Fix potential crashes when Target::make_symbol() returns NULL.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 }
85
86 // Return the demangled version of the symbol's name, but only
87 // if the --demangle flag was set.
88
89 static std::string
90 demangle(const char* name)
91 {
92 if (!parameters->options().do_demangle())
93 return name;
94
95 // cplus_demangle allocates memory for the result it returns,
96 // and returns NULL if the name is already demangled.
97 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
98 if (demangled_name == NULL)
99 return name;
100
101 std::string retval(demangled_name);
102 free(demangled_name);
103 return retval;
104 }
105
106 std::string
107 Symbol::demangled_name() const
108 {
109 return demangle(this->name());
110 }
111
112 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113
114 template<int size, bool big_endian>
115 void
116 Symbol::init_base_object(const char* name, const char* version, Object* object,
117 const elfcpp::Sym<size, big_endian>& sym,
118 unsigned int st_shndx, bool is_ordinary)
119 {
120 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
121 sym.get_st_visibility(), sym.get_st_nonvis());
122 this->u_.from_object.object = object;
123 this->u_.from_object.shndx = st_shndx;
124 this->is_ordinary_shndx_ = is_ordinary;
125 this->source_ = FROM_OBJECT;
126 this->in_reg_ = !object->is_dynamic();
127 this->in_dyn_ = object->is_dynamic();
128 this->in_real_elf_ = object->pluginobj() == NULL;
129 }
130
131 // Initialize the fields in the base class Symbol for a symbol defined
132 // in an Output_data.
133
134 void
135 Symbol::init_base_output_data(const char* name, const char* version,
136 Output_data* od, elfcpp::STT type,
137 elfcpp::STB binding, elfcpp::STV visibility,
138 unsigned char nonvis, bool offset_is_from_end,
139 bool is_predefined)
140 {
141 this->init_fields(name, version, type, binding, visibility, nonvis);
142 this->u_.in_output_data.output_data = od;
143 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
144 this->source_ = IN_OUTPUT_DATA;
145 this->in_reg_ = true;
146 this->in_real_elf_ = true;
147 this->is_predefined_ = is_predefined;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // in an Output_segment.
152
153 void
154 Symbol::init_base_output_segment(const char* name, const char* version,
155 Output_segment* os, elfcpp::STT type,
156 elfcpp::STB binding, elfcpp::STV visibility,
157 unsigned char nonvis,
158 Segment_offset_base offset_base,
159 bool is_predefined)
160 {
161 this->init_fields(name, version, type, binding, visibility, nonvis);
162 this->u_.in_output_segment.output_segment = os;
163 this->u_.in_output_segment.offset_base = offset_base;
164 this->source_ = IN_OUTPUT_SEGMENT;
165 this->in_reg_ = true;
166 this->in_real_elf_ = true;
167 this->is_predefined_ = is_predefined;
168 }
169
170 // Initialize the fields in the base class Symbol for a symbol defined
171 // as a constant.
172
173 void
174 Symbol::init_base_constant(const char* name, const char* version,
175 elfcpp::STT type, elfcpp::STB binding,
176 elfcpp::STV visibility, unsigned char nonvis,
177 bool is_predefined)
178 {
179 this->init_fields(name, version, type, binding, visibility, nonvis);
180 this->source_ = IS_CONSTANT;
181 this->in_reg_ = true;
182 this->in_real_elf_ = true;
183 this->is_predefined_ = is_predefined;
184 }
185
186 // Initialize the fields in the base class Symbol for an undefined
187 // symbol.
188
189 void
190 Symbol::init_base_undefined(const char* name, const char* version,
191 elfcpp::STT type, elfcpp::STB binding,
192 elfcpp::STV visibility, unsigned char nonvis)
193 {
194 this->init_fields(name, version, type, binding, visibility, nonvis);
195 this->dynsym_index_ = -1U;
196 this->source_ = IS_UNDEFINED;
197 this->in_reg_ = true;
198 this->in_real_elf_ = true;
199 }
200
201 // Allocate a common symbol in the base.
202
203 void
204 Symbol::allocate_base_common(Output_data* od)
205 {
206 gold_assert(this->is_common());
207 this->source_ = IN_OUTPUT_DATA;
208 this->u_.in_output_data.output_data = od;
209 this->u_.in_output_data.offset_is_from_end = false;
210 }
211
212 // Initialize the fields in Sized_symbol for SYM in OBJECT.
213
214 template<int size>
215 template<bool big_endian>
216 void
217 Sized_symbol<size>::init_object(const char* name, const char* version,
218 Object* object,
219 const elfcpp::Sym<size, big_endian>& sym,
220 unsigned int st_shndx, bool is_ordinary)
221 {
222 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
223 this->value_ = sym.get_st_value();
224 this->symsize_ = sym.get_st_size();
225 }
226
227 // Initialize the fields in Sized_symbol for a symbol defined in an
228 // Output_data.
229
230 template<int size>
231 void
232 Sized_symbol<size>::init_output_data(const char* name, const char* version,
233 Output_data* od, Value_type value,
234 Size_type symsize, elfcpp::STT type,
235 elfcpp::STB binding,
236 elfcpp::STV visibility,
237 unsigned char nonvis,
238 bool offset_is_from_end,
239 bool is_predefined)
240 {
241 this->init_base_output_data(name, version, od, type, binding, visibility,
242 nonvis, offset_is_from_end, is_predefined);
243 this->value_ = value;
244 this->symsize_ = symsize;
245 }
246
247 // Initialize the fields in Sized_symbol for a symbol defined in an
248 // Output_segment.
249
250 template<int size>
251 void
252 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
253 Output_segment* os, Value_type value,
254 Size_type symsize, elfcpp::STT type,
255 elfcpp::STB binding,
256 elfcpp::STV visibility,
257 unsigned char nonvis,
258 Segment_offset_base offset_base,
259 bool is_predefined)
260 {
261 this->init_base_output_segment(name, version, os, type, binding, visibility,
262 nonvis, offset_base, is_predefined);
263 this->value_ = value;
264 this->symsize_ = symsize;
265 }
266
267 // Initialize the fields in Sized_symbol for a symbol defined as a
268 // constant.
269
270 template<int size>
271 void
272 Sized_symbol<size>::init_constant(const char* name, const char* version,
273 Value_type value, Size_type symsize,
274 elfcpp::STT type, elfcpp::STB binding,
275 elfcpp::STV visibility, unsigned char nonvis,
276 bool is_predefined)
277 {
278 this->init_base_constant(name, version, type, binding, visibility, nonvis,
279 is_predefined);
280 this->value_ = value;
281 this->symsize_ = symsize;
282 }
283
284 // Initialize the fields in Sized_symbol for an undefined symbol.
285
286 template<int size>
287 void
288 Sized_symbol<size>::init_undefined(const char* name, const char* version,
289 Value_type value, elfcpp::STT type,
290 elfcpp::STB binding, elfcpp::STV visibility,
291 unsigned char nonvis)
292 {
293 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
294 this->value_ = value;
295 this->symsize_ = 0;
296 }
297
298 // Return an allocated string holding the symbol's name as
299 // name@version. This is used for relocatable links.
300
301 std::string
302 Symbol::versioned_name() const
303 {
304 gold_assert(this->version_ != NULL);
305 std::string ret = this->name_;
306 ret.push_back('@');
307 if (this->is_def_)
308 ret.push_back('@');
309 ret += this->version_;
310 return ret;
311 }
312
313 // Return true if SHNDX represents a common symbol.
314
315 bool
316 Symbol::is_common_shndx(unsigned int shndx)
317 {
318 return (shndx == elfcpp::SHN_COMMON
319 || shndx == parameters->target().small_common_shndx()
320 || shndx == parameters->target().large_common_shndx());
321 }
322
323 // Allocate a common symbol.
324
325 template<int size>
326 void
327 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
328 {
329 this->allocate_base_common(od);
330 this->value_ = value;
331 }
332
333 // The ""'s around str ensure str is a string literal, so sizeof works.
334 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
335
336 // Return true if this symbol should be added to the dynamic symbol
337 // table.
338
339 bool
340 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
341 {
342 // If the symbol is only present on plugin files, the plugin decided we
343 // don't need it.
344 if (!this->in_real_elf())
345 return false;
346
347 // If the symbol is used by a dynamic relocation, we need to add it.
348 if (this->needs_dynsym_entry())
349 return true;
350
351 // If this symbol's section is not added, the symbol need not be added.
352 // The section may have been GCed. Note that export_dynamic is being
353 // overridden here. This should not be done for shared objects.
354 if (parameters->options().gc_sections()
355 && !parameters->options().shared()
356 && this->source() == Symbol::FROM_OBJECT
357 && !this->object()->is_dynamic())
358 {
359 Relobj* relobj = static_cast<Relobj*>(this->object());
360 bool is_ordinary;
361 unsigned int shndx = this->shndx(&is_ordinary);
362 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
363 && !relobj->is_section_included(shndx)
364 && !symtab->is_section_folded(relobj, shndx))
365 return false;
366 }
367
368 // If the symbol was forced dynamic in a --dynamic-list file
369 // or an --export-dynamic-symbol option, add it.
370 if (!this->is_from_dynobj()
371 && (parameters->options().in_dynamic_list(this->name())
372 || parameters->options().is_export_dynamic_symbol(this->name())))
373 {
374 if (!this->is_forced_local())
375 return true;
376 gold_warning(_("Cannot export local symbol '%s'"),
377 this->demangled_name().c_str());
378 return false;
379 }
380
381 // If the symbol was forced local in a version script, do not add it.
382 if (this->is_forced_local())
383 return false;
384
385 // If dynamic-list-data was specified, add any STT_OBJECT.
386 if (parameters->options().dynamic_list_data()
387 && !this->is_from_dynobj()
388 && this->type() == elfcpp::STT_OBJECT)
389 return true;
390
391 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
392 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
393 if ((parameters->options().dynamic_list_cpp_new()
394 || parameters->options().dynamic_list_cpp_typeinfo())
395 && !this->is_from_dynobj())
396 {
397 // TODO(csilvers): We could probably figure out if we're an operator
398 // new/delete or typeinfo without the need to demangle.
399 char* demangled_name = cplus_demangle(this->name(),
400 DMGL_ANSI | DMGL_PARAMS);
401 if (demangled_name == NULL)
402 {
403 // Not a C++ symbol, so it can't satisfy these flags
404 }
405 else if (parameters->options().dynamic_list_cpp_new()
406 && (strprefix(demangled_name, "operator new")
407 || strprefix(demangled_name, "operator delete")))
408 {
409 free(demangled_name);
410 return true;
411 }
412 else if (parameters->options().dynamic_list_cpp_typeinfo()
413 && (strprefix(demangled_name, "typeinfo name for")
414 || strprefix(demangled_name, "typeinfo for")))
415 {
416 free(demangled_name);
417 return true;
418 }
419 else
420 free(demangled_name);
421 }
422
423 // If exporting all symbols or building a shared library,
424 // or the symbol should be globally unique (GNU_UNIQUE),
425 // and the symbol is defined in a regular object and is
426 // externally visible, we need to add it.
427 if ((parameters->options().export_dynamic()
428 || parameters->options().shared()
429 || (parameters->options().gnu_unique()
430 && this->binding() == elfcpp::STB_GNU_UNIQUE))
431 && !this->is_from_dynobj()
432 && !this->is_undefined()
433 && this->is_externally_visible())
434 return true;
435
436 return false;
437 }
438
439 // Return true if the final value of this symbol is known at link
440 // time.
441
442 bool
443 Symbol::final_value_is_known() const
444 {
445 // If we are not generating an executable, then no final values are
446 // known, since they will change at runtime, with the exception of
447 // TLS symbols in a position-independent executable.
448 if ((parameters->options().output_is_position_independent()
449 || parameters->options().relocatable())
450 && !(this->type() == elfcpp::STT_TLS
451 && parameters->options().pie()))
452 return false;
453
454 // If the symbol is not from an object file, and is not undefined,
455 // then it is defined, and known.
456 if (this->source_ != FROM_OBJECT)
457 {
458 if (this->source_ != IS_UNDEFINED)
459 return true;
460 }
461 else
462 {
463 // If the symbol is from a dynamic object, then the final value
464 // is not known.
465 if (this->object()->is_dynamic())
466 return false;
467
468 // If the symbol is not undefined (it is defined or common),
469 // then the final value is known.
470 if (!this->is_undefined())
471 return true;
472 }
473
474 // If the symbol is undefined, then whether the final value is known
475 // depends on whether we are doing a static link. If we are doing a
476 // dynamic link, then the final value could be filled in at runtime.
477 // This could reasonably be the case for a weak undefined symbol.
478 return parameters->doing_static_link();
479 }
480
481 // Return the output section where this symbol is defined.
482
483 Output_section*
484 Symbol::output_section() const
485 {
486 switch (this->source_)
487 {
488 case FROM_OBJECT:
489 {
490 unsigned int shndx = this->u_.from_object.shndx;
491 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
492 {
493 gold_assert(!this->u_.from_object.object->is_dynamic());
494 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
495 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
496 return relobj->output_section(shndx);
497 }
498 return NULL;
499 }
500
501 case IN_OUTPUT_DATA:
502 return this->u_.in_output_data.output_data->output_section();
503
504 case IN_OUTPUT_SEGMENT:
505 case IS_CONSTANT:
506 case IS_UNDEFINED:
507 return NULL;
508
509 default:
510 gold_unreachable();
511 }
512 }
513
514 // Set the symbol's output section. This is used for symbols defined
515 // in scripts. This should only be called after the symbol table has
516 // been finalized.
517
518 void
519 Symbol::set_output_section(Output_section* os)
520 {
521 switch (this->source_)
522 {
523 case FROM_OBJECT:
524 case IN_OUTPUT_DATA:
525 gold_assert(this->output_section() == os);
526 break;
527 case IS_CONSTANT:
528 this->source_ = IN_OUTPUT_DATA;
529 this->u_.in_output_data.output_data = os;
530 this->u_.in_output_data.offset_is_from_end = false;
531 break;
532 case IN_OUTPUT_SEGMENT:
533 case IS_UNDEFINED:
534 default:
535 gold_unreachable();
536 }
537 }
538
539 // Set the symbol's output segment. This is used for pre-defined
540 // symbols whose segments aren't known until after layout is done
541 // (e.g., __ehdr_start).
542
543 void
544 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
545 {
546 gold_assert(this->is_predefined_);
547 this->source_ = IN_OUTPUT_SEGMENT;
548 this->u_.in_output_segment.output_segment = os;
549 this->u_.in_output_segment.offset_base = base;
550 }
551
552 // Set the symbol to undefined. This is used for pre-defined
553 // symbols whose segments aren't known until after layout is done
554 // (e.g., __ehdr_start).
555
556 void
557 Symbol::set_undefined()
558 {
559 this->source_ = IS_UNDEFINED;
560 this->is_predefined_ = false;
561 }
562
563 // Class Symbol_table.
