2012-08-21 Cary Coutant <ccoutant@google.com>
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Class Symbol_table.
531
532 Symbol_table::Symbol_table(unsigned int count,
533 const Version_script_info& version_script)
534 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535 forwarders_(), commons_(), tls_commons_(), small_commons_(),
536 large_commons_(), forced_locals_(), warnings_(),
537 version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539 namepool_.reserve(count);
540 }
541
542 Symbol_table::~Symbol_table()
543 {
544 }
545
546 // The symbol table key equality function. This is called with
547 // Stringpool keys.
548
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551 const Symbol_table_key& k2) const
552 {
553 return k1.first == k2.first && k1.second == k2.second;
554 }
555
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559 return (parameters->options().icf_enabled()
560 && this->icf_->is_section_folded(obj, shndx));
561 }
562
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565
566 void
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569 for (options::String_set::const_iterator p =
570 parameters->options().undefined_begin();
571 p != parameters->options().undefined_end();
572 ++p)
573 {
574 const char* name = p->c_str();
575 Symbol* sym = this->lookup(name);
576 gold_assert(sym != NULL);
577 if (sym->source() == Symbol::FROM_OBJECT
578 && !sym->object()->is_dynamic())
579 {
580 Relobj* obj = static_cast<Relobj*>(sym->object());
581 bool is_ordinary;
582 unsigned int shndx = sym->shndx(&is_ordinary);
583 if (is_ordinary)
584 {
585 gold_assert(this->gc_ != NULL);
586 this->gc_->worklist().push(Section_id(obj, shndx));
587 }
588 }
589 }
590
591 for (options::String_set::const_iterator p =
592 parameters->options().export_dynamic_symbol_begin();
593 p != parameters->options().export_dynamic_symbol_end();
594 ++p)
595 {
596 const char* name = p->c_str();
597 Symbol* sym = this->lookup(name);
598 // It's not an error if a symbol named by --export-dynamic-symbol
599 // is undefined.
600 if (sym != NULL
601 && sym->source() == Symbol::FROM_OBJECT
602 && !sym->object()->is_dynamic())
603 {
604 Relobj* obj = static_cast<Relobj*>(sym->object());
605 bool is_ordinary;
606 unsigned int shndx = sym->shndx(&is_ordinary);
607 if (is_ordinary)
608 {
609 gold_assert(this->gc_ != NULL);
610 this->gc_->worklist().push(Section_id(obj, shndx));
611 }
612 }
613 }
614
615 for (Script_options::referenced_const_iterator p =
616 layout->script_options()->referenced_begin();
617 p != layout->script_options()->referenced_end();
618 ++p)
619 {
620 Symbol* sym = this->lookup(p->c_str());
621 gold_assert(sym != NULL);
622 if (sym->source() == Symbol::FROM_OBJECT
623 && !sym->object()->is_dynamic())
624 {
625 Relobj* obj = static_cast<Relobj*>(sym->object());
626 bool is_ordinary;
627 unsigned int shndx = sym->shndx(&is_ordinary);
628 if (is_ordinary)
629 {
630 gold_assert(this->gc_ != NULL);
631 this->gc_->worklist().push(Section_id(obj, shndx));
632 }
633 }
634 }
635 }
636
637 void
638 Symbol_table::gc_mark_symbol(Symbol* sym)
639 {
640 // Add the object and section to the work list.
641 Relobj* obj = static_cast<Relobj*>(sym->object());
642 bool is_ordinary;
643 unsigned int shndx = sym->shndx(&is_ordinary);
644 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
645 {
646 gold_assert(this->gc_!= NULL);
647 this->gc_->worklist().push(Section_id(obj, shndx));
648 }
649 }
650
651 // When doing garbage collection, keep symbols that have been seen in
652 // dynamic objects.
653 inline void
654 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
655 {
656 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
657 && !sym->object()->is_dynamic())
658 this->gc_mark_symbol(sym);
659 }
660
661 // Make TO a symbol which forwards to FROM.
662
663 void
664 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
665 {
666 gold_assert(from != to);
667 gold_assert(!from->is_forwarder() && !to->is_forwarder());
668 this->forwarders_[from] = to;
669 from->set_forwarder();
670 }
671
672 // Resolve the forwards from FROM, returning the real symbol.
673
674 Symbol*
675 Symbol_table::resolve_forwards(const Symbol* from) const
676 {
677 gold_assert(from->is_forwarder());
678 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
679 this->forwarders_.find(from);
680 gold_assert(p != this->forwarders_.end());
681 return p->second;
682 }
683
684 // Look up a symbol by name.
685
686 Symbol*
687 Symbol_table::lookup(const char* name, const char* version) const
688 {
689 Stringpool::Key name_key;
690 name = this->namepool_.find(name, &name_key);
691 if (name == NULL)
692 return NULL;
693
694 Stringpool::Key version_key = 0;
695 if (version != NULL)
696 {
697 version = this->namepool_.find(version, &version_key);
698 if (version == NULL)
699 return NULL;
700 }
701
702 Symbol_table_key key(name_key, version_key);
703 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
704 if (p == this->table_.end())
705 return NULL;
706 return p->second;
707 }
708
709 // Resolve a Symbol with another Symbol. This is only used in the
710 // unusual case where there are references to both an unversioned
711 // symbol and a symbol with a version, and we then discover that that
712 // version is the default version. Because this is unusual, we do
713 // this the slow way, by converting back to an ELF symbol.
714
715 template<int size, bool big_endian>
716 void
717 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
718 {
719 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
720 elfcpp::Sym_write<size, big_endian> esym(buf);
721 // We don't bother to set the st_name or the st_shndx field.
722 esym.put_st_value(from->value());
723 esym.put_st_size(from->symsize());
724 esym.put_st_info(from->binding(), from->type());
725 esym.put_st_other(from->visibility(), from->nonvis());
726 bool is_ordinary;
727 unsigned int shndx = from->shndx(&is_ordinary);
728 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
729 from->version());
730 if (from->in_reg())
731 to->set_in_reg();
732 if (from->in_dyn())
733 to->set_in_dyn();
734 if (parameters->options().gc_sections())
735 this->gc_mark_dyn_syms(to);
736 }
737
738 // Record that a symbol is forced to be local by a version script or
739 // by visibility.
740
741 void
742 Symbol_table::force_local(Symbol* sym)
743 {
744 if (!sym->is_defined() && !sym->is_common())
745 return;
746 if (sym->is_forced_local())
747 {
748 // We already got this one.
749 return;
750 }
751 sym->set_is_forced_local();
752 this->forced_locals_.push_back(sym);
753 }
754
755 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
756 // is only called for undefined symbols, when at least one --wrap
757 // option was used.
758
759 const char*
760 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
761 {
762 // For some targets, we need to ignore a specific character when
763 // wrapping, and add it back later.
764 char prefix = '\0';
765 if (name[0] == parameters->target().wrap_char())
766 {
767 prefix = name[0];
768 ++name;
769 }
770
771 if (parameters->options().is_wrap(name))
772 {
773 // Turn NAME into __wrap_NAME.
774 std::string s;
775 if (prefix != '\0')
776 s += prefix;
777 s += "__wrap_";
778 s += name;
779
780 // This will give us both the old and new name in NAMEPOOL_, but
781 // that is OK. Only the versions we need will wind up in the
782 // real string table in the output file.
783 return this->namepool_.add(s.c_str(), true, name_key);
784 }
785
786 const char* const real_prefix = "__real_";
787 const size_t real_prefix_length = strlen(real_prefix);
788 if (strncmp(name, real_prefix, real_prefix_length) == 0
789 && parameters->options().is_wrap(name + real_prefix_length))
790 {
791 // Turn __real_NAME into NAME.
792 std::string s;
793 if (prefix != '\0')
794 s += prefix;
795 s += name + real_prefix_length;
796 return this->namepool_.add(s.c_str(), true, name_key);
797 }
798
799 return name;
800 }
801
802 // This is called when we see a symbol NAME/VERSION, and the symbol
803 // already exists in the symbol table, and VERSION is marked as being
804 // the default version. SYM is the NAME/VERSION symbol we just added.
805 // DEFAULT_IS_NEW is true if this is the first time we have seen the
806 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
807
808 template<int size, bool big_endian>
809 void
810 Symbol_table::define_default_version(Sized_symbol<size>* sym,
811 bool default_is_new,
812 Symbol_table_type::iterator pdef)
813 {
814 if (default_is_new)
815 {
816 // This is the first time we have seen NAME/NULL. Make
817 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
818 // version.
819 pdef->second = sym;
820 sym->set_is_default();
821 }
822 else if (pdef->second == sym)
823 {
824 // NAME/NULL already points to NAME/VERSION. Don't mark the
825 // symbol as the default if it is not already the default.
826 }
827 else
828 {
829 // This is the unfortunate case where we already have entries
830 // for both NAME/VERSION and NAME/NULL. We now see a symbol
831 // NAME/VERSION where VERSION is the default version. We have
832 // already resolved this new symbol with the existing
833 // NAME/VERSION symbol.
834
835 // It's possible that NAME/NULL and NAME/VERSION are both
836 // defined in regular objects. This can only happen if one
837 // object file defines foo and another defines foo@@ver. This
838 // is somewhat obscure, but we call it a multiple definition
839 // error.
840
841 // It's possible that NAME/NULL actually has a version, in which
842 // case it won't be the same as VERSION. This happens with
843 // ver_test_7.so in the testsuite for the symbol t2_2. We see
844 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
845 // then see an unadorned t2_2 in an object file and give it
846 // version VER1 from the version script. This looks like a
847 // default definition for VER1, so it looks like we should merge
848 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
849 // not obvious that this is an error, either. So we just punt.
850
851 // If one of the symbols has non-default visibility, and the
852 // other is defined in a shared object, then they are different
853 // symbols.
854
855 // Otherwise, we just resolve the symbols as though they were
856 // the same.
857
858 if (pdef->second->version() != NULL)
859 gold_assert(pdef->second->version() != sym->version());
860 else if (sym->visibility() != elfcpp::STV_DEFAULT
861 && pdef->second->is_from_dynobj())
862 ;
863 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
864 && sym->is_from_dynobj())
865 ;
866 else
867 {
868 const Sized_symbol<size>* symdef;
869 symdef = this->get_sized_symbol<size>(pdef->second);
870 Symbol_table::resolve<size, big_endian>(sym, symdef);
871 this->make_forwarder(pdef->second, sym);
872 pdef->second = sym;
873 sym->set_is_default();
874 }
875 }
876 }
877
878 // Add one symbol from OBJECT to the symbol table. NAME is symbol
879 // name and VERSION is the version; both are canonicalized. DEF is
880 // whether this is the default version. ST_SHNDX is the symbol's
881 // section index; IS_ORDINARY is whether this is a normal section
882 // rather than a special code.
883
884 // If IS_DEFAULT_VERSION is true, then this is the definition of a
885 // default version of a symbol. That means that any lookup of
886 // NAME/NULL and any lookup of NAME/VERSION should always return the
887 // same symbol. This is obvious for references, but in particular we
888 // want to do this for definitions: overriding NAME/NULL should also
889 // override NAME/VERSION. If we don't do that, it would be very hard
890 // to override functions in a shared library which uses versioning.
891
892 // We implement this by simply making both entries in the hash table
893 // point to the same Symbol structure. That is easy enough if this is
894 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
895 // that we have seen both already, in which case they will both have
896 // independent entries in the symbol table. We can't simply change
897 // the symbol table entry, because we have pointers to the entries
898 // attached to the object files. So we mark the entry attached to the
899 // object file as a forwarder, and record it in the forwarders_ map.
900 // Note that entries in the hash table will never be marked as
901 // forwarders.
902 //
903 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
904 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
905 // for a special section code. ST_SHNDX may be modified if the symbol
906 // is defined in a section being discarded.
907
908 template<int size, bool big_endian>
909 Sized_symbol<size>*
910 Symbol_table::add_from_object(Object* object,
911 const char* name,
912 Stringpool::Key name_key,
913 const char* version,
914 Stringpool::Key version_key,
915 bool is_default_version,
916 const elfcpp::Sym<size, big_endian>& sym,
917 unsigned int st_shndx,
918 bool is_ordinary,
919 unsigned int orig_st_shndx)
920 {
921 // Print a message if this symbol is being traced.
