going to be able to reliably report whether the
3103 // symbol is undefined.
3104
3105 // We also don't warn about libraries found in a system library
3106 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3107 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3108 // can have undefined references satisfied by ld-linux.so.
3109
3110 inline void
3111 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3112 {
3113 bool dummy;
3114 if (sym->source() == Symbol::FROM_OBJECT
3115 && sym->object()->is_dynamic()
3116 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3117 && sym->binding() != elfcpp::STB_WEAK
3118 && !parameters->options().allow_shlib_undefined()
3119 && !parameters->target().is_defined_by_abi(sym)
3120 && !sym->object()->is_in_system_directory())
3121 {
3122 // A very ugly cast.
3123 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3124 if (!dynobj->has_unknown_needed_entries())
3125 gold_undefined_symbol(sym);
3126 }
3127 }
3128
3129 // Write out a section symbol. Return the update offset.
3130
3131 void
3132 Symbol_table::write_section_symbol(const Output_section* os,
3133 Output_symtab_xindex* symtab_xindex,
3134 Output_file* of,
3135 off_t offset) const
3136 {
3137 switch (parameters->size_and_endianness())
3138 {
3139 #ifdef HAVE_TARGET_32_LITTLE
3140 case Parameters::TARGET_32_LITTLE:
3141 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3142 offset);
3143 break;
3144 #endif
3145 #ifdef HAVE_TARGET_32_BIG
3146 case Parameters::TARGET_32_BIG:
3147 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3148 offset);
3149 break;
3150 #endif
3151 #ifdef HAVE_TARGET_64_LITTLE
3152 case Parameters::TARGET_64_LITTLE:
3153 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3154 offset);
3155 break;
3156 #endif
3157 #ifdef HAVE_TARGET_64_BIG
3158 case Parameters::TARGET_64_BIG:
3159 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3160 offset);
3161 break;
3162 #endif
3163 default:
3164 gold_unreachable();
3165 }
3166 }
3167
3168 // Write out a section symbol, specialized for size and endianness.
3169
3170 template<int size, bool big_endian>
3171 void
3172 Symbol_table::sized_write_section_symbol(const Output_section* os,
3173 Output_symtab_xindex* symtab_xindex,
3174 Output_file* of,
3175 off_t offset) const
3176 {
3177 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3178
3179 unsigned char* pov = of->get_output_view(offset, sym_size);
3180
3181 elfcpp::Sym_write<size, big_endian> osym(pov);
3182 osym.put_st_name(0);
3183 if (parameters->options().relocatable())
3184 osym.put_st_value(0);
3185 else
3186 osym.put_st_value(os->address());
3187 osym.put_st_size(0);
3188 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3189 elfcpp::STT_SECTION));
3190 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3191
3192 unsigned int shndx = os->out_shndx();
3193 if (shndx >= elfcpp::SHN_LORESERVE)
3194 {
3195 symtab_xindex->add(os->symtab_index(), shndx);
3196 shndx = elfcpp::SHN_XINDEX;
3197 }
3198 osym.put_st_shndx(shndx);
3199
3200 of->write_output_view(offset, sym_size, pov);
3201 }
3202
3203 // Print statistical information to stderr. This is used for --stats.
3204
3205 void
3206 Symbol_table::print_stats() const
3207 {
3208 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3209 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3210 program_name, this->table_.size(), this->table_.bucket_count());
3211 #else
3212 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3213 program_name, this->table_.size());
3214 #endif
3215 this->namepool_.print_stats("symbol table stringpool");
3216 }
3217
3218 // We check for ODR violations by looking for symbols with the same
3219 // name for which the debugging information reports that they were
3220 // defined in disjoint source locations. When comparing the source
3221 // location, we consider instances with the same base filename to be
3222 // the same. This is because different object files/shared libraries
3223 // can include the same header file using different paths, and
3224 // different optimization settings can make the line number appear to
3225 // be a couple lines off, and we don't want to report an ODR violation
3226 // in those cases.
3227
3228 // This struct is used to compare line information, as returned by
3229 // Dwarf_line_info::one_addr2line. It implements a < comparison
3230 // operator used with std::sort.