564
565 Symbol_table::Symbol_table(unsigned int count,
566 const Version_script_info& version_script)
567 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
568 forwarders_(), commons_(), tls_commons_(), small_commons_(),
569 large_commons_(), forced_locals_(), warnings_(),
570 version_script_(version_script), gc_(NULL), icf_(NULL),
571 target_symbols_()
572 {
573 namepool_.reserve(count);
574 }
575
576 Symbol_table::~Symbol_table()
577 {
578 }
579
580 // The symbol table key equality function. This is called with
581 // Stringpool keys.
582
583 inline bool
584 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
585 const Symbol_table_key& k2) const
586 {
587 return k1.first == k2.first && k1.second == k2.second;
588 }
589
590 bool
591 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
592 {
593 return (parameters->options().icf_enabled()
594 && this->icf_->is_section_folded(obj, shndx));
595 }
596
597 // For symbols that have been listed with a -u or --export-dynamic-symbol
598 // option, add them to the work list to avoid gc'ing them.
599
600 void
601 Symbol_table::gc_mark_undef_symbols(Layout* layout)
602 {
603 for (options::String_set::const_iterator p =
604 parameters->options().undefined_begin();
605 p != parameters->options().undefined_end();
606 ++p)
607 {
608 const char* name = p->c_str();
609 Symbol* sym = this->lookup(name);
610 gold_assert(sym != NULL);
611 if (sym->source() == Symbol::FROM_OBJECT
612 && !sym->object()->is_dynamic())
613 {
614 this->gc_mark_symbol(sym);
615 }
616 }
617
618 for (options::String_set::const_iterator p =
619 parameters->options().export_dynamic_symbol_begin();
620 p != parameters->options().export_dynamic_symbol_end();
621 ++p)
622 {
623 const char* name = p->c_str();
624 Symbol* sym = this->lookup(name);
625 // It's not an error if a symbol named by --export-dynamic-symbol
626 // is undefined.
627 if (sym != NULL
628 && sym->source() == Symbol::FROM_OBJECT
629 && !sym->object()->is_dynamic())
630 {
631 this->gc_mark_symbol(sym);
632 }
633 }
634
635 for (Script_options::referenced_const_iterator p =
636 layout->script_options()->referenced_begin();
637 p != layout->script_options()->referenced_end();
638 ++p)
639 {
640 Symbol* sym = this->lookup(p->c_str());
641 gold_assert(sym != NULL);
642 if (sym->source() == Symbol::FROM_OBJECT
643 && !sym->object()->is_dynamic())
644 {
645 this->gc_mark_symbol(sym);
646 }
647 }
648 }
649
650 void
651 Symbol_table::gc_mark_symbol(Symbol* sym)
652 {
653 // Add the object and section to the work list.
654 bool is_ordinary;
655 unsigned int shndx = sym->shndx(&is_ordinary);
656 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
657 {
658 gold_assert(this->gc_!= NULL);
659 Relobj* relobj = static_cast<Relobj*>(sym->object());
660 this->gc_->worklist().push_back(Section_id(relobj, shndx));
661 }
662 parameters->target().gc_mark_symbol(this, sym);
663 }
664
665 // When doing garbage collection, keep symbols that have been seen in
666 // dynamic objects.
667 inline void
668 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
669 {
670 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
671 && !sym->object()->is_dynamic())
672 this->gc_mark_symbol(sym);
673 }
674
675 // Make TO a symbol which forwards to FROM.
676
677 void
678 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
679 {
680 gold_assert(from != to);
681 gold_assert(!from->is_forwarder() && !to->is_forwarder());
682 this->forwarders_[from] = to;
683 from->set_forwarder();
684 }
685
686 // Resolve the forwards from FROM, returning the real symbol.
687
688 Symbol*
689 Symbol_table::resolve_forwards(const Symbol* from) const
690 {
691 gold_assert(from->is_forwarder());
692 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
693 this->forwarders_.find(from);
694 gold_assert(p != this->forwarders_.end());
695 return p->second;
696 }
697
698 // Look up a symbol by name.
699
700 Symbol*
701 Symbol_table::lookup(const char* name, const char* version) const
702 {
703 Stringpool::Key name_key;
704 name = this->namepool_.find(name, &name_key);
705 if (name == NULL)
706 return NULL;
707
708 Stringpool::Key version_key = 0;
709 if (version != NULL)
710 {
711 version = this->namepool_.find(version, &version_key);
712 if (version == NULL)
713 return NULL;
714 }
715
716 Symbol_table_key key(name_key, version_key);
717 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
718 if (p == this->table_.end())
719 return NULL;
720 return p->second;
721 }
722
723 // Resolve a Symbol with another Symbol. This is only used in the
724 // unusual case where there are references to both an unversioned
725 // symbol and a symbol with a version, and we then discover that that
726 // version is the default version. Because this is unusual, we do
727 // this the slow way, by converting back to an ELF symbol.
728
729 template<int size, bool big_endian>
730 void
731 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
732 {
733 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
734 elfcpp::Sym_write<size, big_endian> esym(buf);
735 // We don't bother to set the st_name or the st_shndx field.
736 esym.put_st_value(from->value());
737 esym.put_st_size(from->symsize());
738 esym.put_st_info(from->binding(), from->type());
739 esym.put_st_other(from->visibility(), from->nonvis());
740 bool is_ordinary;
741 unsigned int shndx = from->shndx(&is_ordinary);
742 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
743 from->version(), true);
744 if (from->in_reg())
745 to->set_in_reg();
746 if (from->in_dyn())
747 to->set_in_dyn();
748 if (parameters->options().gc_sections())
749 this->gc_mark_dyn_syms(to);
750 }
751
752 // Record that a symbol is forced to be local by a version script or
753 // by visibility.
754
755 void
756 Symbol_table::force_local(Symbol* sym)
757 {
758 if (!sym->is_defined() && !sym->is_common())
759 return;
760 if (sym->is_forced_local())
761 {
762 // We already got this one.
763 return;
764 }
765 sym->set_is_forced_local();
766 this->forced_locals_.push_back(sym);
767 }
768
769 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
770 // is only called for undefined symbols, when at least one --wrap
771 // option was used.
772
773 const char*
774 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
775 {
776 // For some targets, we need to ignore a specific character when
777 // wrapping, and add it back later.
778 char prefix = '\0';
779 if (name[0] == parameters->target().wrap_char())
780 {
781 prefix = name[0];
782 ++name;
783 }
784
785 if (parameters->options().is_wrap(name))
786 {
787 // Turn NAME into __wrap_NAME.
788 std::string s;
789 if (prefix != '\0')
790 s += prefix;
791 s += "__wrap_";
792 s += name;
793
794 // This will give us both the old and new name in NAMEPOOL_, but
795 // that is OK. Only the versions we need will wind up in the
796 // real string table in the output file.
797 return this->namepool_.add(s.c_str(), true, name_key);
798 }
799
800 const char* const real_prefix = "__real_";
801 const size_t real_prefix_length = strlen(real_prefix);
802 if (strncmp(name, real_prefix, real_prefix_length) == 0
803 && parameters->options().is_wrap(name + real_prefix_length))
804 {
805 // Turn __real_NAME into NAME.
806 std::string s;
807 if (prefix != '\0')
808 s += prefix;
809 s += name + real_prefix_length;
810 return this->namepool_.add(s.c_str(), true, name_key);
811 }
812
813 return name;
814 }
815
816 // This is called when we see a symbol NAME/VERSION, and the symbol
817 // already exists in the symbol table, and VERSION is marked as being
818 // the default version. SYM is the NAME/VERSION symbol we just added.
819 // DEFAULT_IS_NEW is true if this is the first time we have seen the
820 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
821
822 template<int size, bool big_endian>
823 void
824 Symbol_table::define_default_version(Sized_symbol<size>* sym,
825 bool default_is_new,
826 Symbol_table_type::iterator pdef)
827 {
828 if (default_is_new)
829 {
830 // This is the first time we have seen NAME/NULL. Make
831 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
832 // version.
833 pdef->second = sym;
834 sym->set_is_default();
835 }
836 else if (pdef->second == sym)
837 {
838 // NAME/NULL already points to NAME/VERSION. Don't mark the
839 // symbol as the default if it is not already the default.
840 }
841 else
842 {
843 // This is the unfortunate case where we already have entries
844 // for both NAME/VERSION and NAME/NULL. We now see a symbol
845 // NAME/VERSION where VERSION is the default version. We have
846 // already resolved this new symbol with the existing
847 // NAME/VERSION symbol.
848
849 // It's possible that NAME/NULL and NAME/VERSION are both
850 // defined in regular objects. This can only happen if one
851 // object file defines foo and another defines foo@@ver. This
852 // is somewhat obscure, but we call it a multiple definition
853 // error.
854
855 // It's possible that NAME/NULL actually has a version, in which
856 // case it won't be the same as VERSION. This happens with
857 // ver_test_7.so in the testsuite for the symbol t2_2. We see
858 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
859 // then see an unadorned t2_2 in an object file and give it
860 // version VER1 from the version script. This looks like a
861 // default definition for VER1, so it looks like we should merge
862 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
863 // not obvious that this is an error, either. So we just punt.
864
865 // If one of the symbols has non-default visibility, and the
866 // other is defined in a shared object, then they are different
867 // symbols.
868
869 // If the two symbols are from different shared objects,
870 // they are different symbols.
871
872 // Otherwise, we just resolve the symbols as though they were
873 // the same.
874
875 if (pdef->second->version() != NULL)
876 gold_assert(pdef->second->version() != sym->version());
877 else if (sym->visibility() != elfcpp::STV_DEFAULT
878 && pdef->second->is_from_dynobj())
879 ;
880 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
881 && sym->is_from_dynobj())
882 ;
883 else if (pdef->second->is_from_dynobj()
884 && sym->is_from_dynobj()
885 && pdef->second->object() != sym->object())
886 ;
887 else
888 {
889 const Sized_symbol<size>* symdef;
890 symdef = this->get_sized_symbol<size>(pdef->second);
891 Symbol_table::resolve<size, big_endian>(sym, symdef);
892 this->make_forwarder(pdef->second, sym);
893 pdef->second = sym;
894 sym->set_is_default();
895 }
896 }
897 }
898
899 // Add one symbol from OBJECT to the symbol table. NAME is symbol
900 // name and VERSION is the version; both are canonicalized. DEF is
901 // whether this is the default version. ST_SHNDX is the symbol's
902 // section index; IS_ORDINARY is whether this is a normal section
903 // rather than a special code.
904
905 // If IS_DEFAULT_VERSION is true, then this is the definition of a
906 // default version of a symbol. That means that any lookup of
907 // NAME/NULL and any lookup of NAME/VERSION should always return the
908 // same symbol. This is obvious for references, but in particular we
909 // want to do this for definitions: overriding NAME/NULL should also
910 // override NAME/VERSION. If we don't do that, it would be very hard
911 // to override functions in a shared library which uses versioning.
912
913 // We implement this by simply making both entries in the hash table
914 // point to the same Symbol structure. That is easy enough if this is
915 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
916 // that we have seen both already, in which case they will both have
917 // independent entries in the symbol table. We can't simply change
918 // the symbol table entry, because we have pointers to the entries
919 // attached to the object files. So we mark the entry attached to the
920 // object file as a forwarder, and record it in the forwarders_ map.
921 // Note that entries in the hash table will never be marked as
922 // forwarders.
923 //
924 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
925 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
926 // for a special section code. ST_SHNDX may be modified if the symbol
927 // is defined in a section being discarded.
928
929 template<int size, bool big_endian>
930 Sized_symbol<size>*
931 Symbol_table::add_from_object(Object* object,
932 const char* name,
933 Stringpool::Key name_key,
934 const char* version,
935 Stringpool::Key version_key,
936 bool is_default_version,
937 const elfcpp::Sym<size, big_endian>& sym,
938 unsigned int st_shndx,
939 bool is_ordinary,
940 unsigned int orig_st_shndx)
941 {
942 // Print a message if this symbol is being traced.
943 if (parameters->options().is_trace_symbol(name))
944 {
945 if (orig_st_shndx == elfcpp::SHN_UNDEF)
946 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
947 else
948 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
949 }
950
951 // For an undefined symbol, we may need to adjust the name using
952 // --wrap.
953 if (orig_st_shndx == elfcpp::SHN_UNDEF
954 && parameters->options().any_wrap())
955 {
956 const char* wrap_name = this->wrap_symbol(name, &name_key);
957 if (wrap_name != name)
958 {
959 // If we see a reference to malloc with version GLIBC_2.0,
960 // and we turn it into a reference to __wrap_malloc, then we
961 // discard the version number. Otherwise the user would be
962 // required to specify the correct version for
963 // __wrap_malloc.
964 version = NULL;
965 version_key = 0;
966 name = wrap_name;
967 }
968 }
969
970 Symbol* const snull = NULL;
971 std::pair<typename Symbol_table_type::iterator, bool> ins =
972 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
973 snull));
974
975 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
976 std::make_pair(this->table_.end(), false);
977 if (is_default_version)
978 {
979 const Stringpool::Key vnull_key = 0;
980 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
981 vnull_key),
982 snull));
983 }
984
985 // ins.first: an iterator, which is a pointer to a pair.
986 // ins.first->first: the key (a pair of name and version).
987 // ins.first->second: the value (Symbol*).
988 // ins.second: true if new entry was inserted, false if not.
989
990 Sized_symbol<size>* ret;
991 bool was_undefined;
992 bool was_common;
993 if (!ins.second)
994 {
995 // We already have an entry for NAME/VERSION.
996 ret = this->get_sized_symbol<size>(ins.first->second);
997 gold_assert(ret != NULL);
998
999 was_undefined = ret->is_undefined();
1000 // Commons from plugins are just placeholders.
1001 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1002
1003 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1004 version, is_default_version);
1005 if (parameters->options().gc_sections())
1006 this->gc_mark_dyn_syms(ret);
1007
1008 if (is_default_version)
1009 this->define_default_version<size, big_endian>(ret, insdefault.second,
1010 insdefault.first);
1011 else
1012 {
1013 bool dummy;
1014 if (version != NULL
1015 && ret->source() == Symbol::FROM_OBJECT
1016 && ret->object() == object
1017 && is_ordinary
1018 && ret->shndx(&dummy) == st_shndx
1019 && ret->is_default())
1020 {
1021 // We have seen NAME/VERSION already, and marked it as the
1022 // default version, but now we see a definition for
1023 // NAME/VERSION that is not the default version. This can
1024 // happen when the assembler generates two symbols for
1025 // a symbol as a result of a ".symver foo,foo@VER"
1026 // directive. We see the first unversioned symbol and
1027 // we may mark it as the default version (from a
1028 // version script); then we see the second versioned
1029 // symbol and we need to override the first.
1030 // In any other case, the two symbols should have generated
1031 // a multiple definition error.
1032 // (See PR gold/18703.)
