[GOLD] Reduce size of class Symbol
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 this->non_zero_localentry_ = false;
85 }
86
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
89
90 static std::string
91 demangle(const char* name)
92 {
93 if (!parameters->options().do_demangle())
94 return name;
95
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99 if (demangled_name == NULL)
100 return name;
101
102 std::string retval(demangled_name);
103 free(demangled_name);
104 return retval;
105 }
106
107 std::string
108 Symbol::demangled_name() const
109 {
110 return demangle(this->name());
111 }
112
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118 const elfcpp::Sym<size, big_endian>& sym,
119 unsigned int st_shndx, bool is_ordinary)
120 {
121 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122 sym.get_st_visibility(), sym.get_st_nonvis());
123 this->u1_.object = object;
124 this->u2_.shndx = st_shndx;
125 this->is_ordinary_shndx_ = is_ordinary;
126 this->source_ = FROM_OBJECT;
127 this->in_reg_ = !object->is_dynamic();
128 this->in_dyn_ = object->is_dynamic();
129 this->in_real_elf_ = object->pluginobj() == NULL;
130 }
131
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
134
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137 Output_data* od, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, bool offset_is_from_end,
140 bool is_predefined)
141 {
142 this->init_fields(name, version, type, binding, visibility, nonvis);
143 this->u1_.output_data = od;
144 this->u2_.offset_is_from_end = offset_is_from_end;
145 this->source_ = IN_OUTPUT_DATA;
146 this->in_reg_ = true;
147 this->in_real_elf_ = true;
148 this->is_predefined_ = is_predefined;
149 }
150
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
153
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156 Output_segment* os, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis,
159 Segment_offset_base offset_base,
160 bool is_predefined)
161 {
162 this->init_fields(name, version, type, binding, visibility, nonvis);
163 this->u1_.output_segment = os;
164 this->u2_.offset_base = offset_base;
165 this->source_ = IN_OUTPUT_SEGMENT;
166 this->in_reg_ = true;
167 this->in_real_elf_ = true;
168 this->is_predefined_ = is_predefined;
169 }
170
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
173
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176 elfcpp::STT type, elfcpp::STB binding,
177 elfcpp::STV visibility, unsigned char nonvis,
178 bool is_predefined)
179 {
180 this->init_fields(name, version, type, binding, visibility, nonvis);
181 this->source_ = IS_CONSTANT;
182 this->in_reg_ = true;
183 this->in_real_elf_ = true;
184 this->is_predefined_ = is_predefined;
185 }
186
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
189
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis)
194 {
195 this->init_fields(name, version, type, binding, visibility, nonvis);
196 this->dynsym_index_ = -1U;
197 this->source_ = IS_UNDEFINED;
198 this->in_reg_ = true;
199 this->in_real_elf_ = true;
200 }
201
202 // Allocate a common symbol in the base.
203
204 void
205 Symbol::allocate_base_common(Output_data* od)
206 {
207 gold_assert(this->is_common());
208 this->source_ = IN_OUTPUT_DATA;
209 this->u1_.output_data = od;
210 this->u2_.offset_is_from_end = false;
211 }
212
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219 Object* object,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary)
222 {
223 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224 this->value_ = sym.get_st_value();
225 this->symsize_ = sym.get_st_size();
226 }
227
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
230
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234 Output_data* od, Value_type value,
235 Size_type symsize, elfcpp::STT type,
236 elfcpp::STB binding,
237 elfcpp::STV visibility,
238 unsigned char nonvis,
239 bool offset_is_from_end,
240 bool is_predefined)
241 {
242 this->init_base_output_data(name, version, od, type, binding, visibility,
243 nonvis, offset_is_from_end, is_predefined);
244 this->value_ = value;
245 this->symsize_ = symsize;
246 }
247
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
250
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254 Output_segment* os, Value_type value,
255 Size_type symsize, elfcpp::STT type,
256 elfcpp::STB binding,
257 elfcpp::STV visibility,
258 unsigned char nonvis,
259 Segment_offset_base offset_base,
260 bool is_predefined)
261 {
262 this->init_base_output_segment(name, version, os, type, binding, visibility,
263 nonvis, offset_base, is_predefined);
264 this->value_ = value;
265 this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274 Value_type value, Size_type symsize,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis,
277 bool is_predefined)
278 {
279 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 is_predefined);
281 this->value_ = value;
282 this->symsize_ = symsize;
283 }
284
285 // Initialize the fields in Sized_symbol for an undefined symbol.
286
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290 Value_type value, elfcpp::STT type,
291 elfcpp::STB binding, elfcpp::STV visibility,
292 unsigned char nonvis)
293 {
294 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295 this->value_ = value;
296 this->symsize_ = 0;
297 }
298
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
301
302 std::string
303 Symbol::versioned_name() const
304 {
305 gold_assert(this->version_ != NULL);
306 std::string ret = this->name_;
307 ret.push_back('@');
308 if (this->is_def_)
309 ret.push_back('@');
310 ret += this->version_;
311 return ret;
312 }
313
314 // Return true if SHNDX represents a common symbol.
315
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
318 {
319 return (shndx == elfcpp::SHN_COMMON
320 || shndx == parameters->target().small_common_shndx()
321 || shndx == parameters->target().large_common_shndx());
322 }
323
324 // Allocate a common symbol.
325
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 {
330 this->allocate_base_common(od);
331 this->value_ = value;
332 }
333
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
336
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
339
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 {
343 // If the symbol is only present on plugin files, the plugin decided we
344 // don't need it.