922 if (parameters->options().is_trace_symbol(name))
923 {
924 if (orig_st_shndx == elfcpp::SHN_UNDEF)
925 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
926 else
927 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
928 }
929
930 // For an undefined symbol, we may need to adjust the name using
931 // --wrap.
932 if (orig_st_shndx == elfcpp::SHN_UNDEF
933 && parameters->options().any_wrap())
934 {
935 const char* wrap_name = this->wrap_symbol(name, &name_key);
936 if (wrap_name != name)
937 {
938 // If we see a reference to malloc with version GLIBC_2.0,
939 // and we turn it into a reference to __wrap_malloc, then we
940 // discard the version number. Otherwise the user would be
941 // required to specify the correct version for
942 // __wrap_malloc.
943 version = NULL;
944 version_key = 0;
945 name = wrap_name;
946 }
947 }
948
949 Symbol* const snull = NULL;
950 std::pair<typename Symbol_table_type::iterator, bool> ins =
951 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
952 snull));
953
954 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
955 std::make_pair(this->table_.end(), false);
956 if (is_default_version)
957 {
958 const Stringpool::Key vnull_key = 0;
959 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
960 vnull_key),
961 snull));
962 }
963
964 // ins.first: an iterator, which is a pointer to a pair.
965 // ins.first->first: the key (a pair of name and version).
966 // ins.first->second: the value (Symbol*).
967 // ins.second: true if new entry was inserted, false if not.
968
969 Sized_symbol<size>* ret;
970 bool was_undefined;
971 bool was_common;
972 if (!ins.second)
973 {
974 // We already have an entry for NAME/VERSION.
975 ret = this->get_sized_symbol<size>(ins.first->second);
976 gold_assert(ret != NULL);
977
978 was_undefined = ret->is_undefined();
979 was_common = ret->is_common();
980
981 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
982 version);
983 if (parameters->options().gc_sections())
984 this->gc_mark_dyn_syms(ret);
985
986 if (is_default_version)
987 this->define_default_version<size, big_endian>(ret, insdefault.second,
988 insdefault.first);
989 }
990 else
991 {
992 // This is the first time we have seen NAME/VERSION.
993 gold_assert(ins.first->second == NULL);
994
995 if (is_default_version && !insdefault.second)
996 {
997 // We already have an entry for NAME/NULL. If we override
998 // it, then change it to NAME/VERSION.
999 ret = this->get_sized_symbol<size>(insdefault.first->second);
1000
1001 was_undefined = ret->is_undefined();
1002 was_common = ret->is_common();
1003
1004 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1005 version);
1006 if (parameters->options().gc_sections())
1007 this->gc_mark_dyn_syms(ret);
1008 ins.first->second = ret;
1009 }
1010 else
1011 {
1012 was_undefined = false;
1013 was_common = false;
1014
1015 Sized_target<size, big_endian>* target =
1016 parameters->sized_target<size, big_endian>();
1017 if (!target->has_make_symbol())
1018 ret = new Sized_symbol<size>();
1019 else
1020 {
1021 ret = target->make_symbol();
1022 if (ret == NULL)
1023 {
1024 // This means that we don't want a symbol table
1025 // entry after all.
1026 if (!is_default_version)
1027 this->table_.erase(ins.first);
1028 else
1029 {
1030 this->table_.erase(insdefault.first);
1031 // Inserting INSDEFAULT invalidated INS.
1032 this->table_.erase(std::make_pair(name_key,
1033 version_key));
1034 }
1035 return NULL;
1036 }
1037 }
1038
1039 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1040
1041 ins.first->second = ret;
1042 if (is_default_version)
1043 {
1044 // This is the first time we have seen NAME/NULL. Point
1045 // it at the new entry for NAME/VERSION.
1046 gold_assert(insdefault.second);
1047 insdefault.first->second = ret;
1048 }
1049 }
1050
1051 if (is_default_version)
1052 ret->set_is_default();
1053 }
1054
1055 // Record every time we see a new undefined symbol, to speed up
1056 // archive groups.
1057 if (!was_undefined && ret->is_undefined())
1058 {
1059 ++this->saw_undefined_;
1060 if (parameters->options().has_plugins())
1061 parameters->options().plugins()->new_undefined_symbol(ret);
1062 }
1063
1064 // Keep track of common symbols, to speed up common symbol
1065 // allocation.
1066 if (!was_common && ret->is_common())
1067 {
1068 if (ret->type() == elfcpp::STT_TLS)
1069 this->tls_commons_.push_back(ret);
1070 else if (!is_ordinary
1071 && st_shndx == parameters->target().small_common_shndx())
1072 this->small_commons_.push_back(ret);
1073 else if (!is_ordinary
1074 && st_shndx == parameters->target().large_common_shndx())
1075 this->large_commons_.push_back(ret);
1076 else
1077 this->commons_.push_back(ret);
1078 }
1079
1080 // If we're not doing a relocatable link, then any symbol with
1081 // hidden or internal visibility is local.
1082 if ((ret->visibility() == elfcpp::STV_HIDDEN
1083 || ret->visibility() == elfcpp::STV_INTERNAL)
1084 && (ret->binding() == elfcpp::STB_GLOBAL
1085 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1086 || ret->binding() == elfcpp::STB_WEAK)
1087 && !parameters->options().relocatable())
1088 this->force_local(ret);
1089
1090 return ret;
1091 }
1092
1093 // Add all the symbols in a relocatable object to the hash table.
1094
1095 template<int size, bool big_endian>
1096 void
1097 Symbol_table::add_from_relobj(
1098 Sized_relobj_file<size, big_endian>* relobj,
1099 const unsigned char* syms,
1100 size_t count,
1101 size_t symndx_offset,
1102 const char* sym_names,
1103 size_t sym_name_size,
1104 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1105 size_t* defined)
1106 {
1107 *defined = 0;
1108
1109 gold_assert(size == parameters->target().get_size());
1110
1111 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1112
1113 const bool just_symbols = relobj->just_symbols();
1114
1115 const unsigned char* p = syms;
1116 for (size_t i = 0; i < count; ++i, p += sym_size)
1117 {
1118 (*sympointers)[i] = NULL;
1119
1120 elfcpp::Sym<size, big_endian> sym(p);
1121
1122 unsigned int st_name = sym.get_st_name();
1123 if (st_name >= sym_name_size)
1124 {
1125 relobj->error(_("bad global symbol name offset %u at %zu"),
1126 st_name, i);
1127 continue;
1128 }
1129
1130 const char* name = sym_names + st_name;
1131
1132 bool is_ordinary;
1133 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1134 sym.get_st_shndx(),
1135 &is_ordinary);
1136 unsigned int orig_st_shndx = st_shndx;
1137 if (!is_ordinary)
1138 orig_st_shndx = elfcpp::SHN_UNDEF;
1139
1140 if (st_shndx != elfcpp::SHN_UNDEF)
1141 ++*defined;
1142
1143 // A symbol defined in a section which we are not including must
1144 // be treated as an undefined symbol.
1145 bool is_defined_in_discarded_section = false;
1146 if (st_shndx != elfcpp::SHN_UNDEF
1147 && is_ordinary
1148 && !relobj->is_section_included(st_shndx)
1149 && !this->is_section_folded(relobj, st_shndx))
1150 {
1151 st_shndx = elfcpp::SHN_UNDEF;
1152 is_defined_in_discarded_section = true;
1153 }
1154
1155 // In an object file, an '@' in the name separates the symbol
1156 // name from the version name. If there are two '@' characters,
1157 // this is the default version.
1158 const char* ver = strchr(name, '@');
1159 Stringpool::Key ver_key = 0;
1160 int namelen = 0;
1161 // IS_DEFAULT_VERSION: is the version default?
1162 // IS_FORCED_LOCAL: is the symbol forced local?
1163 bool is_default_version = false;
1164 bool is_forced_local = false;
1165
1166 // FIXME: For incremental links, we don't store version information,
1167 // so we need to ignore version symbols for now.
1168 if (parameters->incremental_update() && ver != NULL)
1169 {
1170 namelen = ver - name;
1171 ver = NULL;
1172 }
1173
1174 if (ver != NULL)
1175 {
1176 // The symbol name is of the form foo@VERSION or foo@@VERSION
1177 namelen = ver - name;
1178 ++ver;
1179 if (*ver == '@')
1180 {
1181 is_default_version = true;
1182 ++ver;
1183 }
1184 ver = this->namepool_.add(ver, true, &ver_key);
1185 }
1186 // We don't want to assign a version to an undefined symbol,
1187 // even if it is listed in the version script. FIXME: What
1188 // about a common symbol?
1189 else
1190 {
1191 namelen = strlen(name);
1192 if (!this->version_script_.empty()
1193 && st_shndx != elfcpp::SHN_UNDEF)
1194 {
1195 // The symbol name did not have a version, but the
1196 // version script may assign a version anyway.
1197 std::string version;
1198 bool is_global;
1199 if (this->version_script_.get_symbol_version(name, &version,
1200 &is_global))
1201 {
1202 if (!is_global)
1203 is_forced_local = true;
1204 else if (!version.empty())
1205 {
1206 ver = this->namepool_.add_with_length(version.c_str(),
1207 version.length(),
1208 true,
1209 &ver_key);
1210 is_default_version = true;
1211 }
1212 }
1213 }
1214 }
1215
1216 elfcpp::Sym<size, big_endian>* psym = &sym;
1217 unsigned char symbuf[sym_size];
1218 elfcpp::Sym<size, big_endian> sym2(symbuf);
1219 if (just_symbols)
1220 {
1221 memcpy(symbuf, p, sym_size);
1222 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1223 if (orig_st_shndx != elfcpp::SHN_UNDEF
1224 && is_ordinary
1225 && relobj->e_type() == elfcpp::ET_REL)
1226 {
1227 // Symbol values in relocatable object files are section
1228 // relative. This is normally what we want, but since here
1229 // we are converting the symbol to absolute we need to add
1230 // the section address. The section address in an object
1231 // file is normally zero, but people can use a linker
1232 // script to change it.
1233 sw.put_st_value(sym.get_st_value()
1234 + relobj->section_address(orig_st_shndx));
1235 }
1236 st_shndx = elfcpp::SHN_ABS;
1237 is_ordinary = false;
1238 psym = &sym2;
1239 }
1240
1241 // Fix up visibility if object has no-export set.
1242 if (relobj->no_export()
1243 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1244 {
1245 // We may have copied symbol already above.
1246 if (psym != &sym2)
1247 {
1248 memcpy(symbuf, p, sym_size);
1249 psym = &sym2;
1250 }
1251
1252 elfcpp::STV visibility = sym2.get_st_visibility();
1253 if (visibility == elfcpp::STV_DEFAULT
1254 || visibility == elfcpp::STV_PROTECTED)
1255 {
1256 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1257 unsigned char nonvis = sym2.get_st_nonvis();
1258 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1259 }
1260 }
1261
1262 Stringpool::Key name_key;
1263 name = this->namepool_.add_with_length(name, namelen, true,
1264 &name_key);
1265
1266 Sized_symbol<size>* res;
1267 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1268 is_default_version, *psym, st_shndx,
1269 is_ordinary, orig_st_shndx);
1270
1271 if (is_forced_local)
1272 this->force_local(res);
1273
1274 // Do not treat this symbol as garbage if this symbol will be
1275 // exported to the dynamic symbol table. This is true when
1276 // building a shared library or using --export-dynamic and
1277 // the symbol is externally visible.
1278 if (parameters->options().gc_sections()
1279 && res->is_externally_visible()
1280 && !res->is_from_dynobj()
1281 && (parameters->options().shared()
1282 || parameters->options().export_dynamic()))
1283 this->gc_mark_symbol(res);
1284
1285 if (is_defined_in_discarded_section)
1286 res->set_is_defined_in_discarded_section();
1287
1288 (*sympointers)[i] = res;
1289 }
1290 }
1291
1292 // Add a symbol from a plugin-claimed file.