1033 ret->set_is_not_default();
1034 const Stringpool::Key vnull_key = 0;
1035 this->table_.erase(std::make_pair(name_key, vnull_key));
1036 }
1037 }
1038 }
1039 else
1040 {
1041 // This is the first time we have seen NAME/VERSION.
1042 gold_assert(ins.first->second == NULL);
1043
1044 if (is_default_version && !insdefault.second)
1045 {
1046 // We already have an entry for NAME/NULL. If we override
1047 // it, then change it to NAME/VERSION.
1048 ret = this->get_sized_symbol<size>(insdefault.first->second);
1049
1050 was_undefined = ret->is_undefined();
1051 // Commons from plugins are just placeholders.
1052 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1053
1054 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1055 version, is_default_version);
1056 if (parameters->options().gc_sections())
1057 this->gc_mark_dyn_syms(ret);
1058 ins.first->second = ret;
1059 }
1060 else
1061 {
1062 was_undefined = false;
1063 was_common = false;
1064
1065 Sized_target<size, big_endian>* target =
1066 parameters->sized_target<size, big_endian>();
1067 if (!target->has_make_symbol())
1068 ret = new Sized_symbol<size>();
1069 else
1070 {
1071 ret = target->make_symbol(name, sym.get_st_type(), object,
1072 st_shndx, sym.get_st_value());
1073 if (ret == NULL)
1074 {
1075 // This means that we don't want a symbol table
1076 // entry after all.
1077 if (!is_default_version)
1078 this->table_.erase(ins.first);
1079 else
1080 {
1081 this->table_.erase(insdefault.first);
1082 // Inserting INSDEFAULT invalidated INS.
1083 this->table_.erase(std::make_pair(name_key,
1084 version_key));
1085 }
1086 return NULL;
1087 }
1088 }
1089
1090 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1091
1092 ins.first->second = ret;
1093 if (is_default_version)
1094 {
1095 // This is the first time we have seen NAME/NULL. Point
1096 // it at the new entry for NAME/VERSION.
1097 gold_assert(insdefault.second);
1098 insdefault.first->second = ret;
1099 }
1100 }
1101
1102 if (is_default_version)
1103 ret->set_is_default();
1104 }
1105
1106 // Record every time we see a new undefined symbol, to speed up
1107 // archive groups.
1108 if (!was_undefined && ret->is_undefined())
1109 {
1110 ++this->saw_undefined_;
1111 if (parameters->options().has_plugins())
1112 parameters->options().plugins()->new_undefined_symbol(ret);
1113 }
1114
1115 // Keep track of common symbols, to speed up common symbol
1116 // allocation. Don't record commons from plugin objects;
1117 // we need to wait until we see the real symbol in the
1118 // replacement file.
1119 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1120 {
1121 if (ret->type() == elfcpp::STT_TLS)
1122 this->tls_commons_.push_back(ret);
1123 else if (!is_ordinary
1124 && st_shndx == parameters->target().small_common_shndx())
1125 this->small_commons_.push_back(ret);
1126 else if (!is_ordinary
1127 && st_shndx == parameters->target().large_common_shndx())
1128 this->large_commons_.push_back(ret);
1129 else
1130 this->commons_.push_back(ret);
1131 }
1132
1133 // If we're not doing a relocatable link, then any symbol with
1134 // hidden or internal visibility is local.
1135 if ((ret->visibility() == elfcpp::STV_HIDDEN
1136 || ret->visibility() == elfcpp::STV_INTERNAL)
1137 && (ret->binding() == elfcpp::STB_GLOBAL
1138 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1139 || ret->binding() == elfcpp::STB_WEAK)
1140 && !parameters->options().relocatable())
1141 this->force_local(ret);
1142
1143 return ret;
1144 }
1145
1146 // Add all the symbols in a relocatable object to the hash table.
1147
1148 template<int size, bool big_endian>
1149 void
1150 Symbol_table::add_from_relobj(
1151 Sized_relobj_file<size, big_endian>* relobj,
1152 const unsigned char* syms,
1153 size_t count,
1154 size_t symndx_offset,
1155 const char* sym_names,
1156 size_t sym_name_size,
1157 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1158 size_t* defined)
1159 {
1160 *defined = 0;
1161
1162 gold_assert(size == parameters->target().get_size());
1163
1164 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1165
1166 const bool just_symbols = relobj->just_symbols();
1167
1168 const unsigned char* p = syms;
1169 for (size_t i = 0; i < count; ++i, p += sym_size)
1170 {
1171 (*sympointers)[i] = NULL;
1172
1173 elfcpp::Sym<size, big_endian> sym(p);
1174
1175 unsigned int st_name = sym.get_st_name();
1176 if (st_name >= sym_name_size)
1177 {
1178 relobj->error(_("bad global symbol name offset %u at %zu"),
1179 st_name, i);
1180 continue;
1181 }
1182
1183 const char* name = sym_names + st_name;
1184
1185 if (!parameters->options().relocatable()
1186 && strcmp (name, "__gnu_lto_slim") == 0)
1187 gold_info(_("%s: plugin needed to handle lto object"),
1188 relobj->name().c_str());
1189
1190 bool is_ordinary;
1191 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1192 sym.get_st_shndx(),
1193 &is_ordinary);
1194 unsigned int orig_st_shndx = st_shndx;
1195 if (!is_ordinary)
1196 orig_st_shndx = elfcpp::SHN_UNDEF;
1197
1198 if (st_shndx != elfcpp::SHN_UNDEF)
1199 ++*defined;
1200
1201 // A symbol defined in a section which we are not including must
1202 // be treated as an undefined symbol.
1203 bool is_defined_in_discarded_section = false;
1204 if (st_shndx != elfcpp::SHN_UNDEF
1205 && is_ordinary
1206 && !relobj->is_section_included(st_shndx)
1207 && !this->is_section_folded(relobj, st_shndx))
1208 {
1209 st_shndx = elfcpp::SHN_UNDEF;
1210 is_defined_in_discarded_section = true;
1211 }
1212
1213 // In an object file, an '@' in the name separates the symbol
1214 // name from the version name. If there are two '@' characters,
1215 // this is the default version.
1216 const char* ver = strchr(name, '@');
1217 Stringpool::Key ver_key = 0;
1218 int namelen = 0;
1219 // IS_DEFAULT_VERSION: is the version default?
1220 // IS_FORCED_LOCAL: is the symbol forced local?
1221 bool is_default_version = false;
1222 bool is_forced_local = false;
1223
1224 // FIXME: For incremental links, we don't store version information,
1225 // so we need to ignore version symbols for now.
1226 if (parameters->incremental_update() && ver != NULL)
1227 {
1228 namelen = ver - name;
1229 ver = NULL;
1230 }
1231
1232 if (ver != NULL)
1233 {
1234 // The symbol name is of the form foo@VERSION or foo@@VERSION
1235 namelen = ver - name;
1236 ++ver;
1237 if (*ver == '@')
1238 {
1239 is_default_version = true;
1240 ++ver;
1241 }
1242 ver = this->namepool_.add(ver, true, &ver_key);
1243 }
1244 // We don't want to assign a version to an undefined symbol,
1245 // even if it is listed in the version script. FIXME: What
1246 // about a common symbol?
1247 else
1248 {
1249 namelen = strlen(name);
1250 if (!this->version_script_.empty()
1251 && st_shndx != elfcpp::SHN_UNDEF)
1252 {
1253 // The symbol name did not have a version, but the
1254 // version script may assign a version anyway.
1255 std::string version;
1256 bool is_global;
1257 if (this->version_script_.get_symbol_version(name, &version,
1258 &is_global))
1259 {
1260 if (!is_global)
1261 is_forced_local = true;
1262 else if (!version.empty())
1263 {
1264 ver = this->namepool_.add_with_length(version.c_str(),
1265 version.length(),
1266 true,
1267 &ver_key);
1268 is_default_version = true;
1269 }
1270 }
1271 }
1272 }
1273
1274 elfcpp::Sym<size, big_endian>* psym = &sym;
1275 unsigned char symbuf[sym_size];
1276 elfcpp::Sym<size, big_endian> sym2(symbuf);
1277 if (just_symbols)
1278 {
1279 memcpy(symbuf, p, sym_size);
1280 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1281 if (orig_st_shndx != elfcpp::SHN_UNDEF
1282 && is_ordinary
1283 && relobj->e_type() == elfcpp::ET_REL)
1284 {
1285 // Symbol values in relocatable object files are section
1286 // relative. This is normally what we want, but since here
1287 // we are converting the symbol to absolute we need to add
1288 // the section address. The section address in an object
1289 // file is normally zero, but people can use a linker
1290 // script to change it.
1291 sw.put_st_value(sym.get_st_value()
1292 + relobj->section_address(orig_st_shndx));
1293 }
1294 st_shndx = elfcpp::SHN_ABS;
1295 is_ordinary = false;
1296 psym = &sym2;
1297 }
1298
1299 // Fix up visibility if object has no-export set.
1300 if (relobj->no_export()
1301 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1302 {
1303 // We may have copied symbol already above.
1304 if (psym != &sym2)
1305 {
1306 memcpy(symbuf, p, sym_size);
1307 psym = &sym2;
1308 }
1309
1310 elfcpp::STV visibility = sym2.get_st_visibility();
1311 if (visibility == elfcpp::STV_DEFAULT
1312 || visibility == elfcpp::STV_PROTECTED)
1313 {
1314 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1315 unsigned char nonvis = sym2.get_st_nonvis();
1316 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1317 }
1318 }
1319
1320 Stringpool::Key name_key;
1321 name = this->namepool_.add_with_length(name, namelen, true,
1322 &name_key);
1323
1324 Sized_symbol<size>* res;
1325 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1326 is_default_version, *psym, st_shndx,
1327 is_ordinary, orig_st_shndx);
1328
1329 if (res == NULL)
1330 continue;
1331
1332 if (is_forced_local)
1333 this->force_local(res);
1334
1335 // Do not treat this symbol as garbage if this symbol will be
1336 // exported to the dynamic symbol table. This is true when
1337 // building a shared library or using --export-dynamic and
1338 // the symbol is externally visible.
1339 if (parameters->options().gc_sections()
1340 && res->is_externally_visible()
1341 && !res->is_from_dynobj()
1342 && (parameters->options().shared()
1343 || parameters->options().export_dynamic()
1344 || parameters->options().in_dynamic_list(res->name())))
1345 this->gc_mark_symbol(res);
1346
1347 if (is_defined_in_discarded_section)
1348 res->set_is_defined_in_discarded_section();
1349
1350 (*sympointers)[i] = res;
1351 }
1352 }
1353
1354 // Add a symbol from a plugin-claimed file.
1355
1356 template<int size, bool big_endian>
1357 Symbol*
1358 Symbol_table::add_from_pluginobj(
1359 Sized_pluginobj<size, big_endian>* obj,
1360 const char* name,
1361 const char* ver,
1362 elfcpp::Sym<size, big_endian>* sym)
1363 {
1364 unsigned int st_shndx = sym->get_st_shndx();
1365 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1366
1367 Stringpool::Key ver_key = 0;
1368 bool is_default_version = false;
1369 bool is_forced_local = false;
1370
1371 if (ver != NULL)
1372 {
1373 ver = this->namepool_.add(ver, true, &ver_key);
1374 }
1375 // We don't want to assign a version to an undefined symbol,
1376 // even if it is listed in the version script. FIXME: What
1377 // about a common symbol?
1378 else
1379 {
1380 if (!this->version_script_.empty()
1381 && st_shndx != elfcpp::SHN_UNDEF)
1382 {
1383 // The symbol name did not have a version, but the
1384 // version script may assign a version anyway.
1385 std::string version;
1386 bool is_global;
1387 if (this->version_script_.get_symbol_version(name, &version,
1388 &is_global))
1389 {
1390 if (!is_global)
1391 is_forced_local = true;
1392 else if (!version.empty())
1393 {
1394 ver = this->namepool_.add_with_length(version.c_str(),
1395 version.length(),
1396 true,
1397 &ver_key);
1398 is_default_version = true;
1399 }
1400 }
1401 }
1402 }
1403
1404 Stringpool::Key name_key;
1405 name = this->namepool_.add(name, true, &name_key);
1406
1407 Sized_symbol<size>* res;
1408 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1409 is_default_version, *sym, st_shndx,
1410 is_ordinary, st_shndx);
1411
1412 if (res == NULL)
1413 return NULL;
1414
1415 if (is_forced_local)
1416 this->force_local(res);
1417
1418 return res;
1419 }
1420
1421 // Add all the symbols in a dynamic object to the hash table.
1422
1423 template<int size, bool big_endian>
1424 void
1425 Symbol_table::add_from_dynobj(
1426 Sized_dynobj<size, big_endian>* dynobj,
1427 const unsigned char* syms,
1428 size_t count,
1429 const char* sym_names,
1430 size_t sym_name_size,
1431 const unsigned char* versym,
1432 size_t versym_size,
1433 const std::vector<const char*>* version_map,
1434 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1435 size_t* defined)
1436 {
1437 *defined = 0;
1438
1439 gold_assert(size == parameters->target().get_size());
1440
1441 if (dynobj->just_symbols())
1442 {
1443 gold_error(_("--just-symbols does not make sense with a shared object"));
1444 return;
1445 }
1446
1447 // FIXME: For incremental links, we don't store version information,
1448 // so we need to ignore version symbols for now.
1449 if (parameters->incremental_update())
1450 versym = NULL;
1451
1452 if (versym != NULL && versym_size / 2 < count)
1453 {
1454 dynobj->error(_("too few symbol versions"));
1455 return;
1456 }
1457
1458 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1459
1460 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1461 // weak aliases. This is necessary because if the dynamic object
1462 // provides the same variable under two names, one of which is a
1463 // weak definition, and the regular object refers to the weak
1464 // definition, we have to put both the weak definition and the
1465 // strong definition into the dynamic symbol table. Given a weak
1466 // definition, the only way that we can find the corresponding
1467 // strong definition, if any, is to search the symbol table.
1468 std::vector<Sized_symbol<size>*> object_symbols;
1469
1470 const unsigned char* p = syms;
1471 const unsigned char* vs = versym;
1472 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1473 {
1474 elfcpp::Sym<size, big_endian> sym(p);
1475
1476 if (sympointers != NULL)
1477 (*sympointers)[i] = NULL;
1478
1479 // Ignore symbols with local binding or that have
1480 // internal or hidden visibility.
1481 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1482 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1483 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1484 continue;
1485
1486 // A protected symbol in a shared library must be treated as a
1487 // normal symbol when viewed from outside the shared library.
1488 // Implement this by overriding the visibility here.
1489 // Likewise, an IFUNC symbol in a shared library must be treated
1490 // as a normal FUNC symbol.