345 if (!this->in_real_elf())
346 return false;
347
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
350 return true;
351
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters->options().gc_sections()
356 && !parameters->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
359 {
360 Relobj* relobj = static_cast<Relobj*>(this->object());
361 bool is_ordinary;
362 unsigned int shndx = this->shndx(&is_ordinary);
363 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364 && !relobj->is_section_included(shndx)
365 && !symtab->is_section_folded(relobj, shndx))
366 return false;
367 }
368
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters->options().in_dynamic_list(this->name())
373 || parameters->options().is_export_dynamic_symbol(this->name())))
374 {
375 if (!this->is_forced_local())
376 return true;
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
379 return false;
380 }
381
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
384 return false;
385
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT)
390 return true;
391
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters->options().dynamic_list_cpp_new()
395 || parameters->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
397 {
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name = cplus_demangle(this->name(),
401 DMGL_ANSI | DMGL_PARAMS);
402 if (demangled_name == NULL)
403 {
404 // Not a C++ symbol, so it can't satisfy these flags
405 }
406 else if (parameters->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name, "operator new")
408 || strprefix(demangled_name, "operator delete")))
409 {
410 free(demangled_name);
411 return true;
412 }
413 else if (parameters->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name, "typeinfo name for")
415 || strprefix(demangled_name, "typeinfo for")))
416 {
417 free(demangled_name);
418 return true;
419 }
420 else
421 free(demangled_name);
422 }
423
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters->options().export_dynamic()
429 || parameters->options().shared()
430 || (parameters->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
435 return true;
436
437 return false;
438 }
439
440 // Return true if the final value of this symbol is known at link
441 // time.
442
443 bool
444 Symbol::final_value_is_known() const
445 {
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters->options().output_is_position_independent()
450 || parameters->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters->options().pie()))
453 return false;
454
455 // If the symbol is not from an object file, and is not undefined,
456 // then it is defined, and known.
457 if (this->source_ != FROM_OBJECT)
458 {
459 if (this->source_ != IS_UNDEFINED)
460 return true;
461 }
462 else
463 {
464 // If the symbol is from a dynamic object, then the final value
465 // is not known.
466 if (this->object()->is_dynamic())
467 return false;
468
469 // If the symbol is not undefined (it is defined or common),
470 // then the final value is known.
471 if (!this->is_undefined())
472 return true;
473 }
474
475 // If the symbol is undefined, then whether the final value is known
476 // depends on whether we are doing a static link. If we are doing a
477 // dynamic link, then the final value could be filled in at runtime.
478 // This could reasonably be the case for a weak undefined symbol.
479 return parameters->doing_static_link();
480 }
481
482 // Return the output section where this symbol is defined.
483
484 Output_section*
485 Symbol::output_section() const
486 {
487 switch (this->source_)
488 {
489 case FROM_OBJECT:
490 {
491 unsigned int shndx = this->u2_.shndx;
492 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493 {
494 gold_assert(!this->u1_.object->is_dynamic());
495 gold_assert(this->u1_.object->pluginobj() == NULL);
496 Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497 return relobj->output_section(shndx);
498 }
499 return NULL;
500 }
501
502 case IN_OUTPUT_DATA:
503 return this->u1_.output_data->output_section();
504
505 case IN_OUTPUT_SEGMENT:
506 case IS_CONSTANT:
507 case IS_UNDEFINED:
508 return NULL;
509
510 default:
511 gold_unreachable();
512 }
513 }
514
515 // Set the symbol's output section. This is used for symbols defined
516 // in scripts. This should only be called after the symbol table has
517 // been finalized.
518
519 void
520 Symbol::set_output_section(Output_section* os)
521 {
522 switch (this->source_)
523 {
524 case FROM_OBJECT:
525 case IN_OUTPUT_DATA:
526 gold_assert(this->output_section() == os);
527 break;
528 case IS_CONSTANT:
529 this->source_ = IN_OUTPUT_DATA;
530 this->u1_.output_data = os;
531 this->u2_.offset_is_from_end = false;
532 break;
533 case IN_OUTPUT_SEGMENT:
534 case IS_UNDEFINED:
535 default:
536 gold_unreachable();
537 }
538 }
539
540 // Set the symbol's output segment. This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
543
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 {
547 gold_assert(this->is_predefined_);
548 this->source_ = IN_OUTPUT_SEGMENT;
549 this->u1_.output_segment = os;
550 this->u2_.offset_base = base;
551 }
552
553 // Set the symbol to undefined. This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
556
557 void
558 Symbol::set_undefined()
559 {
560 this->source_ = IS_UNDEFINED;
561 this->is_predefined_ = false;
562 }
563
564 // Class Symbol_table.
565
566 Symbol_table::Symbol_table(unsigned int count,
567 const Version_script_info& version_script)
568 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
569 forwarders_(), commons_(), tls_commons_(), small_commons_(),
570 large_commons_(), forced_locals_(), warnings_(),
571 version_script_(version_script), gc_(NULL), icf_(NULL),
572 target_symbols_()
573 {
574 namepool_.reserve(count);
575 }
576
577 Symbol_table::~Symbol_table()
578 {
579 }
580
581 // The symbol table key equality function. This is called with
582 // Stringpool keys.
583
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586 const Symbol_table_key& k2) const
587 {
588 return k1.first == k2.first && k1.second == k2.second;
589 }
590
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 {
594 return (parameters->options().icf_enabled()
595 && this->icf_->is_section_folded(obj, shndx));
596 }
597
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
600
601 void
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 {
604 for (options::String_set::const_iterator p =
605 parameters->options().undefined_begin();
606 p != parameters->options().undefined_end();
607 ++p)
608 {
609 const char* name = p->c_str();
610 Symbol* sym = this->lookup(name);
611 gold_assert(sym != NULL);
612 if (sym->source() == Symbol::FROM_OBJECT
613 && !sym->object()->is_dynamic())
614 {
615 this->gc_mark_symbol(sym);
616 }
617 }
618
619 for (options::String_set::const_iterator p =
620 parameters->options().export_dynamic_symbol_begin();
621 p != parameters->options().export_dynamic_symbol_end();
622 ++p)
623 {
624 const char* name = p->c_str();
625 Symbol* sym = this->lookup(name);
626 // It's not an error if a symbol named by --export-dynamic-symbol
627 // is undefined.
628 if (sym != NULL
629 && sym->source() == Symbol::FROM_OBJECT
630 && !sym->object()->is_dynamic())
631 {
632 this->gc_mark_symbol(sym);
633 }
634 }
635
636 for (Script_options::referenced_const_iterator p =
637 layout->script_options()->referenced_begin();
638 p != layout->script_options()->referenced_end();
639 ++p)
640 {
641 Symbol* sym = this->lookup(p->c_str());
642 gold_assert(sym != NULL);
643 if (sym->source() == Symbol::FROM_OBJECT
644 && !sym->object()->is_dynamic())
645 {
646 this->gc_mark_symbol(sym);
647 }
648 }
649 }
650
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
653 {
654 // Add the object and section to the work list.
