* archive.cc (Library_base::should_include_member): Check for
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (parameters->options().in_dynamic_list(this->name())
369 || parameters->options().is_export_dynamic_symbol(this->name()))
370 {
371 if (!this->is_forced_local())
372 return true;
373 gold_warning(_("Cannot export local symbol '%s'"),
374 this->demangled_name().c_str());
375 return false;
376 }
377
378 // If the symbol was forced local in a version script, do not add it.
379 if (this->is_forced_local())
380 return false;
381
382 // If dynamic-list-data was specified, add any STT_OBJECT.
383 if (parameters->options().dynamic_list_data()
384 && !this->is_from_dynobj()
385 && this->type() == elfcpp::STT_OBJECT)
386 return true;
387
388 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
389 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
390 if ((parameters->options().dynamic_list_cpp_new()
391 || parameters->options().dynamic_list_cpp_typeinfo())
392 && !this->is_from_dynobj())
393 {
394 // TODO(csilvers): We could probably figure out if we're an operator
395 // new/delete or typeinfo without the need to demangle.
396 char* demangled_name = cplus_demangle(this->name(),
397 DMGL_ANSI | DMGL_PARAMS);
398 if (demangled_name == NULL)
399 {
400 // Not a C++ symbol, so it can't satisfy these flags
401 }
402 else if (parameters->options().dynamic_list_cpp_new()
403 && (strprefix(demangled_name, "operator new")
404 || strprefix(demangled_name, "operator delete")))
405 {
406 free(demangled_name);
407 return true;
408 }
409 else if (parameters->options().dynamic_list_cpp_typeinfo()
410 && (strprefix(demangled_name, "typeinfo name for")
411 || strprefix(demangled_name, "typeinfo for")))
412 {
413 free(demangled_name);
414 return true;
415 }
416 else
417 free(demangled_name);
418 }
419
420 // If exporting all symbols or building a shared library,
421 // and the symbol is defined in a regular object and is
422 // externally visible, we need to add it.
423 if ((parameters->options().export_dynamic() || parameters->options().shared())
424 && !this->is_from_dynobj()
425 && !this->is_undefined()
426 && this->is_externally_visible())
427 return true;
428
429 return false;
430 }
431
432 // Return true if the final value of this symbol is known at link
433 // time.
434
435 bool
436 Symbol::final_value_is_known() const
437 {
438 // If we are not generating an executable, then no final values are
439 // known, since they will change at runtime.
440 if (parameters->options().output_is_position_independent()
441 || parameters->options().relocatable())
442 return false;
443
444 // If the symbol is not from an object file, and is not undefined,
445 // then it is defined, and known.
446 if (this->source_ != FROM_OBJECT)
447 {
448 if (this->source_ != IS_UNDEFINED)
449 return true;
450 }
451 else
452 {
453 // If the symbol is from a dynamic object, then the final value
454 // is not known.
455 if (this->object()->is_dynamic())
456 return false;
457
458 // If the symbol is not undefined (it is defined or common),
459 // then the final value is known.
460 if (!this->is_undefined())
461 return true;
462 }
463
464 // If the symbol is undefined, then whether the final value is known
465 // depends on whether we are doing a static link. If we are doing a
466 // dynamic link, then the final value could be filled in at runtime.
467 // This could reasonably be the case for a weak undefined symbol.
468 return parameters->doing_static_link();
469 }
470
471 // Return the output section where this symbol is defined.
472
473 Output_section*
474 Symbol::output_section() const
475 {
476 switch (this->source_)
477 {
478 case FROM_OBJECT:
479 {
480 unsigned int shndx = this->u_.from_object.shndx;
481 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
482 {
483 gold_assert(!this->u_.from_object.object->is_dynamic());
484 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
485 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
486 return relobj->output_section(shndx);
487 }
488 return NULL;
489 }
490
491 case IN_OUTPUT_DATA:
492 return this->u_.in_output_data.output_data->output_section();
493
494 case IN_OUTPUT_SEGMENT:
495 case IS_CONSTANT:
496 case IS_UNDEFINED:
497 return NULL;
498
499 default:
500 gold_unreachable();
501 }
502 }
503
504 // Set the symbol's output section. This is used for symbols defined
505 // in scripts. This should only be called after the symbol table has
506 // been finalized.
507
508 void
509 Symbol::set_output_section(Output_section* os)
510 {
511 switch (this->source_)
512 {
513 case FROM_OBJECT:
514 case IN_OUTPUT_DATA:
515 gold_assert(this->output_section() == os);
516 break;
517 case IS_CONSTANT:
518 this->source_ = IN_OUTPUT_DATA;
519 this->u_.in_output_data.output_data = os;
520 this->u_.in_output_data.offset_is_from_end = false;
521 break;
522 case IN_OUTPUT_SEGMENT:
523 case IS_UNDEFINED:
524 default:
525 gold_unreachable();
526 }
527 }
528
529 // Class Symbol_table.
530
531 Symbol_table::Symbol_table(unsigned int count,
532 const Version_script_info& version_script)
533 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
534 forwarders_(), commons_(), tls_commons_(), small_commons_(),
535 large_commons_(), forced_locals_(), warnings_(),
536 version_script_(version_script), gc_(NULL), icf_(NULL)
537 {
538 namepool_.reserve(count);
539 }
540
541 Symbol_table::~Symbol_table()
542 {
543 }
544
545 // The symbol table key equality function. This is called with
546 // Stringpool keys.
547
548 inline bool
549 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
550 const Symbol_table_key& k2) const
551 {
552 return k1.first == k2.first && k1.second == k2.second;
553 }
554
555 bool
556 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
557 {
558 return (parameters->options().icf_enabled()
559 && this->icf_->is_section_folded(obj, shndx));
560 }
561
562 // For symbols that have been listed with a -u or --export-dynamic-symbol
563 // option, add them to the work list to avoid gc'ing them.
564
565 void
566 Symbol_table::gc_mark_undef_symbols(Layout* layout)
567 {
568 for (options::String_set::const_iterator p =
569 parameters->options().undefined_begin();
570 p != parameters->options().undefined_end();
571 ++p)
572 {
573 const char* name = p->c_str();
574 Symbol* sym = this->lookup(name);
575 gold_assert(sym != NULL);
576 if (sym->source() == Symbol::FROM_OBJECT
577 && !sym->object()->is_dynamic())
578 {
579 Relobj* obj = static_cast<Relobj*>(sym->object());
580 bool is_ordinary;
581 unsigned int shndx = sym->shndx(&is_ordinary);
582 if (is_ordinary)
583 {
584 gold_assert(this->gc_ != NULL);
585 this->gc_->worklist().push(Section_id(obj, shndx));
586 }
587 }
588 }
589
590 for (options::String_set::const_iterator p =
591 parameters->options().export_dynamic_symbol_begin();
592 p != parameters->options().export_dynamic_symbol_end();
593 ++p)
594 {
595 const char* name = p->c_str();
596 Symbol* sym = this->lookup(name);
597 gold_assert(sym != NULL);
598 if (sym->source() == Symbol::FROM_OBJECT
599 && !sym->object()->is_dynamic())
600 {
601 Relobj* obj = static_cast<Relobj*>(sym->object());
602 bool is_ordinary;
603 unsigned int shndx = sym->shndx(&is_ordinary);
604 if (is_ordinary)
605 {
606 gold_assert(this->gc_ != NULL);
607 this->gc_->worklist().push(Section_id(obj, shndx));
608 }
609 }
610 }
611
612 for (Script_options::referenced_const_iterator p =
613 layout->script_options()->referenced_begin();
614 p != layout->script_options()->referenced_end();
615 ++p)
616 {
617 Symbol* sym = this->lookup(p->c_str());
618 gold_assert(sym != NULL);
619 if (sym->source() == Symbol::FROM_OBJECT
620 && !sym->object()->is_dynamic())
621 {
622 Relobj* obj = static_cast<Relobj*>(sym->object());
623 bool is_ordinary;
624 unsigned int shndx = sym->shndx(&is_ordinary);
625 if (is_ordinary)
626 {
627 gold_assert(this->gc_ != NULL);
628 this->gc_->worklist().push(Section_id(obj, shndx));
629 }
630 }
631 }
632 }
633
634 void
635 Symbol_table::gc_mark_symbol(Symbol* sym)
636 {
637 // Add the object and section to the work list.
638 Relobj* obj = static_cast<Relobj*>(sym->object());
639 bool is_ordinary;
640 unsigned int shndx = sym->shndx(&is_ordinary);
641 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
642 {
643 gold_assert(this->gc_!= NULL);
644 this->gc_->worklist().push(Section_id(obj, shndx));
645 }
646 }
647
648 // When doing garbage collection, keep symbols that have been seen in
649 // dynamic objects.
650 inline void
651 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
652 {
653 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
654 && !sym->object()->is_dynamic())
655 this->gc_mark_symbol(sym);
656 }
657
658 // Make TO a symbol which forwards to FROM.
659
660 void
661 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
662 {
663 gold_assert(from != to);
664 gold_assert(!from->is_forwarder() && !to->is_forwarder());
665 this->forwarders_[from] = to;
666 from->set_forwarder();
667 }
668
669 // Resolve the forwards from FROM, returning the real symbol.
670
671 Symbol*
672 Symbol_table::resolve_forwards(const Symbol* from) const
673 {
674 gold_assert(from->is_forwarder());
675 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
676 this->forwarders_.find(from);
677 gold_assert(p != this->forwarders_.end());
678 return p->second;
679 }
680
681 // Look up a symbol by name.
682
683 Symbol*
684 Symbol_table::lookup(const char* name, const char* version) const
685 {
686 Stringpool::Key name_key;
687 name = this->namepool_.find(name, &name_key);
688 if (name == NULL)
689 return NULL;
690
691 Stringpool::Key version_key = 0;
692 if (version != NULL)
693 {
694 version = this->namepool_.find(version, &version_key);
695 if (version == NULL)
696 return NULL;
697 }
698
699 Symbol_table_key key(name_key, version_key);
700 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
701 if (p == this->table_.end())
702 return NULL;
703 return p->second;
704 }
705
706 // Resolve a Symbol with another Symbol. This is only used in the
707 // unusual case where there are references to both an unversioned
708 // symbol and a symbol with a version, and we then discover that that
709 // version is the default version. Because this is unusual, we do
710 // this the slow way, by converting back to an ELF symbol.
711
712 template<int size, bool big_endian>
713 void
714 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
715 {
716 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
717 elfcpp::Sym_write<size, big_endian> esym(buf);
718 // We don't bother to set the st_name or the st_shndx field.
719 esym.put_st_value(from->value());
720 esym.put_st_size(from->symsize());
721 esym.put_st_info(from->binding(), from->type());
722 esym.put_st_other(from->visibility(), from->nonvis());
723 bool is_ordinary;
724 unsigned int shndx = from->shndx(&is_ordinary);
725 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
726 from->version());
727 if (from->in_reg())
728 to->set_in_reg();
729 if (from->in_dyn())
730 to->set_in_dyn();
731 if (parameters->options().gc_sections())
732 this->gc_mark_dyn_syms(to);
733 }
734
735 // Record that a symbol is forced to be local by a version script or
736 // by visibility.
737
738 void
739 Symbol_table::force_local(Symbol* sym)
740 {
741 if (!sym->is_defined() && !sym->is_common())
742 return;
743 if (sym->is_forced_local())
744 {
745 // We already got this one.
746 return;
747 }
748 sym->set_is_forced_local();
749 this->forced_locals_.push_back(sym);
750 }
751
752 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
753 // is only called for undefined symbols, when at least one --wrap
754 // option was used.
755
756 const char*
757 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
758 {
759 // For some targets, we need to ignore a specific character when
760 // wrapping, and add it back later.
761 char prefix = '\0';
762 if (name[0] == parameters->target().wrap_char())
763 {
764 prefix = name[0];
765 ++name;
766 }
767
768 if (parameters->options().is_wrap(name))
769 {
770 // Turn NAME into __wrap_NAME.
771 std::string s;
772 if (prefix != '\0')
773 s += prefix;
774 s += "__wrap_";
775 s += name;
776
777 // This will give us both the old and new name in NAMEPOOL_, but
778 // that is OK. Only the versions we need will wind up in the
779 // real string table in the output file.
780 return this->namepool_.add(s.c_str(), true, name_key);
781 }
782
783 const char* const real_prefix = "__real_";
784 const size_t real_prefix_length = strlen(real_prefix);
785 if (strncmp(name, real_prefix, real_prefix_length) == 0
786 && parameters->options().is_wrap(name + real_prefix_length))
787 {
788 // Turn __real_NAME into NAME.