1491 elfcpp::Sym<size, big_endian>* psym = &sym;
1492 unsigned char symbuf[sym_size];
1493 elfcpp::Sym<size, big_endian> sym2(symbuf);
1494 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1495 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1496 {
1497 memcpy(symbuf, p, sym_size);
1498 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1499 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1500 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1501 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1502 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1503 psym = &sym2;
1504 }
1505
1506 unsigned int st_name = psym->get_st_name();
1507 if (st_name >= sym_name_size)
1508 {
1509 dynobj->error(_("bad symbol name offset %u at %zu"),
1510 st_name, i);
1511 continue;
1512 }
1513
1514 const char* name = sym_names + st_name;
1515
1516 bool is_ordinary;
1517 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1518 &is_ordinary);
1519
1520 if (st_shndx != elfcpp::SHN_UNDEF)
1521 ++*defined;
1522
1523 Sized_symbol<size>* res;
1524
1525 if (versym == NULL)
1526 {
1527 Stringpool::Key name_key;
1528 name = this->namepool_.add(name, true, &name_key);
1529 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1530 false, *psym, st_shndx, is_ordinary,
1531 st_shndx);
1532 }
1533 else
1534 {
1535 // Read the version information.
1536
1537 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1538
1539 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1540 v &= elfcpp::VERSYM_VERSION;
1541
1542 // The Sun documentation says that V can be VER_NDX_LOCAL,
1543 // or VER_NDX_GLOBAL, or a version index. The meaning of
1544 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1545 // The old GNU linker will happily generate VER_NDX_LOCAL
1546 // for an undefined symbol. I don't know what the Sun
1547 // linker will generate.
1548
1549 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1550 && st_shndx != elfcpp::SHN_UNDEF)
1551 {
1552 // This symbol should not be visible outside the object.
1553 continue;
1554 }
1555
1556 // At this point we are definitely going to add this symbol.
1557 Stringpool::Key name_key;
1558 name = this->namepool_.add(name, true, &name_key);
1559
1560 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1561 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1562 {
1563 // This symbol does not have a version.
1564 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1565 false, *psym, st_shndx, is_ordinary,
1566 st_shndx);
1567 }
1568 else
1569 {
1570 if (v >= version_map->size())
1571 {
1572 dynobj->error(_("versym for symbol %zu out of range: %u"),
1573 i, v);
1574 continue;
1575 }
1576
1577 const char* version = (*version_map)[v];
1578 if (version == NULL)
1579 {
1580 dynobj->error(_("versym for symbol %zu has no name: %u"),
1581 i, v);
1582 continue;
1583 }
1584
1585 Stringpool::Key version_key;
1586 version = this->namepool_.add(version, true, &version_key);
1587
1588 // If this is an absolute symbol, and the version name
1589 // and symbol name are the same, then this is the
1590 // version definition symbol. These symbols exist to
1591 // support using -u to pull in particular versions. We
1592 // do not want to record a version for them.
1593 if (st_shndx == elfcpp::SHN_ABS
1594 && !is_ordinary
1595 && name_key == version_key)
1596 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1597 false, *psym, st_shndx, is_ordinary,
1598 st_shndx);
1599 else
1600 {
1601 const bool is_default_version =
1602 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1603 res = this->add_from_object(dynobj, name, name_key, version,
1604 version_key, is_default_version,
1605 *psym, st_shndx,
1606 is_ordinary, st_shndx);
1607 }
1608 }
1609 }
1610
1611 if (res == NULL)
1612 continue;
1613
1614 // Note that it is possible that RES was overridden by an
1615 // earlier object, in which case it can't be aliased here.
1616 if (st_shndx != elfcpp::SHN_UNDEF
1617 && is_ordinary
1618 && psym->get_st_type() == elfcpp::STT_OBJECT
1619 && res->source() == Symbol::FROM_OBJECT
1620 && res->object() == dynobj)
1621 object_symbols.push_back(res);
1622
1623 // If the symbol has protected visibility in the dynobj,
1624 // mark it as such if it was not overridden.
1625 if (res->source() == Symbol::FROM_OBJECT
1626 && res->object() == dynobj
1627 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1628 res->set_is_protected();
1629
1630 if (sympointers != NULL)
1631 (*sympointers)[i] = res;
1632 }
1633
1634 this->record_weak_aliases(&object_symbols);
1635 }
1636
1637 // Add a symbol from a incremental object file.
1638
1639 template<int size, bool big_endian>
1640 Sized_symbol<size>*
1641 Symbol_table::add_from_incrobj(
1642 Object* obj,
1643 const char* name,
1644 const char* ver,
1645 elfcpp::Sym<size, big_endian>* sym)
1646 {
1647 unsigned int st_shndx = sym->get_st_shndx();
1648 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1649
1650 Stringpool::Key ver_key = 0;
1651 bool is_default_version = false;
1652
1653 Stringpool::Key name_key;
1654 name = this->namepool_.add(name, true, &name_key);
1655
1656 Sized_symbol<size>* res;
1657 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1658 is_default_version, *sym, st_shndx,
1659 is_ordinary, st_shndx);
1660
1661 return res;
1662 }
1663
1664 // This is used to sort weak aliases. We sort them first by section
1665 // index, then by offset, then by weak ahead of strong.
1666
1667 template<int size>
1668 class Weak_alias_sorter
1669 {
1670 public:
1671 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1672 };
1673
1674 template<int size>
1675 bool
1676 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1677 const Sized_symbol<size>* s2) const
1678 {
1679 bool is_ordinary;
1680 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1681 gold_assert(is_ordinary);
1682 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1683 gold_assert(is_ordinary);
1684 if (s1_shndx != s2_shndx)
1685 return s1_shndx < s2_shndx;
1686
1687 if (s1->value() != s2->value())
1688 return s1->value() < s2->value();
1689 if (s1->binding() != s2->binding())
1690 {
1691 if (s1->binding() == elfcpp::STB_WEAK)
1692 return true;
1693 if (s2->binding() == elfcpp::STB_WEAK)
1694 return false;
1695 }
1696 return std::string(s1->name()) < std::string(s2->name());
1697 }
1698
1699 // SYMBOLS is a list of object symbols from a dynamic object. Look
1700 // for any weak aliases, and record them so that if we add the weak
1701 // alias to the dynamic symbol table, we also add the corresponding
1702 // strong symbol.
1703
1704 template<int size>
1705 void
1706 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1707 {
1708 // Sort the vector by section index, then by offset, then by weak
1709 // ahead of strong.
1710 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1711
1712 // Walk through the vector. For each weak definition, record
1713 // aliases.
1714 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1715 symbols->begin();
1716 p != symbols->end();
1717 ++p)
1718 {
1719 if ((*p)->binding() != elfcpp::STB_WEAK)
1720 continue;
1721
1722 // Build a circular list of weak aliases. Each symbol points to
1723 // the next one in the circular list.
1724
1725 Sized_symbol<size>* from_sym = *p;
1726 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1727 for (q = p + 1; q != symbols->end(); ++q)
1728 {
1729 bool dummy;
1730 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1731 || (*q)->value() != from_sym->value())
1732 break;
1733
1734 this->weak_aliases_[from_sym] = *q;
1735 from_sym->set_has_alias();
1736 from_sym = *q;
1737 }
1738
1739 if (from_sym != *p)
1740 {
1741 this->weak_aliases_[from_sym] = *p;
1742 from_sym->set_has_alias();
1743 }
1744
1745 p = q - 1;
1746 }
1747 }
1748
1749 // Create and return a specially defined symbol. If ONLY_IF_REF is
1750 // true, then only create the symbol if there is a reference to it.
1751 // If this does not return NULL, it sets *POLDSYM to the existing
1752 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1753 // resolve the newly created symbol to the old one. This
1754 // canonicalizes *PNAME and *PVERSION.
1755
1756 template<int size, bool big_endian>
1757 Sized_symbol<size>*
1758 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1759 bool only_if_ref,
1760 Sized_symbol<size>** poldsym,
1761 bool* resolve_oldsym)
1762 {
1763 *resolve_oldsym = false;
1764 *poldsym = NULL;
1765
1766 // If the caller didn't give us a version, see if we get one from
1767 // the version script.
1768 std::string v;
1769 bool is_default_version = false;
1770 if (*pversion == NULL)
1771 {
1772 bool is_global;
1773 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1774 {
1775 if (is_global && !v.empty())
1776 {
1777 *pversion = v.c_str();
1778 // If we get the version from a version script, then we
1779 // are also the default version.
1780 is_default_version = true;
1781 }
1782 }
1783 }
1784
1785 Symbol* oldsym;
1786 Sized_symbol<size>* sym;
1787
1788 bool add_to_table = false;
1789 typename Symbol_table_type::iterator add_loc = this->table_.end();
1790 bool add_def_to_table = false;
1791 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1792
1793 if (only_if_ref)
1794 {
1795 oldsym = this->lookup(*pname, *pversion);
1796 if (oldsym == NULL && is_default_version)
1797 oldsym = this->lookup(*pname, NULL);
1798 if (oldsym == NULL || !oldsym->is_undefined())
1799 return NULL;
1800
1801 *pname = oldsym->name();
1802 if (is_default_version)
1803 *pversion = this->namepool_.add(*pversion, true, NULL);
1804 else
1805 *pversion = oldsym->version();
1806 }
1807 else
1808 {
1809 // Canonicalize NAME and VERSION.
1810 Stringpool::Key name_key;
1811 *pname = this->namepool_.add(*pname, true, &name_key);
1812
1813 Stringpool::Key version_key = 0;
1814 if (*pversion != NULL)
1815 *pversion = this->namepool_.add(*pversion, true, &version_key);
1816
1817 Symbol* const snull = NULL;
1818 std::pair<typename Symbol_table_type::iterator, bool> ins =
1819 this->table_.insert(std::make_pair(std::make_pair(name_key,
1820 version_key),
1821 snull));
1822
1823 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1824 std::make_pair(this->table_.end(), false);
1825 if (is_default_version)
1826 {
1827 const Stringpool::Key vnull = 0;
1828 insdefault =
1829 this->table_.insert(std::make_pair(std::make_pair(name_key,
1830 vnull),
1831 snull));
1832 }
1833
1834 if (!ins.second)
1835 {
1836 // We already have a symbol table entry for NAME/VERSION.
1837 oldsym = ins.first->second;
1838 gold_assert(oldsym != NULL);
1839
1840 if (is_default_version)
1841 {
1842 Sized_symbol<size>* soldsym =
1843 this->get_sized_symbol<size>(oldsym);
1844 this->define_default_version<size, big_endian>(soldsym,
1845 insdefault.second,
1846 insdefault.first);
1847 }
1848 }
1849 else
1850 {
1851 // We haven't seen this symbol before.
1852 gold_assert(ins.first->second == NULL);
1853
1854 add_to_table = true;
1855 add_loc = ins.first;
1856
1857 if (is_default_version && !insdefault.second)
1858 {
1859 // We are adding NAME/VERSION, and it is the default
1860 // version. We already have an entry for NAME/NULL.
1861 oldsym = insdefault.first->second;
1862 *resolve_oldsym = true;
1863 }
1864 else
1865 {
1866 oldsym = NULL;
1867
1868 if (is_default_version)
1869 {
1870 add_def_to_table = true;
1871 add_def_loc = insdefault.first;
1872 }
1873 }
1874 }
1875 }
1876
1877 const Target& target = parameters->target();
1878 if (!target.has_make_symbol())
1879 sym = new Sized_symbol<size>();
1880 else
1881 {
1882 Sized_target<size, big_endian>* sized_target =
1883 parameters->sized_target<size, big_endian>();
1884 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1885 NULL, elfcpp::SHN_UNDEF, 0);
1886 if (sym == NULL)
1887 return NULL;
1888 }
1889
1890 if (add_to_table)
1891 add_loc->second = sym;
1892 else
1893 gold_assert(oldsym != NULL);
1894
1895 if (add_def_to_table)
1896 add_def_loc->second = sym;
1897
1898 *poldsym = this->get_sized_symbol<size>(oldsym);
1899
1900 return sym;
1901 }
1902
1903 // Define a symbol based on an Output_data.
1904
1905 Symbol*
1906 Symbol_table::define_in_output_data(const char* name,
1907 const char* version,
1908 Defined defined,
1909 Output_data* od,
1910 uint64_t value,
1911 uint64_t symsize,
1912 elfcpp::STT type,
1913 elfcpp::STB binding,
1914 elfcpp::STV visibility,
1915 unsigned char nonvis,
1916 bool offset_is_from_end,
1917 bool only_if_ref)
1918 {
1919 if (parameters->target().get_size() == 32)
1920 {
1921 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1922 return this->do_define_in_output_data<32>(name, version, defined, od,
1923 value, symsize, type, binding,
1924 visibility, nonvis,
1925 offset_is_from_end,
1926 only_if_ref);
1927 #else
1928 gold_unreachable();
1929 #endif
1930 }
1931 else if (parameters->target().get_size() == 64)
1932 {
1933 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1934 return this->do_define_in_output_data<64>(name, version, defined, od,
1935 value, symsize, type, binding,
1936 visibility, nonvis,
1937 offset_is_from_end,
1938 only_if_ref);
1939 #else
1940 gold_unreachable();
1941 #endif
1942 }
1943 else
1944 gold_unreachable();
1945 }
1946
1947 // Define a symbol in an Output_data, sized version.
1948
1949 template<int size>
1950 Sized_symbol<size>*
1951 Symbol_table::do_define_in_output_data(
1952 const char* name,
1953 const char* version,
1954 Defined defined,
1955 Output_data* od,
1956 typename elfcpp::Elf_types<size>::Elf_Addr value,
1957 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1958 elfcpp::STT type,
1959 elfcpp::STB binding,
1960 elfcpp::STV visibility,
1961 unsigned char nonvis,
1962 bool offset_is_from_end,
1963 bool only_if_ref)
1964 {
1965 Sized_symbol<size>* sym;
1966 Sized_symbol<size>* oldsym;
1967 bool resolve_oldsym;
1968
1969 if (parameters->target().is_big_endian())
1970 {
1971 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1972 sym = this->define_special_symbol<size, true>(&name, &version,
1973 only_if_ref, &oldsym,
1974 &resolve_oldsym);
1975 #else
1976 gold_unreachable();
1977 #endif
1978 }
1979 else
1980 {
1981 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1982 sym = this->define_special_symbol<size, false>(&name, &version,
1983 only_if_ref, &oldsym,
1984 &resolve_oldsym);
1985 #else
1986 gold_unreachable();
1987 #endif
1988 }
1989
1990 if (sym == NULL)
1991 return NULL;
1992
1993 sym->init_output_data(name, version, od, value, symsize, type, binding,
1994 visibility, nonvis, offset_is_from_end,
1995 defined == PREDEFINED);
1996
1997 if (oldsym == NULL)
1998 {
1999 if (binding == elfcpp::STB_LOCAL
2000 || this->version_script_.symbol_is_local(name))
2001 this->force_local(sym);
2002 else if (version != NULL)
2003 sym->set_is_default();
2004 return sym;
2005 }
2006
2007 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2008 this->override_with_special(oldsym, sym);
2009
2010 if (resolve_oldsym)
2011 return sym;
2012 else
2013 {
2014 if (defined == PREDEFINED
2015 && (binding == elfcpp::STB_LOCAL
2016 || this->version_script_.symbol_is_local(name)))
2017 this->force_local(oldsym);
2018 delete sym;
2019 return oldsym;
2020 }
2021 }
2022
2023 // Define a symbol based on an Output_segment.