655 bool is_ordinary;
656 unsigned int shndx = sym->shndx(&is_ordinary);
657 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658 {
659 gold_assert(this->gc_!= NULL);
660 Relobj* relobj = static_cast<Relobj*>(sym->object());
661 this->gc_->worklist().push_back(Section_id(relobj, shndx));
662 }
663 parameters->target().gc_mark_symbol(this, sym);
664 }
665
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 {
671 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672 && !sym->object()->is_dynamic())
673 this->gc_mark_symbol(sym);
674 }
675
676 // Make TO a symbol which forwards to FROM.
677
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 {
681 gold_assert(from != to);
682 gold_assert(!from->is_forwarder() && !to->is_forwarder());
683 this->forwarders_[from] = to;
684 from->set_forwarder();
685 }
686
687 // Resolve the forwards from FROM, returning the real symbol.
688
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
691 {
692 gold_assert(from->is_forwarder());
693 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694 this->forwarders_.find(from);
695 gold_assert(p != this->forwarders_.end());
696 return p->second;
697 }
698
699 // Look up a symbol by name.
700
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
703 {
704 Stringpool::Key name_key;
705 name = this->namepool_.find(name, &name_key);
706 if (name == NULL)
707 return NULL;
708
709 Stringpool::Key version_key = 0;
710 if (version != NULL)
711 {
712 version = this->namepool_.find(version, &version_key);
713 if (version == NULL)
714 return NULL;
715 }
716
717 Symbol_table_key key(name_key, version_key);
718 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719 if (p == this->table_.end())
720 return NULL;
721 return p->second;
722 }
723
724 // Resolve a Symbol with another Symbol. This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version. Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
729
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 {
734 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735 elfcpp::Sym_write<size, big_endian> esym(buf);
736 // We don't bother to set the st_name or the st_shndx field.
737 esym.put_st_value(from->value());
738 esym.put_st_size(from->symsize());
739 esym.put_st_info(from->binding(), from->type());
740 esym.put_st_other(from->visibility(), from->nonvis());
741 bool is_ordinary;
742 unsigned int shndx = from->shndx(&is_ordinary);
743 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744 from->version(), true);
745 if (from->in_reg())
746 to->set_in_reg();
747 if (from->in_dyn())
748 to->set_in_dyn();
749 if (parameters->options().gc_sections())
750 this->gc_mark_dyn_syms(to);
751 }
752
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
755
756 void
757 Symbol_table::force_local(Symbol* sym)
758 {
759 if (!sym->is_defined() && !sym->is_common())
760 return;
761 if (sym->is_forced_local())
762 {
763 // We already got this one.
764 return;
765 }
766 sym->set_is_forced_local();
767 this->forced_locals_.push_back(sym);
768 }
769
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
773
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 {
777 // For some targets, we need to ignore a specific character when
778 // wrapping, and add it back later.
779 char prefix = '\0';
780 if (name[0] == parameters->target().wrap_char())
781 {
782 prefix = name[0];
783 ++name;
784 }
785
786 if (parameters->options().is_wrap(name))
787 {
788 // Turn NAME into __wrap_NAME.
789 std::string s;
790 if (prefix != '\0')
791 s += prefix;
792 s += "__wrap_";
793 s += name;
794
795 // This will give us both the old and new name in NAMEPOOL_, but
796 // that is OK. Only the versions we need will wind up in the
797 // real string table in the output file.
798 return this->namepool_.add(s.c_str(), true, name_key);
799 }
800
801 const char* const real_prefix = "__real_";
802 const size_t real_prefix_length = strlen(real_prefix);
803 if (strncmp(name, real_prefix, real_prefix_length) == 0
804 && parameters->options().is_wrap(name + real_prefix_length))
805 {
806 // Turn __real_NAME into NAME.
807 std::string s;
808 if (prefix != '\0')
809 s += prefix;
810 s += name + real_prefix_length;
811 return this->namepool_.add(s.c_str(), true, name_key);
812 }
813
814 return name;
815 }
816
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version. SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
822
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826 bool default_is_new,
827 Symbol_table_type::iterator pdef)
828 {
829 if (default_is_new)
830 {
831 // This is the first time we have seen NAME/NULL. Make
832 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833 // version.
834 pdef->second = sym;
835 sym->set_is_default();
836 }
837 else if (pdef->second == sym)
838 {
839 // NAME/NULL already points to NAME/VERSION. Don't mark the
840 // symbol as the default if it is not already the default.
841 }
842 else
843 {
844 // This is the unfortunate case where we already have entries
845 // for both NAME/VERSION and NAME/NULL. We now see a symbol
846 // NAME/VERSION where VERSION is the default version. We have
847 // already resolved this new symbol with the existing
848 // NAME/VERSION symbol.
849
850 // It's possible that NAME/NULL and NAME/VERSION are both
851 // defined in regular objects. This can only happen if one
852 // object file defines foo and another defines foo@@ver. This
853 // is somewhat obscure, but we call it a multiple definition
854 // error.
855
856 // It's possible that NAME/NULL actually has a version, in which
857 // case it won't be the same as VERSION. This happens with
858 // ver_test_7.so in the testsuite for the symbol t2_2. We see
859 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
860 // then see an unadorned t2_2 in an object file and give it
861 // version VER1 from the version script. This looks like a
862 // default definition for VER1, so it looks like we should merge
863 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
864 // not obvious that this is an error, either. So we just punt.
865
866 // If one of the symbols has non-default visibility, and the
867 // other is defined in a shared object, then they are different
868 // symbols.
869
870 // If the two symbols are from different shared objects,
871 // they are different symbols.
872
873 // Otherwise, we just resolve the symbols as though they were
874 // the same.