789 std::string s;
790 if (prefix != '\0')
791 s += prefix;
792 s += name + real_prefix_length;
793 return this->namepool_.add(s.c_str(), true, name_key);
794 }
795
796 return name;
797 }
798
799 // This is called when we see a symbol NAME/VERSION, and the symbol
800 // already exists in the symbol table, and VERSION is marked as being
801 // the default version. SYM is the NAME/VERSION symbol we just added.
802 // DEFAULT_IS_NEW is true if this is the first time we have seen the
803 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
804
805 template<int size, bool big_endian>
806 void
807 Symbol_table::define_default_version(Sized_symbol<size>* sym,
808 bool default_is_new,
809 Symbol_table_type::iterator pdef)
810 {
811 if (default_is_new)
812 {
813 // This is the first time we have seen NAME/NULL. Make
814 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
815 // version.
816 pdef->second = sym;
817 sym->set_is_default();
818 }
819 else if (pdef->second == sym)
820 {
821 // NAME/NULL already points to NAME/VERSION. Don't mark the
822 // symbol as the default if it is not already the default.
823 }
824 else
825 {
826 // This is the unfortunate case where we already have entries
827 // for both NAME/VERSION and NAME/NULL. We now see a symbol
828 // NAME/VERSION where VERSION is the default version. We have
829 // already resolved this new symbol with the existing
830 // NAME/VERSION symbol.
831
832 // It's possible that NAME/NULL and NAME/VERSION are both
833 // defined in regular objects. This can only happen if one
834 // object file defines foo and another defines foo@@ver. This
835 // is somewhat obscure, but we call it a multiple definition
836 // error.
837
838 // It's possible that NAME/NULL actually has a version, in which
839 // case it won't be the same as VERSION. This happens with
840 // ver_test_7.so in the testsuite for the symbol t2_2. We see
841 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
842 // then see an unadorned t2_2 in an object file and give it
843 // version VER1 from the version script. This looks like a
844 // default definition for VER1, so it looks like we should merge
845 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
846 // not obvious that this is an error, either. So we just punt.
847
848 // If one of the symbols has non-default visibility, and the
849 // other is defined in a shared object, then they are different
850 // symbols.
851
852 // Otherwise, we just resolve the symbols as though they were
853 // the same.
854
855 if (pdef->second->version() != NULL)
856 gold_assert(pdef->second->version() != sym->version());
857 else if (sym->visibility() != elfcpp::STV_DEFAULT
858 && pdef->second->is_from_dynobj())
859 ;
860 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
861 && sym->is_from_dynobj())
862 ;
863 else
864 {
865 const Sized_symbol<size>* symdef;
866 symdef = this->get_sized_symbol<size>(pdef->second);
867 Symbol_table::resolve<size, big_endian>(sym, symdef);
868 this->make_forwarder(pdef->second, sym);
869 pdef->second = sym;
870 sym->set_is_default();
871 }
872 }
873 }
874
875 // Add one symbol from OBJECT to the symbol table. NAME is symbol
876 // name and VERSION is the version; both are canonicalized. DEF is
877 // whether this is the default version. ST_SHNDX is the symbol's
878 // section index; IS_ORDINARY is whether this is a normal section
879 // rather than a special code.
880
881 // If IS_DEFAULT_VERSION is true, then this is the definition of a
882 // default version of a symbol. That means that any lookup of
883 // NAME/NULL and any lookup of NAME/VERSION should always return the
884 // same symbol. This is obvious for references, but in particular we
885 // want to do this for definitions: overriding NAME/NULL should also
886 // override NAME/VERSION. If we don't do that, it would be very hard
887 // to override functions in a shared library which uses versioning.
888
889 // We implement this by simply making both entries in the hash table
890 // point to the same Symbol structure. That is easy enough if this is
891 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
892 // that we have seen both already, in which case they will both have
893 // independent entries in the symbol table. We can't simply change
894 // the symbol table entry, because we have pointers to the entries
895 // attached to the object files. So we mark the entry attached to the
896 // object file as a forwarder, and record it in the forwarders_ map.
897 // Note that entries in the hash table will never be marked as
898 // forwarders.
899 //
900 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
901 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
902 // for a special section code. ST_SHNDX may be modified if the symbol
903 // is defined in a section being discarded.
904
905 template<int size, bool big_endian>
906 Sized_symbol<size>*
907 Symbol_table::add_from_object(Object* object,
908 const char* name,
909 Stringpool::Key name_key,
910 const char* version,
911 Stringpool::Key version_key,
912 bool is_default_version,
913 const elfcpp::Sym<size, big_endian>& sym,
914 unsigned int st_shndx,
915 bool is_ordinary,
916 unsigned int orig_st_shndx)
917 {
918 // Print a message if this symbol is being traced.
919 if (parameters->options().is_trace_symbol(name))
920 {
921 if (orig_st_shndx == elfcpp::SHN_UNDEF)
922 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
923 else
924 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
925 }
926
927 // For an undefined symbol, we may need to adjust the name using
928 // --wrap.
929 if (orig_st_shndx == elfcpp::SHN_UNDEF
930 && parameters->options().any_wrap())
931 {
932 const char* wrap_name = this->wrap_symbol(name, &name_key);
933 if (wrap_name != name)
934 {
935 // If we see a reference to malloc with version GLIBC_2.0,
936 // and we turn it into a reference to __wrap_malloc, then we
937 // discard the version number. Otherwise the user would be
938 // required to specify the correct version for
939 // __wrap_malloc.
940 version = NULL;
941 version_key = 0;
942 name = wrap_name;
943 }
944 }
945
946 Symbol* const snull = NULL;
947 std::pair<typename Symbol_table_type::iterator, bool> ins =
948 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
949 snull));
950
951 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
952 std::make_pair(this->table_.end(), false);
953 if (is_default_version)
954 {
955 const Stringpool::Key vnull_key = 0;
956 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
957 vnull_key),
958 snull));
959 }
960
961 // ins.first: an iterator, which is a pointer to a pair.
962 // ins.first->first: the key (a pair of name and version).
963 // ins.first->second: the value (Symbol*).
964 // ins.second: true if new entry was inserted, false if not.
965
966 Sized_symbol<size>* ret;
967 bool was_undefined;
968 bool was_common;
969 if (!ins.second)
970 {
971 // We already have an entry for NAME/VERSION.
972 ret = this->get_sized_symbol<size>(ins.first->second);
973 gold_assert(ret != NULL);
974
975 was_undefined = ret->is_undefined();
976 was_common = ret->is_common();
977
978 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
979 version);
980 if (parameters->options().gc_sections())
981 this->gc_mark_dyn_syms(ret);
982
983 if (is_default_version)
984 this->define_default_version<size, big_endian>(ret, insdefault.second,
985 insdefault.first);
986 }
987 else
988 {
989 // This is the first time we have seen NAME/VERSION.
990 gold_assert(ins.first->second == NULL);
991
992 if (is_default_version && !insdefault.second)
993 {
994 // We already have an entry for NAME/NULL. If we override
995 // it, then change it to NAME/VERSION.
996 ret = this->get_sized_symbol<size>(insdefault.first->second);
997
998 was_undefined = ret->is_undefined();
999 was_common = ret->is_common();
1000
1001 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1002 version);
1003 if (parameters->options().gc_sections())
1004 this->gc_mark_dyn_syms(ret);
1005 ins.first->second = ret;
1006 }
1007 else
1008 {
1009 was_undefined = false;
1010 was_common = false;
1011
1012 Sized_target<size, big_endian>* target =
1013 parameters->sized_target<size, big_endian>();
1014 if (!target->has_make_symbol())
1015 ret = new Sized_symbol<size>();
1016 else
1017 {
1018 ret = target->make_symbol();
1019 if (ret == NULL)
1020 {
1021 // This means that we don't want a symbol table
1022 // entry after all.
1023 if (!is_default_version)
1024 this->table_.erase(ins.first);
1025 else
1026 {
1027 this->table_.erase(insdefault.first);
1028 // Inserting INSDEFAULT invalidated INS.
1029 this->table_.erase(std::make_pair(name_key,
1030 version_key));
1031 }
1032 return NULL;
1033 }
1034 }
1035
1036 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1037
1038 ins.first->second = ret;
1039 if (is_default_version)
1040 {
1041 // This is the first time we have seen NAME/NULL. Point
1042 // it at the new entry for NAME/VERSION.
1043 gold_assert(insdefault.second);
1044 insdefault.first->second = ret;
1045 }
1046 }
1047
1048 if (is_default_version)
1049 ret->set_is_default();
1050 }
1051
1052 // Record every time we see a new undefined symbol, to speed up
1053 // archive groups.
1054 if (!was_undefined && ret->is_undefined())
1055 {
1056 ++this->saw_undefined_;
1057 if (parameters->options().has_plugins())
1058 parameters->options().plugins()->new_undefined_symbol(ret);
1059 }
1060
1061 // Keep track of common symbols, to speed up common symbol
1062 // allocation.
1063 if (!was_common && ret->is_common())
1064 {
1065 if (ret->type() == elfcpp::STT_TLS)
1066 this->tls_commons_.push_back(ret);
1067 else if (!is_ordinary
1068 && st_shndx == parameters->target().small_common_shndx())
1069 this->small_commons_.push_back(ret);
1070 else if (!is_ordinary
1071 && st_shndx == parameters->target().large_common_shndx())
1072 this->large_commons_.push_back(ret);
1073 else
1074 this->commons_.push_back(ret);
1075 }
1076
1077 // If we're not doing a relocatable link, then any symbol with
1078 // hidden or internal visibility is local.
1079 if ((ret->visibility() == elfcpp::STV_HIDDEN
1080 || ret->visibility() == elfcpp::STV_INTERNAL)
1081 && (ret->binding() == elfcpp::STB_GLOBAL
1082 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1083 || ret->binding() == elfcpp::STB_WEAK)
1084 && !parameters->options().relocatable())
1085 this->force_local(ret);
1086
1087 return ret;
1088 }
1089
1090 // Add all the symbols in a relocatable object to the hash table.
1091
1092 template<int size, bool big_endian>
1093 void
1094 Symbol_table::add_from_relobj(
1095 Sized_relobj_file<size, big_endian>* relobj,
1096 const unsigned char* syms,
1097 size_t count,
1098 size_t symndx_offset,
1099 const char* sym_names,
1100 size_t sym_name_size,
1101 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1102 size_t* defined)
1103 {
1104 *defined = 0;
1105
1106 gold_assert(size == parameters->target().get_size());
1107
1108 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1109
1110 const bool just_symbols = relobj->just_symbols();
1111
1112 const unsigned char* p = syms;
1113 for (size_t i = 0; i < count; ++i, p += sym_size)
1114 {
1115 (*sympointers)[i] = NULL;
1116
1117 elfcpp::Sym<size, big_endian> sym(p);
1118
1119 unsigned int st_name = sym.get_st_name();
1120 if (st_name >= sym_name_size)
1121 {
1122 relobj->error(_("bad global symbol name offset %u at %zu"),
1123 st_name, i);
1124 continue;
1125 }
1126
1127 const char* name = sym_names + st_name;
1128
1129 bool is_ordinary;
1130 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1131 sym.get_st_shndx(),
1132 &is_ordinary);
1133 unsigned int orig_st_shndx = st_shndx;
1134 if (!is_ordinary)
1135 orig_st_shndx = elfcpp::SHN_UNDEF;
1136
1137 if (st_shndx != elfcpp::SHN_UNDEF)
1138 ++*defined;
1139
1140 // A symbol defined in a section which we are not including must
1141 // be treated as an undefined symbol.
1142 bool is_defined_in_discarded_section = false;
1143 if (st_shndx != elfcpp::SHN_UNDEF
1144 && is_ordinary
1145 && !relobj->is_section_included(st_shndx)
1146 && !this->is_section_folded(relobj, st_shndx))
1147 {
1148 st_shndx = elfcpp::SHN_UNDEF;
1149 is_defined_in_discarded_section = true;
1150 }
1151
1152 // In an object file, an '@' in the name separates the symbol
1153 // name from the version name. If there are two '@' characters,
1154 // this is the default version.
1155 const char* ver = strchr(name, '@');
1156 Stringpool::Key ver_key = 0;
1157 int namelen = 0;
1158 // IS_DEFAULT_VERSION: is the version default?
1159 // IS_FORCED_LOCAL: is the symbol forced local?
1160 bool is_default_version = false;
1161 bool is_forced_local = false;
1162
1163 // FIXME: For incremental links, we don't store version information,
1164 // so we need to ignore version symbols for now.