2024
2025 Symbol*
2026 Symbol_table::define_in_output_segment(const char* name,
2027 const char* version,
2028 Defined defined,
2029 Output_segment* os,
2030 uint64_t value,
2031 uint64_t symsize,
2032 elfcpp::STT type,
2033 elfcpp::STB binding,
2034 elfcpp::STV visibility,
2035 unsigned char nonvis,
2036 Symbol::Segment_offset_base offset_base,
2037 bool only_if_ref)
2038 {
2039 if (parameters->target().get_size() == 32)
2040 {
2041 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2042 return this->do_define_in_output_segment<32>(name, version, defined, os,
2043 value, symsize, type,
2044 binding, visibility, nonvis,
2045 offset_base, only_if_ref);
2046 #else
2047 gold_unreachable();
2048 #endif
2049 }
2050 else if (parameters->target().get_size() == 64)
2051 {
2052 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2053 return this->do_define_in_output_segment<64>(name, version, defined, os,
2054 value, symsize, type,
2055 binding, visibility, nonvis,
2056 offset_base, only_if_ref);
2057 #else
2058 gold_unreachable();
2059 #endif
2060 }
2061 else
2062 gold_unreachable();
2063 }
2064
2065 // Define a symbol in an Output_segment, sized version.
2066
2067 template<int size>
2068 Sized_symbol<size>*
2069 Symbol_table::do_define_in_output_segment(
2070 const char* name,
2071 const char* version,
2072 Defined defined,
2073 Output_segment* os,
2074 typename elfcpp::Elf_types<size>::Elf_Addr value,
2075 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2076 elfcpp::STT type,
2077 elfcpp::STB binding,
2078 elfcpp::STV visibility,
2079 unsigned char nonvis,
2080 Symbol::Segment_offset_base offset_base,
2081 bool only_if_ref)
2082 {
2083 Sized_symbol<size>* sym;
2084 Sized_symbol<size>* oldsym;
2085 bool resolve_oldsym;
2086
2087 if (parameters->target().is_big_endian())
2088 {
2089 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2090 sym = this->define_special_symbol<size, true>(&name, &version,
2091 only_if_ref, &oldsym,
2092 &resolve_oldsym);
2093 #else
2094 gold_unreachable();
2095 #endif
2096 }
2097 else
2098 {
2099 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2100 sym = this->define_special_symbol<size, false>(&name, &version,
2101 only_if_ref, &oldsym,
2102 &resolve_oldsym);
2103 #else
2104 gold_unreachable();
2105 #endif
2106 }
2107
2108 if (sym == NULL)
2109 return NULL;
2110
2111 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2112 visibility, nonvis, offset_base,
2113 defined == PREDEFINED);
2114
2115 if (oldsym == NULL)
2116 {
2117 if (binding == elfcpp::STB_LOCAL
2118 || this->version_script_.symbol_is_local(name))
2119 this->force_local(sym);
2120 else if (version != NULL)
2121 sym->set_is_default();
2122 return sym;
2123 }
2124
2125 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2126 this->override_with_special(oldsym, sym);
2127
2128 if (resolve_oldsym)
2129 return sym;
2130 else
2131 {
2132 if (binding == elfcpp::STB_LOCAL
2133 || this->version_script_.symbol_is_local(name))
2134 this->force_local(oldsym);
2135 delete sym;
2136 return oldsym;
2137 }
2138 }
2139
2140 // Define a special symbol with a constant value. It is a multiple
2141 // definition error if this symbol is already defined.
2142
2143 Symbol*
2144 Symbol_table::define_as_constant(const char* name,
2145 const char* version,
2146 Defined defined,
2147 uint64_t value,
2148 uint64_t symsize,
2149 elfcpp::STT type,
2150 elfcpp::STB binding,
2151 elfcpp::STV visibility,
2152 unsigned char nonvis,
2153 bool only_if_ref,
2154 bool force_override)
2155 {
2156 if (parameters->target().get_size() == 32)
2157 {
2158 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2159 return this->do_define_as_constant<32>(name, version, defined, value,
2160 symsize, type, binding,
2161 visibility, nonvis, only_if_ref,
2162 force_override);
2163 #else
2164 gold_unreachable();
2165 #endif
2166 }
2167 else if (parameters->target().get_size() == 64)
2168 {
2169 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2170 return this->do_define_as_constant<64>(name, version, defined, value,
2171 symsize, type, binding,
2172 visibility, nonvis, only_if_ref,
2173 force_override);
2174 #else
2175 gold_unreachable();
2176 #endif
2177 }
2178 else
2179 gold_unreachable();
2180 }
2181
2182 // Define a symbol as a constant, sized version.
2183
2184 template<int size>
2185 Sized_symbol<size>*
2186 Symbol_table::do_define_as_constant(
2187 const char* name,
2188 const char* version,
2189 Defined defined,
2190 typename elfcpp::Elf_types<size>::Elf_Addr value,
2191 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2192 elfcpp::STT type,
2193 elfcpp::STB binding,
2194 elfcpp::STV visibility,
2195 unsigned char nonvis,
2196 bool only_if_ref,
2197 bool force_override)
2198 {
2199 Sized_symbol<size>* sym;
2200 Sized_symbol<size>* oldsym;
2201 bool resolve_oldsym;
2202
2203 if (parameters->target().is_big_endian())
2204 {
2205 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2206 sym = this->define_special_symbol<size, true>(&name, &version,
2207 only_if_ref, &oldsym,
2208 &resolve_oldsym);
2209 #else
2210 gold_unreachable();
2211 #endif
2212 }
2213 else
2214 {
2215 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2216 sym = this->define_special_symbol<size, false>(&name, &version,
2217 only_if_ref, &oldsym,
2218 &resolve_oldsym);
2219 #else
2220 gold_unreachable();
2221 #endif
2222 }
2223
2224 if (sym == NULL)
2225 return NULL;
2226
2227 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2228 nonvis, defined == PREDEFINED);
2229
2230 if (oldsym == NULL)
2231 {
2232 // Version symbols are absolute symbols with name == version.
2233 // We don't want to force them to be local.
2234 if ((version == NULL
2235 || name != version
2236 || value != 0)
2237 && (binding == elfcpp::STB_LOCAL
2238 || this->version_script_.symbol_is_local(name)))
2239 this->force_local(sym);
2240 else if (version != NULL
2241 && (name != version || value != 0))
2242 sym->set_is_default();
2243 return sym;
2244 }
2245
2246 if (force_override
2247 || Symbol_table::should_override_with_special(oldsym, type, defined))
2248 this->override_with_special(oldsym, sym);
2249
2250 if (resolve_oldsym)
2251 return sym;
2252 else
2253 {
2254 if (binding == elfcpp::STB_LOCAL
2255 || this->version_script_.symbol_is_local(name))
2256 this->force_local(oldsym);
2257 delete sym;
2258 return oldsym;
2259 }
2260 }
2261
2262 // Define a set of symbols in output sections.
2263
2264 void
2265 Symbol_table::define_symbols(const Layout* layout, int count,
2266 const Define_symbol_in_section* p,
2267 bool only_if_ref)
2268 {
2269 for (int i = 0; i < count; ++i, ++p)
2270 {
2271 Output_section* os = layout->find_output_section(p->output_section);
2272 if (os != NULL)
2273 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2274 p->size, p->type, p->binding,
2275 p->visibility, p->nonvis,
2276 p->offset_is_from_end,
2277 only_if_ref || p->only_if_ref);
2278 else
2279 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2280 p->type, p->binding, p->visibility, p->nonvis,
2281 only_if_ref || p->only_if_ref,
2282 false);
2283 }
2284 }
2285
2286 // Define a set of symbols in output segments.
2287
2288 void
2289 Symbol_table::define_symbols(const Layout* layout, int count,
2290 const Define_symbol_in_segment* p,
2291 bool only_if_ref)
2292 {
2293 for (int i = 0; i < count; ++i, ++p)
2294 {
2295 Output_segment* os = layout->find_output_segment(p->segment_type,
2296 p->segment_flags_set,
2297 p->segment_flags_clear);
2298 if (os != NULL)
2299 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2300 p->size, p->type, p->binding,
2301 p->visibility, p->nonvis,
2302 p->offset_base,
2303 only_if_ref || p->only_if_ref);
2304 else
2305 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2306 p->type, p->binding, p->visibility, p->nonvis,
2307 only_if_ref || p->only_if_ref,
2308 false);
2309 }
2310 }
2311
2312 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2313 // symbol should be defined--typically a .dyn.bss section. VALUE is
2314 // the offset within POSD.
2315
2316 template<int size>
2317 void
2318 Symbol_table::define_with_copy_reloc(
2319 Sized_symbol<size>* csym,
2320 Output_data* posd,
2321 typename elfcpp::Elf_types<size>::Elf_Addr value)
2322 {
2323 gold_assert(csym->is_from_dynobj());
2324 gold_assert(!csym->is_copied_from_dynobj());
2325 Object* object = csym->object();
2326 gold_assert(object->is_dynamic());
2327 Dynobj* dynobj = static_cast<Dynobj*>(object);
2328
2329 // Our copied variable has to override any variable in a shared
2330 // library.
2331 elfcpp::STB binding = csym->binding();
2332 if (binding == elfcpp::STB_WEAK)
2333 binding = elfcpp::STB_GLOBAL;
2334
2335 this->define_in_output_data(csym->name(), csym->version(), COPY,
2336 posd, value, csym->symsize(),
2337 csym->type(), binding,
2338 csym->visibility(), csym->nonvis(),
2339 false, false);
2340
2341 csym->set_is_copied_from_dynobj();
2342 csym->set_needs_dynsym_entry();
2343
2344 this->copied_symbol_dynobjs_[csym] = dynobj;
2345
2346 // We have now defined all aliases, but we have not entered them all
2347 // in the copied_symbol_dynobjs_ map.
2348 if (csym->has_alias())
2349 {
2350 Symbol* sym = csym;
2351 while (true)
2352 {
2353 sym = this->weak_aliases_[sym];
2354 if (sym == csym)
2355 break;
2356 gold_assert(sym->output_data() == posd);
2357
2358 sym->set_is_copied_from_dynobj();
2359 this->copied_symbol_dynobjs_[sym] = dynobj;
2360 }
2361 }
2362 }
2363
2364 // SYM is defined using a COPY reloc. Return the dynamic object where
2365 // the original definition was found.
2366
2367 Dynobj*
2368 Symbol_table::get_copy_source(const Symbol* sym) const
2369 {
2370 gold_assert(sym->is_copied_from_dynobj());
2371 Copied_symbol_dynobjs::const_iterator p =
2372 this->copied_symbol_dynobjs_.find(sym);
2373 gold_assert(p != this->copied_symbol_dynobjs_.end());
2374 return p->second;
2375 }
2376
2377 // Add any undefined symbols named on the command line.
2378
2379 void
2380 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2381 {
2382 if (parameters->options().any_undefined()
2383 || layout->script_options()->any_unreferenced())
2384 {
2385 if (parameters->target().get_size() == 32)
2386 {
2387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2388 this->do_add_undefined_symbols_from_command_line<32>(layout);
2389 #else
2390 gold_unreachable();
2391 #endif
2392 }
2393 else if (parameters->target().get_size() == 64)
2394 {
2395 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2396 this->do_add_undefined_symbols_from_command_line<64>(layout);
2397 #else
2398 gold_unreachable();
2399 #endif
2400 }
2401 else
2402 gold_unreachable();
2403 }
2404 }
2405
2406 template<int size>
2407 void
2408 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2409 {
2410 for (options::String_set::const_iterator p =
2411 parameters->options().undefined_begin();
2412 p != parameters->options().undefined_end();
2413 ++p)
2414 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2415
2416 for (options::String_set::const_iterator p =
2417 parameters->options().export_dynamic_symbol_begin();
2418 p != parameters->options().export_dynamic_symbol_end();
2419 ++p)
2420 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2421
2422 for (Script_options::referenced_const_iterator p =
2423 layout->script_options()->referenced_begin();
2424 p != layout->script_options()->referenced_end();
2425 ++p)
2426 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2427 }
2428
2429 template<int size>
2430 void
2431 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2432 {
2433 if (this->lookup(name) != NULL)
2434 return;
2435
2436 const char* version = NULL;
2437
2438 Sized_symbol<size>* sym;
2439 Sized_symbol<size>* oldsym;
2440 bool resolve_oldsym;
2441 if (parameters->target().is_big_endian())
2442 {
2443 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2444 sym = this->define_special_symbol<size, true>(&name, &version,
2445 false, &oldsym,
2446 &resolve_oldsym);
2447 #else
2448 gold_unreachable();
2449 #endif
2450 }
2451 else
2452 {
2453 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2454 sym = this->define_special_symbol<size, false>(&name, &version,
2455 false, &oldsym,
2456 &resolve_oldsym);
2457 #else
2458 gold_unreachable();
2459 #endif
2460 }
2461
2462 gold_assert(oldsym == NULL);
2463
2464 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2465 elfcpp::STV_DEFAULT, 0);
2466 ++this->saw_undefined_;
2467 }
2468
2469 // Set the dynamic symbol indexes. INDEX is the index of the first
2470 // global dynamic symbol. Pointers to the symbols are stored into the
2471 // vector SYMS. The names are added to DYNPOOL. This returns an
2472 // updated dynamic symbol index.
2473
2474 unsigned int
2475 Symbol_table::set_dynsym_indexes(unsigned int index,
2476 std::vector<Symbol*>* syms,
2477 Stringpool* dynpool,
2478 Versions* versions)
2479 {
2480 std::vector<Symbol*> as_needed_sym;
2481
2482 // Allow a target to set dynsym indexes.
2483 if (parameters->target().has_custom_set_dynsym_indexes())
2484 {
2485 std::vector<Symbol*> dyn_symbols;
2486 for (Symbol_table_type::iterator p = this->table_.begin();
2487 p != this->table_.end();
2488 ++p)
2489 {
2490 Symbol* sym = p->second;
2491 if (!sym->should_add_dynsym_entry(this))
2492 sym->set_dynsym_index(-1U);
2493 else
2494 dyn_symbols.push_back(sym);
2495 }
2496
2497 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2498 dynpool, versions, this);
2499 }
2500
2501 for (Symbol_table_type::iterator p = this->table_.begin();
2502 p != this->table_.end();
2503 ++p)
2504 {
2505 Symbol* sym = p->second;
2506
2507 // Note that SYM may already have a dynamic symbol index, since
2508 // some symbols appear more than once in the symbol table, with
2509 // and without a version.