875
876 if (pdef->second->version() != NULL)
877 gold_assert(pdef->second->version() != sym->version());
878 else if (sym->visibility() != elfcpp::STV_DEFAULT
879 && pdef->second->is_from_dynobj())
880 ;
881 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882 && sym->is_from_dynobj())
883 ;
884 else if (pdef->second->is_from_dynobj()
885 && sym->is_from_dynobj()
886 && pdef->second->is_defined()
887 && pdef->second->object() != sym->object())
888 ;
889 else
890 {
891 const Sized_symbol<size>* symdef;
892 symdef = this->get_sized_symbol<size>(pdef->second);
893 Symbol_table::resolve<size, big_endian>(sym, symdef);
894 this->make_forwarder(pdef->second, sym);
895 pdef->second = sym;
896 sym->set_is_default();
897 }
898 }
899 }
900
901 // Add one symbol from OBJECT to the symbol table. NAME is symbol
902 // name and VERSION is the version; both are canonicalized. DEF is
903 // whether this is the default version. ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
906
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol. That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol. This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION. If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
914
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure. That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table. We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files. So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
925 //
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code. ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
930
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934 const char* name,
935 Stringpool::Key name_key,
936 const char* version,
937 Stringpool::Key version_key,
938 bool is_default_version,
939 const elfcpp::Sym<size, big_endian>& sym,
940 unsigned int st_shndx,
941 bool is_ordinary,
942 unsigned int orig_st_shndx)
943 {
944 // Print a message if this symbol is being traced.
945 if (parameters->options().is_trace_symbol(name))
946 {
947 if (orig_st_shndx == elfcpp::SHN_UNDEF)
948 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949 else
950 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
951 }
952
953 // For an undefined symbol, we may need to adjust the name using
954 // --wrap.
955 if (orig_st_shndx == elfcpp::SHN_UNDEF
956 && parameters->options().any_wrap())
957 {
958 const char* wrap_name = this->wrap_symbol(name, &name_key);
959 if (wrap_name != name)
960 {
961 // If we see a reference to malloc with version GLIBC_2.0,
962 // and we turn it into a reference to __wrap_malloc, then we
963 // discard the version number. Otherwise the user would be
964 // required to specify the correct version for
965 // __wrap_malloc.
966 version = NULL;
967 version_key = 0;
968 name = wrap_name;
969 }
970 }
971
972 Symbol* const snull = NULL;
973 std::pair<typename Symbol_table_type::iterator, bool> ins =
974 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975 snull));
976
977 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978 std::make_pair(this->table_.end(), false);
979 if (is_default_version)
980 {
981 const Stringpool::Key vnull_key = 0;
982 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983 vnull_key),
984 snull));
985 }
986
987 // ins.first: an iterator, which is a pointer to a pair.
988 // ins.first->first: the key (a pair of name and version).
989 // ins.first->second: the value (Symbol*).
990 // ins.second: true if new entry was inserted, false if not.
991
992 Sized_symbol<size>* ret;
993 bool was_undefined;
994 bool was_common;
995 if (!ins.second)
996 {
997 // We already have an entry for NAME/VERSION.
998 ret = this->get_sized_symbol<size>(ins.first->second);
999 gold_assert(ret != NULL);
1000
1001 was_undefined = ret->is_undefined();
1002 // Commons from plugins are just placeholders.
1003 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004
1005 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006 version, is_default_version);
1007 if (parameters->options().gc_sections())
1008 this->gc_mark_dyn_syms(ret);
1009
1010 if (is_default_version)
1011 this->define_default_version<size, big_endian>(ret, insdefault.second,
1012 insdefault.first);
1013 else
1014 {
1015 bool dummy;
1016 if (version != NULL
1017 && ret->source() == Symbol::FROM_OBJECT
1018 && ret->object() == object
1019 && is_ordinary
1020 && ret->shndx(&dummy) == st_shndx
1021 && ret->is_default())
1022 {
1023 // We have seen NAME/VERSION already, and marked it as the
1024 // default version, but now we see a definition for
1025 // NAME/VERSION that is not the default version. This can
1026 // happen when the assembler generates two symbols for
1027 // a symbol as a result of a ".symver foo,foo@VER"
1028 // directive. We see the first unversioned symbol and
1029 // we may mark it as the default version (from a
1030 // version script); then we see the second versioned
1031 // symbol and we need to override the first.
1032 // In any other case, the two symbols should have generated
1033 // a multiple definition error.
1034 // (See PR gold/18703.)
1035 ret->set_is_not_default();
1036 const Stringpool::Key vnull_key = 0;
1037 this->table_.erase(std::make_pair(name_key, vnull_key));
1038 }
1039 }
1040 }
1041 else
1042 {
1043 // This is the first time we have seen NAME/VERSION.
1044 gold_assert(ins.first->second == NULL);
1045
1046 if (is_default_version && !insdefault.second)
1047 {
1048 // We already have an entry for NAME/NULL. If we override
1049 // it, then change it to NAME/VERSION.
1050 ret = this->get_sized_symbol<size>(insdefault.first->second);
1051
1052 was_undefined = ret->is_undefined();
1053 // Commons from plugins are just placeholders.
1054 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1055
1056 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1057 version, is_default_version);
1058 if (parameters->options().gc_sections())
1059 this->gc_mark_dyn_syms(ret);
1060 ins.first->second = ret;
1061 }
1062 else
1063 {
1064 was_undefined = false;
1065 was_common = false;
1066
1067 Sized_target<size, big_endian>* target =
1068 parameters->sized_target<size, big_endian>();
1069 if (!target->has_make_symbol())
1070 ret = new Sized_symbol<size>();
1071 else
1072 {
1073 ret = target->make_symbol(name, sym.get_st_type(), object,
1074 st_shndx, sym.get_st_value());
1075 if (ret == NULL)
1076 {
1077 // This means that we don't want a symbol table
1078 // entry after all.
1079 if (!is_default_version)
1080 this->table_.erase(ins.first);
1081 else
1082 {
1083 this->table_.erase(insdefault.first);
1084 // Inserting INSDEFAULT invalidated INS.
1085 this->table_.erase(std::make_pair(name_key,
1086 version_key));
1087 }
1088 return NULL;
1089 }
1090 }
1091
1092 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1093
1094 ins.first->second = ret;
1095 if (is_default_version)
1096 {
1097 // This is the first time we have seen NAME/NULL. Point
1098 // it at the new entry for NAME/VERSION.
1099 gold_assert(insdefault.second);
1100 insdefault.first->second = ret;
1101 }
1102 }
1103
1104 if (is_default_version)
1105 ret->set_is_default();
1106 }
1107
1108 // Record every time we see a new undefined symbol, to speed up
1109 // archive groups.