3231
3232 struct Odr_violation_compare
3233 {
3234 bool
3235 operator()(const std::string& s1, const std::string& s2) const
3236 {
3237 // Inputs should be of the form "dirname/filename:linenum" where
3238 // "dirname/" is optional. We want to compare just the filename:linenum.
3239
3240 // Find the last '/' in each string.
3241 std::string::size_type s1begin = s1.rfind('/');
3242 std::string::size_type s2begin = s2.rfind('/');
3243 // If there was no '/' in a string, start at the beginning.
3244 if (s1begin == std::string::npos)
3245 s1begin = 0;
3246 if (s2begin == std::string::npos)
3247 s2begin = 0;
3248 return s1.compare(s1begin, std::string::npos,
3249 s2, s2begin, std::string::npos) < 0;
3250 }
3251 };
3252
3253 // Returns all of the lines attached to LOC, not just the one the
3254 // instruction actually came from.
3255 std::vector<std::string>
3256 Symbol_table::linenos_from_loc(const Task* task,
3257 const Symbol_location& loc)
3258 {
3259 // We need to lock the object in order to read it. This
3260 // means that we have to run in a singleton Task. If we
3261 // want to run this in a general Task for better
3262 // performance, we will need one Task for object, plus
3263 // appropriate locking to ensure that we don't conflict with
3264 // other uses of the object. Also note, one_addr2line is not
3265 // currently thread-safe.
3266 Task_lock_obj<Object> tl(task, loc.object);
3267
3268 std::vector<std::string> result;
3269 Symbol_location code_loc = loc;
3270 parameters->target().function_location(&code_loc);
3271 // 16 is the size of the object-cache that one_addr2line should use.
3272 std::string canonical_result = Dwarf_line_info::one_addr2line(
3273 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3274 if (!canonical_result.empty())
3275 result.push_back(canonical_result);
3276 return result;
3277 }
3278
3279 // OutputIterator that records if it was ever assigned to. This
3280 // allows it to be used with std::set_intersection() to check for
3281 // intersection rather than computing the intersection.
3282 struct Check_intersection
3283 {
3284 Check_intersection()
3285 : value_(false)
3286 {}
3287
3288 bool had_intersection() const
3289 { return this->value_; }
3290
3291 Check_intersection& operator++()
3292 { return *this; }
3293
3294 Check_intersection& operator*()
3295 { return *this; }
3296
3297 template<typename T>
3298 Check_intersection& operator=(const T&)
3299 {
3300 this->value_ = true;
3301 return *this;
3302 }
3303
3304 private:
3305 bool value_;
3306 };
3307
3308 // Check candidate_odr_violations_ to find symbols with the same name
3309 // but apparently different definitions (different source-file/line-no
3310 // for each line assigned to the first instruction).
3311
3312 void
3313 Symbol_table::detect_odr_violations(const Task* task,
3314 const char* output_file_name) const
3315 {
3316 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3317 it != candidate_odr_violations_.end();
3318 ++it)
3319 {
3320 const char* const symbol_name = it->first;
3321
3322 std::string first_object_name;
3323 std::vector<std::string> first_object_linenos;
3324
3325 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3326 locs = it->second.begin();
3327 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3328 locs_end = it->second.end();
3329 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3330 {
3331 // Save the line numbers from the first definition to
3332 // compare to the other definitions. Ideally, we'd compare
3333 // every definition to every other, but we don't want to
3334 // take O(N^2) time to do this. This shortcut may cause
3335 // false negatives that appear or disappear depending on the
3336 // link order, but it won't cause false positives.
3337 first_object_name = locs->object->name();
3338 first_object_linenos = this->linenos_from_loc(task, *locs);
3339 }
3340
3341 // Sort by Odr_violation_compare to make std::set_intersection work.
3342 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3343 Odr_violation_compare());
3344
3345 for (; locs != locs_end; ++locs)
3346 {
3347 std::vector<std::string> linenos =
3348 this->linenos_from_loc(task, *locs);
3349 // linenos will be empty if we couldn't parse the debug info.
3350 if (linenos.empty())
3351 continue;
3352 // Sort by Odr_violation_compare to make std::set_intersection work.