1165 if (parameters->incremental_update() && ver != NULL)
1166 {
1167 namelen = ver - name;
1168 ver = NULL;
1169 }
1170
1171 if (ver != NULL)
1172 {
1173 // The symbol name is of the form foo@VERSION or foo@@VERSION
1174 namelen = ver - name;
1175 ++ver;
1176 if (*ver == '@')
1177 {
1178 is_default_version = true;
1179 ++ver;
1180 }
1181 ver = this->namepool_.add(ver, true, &ver_key);
1182 }
1183 // We don't want to assign a version to an undefined symbol,
1184 // even if it is listed in the version script. FIXME: What
1185 // about a common symbol?
1186 else
1187 {
1188 namelen = strlen(name);
1189 if (!this->version_script_.empty()
1190 && st_shndx != elfcpp::SHN_UNDEF)
1191 {
1192 // The symbol name did not have a version, but the
1193 // version script may assign a version anyway.
1194 std::string version;
1195 bool is_global;
1196 if (this->version_script_.get_symbol_version(name, &version,
1197 &is_global))
1198 {
1199 if (!is_global)
1200 is_forced_local = true;
1201 else if (!version.empty())
1202 {
1203 ver = this->namepool_.add_with_length(version.c_str(),
1204 version.length(),
1205 true,
1206 &ver_key);
1207 is_default_version = true;
1208 }
1209 }
1210 }
1211 }
1212
1213 elfcpp::Sym<size, big_endian>* psym = &sym;
1214 unsigned char symbuf[sym_size];
1215 elfcpp::Sym<size, big_endian> sym2(symbuf);
1216 if (just_symbols)
1217 {
1218 memcpy(symbuf, p, sym_size);
1219 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1220 if (orig_st_shndx != elfcpp::SHN_UNDEF
1221 && is_ordinary
1222 && relobj->e_type() == elfcpp::ET_REL)
1223 {
1224 // Symbol values in relocatable object files are section
1225 // relative. This is normally what we want, but since here
1226 // we are converting the symbol to absolute we need to add
1227 // the section address. The section address in an object
1228 // file is normally zero, but people can use a linker
1229 // script to change it.
1230 sw.put_st_value(sym.get_st_value()
1231 + relobj->section_address(orig_st_shndx));
1232 }
1233 st_shndx = elfcpp::SHN_ABS;
1234 is_ordinary = false;
1235 psym = &sym2;
1236 }
1237
1238 // Fix up visibility if object has no-export set.
1239 if (relobj->no_export()
1240 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1241 {
1242 // We may have copied symbol already above.
1243 if (psym != &sym2)
1244 {
1245 memcpy(symbuf, p, sym_size);
1246 psym = &sym2;
1247 }
1248
1249 elfcpp::STV visibility = sym2.get_st_visibility();
1250 if (visibility == elfcpp::STV_DEFAULT
1251 || visibility == elfcpp::STV_PROTECTED)
1252 {
1253 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1254 unsigned char nonvis = sym2.get_st_nonvis();
1255 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1256 }
1257 }
1258
1259 Stringpool::Key name_key;
1260 name = this->namepool_.add_with_length(name, namelen, true,
1261 &name_key);
1262
1263 Sized_symbol<size>* res;
1264 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1265 is_default_version, *psym, st_shndx,
1266 is_ordinary, orig_st_shndx);
1267
1268 if (is_forced_local)
1269 this->force_local(res);
1270
1271 // Do not treat this symbol as garbage if this symbol will be
1272 // exported to the dynamic symbol table. This is true when
1273 // building a shared library or using --export-dynamic and
1274 // the symbol is externally visible.
1275 if (parameters->options().gc_sections()
1276 && res->is_externally_visible()
1277 && !res->is_from_dynobj()
1278 && (parameters->options().shared()
1279 || parameters->options().export_dynamic()))
1280 this->gc_mark_symbol(res);
1281
1282 if (is_defined_in_discarded_section)
1283 res->set_is_defined_in_discarded_section();
1284
1285 (*sympointers)[i] = res;
1286 }
1287 }
1288
1289 // Add a symbol from a plugin-claimed file.
1290
1291 template<int size, bool big_endian>
1292 Symbol*
1293 Symbol_table::add_from_pluginobj(
1294 Sized_pluginobj<size, big_endian>* obj,
1295 const char* name,
1296 const char* ver,
1297 elfcpp::Sym<size, big_endian>* sym)
1298 {
1299 unsigned int st_shndx = sym->get_st_shndx();
1300 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1301
1302 Stringpool::Key ver_key = 0;
1303 bool is_default_version = false;
1304 bool is_forced_local = false;
1305
1306 if (ver != NULL)
1307 {
1308 ver = this->namepool_.add(ver, true, &ver_key);
1309 }
1310 // We don't want to assign a version to an undefined symbol,
1311 // even if it is listed in the version script. FIXME: What
1312 // about a common symbol?
1313 else
1314 {
1315 if (!this->version_script_.empty()
1316 && st_shndx != elfcpp::SHN_UNDEF)
1317 {
1318 // The symbol name did not have a version, but the
1319 // version script may assign a version anyway.
1320 std::string version;
1321 bool is_global;
1322 if (this->version_script_.get_symbol_version(name, &version,
1323 &is_global))
1324 {
1325 if (!is_global)
1326 is_forced_local = true;
1327 else if (!version.empty())
1328 {
1329 ver = this->namepool_.add_with_length(version.c_str(),
1330 version.length(),
1331 true,
1332 &ver_key);
1333 is_default_version = true;
1334 }
1335 }
1336 }
1337 }
1338
1339 Stringpool::Key name_key;
1340 name = this->namepool_.add(name, true, &name_key);
1341
1342 Sized_symbol<size>* res;
1343 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1344 is_default_version, *sym, st_shndx,
1345 is_ordinary, st_shndx);
1346
1347 if (is_forced_local)
1348 this->force_local(res);
1349
1350 return res;
1351 }
1352
1353 // Add all the symbols in a dynamic object to the hash table.
1354
1355 template<int size, bool big_endian>
1356 void
1357 Symbol_table::add_from_dynobj(
1358 Sized_dynobj<size, big_endian>* dynobj,
1359 const unsigned char* syms,
1360 size_t count,
1361 const char* sym_names,
1362 size_t sym_name_size,
1363 const unsigned char* versym,
1364 size_t versym_size,
1365 const std::vector<const char*>* version_map,
1366 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1367 size_t* defined)
1368 {
1369 *defined = 0;
1370
1371 gold_assert(size == parameters->target().get_size());
1372
1373 if (dynobj->just_symbols())
1374 {
1375 gold_error(_("--just-symbols does not make sense with a shared object"));
1376 return;
1377 }
1378
1379 // FIXME: For incremental links, we don't store version information,
1380 // so we need to ignore version symbols for now.
1381 if (parameters->incremental_update())
1382 versym = NULL;
1383
1384 if (versym != NULL && versym_size / 2 < count)
1385 {
1386 dynobj->error(_("too few symbol versions"));
1387 return;
1388 }
1389
1390 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1391
1392 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1393 // weak aliases. This is necessary because if the dynamic object
1394 // provides the same variable under two names, one of which is a
1395 // weak definition, and the regular object refers to the weak
1396 // definition, we have to put both the weak definition and the
1397 // strong definition into the dynamic symbol table. Given a weak
1398 // definition, the only way that we can find the corresponding
1399 // strong definition, if any, is to search the symbol table.
1400 std::vector<Sized_symbol<size>*> object_symbols;
1401
1402 const unsigned char* p = syms;
1403 const unsigned char* vs = versym;
1404 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1405 {
1406 elfcpp::Sym<size, big_endian> sym(p);
1407
1408 if (sympointers != NULL)
1409 (*sympointers)[i] = NULL;
1410
1411 // Ignore symbols with local binding or that have
1412 // internal or hidden visibility.
1413 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1414 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1415 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1416 continue;
1417
1418 // A protected symbol in a shared library must be treated as a
1419 // normal symbol when viewed from outside the shared library.
1420 // Implement this by overriding the visibility here.
1421 elfcpp::Sym<size, big_endian>* psym = &sym;
1422 unsigned char symbuf[sym_size];
1423 elfcpp::Sym<size, big_endian> sym2(symbuf);
1424 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1425 {
1426 memcpy(symbuf, p, sym_size);
1427 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1428 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1429 psym = &sym2;
1430 }
1431
1432 unsigned int st_name = psym->get_st_name();
1433 if (st_name >= sym_name_size)
1434 {
1435 dynobj->error(_("bad symbol name offset %u at %zu"),
1436 st_name, i);
1437 continue;
1438 }
1439
1440 const char* name = sym_names + st_name;
1441
1442 bool is_ordinary;
1443 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1444 &is_ordinary);
1445
1446 if (st_shndx != elfcpp::SHN_UNDEF)
1447 ++*defined;
1448
1449 Sized_symbol<size>* res;
1450
1451 if (versym == NULL)
1452 {
1453 Stringpool::Key name_key;
1454 name = this->namepool_.add(name, true, &name_key);
1455 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1456 false, *psym, st_shndx, is_ordinary,
1457 st_shndx);
1458 }
1459 else
1460 {
1461 // Read the version information.
1462
1463 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1464
1465 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1466 v &= elfcpp::VERSYM_VERSION;
1467
1468 // The Sun documentation says that V can be VER_NDX_LOCAL,
1469 // or VER_NDX_GLOBAL, or a version index. The meaning of
1470 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1471 // The old GNU linker will happily generate VER_NDX_LOCAL
1472 // for an undefined symbol. I don't know what the Sun
1473 // linker will generate.
1474
1475 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1476 && st_shndx != elfcpp::SHN_UNDEF)
1477 {
1478 // This symbol should not be visible outside the object.
1479 continue;
1480 }
1481
1482 // At this point we are definitely going to add this symbol.
1483 Stringpool::Key name_key;
1484 name = this->namepool_.add(name, true, &name_key);
1485
1486 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1487 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1488 {
1489 // This symbol does not have a version.
1490 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1491 false, *psym, st_shndx, is_ordinary,
1492 st_shndx);
1493 }
1494 else
1495 {
1496 if (v >= version_map->size())
1497 {
1498 dynobj->error(_("versym for symbol %zu out of range: %u"),
1499 i, v);
1500 continue;
1501 }
1502
1503 const char* version = (*version_map)[v];
1504 if (version == NULL)
1505 {
1506 dynobj->error(_("versym for symbol %zu has no name: %u"),
1507 i, v);
1508 continue;
1509 }
1510
1511 Stringpool::Key version_key;
1512 version = this->namepool_.add(version, true, &version_key);
1513
1514 // If this is an absolute symbol, and the version name
1515 // and symbol name are the same, then this is the
1516 // version definition symbol. These symbols exist to
1517 // support using -u to pull in particular versions. We
1518 // do not want to record a version for them.
1519 if (st_shndx == elfcpp::SHN_ABS
1520 && !is_ordinary
1521 && name_key == version_key)
1522 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1523 false, *psym, st_shndx, is_ordinary,
1524 st_shndx);
1525 else
1526 {
1527 const bool is_default_version =
1528 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1529 res = this->add_from_object(dynobj, name, name_key, version,
1530 version_key, is_default_version,
1531 *psym, st_shndx,
1532 is_ordinary, st_shndx);
1533 }
1534 }
1535 }
1536
1537 // Note that it is possible that RES was overridden by an
1538 // earlier object, in which case it can't be aliased here.
1539 if (st_shndx != elfcpp::SHN_UNDEF
1540 && is_ordinary
1541 && psym->get_st_type() == elfcpp::STT_OBJECT
1542 && res->source() == Symbol::FROM_OBJECT
1543 && res->object() == dynobj)
1544 object_symbols.push_back(res);
1545
1546 if (sympointers != NULL)
1547 (*sympointers)[i] = res;
1548 }
1549
1550 this->record_weak_aliases(&object_symbols);
1551 }
1552
1553 // Add a symbol from a incremental object file.
1554
1555 template<int size, bool big_endian>
1556 Sized_symbol<size>*
1557 Symbol_table::add_from_incrobj(
1558 Object* obj,
1559 const char* name,
1560 const char* ver,
1561 elfcpp::Sym<size, big_endian>* sym)
1562 {
1563 unsigned int st_shndx = sym->get_st_shndx();
1564 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1565
1566 Stringpool::Key ver_key = 0;
1567 bool is_default_version = false;
1568 bool is_forced_local = false;
1569
1570 Stringpool::Key name_key;
1571 name = this->namepool_.add(name, true, &name_key);
1572
1573 Sized_symbol<size>* res;
1574 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1575 is_default_version, *sym, st_shndx,
1576 is_ordinary, st_shndx);
1577
1578 if (is_forced_local)
1579 this->force_local(res);
1580
1581 return res;
1582 }
1583
1584 // This is used to sort weak aliases. We sort them first by section
1585 // index, then by offset, then by weak ahead of strong.