1293
1294 template<int size, bool big_endian>
1295 Symbol*
1296 Symbol_table::add_from_pluginobj(
1297 Sized_pluginobj<size, big_endian>* obj,
1298 const char* name,
1299 const char* ver,
1300 elfcpp::Sym<size, big_endian>* sym)
1301 {
1302 unsigned int st_shndx = sym->get_st_shndx();
1303 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1304
1305 Stringpool::Key ver_key = 0;
1306 bool is_default_version = false;
1307 bool is_forced_local = false;
1308
1309 if (ver != NULL)
1310 {
1311 ver = this->namepool_.add(ver, true, &ver_key);
1312 }
1313 // We don't want to assign a version to an undefined symbol,
1314 // even if it is listed in the version script. FIXME: What
1315 // about a common symbol?
1316 else
1317 {
1318 if (!this->version_script_.empty()
1319 && st_shndx != elfcpp::SHN_UNDEF)
1320 {
1321 // The symbol name did not have a version, but the
1322 // version script may assign a version anyway.
1323 std::string version;
1324 bool is_global;
1325 if (this->version_script_.get_symbol_version(name, &version,
1326 &is_global))
1327 {
1328 if (!is_global)
1329 is_forced_local = true;
1330 else if (!version.empty())
1331 {
1332 ver = this->namepool_.add_with_length(version.c_str(),
1333 version.length(),
1334 true,
1335 &ver_key);
1336 is_default_version = true;
1337 }
1338 }
1339 }
1340 }
1341
1342 Stringpool::Key name_key;
1343 name = this->namepool_.add(name, true, &name_key);
1344
1345 Sized_symbol<size>* res;
1346 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1347 is_default_version, *sym, st_shndx,
1348 is_ordinary, st_shndx);
1349
1350 if (is_forced_local)
1351 this->force_local(res);
1352
1353 return res;
1354 }
1355
1356 // Add all the symbols in a dynamic object to the hash table.
1357
1358 template<int size, bool big_endian>
1359 void
1360 Symbol_table::add_from_dynobj(
1361 Sized_dynobj<size, big_endian>* dynobj,
1362 const unsigned char* syms,
1363 size_t count,
1364 const char* sym_names,
1365 size_t sym_name_size,
1366 const unsigned char* versym,
1367 size_t versym_size,
1368 const std::vector<const char*>* version_map,
1369 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1370 size_t* defined)
1371 {
1372 *defined = 0;
1373
1374 gold_assert(size == parameters->target().get_size());
1375
1376 if (dynobj->just_symbols())
1377 {
1378 gold_error(_("--just-symbols does not make sense with a shared object"));
1379 return;
1380 }
1381
1382 // FIXME: For incremental links, we don't store version information,
1383 // so we need to ignore version symbols for now.
1384 if (parameters->incremental_update())
1385 versym = NULL;
1386
1387 if (versym != NULL && versym_size / 2 < count)
1388 {
1389 dynobj->error(_("too few symbol versions"));
1390 return;
1391 }
1392
1393 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1394
1395 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1396 // weak aliases. This is necessary because if the dynamic object
1397 // provides the same variable under two names, one of which is a
1398 // weak definition, and the regular object refers to the weak
1399 // definition, we have to put both the weak definition and the
1400 // strong definition into the dynamic symbol table. Given a weak
1401 // definition, the only way that we can find the corresponding
1402 // strong definition, if any, is to search the symbol table.
1403 std::vector<Sized_symbol<size>*> object_symbols;
1404
1405 const unsigned char* p = syms;
1406 const unsigned char* vs = versym;
1407 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1408 {
1409 elfcpp::Sym<size, big_endian> sym(p);
1410
1411 if (sympointers != NULL)
1412 (*sympointers)[i] = NULL;
1413
1414 // Ignore symbols with local binding or that have
1415 // internal or hidden visibility.
1416 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1417 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1418 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1419 continue;
1420
1421 // A protected symbol in a shared library must be treated as a
1422 // normal symbol when viewed from outside the shared library.
1423 // Implement this by overriding the visibility here.
1424 elfcpp::Sym<size, big_endian>* psym = &sym;
1425 unsigned char symbuf[sym_size];
1426 elfcpp::Sym<size, big_endian> sym2(symbuf);
1427 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1428 {
1429 memcpy(symbuf, p, sym_size);
1430 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1431 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1432 psym = &sym2;
1433 }
1434
1435 unsigned int st_name = psym->get_st_name();
1436 if (st_name >= sym_name_size)
1437 {
1438 dynobj->error(_("bad symbol name offset %u at %zu"),
1439 st_name, i);
1440 continue;
1441 }
1442
1443 const char* name = sym_names + st_name;
1444
1445 bool is_ordinary;
1446 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1447 &is_ordinary);
1448
1449 if (st_shndx != elfcpp::SHN_UNDEF)
1450 ++*defined;
1451
1452 Sized_symbol<size>* res;
1453
1454 if (versym == NULL)
1455 {
1456 Stringpool::Key name_key;
1457 name = this->namepool_.add(name, true, &name_key);
1458 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1459 false, *psym, st_shndx, is_ordinary,
1460 st_shndx);
1461 }
1462 else
1463 {
1464 // Read the version information.
1465
1466 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1467
1468 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1469 v &= elfcpp::VERSYM_VERSION;
1470
1471 // The Sun documentation says that V can be VER_NDX_LOCAL,
1472 // or VER_NDX_GLOBAL, or a version index. The meaning of
1473 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1474 // The old GNU linker will happily generate VER_NDX_LOCAL
1475 // for an undefined symbol. I don't know what the Sun
1476 // linker will generate.
1477
1478 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1479 && st_shndx != elfcpp::SHN_UNDEF)
1480 {
1481 // This symbol should not be visible outside the object.
1482 continue;
1483 }
1484
1485 // At this point we are definitely going to add this symbol.
1486 Stringpool::Key name_key;
1487 name = this->namepool_.add(name, true, &name_key);
1488
1489 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1490 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1491 {
1492 // This symbol does not have a version.
1493 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1494 false, *psym, st_shndx, is_ordinary,
1495 st_shndx);
1496 }
1497 else
1498 {
1499 if (v >= version_map->size())
1500 {
1501 dynobj->error(_("versym for symbol %zu out of range: %u"),
1502 i, v);
1503 continue;
1504 }
1505
1506 const char* version = (*version_map)[v];
1507 if (version == NULL)
1508 {
1509 dynobj->error(_("versym for symbol %zu has no name: %u"),
1510 i, v);
1511 continue;
1512 }
1513
1514 Stringpool::Key version_key;
1515 version = this->namepool_.add(version, true, &version_key);
1516
1517 // If this is an absolute symbol, and the version name
1518 // and symbol name are the same, then this is the
1519 // version definition symbol. These symbols exist to
1520 // support using -u to pull in particular versions. We
1521 // do not want to record a version for them.
1522 if (st_shndx == elfcpp::SHN_ABS
1523 && !is_ordinary
1524 && name_key == version_key)
1525 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1526 false, *psym, st_shndx, is_ordinary,
1527 st_shndx);
1528 else
1529 {
1530 const bool is_default_version =
1531 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1532 res = this->add_from_object(dynobj, name, name_key, version,
1533 version_key, is_default_version,
1534 *psym, st_shndx,
1535 is_ordinary, st_shndx);
1536 }
1537 }
1538 }
1539
1540 // Note that it is possible that RES was overridden by an
1541 // earlier object, in which case it can't be aliased here.
1542 if (st_shndx != elfcpp::SHN_UNDEF
1543 && is_ordinary
1544 && psym->get_st_type() == elfcpp::STT_OBJECT
1545 && res->source() == Symbol::FROM_OBJECT
1546 && res->object() == dynobj)
1547 object_symbols.push_back(res);
1548
1549 if (sympointers != NULL)
1550 (*sympointers)[i] = res;
1551 }
1552
1553 this->record_weak_aliases(&object_symbols);
1554 }
1555
1556 // Add a symbol from a incremental object file.
1557
1558 template<int size, bool big_endian>
1559 Sized_symbol<size>*
1560 Symbol_table::add_from_incrobj(
1561 Object* obj,
1562 const char* name,
1563 const char* ver,
1564 elfcpp::Sym<size, big_endian>* sym)
1565 {
1566 unsigned int st_shndx = sym->get_st_shndx();
1567 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1568
1569 Stringpool::Key ver_key = 0;
1570 bool is_default_version = false;
1571 bool is_forced_local = false;
1572
1573 Stringpool::Key name_key;
1574 name = this->namepool_.add(name, true, &name_key);
1575
1576 Sized_symbol<size>* res;
1577 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1578 is_default_version, *sym, st_shndx,
1579 is_ordinary, st_shndx);
1580
1581 if (is_forced_local)
1582 this->force_local(res);
1583
1584 return res;
1585 }
1586
1587 // This is used to sort weak aliases. We sort them first by section
1588 // index, then by offset, then by weak ahead of strong.
1589
1590 template<int size>
1591 class Weak_alias_sorter
1592 {
1593 public:
1594 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1595 };
1596
1597 template<int size>
1598 bool
1599 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1600 const Sized_symbol<size>* s2) const
1601 {
1602 bool is_ordinary;
1603 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1604 gold_assert(is_ordinary);
1605 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1606 gold_assert(is_ordinary);
1607 if (s1_shndx != s2_shndx)
1608 return s1_shndx < s2_shndx;
1609
1610 if (s1->value() != s2->value())
1611 return s1->value() < s2->value();
1612 if (s1->binding() != s2->binding())
1613 {
1614 if (s1->binding() == elfcpp::STB_WEAK)
1615 return true;
1616 if (s2->binding() == elfcpp::STB_WEAK)
1617 return false;
1618 }
1619 return std::string(s1->name()) < std::string(s2->name());
1620 }
1621
1622 // SYMBOLS is a list of object symbols from a dynamic object. Look
1623 // for any weak aliases, and record them so that if we add the weak
1624 // alias to the dynamic symbol table, we also add the corresponding
1625 // strong symbol.
1626
1627 template<int size>
1628 void
1629 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1630 {
1631 // Sort the vector by section index, then by offset, then by weak
1632 // ahead of strong.
1633 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1634
1635 // Walk through the vector. For each weak definition, record
1636 // aliases.
1637 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1638 symbols->begin();
1639 p != symbols->end();
1640 ++p)
1641 {
1642 if ((*p)->binding() != elfcpp::STB_WEAK)
1643 continue;
1644
1645 // Build a circular list of weak aliases. Each symbol points to
1646 // the next one in the circular list.
1647
1648 Sized_symbol<size>* from_sym = *p;
1649 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1650 for (q = p + 1; q != symbols->end(); ++q)
1651 {
1652 bool dummy;
1653 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1654 || (*q)->value() != from_sym->value())
1655 break;
1656
1657 this->weak_aliases_[from_sym] = *q;
1658 from_sym->set_has_alias();
1659 from_sym = *q;
1660 }
1661
1662 if (from_sym != *p)
1663 {
1664 this->weak_aliases_[from_sym] = *p;
1665 from_sym->set_has_alias();
1666 }
1667
1668 p = q - 1;
1669 }
1670 }
1671
1672 // Create and return a specially defined symbol. If ONLY_IF_REF is
1673 // true, then only create the symbol if there is a reference to it.
1674 // If this does not return NULL, it sets *POLDSYM to the existing
1675 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1676 // resolve the newly created symbol to the old one. This
1677 // canonicalizes *PNAME and *PVERSION.
1678
1679 template<int size, bool big_endian>
1680 Sized_symbol<size>*
1681 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1682 bool only_if_ref,
1683 Sized_symbol<size>** poldsym,
1684 bool* resolve_oldsym)
1685 {
1686 *resolve_oldsym = false;
1687 *poldsym = NULL;
1688
1689 // If the caller didn't give us a version, see if we get one from
1690 // the version script.
1691 std::string v;
1692 bool is_default_version = false;
1693 if (*pversion == NULL)
1694 {
1695 bool is_global;
1696 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1697 {
1698 if (is_global && !v.empty())
1699 {
1700 *pversion = v.c_str();
1701 // If we get the version from a version script, then we
1702 // are also the default version.