3353 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3354
3355 Check_intersection intersection_result =
3356 std::set_intersection(first_object_linenos.begin(),
3357 first_object_linenos.end(),
3358 linenos.begin(),
3359 linenos.end(),
3360 Check_intersection(),
3361 Odr_violation_compare());
3362 if (!intersection_result.had_intersection())
3363 {
3364 gold_warning(_("while linking %s: symbol '%s' defined in "
3365 "multiple places (possible ODR violation):"),
3366 output_file_name, demangle(symbol_name).c_str());
3367 // This only prints one location from each definition,
3368 // which may not be the location we expect to intersect
3369 // with another definition. We could print the whole
3370 // set of locations, but that seems too verbose.
3371 gold_assert(!first_object_linenos.empty());
3372 gold_assert(!linenos.empty());
3373 fprintf(stderr, _(" %s from %s\n"),
3374 first_object_linenos[0].c_str(),
3375 first_object_name.c_str());
3376 fprintf(stderr, _(" %s from %s\n"),
3377 linenos[0].c_str(),
3378 locs->object->name().c_str());
3379 // Only print one broken pair, to avoid needing to
3380 // compare against a list of the disjoint definition
3381 // locations we've found so far. (If we kept comparing
3382 // against just the first one, we'd get a lot of
3383 // redundant complaints about the second definition
3384 // location.)
3385 break;
3386 }
3387 }
3388 }
3389 // We only call one_addr2line() in this function, so we can clear its cache.
3390 Dwarf_line_info::clear_addr2line_cache();
3391 }
3392
3393 // Warnings functions.
3394
3395 // Add a new warning.
3396
3397 void
3398 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3399 const std::string& warning)
3400 {
3401 name = symtab->canonicalize_name(name);
3402 this->warnings_[name].set(obj, warning);
3403 }
3404
3405 // Look through the warnings and mark the symbols for which we should
3406 // warn. This is called during Layout::finalize when we know the
3407 // sources for all the symbols.
3408
3409 void
3410 Warnings::note_warnings(Symbol_table* symtab)
3411 {
3412 for (Warning_table::iterator p = this->warnings_.begin();
3413 p != this->warnings_.end();
3414 ++p)
3415 {
3416 Symbol* sym = symtab->lookup(p->first, NULL);
3417 if (sym != NULL
3418 && sym->source() == Symbol::FROM_OBJECT
3419 && sym->object() == p->second.object)
3420 sym->set_has_warning();
3421 }
3422 }
3423
3424 // Issue a warning. This is called when we see a relocation against a
3425 // symbol for which has a warning.
3426
3427 template<int size, bool big_endian>
3428 void
3429 Warnings::issue_warning(const Symbol* sym,
3430 const Relocate_info<size, big_endian>* relinfo,
3431 size_t relnum, off_t reloffset) const
3432 {
3433 gold_assert(sym->has_warning());
3434
3435 // We don't want to issue a warning for a relocation against the
3436 // symbol in the same object file in which the symbol is defined.
3437 if (sym->object() == relinfo->object)
3438 return;
3439
3440 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3441 gold_assert(p != this->warnings_.end());
3442 gold_warning_at_location(relinfo, relnum, reloffset,
3443 "%s", p->second.text.c_str());
3444 }
3445
3446 // Instantiate the templates we need. We could use the configure
3447 // script to restrict this to only the ones needed for implemented
3448 // targets.