2510
2511 if (!sym->should_add_dynsym_entry(this))
2512 sym->set_dynsym_index(-1U);
2513 else if (!sym->has_dynsym_index())
2514 {
2515 sym->set_dynsym_index(index);
2516 ++index;
2517 syms->push_back(sym);
2518 dynpool->add(sym->name(), false, NULL);
2519
2520 // If the symbol is defined in a dynamic object and is
2521 // referenced strongly in a regular object, then mark the
2522 // dynamic object as needed. This is used to implement
2523 // --as-needed.
2524 if (sym->is_from_dynobj()
2525 && sym->in_reg()
2526 && !sym->is_undef_binding_weak())
2527 sym->object()->set_is_needed();
2528
2529 // Record any version information, except those from
2530 // as-needed libraries not seen to be needed. Note that the
2531 // is_needed state for such libraries can change in this loop.
2532 if (sym->version() != NULL)
2533 {
2534 if (!sym->is_from_dynobj()
2535 || !sym->object()->as_needed()
2536 || sym->object()->is_needed())
2537 versions->record_version(this, dynpool, sym);
2538 else
2539 as_needed_sym.push_back(sym);
2540 }
2541 }
2542 }
2543
2544 // Process version information for symbols from as-needed libraries.
2545 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2546 p != as_needed_sym.end();
2547 ++p)
2548 {
2549 Symbol* sym = *p;
2550
2551 if (sym->object()->is_needed())
2552 versions->record_version(this, dynpool, sym);
2553 else
2554 sym->clear_version();
2555 }
2556
2557 // Finish up the versions. In some cases this may add new dynamic
2558 // symbols.
2559 index = versions->finalize(this, index, syms);
2560
2561 // Process target-specific symbols.
2562 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2563 p != this->target_symbols_.end();
2564 ++p)
2565 {
2566 (*p)->set_dynsym_index(index);
2567 ++index;
2568 syms->push_back(*p);
2569 dynpool->add((*p)->name(), false, NULL);
2570 }
2571
2572 return index;
2573 }
2574
2575 // Set the final values for all the symbols. The index of the first
2576 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2577 // file offset OFF. Add their names to POOL. Return the new file
2578 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2579
2580 off_t
2581 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2582 size_t dyncount, Stringpool* pool,
2583 unsigned int* plocal_symcount)
2584 {
2585 off_t ret;
2586
2587 gold_assert(*plocal_symcount != 0);
2588 this->first_global_index_ = *plocal_symcount;
2589
2590 this->dynamic_offset_ = dynoff;
2591 this->first_dynamic_global_index_ = dyn_global_index;
2592 this->dynamic_count_ = dyncount;
2593
2594 if (parameters->target().get_size() == 32)
2595 {
2596 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2597 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2598 #else
2599 gold_unreachable();
2600 #endif
2601 }
2602 else if (parameters->target().get_size() == 64)
2603 {
2604 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2605 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2606 #else
2607 gold_unreachable();
2608 #endif
2609 }
2610 else
2611 gold_unreachable();
2612
2613 // Now that we have the final symbol table, we can reliably note
2614 // which symbols should get warnings.
2615 this->warnings_.note_warnings(this);
2616
2617 return ret;
2618 }
2619
2620 // SYM is going into the symbol table at *PINDEX. Add the name to
2621 // POOL, update *PINDEX and *POFF.
2622
2623 template<int size>
2624 void
2625 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2626 unsigned int* pindex, off_t* poff)
2627 {
2628 sym->set_symtab_index(*pindex);
2629 if (sym->version() == NULL || !parameters->options().relocatable())
2630 pool->add(sym->name(), false, NULL);
2631 else
2632 pool->add(sym->versioned_name(), true, NULL);
2633 ++*pindex;
2634 *poff += elfcpp::Elf_sizes<size>::sym_size;
2635 }
2636
2637 // Set the final value for all the symbols. This is called after
2638 // Layout::finalize, so all the output sections have their final
2639 // address.
2640
2641 template<int size>
2642 off_t
2643 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2644 unsigned int* plocal_symcount)
2645 {
2646 off = align_address(off, size >> 3);
2647 this->offset_ = off;
2648
2649 unsigned int index = *plocal_symcount;
2650 const unsigned int orig_index = index;
2651
2652 // First do all the symbols which have been forced to be local, as
2653 // they must appear before all global symbols.
2654 for (Forced_locals::iterator p = this->forced_locals_.begin();
2655 p != this->forced_locals_.end();
2656 ++p)
2657 {
2658 Symbol* sym = *p;
2659 gold_assert(sym->is_forced_local());
2660 if (this->sized_finalize_symbol<size>(sym))
2661 {
2662 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2663 ++*plocal_symcount;
2664 }
2665 }
2666
2667 // Now do all the remaining symbols.
2668 for (Symbol_table_type::iterator p = this->table_.begin();
2669 p != this->table_.end();
2670 ++p)
2671 {
2672 Symbol* sym = p->second;
2673 if (this->sized_finalize_symbol<size>(sym))
2674 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2675 }
2676
2677 // Now do target-specific symbols.
2678 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2679 p != this->target_symbols_.end();
2680 ++p)
2681 {
2682 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2683 }
2684
2685 this->output_count_ = index - orig_index;
2686
2687 return off;
2688 }
2689
2690 // Compute the final value of SYM and store status in location PSTATUS.
2691 // During relaxation, this may be called multiple times for a symbol to
2692 // compute its would-be final value in each relaxation pass.
2693
2694 template<int size>
2695 typename Sized_symbol<size>::Value_type
2696 Symbol_table::compute_final_value(
2697 const Sized_symbol<size>* sym,
2698 Compute_final_value_status* pstatus) const
2699 {
2700 typedef typename Sized_symbol<size>::Value_type Value_type;
2701 Value_type value;
2702
2703 switch (sym->source())
2704 {
2705 case Symbol::FROM_OBJECT:
2706 {
2707 bool is_ordinary;
2708 unsigned int shndx = sym->shndx(&is_ordinary);
2709
2710 if (!is_ordinary
2711 && shndx != elfcpp::SHN_ABS
2712 && !Symbol::is_common_shndx(shndx))
2713 {
2714 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2715 return 0;
2716 }
2717
2718 Object* symobj = sym->object();
2719 if (symobj->is_dynamic())
2720 {
2721 value = 0;
2722 shndx = elfcpp::SHN_UNDEF;
2723 }
2724 else if (symobj->pluginobj() != NULL)
2725 {
2726 value = 0;
2727 shndx = elfcpp::SHN_UNDEF;
2728 }
2729 else if (shndx == elfcpp::SHN_UNDEF)
2730 value = 0;
2731 else if (!is_ordinary
2732 && (shndx == elfcpp::SHN_ABS
2733 || Symbol::is_common_shndx(shndx)))
2734 value = sym->value();
2735 else
2736 {
2737 Relobj* relobj = static_cast<Relobj*>(symobj);
2738 Output_section* os = relobj->output_section(shndx);
2739
2740 if (this->is_section_folded(relobj, shndx))
2741 {
2742 gold_assert(os == NULL);
2743 // Get the os of the section it is folded onto.
2744 Section_id folded = this->icf_->get_folded_section(relobj,
2745 shndx);
2746 gold_assert(folded.first != NULL);
2747 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2748 unsigned folded_shndx = folded.second;
2749
2750 os = folded_obj->output_section(folded_shndx);
2751 gold_assert(os != NULL);
2752
2753 // Replace (relobj, shndx) with canonical ICF input section.
2754 shndx = folded_shndx;
2755 relobj = folded_obj;
2756 }
2757
2758 uint64_t secoff64 = relobj->output_section_offset(shndx);
2759 if (os == NULL)
2760 {
2761 bool static_or_reloc = (parameters->doing_static_link() ||
2762 parameters->options().relocatable());
2763 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2764
2765 *pstatus = CFVS_NO_OUTPUT_SECTION;
2766 return 0;
2767 }
2768
2769 if (secoff64 == -1ULL)
2770 {
2771 // The section needs special handling (e.g., a merge section).
2772
2773 value = os->output_address(relobj, shndx, sym->value());
2774 }
2775 else
2776 {
2777 Value_type secoff =
2778 convert_types<Value_type, uint64_t>(secoff64);
2779 if (sym->type() == elfcpp::STT_TLS)
2780 value = sym->value() + os->tls_offset() + secoff;
2781 else
2782 value = sym->value() + os->address() + secoff;
2783 }
2784 }
2785 }
2786 break;
2787
2788 case Symbol::IN_OUTPUT_DATA:
2789 {
2790 Output_data* od = sym->output_data();
2791 value = sym->value();
2792 if (sym->type() != elfcpp::STT_TLS)
2793 value += od->address();
2794 else
2795 {
2796 Output_section* os = od->output_section();
2797 gold_assert(os != NULL);
2798 value += os->tls_offset() + (od->address() - os->address());
2799 }
2800 if (sym->offset_is_from_end())
2801 value += od->data_size();
2802 }
2803 break;
2804
2805 case Symbol::IN_OUTPUT_SEGMENT:
2806 {
2807 Output_segment* os = sym->output_segment();
2808 value = sym->value();
2809 if (sym->type() != elfcpp::STT_TLS)
2810 value += os->vaddr();
2811 switch (sym->offset_base())
2812 {
2813 case Symbol::SEGMENT_START:
2814 break;
2815 case Symbol::SEGMENT_END:
2816 value += os->memsz();
2817 break;
2818 case Symbol::SEGMENT_BSS:
2819 value += os->filesz();
2820 break;
2821 default:
2822 gold_unreachable();
2823 }
2824 }
2825 break;
2826
2827 case Symbol::IS_CONSTANT:
2828 value = sym->value();
2829 break;
2830
2831 case Symbol::IS_UNDEFINED:
2832 value = 0;
2833 break;
2834
2835 default:
2836 gold_unreachable();
2837 }
2838
2839 *pstatus = CFVS_OK;
2840 return value;
2841 }
2842
2843 // Finalize the symbol SYM. This returns true if the symbol should be
2844 // added to the symbol table, false otherwise.
2845
2846 template<int size>
2847 bool
2848 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2849 {
2850 typedef typename Sized_symbol<size>::Value_type Value_type;
2851
2852 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2853
2854 // The default version of a symbol may appear twice in the symbol
2855 // table. We only need to finalize it once.
2856 if (sym->has_symtab_index())
2857 return false;
2858
2859 if (!sym->in_reg())
2860 {
2861 gold_assert(!sym->has_symtab_index());
2862 sym->set_symtab_index(-1U);
2863 gold_assert(sym->dynsym_index() == -1U);
2864 return false;
2865 }
2866
2867 // If the symbol is only present on plugin files, the plugin decided we
2868 // don't need it.
2869 if (!sym->in_real_elf())
2870 {
2871 gold_assert(!sym->has_symtab_index());
2872 sym->set_symtab_index(-1U);
2873 return false;
2874 }
2875
2876 // Compute final symbol value.
2877 Compute_final_value_status status;
2878 Value_type value = this->compute_final_value(sym, &status);
2879
2880 switch (status)
2881 {
2882 case CFVS_OK:
2883 break;
2884 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2885 {
2886 bool is_ordinary;
2887 unsigned int shndx = sym->shndx(&is_ordinary);
2888 gold_error(_("%s: unsupported symbol section 0x%x"),
2889 sym->demangled_name().c_str(), shndx);
2890 }
2891 break;
2892 case CFVS_NO_OUTPUT_SECTION:
2893 sym->set_symtab_index(-1U);
2894 return false;
2895 default:
2896 gold_unreachable();
2897 }
2898
2899 sym->set_value(value);
2900
2901 if (parameters->options().strip_all()
2902 || !parameters->options().should_retain_symbol(sym->name()))
2903 {
2904 sym->set_symtab_index(-1U);
2905 return false;
2906 }
2907
2908 return true;
2909 }
2910
2911 // Write out the global symbols.
2912
2913 void
2914 Symbol_table::write_globals(const Stringpool* sympool,
2915 const Stringpool* dynpool,
2916 Output_symtab_xindex* symtab_xindex,
2917 Output_symtab_xindex* dynsym_xindex,
2918 Output_file* of) const
2919 {
2920 switch (parameters->size_and_endianness())
2921 {
2922 #ifdef HAVE_TARGET_32_LITTLE
2923 case Parameters::TARGET_32_LITTLE:
2924 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2925 dynsym_xindex, of);
2926 break;
2927 #endif
2928 #ifdef HAVE_TARGET_32_BIG
2929 case Parameters::TARGET_32_BIG:
2930 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2931 dynsym_xindex, of);
2932 break;
2933 #endif
2934 #ifdef HAVE_TARGET_64_LITTLE
2935 case Parameters::TARGET_64_LITTLE:
2936 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2937 dynsym_xindex, of);
2938 break;
2939 #endif
2940 #ifdef HAVE_TARGET_64_BIG
2941 case Parameters::TARGET_64_BIG:
2942 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2943 dynsym_xindex, of);
2944 break;
2945 #endif
2946 default:
2947 gold_unreachable();
2948 }
2949 }
2950
2951 // Write out the global symbols.
2952
2953 template<int size, bool big_endian>
2954 void
2955 Symbol_table::sized_write_globals(const Stringpool* sympool,
2956 const Stringpool* dynpool,
2957 Output_symtab_xindex* symtab_xindex,
2958 Output_symtab_xindex* dynsym_xindex,
2959 Output_file* of) const
2960 {
2961 const Target& target = parameters->target();
2962
2963 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2964
2965 const unsigned int output_count = this->output_count_;
2966 const section_size_type oview_size = output_count * sym_size;
2967 const unsigned int first_global_index = this->first_global_index_;
2968 unsigned char* psyms;
2969 if (this->offset_ == 0 || output_count == 0)
2970 psyms = NULL;
2971 else
2972 psyms = of->get_output_view(this->offset_, oview_size);
2973
2974 const unsigned int dynamic_count = this->dynamic_count_;
2975 const section_size_type dynamic_size = dynamic_count * sym_size;
2976 const unsigned int first_dynamic_global_index =
2977 this->first_dynamic_global_index_;
2978 unsigned char* dynamic_view;
2979 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2980 dynamic_view = NULL;
2981 else
2982 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2983
2984 for (Symbol_table_type::const_iterator p = this->table_.begin();
2985 p != this->table_.end();
2986 ++p)
2987 {
2988 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2989
2990 // Possibly warn about unresolved symbols in shared libraries.
2991 this->warn_about_undefined_dynobj_symbol(sym);
2992
2993 unsigned int sym_index = sym->symtab_index();
2994 unsigned int dynsym_index;
2995 if (dynamic_view == NULL)
2996 dynsym_index = -1U;
2997 else
2998 dynsym_index = sym->dynsym_index();
2999
3000 if (sym_index == -1U && dynsym_index == -1U)
3001 {
3002 // This symbol is not included in the output file.