1703 is_default_version = true;
1704 }
1705 }
1706 }
1707
1708 Symbol* oldsym;
1709 Sized_symbol<size>* sym;
1710
1711 bool add_to_table = false;
1712 typename Symbol_table_type::iterator add_loc = this->table_.end();
1713 bool add_def_to_table = false;
1714 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1715
1716 if (only_if_ref)
1717 {
1718 oldsym = this->lookup(*pname, *pversion);
1719 if (oldsym == NULL && is_default_version)
1720 oldsym = this->lookup(*pname, NULL);
1721 if (oldsym == NULL || !oldsym->is_undefined())
1722 return NULL;
1723
1724 *pname = oldsym->name();
1725 if (is_default_version)
1726 *pversion = this->namepool_.add(*pversion, true, NULL);
1727 else
1728 *pversion = oldsym->version();
1729 }
1730 else
1731 {
1732 // Canonicalize NAME and VERSION.
1733 Stringpool::Key name_key;
1734 *pname = this->namepool_.add(*pname, true, &name_key);
1735
1736 Stringpool::Key version_key = 0;
1737 if (*pversion != NULL)
1738 *pversion = this->namepool_.add(*pversion, true, &version_key);
1739
1740 Symbol* const snull = NULL;
1741 std::pair<typename Symbol_table_type::iterator, bool> ins =
1742 this->table_.insert(std::make_pair(std::make_pair(name_key,
1743 version_key),
1744 snull));
1745
1746 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1747 std::make_pair(this->table_.end(), false);
1748 if (is_default_version)
1749 {
1750 const Stringpool::Key vnull = 0;
1751 insdefault =
1752 this->table_.insert(std::make_pair(std::make_pair(name_key,
1753 vnull),
1754 snull));
1755 }
1756
1757 if (!ins.second)
1758 {
1759 // We already have a symbol table entry for NAME/VERSION.
1760 oldsym = ins.first->second;
1761 gold_assert(oldsym != NULL);
1762
1763 if (is_default_version)
1764 {
1765 Sized_symbol<size>* soldsym =
1766 this->get_sized_symbol<size>(oldsym);
1767 this->define_default_version<size, big_endian>(soldsym,
1768 insdefault.second,
1769 insdefault.first);
1770 }
1771 }
1772 else
1773 {
1774 // We haven't seen this symbol before.
1775 gold_assert(ins.first->second == NULL);
1776
1777 add_to_table = true;
1778 add_loc = ins.first;
1779
1780 if (is_default_version && !insdefault.second)
1781 {
1782 // We are adding NAME/VERSION, and it is the default
1783 // version. We already have an entry for NAME/NULL.
1784 oldsym = insdefault.first->second;
1785 *resolve_oldsym = true;
1786 }
1787 else
1788 {
1789 oldsym = NULL;
1790
1791 if (is_default_version)
1792 {
1793 add_def_to_table = true;
1794 add_def_loc = insdefault.first;
1795 }
1796 }
1797 }
1798 }
1799
1800 const Target& target = parameters->target();
1801 if (!target.has_make_symbol())
1802 sym = new Sized_symbol<size>();
1803 else
1804 {
1805 Sized_target<size, big_endian>* sized_target =
1806 parameters->sized_target<size, big_endian>();
1807 sym = sized_target->make_symbol();
1808 if (sym == NULL)
1809 return NULL;
1810 }
1811
1812 if (add_to_table)
1813 add_loc->second = sym;
1814 else
1815 gold_assert(oldsym != NULL);
1816
1817 if (add_def_to_table)
1818 add_def_loc->second = sym;
1819
1820 *poldsym = this->get_sized_symbol<size>(oldsym);
1821
1822 return sym;
1823 }
1824
1825 // Define a symbol based on an Output_data.
1826
1827 Symbol*
1828 Symbol_table::define_in_output_data(const char* name,
1829 const char* version,
1830 Defined defined,
1831 Output_data* od,
1832 uint64_t value,
1833 uint64_t symsize,
1834 elfcpp::STT type,
1835 elfcpp::STB binding,
1836 elfcpp::STV visibility,
1837 unsigned char nonvis,
1838 bool offset_is_from_end,
1839 bool only_if_ref)
1840 {
1841 if (parameters->target().get_size() == 32)
1842 {
1843 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1844 return this->do_define_in_output_data<32>(name, version, defined, od,
1845 value, symsize, type, binding,
1846 visibility, nonvis,
1847 offset_is_from_end,
1848 only_if_ref);
1849 #else
1850 gold_unreachable();
1851 #endif
1852 }
1853 else if (parameters->target().get_size() == 64)
1854 {
1855 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1856 return this->do_define_in_output_data<64>(name, version, defined, od,
1857 value, symsize, type, binding,
1858 visibility, nonvis,
1859 offset_is_from_end,
1860 only_if_ref);
1861 #else
1862 gold_unreachable();
1863 #endif
1864 }
1865 else
1866 gold_unreachable();
1867 }
1868
1869 // Define a symbol in an Output_data, sized version.
1870
1871 template<int size>
1872 Sized_symbol<size>*
1873 Symbol_table::do_define_in_output_data(
1874 const char* name,
1875 const char* version,
1876 Defined defined,
1877 Output_data* od,
1878 typename elfcpp::Elf_types<size>::Elf_Addr value,
1879 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1880 elfcpp::STT type,
1881 elfcpp::STB binding,
1882 elfcpp::STV visibility,
1883 unsigned char nonvis,
1884 bool offset_is_from_end,
1885 bool only_if_ref)
1886 {
1887 Sized_symbol<size>* sym;
1888 Sized_symbol<size>* oldsym;
1889 bool resolve_oldsym;
1890
1891 if (parameters->target().is_big_endian())
1892 {
1893 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1894 sym = this->define_special_symbol<size, true>(&name, &version,
1895 only_if_ref, &oldsym,
1896 &resolve_oldsym);
1897 #else
1898 gold_unreachable();
1899 #endif
1900 }
1901 else
1902 {
1903 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1904 sym = this->define_special_symbol<size, false>(&name, &version,
1905 only_if_ref, &oldsym,
1906 &resolve_oldsym);
1907 #else
1908 gold_unreachable();
1909 #endif
1910 }
1911
1912 if (sym == NULL)
1913 return NULL;
1914
1915 sym->init_output_data(name, version, od, value, symsize, type, binding,
1916 visibility, nonvis, offset_is_from_end,
1917 defined == PREDEFINED);
1918
1919 if (oldsym == NULL)
1920 {
1921 if (binding == elfcpp::STB_LOCAL
1922 || this->version_script_.symbol_is_local(name))
1923 this->force_local(sym);
1924 else if (version != NULL)
1925 sym->set_is_default();
1926 return sym;
1927 }
1928
1929 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1930 this->override_with_special(oldsym, sym);
1931
1932 if (resolve_oldsym)
1933 return sym;
1934 else
1935 {
1936 delete sym;
1937 return oldsym;
1938 }
1939 }
1940
1941 // Define a symbol based on an Output_segment.
1942
1943 Symbol*
1944 Symbol_table::define_in_output_segment(const char* name,
1945 const char* version,
1946 Defined defined,
1947 Output_segment* os,
1948 uint64_t value,
1949 uint64_t symsize,
1950 elfcpp::STT type,
1951 elfcpp::STB binding,
1952 elfcpp::STV visibility,
1953 unsigned char nonvis,
1954 Symbol::Segment_offset_base offset_base,
1955 bool only_if_ref)
1956 {
1957 if (parameters->target().get_size() == 32)
1958 {
1959 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1960 return this->do_define_in_output_segment<32>(name, version, defined, os,
1961 value, symsize, type,
1962 binding, visibility, nonvis,
1963 offset_base, only_if_ref);
1964 #else
1965 gold_unreachable();
1966 #endif
1967 }
1968 else if (parameters->target().get_size() == 64)
1969 {
1970 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1971 return this->do_define_in_output_segment<64>(name, version, defined, os,
1972 value, symsize, type,
1973 binding, visibility, nonvis,
1974 offset_base, only_if_ref);
1975 #else
1976 gold_unreachable();
1977 #endif
1978 }
1979 else
1980 gold_unreachable();
1981 }
1982
1983 // Define a symbol in an Output_segment, sized version.
1984
1985 template<int size>
1986 Sized_symbol<size>*
1987 Symbol_table::do_define_in_output_segment(
1988 const char* name,
1989 const char* version,
1990 Defined defined,
1991 Output_segment* os,
1992 typename elfcpp::Elf_types<size>::Elf_Addr value,
1993 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1994 elfcpp::STT type,
1995 elfcpp::STB binding,
1996 elfcpp::STV visibility,
1997 unsigned char nonvis,
1998 Symbol::Segment_offset_base offset_base,
1999 bool only_if_ref)
2000 {
2001 Sized_symbol<size>* sym;
2002 Sized_symbol<size>* oldsym;
2003 bool resolve_oldsym;
2004
2005 if (parameters->target().is_big_endian())
2006 {
2007 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2008 sym = this->define_special_symbol<size, true>(&name, &version,
2009 only_if_ref, &oldsym,
2010 &resolve_oldsym);
2011 #else
2012 gold_unreachable();
2013 #endif
2014 }
2015 else
2016 {
2017 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2018 sym = this->define_special_symbol<size, false>(&name, &version,
2019 only_if_ref, &oldsym,
2020 &resolve_oldsym);
2021 #else
2022 gold_unreachable();
2023 #endif
2024 }
2025
2026 if (sym == NULL)
2027 return NULL;
2028
2029 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2030 visibility, nonvis, offset_base,
2031 defined == PREDEFINED);
2032
2033 if (oldsym == NULL)
2034 {
2035 if (binding == elfcpp::STB_LOCAL
2036 || this->version_script_.symbol_is_local(name))
2037 this->force_local(sym);
2038 else if (version != NULL)
2039 sym->set_is_default();
2040 return sym;
2041 }
2042
2043 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2044 this->override_with_special(oldsym, sym);
2045
2046 if (resolve_oldsym)
2047 return sym;
2048 else
2049 {
2050 delete sym;
2051 return oldsym;
2052 }
2053 }
2054
2055 // Define a special symbol with a constant value. It is a multiple
2056 // definition error if this symbol is already defined.
2057
2058 Symbol*
2059 Symbol_table::define_as_constant(const char* name,
2060 const char* version,
2061 Defined defined,
2062 uint64_t value,
2063 uint64_t symsize,
2064 elfcpp::STT type,
2065 elfcpp::STB binding,
2066 elfcpp::STV visibility,
2067 unsigned char nonvis,
2068 bool only_if_ref,
2069 bool force_override)
2070 {
2071 if (parameters->target().get_size() == 32)
2072 {
2073 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2074 return this->do_define_as_constant<32>(name, version, defined, value,
2075 symsize, type, binding,
2076 visibility, nonvis, only_if_ref,
2077 force_override);
2078 #else
2079 gold_unreachable();
2080 #endif
2081 }
2082 else if (parameters->target().get_size() == 64)
2083 {
2084 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2085 return this->do_define_as_constant<64>(name, version, defined, value,
2086 symsize, type, binding,
2087 visibility, nonvis, only_if_ref,
2088 force_override);
2089 #else
2090 gold_unreachable();
2091 #endif
2092 }
2093 else
2094 gold_unreachable();
2095 }
2096
2097 // Define a symbol as a constant, sized version.
2098
2099 template<int size>
2100 Sized_symbol<size>*
2101 Symbol_table::do_define_as_constant(
2102 const char* name,
2103 const char* version,
2104 Defined defined,
2105 typename elfcpp::Elf_types<size>::Elf_Addr value,
2106 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2107 elfcpp::STT type,
2108 elfcpp::STB binding,
2109 elfcpp::STV visibility,
2110 unsigned char nonvis,
2111 bool only_if_ref,
2112 bool force_override)
2113 {
2114 Sized_symbol<size>* sym;
2115 Sized_symbol<size>* oldsym;
2116 bool resolve_oldsym;
2117
2118 if (parameters->target().is_big_endian())
2119 {
2120 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2121 sym = this->define_special_symbol<size, true>(&name, &version,
2122 only_if_ref, &oldsym,
2123 &resolve_oldsym);
2124 #else
2125 gold_unreachable();
2126 #endif
2127 }
2128 else
2129 {
2130 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2131 sym = this->define_special_symbol<size, false>(&name, &version,
2132 only_if_ref, &oldsym,
2133 &resolve_oldsym);
2134 #else
2135 gold_unreachable();
2136 #endif
2137 }
2138
2139 if (sym == NULL)
2140 return NULL;
2141
2142 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2143 nonvis, defined == PREDEFINED);
2144
2145 if (oldsym == NULL)
2146 {
2147 // Version symbols are absolute symbols with name == version.