3449
3450 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3451 template
3452 void
3453 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3454 #endif
3455
3456 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3457 template
3458 void
3459 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3460 #endif
3461
3462 #ifdef HAVE_TARGET_32_LITTLE
3463 template
3464 void
3465 Symbol_table::add_from_relobj<32, false>(
3466 Sized_relobj_file<32, false>* relobj,
3467 const unsigned char* syms,
3468 size_t count,
3469 size_t symndx_offset,
3470 const char* sym_names,
3471 size_t sym_name_size,
3472 Sized_relobj_file<32, false>::Symbols* sympointers,
3473 size_t* defined);
3474 #endif
3475
3476 #ifdef HAVE_TARGET_32_BIG
3477 template
3478 void
3479 Symbol_table::add_from_relobj<32, true>(
3480 Sized_relobj_file<32, true>* relobj,
3481 const unsigned char* syms,
3482 size_t count,
3483 size_t symndx_offset,
3484 const char* sym_names,
3485 size_t sym_name_size,
3486 Sized_relobj_file<32, true>::Symbols* sympointers,
3487 size_t* defined);
3488 #endif
3489
3490 #ifdef HAVE_TARGET_64_LITTLE
3491 template
3492 void
3493 Symbol_table::add_from_relobj<64, false>(
3494 Sized_relobj_file<64, false>* relobj,
3495 const unsigned char* syms,
3496 size_t count,
3497 size_t symndx_offset,
3498 const char* sym_names,
3499 size_t sym_name_size,
3500 Sized_relobj_file<64, false>::Symbols* sympointers,
3501 size_t* defined);
3502 #endif
3503
3504 #ifdef HAVE_TARGET_64_BIG
3505 template
3506 void
3507 Symbol_table::add_from_relobj<64, true>(
3508 Sized_relobj_file<64, true>* relobj,
3509 const unsigned char* syms,
3510 size_t count,
3511 size_t symndx_offset,
3512 const char* sym_names,
3513 size_t sym_name_size,
3514 Sized_relobj_file<64, true>::Symbols* sympointers,
3515 size_t* defined);
3516 #endif
3517
3518 #ifdef HAVE_TARGET_32_LITTLE
3519 template
3520 Symbol*
3521 Symbol_table::add_from_pluginobj<32, false>(
3522 Sized_pluginobj<32, false>* obj,
3523 const char* name,
3524 const char* ver,
3525 elfcpp::Sym<32, false>* sym);
3526 #endif
3527
3528 #ifdef HAVE_TARGET_32_BIG
3529 template
3530 Symbol*
3531 Symbol_table::add_from_pluginobj<32, true>(
3532 Sized_pluginobj<32, true>* obj,
3533 const char* name,
3534 const char* ver,
3535 elfcpp::Sym<32, true>* sym);
3536 #endif
3537
3538 #ifdef HAVE_TARGET_64_LITTLE
3539 template
3540 Symbol*
3541 Symbol_table::add_from_pluginobj<64, false>(
3542 Sized_pluginobj<64, false>* obj,
3543 const char* name,
3544 const char* ver,
3545 elfcpp::Sym<64, false>* sym);
3546 #endif
3547
3548 #ifdef HAVE_TARGET_64_BIG
3549 template
3550 Symbol*
3551 Symbol_table::add_from_pluginobj<64, true>(
3552 Sized_pluginobj<64, true>* obj,
3553 const char* name,
3554 const char* ver,
3555 elfcpp::Sym<64, true>* sym);
3556 #endif
3557
3558 #ifdef HAVE_TARGET_32_LITTLE
3559 template
3560 void
3561 Symbol_table::add_from_dynobj<32, false>(
3562 Sized_dynobj<32, false>* dynobj,
3563 const unsigned char* syms,
3564 size_t count,
3565 const char* sym_names,
3566 size_t sym_name_size,
3567 const unsigned char* versym,
3568 size_t versym_size,
3569 const std::vector<const char*>* version_map,
3570 Sized_relobj_file<32, false>::Symbols* sympointers,
3571 size_t* defined);
3572 #endif
3573
3574 #ifdef HAVE_TARGET_32_BIG
3575 template
3576 void
3577 Symbol_table::add_from_dynobj<32, true>(
3578 Sized_dynobj<32, true>* dynobj,
3579 const unsigned char* syms,
3580 size_t count,
3581 const char* sym_names,
3582 size_t sym_name_size,
3583 const unsigned char* versym,
3584 size_t versym_size,
3585 const std::vector<const char*>* version_map,
3586 Sized_relobj_file<32, true>::Symbols* sympointers,
3587 size_t* defined);
3588 #endif
3589
3590 #ifdef HAVE_TARGET_64_LITTLE
3591 template
3592 void
3593 Symbol_table::add_from_dynobj<64, false>(
3594 Sized_dynobj<64, false>* dynobj,