3003 continue;
3004 }
3005
3006 unsigned int shndx;
3007 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3008 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3009 elfcpp::STB binding = sym->binding();
3010
3011 // If --weak-unresolved-symbols is set, change binding of unresolved
3012 // global symbols to STB_WEAK.
3013 if (parameters->options().weak_unresolved_symbols()
3014 && binding == elfcpp::STB_GLOBAL
3015 && sym->is_undefined())
3016 binding = elfcpp::STB_WEAK;
3017
3018 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3019 if (binding == elfcpp::STB_GNU_UNIQUE
3020 && !parameters->options().gnu_unique())
3021 binding = elfcpp::STB_GLOBAL;
3022
3023 switch (sym->source())
3024 {
3025 case Symbol::FROM_OBJECT:
3026 {
3027 bool is_ordinary;
3028 unsigned int in_shndx = sym->shndx(&is_ordinary);
3029
3030 if (!is_ordinary
3031 && in_shndx != elfcpp::SHN_ABS
3032 && !Symbol::is_common_shndx(in_shndx))
3033 {
3034 gold_error(_("%s: unsupported symbol section 0x%x"),
3035 sym->demangled_name().c_str(), in_shndx);
3036 shndx = in_shndx;
3037 }
3038 else
3039 {
3040 Object* symobj = sym->object();
3041 if (symobj->is_dynamic())
3042 {
3043 if (sym->needs_dynsym_value())
3044 dynsym_value = target.dynsym_value(sym);
3045 shndx = elfcpp::SHN_UNDEF;
3046 if (sym->is_undef_binding_weak())
3047 binding = elfcpp::STB_WEAK;
3048 else
3049 binding = elfcpp::STB_GLOBAL;
3050 }
3051 else if (symobj->pluginobj() != NULL)
3052 shndx = elfcpp::SHN_UNDEF;
3053 else if (in_shndx == elfcpp::SHN_UNDEF
3054 || (!is_ordinary
3055 && (in_shndx == elfcpp::SHN_ABS
3056 || Symbol::is_common_shndx(in_shndx))))
3057 shndx = in_shndx;
3058 else
3059 {
3060 Relobj* relobj = static_cast<Relobj*>(symobj);
3061 Output_section* os = relobj->output_section(in_shndx);
3062 if (this->is_section_folded(relobj, in_shndx))
3063 {
3064 // This global symbol must be written out even though
3065 // it is folded.
3066 // Get the os of the section it is folded onto.
3067 Section_id folded =
3068 this->icf_->get_folded_section(relobj, in_shndx);
3069 gold_assert(folded.first !=NULL);
3070 Relobj* folded_obj =
3071 reinterpret_cast<Relobj*>(folded.first);
3072 os = folded_obj->output_section(folded.second);
3073 gold_assert(os != NULL);
3074 }
3075 gold_assert(os != NULL);
3076 shndx = os->out_shndx();
3077
3078 if (shndx >= elfcpp::SHN_LORESERVE)
3079 {
3080 if (sym_index != -1U)
3081 symtab_xindex->add(sym_index, shndx);
3082 if (dynsym_index != -1U)
3083 dynsym_xindex->add(dynsym_index, shndx);
3084 shndx = elfcpp::SHN_XINDEX;
3085 }
3086
3087 // In object files symbol values are section
3088 // relative.
3089 if (parameters->options().relocatable())
3090 sym_value -= os->address();
3091 }
3092 }
3093 }
3094 break;
3095
3096 case Symbol::IN_OUTPUT_DATA:
3097 {
3098 Output_data* od = sym->output_data();
3099
3100 shndx = od->out_shndx();
3101 if (shndx >= elfcpp::SHN_LORESERVE)
3102 {
3103 if (sym_index != -1U)
3104 symtab_xindex->add(sym_index, shndx);
3105 if (dynsym_index != -1U)
3106 dynsym_xindex->add(dynsym_index, shndx);
3107 shndx = elfcpp::SHN_XINDEX;
3108 }
3109
3110 // In object files symbol values are section
3111 // relative.
3112 if (parameters->options().relocatable())
3113 sym_value -= od->address();
3114 }
3115 break;
3116
3117 case Symbol::IN_OUTPUT_SEGMENT:
3118 shndx = elfcpp::SHN_ABS;
3119 break;
3120
3121 case Symbol::IS_CONSTANT:
3122 shndx = elfcpp::SHN_ABS;
3123 break;
3124
3125 case Symbol::IS_UNDEFINED:
3126 shndx = elfcpp::SHN_UNDEF;
3127 break;
3128
3129 default:
3130 gold_unreachable();
3131 }
3132
3133 if (sym_index != -1U)
3134 {
3135 sym_index -= first_global_index;
3136 gold_assert(sym_index < output_count);
3137 unsigned char* ps = psyms + (sym_index * sym_size);
3138 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3139 binding, sympool, ps);
3140 }
3141
3142 if (dynsym_index != -1U)
3143 {
3144 dynsym_index -= first_dynamic_global_index;
3145 gold_assert(dynsym_index < dynamic_count);
3146 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3147 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3148 binding, dynpool, pd);
3149 // Allow a target to adjust dynamic symbol value.
3150 parameters->target().adjust_dyn_symbol(sym, pd);
3151 }
3152 }
3153
3154 // Write the target-specific symbols.
3155 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3156 p != this->target_symbols_.end();
3157 ++p)
3158 {
3159 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3160
3161 unsigned int sym_index = sym->symtab_index();
3162 unsigned int dynsym_index;
3163 if (dynamic_view == NULL)
3164 dynsym_index = -1U;
3165 else
3166 dynsym_index = sym->dynsym_index();
3167
3168 unsigned int shndx;
3169 switch (sym->source())
3170 {
3171 case Symbol::IS_CONSTANT:
3172 shndx = elfcpp::SHN_ABS;
3173 break;
3174 case Symbol::IS_UNDEFINED:
3175 shndx = elfcpp::SHN_UNDEF;
3176 break;
3177 default:
3178 gold_unreachable();
3179 }
3180
3181 if (sym_index != -1U)
3182 {
3183 sym_index -= first_global_index;
3184 gold_assert(sym_index < output_count);
3185 unsigned char* ps = psyms + (sym_index * sym_size);
3186 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3187 sym->binding(), sympool,
3188 ps);
3189 }
3190
3191 if (dynsym_index != -1U)
3192 {
3193 dynsym_index -= first_dynamic_global_index;
3194 gold_assert(dynsym_index < dynamic_count);
3195 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3196 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3197 sym->binding(), dynpool,
3198 pd);
3199 }
3200 }
3201
3202 of->write_output_view(this->offset_, oview_size, psyms);
3203 if (dynamic_view != NULL)
3204 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3205 }
3206
3207 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3208 // strtab holding the name.
3209
3210 template<int size, bool big_endian>
3211 void
3212 Symbol_table::sized_write_symbol(
3213 Sized_symbol<size>* sym,
3214 typename elfcpp::Elf_types<size>::Elf_Addr value,
3215 unsigned int shndx,
3216 elfcpp::STB binding,
3217 const Stringpool* pool,
3218 unsigned char* p) const
3219 {
3220 elfcpp::Sym_write<size, big_endian> osym(p);
3221 if (sym->version() == NULL || !parameters->options().relocatable())
3222 osym.put_st_name(pool->get_offset(sym->name()));
3223 else
3224 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3225 osym.put_st_value(value);
3226 // Use a symbol size of zero for undefined symbols from shared libraries.
3227 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3228 osym.put_st_size(0);
3229 else
3230 osym.put_st_size(sym->symsize());
3231 elfcpp::STT type = sym->type();
3232 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3233 // A version script may have overridden the default binding.
3234 if (sym->is_forced_local())
3235 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3236 else
3237 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3238 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3239 osym.put_st_shndx(shndx);
3240 }
3241
3242 // Check for unresolved symbols in shared libraries. This is
3243 // controlled by the --allow-shlib-undefined option.
3244
3245 // We only warn about libraries for which we have seen all the
3246 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3247 // which were not seen in this link. If we didn't see a DT_NEEDED
3248 // entry, we aren't going to be able to reliably report whether the
3249 // symbol is undefined.
3250
3251 // We also don't warn about libraries found in a system library
3252 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3253 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3254 // can have undefined references satisfied by ld-linux.so.
3255
3256 inline void
3257 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3258 {
3259 bool dummy;
3260 if (sym->source() == Symbol::FROM_OBJECT
3261 && sym->object()->is_dynamic()
3262 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3263 && sym->binding() != elfcpp::STB_WEAK
3264 && !parameters->options().allow_shlib_undefined()
3265 && !parameters->target().is_defined_by_abi(sym)
3266 && !sym->object()->is_in_system_directory())
3267 {
3268 // A very ugly cast.
3269 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3270 if (!dynobj->has_unknown_needed_entries())
3271 gold_undefined_symbol(sym);
3272 }
3273 }
3274
3275 // Write out a section symbol. Return the update offset.
3276
3277 void
3278 Symbol_table::write_section_symbol(const Output_section* os,
3279 Output_symtab_xindex* symtab_xindex,
3280 Output_file* of,
3281 off_t offset) const
3282 {
3283 switch (parameters->size_and_endianness())
3284 {
3285 #ifdef HAVE_TARGET_32_LITTLE
3286 case Parameters::TARGET_32_LITTLE:
3287 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3288 offset);
3289 break;
3290 #endif
3291 #ifdef HAVE_TARGET_32_BIG
3292 case Parameters::TARGET_32_BIG:
3293 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3294 offset);
3295 break;
3296 #endif
3297 #ifdef HAVE_TARGET_64_LITTLE
3298 case Parameters::TARGET_64_LITTLE:
3299 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3300 offset);
3301 break;
3302 #endif
3303 #ifdef HAVE_TARGET_64_BIG
3304 case Parameters::TARGET_64_BIG:
3305 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3306 offset);
3307 break;
3308 #endif
3309 default:
3310 gold_unreachable();
3311 }
3312 }
3313
3314 // Write out a section symbol, specialized for size and endianness.
3315
3316 template<int size, bool big_endian>
3317 void
3318 Symbol_table::sized_write_section_symbol(const Output_section* os,
3319 Output_symtab_xindex* symtab_xindex,
3320 Output_file* of,
3321 off_t offset) const
3322 {
3323 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3324
3325 unsigned char* pov = of->get_output_view(offset, sym_size);
3326
3327 elfcpp::Sym_write<size, big_endian> osym(pov);
3328 osym.put_st_name(0);
3329 if (parameters->options().relocatable())
3330 osym.put_st_value(0);
3331 else
3332 osym.put_st_value(os->address());
3333 osym.put_st_size(0);
3334 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3335 elfcpp::STT_SECTION));
3336 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3337
3338 unsigned int shndx = os->out_shndx();
3339 if (shndx >= elfcpp::SHN_LORESERVE)
3340 {
3341 symtab_xindex->add(os->symtab_index(), shndx);
3342 shndx = elfcpp::SHN_XINDEX;
3343 }
3344 osym.put_st_shndx(shndx);
3345
3346 of->write_output_view(offset, sym_size, pov);
3347 }
3348
3349 // Print statistical information to stderr. This is used for --stats.
3350
3351 void
3352 Symbol_table::print_stats() const
3353 {
3354 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3355 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3356 program_name, this->table_.size(), this->table_.bucket_count());
3357 #else
3358 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3359 program_name, this->table_.size());
3360 #endif
3361 this->namepool_.print_stats("symbol table stringpool");
3362 }
3363
3364 // We check for ODR violations by looking for symbols with the same
3365 // name for which the debugging information reports that they were
3366 // defined in disjoint source locations. When comparing the source
3367 // location, we consider instances with the same base filename to be
3368 // the same. This is because different object files/shared libraries
3369 // can include the same header file using different paths, and
3370 // different optimization settings can make the line number appear to
3371 // be a couple lines off, and we don't want to report an ODR violation
3372 // in those cases.
3373
3374 // This struct is used to compare line information, as returned by
3375 // Dwarf_line_info::one_addr2line. It implements a < comparison
3376 // operator used with std::sort.
3377
3378 struct Odr_violation_compare
3379 {
3380 bool
3381 operator()(const std::string& s1, const std::string& s2) const
3382 {
3383 // Inputs should be of the form "dirname/filename:linenum" where
3384 // "dirname/" is optional. We want to compare just the filename:linenum.
3385
3386 // Find the last '/' in each string.
3387 std::string::size_type s1begin = s1.rfind('/');
3388 std::string::size_type s2begin = s2.rfind('/');
3389 // If there was no '/' in a string, start at the beginning.
3390 if (s1begin == std::string::npos)
3391 s1begin = 0;
3392 if (s2begin == std::string::npos)
3393 s2begin = 0;
3394 return s1.compare(s1begin, std::string::npos,
3395 s2, s2begin, std::string::npos) < 0;
3396 }
3397 };
3398
3399 // Returns all of the lines attached to LOC, not just the one the
3400 // instruction actually came from.
3401 std::vector<std::string>
3402 Symbol_table::linenos_from_loc(const Task* task,
3403 const Symbol_location& loc)
3404 {
3405 // We need to lock the object in order to read it. This
3406 // means that we have to run in a singleton Task. If we
3407 // want to run this in a general Task for better
3408 // performance, we will need one Task for object, plus
3409 // appropriate locking to ensure that we don't conflict with
3410 // other uses of the object. Also note, one_addr2line is not
3411 // currently thread-safe.
3412 Task_lock_obj<Object> tl(task, loc.object);
3413
3414 std::vector<std::string> result;
3415 Symbol_location code_loc = loc;
3416 parameters->target().function_location(&code_loc);
3417 // 16 is the size of the object-cache that one_addr2line should use.
3418 std::string canonical_result = Dwarf_line_info::one_addr2line(
3419 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3420 if (!canonical_result.empty())
3421 result.push_back(canonical_result);
3422 return result;
3423 }
3424
3425 // OutputIterator that records if it was ever assigned to. This
3426 // allows it to be used with std::set_intersection() to check for
3427 // intersection rather than computing the intersection.
3428 struct Check_intersection
3429 {
3430 Check_intersection()
3431 : value_(false)
3432 {}
3433
3434 bool had_intersection() const
3435 { return this->value_; }
3436
3437 Check_intersection& operator++()
3438 { return *this; }
3439
3440 Check_intersection& operator*()
3441 { return *this; }
3442
3443 template<typename T>
3444 Check_intersection& operator=(const T&)
3445 {
3446 this->value_ = true;
3447 return *this;
3448 }
3449
3450 private:
3451 bool value_;
3452 };
3453
3454 // Check candidate_odr_violations_ to find symbols with the same name
3455 // but apparently different definitions (different source-file/line-no
3456 // for each line assigned to the first instruction).