2148 // We don't want to force them to be local.
2149 if ((version == NULL
2150 || name != version
2151 || value != 0)
2152 && (binding == elfcpp::STB_LOCAL
2153 || this->version_script_.symbol_is_local(name)))
2154 this->force_local(sym);
2155 else if (version != NULL
2156 && (name != version || value != 0))
2157 sym->set_is_default();
2158 return sym;
2159 }
2160
2161 if (force_override
2162 || Symbol_table::should_override_with_special(oldsym, type, defined))
2163 this->override_with_special(oldsym, sym);
2164
2165 if (resolve_oldsym)
2166 return sym;
2167 else
2168 {
2169 delete sym;
2170 return oldsym;
2171 }
2172 }
2173
2174 // Define a set of symbols in output sections.
2175
2176 void
2177 Symbol_table::define_symbols(const Layout* layout, int count,
2178 const Define_symbol_in_section* p,
2179 bool only_if_ref)
2180 {
2181 for (int i = 0; i < count; ++i, ++p)
2182 {
2183 Output_section* os = layout->find_output_section(p->output_section);
2184 if (os != NULL)
2185 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2186 p->size, p->type, p->binding,
2187 p->visibility, p->nonvis,
2188 p->offset_is_from_end,
2189 only_if_ref || p->only_if_ref);
2190 else
2191 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2192 p->type, p->binding, p->visibility, p->nonvis,
2193 only_if_ref || p->only_if_ref,
2194 false);
2195 }
2196 }
2197
2198 // Define a set of symbols in output segments.
2199
2200 void
2201 Symbol_table::define_symbols(const Layout* layout, int count,
2202 const Define_symbol_in_segment* p,
2203 bool only_if_ref)
2204 {
2205 for (int i = 0; i < count; ++i, ++p)
2206 {
2207 Output_segment* os = layout->find_output_segment(p->segment_type,
2208 p->segment_flags_set,
2209 p->segment_flags_clear);
2210 if (os != NULL)
2211 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2212 p->size, p->type, p->binding,
2213 p->visibility, p->nonvis,
2214 p->offset_base,
2215 only_if_ref || p->only_if_ref);
2216 else
2217 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2218 p->type, p->binding, p->visibility, p->nonvis,
2219 only_if_ref || p->only_if_ref,
2220 false);
2221 }
2222 }
2223
2224 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2225 // symbol should be defined--typically a .dyn.bss section. VALUE is
2226 // the offset within POSD.
2227
2228 template<int size>
2229 void
2230 Symbol_table::define_with_copy_reloc(
2231 Sized_symbol<size>* csym,
2232 Output_data* posd,
2233 typename elfcpp::Elf_types<size>::Elf_Addr value)
2234 {
2235 gold_assert(csym->is_from_dynobj());
2236 gold_assert(!csym->is_copied_from_dynobj());
2237 Object* object = csym->object();
2238 gold_assert(object->is_dynamic());
2239 Dynobj* dynobj = static_cast<Dynobj*>(object);
2240
2241 // Our copied variable has to override any variable in a shared
2242 // library.
2243 elfcpp::STB binding = csym->binding();
2244 if (binding == elfcpp::STB_WEAK)
2245 binding = elfcpp::STB_GLOBAL;
2246
2247 this->define_in_output_data(csym->name(), csym->version(), COPY,
2248 posd, value, csym->symsize(),
2249 csym->type(), binding,
2250 csym->visibility(), csym->nonvis(),
2251 false, false);
2252
2253 csym->set_is_copied_from_dynobj();
2254 csym->set_needs_dynsym_entry();
2255
2256 this->copied_symbol_dynobjs_[csym] = dynobj;
2257
2258 // We have now defined all aliases, but we have not entered them all
2259 // in the copied_symbol_dynobjs_ map.
2260 if (csym->has_alias())
2261 {
2262 Symbol* sym = csym;
2263 while (true)
2264 {
2265 sym = this->weak_aliases_[sym];
2266 if (sym == csym)
2267 break;
2268 gold_assert(sym->output_data() == posd);
2269
2270 sym->set_is_copied_from_dynobj();
2271 this->copied_symbol_dynobjs_[sym] = dynobj;
2272 }
2273 }
2274 }
2275
2276 // SYM is defined using a COPY reloc. Return the dynamic object where
2277 // the original definition was found.
2278
2279 Dynobj*
2280 Symbol_table::get_copy_source(const Symbol* sym) const
2281 {
2282 gold_assert(sym->is_copied_from_dynobj());
2283 Copied_symbol_dynobjs::const_iterator p =
2284 this->copied_symbol_dynobjs_.find(sym);
2285 gold_assert(p != this->copied_symbol_dynobjs_.end());
2286 return p->second;
2287 }
2288
2289 // Add any undefined symbols named on the command line.
2290
2291 void
2292 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2293 {
2294 if (parameters->options().any_undefined()
2295 || layout->script_options()->any_unreferenced())
2296 {
2297 if (parameters->target().get_size() == 32)
2298 {
2299 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2300 this->do_add_undefined_symbols_from_command_line<32>(layout);
2301 #else
2302 gold_unreachable();
2303 #endif
2304 }
2305 else if (parameters->target().get_size() == 64)
2306 {
2307 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2308 this->do_add_undefined_symbols_from_command_line<64>(layout);
2309 #else
2310 gold_unreachable();
2311 #endif
2312 }
2313 else
2314 gold_unreachable();
2315 }
2316 }
2317
2318 template<int size>
2319 void
2320 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2321 {
2322 for (options::String_set::const_iterator p =
2323 parameters->options().undefined_begin();
2324 p != parameters->options().undefined_end();
2325 ++p)
2326 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2327
2328 for (options::String_set::const_iterator p =
2329 parameters->options().export_dynamic_symbol_begin();
2330 p != parameters->options().export_dynamic_symbol_end();
2331 ++p)
2332 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2333
2334 for (Script_options::referenced_const_iterator p =
2335 layout->script_options()->referenced_begin();
2336 p != layout->script_options()->referenced_end();
2337 ++p)
2338 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2339 }
2340
2341 template<int size>
2342 void
2343 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2344 {
2345 if (this->lookup(name) != NULL)
2346 return;
2347
2348 const char* version = NULL;
2349
2350 Sized_symbol<size>* sym;
2351 Sized_symbol<size>* oldsym;
2352 bool resolve_oldsym;
2353 if (parameters->target().is_big_endian())
2354 {
2355 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2356 sym = this->define_special_symbol<size, true>(&name, &version,
2357 false, &oldsym,
2358 &resolve_oldsym);
2359 #else
2360 gold_unreachable();
2361 #endif
2362 }
2363 else
2364 {
2365 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2366 sym = this->define_special_symbol<size, false>(&name, &version,
2367 false, &oldsym,
2368 &resolve_oldsym);
2369 #else
2370 gold_unreachable();
2371 #endif
2372 }
2373
2374 gold_assert(oldsym == NULL);
2375
2376 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2377 elfcpp::STV_DEFAULT, 0);
2378 ++this->saw_undefined_;
2379 }
2380
2381 // Set the dynamic symbol indexes. INDEX is the index of the first
2382 // global dynamic symbol. Pointers to the symbols are stored into the
2383 // vector SYMS. The names are added to DYNPOOL. This returns an
2384 // updated dynamic symbol index.
2385
2386 unsigned int
2387 Symbol_table::set_dynsym_indexes(unsigned int index,
2388 std::vector<Symbol*>* syms,
2389 Stringpool* dynpool,
2390 Versions* versions)
2391 {
2392 for (Symbol_table_type::iterator p = this->table_.begin();
2393 p != this->table_.end();
2394 ++p)
2395 {
2396 Symbol* sym = p->second;
2397
2398 // Note that SYM may already have a dynamic symbol index, since
2399 // some symbols appear more than once in the symbol table, with
2400 // and without a version.
2401
2402 if (!sym->should_add_dynsym_entry(this))
2403 sym->set_dynsym_index(-1U);
2404 else if (!sym->has_dynsym_index())
2405 {
2406 sym->set_dynsym_index(index);
2407 ++index;
2408 syms->push_back(sym);
2409 dynpool->add(sym->name(), false, NULL);
2410
2411 // Record any version information.
2412 if (sym->version() != NULL)
2413 versions->record_version(this, dynpool, sym);
2414
2415 // If the symbol is defined in a dynamic object and is
2416 // referenced in a regular object, then mark the dynamic
2417 // object as needed. This is used to implement --as-needed.
2418 if (sym->is_from_dynobj() && sym->in_reg())
2419 sym->object()->set_is_needed();
2420 }
2421 }
2422
2423 // Finish up the versions. In some cases this may add new dynamic
2424 // symbols.
2425 index = versions->finalize(this, index, syms);
2426
2427 return index;
2428 }
2429
2430 // Set the final values for all the symbols. The index of the first
2431 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2432 // file offset OFF. Add their names to POOL. Return the new file
2433 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2434
2435 off_t
2436 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2437 size_t dyncount, Stringpool* pool,
2438 unsigned int* plocal_symcount)
2439 {
2440 off_t ret;
2441
2442 gold_assert(*plocal_symcount != 0);
2443 this->first_global_index_ = *plocal_symcount;
2444
2445 this->dynamic_offset_ = dynoff;
2446 this->first_dynamic_global_index_ = dyn_global_index;
2447 this->dynamic_count_ = dyncount;
2448
2449 if (parameters->target().get_size() == 32)
2450 {
2451 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2452 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2453 #else
2454 gold_unreachable();
2455 #endif
2456 }
2457 else if (parameters->target().get_size() == 64)
2458 {
2459 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2460 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2461 #else
2462 gold_unreachable();
2463 #endif
2464 }
2465 else
2466 gold_unreachable();
2467
2468 // Now that we have the final symbol table, we can reliably note
2469 // which symbols should get warnings.
2470 this->warnings_.note_warnings(this);
2471
2472 return ret;
2473 }
2474
2475 // SYM is going into the symbol table at *PINDEX. Add the name to
2476 // POOL, update *PINDEX and *POFF.
2477
2478 template<int size>
2479 void
2480 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2481 unsigned int* pindex, off_t* poff)
2482 {
2483 sym->set_symtab_index(*pindex);
2484 if (sym->version() == NULL || !parameters->options().relocatable())
2485 pool->add(sym->name(), false, NULL);
2486 else
2487 pool->add(sym->versioned_name(), true, NULL);
2488 ++*pindex;
2489 *poff += elfcpp::Elf_sizes<size>::sym_size;
2490 }
2491
2492 // Set the final value for all the symbols. This is called after
2493 // Layout::finalize, so all the output sections have their final
2494 // address.
2495
2496 template<int size>
2497 off_t
2498 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2499 unsigned int* plocal_symcount)
2500 {
2501 off = align_address(off, size >> 3);
2502 this->offset_ = off;
2503
2504 unsigned int index = *plocal_symcount;
2505 const unsigned int orig_index = index;
2506
2507 // First do all the symbols which have been forced to be local, as
2508 // they must appear before all global symbols.
2509 for (Forced_locals::iterator p = this->forced_locals_.begin();
2510 p != this->forced_locals_.end();
2511 ++p)
2512 {
2513 Symbol* sym = *p;
2514 gold_assert(sym->is_forced_local());
2515 if (this->sized_finalize_symbol<size>(sym))
2516 {
2517 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2518 ++*plocal_symcount;
2519 }
2520 }
2521
2522 // Now do all the remaining symbols.