1586
1587 template<int size>
1588 class Weak_alias_sorter
1589 {
1590 public:
1591 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1592 };
1593
1594 template<int size>
1595 bool
1596 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1597 const Sized_symbol<size>* s2) const
1598 {
1599 bool is_ordinary;
1600 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1601 gold_assert(is_ordinary);
1602 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1603 gold_assert(is_ordinary);
1604 if (s1_shndx != s2_shndx)
1605 return s1_shndx < s2_shndx;
1606
1607 if (s1->value() != s2->value())
1608 return s1->value() < s2->value();
1609 if (s1->binding() != s2->binding())
1610 {
1611 if (s1->binding() == elfcpp::STB_WEAK)
1612 return true;
1613 if (s2->binding() == elfcpp::STB_WEAK)
1614 return false;
1615 }
1616 return std::string(s1->name()) < std::string(s2->name());
1617 }
1618
1619 // SYMBOLS is a list of object symbols from a dynamic object. Look
1620 // for any weak aliases, and record them so that if we add the weak
1621 // alias to the dynamic symbol table, we also add the corresponding
1622 // strong symbol.
1623
1624 template<int size>
1625 void
1626 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1627 {
1628 // Sort the vector by section index, then by offset, then by weak
1629 // ahead of strong.
1630 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1631
1632 // Walk through the vector. For each weak definition, record
1633 // aliases.
1634 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1635 symbols->begin();
1636 p != symbols->end();
1637 ++p)
1638 {
1639 if ((*p)->binding() != elfcpp::STB_WEAK)
1640 continue;
1641
1642 // Build a circular list of weak aliases. Each symbol points to
1643 // the next one in the circular list.
1644
1645 Sized_symbol<size>* from_sym = *p;
1646 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1647 for (q = p + 1; q != symbols->end(); ++q)
1648 {
1649 bool dummy;
1650 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1651 || (*q)->value() != from_sym->value())
1652 break;
1653
1654 this->weak_aliases_[from_sym] = *q;
1655 from_sym->set_has_alias();
1656 from_sym = *q;
1657 }
1658
1659 if (from_sym != *p)
1660 {
1661 this->weak_aliases_[from_sym] = *p;
1662 from_sym->set_has_alias();
1663 }
1664
1665 p = q - 1;
1666 }
1667 }
1668
1669 // Create and return a specially defined symbol. If ONLY_IF_REF is
1670 // true, then only create the symbol if there is a reference to it.
1671 // If this does not return NULL, it sets *POLDSYM to the existing
1672 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1673 // resolve the newly created symbol to the old one. This
1674 // canonicalizes *PNAME and *PVERSION.
1675
1676 template<int size, bool big_endian>
1677 Sized_symbol<size>*
1678 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1679 bool only_if_ref,
1680 Sized_symbol<size>** poldsym,
1681 bool* resolve_oldsym)
1682 {
1683 *resolve_oldsym = false;
1684
1685 // If the caller didn't give us a version, see if we get one from
1686 // the version script.
1687 std::string v;
1688 bool is_default_version = false;
1689 if (*pversion == NULL)
1690 {
1691 bool is_global;
1692 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1693 {
1694 if (is_global && !v.empty())
1695 {
1696 *pversion = v.c_str();
1697 // If we get the version from a version script, then we
1698 // are also the default version.
1699 is_default_version = true;
1700 }
1701 }
1702 }
1703
1704 Symbol* oldsym;
1705 Sized_symbol<size>* sym;
1706
1707 bool add_to_table = false;
1708 typename Symbol_table_type::iterator add_loc = this->table_.end();
1709 bool add_def_to_table = false;
1710 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1711
1712 if (only_if_ref)
1713 {
1714 oldsym = this->lookup(*pname, *pversion);
1715 if (oldsym == NULL && is_default_version)
1716 oldsym = this->lookup(*pname, NULL);
1717 if (oldsym == NULL || !oldsym->is_undefined())
1718 return NULL;
1719
1720 *pname = oldsym->name();
1721 if (is_default_version)
1722 *pversion = this->namepool_.add(*pversion, true, NULL);
1723 else
1724 *pversion = oldsym->version();
1725 }
1726 else
1727 {
1728 // Canonicalize NAME and VERSION.
1729 Stringpool::Key name_key;
1730 *pname = this->namepool_.add(*pname, true, &name_key);
1731
1732 Stringpool::Key version_key = 0;
1733 if (*pversion != NULL)
1734 *pversion = this->namepool_.add(*pversion, true, &version_key);
1735
1736 Symbol* const snull = NULL;
1737 std::pair<typename Symbol_table_type::iterator, bool> ins =
1738 this->table_.insert(std::make_pair(std::make_pair(name_key,
1739 version_key),
1740 snull));
1741
1742 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1743 std::make_pair(this->table_.end(), false);
1744 if (is_default_version)
1745 {
1746 const Stringpool::Key vnull = 0;
1747 insdefault =
1748 this->table_.insert(std::make_pair(std::make_pair(name_key,
1749 vnull),
1750 snull));
1751 }
1752
1753 if (!ins.second)
1754 {
1755 // We already have a symbol table entry for NAME/VERSION.
1756 oldsym = ins.first->second;
1757 gold_assert(oldsym != NULL);
1758
1759 if (is_default_version)
1760 {
1761 Sized_symbol<size>* soldsym =
1762 this->get_sized_symbol<size>(oldsym);
1763 this->define_default_version<size, big_endian>(soldsym,
1764 insdefault.second,
1765 insdefault.first);
1766 }
1767 }
1768 else
1769 {
1770 // We haven't seen this symbol before.
1771 gold_assert(ins.first->second == NULL);
1772
1773 add_to_table = true;
1774 add_loc = ins.first;
1775
1776 if (is_default_version && !insdefault.second)
1777 {
1778 // We are adding NAME/VERSION, and it is the default
1779 // version. We already have an entry for NAME/NULL.
1780 oldsym = insdefault.first->second;
1781 *resolve_oldsym = true;
1782 }
1783 else
1784 {
1785 oldsym = NULL;
1786
1787 if (is_default_version)
1788 {
1789 add_def_to_table = true;
1790 add_def_loc = insdefault.first;
1791 }
1792 }
1793 }
1794 }
1795
1796 const Target& target = parameters->target();
1797 if (!target.has_make_symbol())
1798 sym = new Sized_symbol<size>();
1799 else
1800 {
1801 Sized_target<size, big_endian>* sized_target =
1802 parameters->sized_target<size, big_endian>();
1803 sym = sized_target->make_symbol();
1804 if (sym == NULL)
1805 return NULL;
1806 }
1807
1808 if (add_to_table)
1809 add_loc->second = sym;
1810 else
1811 gold_assert(oldsym != NULL);
1812
1813 if (add_def_to_table)
1814 add_def_loc->second = sym;
1815
1816 *poldsym = this->get_sized_symbol<size>(oldsym);
1817
1818 return sym;
1819 }
1820
1821 // Define a symbol based on an Output_data.
1822
1823 Symbol*
1824 Symbol_table::define_in_output_data(const char* name,
1825 const char* version,
1826 Defined defined,
1827 Output_data* od,
1828 uint64_t value,
1829 uint64_t symsize,
1830 elfcpp::STT type,
1831 elfcpp::STB binding,
1832 elfcpp::STV visibility,
1833 unsigned char nonvis,
1834 bool offset_is_from_end,
1835 bool only_if_ref)
1836 {
1837 if (parameters->target().get_size() == 32)
1838 {
1839 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1840 return this->do_define_in_output_data<32>(name, version, defined, od,
1841 value, symsize, type, binding,
1842 visibility, nonvis,
1843 offset_is_from_end,
1844 only_if_ref);
1845 #else
1846 gold_unreachable();
1847 #endif
1848 }
1849 else if (parameters->target().get_size() == 64)
1850 {
1851 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1852 return this->do_define_in_output_data<64>(name, version, defined, od,
1853 value, symsize, type, binding,
1854 visibility, nonvis,
1855 offset_is_from_end,
1856 only_if_ref);
1857 #else
1858 gold_unreachable();
1859 #endif
1860 }
1861 else
1862 gold_unreachable();
1863 }
1864
1865 // Define a symbol in an Output_data, sized version.
1866
1867 template<int size>
1868 Sized_symbol<size>*
1869 Symbol_table::do_define_in_output_data(
1870 const char* name,
1871 const char* version,
1872 Defined defined,
1873 Output_data* od,
1874 typename elfcpp::Elf_types<size>::Elf_Addr value,
1875 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1876 elfcpp::STT type,
1877 elfcpp::STB binding,
1878 elfcpp::STV visibility,
1879 unsigned char nonvis,
1880 bool offset_is_from_end,
1881 bool only_if_ref)
1882 {
1883 Sized_symbol<size>* sym;
1884 Sized_symbol<size>* oldsym;
1885 bool resolve_oldsym;
1886
1887 if (parameters->target().is_big_endian())
1888 {
1889 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1890 sym = this->define_special_symbol<size, true>(&name, &version,
1891 only_if_ref, &oldsym,
1892 &resolve_oldsym);
1893 #else
1894 gold_unreachable();
1895 #endif
1896 }
1897 else
1898 {
1899 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1900 sym = this->define_special_symbol<size, false>(&name, &version,
1901 only_if_ref, &oldsym,
1902 &resolve_oldsym);
1903 #else
1904 gold_unreachable();
1905 #endif
1906 }
1907
1908 if (sym == NULL)
1909 return NULL;
1910
1911 sym->init_output_data(name, version, od, value, symsize, type, binding,
1912 visibility, nonvis, offset_is_from_end,
1913 defined == PREDEFINED);
1914
1915 if (oldsym == NULL)
1916 {
1917 if (binding == elfcpp::STB_LOCAL
1918 || this->version_script_.symbol_is_local(name))
1919 this->force_local(sym);
1920 else if (version != NULL)
1921 sym->set_is_default();
1922 return sym;
1923 }
1924
1925 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1926 this->override_with_special(oldsym, sym);
1927
1928 if (resolve_oldsym)
1929 return sym;
1930 else
1931 {
1932 delete sym;
1933 return oldsym;
1934 }
1935 }
1936
1937 // Define a symbol based on an Output_segment.
1938
1939 Symbol*
1940 Symbol_table::define_in_output_segment(const char* name,
1941 const char* version,
1942 Defined defined,
1943 Output_segment* os,
1944 uint64_t value,
1945 uint64_t symsize,
1946 elfcpp::STT type,
1947 elfcpp::STB binding,
1948 elfcpp::STV visibility,
1949 unsigned char nonvis,
1950 Symbol::Segment_offset_base offset_base,
1951 bool only_if_ref)
1952 {
1953 if (parameters->target().get_size() == 32)
1954 {
1955 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1956 return this->do_define_in_output_segment<32>(name, version, defined, os,
1957 value, symsize, type,
1958 binding, visibility, nonvis,
1959 offset_base, only_if_ref);
1960 #else
1961 gold_unreachable();
1962 #endif
1963 }
1964 else if (parameters->target().get_size() == 64)
1965 {
1966 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1967 return this->do_define_in_output_segment<64>(name, version, defined, os,
1968 value, symsize, type,
1969 binding, visibility, nonvis,
1970 offset_base, only_if_ref);
1971 #else
1972 gold_unreachable();
1973 #endif
1974 }
1975 else
1976 gold_unreachable();
1977 }
1978
1979 // Define a symbol in an Output_segment, sized version.
1980
1981 template<int size>
1982 Sized_symbol<size>*
1983 Symbol_table::do_define_in_output_segment(
1984 const char* name,
1985 const char* version,
1986 Defined defined,
1987 Output_segment* os,
1988 typename elfcpp::Elf_types<size>::Elf_Addr value,
1989 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1990 elfcpp::STT type,
1991 elfcpp::STB binding,
1992 elfcpp::STV visibility,
1993 unsigned char nonvis,
1994 Symbol::Segment_offset_base offset_base,
1995 bool only_if_ref)
1996 {
1997 Sized_symbol<size>* sym;
1998 Sized_symbol<size>* oldsym;
1999 bool resolve_oldsym;
2000
2001 if (parameters->target().is_big_endian())
2002 {
2003 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2004 sym = this->define_special_symbol<size, true>(&name, &version,
2005 only_if_ref, &oldsym,
2006 &resolve_oldsym);
2007 #else
2008 gold_unreachable();
2009 #endif
2010 }
2011 else
2012 {
2013 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2014 sym = this->define_special_symbol<size, false>(&name, &version,
2015 only_if_ref, &oldsym,
2016 &resolve_oldsym);
2017 #else
2018 gold_unreachable();
2019 #endif
2020 }
2021
2022 if (sym == NULL)
2023 return NULL;
2024
2025 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2026 visibility, nonvis, offset_base,
2027 defined == PREDEFINED);
2028
2029 if (oldsym == NULL)
2030 {
2031 if (binding == elfcpp::STB_LOCAL
2032 || this->version_script_.symbol_is_local(name))
2033 this->force_local(sym);
2034 else if (version != NULL)
2035 sym->set_is_default();
2036 return sym;
2037 }
2038
2039 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2040 this->override_with_special(oldsym, sym);
2041
2042 if (resolve_oldsym)
2043 return sym;
2044 else
2045 {
2046 delete sym;
2047 return oldsym;
2048 }
2049 }
2050
2051 // Define a special symbol with a constant value. It is a multiple
2052 // definition error if this symbol is already defined.