3457
3458 void
3459 Symbol_table::detect_odr_violations(const Task* task,
3460 const char* output_file_name) const
3461 {
3462 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3463 it != candidate_odr_violations_.end();
3464 ++it)
3465 {
3466 const char* const symbol_name = it->first;
3467
3468 std::string first_object_name;
3469 std::vector<std::string> first_object_linenos;
3470
3471 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3472 locs = it->second.begin();
3473 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3474 locs_end = it->second.end();
3475 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3476 {
3477 // Save the line numbers from the first definition to
3478 // compare to the other definitions. Ideally, we'd compare
3479 // every definition to every other, but we don't want to
3480 // take O(N^2) time to do this. This shortcut may cause
3481 // false negatives that appear or disappear depending on the
3482 // link order, but it won't cause false positives.
3483 first_object_name = locs->object->name();
3484 first_object_linenos = this->linenos_from_loc(task, *locs);
3485 }
3486 if (first_object_linenos.empty())
3487 continue;
3488
3489 // Sort by Odr_violation_compare to make std::set_intersection work.
3490 std::string first_object_canonical_result = first_object_linenos.back();
3491 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3492 Odr_violation_compare());
3493
3494 for (; locs != locs_end; ++locs)
3495 {
3496 std::vector<std::string> linenos =
3497 this->linenos_from_loc(task, *locs);
3498 // linenos will be empty if we couldn't parse the debug info.
3499 if (linenos.empty())
3500 continue;
3501 // Sort by Odr_violation_compare to make std::set_intersection work.
3502 gold_assert(!linenos.empty());
3503 std::string second_object_canonical_result = linenos.back();
3504 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3505
3506 Check_intersection intersection_result =
3507 std::set_intersection(first_object_linenos.begin(),
3508 first_object_linenos.end(),
3509 linenos.begin(),
3510 linenos.end(),
3511 Check_intersection(),
3512 Odr_violation_compare());
3513 if (!intersection_result.had_intersection())
3514 {
3515 gold_warning(_("while linking %s: symbol '%s' defined in "
3516 "multiple places (possible ODR violation):"),
3517 output_file_name, demangle(symbol_name).c_str());
3518 // This only prints one location from each definition,
3519 // which may not be the location we expect to intersect
3520 // with another definition. We could print the whole
3521 // set of locations, but that seems too verbose.
3522 fprintf(stderr, _(" %s from %s\n"),
3523 first_object_canonical_result.c_str(),
3524 first_object_name.c_str());
3525 fprintf(stderr, _(" %s from %s\n"),
3526 second_object_canonical_result.c_str(),
3527 locs->object->name().c_str());
3528 // Only print one broken pair, to avoid needing to
3529 // compare against a list of the disjoint definition
3530 // locations we've found so far. (If we kept comparing
3531 // against just the first one, we'd get a lot of
3532 // redundant complaints about the second definition
3533 // location.)
3534 break;
3535 }
3536 }
3537 }
3538 // We only call one_addr2line() in this function, so we can clear its cache.
3539 Dwarf_line_info::clear_addr2line_cache();
3540 }
3541
3542 // Warnings functions.
3543
3544 // Add a new warning.
3545
3546 void
3547 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3548 const std::string& warning)
3549 {
3550 name = symtab->canonicalize_name(name);
3551 this->warnings_[name].set(obj, warning);
3552 }
3553
3554 // Look through the warnings and mark the symbols for which we should
3555 // warn. This is called during Layout::finalize when we know the
3556 // sources for all the symbols.
3557
3558 void
3559 Warnings::note_warnings(Symbol_table* symtab)
3560 {
3561 for (Warning_table::iterator p = this->warnings_.begin();
3562 p != this->warnings_.end();
3563 ++p)
3564 {
3565 Symbol* sym = symtab->lookup(p->first, NULL);
3566 if (sym != NULL
3567 && sym->source() == Symbol::FROM_OBJECT
3568 && sym->object() == p->second.object)
3569 sym->set_has_warning();
3570 }
3571 }
3572
3573 // Issue a warning. This is called when we see a relocation against a
3574 // symbol for which has a warning.
3575
3576 template<int size, bool big_endian>
3577 void
3578 Warnings::issue_warning(const Symbol* sym,
3579 const Relocate_info<size, big_endian>* relinfo,
3580 size_t relnum, off_t reloffset) const
3581 {
3582 gold_assert(sym->has_warning());
3583
3584 // We don't want to issue a warning for a relocation against the
3585 // symbol in the same object file in which the symbol is defined.
3586 if (sym->object() == relinfo->object)
3587 return;
3588
3589 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3590 gold_assert(p != this->warnings_.end());
3591 gold_warning_at_location(relinfo, relnum, reloffset,
3592 "%s", p->second.text.c_str());
3593 }
3594
3595 // Instantiate the templates we need. We could use the configure
3596 // script to restrict this to only the ones needed for implemented
3597 // targets.
3598
3599 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3600 template
3601 void
3602 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3603 #endif
3604
3605 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3606 template
3607 void
3608 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3609 #endif
3610
3611 #ifdef HAVE_TARGET_32_LITTLE
3612 template
3613 void
3614 Symbol_table::add_from_relobj<32, false>(
3615 Sized_relobj_file<32, false>* relobj,
3616 const unsigned char* syms,
3617 size_t count,
3618 size_t symndx_offset,
3619 const char* sym_names,
3620 size_t sym_name_size,
3621 Sized_relobj_file<32, false>::Symbols* sympointers,
3622 size_t* defined);
3623 #endif
3624
3625 #ifdef HAVE_TARGET_32_BIG
3626 template
3627 void
3628 Symbol_table::add_from_relobj<32, true>(
3629 Sized_relobj_file<32, true>* relobj,
3630 const unsigned char* syms,
3631 size_t count,
3632 size_t symndx_offset,
3633 const char* sym_names,
3634 size_t sym_name_size,
3635 Sized_relobj_file<32, true>::Symbols* sympointers,
3636 size_t* defined);
3637 #endif
3638
3639 #ifdef HAVE_TARGET_64_LITTLE
3640 template
3641 void
3642 Symbol_table::add_from_relobj<64, false>(
3643 Sized_relobj_file<64, false>* relobj,
3644 const unsigned char* syms,
3645 size_t count,
3646 size_t symndx_offset,
3647 const char* sym_names,
3648 size_t sym_name_size,
3649 Sized_relobj_file<64, false>::Symbols* sympointers,
3650 size_t* defined);
3651 #endif
3652
3653 #ifdef HAVE_TARGET_64_BIG
3654 template
3655 void
3656 Symbol_table::add_from_relobj<64, true>(
3657 Sized_relobj_file<64, true>* relobj,
3658 const unsigned char* syms,
3659 size_t count,
3660 size_t symndx_offset,
3661 const char* sym_names,
3662 size_t sym_name_size,
3663 Sized_relobj_file<64, true>::Symbols* sympointers,
3664 size_t* defined);
3665 #endif
3666
3667 #ifdef HAVE_TARGET_32_LITTLE
3668 template
3669 Symbol*
3670 Symbol_table::add_from_pluginobj<32, false>(
3671 Sized_pluginobj<32, false>* obj,
3672 const char* name,
3673 const char* ver,
3674 elfcpp::Sym<32, false>* sym);
3675 #endif
3676
3677 #ifdef HAVE_TARGET_32_BIG
3678 template
3679 Symbol*
3680 Symbol_table::add_from_pluginobj<32, true>(
3681 Sized_pluginobj<32, true>* obj,
3682 const char* name,
3683 const char* ver,
3684 elfcpp::Sym<32, true>* sym);
3685 #endif
3686
3687 #ifdef HAVE_TARGET_64_LITTLE
3688 template
3689 Symbol*
3690 Symbol_table::add_from_pluginobj<64, false>(
3691 Sized_pluginobj<64, false>* obj,
3692 const char* name,
3693 const char* ver,
3694 elfcpp::Sym<64, false>* sym);
3695 #endif
3696
3697 #ifdef HAVE_TARGET_64_BIG
3698 template
3699 Symbol*
3700 Symbol_table::add_from_pluginobj<64, true>(
3701 Sized_pluginobj<64, true>* obj,
3702 const char* name,
3703 const char* ver,
3704 elfcpp::Sym<64, true>* sym);
3705 #endif
3706
3707 #ifdef HAVE_TARGET_32_LITTLE
3708 template
3709 void
3710 Symbol_table::add_from_dynobj<32, false>(
3711 Sized_dynobj<32, false>* dynobj,
3712 const unsigned char* syms,
3713 size_t count,
3714 const char* sym_names,
3715 size_t sym_name_size,
3716 const unsigned char* versym,
3717 size_t versym_size,
3718 const std::vector<const char*>* version_map,
3719 Sized_relobj_file<32, false>::Symbols* sympointers,
3720 size_t* defined);
3721 #endif
3722
3723 #ifdef HAVE_TARGET_32_BIG
3724 template
3725 void
3726 Symbol_table::add_from_dynobj<32, true>(
3727 Sized_dynobj<32, true>* dynobj,
3728 const unsigned char* syms,
3729 size_t count,
3730 const char* sym_names,
3731 size_t sym_name_size,
3732 const unsigned char* versym,
3733 size_t versym_size,
3734 const std::vector<const char*>* version_map,
3735 Sized_relobj_file<32, true>::Symbols* sympointers,
3736 size_t* defined);
3737 #endif
3738
3739 #ifdef HAVE_TARGET_64_LITTLE
3740 template
3741 void
3742 Symbol_table::add_from_dynobj<64, false>(
3743 Sized_dynobj<64, false>* dynobj,
3744 const unsigned char* syms,
3745 size_t count,
3746 const char* sym_names,
3747 size_t sym_name_size,
3748 const unsigned char* versym,
3749 size_t versym_size,
3750 const std::vector<const char*>* version_map,
3751 Sized_relobj_file<64, false>::Symbols* sympointers,
3752 size_t* defined);
3753 #endif
3754
3755 #ifdef HAVE_TARGET_64_BIG
3756 template
3757 void
3758 Symbol_table::add_from_dynobj<64, true>(
3759 Sized_dynobj<64, true>* dynobj,
3760 const unsigned char* syms,
3761 size_t count,
3762 const char* sym_names,
3763 size_t sym_name_size,
3764 const unsigned char* versym,
3765 size_t versym_size,
3766 const std::vector<const char*>* version_map,
3767 Sized_relobj_file<64, true>::Symbols* sympointers,
3768 size_t* defined);
3769 #endif
3770
3771 #ifdef HAVE_TARGET_32_LITTLE
3772 template
3773 Sized_symbol<32>*
3774 Symbol_table::add_from_incrobj(
3775 Object* obj,
3776 const char* name,
3777 const char* ver,
3778 elfcpp::Sym<32, false>* sym);
3779 #endif
3780
3781 #ifdef HAVE_TARGET_32_BIG
3782 template
3783 Sized_symbol<32>*
3784 Symbol_table::add_from_incrobj(
3785 Object* obj,
3786 const char* name,
3787 const char* ver,
3788 elfcpp::Sym<32, true>* sym);
3789 #endif
3790
3791 #ifdef HAVE_TARGET_64_LITTLE
3792 template
3793 Sized_symbol<64>*
3794 Symbol_table::add_from_incrobj(
3795 Object* obj,
3796 const char* name,
3797 const char* ver,
3798 elfcpp::Sym<64, false>* sym);
3799 #endif
3800
3801 #ifdef HAVE_TARGET_64_BIG
3802 template
3803 Sized_symbol<64>*
3804 Symbol_table::add_from_incrobj(
3805 Object* obj,
3806 const char* name,
3807 const char* ver,
3808 elfcpp::Sym<64, true>* sym);
3809 #endif
3810
3811 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3812 template
3813 void
3814 Symbol_table::define_with_copy_reloc<32>(
3815 Sized_symbol<32>* sym,
3816 Output_data* posd,
3817 elfcpp::Elf_types<32>::Elf_Addr value);
3818 #endif
3819
3820 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3821 template
3822 void
3823 Symbol_table::define_with_copy_reloc<64>(
3824 Sized_symbol<64>* sym,
3825 Output_data* posd,
3826 elfcpp::Elf_types<64>::Elf_Addr value);
3827 #endif
3828
3829 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3830 template
3831 void
3832 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3833 Output_data* od, Value_type value,
3834 Size_type symsize, elfcpp::STT type,
3835 elfcpp::STB binding,
3836 elfcpp::STV visibility,
3837 unsigned char nonvis,
3838 bool offset_is_from_end,
3839 bool is_predefined);
3840
3841 template
3842 void
3843 Sized_symbol<32>::init_constant(const char* name, const char* version,
3844 Value_type value, Size_type symsize,
3845 elfcpp::STT type, elfcpp::STB binding,
3846 elfcpp::STV visibility, unsigned char nonvis,
3847 bool is_predefined);
3848
3849 template
3850 void
3851 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3852 Value_type value, elfcpp::STT type,
3853 elfcpp::STB binding, elfcpp::STV visibility,
3854 unsigned char nonvis);
3855 #endif
3856
3857 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3858 template
3859 void
3860 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3861 Output_data* od, Value_type value,
3862 Size_type symsize, elfcpp::STT type,
3863 elfcpp::STB binding,
3864 elfcpp::STV visibility,
3865 unsigned char nonvis,
3866 bool offset_is_from_end,
3867 bool is_predefined);
3868
3869 template
3870 void
3871 Sized_symbol<64>::init_constant(const char* name, const char* version,
3872 Value_type value, Size_type symsize,
3873 elfcpp::STT type, elfcpp::STB binding,
3874 elfcpp::STV visibility, unsigned char nonvis,
3875 bool is_predefined);
3876
3877 template
3878 void
3879 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3880 Value_type value, elfcpp::STT type,
3881 elfcpp::STB binding, elfcpp::STV visibility,
3882 unsigned char nonvis);
3883 #endif
3884
3885 #ifdef HAVE_TARGET_32_LITTLE
3886 template
3887 void
3888 Warnings::issue_warning<32, false>(const Symbol* sym,
3889 const Relocate_info<32, false>* relinfo,
3890 size_t relnum, off_t reloffset) const;
3891 #endif
3892
3893 #ifdef HAVE_TARGET_32_BIG
3894 template
3895 void
3896 Warnings::issue_warning<32, true>(const Symbol* sym,
3897 const Relocate_info<32, true>* relinfo,
3898 size_t relnum, off_t reloffset) const;
3899 #endif
3900
3901 #ifdef HAVE_TARGET_64_LITTLE
3902 template
3903 void
3904 Warnings::issue_warning<64, false>(const Symbol* sym,
3905 const Relocate_info<64, false>* relinfo,
3906 size_t relnum, off_t reloffset) const;
3907 #endif
3908
3909 #ifdef HAVE_TARGET_64_BIG
3910 template
3911 void
3912 Warnings::issue_warning<64, true>(const Symbol* sym,
3913 const Relocate_info<64, true>* relinfo,
3914 size_t relnum, off_t reloffset) const;
3915 #endif
3916
3917 } // End namespace gold.
This page took 0.108915 seconds and 5 git commands to generate.