1110 if (!was_undefined && ret->is_undefined())
1111 {
1112 ++this->saw_undefined_;
1113 if (parameters->options().has_plugins())
1114 parameters->options().plugins()->new_undefined_symbol(ret);
1115 }
1116
1117 // Keep track of common symbols, to speed up common symbol
1118 // allocation. Don't record commons from plugin objects;
1119 // we need to wait until we see the real symbol in the
1120 // replacement file.
1121 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1122 {
1123 if (ret->type() == elfcpp::STT_TLS)
1124 this->tls_commons_.push_back(ret);
1125 else if (!is_ordinary
1126 && st_shndx == parameters->target().small_common_shndx())
1127 this->small_commons_.push_back(ret);
1128 else if (!is_ordinary
1129 && st_shndx == parameters->target().large_common_shndx())
1130 this->large_commons_.push_back(ret);
1131 else
1132 this->commons_.push_back(ret);
1133 }
1134
1135 // If we're not doing a relocatable link, then any symbol with
1136 // hidden or internal visibility is local.
1137 if ((ret->visibility() == elfcpp::STV_HIDDEN
1138 || ret->visibility() == elfcpp::STV_INTERNAL)
1139 && (ret->binding() == elfcpp::STB_GLOBAL
1140 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1141 || ret->binding() == elfcpp::STB_WEAK)
1142 && !parameters->options().relocatable())
1143 this->force_local(ret);
1144
1145 return ret;
1146 }
1147
1148 // Add all the symbols in a relocatable object to the hash table.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Symbol_table::add_from_relobj(
1153 Sized_relobj_file<size, big_endian>* relobj,
1154 const unsigned char* syms,
1155 size_t count,
1156 size_t symndx_offset,
1157 const char* sym_names,
1158 size_t sym_name_size,
1159 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1160 size_t* defined)
1161 {
1162 *defined = 0;
1163
1164 gold_assert(size == parameters->target().get_size());
1165
1166 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1167
1168 const bool just_symbols = relobj->just_symbols();
1169
1170 const unsigned char* p = syms;
1171 for (size_t i = 0; i < count; ++i, p += sym_size)
1172 {
1173 (*sympointers)[i] = NULL;
1174
1175 elfcpp::Sym<size, big_endian> sym(p);
1176
1177 unsigned int st_name = sym.get_st_name();
1178 if (st_name >= sym_name_size)
1179 {
1180 relobj->error(_("bad global symbol name offset %u at %zu"),
1181 st_name, i);
1182 continue;
1183 }
1184
1185 const char* name = sym_names + st_name;
1186
1187 if (!parameters->options().relocatable()
1188 && strcmp (name, "__gnu_lto_slim") == 0)
1189 gold_info(_("%s: plugin needed to handle lto object"),
1190 relobj->name().c_str());
1191
1192 bool is_ordinary;
1193 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1194 sym.get_st_shndx(),
1195 &is_ordinary);
1196 unsigned int orig_st_shndx = st_shndx;
1197 if (!is_ordinary)
1198 orig_st_shndx = elfcpp::SHN_UNDEF;
1199
1200 if (st_shndx != elfcpp::SHN_UNDEF)
1201 ++*defined;
1202
1203 // A symbol defined in a section which we are not including must
1204 // be treated as an undefined symbol.
1205 bool is_defined_in_discarded_section = false;
1206 if (st_shndx != elfcpp::SHN_UNDEF
1207 && is_ordinary
1208 && !relobj->is_section_included(st_shndx)
1209 && !this->is_section_folded(relobj, st_shndx))
1210 {
1211 st_shndx = elfcpp::SHN_UNDEF;
1212 is_defined_in_discarded_section = true;
1213 }
1214
1215 // In an object file, an '@' in the name separates the symbol
1216 // name from the version name. If there are two '@' characters,
1217 // this is the default version.
1218 const char* ver = strchr(name, '@');
1219 Stringpool::Key ver_key = 0;
1220 int namelen = 0;
1221 // IS_DEFAULT_VERSION: is the version default?
1222 // IS_FORCED_LOCAL: is the symbol forced local?
1223 bool is_default_version = false;
1224 bool is_forced_local = false;
1225
1226 // FIXME: For incremental links, we don't store version information,
1227 // so we need to ignore version symbols for now.
1228 if (parameters->incremental_update() && ver != NULL)
1229 {
1230 namelen = ver - name;
1231 ver = NULL;
1232 }
1233
1234 if (ver != NULL)
1235 {
1236 // The symbol name is of the form foo@VERSION or foo@@VERSION
1237 namelen = ver - name;
1238 ++ver;
1239 if (*ver == '@')
1240 {
1241 is_default_version = true;
1242 ++ver;
1243 }
1244 ver = this->namepool_.add(ver, true, &ver_key);
1245 }
1246 // We don't want to assign a version to an undefined symbol,
1247 // even if it is listed in the version script. FIXME: What
1248 // about a common symbol?
1249 else
1250 {
1251 namelen = strlen(name);
1252 if (!this->version_script_.empty()
1253 && st_shndx != elfcpp::SHN_UNDEF)
1254 {
1255 // The symbol name did not have a version, but the
1256 // version script may assign a version anyway.
1257 std::string version;
1258 bool is_global;
1259 if (this->version_script_.get_symbol_version(name, &version,
1260 &is_global))
1261 {
1262 if (!is_global)
1263 is_forced_local = true;
1264 else if (!version.empty())
1265 {
1266 ver = this->namepool_.add_with_length(version.c_str(),
1267 version.length(),
1268 true,
1269 &ver_key);
1270 is_default_version = true;
1271 }
1272 }
1273 }
1274 }
1275
1276 elfcpp::Sym<size, big_endian>* psym = &sym;
1277 unsigned char symbuf[sym_size];
1278 elfcpp::Sym<size, big_endian> sym2(symbuf);
1279 if (just_symbols)
1280 {
1281 memcpy(symbuf, p, sym_size);
1282 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1283 if (orig_st_shndx != elfcpp::SHN_UNDEF
1284 && is_ordinary
1285 && relobj->e_type() == elfcpp::ET_REL)
1286 {
1287 // Symbol values in relocatable object files are section
1288 // relative. This is normally what we want, but since here
1289 // we are converting the symbol to absolute we need to add
1290 // the section address. The section address in an object
1291 // file is normally zero, but people can use a linker
1292 // script to change it.