2053
2054 Symbol*
2055 Symbol_table::define_as_constant(const char* name,
2056 const char* version,
2057 Defined defined,
2058 uint64_t value,
2059 uint64_t symsize,
2060 elfcpp::STT type,
2061 elfcpp::STB binding,
2062 elfcpp::STV visibility,
2063 unsigned char nonvis,
2064 bool only_if_ref,
2065 bool force_override)
2066 {
2067 if (parameters->target().get_size() == 32)
2068 {
2069 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2070 return this->do_define_as_constant<32>(name, version, defined, value,
2071 symsize, type, binding,
2072 visibility, nonvis, only_if_ref,
2073 force_override);
2074 #else
2075 gold_unreachable();
2076 #endif
2077 }
2078 else if (parameters->target().get_size() == 64)
2079 {
2080 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2081 return this->do_define_as_constant<64>(name, version, defined, value,
2082 symsize, type, binding,
2083 visibility, nonvis, only_if_ref,
2084 force_override);
2085 #else
2086 gold_unreachable();
2087 #endif
2088 }
2089 else
2090 gold_unreachable();
2091 }
2092
2093 // Define a symbol as a constant, sized version.
2094
2095 template<int size>
2096 Sized_symbol<size>*
2097 Symbol_table::do_define_as_constant(
2098 const char* name,
2099 const char* version,
2100 Defined defined,
2101 typename elfcpp::Elf_types<size>::Elf_Addr value,
2102 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2103 elfcpp::STT type,
2104 elfcpp::STB binding,
2105 elfcpp::STV visibility,
2106 unsigned char nonvis,
2107 bool only_if_ref,
2108 bool force_override)
2109 {
2110 Sized_symbol<size>* sym;
2111 Sized_symbol<size>* oldsym;
2112 bool resolve_oldsym;
2113
2114 if (parameters->target().is_big_endian())
2115 {
2116 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2117 sym = this->define_special_symbol<size, true>(&name, &version,
2118 only_if_ref, &oldsym,
2119 &resolve_oldsym);
2120 #else
2121 gold_unreachable();
2122 #endif
2123 }
2124 else
2125 {
2126 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2127 sym = this->define_special_symbol<size, false>(&name, &version,
2128 only_if_ref, &oldsym,
2129 &resolve_oldsym);
2130 #else
2131 gold_unreachable();
2132 #endif
2133 }
2134
2135 if (sym == NULL)
2136 return NULL;
2137
2138 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2139 nonvis, defined == PREDEFINED);
2140
2141 if (oldsym == NULL)
2142 {
2143 // Version symbols are absolute symbols with name == version.
2144 // We don't want to force them to be local.
2145 if ((version == NULL
2146 || name != version
2147 || value != 0)
2148 && (binding == elfcpp::STB_LOCAL
2149 || this->version_script_.symbol_is_local(name)))
2150 this->force_local(sym);
2151 else if (version != NULL
2152 && (name != version || value != 0))
2153 sym->set_is_default();
2154 return sym;
2155 }
2156
2157 if (force_override
2158 || Symbol_table::should_override_with_special(oldsym, type, defined))
2159 this->override_with_special(oldsym, sym);
2160
2161 if (resolve_oldsym)
2162 return sym;
2163 else
2164 {
2165 delete sym;
2166 return oldsym;
2167 }
2168 }
2169
2170 // Define a set of symbols in output sections.
2171
2172 void
2173 Symbol_table::define_symbols(const Layout* layout, int count,
2174 const Define_symbol_in_section* p,
2175 bool only_if_ref)
2176 {
2177 for (int i = 0; i < count; ++i, ++p)
2178 {
2179 Output_section* os = layout->find_output_section(p->output_section);
2180 if (os != NULL)
2181 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2182 p->size, p->type, p->binding,
2183 p->visibility, p->nonvis,
2184 p->offset_is_from_end,
2185 only_if_ref || p->only_if_ref);
2186 else
2187 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2188 p->type, p->binding, p->visibility, p->nonvis,
2189 only_if_ref || p->only_if_ref,
2190 false);
2191 }
2192 }
2193
2194 // Define a set of symbols in output segments.
2195
2196 void
2197 Symbol_table::define_symbols(const Layout* layout, int count,
2198 const Define_symbol_in_segment* p,
2199 bool only_if_ref)
2200 {
2201 for (int i = 0; i < count; ++i, ++p)
2202 {
2203 Output_segment* os = layout->find_output_segment(p->segment_type,
2204 p->segment_flags_set,
2205 p->segment_flags_clear);
2206 if (os != NULL)
2207 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2208 p->size, p->type, p->binding,
2209 p->visibility, p->nonvis,
2210 p->offset_base,
2211 only_if_ref || p->only_if_ref);
2212 else
2213 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2214 p->type, p->binding, p->visibility, p->nonvis,
2215 only_if_ref || p->only_if_ref,
2216 false);
2217 }
2218 }
2219
2220 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2221 // symbol should be defined--typically a .dyn.bss section. VALUE is
2222 // the offset within POSD.
2223
2224 template<int size>
2225 void
2226 Symbol_table::define_with_copy_reloc(
2227 Sized_symbol<size>* csym,
2228 Output_data* posd,
2229 typename elfcpp::Elf_types<size>::Elf_Addr value)
2230 {
2231 gold_assert(csym->is_from_dynobj());
2232 gold_assert(!csym->is_copied_from_dynobj());
2233 Object* object = csym->object();
2234 gold_assert(object->is_dynamic());
2235 Dynobj* dynobj = static_cast<Dynobj*>(object);
2236
2237 // Our copied variable has to override any variable in a shared
2238 // library.
2239 elfcpp::STB binding = csym->binding();
2240 if (binding == elfcpp::STB_WEAK)
2241 binding = elfcpp::STB_GLOBAL;
2242
2243 this->define_in_output_data(csym->name(), csym->version(), COPY,
2244 posd, value, csym->symsize(),
2245 csym->type(), binding,
2246 csym->visibility(), csym->nonvis(),
2247 false, false);
2248
2249 csym->set_is_copied_from_dynobj();
2250 csym->set_needs_dynsym_entry();
2251
2252 this->copied_symbol_dynobjs_[csym] = dynobj;
2253
2254 // We have now defined all aliases, but we have not entered them all
2255 // in the copied_symbol_dynobjs_ map.
2256 if (csym->has_alias())
2257 {
2258 Symbol* sym = csym;
2259 while (true)
2260 {
2261 sym = this->weak_aliases_[sym];
2262 if (sym == csym)
2263 break;
2264 gold_assert(sym->output_data() == posd);
2265
2266 sym->set_is_copied_from_dynobj();
2267 this->copied_symbol_dynobjs_[sym] = dynobj;
2268 }
2269 }
2270 }
2271
2272 // SYM is defined using a COPY reloc. Return the dynamic object where
2273 // the original definition was found.
2274
2275 Dynobj*
2276 Symbol_table::get_copy_source(const Symbol* sym) const
2277 {
2278 gold_assert(sym->is_copied_from_dynobj());
2279 Copied_symbol_dynobjs::const_iterator p =
2280 this->copied_symbol_dynobjs_.find(sym);
2281 gold_assert(p != this->copied_symbol_dynobjs_.end());
2282 return p->second;
2283 }
2284
2285 // Add any undefined symbols named on the command line.
2286
2287 void
2288 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2289 {
2290 if (parameters->options().any_undefined()
2291 || layout->script_options()->any_unreferenced())
2292 {
2293 if (parameters->target().get_size() == 32)
2294 {
2295 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2296 this->do_add_undefined_symbols_from_command_line<32>(layout);
2297 #else
2298 gold_unreachable();
2299 #endif
2300 }
2301 else if (parameters->target().get_size() == 64)
2302 {
2303 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2304 this->do_add_undefined_symbols_from_command_line<64>(layout);
2305 #else
2306 gold_unreachable();
2307 #endif
2308 }
2309 else
2310 gold_unreachable();
2311 }
2312 }
2313
2314 template<int size>
2315 void
2316 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2317 {
2318 for (options::String_set::const_iterator p =
2319 parameters->options().undefined_begin();
2320 p != parameters->options().undefined_end();
2321 ++p)
2322 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2323
2324 for (options::String_set::const_iterator p =
2325 parameters->options().export_dynamic_symbol_begin();
2326 p != parameters->options().export_dynamic_symbol_end();
2327 ++p)
2328 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2329
2330 for (Script_options::referenced_const_iterator p =
2331 layout->script_options()->referenced_begin();
2332 p != layout->script_options()->referenced_end();
2333 ++p)
2334 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2335 }
2336
2337 template<int size>
2338 void
2339 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2340 {
2341 if (this->lookup(name) != NULL)
2342 return;
2343
2344 const char* version = NULL;
2345
2346 Sized_symbol<size>* sym;
2347 Sized_symbol<size>* oldsym;
2348 bool resolve_oldsym;
2349 if (parameters->target().is_big_endian())
2350 {
2351 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2352 sym = this->define_special_symbol<size, true>(&name, &version,
2353 false, &oldsym,
2354 &resolve_oldsym);
2355 #else
2356 gold_unreachable();
2357 #endif
2358 }
2359 else
2360 {
2361 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2362 sym = this->define_special_symbol<size, false>(&name, &version,
2363 false, &oldsym,
2364 &resolve_oldsym);
2365 #else
2366 gold_unreachable();
2367 #endif
2368 }
2369
2370 gold_assert(oldsym == NULL);
2371
2372 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2373 elfcpp::STV_DEFAULT, 0);
2374 ++this->saw_undefined_;
2375 }
2376
2377 // Set the dynamic symbol indexes. INDEX is the index of the first
2378 // global dynamic symbol. Pointers to the symbols are stored into the
2379 // vector SYMS. The names are added to DYNPOOL. This returns an
2380 // updated dynamic symbol index.
2381
2382 unsigned int
2383 Symbol_table::set_dynsym_indexes(unsigned int index,
2384 std::vector<Symbol*>* syms,
2385 Stringpool* dynpool,
2386 Versions* versions)
2387 {
2388 for (Symbol_table_type::iterator p = this->table_.begin();
2389 p != this->table_.end();
2390 ++p)
2391 {
2392 Symbol* sym = p->second;
2393
2394 // Note that SYM may already have a dynamic symbol index, since
2395 // some symbols appear more than once in the symbol table, with
2396 // and without a version.
2397
2398 if (!sym->should_add_dynsym_entry(this))
2399 sym->set_dynsym_index(-1U);
2400 else if (!sym->has_dynsym_index())
2401 {
2402 sym->set_dynsym_index(index);
2403 ++index;
2404 syms->push_back(sym);
2405 dynpool->add(sym->name(), false, NULL);
2406
2407 // Record any version information.
2408 if (sym->version() != NULL)
2409 versions->record_version(this, dynpool, sym);
2410
2411 // If the symbol is defined in a dynamic object and is
2412 // referenced in a regular object, then mark the dynamic
2413 // object as needed. This is used to implement --as-needed.
2414 if (sym->is_from_dynobj() && sym->in_reg())
2415 sym->object()->set_is_needed();
2416 }
2417 }
2418
2419 // Finish up the versions. In some cases this may add new dynamic
2420 // symbols.
2421 index = versions->finalize(this, index, syms);
2422
2423 return index;
2424 }
2425
2426 // Set the final values for all the symbols. The index of the first
2427 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2428 // file offset OFF. Add their names to POOL. Return the new file
2429 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2430
2431 off_t
2432 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2433 size_t dyncount, Stringpool* pool,
2434 unsigned int* plocal_symcount)
2435 {
2436 off_t ret;
2437
2438 gold_assert(*plocal_symcount != 0);
2439 this->first_global_index_ = *plocal_symcount;
2440
2441 this->dynamic_offset_ = dynoff;
2442 this->first_dynamic_global_index_ = dyn_global_index;
2443 this->dynamic_count_ = dyncount;
2444
2445 if (parameters->target().get_size() == 32)
2446 {
2447 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2448 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2449 #else
2450 gold_unreachable();
2451 #endif
2452 }
2453 else if (parameters->target().get_size() == 64)
2454 {
2455 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2456 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2457 #else
2458 gold_unreachable();
2459 #endif
2460 }
2461 else
2462 gold_unreachable();
2463
2464 // Now that we have the final symbol table, we can reliably note
2465 // which symbols should get warnings.