2523 for (Symbol_table_type::iterator p = this->table_.begin();
2524 p != this->table_.end();
2525 ++p)
2526 {
2527 Symbol* sym = p->second;
2528 if (this->sized_finalize_symbol<size>(sym))
2529 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2530 }
2531
2532 this->output_count_ = index - orig_index;
2533
2534 return off;
2535 }
2536
2537 // Compute the final value of SYM and store status in location PSTATUS.
2538 // During relaxation, this may be called multiple times for a symbol to
2539 // compute its would-be final value in each relaxation pass.
2540
2541 template<int size>
2542 typename Sized_symbol<size>::Value_type
2543 Symbol_table::compute_final_value(
2544 const Sized_symbol<size>* sym,
2545 Compute_final_value_status* pstatus) const
2546 {
2547 typedef typename Sized_symbol<size>::Value_type Value_type;
2548 Value_type value;
2549
2550 switch (sym->source())
2551 {
2552 case Symbol::FROM_OBJECT:
2553 {
2554 bool is_ordinary;
2555 unsigned int shndx = sym->shndx(&is_ordinary);
2556
2557 if (!is_ordinary
2558 && shndx != elfcpp::SHN_ABS
2559 && !Symbol::is_common_shndx(shndx))
2560 {
2561 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2562 return 0;
2563 }
2564
2565 Object* symobj = sym->object();
2566 if (symobj->is_dynamic())
2567 {
2568 value = 0;
2569 shndx = elfcpp::SHN_UNDEF;
2570 }
2571 else if (symobj->pluginobj() != NULL)
2572 {
2573 value = 0;
2574 shndx = elfcpp::SHN_UNDEF;
2575 }
2576 else if (shndx == elfcpp::SHN_UNDEF)
2577 value = 0;
2578 else if (!is_ordinary
2579 && (shndx == elfcpp::SHN_ABS
2580 || Symbol::is_common_shndx(shndx)))
2581 value = sym->value();
2582 else
2583 {
2584 Relobj* relobj = static_cast<Relobj*>(symobj);
2585 Output_section* os = relobj->output_section(shndx);
2586
2587 if (this->is_section_folded(relobj, shndx))
2588 {
2589 gold_assert(os == NULL);
2590 // Get the os of the section it is folded onto.
2591 Section_id folded = this->icf_->get_folded_section(relobj,
2592 shndx);
2593 gold_assert(folded.first != NULL);
2594 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2595 unsigned folded_shndx = folded.second;
2596
2597 os = folded_obj->output_section(folded_shndx);
2598 gold_assert(os != NULL);
2599
2600 // Replace (relobj, shndx) with canonical ICF input section.
2601 shndx = folded_shndx;
2602 relobj = folded_obj;
2603 }
2604
2605 uint64_t secoff64 = relobj->output_section_offset(shndx);
2606 if (os == NULL)
2607 {
2608 bool static_or_reloc = (parameters->doing_static_link() ||
2609 parameters->options().relocatable());
2610 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2611
2612 *pstatus = CFVS_NO_OUTPUT_SECTION;
2613 return 0;
2614 }
2615
2616 if (secoff64 == -1ULL)
2617 {
2618 // The section needs special handling (e.g., a merge section).
2619
2620 value = os->output_address(relobj, shndx, sym->value());
2621 }
2622 else
2623 {
2624 Value_type secoff =
2625 convert_types<Value_type, uint64_t>(secoff64);
2626 if (sym->type() == elfcpp::STT_TLS)
2627 value = sym->value() + os->tls_offset() + secoff;
2628 else
2629 value = sym->value() + os->address() + secoff;
2630 }
2631 }
2632 }
2633 break;
2634
2635 case Symbol::IN_OUTPUT_DATA:
2636 {
2637 Output_data* od = sym->output_data();
2638 value = sym->value();
2639 if (sym->type() != elfcpp::STT_TLS)
2640 value += od->address();
2641 else
2642 {
2643 Output_section* os = od->output_section();
2644 gold_assert(os != NULL);
2645 value += os->tls_offset() + (od->address() - os->address());
2646 }
2647 if (sym->offset_is_from_end())
2648 value += od->data_size();
2649 }
2650 break;
2651
2652 case Symbol::IN_OUTPUT_SEGMENT:
2653 {
2654 Output_segment* os = sym->output_segment();
2655 value = sym->value();
2656 if (sym->type() != elfcpp::STT_TLS)
2657 value += os->vaddr();
2658 switch (sym->offset_base())
2659 {
2660 case Symbol::SEGMENT_START:
2661 break;
2662 case Symbol::SEGMENT_END:
2663 value += os->memsz();
2664 break;
2665 case Symbol::SEGMENT_BSS:
2666 value += os->filesz();
2667 break;
2668 default:
2669 gold_unreachable();
2670 }
2671 }
2672 break;
2673
2674 case Symbol::IS_CONSTANT:
2675 value = sym->value();
2676 break;
2677
2678 case Symbol::IS_UNDEFINED:
2679 value = 0;
2680 break;
2681
2682 default:
2683 gold_unreachable();
2684 }
2685
2686 *pstatus = CFVS_OK;
2687 return value;
2688 }
2689
2690 // Finalize the symbol SYM. This returns true if the symbol should be
2691 // added to the symbol table, false otherwise.
2692
2693 template<int size>
2694 bool
2695 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2696 {
2697 typedef typename Sized_symbol<size>::Value_type Value_type;
2698
2699 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2700
2701 // The default version of a symbol may appear twice in the symbol
2702 // table. We only need to finalize it once.
2703 if (sym->has_symtab_index())
2704 return false;
2705
2706 if (!sym->in_reg())
2707 {
2708 gold_assert(!sym->has_symtab_index());
2709 sym->set_symtab_index(-1U);
2710 gold_assert(sym->dynsym_index() == -1U);
2711 return false;
2712 }
2713
2714 // If the symbol is only present on plugin files, the plugin decided we
2715 // don't need it.
2716 if (!sym->in_real_elf())
2717 {
2718 gold_assert(!sym->has_symtab_index());
2719 sym->set_symtab_index(-1U);
2720 return false;
2721 }
2722
2723 // Compute final symbol value.
2724 Compute_final_value_status status;
2725 Value_type value = this->compute_final_value(sym, &status);
2726
2727 switch (status)
2728 {
2729 case CFVS_OK:
2730 break;
2731 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2732 {
2733 bool is_ordinary;
2734 unsigned int shndx = sym->shndx(&is_ordinary);
2735 gold_error(_("%s: unsupported symbol section 0x%x"),
2736 sym->demangled_name().c_str(), shndx);
2737 }
2738 break;
2739 case CFVS_NO_OUTPUT_SECTION:
2740 sym->set_symtab_index(-1U);
2741 return false;
2742 default:
2743 gold_unreachable();
2744 }
2745
2746 sym->set_value(value);
2747
2748 if (parameters->options().strip_all()
2749 || !parameters->options().should_retain_symbol(sym->name()))
2750 {
2751 sym->set_symtab_index(-1U);
2752 return false;
2753 }
2754
2755 return true;
2756 }
2757
2758 // Write out the global symbols.
2759
2760 void
2761 Symbol_table::write_globals(const Stringpool* sympool,
2762 const Stringpool* dynpool,
2763 Output_symtab_xindex* symtab_xindex,
2764 Output_symtab_xindex* dynsym_xindex,
2765 Output_file* of) const
2766 {
2767 switch (parameters->size_and_endianness())
2768 {
2769 #ifdef HAVE_TARGET_32_LITTLE
2770 case Parameters::TARGET_32_LITTLE:
2771 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2772 dynsym_xindex, of);
2773 break;
2774 #endif
2775 #ifdef HAVE_TARGET_32_BIG
2776 case Parameters::TARGET_32_BIG:
2777 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2778 dynsym_xindex, of);
2779 break;
2780 #endif
2781 #ifdef HAVE_TARGET_64_LITTLE
2782 case Parameters::TARGET_64_LITTLE:
2783 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2784 dynsym_xindex, of);
2785 break;
2786 #endif
2787 #ifdef HAVE_TARGET_64_BIG
2788 case Parameters::TARGET_64_BIG:
2789 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2790 dynsym_xindex, of);
2791 break;
2792 #endif
2793 default:
2794 gold_unreachable();
2795 }
2796 }
2797
2798 // Write out the global symbols.
2799
2800 template<int size, bool big_endian>
2801 void
2802 Symbol_table::sized_write_globals(const Stringpool* sympool,
2803 const Stringpool* dynpool,
2804 Output_symtab_xindex* symtab_xindex,
2805 Output_symtab_xindex* dynsym_xindex,
2806 Output_file* of) const
2807 {
2808 const Target& target = parameters->target();
2809
2810 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2811
2812 const unsigned int output_count = this->output_count_;
2813 const section_size_type oview_size = output_count * sym_size;
2814 const unsigned int first_global_index = this->first_global_index_;
2815 unsigned char* psyms;
2816 if (this->offset_ == 0 || output_count == 0)
2817 psyms = NULL;
2818 else
2819 psyms = of->get_output_view(this->offset_, oview_size);
2820
2821 const unsigned int dynamic_count = this->dynamic_count_;
2822 const section_size_type dynamic_size = dynamic_count * sym_size;
2823 const unsigned int first_dynamic_global_index =
2824 this->first_dynamic_global_index_;
2825 unsigned char* dynamic_view;
2826 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2827 dynamic_view = NULL;
2828 else
2829 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2830
2831 for (Symbol_table_type::const_iterator p = this->table_.begin();
2832 p != this->table_.end();
2833 ++p)
2834 {
2835 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2836
2837 // Possibly warn about unresolved symbols in shared libraries.
2838 this->warn_about_undefined_dynobj_symbol(sym);
2839
2840 unsigned int sym_index = sym->symtab_index();
2841 unsigned int dynsym_index;
2842 if (dynamic_view == NULL)
2843 dynsym_index = -1U;
2844 else
2845 dynsym_index = sym->dynsym_index();
2846
2847 if (sym_index == -1U && dynsym_index == -1U)
2848 {
2849 // This symbol is not included in the output file.
2850 continue;
2851 }
2852
2853 unsigned int shndx;
2854 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2855 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2856 elfcpp::STB binding = sym->binding();
2857
2858 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2859 if (binding == elfcpp::STB_GNU_UNIQUE
2860 && !parameters->options().gnu_unique())
2861 binding = elfcpp::STB_GLOBAL;
2862
2863 switch (sym->source())
2864 {
2865 case Symbol::FROM_OBJECT:
2866 {
2867 bool is_ordinary;
2868 unsigned int in_shndx = sym->shndx(&is_ordinary);
2869
2870 if (!is_ordinary
2871 && in_shndx != elfcpp::SHN_ABS
2872 && !Symbol::is_common_shndx(in_shndx))
2873 {
2874 gold_error(_("%s: unsupported symbol section 0x%x"),
2875 sym->demangled_name().c_str(), in_shndx);
2876 shndx = in_shndx;
2877 }
2878 else
2879 {
2880 Object* symobj = sym->object();
2881 if (symobj->is_dynamic())
2882 {
2883 if (sym->needs_dynsym_value())
2884 dynsym_value = target.dynsym_value(sym);
2885 shndx = elfcpp::SHN_UNDEF;
2886 if (sym->is_undef_binding_weak())
2887 binding = elfcpp::STB_WEAK;
2888 else
2889 binding = elfcpp::STB_GLOBAL;
2890 }
2891 else if (symobj->pluginobj() != NULL)
2892 shndx = elfcpp::SHN_UNDEF;
2893 else if (in_shndx == elfcpp::SHN_UNDEF
2894 || (!is_ordinary
2895 && (in_shndx == elfcpp::SHN_ABS
2896 || Symbol::is_common_shndx(in_shndx))))
2897 shndx = in_shndx;
2898 else
2899 {
2900 Relobj* relobj = static_cast<Relobj*>(symobj);
2901 Output_section* os = relobj->output_section(in_shndx);
2902 if (this->is_section_folded(relobj, in_shndx))
2903 {
2904 // This global symbol must be written out even though
2905 // it is folded.