1293 sw.put_st_value(sym.get_st_value()
1294 + relobj->section_address(orig_st_shndx));
1295 }
1296 st_shndx = elfcpp::SHN_ABS;
1297 is_ordinary = false;
1298 psym = &sym2;
1299 }
1300
1301 // Fix up visibility if object has no-export set.
1302 if (relobj->no_export()
1303 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1304 {
1305 // We may have copied symbol already above.
1306 if (psym != &sym2)
1307 {
1308 memcpy(symbuf, p, sym_size);
1309 psym = &sym2;
1310 }
1311
1312 elfcpp::STV visibility = sym2.get_st_visibility();
1313 if (visibility == elfcpp::STV_DEFAULT
1314 || visibility == elfcpp::STV_PROTECTED)
1315 {
1316 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1317 unsigned char nonvis = sym2.get_st_nonvis();
1318 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1319 }
1320 }
1321
1322 Stringpool::Key name_key;
1323 name = this->namepool_.add_with_length(name, namelen, true,
1324 &name_key);
1325
1326 Sized_symbol<size>* res;
1327 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1328 is_default_version, *psym, st_shndx,
1329 is_ordinary, orig_st_shndx);
1330
1331 if (res == NULL)
1332 continue;
1333
1334 if (is_forced_local)
1335 this->force_local(res);
1336
1337 // Do not treat this symbol as garbage if this symbol will be
1338 // exported to the dynamic symbol table. This is true when
1339 // building a shared library or using --export-dynamic and
1340 // the symbol is externally visible.
1341 if (parameters->options().gc_sections()
1342 && res->is_externally_visible()
1343 && !res->is_from_dynobj()
1344 && (parameters->options().shared()
1345 || parameters->options().export_dynamic()
1346 || parameters->options().in_dynamic_list(res->name())))
1347 this->gc_mark_symbol(res);
1348
1349 if (is_defined_in_discarded_section)
1350 res->set_is_defined_in_discarded_section();
1351
1352 (*sympointers)[i] = res;
1353 }
1354 }
1355
1356 // Add a symbol from a plugin-claimed file.
1357
1358 template<int size, bool big_endian>
1359 Symbol*
1360 Symbol_table::add_from_pluginobj(
1361 Sized_pluginobj<size, big_endian>* obj,
1362 const char* name,
1363 const char* ver,
1364 elfcpp::Sym<size, big_endian>* sym)
1365 {
1366 unsigned int st_shndx = sym->get_st_shndx();
1367 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1368
1369 Stringpool::Key ver_key = 0;
1370 bool is_default_version = false;
1371 bool is_forced_local = false;
1372
1373 if (ver != NULL)
1374 {
1375 ver = this->namepool_.add(ver, true, &ver_key);
1376 }
1377 // We don't want to assign a version to an undefined symbol,
1378 // even if it is listed in the version script. FIXME: What
1379 // about a common symbol?
1380 else
1381 {
1382 if (!this->version_script_.empty()
1383 && st_shndx != elfcpp::SHN_UNDEF)
1384 {
1385 // The symbol name did not have a version, but the
1386 // version script may assign a version anyway.
1387 std::string version;
1388 bool is_global;
1389 if (this->version_script_.get_symbol_version(name, &version,
1390 &is_global))
1391 {
1392 if (!is_global)
1393 is_forced_local = true;
1394 else if (!version.empty())
1395 {
1396 ver = this->namepool_.add_with_length(version.c_str(),
1397 version.length(),
1398 true,
1399 &ver_key);
1400 is_default_version = true;
1401 }
1402 }
1403 }
1404 }
1405
1406 Stringpool::Key name_key;
1407 name = this->namepool_.add(name, true, &name_key);
1408
1409 Sized_symbol<size>* res;
1410 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1411 is_default_version, *sym, st_shndx,
1412 is_ordinary, st_shndx);
1413
1414 if (res == NULL)
1415 return NULL;
1416
1417 if (is_forced_local)
1418 this->force_local(res);
1419
1420 return res;
1421 }
1422
1423 // Add all the symbols in a dynamic object to the hash table.
1424
1425 template<int size, bool big_endian>
1426 void
1427 Symbol_table::add_from_dynobj(
1428 Sized_dynobj<size, big_endian>* dynobj,
1429 const unsigned char* syms,
1430 size_t count,
1431 const char* sym_names,
1432 size_t sym_name_size,
1433 const unsigned char* versym,
1434 size_t versym_size,
1435 const std::vector<const char*>* version_map,
1436 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1437 size_t* defined)
1438 {
1439 *defined = 0;
1440
1441 gold_assert(size == parameters->target().get_size());
1442
1443 if (dynobj->just_symbols())
1444 {
1445 gold_error(_("--just-symbols does not make sense with a shared object"));
1446 return;
1447 }
1448
1449 // FIXME: For incremental links, we don't store version information,
1450 // so we need to ignore version symbols for now.
1451 if (parameters->incremental_update())
1452 versym = NULL;
1453
1454 if (versym != NULL && versym_size / 2 < count)
1455 {
1456 dynobj->error(_("too few symbol versions"));
1457 return;
1458 }
1459
1460 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1461
1462 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1463 // weak aliases. This is necessary because if the dynamic object
1464 // provides the same variable under two names, one of which is a
1465 // weak definition, and the regular object refers to the weak
1466 // definition, we have to put both the weak definition and the
1467 // strong definition into the dynamic symbol table. Given a weak
1468 // definition, the only way that we can find the corresponding
1469 // strong definition, if any, is to search the symbol table.
1470 std::vector<Sized_symbol<size>*> object_symbols;
1471
1472 const unsigned char* p = syms;
1473 const unsigned char* vs = versym;
1474 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1475 {
1476 elfcpp::Sym<size, big_endian> sym(p);
1477
1478 if (sympointers != NULL)
1479 (*sympointers)[i] = NULL;
1480
1481 // Ignore symbols with local binding or that have
1482 // internal or hidden visibility.
1483 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1484 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1485 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1486 continue;
1487
1488 // A protected symbol in a shared library must be treated as a
1489 // normal symbol when viewed from outside the shared library.