2466 this->warnings_.note_warnings(this);
2467
2468 return ret;
2469 }
2470
2471 // SYM is going into the symbol table at *PINDEX. Add the name to
2472 // POOL, update *PINDEX and *POFF.
2473
2474 template<int size>
2475 void
2476 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2477 unsigned int* pindex, off_t* poff)
2478 {
2479 sym->set_symtab_index(*pindex);
2480 if (sym->version() == NULL || !parameters->options().relocatable())
2481 pool->add(sym->name(), false, NULL);
2482 else
2483 pool->add(sym->versioned_name(), true, NULL);
2484 ++*pindex;
2485 *poff += elfcpp::Elf_sizes<size>::sym_size;
2486 }
2487
2488 // Set the final value for all the symbols. This is called after
2489 // Layout::finalize, so all the output sections have their final
2490 // address.
2491
2492 template<int size>
2493 off_t
2494 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2495 unsigned int* plocal_symcount)
2496 {
2497 off = align_address(off, size >> 3);
2498 this->offset_ = off;
2499
2500 unsigned int index = *plocal_symcount;
2501 const unsigned int orig_index = index;
2502
2503 // First do all the symbols which have been forced to be local, as
2504 // they must appear before all global symbols.
2505 for (Forced_locals::iterator p = this->forced_locals_.begin();
2506 p != this->forced_locals_.end();
2507 ++p)
2508 {
2509 Symbol* sym = *p;
2510 gold_assert(sym->is_forced_local());
2511 if (this->sized_finalize_symbol<size>(sym))
2512 {
2513 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2514 ++*plocal_symcount;
2515 }
2516 }
2517
2518 // Now do all the remaining symbols.
2519 for (Symbol_table_type::iterator p = this->table_.begin();
2520 p != this->table_.end();
2521 ++p)
2522 {
2523 Symbol* sym = p->second;
2524 if (this->sized_finalize_symbol<size>(sym))
2525 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2526 }
2527
2528 this->output_count_ = index - orig_index;
2529
2530 return off;
2531 }
2532
2533 // Compute the final value of SYM and store status in location PSTATUS.
2534 // During relaxation, this may be called multiple times for a symbol to
2535 // compute its would-be final value in each relaxation pass.
2536
2537 template<int size>
2538 typename Sized_symbol<size>::Value_type
2539 Symbol_table::compute_final_value(
2540 const Sized_symbol<size>* sym,
2541 Compute_final_value_status* pstatus) const
2542 {
2543 typedef typename Sized_symbol<size>::Value_type Value_type;
2544 Value_type value;
2545
2546 switch (sym->source())
2547 {
2548 case Symbol::FROM_OBJECT:
2549 {
2550 bool is_ordinary;
2551 unsigned int shndx = sym->shndx(&is_ordinary);
2552
2553 if (!is_ordinary
2554 && shndx != elfcpp::SHN_ABS
2555 && !Symbol::is_common_shndx(shndx))
2556 {
2557 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2558 return 0;
2559 }
2560
2561 Object* symobj = sym->object();
2562 if (symobj->is_dynamic())
2563 {
2564 value = 0;
2565 shndx = elfcpp::SHN_UNDEF;
2566 }
2567 else if (symobj->pluginobj() != NULL)
2568 {
2569 value = 0;
2570 shndx = elfcpp::SHN_UNDEF;
2571 }
2572 else if (shndx == elfcpp::SHN_UNDEF)
2573 value = 0;
2574 else if (!is_ordinary
2575 && (shndx == elfcpp::SHN_ABS
2576 || Symbol::is_common_shndx(shndx)))
2577 value = sym->value();
2578 else
2579 {
2580 Relobj* relobj = static_cast<Relobj*>(symobj);
2581 Output_section* os = relobj->output_section(shndx);
2582
2583 if (this->is_section_folded(relobj, shndx))
2584 {
2585 gold_assert(os == NULL);
2586 // Get the os of the section it is folded onto.
2587 Section_id folded = this->icf_->get_folded_section(relobj,
2588 shndx);
2589 gold_assert(folded.first != NULL);
2590 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2591 unsigned folded_shndx = folded.second;
2592
2593 os = folded_obj->output_section(folded_shndx);
2594 gold_assert(os != NULL);
2595
2596 // Replace (relobj, shndx) with canonical ICF input section.
2597 shndx = folded_shndx;
2598 relobj = folded_obj;
2599 }
2600
2601 uint64_t secoff64 = relobj->output_section_offset(shndx);
2602 if (os == NULL)
2603 {
2604 bool static_or_reloc = (parameters->doing_static_link() ||
2605 parameters->options().relocatable());
2606 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2607
2608 *pstatus = CFVS_NO_OUTPUT_SECTION;
2609 return 0;
2610 }
2611
2612 if (secoff64 == -1ULL)
2613 {
2614 // The section needs special handling (e.g., a merge section).
2615
2616 value = os->output_address(relobj, shndx, sym->value());
2617 }
2618 else
2619 {
2620 Value_type secoff =
2621 convert_types<Value_type, uint64_t>(secoff64);
2622 if (sym->type() == elfcpp::STT_TLS)
2623 value = sym->value() + os->tls_offset() + secoff;
2624 else
2625 value = sym->value() + os->address() + secoff;
2626 }
2627 }
2628 }
2629 break;
2630
2631 case Symbol::IN_OUTPUT_DATA:
2632 {
2633 Output_data* od = sym->output_data();
2634 value = sym->value();
2635 if (sym->type() != elfcpp::STT_TLS)
2636 value += od->address();
2637 else
2638 {
2639 Output_section* os = od->output_section();
2640 gold_assert(os != NULL);
2641 value += os->tls_offset() + (od->address() - os->address());
2642 }
2643 if (sym->offset_is_from_end())
2644 value += od->data_size();
2645 }
2646 break;
2647
2648 case Symbol::IN_OUTPUT_SEGMENT:
2649 {
2650 Output_segment* os = sym->output_segment();
2651 value = sym->value();
2652 if (sym->type() != elfcpp::STT_TLS)
2653 value += os->vaddr();
2654 switch (sym->offset_base())
2655 {
2656 case Symbol::SEGMENT_START:
2657 break;
2658 case Symbol::SEGMENT_END:
2659 value += os->memsz();
2660 break;
2661 case Symbol::SEGMENT_BSS:
2662 value += os->filesz();
2663 break;
2664 default:
2665 gold_unreachable();
2666 }
2667 }
2668 break;
2669
2670 case Symbol::IS_CONSTANT:
2671 value = sym->value();
2672 break;
2673
2674 case Symbol::IS_UNDEFINED:
2675 value = 0;
2676 break;
2677
2678 default:
2679 gold_unreachable();
2680 }
2681
2682 *pstatus = CFVS_OK;
2683 return value;
2684 }
2685
2686 // Finalize the symbol SYM. This returns true if the symbol should be
2687 // added to the symbol table, false otherwise.
2688
2689 template<int size>
2690 bool
2691 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2692 {
2693 typedef typename Sized_symbol<size>::Value_type Value_type;
2694
2695 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2696
2697 // The default version of a symbol may appear twice in the symbol
2698 // table. We only need to finalize it once.
2699 if (sym->has_symtab_index())
2700 return false;
2701
2702 if (!sym->in_reg())
2703 {
2704 gold_assert(!sym->has_symtab_index());
2705 sym->set_symtab_index(-1U);
2706 gold_assert(sym->dynsym_index() == -1U);
2707 return false;
2708 }
2709
2710 // If the symbol is only present on plugin files, the plugin decided we
2711 // don't need it.
2712 if (!sym->in_real_elf())
2713 {
2714 gold_assert(!sym->has_symtab_index());
2715 sym->set_symtab_index(-1U);
2716 return false;
2717 }
2718
2719 // Compute final symbol value.
2720 Compute_final_value_status status;
2721 Value_type value = this->compute_final_value(sym, &status);
2722
2723 switch (status)
2724 {
2725 case CFVS_OK:
2726 break;
2727 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2728 {
2729 bool is_ordinary;
2730 unsigned int shndx = sym->shndx(&is_ordinary);
2731 gold_error(_("%s: unsupported symbol section 0x%x"),
2732 sym->demangled_name().c_str(), shndx);
2733 }
2734 break;
2735 case CFVS_NO_OUTPUT_SECTION:
2736 sym->set_symtab_index(-1U);
2737 return false;
2738 default:
2739 gold_unreachable();
2740 }
2741
2742 sym->set_value(value);
2743
2744 if (parameters->options().strip_all()
2745 || !parameters->options().should_retain_symbol(sym->name()))
2746 {
2747 sym->set_symtab_index(-1U);
2748 return false;
2749 }
2750
2751 return true;
2752 }
2753
2754 // Write out the global symbols.
2755
2756 void
2757 Symbol_table::write_globals(const Stringpool* sympool,
2758 const Stringpool* dynpool,
2759 Output_symtab_xindex* symtab_xindex,
2760 Output_symtab_xindex* dynsym_xindex,
2761 Output_file* of) const
2762 {
2763 switch (parameters->size_and_endianness())
2764 {
2765 #ifdef HAVE_TARGET_32_LITTLE
2766 case Parameters::TARGET_32_LITTLE:
2767 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2768 dynsym_xindex, of);
2769 break;
2770 #endif
2771 #ifdef HAVE_TARGET_32_BIG
2772 case Parameters::TARGET_32_BIG:
2773 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2774 dynsym_xindex, of);
2775 break;
2776 #endif
2777 #ifdef HAVE_TARGET_64_LITTLE
2778 case Parameters::TARGET_64_LITTLE:
2779 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2780 dynsym_xindex, of);
2781 break;
2782 #endif
2783 #ifdef HAVE_TARGET_64_BIG
2784 case Parameters::TARGET_64_BIG:
2785 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2786 dynsym_xindex, of);
2787 break;
2788 #endif
2789 default:
2790 gold_unreachable();
2791 }
2792 }
2793
2794 // Write out the global symbols.
2795
2796 template<int size, bool big_endian>
2797 void
2798 Symbol_table::sized_write_globals(const Stringpool* sympool,
2799 const Stringpool* dynpool,
2800 Output_symtab_xindex* symtab_xindex,
2801 Output_symtab_xindex* dynsym_xindex,
2802 Output_file* of) const
2803 {
2804 const Target& target = parameters->target();
2805
2806 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2807
2808 const unsigned int output_count = this->output_count_;
2809 const section_size_type oview_size = output_count * sym_size;
2810 const unsigned int first_global_index = this->first_global_index_;
2811 unsigned char* psyms;
2812 if (this->offset_ == 0 || output_count == 0)
2813 psyms = NULL;
2814 else
2815 psyms = of->get_output_view(this->offset_, oview_size);
2816
2817 const unsigned int dynamic_count = this->dynamic_count_;
2818 const section_size_type dynamic_size = dynamic_count * sym_size;
2819 const unsigned int first_dynamic_global_index =
2820 this->first_dynamic_global_index_;
2821 unsigned char* dynamic_view;
2822 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2823 dynamic_view = NULL;
2824 else
2825 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2826
2827 for (Symbol_table_type::const_iterator p = this->table_.begin();
2828 p != this->table_.end();
2829 ++p)
2830 {
2831 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2832
2833 // Possibly warn about unresolved symbols in shared libraries.
2834 this->warn_about_undefined_dynobj_symbol(sym);
2835
2836 unsigned int sym_index = sym->symtab_index();
2837 unsigned int dynsym_index;
2838 if (dynamic_view == NULL)
2839 dynsym_index = -1U;
2840 else
2841 dynsym_index = sym->dynsym_index();
2842
2843 if (sym_index == -1U && dynsym_index == -1U)
2844 {
2845 // This symbol is not included in the output file.