2906 // Get the os of the section it is folded onto.
2907 Section_id folded =
2908 this->icf_->get_folded_section(relobj, in_shndx);
2909 gold_assert(folded.first !=NULL);
2910 Relobj* folded_obj =
2911 reinterpret_cast<Relobj*>(folded.first);
2912 os = folded_obj->output_section(folded.second);
2913 gold_assert(os != NULL);
2914 }
2915 gold_assert(os != NULL);
2916 shndx = os->out_shndx();
2917
2918 if (shndx >= elfcpp::SHN_LORESERVE)
2919 {
2920 if (sym_index != -1U)
2921 symtab_xindex->add(sym_index, shndx);
2922 if (dynsym_index != -1U)
2923 dynsym_xindex->add(dynsym_index, shndx);
2924 shndx = elfcpp::SHN_XINDEX;
2925 }
2926
2927 // In object files symbol values are section
2928 // relative.
2929 if (parameters->options().relocatable())
2930 sym_value -= os->address();
2931 }
2932 }
2933 }
2934 break;
2935
2936 case Symbol::IN_OUTPUT_DATA:
2937 shndx = sym->output_data()->out_shndx();
2938 if (shndx >= elfcpp::SHN_LORESERVE)
2939 {
2940 if (sym_index != -1U)
2941 symtab_xindex->add(sym_index, shndx);
2942 if (dynsym_index != -1U)
2943 dynsym_xindex->add(dynsym_index, shndx);
2944 shndx = elfcpp::SHN_XINDEX;
2945 }
2946 break;
2947
2948 case Symbol::IN_OUTPUT_SEGMENT:
2949 shndx = elfcpp::SHN_ABS;
2950 break;
2951
2952 case Symbol::IS_CONSTANT:
2953 shndx = elfcpp::SHN_ABS;
2954 break;
2955
2956 case Symbol::IS_UNDEFINED:
2957 shndx = elfcpp::SHN_UNDEF;
2958 break;
2959
2960 default:
2961 gold_unreachable();
2962 }
2963
2964 if (sym_index != -1U)
2965 {
2966 sym_index -= first_global_index;
2967 gold_assert(sym_index < output_count);
2968 unsigned char* ps = psyms + (sym_index * sym_size);
2969 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2970 binding, sympool, ps);
2971 }
2972
2973 if (dynsym_index != -1U)
2974 {
2975 dynsym_index -= first_dynamic_global_index;
2976 gold_assert(dynsym_index < dynamic_count);
2977 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2978 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2979 binding, dynpool, pd);
2980 }
2981 }
2982
2983 of->write_output_view(this->offset_, oview_size, psyms);
2984 if (dynamic_view != NULL)
2985 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2986 }
2987
2988 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2989 // strtab holding the name.
2990
2991 template<int size, bool big_endian>
2992 void
2993 Symbol_table::sized_write_symbol(
2994 Sized_symbol<size>* sym,
2995 typename elfcpp::Elf_types<size>::Elf_Addr value,
2996 unsigned int shndx,
2997 elfcpp::STB binding,
2998 const Stringpool* pool,
2999 unsigned char* p) const
3000 {
3001 elfcpp::Sym_write<size, big_endian> osym(p);
3002 if (sym->version() == NULL || !parameters->options().relocatable())
3003 osym.put_st_name(pool->get_offset(sym->name()));
3004 else
3005 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3006 osym.put_st_value(value);
3007 // Use a symbol size of zero for undefined symbols from shared libraries.
3008 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3009 osym.put_st_size(0);
3010 else
3011 osym.put_st_size(sym->symsize());
3012 elfcpp::STT type = sym->type();
3013 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3014 if (type == elfcpp::STT_GNU_IFUNC
3015 && sym->is_from_dynobj())
3016 type = elfcpp::STT_FUNC;
3017 // A version script may have overridden the default binding.
3018 if (sym->is_forced_local())
3019 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3020 else
3021 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3022 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3023 osym.put_st_shndx(shndx);
3024 }
3025
3026 // Check for unresolved symbols in shared libraries. This is
3027 // controlled by the --allow-shlib-undefined option.
3028
3029 // We only warn about libraries for which we have seen all the
3030 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3031 // which were not seen in this link. If we didn't see a DT_NEEDED
3032 // entry, we aren't going to be able to reliably report whether the
3033 // symbol is undefined.
3034
3035 // We also don't warn about libraries found in a system library
3036 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3037 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3038 // can have undefined references satisfied by ld-linux.so.
3039
3040 inline void
3041 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3042 {
3043 bool dummy;
3044 if (sym->source() == Symbol::FROM_OBJECT
3045 && sym->object()->is_dynamic()
3046 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3047 && sym->binding() != elfcpp::STB_WEAK
3048 && !parameters->options().allow_shlib_undefined()
3049 && !parameters->target().is_defined_by_abi(sym)
3050 && !sym->object()->is_in_system_directory())
3051 {
3052 // A very ugly cast.
3053 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3054 if (!dynobj->has_unknown_needed_entries())
3055 gold_undefined_symbol(sym);
3056 }
3057 }
3058
3059 // Write out a section symbol. Return the update offset.
3060
3061 void
3062 Symbol_table::write_section_symbol(const Output_section* os,
3063 Output_symtab_xindex* symtab_xindex,
3064 Output_file* of,
3065 off_t offset) const
3066 {
3067 switch (parameters->size_and_endianness())
3068 {
3069 #ifdef HAVE_TARGET_32_LITTLE
3070 case Parameters::TARGET_32_LITTLE:
3071 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3072 offset);
3073 break;
3074 #endif
3075 #ifdef HAVE_TARGET_32_BIG
3076 case Parameters::TARGET_32_BIG:
3077 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3078 offset);
3079 break;
3080 #endif
3081 #ifdef HAVE_TARGET_64_LITTLE
3082 case Parameters::TARGET_64_LITTLE:
3083 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3084 offset);
3085 break;
3086 #endif
3087 #ifdef HAVE_TARGET_64_BIG
3088 case Parameters::TARGET_64_BIG:
3089 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3090 offset);
3091 break;
3092 #endif
3093 default:
3094 gold_unreachable();
3095 }
3096 }
3097
3098 // Write out a section symbol, specialized for size and endianness.
3099
3100 template<int size, bool big_endian>
3101 void
3102 Symbol_table::sized_write_section_symbol(const Output_section* os,
3103 Output_symtab_xindex* symtab_xindex,
3104 Output_file* of,
3105 off_t offset) const
3106 {
3107 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3108
3109 unsigned char* pov = of->get_output_view(offset, sym_size);
3110
3111 elfcpp::Sym_write<size, big_endian> osym(pov);
3112 osym.put_st_name(0);
3113 if (parameters->options().relocatable())
3114 osym.put_st_value(0);
3115 else
3116 osym.put_st_value(os->address());
3117 osym.put_st_size(0);
3118 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3119 elfcpp::STT_SECTION));
3120 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3121
3122 unsigned int shndx = os->out_shndx();
3123 if (shndx >= elfcpp::SHN_LORESERVE)
3124 {
3125 symtab_xindex->add(os->symtab_index(), shndx);
3126 shndx = elfcpp::SHN_XINDEX;
3127 }
3128 osym.put_st_shndx(shndx);
3129
3130 of->write_output_view(offset, sym_size, pov);
3131 }
3132
3133 // Print statistical information to stderr. This is used for --stats.
3134
3135 void
3136 Symbol_table::print_stats() const
3137 {
3138 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3139 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3140 program_name, this->table_.size(), this->table_.bucket_count());
3141 #else
3142 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3143 program_name, this->table_.size());
3144 #endif
3145 this->namepool_.print_stats("symbol table stringpool");
3146 }
3147
3148 // We check for ODR violations by looking for symbols with the same
3149 // name for which the debugging information reports that they were
3150 // defined in disjoint source locations. When comparing the source
3151 // location, we consider instances with the same base filename to be
3152 // the same. This is because different object files/shared libraries
3153 // can include the same header file using different paths, and
3154 // different optimization settings can make the line number appear to
3155 // be a couple lines off, and we don't want to report an ODR violation
3156 // in those cases.
3157
3158 // This struct is used to compare line information, as returned by
3159 // Dwarf_line_info::one_addr2line. It implements a < comparison
3160 // operator used with std::sort.
3161
3162 struct Odr_violation_compare
3163 {
3164 bool
3165 operator()(const std::string& s1, const std::string& s2) const
3166 {
3167 // Inputs should be of the form "dirname/filename:linenum" where
3168 // "dirname/" is optional. We want to compare just the filename:linenum.
3169
3170 // Find the last '/' in each string.
3171 std::string::size_type s1begin = s1.rfind('/');
3172 std::string::size_type s2begin = s2.rfind('/');
3173 // If there was no '/' in a string, start at the beginning.
3174 if (s1begin == std::string::npos)
3175 s1begin = 0;
3176 if (s2begin == std::string::npos)
3177 s2begin = 0;
3178 return s1.compare(s1begin, std::string::npos,
3179 s2, s2begin, std::string::npos) < 0;
3180 }
3181 };
3182
3183 // Returns all of the lines attached to LOC, not just the one the
3184 // instruction actually came from.
3185 std::vector<std::string>
3186 Symbol_table::linenos_from_loc(const Task* task,
3187 const Symbol_location& loc)
3188 {
3189 // We need to lock the object in order to read it. This
3190 // means that we have to run in a singleton Task. If we
3191 // want to run this in a general Task for better
3192 // performance, we will need one Task for object, plus
3193 // appropriate locking to ensure that we don't conflict with
3194 // other uses of the object. Also note, one_addr2line is not
3195 // currently thread-safe.
3196 Task_lock_obj<Object> tl(task, loc.object);
3197
3198 std::vector<std::string> result;
3199 // 16 is the size of the object-cache that one_addr2line should use.
3200 std::string canonical_result = Dwarf_line_info::one_addr2line(
3201 loc.object, loc.shndx, loc.offset, 16, &result);
3202 if (!canonical_result.empty())
3203 result.push_back(canonical_result);
3204 return result;
3205 }
3206
3207 // OutputIterator that records if it was ever assigned to. This
3208 // allows it to be used with std::set_intersection() to check for
3209 // intersection rather than computing the intersection.
3210 struct Check_intersection
3211 {
3212 Check_intersection()
3213 : value_(false)
3214 {}
3215
3216 bool had_intersection() const
3217 { return this->value_; }
3218
3219 Check_intersection& operator++()
3220 { return *this; }
3221
3222 Check_intersection& operator*()
3223 { return *this; }
3224
3225 template<typename T>
3226 Check_intersection& operator=(const T&)
3227 {
3228 this->value_ = true;
3229 return *this;
3230 }
3231
3232 private:
3233 bool value_;
3234 };
3235
3236 // Check candidate_odr_violations_ to find symbols with the same name
3237 // but apparently different definitions (different source-file/line-no
3238 // for each line assigned to the first instruction).
3239
3240 void
3241 Symbol_table::detect_odr_violations(const Task* task,
3242 const char* output_file_name) const
3243 {
3244 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3245 it != candidate_odr_violations_.end();
3246 ++it)
3247 {
3248 const char* const symbol_name = it->first;
3249
3250 std::string first_object_name;
3251 std::vector<std::string> first_object_linenos;
3252
3253 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3254 locs = it->second.begin();
3255 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3256 locs_end = it->second.end();
3257 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3258 {
3259 // Save the line numbers from the first definition to
3260 // compare to the other definitions. Ideally, we'd compare
3261 // every definition to every other, but we don't want to
3262 // take O(N^2) time to do this. This shortcut may cause
3263 // false negatives that appear or disappear depending on the
3264 // link order, but it won't cause false positives.
3265 first_object_name = locs->object->name();
3266 first_object_linenos = this->linenos_from_loc(task, *locs);
3267 }
3268
3269 // Sort by Odr_violation_compare to make std::set_intersection work.
3270 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3271 Odr_violation_compare());
3272
3273 for (; locs != locs_end; ++locs)
3274 {
3275 std::vector<std::string> linenos =
3276 this->linenos_from_loc(task, *locs);
3277 // linenos will be empty if we couldn't parse the debug info.