3595 const unsigned char* syms,
3596 size_t count,
3597 const char* sym_names,
3598 size_t sym_name_size,
3599 const unsigned char* versym,
3600 size_t versym_size,
3601 const std::vector<const char*>* version_map,
3602 Sized_relobj_file<64, false>::Symbols* sympointers,
3603 size_t* defined);
3604 #endif
3605
3606 #ifdef HAVE_TARGET_64_BIG
3607 template
3608 void
3609 Symbol_table::add_from_dynobj<64, true>(
3610 Sized_dynobj<64, true>* dynobj,
3611 const unsigned char* syms,
3612 size_t count,
3613 const char* sym_names,
3614 size_t sym_name_size,
3615 const unsigned char* versym,
3616 size_t versym_size,
3617 const std::vector<const char*>* version_map,
3618 Sized_relobj_file<64, true>::Symbols* sympointers,
3619 size_t* defined);
3620 #endif
3621
3622 #ifdef HAVE_TARGET_32_LITTLE
3623 template
3624 Sized_symbol<32>*
3625 Symbol_table::add_from_incrobj(
3626 Object* obj,
3627 const char* name,
3628 const char* ver,
3629 elfcpp::Sym<32, false>* sym);
3630 #endif
3631
3632 #ifdef HAVE_TARGET_32_BIG
3633 template
3634 Sized_symbol<32>*
3635 Symbol_table::add_from_incrobj(
3636 Object* obj,
3637 const char* name,
3638 const char* ver,
3639 elfcpp::Sym<32, true>* sym);
3640 #endif
3641
3642 #ifdef HAVE_TARGET_64_LITTLE
3643 template
3644 Sized_symbol<64>*
3645 Symbol_table::add_from_incrobj(
3646 Object* obj,
3647 const char* name,
3648 const char* ver,
3649 elfcpp::Sym<64, false>* sym);
3650 #endif
3651
3652 #ifdef HAVE_TARGET_64_BIG
3653 template
3654 Sized_symbol<64>*
3655 Symbol_table::add_from_incrobj(
3656 Object* obj,
3657 const char* name,
3658 const char* ver,
3659 elfcpp::Sym<64, true>* sym);
3660 #endif
3661
3662 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3663 template
3664 void
3665 Symbol_table::define_with_copy_reloc<32>(
3666 Sized_symbol<32>* sym,
3667 Output_data* posd,
3668 elfcpp::Elf_types<32>::Elf_Addr value);
3669 #endif
3670
3671 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3672 template
3673 void
3674 Symbol_table::define_with_copy_reloc<64>(
3675 Sized_symbol<64>* sym,
3676 Output_data* posd,
3677 elfcpp::Elf_types<64>::Elf_Addr value);
3678 #endif
3679
3680 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3681 template
3682 void
3683 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3684 Output_data* od, Value_type value,
3685 Size_type symsize, elfcpp::STT type,
3686 elfcpp::STB binding,
3687 elfcpp::STV visibility,
3688 unsigned char nonvis,
3689 bool offset_is_from_end,
3690 bool is_predefined);
3691 #endif
3692
3693 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3694 template
3695 void
3696 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3697 Output_data* od, Value_type value,
3698 Size_type symsize, elfcpp::STT type,
3699 elfcpp::STB binding,
3700 elfcpp::STV visibility,
3701 unsigned char nonvis,
3702 bool offset_is_from_end,
3703 bool is_predefined);
3704 #endif
3705
3706 #ifdef HAVE_TARGET_32_LITTLE
3707 template
3708 void
3709 Warnings::issue_warning<32, false>(const Symbol* sym,
3710 const Relocate_info<32, false>* relinfo,
3711 size_t relnum, off_t reloffset) const;
3712 #endif
3713
3714 #ifdef HAVE_TARGET_32_BIG
3715 template
3716 void
3717 Warnings::issue_warning<32, true>(const Symbol* sym,
3718 const Relocate_info<32, true>* relinfo,
3719 size_t relnum, off_t reloffset) const;
3720 #endif
3721
3722 #ifdef HAVE_TARGET_64_LITTLE
3723 template
3724 void
3725 Warnings::issue_warning<64, false>(const Symbol* sym,
3726 const Relocate_info<64, false>* relinfo,
3727 size_t relnum, off_t reloffset) const;
3728 #endif
3729
3730 #ifdef HAVE_TARGET_64_BIG
3731 template
3732 void
3733 Warnings::issue_warning<64, true>(const Symbol* sym,
3734 const Relocate_info<64, true>* relinfo,
3735 size_t relnum, off_t reloffset) const;
3736 #endif
3737
3738 } // End namespace gold.
This page took 0.104476 seconds and 5 git commands to generate.