2846 continue;
2847 }
2848
2849 unsigned int shndx;
2850 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2851 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2852 elfcpp::STB binding = sym->binding();
2853
2854 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2855 if (binding == elfcpp::STB_GNU_UNIQUE
2856 && !parameters->options().gnu_unique())
2857 binding = elfcpp::STB_GLOBAL;
2858
2859 switch (sym->source())
2860 {
2861 case Symbol::FROM_OBJECT:
2862 {
2863 bool is_ordinary;
2864 unsigned int in_shndx = sym->shndx(&is_ordinary);
2865
2866 if (!is_ordinary
2867 && in_shndx != elfcpp::SHN_ABS
2868 && !Symbol::is_common_shndx(in_shndx))
2869 {
2870 gold_error(_("%s: unsupported symbol section 0x%x"),
2871 sym->demangled_name().c_str(), in_shndx);
2872 shndx = in_shndx;
2873 }
2874 else
2875 {
2876 Object* symobj = sym->object();
2877 if (symobj->is_dynamic())
2878 {
2879 if (sym->needs_dynsym_value())
2880 dynsym_value = target.dynsym_value(sym);
2881 shndx = elfcpp::SHN_UNDEF;
2882 if (sym->is_undef_binding_weak())
2883 binding = elfcpp::STB_WEAK;
2884 else
2885 binding = elfcpp::STB_GLOBAL;
2886 }
2887 else if (symobj->pluginobj() != NULL)
2888 shndx = elfcpp::SHN_UNDEF;
2889 else if (in_shndx == elfcpp::SHN_UNDEF
2890 || (!is_ordinary
2891 && (in_shndx == elfcpp::SHN_ABS
2892 || Symbol::is_common_shndx(in_shndx))))
2893 shndx = in_shndx;
2894 else
2895 {
2896 Relobj* relobj = static_cast<Relobj*>(symobj);
2897 Output_section* os = relobj->output_section(in_shndx);
2898 if (this->is_section_folded(relobj, in_shndx))
2899 {
2900 // This global symbol must be written out even though
2901 // it is folded.
2902 // Get the os of the section it is folded onto.
2903 Section_id folded =
2904 this->icf_->get_folded_section(relobj, in_shndx);
2905 gold_assert(folded.first !=NULL);
2906 Relobj* folded_obj =
2907 reinterpret_cast<Relobj*>(folded.first);
2908 os = folded_obj->output_section(folded.second);
2909 gold_assert(os != NULL);
2910 }
2911 gold_assert(os != NULL);
2912 shndx = os->out_shndx();
2913
2914 if (shndx >= elfcpp::SHN_LORESERVE)
2915 {
2916 if (sym_index != -1U)
2917 symtab_xindex->add(sym_index, shndx);
2918 if (dynsym_index != -1U)
2919 dynsym_xindex->add(dynsym_index, shndx);
2920 shndx = elfcpp::SHN_XINDEX;
2921 }
2922
2923 // In object files symbol values are section
2924 // relative.
2925 if (parameters->options().relocatable())
2926 sym_value -= os->address();
2927 }
2928 }
2929 }
2930 break;
2931
2932 case Symbol::IN_OUTPUT_DATA:
2933 shndx = sym->output_data()->out_shndx();
2934 if (shndx >= elfcpp::SHN_LORESERVE)
2935 {
2936 if (sym_index != -1U)
2937 symtab_xindex->add(sym_index, shndx);
2938 if (dynsym_index != -1U)
2939 dynsym_xindex->add(dynsym_index, shndx);
2940 shndx = elfcpp::SHN_XINDEX;
2941 }
2942 break;
2943
2944 case Symbol::IN_OUTPUT_SEGMENT:
2945 shndx = elfcpp::SHN_ABS;
2946 break;
2947
2948 case Symbol::IS_CONSTANT:
2949 shndx = elfcpp::SHN_ABS;
2950 break;
2951
2952 case Symbol::IS_UNDEFINED:
2953 shndx = elfcpp::SHN_UNDEF;
2954 break;
2955
2956 default:
2957 gold_unreachable();
2958 }
2959
2960 if (sym_index != -1U)
2961 {
2962 sym_index -= first_global_index;
2963 gold_assert(sym_index < output_count);
2964 unsigned char* ps = psyms + (sym_index * sym_size);
2965 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2966 binding, sympool, ps);
2967 }
2968
2969 if (dynsym_index != -1U)
2970 {
2971 dynsym_index -= first_dynamic_global_index;
2972 gold_assert(dynsym_index < dynamic_count);
2973 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2974 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2975 binding, dynpool, pd);
2976 }
2977 }
2978
2979 of->write_output_view(this->offset_, oview_size, psyms);
2980 if (dynamic_view != NULL)
2981 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2982 }
2983
2984 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2985 // strtab holding the name.
2986
2987 template<int size, bool big_endian>
2988 void
2989 Symbol_table::sized_write_symbol(
2990 Sized_symbol<size>* sym,
2991 typename elfcpp::Elf_types<size>::Elf_Addr value,
2992 unsigned int shndx,
2993 elfcpp::STB binding,
2994 const Stringpool* pool,
2995 unsigned char* p) const
2996 {
2997 elfcpp::Sym_write<size, big_endian> osym(p);
2998 if (sym->version() == NULL || !parameters->options().relocatable())
2999 osym.put_st_name(pool->get_offset(sym->name()));
3000 else
3001 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3002 osym.put_st_value(value);
3003 // Use a symbol size of zero for undefined symbols from shared libraries.
3004 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3005 osym.put_st_size(0);
3006 else
3007 osym.put_st_size(sym->symsize());
3008 elfcpp::STT type = sym->type();
3009 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3010 if (type == elfcpp::STT_GNU_IFUNC
3011 && sym->is_from_dynobj())
3012 type = elfcpp::STT_FUNC;
3013 // A version script may have overridden the default binding.
3014 if (sym->is_forced_local())
3015 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3016 else
3017 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3018 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3019 osym.put_st_shndx(shndx);
3020 }
3021
3022 // Check for unresolved symbols in shared libraries. This is
3023 // controlled by the --allow-shlib-undefined option.
3024
3025 // We only warn about libraries for which we have seen all the
3026 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3027 // which were not seen in this link. If we didn't see a DT_NEEDED
3028 // entry, we aren't going to be able to reliably report whether the
3029 // symbol is undefined.
3030
3031 // We also don't warn about libraries found in a system library
3032 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3033 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3034 // can have undefined references satisfied by ld-linux.so.
3035
3036 inline void
3037 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3038 {
3039 bool dummy;
3040 if (sym->source() == Symbol::FROM_OBJECT
3041 && sym->object()->is_dynamic()
3042 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3043 && sym->binding() != elfcpp::STB_WEAK
3044 && !parameters->options().allow_shlib_undefined()
3045 && !parameters->target().is_defined_by_abi(sym)
3046 && !sym->object()->is_in_system_directory())
3047 {
3048 // A very ugly cast.
3049 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3050 if (!dynobj->has_unknown_needed_entries())
3051 gold_undefined_symbol(sym);
3052 }
3053 }
3054
3055 // Write out a section symbol. Return the update offset.
3056
3057 void
3058 Symbol_table::write_section_symbol(const Output_section* os,
3059 Output_symtab_xindex* symtab_xindex,
3060 Output_file* of,
3061 off_t offset) const
3062 {
3063 switch (parameters->size_and_endianness())
3064 {
3065 #ifdef HAVE_TARGET_32_LITTLE
3066 case Parameters::TARGET_32_LITTLE:
3067 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3068 offset);
3069 break;
3070 #endif
3071 #ifdef HAVE_TARGET_32_BIG
3072 case Parameters::TARGET_32_BIG:
3073 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3074 offset);
3075 break;
3076 #endif
3077 #ifdef HAVE_TARGET_64_LITTLE
3078 case Parameters::TARGET_64_LITTLE:
3079 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3080 offset);
3081 break;
3082 #endif
3083 #ifdef HAVE_TARGET_64_BIG
3084 case Parameters::TARGET_64_BIG:
3085 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3086 offset);
3087 break;
3088 #endif
3089 default:
3090 gold_unreachable();
3091 }
3092 }
3093
3094 // Write out a section symbol, specialized for size and endianness.
3095
3096 template<int size, bool big_endian>
3097 void
3098 Symbol_table::sized_write_section_symbol(const Output_section* os,
3099 Output_symtab_xindex* symtab_xindex,
3100 Output_file* of,
3101 off_t offset) const
3102 {
3103 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3104
3105 unsigned char* pov = of->get_output_view(offset, sym_size);
3106
3107 elfcpp::Sym_write<size, big_endian> osym(pov);
3108 osym.put_st_name(0);
3109 if (parameters->options().relocatable())
3110 osym.put_st_value(0);
3111 else
3112 osym.put_st_value(os->address());
3113 osym.put_st_size(0);
3114 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3115 elfcpp::STT_SECTION));
3116 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3117
3118 unsigned int shndx = os->out_shndx();
3119 if (shndx >= elfcpp::SHN_LORESERVE)
3120 {
3121 symtab_xindex->add(os->symtab_index(), shndx);
3122 shndx = elfcpp::SHN_XINDEX;
3123 }
3124 osym.put_st_shndx(shndx);
3125
3126 of->write_output_view(offset, sym_size, pov);
3127 }
3128
3129 // Print statistical information to stderr. This is used for --stats.
3130
3131 void
3132 Symbol_table::print_stats() const
3133 {
3134 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3135 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3136 program_name, this->table_.size(), this->table_.bucket_count());
3137 #else
3138 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3139 program_name, this->table_.size());
3140 #endif
3141 this->namepool_.print_stats("symbol table stringpool");
3142 }
3143
3144 // We check for ODR violations by looking for symbols with the same
3145 // name for which the debugging information reports that they were
3146 // defined in disjoint source locations. When comparing the source
3147 // location, we consider instances with the same base filename to be
3148 // the same. This is because different object files/shared libraries
3149 // can include the same header file using different paths, and
3150 // different optimization settings can make the line number appear to
3151 // be a couple lines off, and we don't want to report an ODR violation
3152 // in those cases.
3153
3154 // This struct is used to compare line information, as returned by
3155 // Dwarf_line_info::one_addr2line. It implements a < comparison
3156 // operator used with std::sort.
3157
3158 struct Odr_violation_compare
3159 {
3160 bool
3161 operator()(const std::string& s1, const std::string& s2) const
3162 {
3163 // Inputs should be of the form "dirname/filename:linenum" where
3164 // "dirname/" is optional. We want to compare just the filename:linenum.
3165
3166 // Find the last '/' in each string.
3167 std::string::size_type s1begin = s1.rfind('/');
3168 std::string::size_type s2begin = s2.rfind('/');
3169 // If there was no '/' in a string, start at the beginning.
3170 if (s1begin == std::string::npos)
3171 s1begin = 0;
3172 if (s2begin == std::string::npos)
3173 s2begin = 0;
3174 return s1.compare(s1begin, std::string::npos,
3175 s2, s2begin, std::string::npos) < 0;
3176 }
3177 };
3178
3179 // Returns all of the lines attached to LOC, not just the one the
3180 // instruction actually came from.
3181 std::vector<std::string>
3182 Symbol_table::linenos_from_loc(const Task* task,
3183 const Symbol_location& loc)
3184 {
3185 // We need to lock the object in order to read it. This
3186 // means that we have to run in a singleton Task. If we
3187 // want to run this in a general Task for better
3188 // performance, we will need one Task for object, plus
3189 // appropriate locking to ensure that we don't conflict with
3190 // other uses of the object. Also note, one_addr2line is not
3191 // currently thread-safe.
3192 Task_lock_obj<Object> tl(task, loc.object);
3193
3194 std::vector<std::string> result;
3195 // 16 is the size of the object-cache that one_addr2line should use.
3196 std::string canonical_result = Dwarf_line_info::one_addr2line(
3197 loc.object, loc.shndx, loc.offset, 16, &result);
3198 if (!canonical_result.empty())
3199 result.push_back(canonical_result);
3200 return result;
3201 }
3202
3203 // OutputIterator that records if it was ever assigned to. This
3204 // allows it to be used with std::set_intersection() to check for
3205 // intersection rather than computing the intersection.
3206 struct Check_intersection
3207 {
3208 Check_intersection()
3209 : value_(false)
3210 {}
3211
3212 bool had_intersection() const
3213 { return this->value_; }
3214
3215 Check_intersection& operator++()
3216 { return *this; }
3217
3218 Check_intersection& operator*()
3219 { return *this; }
3220
3221 template<typename T>
3222 Check_intersection& operator=(const T&)
3223 {
3224 this->value_ = true;
3225 return *this;
3226 }
3227
3228 private:
3229 bool value_;
3230 };
3231
3232 // Check candidate_odr_violations_ to find symbols with the same name
3233 // but apparently different definitions (different source-file/line-no
3234 // for each line assigned to the first instruction).
3235
3236 void
3237 Symbol_table::detect_odr_violations(const Task* task,
3238 const char* output_file_name) const
3239 {
3240 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3241 it != candidate_odr_violations_.end();
3242 ++it)
3243 {
3244 const char* const symbol_name = it->first;
3245
3246 std::string first_object_name;
3247 std::vector<std::string> first_object_linenos;
3248
3249 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3250 locs = it->second.begin();
3251 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3252 locs_end = it->second.end();
3253 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3254 {
3255 // Save the line numbers from the first definition to
3256 // compare to the other definitions. Ideally, we'd compare
3257 // every definition to every other, but we don't want to
3258 // take O(N^2) time to do this. This shortcut may cause
3259 // false negatives that appear or disappear depending on the
3260 // link order, but it won't cause false positives.