3278 if (linenos.empty())
3279 continue;
3280 // Sort by Odr_violation_compare to make std::set_intersection work.
3281 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3282
3283 Check_intersection intersection_result =
3284 std::set_intersection(first_object_linenos.begin(),
3285 first_object_linenos.end(),
3286 linenos.begin(),
3287 linenos.end(),
3288 Check_intersection(),
3289 Odr_violation_compare());
3290 if (!intersection_result.had_intersection())
3291 {
3292 gold_warning(_("while linking %s: symbol '%s' defined in "
3293 "multiple places (possible ODR violation):"),
3294 output_file_name, demangle(symbol_name).c_str());
3295 // This only prints one location from each definition,
3296 // which may not be the location we expect to intersect
3297 // with another definition. We could print the whole
3298 // set of locations, but that seems too verbose.
3299 gold_assert(!first_object_linenos.empty());
3300 gold_assert(!linenos.empty());
3301 fprintf(stderr, _(" %s from %s\n"),
3302 first_object_linenos[0].c_str(),
3303 first_object_name.c_str());
3304 fprintf(stderr, _(" %s from %s\n"),
3305 linenos[0].c_str(),
3306 locs->object->name().c_str());
3307 // Only print one broken pair, to avoid needing to
3308 // compare against a list of the disjoint definition
3309 // locations we've found so far. (If we kept comparing
3310 // against just the first one, we'd get a lot of
3311 // redundant complaints about the second definition
3312 // location.)
3313 break;
3314 }
3315 }
3316 }
3317 // We only call one_addr2line() in this function, so we can clear its cache.
3318 Dwarf_line_info::clear_addr2line_cache();
3319 }
3320
3321 // Warnings functions.
3322
3323 // Add a new warning.
3324
3325 void
3326 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3327 const std::string& warning)
3328 {
3329 name = symtab->canonicalize_name(name);
3330 this->warnings_[name].set(obj, warning);
3331 }
3332
3333 // Look through the warnings and mark the symbols for which we should
3334 // warn. This is called during Layout::finalize when we know the
3335 // sources for all the symbols.
3336
3337 void
3338 Warnings::note_warnings(Symbol_table* symtab)
3339 {
3340 for (Warning_table::iterator p = this->warnings_.begin();
3341 p != this->warnings_.end();
3342 ++p)
3343 {
3344 Symbol* sym = symtab->lookup(p->first, NULL);
3345 if (sym != NULL
3346 && sym->source() == Symbol::FROM_OBJECT
3347 && sym->object() == p->second.object)
3348 sym->set_has_warning();
3349 }
3350 }
3351
3352 // Issue a warning. This is called when we see a relocation against a
3353 // symbol for which has a warning.
3354
3355 template<int size, bool big_endian>
3356 void
3357 Warnings::issue_warning(const Symbol* sym,
3358 const Relocate_info<size, big_endian>* relinfo,
3359 size_t relnum, off_t reloffset) const
3360 {
3361 gold_assert(sym->has_warning());
3362
3363 // We don't want to issue a warning for a relocation against the
3364 // symbol in the same object file in which the symbol is defined.
3365 if (sym->object() == relinfo->object)
3366 return;
3367
3368 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3369 gold_assert(p != this->warnings_.end());
3370 gold_warning_at_location(relinfo, relnum, reloffset,
3371 "%s", p->second.text.c_str());
3372 }
3373
3374 // Instantiate the templates we need. We could use the configure
3375 // script to restrict this to only the ones needed for implemented
3376 // targets.
3377
3378 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3379 template
3380 void
3381 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3382 #endif
3383
3384 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3385 template
3386 void
3387 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3388 #endif
3389
3390 #ifdef HAVE_TARGET_32_LITTLE
3391 template
3392 void
3393 Symbol_table::add_from_relobj<32, false>(
3394 Sized_relobj_file<32, false>* relobj,
3395 const unsigned char* syms,
3396 size_t count,
3397 size_t symndx_offset,
3398 const char* sym_names,
3399 size_t sym_name_size,
3400 Sized_relobj_file<32, false>::Symbols* sympointers,
3401 size_t* defined);
3402 #endif
3403
3404 #ifdef HAVE_TARGET_32_BIG
3405 template
3406 void
3407 Symbol_table::add_from_relobj<32, true>(
3408 Sized_relobj_file<32, true>* relobj,
3409 const unsigned char* syms,
3410 size_t count,
3411 size_t symndx_offset,
3412 const char* sym_names,
3413 size_t sym_name_size,
3414 Sized_relobj_file<32, true>::Symbols* sympointers,
3415 size_t* defined);
3416 #endif
3417
3418 #ifdef HAVE_TARGET_64_LITTLE
3419 template
3420 void
3421 Symbol_table::add_from_relobj<64, false>(
3422 Sized_relobj_file<64, false>* relobj,
3423 const unsigned char* syms,
3424 size_t count,
3425 size_t symndx_offset,
3426 const char* sym_names,
3427 size_t sym_name_size,
3428 Sized_relobj_file<64, false>::Symbols* sympointers,
3429 size_t* defined);
3430 #endif
3431
3432 #ifdef HAVE_TARGET_64_BIG
3433 template
3434 void
3435 Symbol_table::add_from_relobj<64, true>(
3436 Sized_relobj_file<64, true>* relobj,
3437 const unsigned char* syms,
3438 size_t count,
3439 size_t symndx_offset,
3440 const char* sym_names,
3441 size_t sym_name_size,
3442 Sized_relobj_file<64, true>::Symbols* sympointers,
3443 size_t* defined);
3444 #endif
3445
3446 #ifdef HAVE_TARGET_32_LITTLE
3447 template
3448 Symbol*
3449 Symbol_table::add_from_pluginobj<32, false>(
3450 Sized_pluginobj<32, false>* obj,
3451 const char* name,
3452 const char* ver,
3453 elfcpp::Sym<32, false>* sym);
3454 #endif
3455
3456 #ifdef HAVE_TARGET_32_BIG
3457 template
3458 Symbol*
3459 Symbol_table::add_from_pluginobj<32, true>(
3460 Sized_pluginobj<32, true>* obj,
3461 const char* name,
3462 const char* ver,
3463 elfcpp::Sym<32, true>* sym);
3464 #endif
3465
3466 #ifdef HAVE_TARGET_64_LITTLE
3467 template
3468 Symbol*
3469 Symbol_table::add_from_pluginobj<64, false>(
3470 Sized_pluginobj<64, false>* obj,
3471 const char* name,
3472 const char* ver,
3473 elfcpp::Sym<64, false>* sym);
3474 #endif
3475
3476 #ifdef HAVE_TARGET_64_BIG
3477 template
3478 Symbol*
3479 Symbol_table::add_from_pluginobj<64, true>(
3480 Sized_pluginobj<64, true>* obj,
3481 const char* name,
3482 const char* ver,
3483 elfcpp::Sym<64, true>* sym);
3484 #endif
3485
3486 #ifdef HAVE_TARGET_32_LITTLE
3487 template
3488 void
3489 Symbol_table::add_from_dynobj<32, false>(
3490 Sized_dynobj<32, false>* dynobj,
3491 const unsigned char* syms,
3492 size_t count,
3493 const char* sym_names,
3494 size_t sym_name_size,
3495 const unsigned char* versym,
3496 size_t versym_size,
3497 const std::vector<const char*>* version_map,
3498 Sized_relobj_file<32, false>::Symbols* sympointers,
3499 size_t* defined);
3500 #endif
3501
3502 #ifdef HAVE_TARGET_32_BIG
3503 template
3504 void
3505 Symbol_table::add_from_dynobj<32, true>(
3506 Sized_dynobj<32, true>* dynobj,
3507 const unsigned char* syms,
3508 size_t count,
3509 const char* sym_names,
3510 size_t sym_name_size,
3511 const unsigned char* versym,
3512 size_t versym_size,
3513 const std::vector<const char*>* version_map,
3514 Sized_relobj_file<32, true>::Symbols* sympointers,
3515 size_t* defined);
3516 #endif
3517
3518 #ifdef HAVE_TARGET_64_LITTLE
3519 template
3520 void
3521 Symbol_table::add_from_dynobj<64, false>(
3522 Sized_dynobj<64, false>* dynobj,
3523 const unsigned char* syms,
3524 size_t count,
3525 const char* sym_names,
3526 size_t sym_name_size,
3527 const unsigned char* versym,
3528 size_t versym_size,
3529 const std::vector<const char*>* version_map,
3530 Sized_relobj_file<64, false>::Symbols* sympointers,
3531 size_t* defined);
3532 #endif
3533
3534 #ifdef HAVE_TARGET_64_BIG
3535 template
3536 void
3537 Symbol_table::add_from_dynobj<64, true>(
3538 Sized_dynobj<64, true>* dynobj,
3539 const unsigned char* syms,
3540 size_t count,
3541 const char* sym_names,
3542 size_t sym_name_size,
3543 const unsigned char* versym,
3544 size_t versym_size,
3545 const std::vector<const char*>* version_map,
3546 Sized_relobj_file<64, true>::Symbols* sympointers,
3547 size_t* defined);
3548 #endif
3549
3550 #ifdef HAVE_TARGET_32_LITTLE
3551 template
3552 Sized_symbol<32>*
3553 Symbol_table::add_from_incrobj(
3554 Object* obj,
3555 const char* name,
3556 const char* ver,
3557 elfcpp::Sym<32, false>* sym);
3558 #endif
3559
3560 #ifdef HAVE_TARGET_32_BIG
3561 template
3562 Sized_symbol<32>*
3563 Symbol_table::add_from_incrobj(
3564 Object* obj,
3565 const char* name,
3566 const char* ver,
3567 elfcpp::Sym<32, true>* sym);
3568 #endif
3569
3570 #ifdef HAVE_TARGET_64_LITTLE
3571 template
3572 Sized_symbol<64>*
3573 Symbol_table::add_from_incrobj(
3574 Object* obj,
3575 const char* name,
3576 const char* ver,
3577 elfcpp::Sym<64, false>* sym);
3578 #endif
3579
3580 #ifdef HAVE_TARGET_64_BIG
3581 template
3582 Sized_symbol<64>*
3583 Symbol_table::add_from_incrobj(
3584 Object* obj,
3585 const char* name,
3586 const char* ver,
3587 elfcpp::Sym<64, true>* sym);
3588 #endif
3589
3590 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3591 template
3592 void
3593 Symbol_table::define_with_copy_reloc<32>(
3594 Sized_symbol<32>* sym,
3595 Output_data* posd,
3596 elfcpp::Elf_types<32>::Elf_Addr value);
3597 #endif
3598
3599 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3600 template
3601 void
3602 Symbol_table::define_with_copy_reloc<64>(
3603 Sized_symbol<64>* sym,
3604 Output_data* posd,
3605 elfcpp::Elf_types<64>::Elf_Addr value);
3606 #endif
3607
3608 #ifdef HAVE_TARGET_32_LITTLE
3609 template
3610 void
3611 Warnings::issue_warning<32, false>(const Symbol* sym,
3612 const Relocate_info<32, false>* relinfo,
3613 size_t relnum, off_t reloffset) const;
3614 #endif
3615
3616 #ifdef HAVE_TARGET_32_BIG
3617 template
3618 void
3619 Warnings::issue_warning<32, true>(const Symbol* sym,
3620 const Relocate_info<32, true>* relinfo,
3621 size_t relnum, off_t reloffset) const;
3622 #endif
3623
3624 #ifdef HAVE_TARGET_64_LITTLE
3625 template
3626 void
3627 Warnings::issue_warning<64, false>(const Symbol* sym,
3628 const Relocate_info<64, false>* relinfo,
3629 size_t relnum, off_t reloffset) const;
3630 #endif
3631
3632 #ifdef HAVE_TARGET_64_BIG
3633 template
3634 void
3635 Warnings::issue_warning<64, true>(const Symbol* sym,
3636 const Relocate_info<64, true>* relinfo,
3637 size_t relnum, off_t reloffset) const;
3638 #endif
3639
3640 } // End namespace gold.
This page took 0.1429 seconds and 5 git commands to generate.