1490 // Implement this by overriding the visibility here.
1491 // Likewise, an IFUNC symbol in a shared library must be treated
1492 // as a normal FUNC symbol.
1493 elfcpp::Sym<size, big_endian>* psym = &sym;
1494 unsigned char symbuf[sym_size];
1495 elfcpp::Sym<size, big_endian> sym2(symbuf);
1496 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1497 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1498 {
1499 memcpy(symbuf, p, sym_size);
1500 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1501 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1502 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1503 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1504 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1505 psym = &sym2;
1506 }
1507
1508 unsigned int st_name = psym->get_st_name();
1509 if (st_name >= sym_name_size)
1510 {
1511 dynobj->error(_("bad symbol name offset %u at %zu"),
1512 st_name, i);
1513 continue;
1514 }
1515
1516 const char* name = sym_names + st_name;
1517
1518 bool is_ordinary;
1519 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1520 &is_ordinary);
1521
1522 if (st_shndx != elfcpp::SHN_UNDEF)
1523 ++*defined;
1524
1525 Sized_symbol<size>* res;
1526
1527 if (versym == NULL)
1528 {
1529 Stringpool::Key name_key;
1530 name = this->namepool_.add(name, true, &name_key);
1531 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1532 false, *psym, st_shndx, is_ordinary,
1533 st_shndx);
1534 }
1535 else
1536 {
1537 // Read the version information.
1538
1539 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1540
1541 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1542 v &= elfcpp::VERSYM_VERSION;
1543
1544 // The Sun documentation says that V can be VER_NDX_LOCAL,
1545 // or VER_NDX_GLOBAL, or a version index. The meaning of
1546 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1547 // The old GNU linker will happily generate VER_NDX_LOCAL
1548 // for an undefined symbol. I don't know what the Sun
1549 // linker will generate.
1550
1551 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1552 && st_shndx != elfcpp::SHN_UNDEF)
1553 {
1554 // This symbol should not be visible outside the object.
1555 continue;
1556 }
1557
1558 // At this point we are definitely going to add this symbol.
1559 Stringpool::Key name_key;
1560 name = this->namepool_.add(name, true, &name_key);
1561
1562 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1563 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1564 {
1565 // This symbol does not have a version.
1566 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1567 false, *psym, st_shndx, is_ordinary,
1568 st_shndx);
1569 }
1570 else
1571 {
1572 if (v >= version_map->size())
1573 {
1574 dynobj->error(_("versym for symbol %zu out of range: %u"),
1575 i, v);
1576 continue;
1577 }
1578
1579 const char* version = (*version_map)[v];
1580 if (version == NULL)
1581 {
1582 dynobj->error(_("versym for symbol %zu has no name: %u"),
1583 i, v);
1584 continue;
1585 }
1586
1587 Stringpool::Key version_key;
1588 version = this->namepool_.add(version, true, &version_key);
1589
1590 // If this is an absolute symbol, and the version name
1591 // and symbol name are the same, then this is the
1592 // version definition symbol. These symbols exist to
1593 // support using -u to pull in particular versions. We
1594 // do not want to record a version for them.
1595 if (st_shndx == elfcpp::SHN_ABS
1596 && !is_ordinary
1597 && name_key == version_key)
1598 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1599 false, *psym, st_shndx, is_ordinary,
1600 st_shndx);
1601 else
1602 {
1603 const bool is_default_version =
1604 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1605 res = this->add_from_object(dynobj, name, name_key, version,
1606 version_key, is_default_version,
1607 *psym, st_shndx,
1608 is_ordinary, st_shndx);
1609 }
1610 }
1611 }
1612
1613 if (res == NULL)
1614 continue;
1615
1616 // Note that it is possible that RES was overridden by an
1617 // earlier object, in which case it can't be aliased here.
1618 if (st_shndx != elfcpp::SHN_UNDEF
1619 && is_ordinary
1620 && psym->get_st_type() == elfcpp::STT_OBJECT
1621 && res->source() == Symbol::FROM_OBJECT
1622 && res->object() == dynobj)
1623 object_symbols.push_back(res);
1624
1625 // If the symbol has protected visibility in the dynobj,
1626 // mark it as such if it was not overridden.
1627 if (res->source() == Symbol::FROM_OBJECT
1628 && res->object() == dynobj
1629 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1630 res->set_is_protected();
1631
1632 if (sympointers != NULL)
1633 (*sympointers)[i] = res;
1634 }
1635
1636 this->record_weak_aliases(&object_symbols);
1637 }
1638
1639 // Add a symbol from a incremental object file.
1640
1641 template<int size, bool big_endian>
1642 Sized_symbol<size>*
1643 Symbol_table::add_from_incrobj(
1644 Object* obj,
1645 const char* name,
1646 const char* ver,
1647 elfcpp::Sym<size, big_endian>* sym)
1648 {
1649 unsigned int st_shndx = sym->get_st_shndx();
1650 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1651
1652 Stringpool::Key ver_key = 0;
1653 bool is_default_version = false;
1654
1655 Stringpool::Key name_key;
1656 name = this->namepool_.add(name, true, &name_key);
1657
1658 Sized_symbol<size>* res;
1659 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1660 is_default_version, *sym, st_shndx,
1661 is_ordinary, st_shndx);
1662
1663 return res;
1664 }
1665
1666 // This is used to sort weak aliases. We sort them first by section
1667 // index, then by offset, then by weak ahead of strong.
1668
1669 template<int size>
1670 class Weak_alias_sorter
1671 {
1672 public:
1673 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1674 };
1675
1676 template<int size>
1677 bool
1678 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1679 const Sized_symbol<size>* s2) const
1680 {
1681 bool is_ordinary;
1682 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1683 gold_assert(is_ordinary);
1684 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1685 gold_assert(is_ordinary);
1686 if (s1_shndx != s2_shndx)
1687 return s1_shndx < s2_shndx;
1688
1689 if (s1->value() != s2->value())
1690 return s1->value() < s2->value();
1691 if (s1->binding() != s2->binding())
1692 {
1693 if (s1->binding() == elfcpp::STB_WEAK)
1694 return true;
1695 if (s2->binding() == elfcpp::STB_WEAK)
1696 return false;
1697 }
1698 return std::string(s1->name()) < std::string(s2->name());
1699 }
1700
1701 // SYMBOLS is a list of object symbols from a dynamic object. Look
1702 // for any weak aliases, and record them so that if we add the weak
1703 // alias to the dynamic symbol table, we also add the corresponding
1704 // strong symbol.