3261 first_object_name = locs->object->name();
3262 first_object_linenos = this->linenos_from_loc(task, *locs);
3263 }
3264
3265 // Sort by Odr_violation_compare to make std::set_intersection work.
3266 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3267 Odr_violation_compare());
3268
3269 for (; locs != locs_end; ++locs)
3270 {
3271 std::vector<std::string> linenos =
3272 this->linenos_from_loc(task, *locs);
3273 // linenos will be empty if we couldn't parse the debug info.
3274 if (linenos.empty())
3275 continue;
3276 // Sort by Odr_violation_compare to make std::set_intersection work.
3277 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3278
3279 Check_intersection intersection_result =
3280 std::set_intersection(first_object_linenos.begin(),
3281 first_object_linenos.end(),
3282 linenos.begin(),
3283 linenos.end(),
3284 Check_intersection(),
3285 Odr_violation_compare());
3286 if (!intersection_result.had_intersection())
3287 {
3288 gold_warning(_("while linking %s: symbol '%s' defined in "
3289 "multiple places (possible ODR violation):"),
3290 output_file_name, demangle(symbol_name).c_str());
3291 // This only prints one location from each definition,
3292 // which may not be the location we expect to intersect
3293 // with another definition. We could print the whole
3294 // set of locations, but that seems too verbose.
3295 gold_assert(!first_object_linenos.empty());
3296 gold_assert(!linenos.empty());
3297 fprintf(stderr, _(" %s from %s\n"),
3298 first_object_linenos[0].c_str(),
3299 first_object_name.c_str());
3300 fprintf(stderr, _(" %s from %s\n"),
3301 linenos[0].c_str(),
3302 locs->object->name().c_str());
3303 // Only print one broken pair, to avoid needing to
3304 // compare against a list of the disjoint definition
3305 // locations we've found so far. (If we kept comparing
3306 // against just the first one, we'd get a lot of
3307 // redundant complaints about the second definition
3308 // location.)
3309 break;
3310 }
3311 }
3312 }
3313 // We only call one_addr2line() in this function, so we can clear its cache.
3314 Dwarf_line_info::clear_addr2line_cache();
3315 }
3316
3317 // Warnings functions.
3318
3319 // Add a new warning.
3320
3321 void
3322 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3323 const std::string& warning)
3324 {
3325 name = symtab->canonicalize_name(name);
3326 this->warnings_[name].set(obj, warning);
3327 }
3328
3329 // Look through the warnings and mark the symbols for which we should
3330 // warn. This is called during Layout::finalize when we know the
3331 // sources for all the symbols.
3332
3333 void
3334 Warnings::note_warnings(Symbol_table* symtab)
3335 {
3336 for (Warning_table::iterator p = this->warnings_.begin();
3337 p != this->warnings_.end();
3338 ++p)
3339 {
3340 Symbol* sym = symtab->lookup(p->first, NULL);
3341 if (sym != NULL
3342 && sym->source() == Symbol::FROM_OBJECT
3343 && sym->object() == p->second.object)
3344 sym->set_has_warning();
3345 }
3346 }
3347
3348 // Issue a warning. This is called when we see a relocation against a
3349 // symbol for which has a warning.
3350
3351 template<int size, bool big_endian>
3352 void
3353 Warnings::issue_warning(const Symbol* sym,
3354 const Relocate_info<size, big_endian>* relinfo,
3355 size_t relnum, off_t reloffset) const
3356 {
3357 gold_assert(sym->has_warning());
3358
3359 // We don't want to issue a warning for a relocation against the
3360 // symbol in the same object file in which the symbol is defined.
3361 if (sym->object() == relinfo->object)
3362 return;
3363
3364 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3365 gold_assert(p != this->warnings_.end());
3366 gold_warning_at_location(relinfo, relnum, reloffset,
3367 "%s", p->second.text.c_str());
3368 }
3369
3370 // Instantiate the templates we need. We could use the configure
3371 // script to restrict this to only the ones needed for implemented
3372 // targets.
3373
3374 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3375 template
3376 void
3377 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3378 #endif
3379
3380 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3381 template
3382 void
3383 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3384 #endif
3385
3386 #ifdef HAVE_TARGET_32_LITTLE
3387 template
3388 void
3389 Symbol_table::add_from_relobj<32, false>(
3390 Sized_relobj_file<32, false>* relobj,
3391 const unsigned char* syms,
3392 size_t count,
3393 size_t symndx_offset,
3394 const char* sym_names,
3395 size_t sym_name_size,
3396 Sized_relobj_file<32, false>::Symbols* sympointers,
3397 size_t* defined);
3398 #endif
3399
3400 #ifdef HAVE_TARGET_32_BIG
3401 template
3402 void
3403 Symbol_table::add_from_relobj<32, true>(
3404 Sized_relobj_file<32, true>* relobj,
3405 const unsigned char* syms,
3406 size_t count,
3407 size_t symndx_offset,
3408 const char* sym_names,
3409 size_t sym_name_size,
3410 Sized_relobj_file<32, true>::Symbols* sympointers,
3411 size_t* defined);
3412 #endif
3413
3414 #ifdef HAVE_TARGET_64_LITTLE
3415 template
3416 void
3417 Symbol_table::add_from_relobj<64, false>(
3418 Sized_relobj_file<64, false>* relobj,
3419 const unsigned char* syms,
3420 size_t count,
3421 size_t symndx_offset,
3422 const char* sym_names,
3423 size_t sym_name_size,
3424 Sized_relobj_file<64, false>::Symbols* sympointers,
3425 size_t* defined);
3426 #endif
3427
3428 #ifdef HAVE_TARGET_64_BIG
3429 template
3430 void
3431 Symbol_table::add_from_relobj<64, true>(
3432 Sized_relobj_file<64, true>* relobj,
3433 const unsigned char* syms,
3434 size_t count,
3435 size_t symndx_offset,
3436 const char* sym_names,
3437 size_t sym_name_size,
3438 Sized_relobj_file<64, true>::Symbols* sympointers,
3439 size_t* defined);
3440 #endif
3441
3442 #ifdef HAVE_TARGET_32_LITTLE
3443 template
3444 Symbol*
3445 Symbol_table::add_from_pluginobj<32, false>(
3446 Sized_pluginobj<32, false>* obj,
3447 const char* name,
3448 const char* ver,
3449 elfcpp::Sym<32, false>* sym);
3450 #endif
3451
3452 #ifdef HAVE_TARGET_32_BIG
3453 template
3454 Symbol*
3455 Symbol_table::add_from_pluginobj<32, true>(
3456 Sized_pluginobj<32, true>* obj,
3457 const char* name,
3458 const char* ver,
3459 elfcpp::Sym<32, true>* sym);
3460 #endif
3461
3462 #ifdef HAVE_TARGET_64_LITTLE
3463 template
3464 Symbol*
3465 Symbol_table::add_from_pluginobj<64, false>(
3466 Sized_pluginobj<64, false>* obj,
3467 const char* name,
3468 const char* ver,
3469 elfcpp::Sym<64, false>* sym);
3470 #endif
3471
3472 #ifdef HAVE_TARGET_64_BIG
3473 template
3474 Symbol*
3475 Symbol_table::add_from_pluginobj<64, true>(
3476 Sized_pluginobj<64, true>* obj,
3477 const char* name,
3478 const char* ver,
3479 elfcpp::Sym<64, true>* sym);
3480 #endif
3481
3482 #ifdef HAVE_TARGET_32_LITTLE
3483 template
3484 void
3485 Symbol_table::add_from_dynobj<32, false>(
3486 Sized_dynobj<32, false>* dynobj,
3487 const unsigned char* syms,
3488 size_t count,
3489 const char* sym_names,
3490 size_t sym_name_size,
3491 const unsigned char* versym,
3492 size_t versym_size,
3493 const std::vector<const char*>* version_map,
3494 Sized_relobj_file<32, false>::Symbols* sympointers,
3495 size_t* defined);
3496 #endif
3497
3498 #ifdef HAVE_TARGET_32_BIG
3499 template
3500 void
3501 Symbol_table::add_from_dynobj<32, true>(
3502 Sized_dynobj<32, true>* dynobj,
3503 const unsigned char* syms,
3504 size_t count,
3505 const char* sym_names,
3506 size_t sym_name_size,
3507 const unsigned char* versym,
3508 size_t versym_size,
3509 const std::vector<const char*>* version_map,
3510 Sized_relobj_file<32, true>::Symbols* sympointers,
3511 size_t* defined);
3512 #endif
3513
3514 #ifdef HAVE_TARGET_64_LITTLE
3515 template
3516 void
3517 Symbol_table::add_from_dynobj<64, false>(
3518 Sized_dynobj<64, false>* dynobj,
3519 const unsigned char* syms,
3520 size_t count,
3521 const char* sym_names,
3522 size_t sym_name_size,
3523 const unsigned char* versym,
3524 size_t versym_size,
3525 const std::vector<const char*>* version_map,
3526 Sized_relobj_file<64, false>::Symbols* sympointers,
3527 size_t* defined);
3528 #endif
3529
3530 #ifdef HAVE_TARGET_64_BIG
3531 template
3532 void
3533 Symbol_table::add_from_dynobj<64, true>(
3534 Sized_dynobj<64, true>* dynobj,
3535 const unsigned char* syms,
3536 size_t count,
3537 const char* sym_names,
3538 size_t sym_name_size,
3539 const unsigned char* versym,
3540 size_t versym_size,
3541 const std::vector<const char*>* version_map,
3542 Sized_relobj_file<64, true>::Symbols* sympointers,
3543 size_t* defined);
3544 #endif
3545
3546 #ifdef HAVE_TARGET_32_LITTLE
3547 template
3548 Sized_symbol<32>*
3549 Symbol_table::add_from_incrobj(
3550 Object* obj,
3551 const char* name,
3552 const char* ver,
3553 elfcpp::Sym<32, false>* sym);
3554 #endif
3555
3556 #ifdef HAVE_TARGET_32_BIG
3557 template
3558 Sized_symbol<32>*
3559 Symbol_table::add_from_incrobj(
3560 Object* obj,
3561 const char* name,
3562 const char* ver,
3563 elfcpp::Sym<32, true>* sym);
3564 #endif
3565
3566 #ifdef HAVE_TARGET_64_LITTLE
3567 template
3568 Sized_symbol<64>*
3569 Symbol_table::add_from_incrobj(
3570 Object* obj,
3571 const char* name,
3572 const char* ver,
3573 elfcpp::Sym<64, false>* sym);
3574 #endif
3575
3576 #ifdef HAVE_TARGET_64_BIG
3577 template
3578 Sized_symbol<64>*
3579 Symbol_table::add_from_incrobj(
3580 Object* obj,
3581 const char* name,
3582 const char* ver,
3583 elfcpp::Sym<64, true>* sym);
3584 #endif
3585
3586 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3587 template
3588 void
3589 Symbol_table::define_with_copy_reloc<32>(
3590 Sized_symbol<32>* sym,
3591 Output_data* posd,
3592 elfcpp::Elf_types<32>::Elf_Addr value);
3593 #endif
3594
3595 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3596 template
3597 void
3598 Symbol_table::define_with_copy_reloc<64>(
3599 Sized_symbol<64>* sym,
3600 Output_data* posd,
3601 elfcpp::Elf_types<64>::Elf_Addr value);
3602 #endif
3603
3604 #ifdef HAVE_TARGET_32_LITTLE
3605 template
3606 void
3607 Warnings::issue_warning<32, false>(const Symbol* sym,
3608 const Relocate_info<32, false>* relinfo,
3609 size_t relnum, off_t reloffset) const;
3610 #endif
3611
3612 #ifdef HAVE_TARGET_32_BIG
3613 template
3614 void
3615 Warnings::issue_warning<32, true>(const Symbol* sym,
3616 const Relocate_info<32, true>* relinfo,
3617 size_t relnum, off_t reloffset) const;
3618 #endif
3619
3620 #ifdef HAVE_TARGET_64_LITTLE
3621 template
3622 void
3623 Warnings::issue_warning<64, false>(const Symbol* sym,
3624 const Relocate_info<64, false>* relinfo,
3625 size_t relnum, off_t reloffset) const;
3626 #endif
3627
3628 #ifdef HAVE_TARGET_64_BIG
3629 template
3630 void
3631 Warnings::issue_warning<64, true>(const Symbol* sym,
3632 const Relocate_info<64, true>* relinfo,
3633 size_t relnum, off_t reloffset) const;
3634 #endif
3635
3636 } // End namespace gold.
This page took 0.104673 seconds and 5 git commands to generate.