1705
1706 template<int size>
1707 void
1708 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1709 {
1710 // Sort the vector by section index, then by offset, then by weak
1711 // ahead of strong.
1712 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1713
1714 // Walk through the vector. For each weak definition, record
1715 // aliases.
1716 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1717 symbols->begin();
1718 p != symbols->end();
1719 ++p)
1720 {
1721 if ((*p)->binding() != elfcpp::STB_WEAK)
1722 continue;
1723
1724 // Build a circular list of weak aliases. Each symbol points to
1725 // the next one in the circular list.
1726
1727 Sized_symbol<size>* from_sym = *p;
1728 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1729 for (q = p + 1; q != symbols->end(); ++q)
1730 {
1731 bool dummy;
1732 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1733 || (*q)->value() != from_sym->value())
1734 break;
1735
1736 this->weak_aliases_[from_sym] = *q;
1737 from_sym->set_has_alias();
1738 from_sym = *q;
1739 }
1740
1741 if (from_sym != *p)
1742 {
1743 this->weak_aliases_[from_sym] = *p;
1744 from_sym->set_has_alias();
1745 }
1746
1747 p = q - 1;
1748 }
1749 }
1750
1751 // Create and return a specially defined symbol. If ONLY_IF_REF is
1752 // true, then only create the symbol if there is a reference to it.
1753 // If this does not return NULL, it sets *POLDSYM to the existing
1754 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1755 // resolve the newly created symbol to the old one. This
1756 // canonicalizes *PNAME and *PVERSION.
1757
1758 template<int size, bool big_endian>
1759 Sized_symbol<size>*
1760 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1761 bool only_if_ref,
1762 Sized_symbol<size>** poldsym,
1763 bool* resolve_oldsym, bool is_forced_local)
1764 {
1765 *resolve_oldsym = false;
1766 *poldsym = NULL;
1767
1768 // If the caller didn't give us a version, see if we get one from
1769 // the version script.
1770 std::string v;
1771 bool is_default_version = false;
1772 if (!is_forced_local && *pversion == NULL)
1773 {
1774 bool is_global;
1775 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1776 {
1777 if (is_global && !v.empty())
1778 {
1779 *pversion = v.c_str();
1780 // If we get the version from a version script, then we
1781 // are also the default version.
1782 is_default_version = true;
1783 }
1784 }
1785 }
1786
1787 Symbol* oldsym;
1788 Sized_symbol<size>* sym;
1789
1790 bool add_to_table = false;
1791 typename Symbol_table_type::iterator add_loc = this->table_.end();
1792 bool add_def_to_table = false;
1793 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1794
1795 if (only_if_ref)
1796 {
1797 oldsym = this->lookup(*pname, *pversion);
1798 if (oldsym == NULL && is_default_version)
1799 oldsym = this->lookup(*pname, NULL);
1800 if (oldsym == NULL || !oldsym->is_undefined())
1801 return NULL;
1802
1803 *pname = oldsym->name();
1804 if (is_default_version)
1805 *pversion = this->namepool_.add(*pversion, true, NULL);
1806 else
1807 *pversion = oldsym->version();
1808 }
1809 else
1810 {
1811 // Canonicalize NAME and VERSION.
1812 Stringpool::Key name_key;
1813 *pname = this->namepool_.add(*pname, true, &name_key);
1814
1815 Stringpool::Key version_key = 0;
1816 if (*pversion != NULL)
1817 *pversion = this->namepool_.add(*pversion, true, &version_key);
1818
1819 Symbol* const snull = NULL;
1820 std::pair<typename Symbol_table_type::iterator, bool> ins =
1821 this->table_.insert(std::make_pair(std::make_pair(name_key,
1822 version_key),
1823 snull));
1824
1825 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1826 std::make_pair(this->table_.end(), false);
1827 if (is_default_version)
1828 {
1829 const Stringpool::Key vnull = 0;
1830 insdefault =
1831 this->table_.insert(std::make_pair(std::make_pair(name_key,
1832 vnull),
1833 snull));
1834 }
1835
1836 if (!ins.second)
1837 {
1838 // We already have a symbol table entry for NAME/VERSION.
1839 oldsym = ins.first->second;
1840 gold_assert(oldsym != NULL);
1841
1842 if (is_default_version)
1843 {
1844 Sized_symbol<size>* soldsym =
1845 this->get_sized_symbol<size>(oldsym);
1846 this->define_default_version<size, big_endian>(soldsym,
1847 insdefault.second,
1848 insdefault.first);
1849 }
1850 }
1851 else
1852 {
1853 // We haven't seen this symbol before.
1854 gold_assert(ins.first->second == NULL);
1855
1856 add_to_table = true;
1857 add_loc = ins.first;
1858
1859 if (is_default_version && !insdefault.second)
1860 {
1861 // We are adding NAME/VERSION, and it is the default
1862 // version. We already have an entry for NAME/NULL.
1863 oldsym = insdefault.first->second;
1864 *resolve_oldsym = true;
1865 }
1866 else
1867 {
1868 oldsym = NULL;
1869
1870 if (is_default_version)
1871 {
1872 add_def_to_table = true;
1873 add_def_loc = insdefault.first;
1874 }
1875 }
1876 }
1877 }
1878
1879 const Target& target = parameters->target();
1880 if (!target.has_make_symbol())
1881 sym = new Sized_symbol<size>();
1882 else
1883 {
1884 Sized_target<size, big_endian>* sized_target =
1885 parameters->sized_target<size, big_endian>();
1886 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1887 NULL, elfcpp::SHN_UNDEF, 0);
1888 if (sym == NULL)
1889 return NULL;
1890 }
1891
1892 if (add_to_table)
1893 add_loc->second = sym;
1894 else
1895 gold_assert(oldsym != NULL);
1896
1897 if (add_def_to_table)
1898 add_def_loc->second = sym;
1899
1900 *poldsym = this->get_sized_symbol<size>(oldsym);
1901
1902 return sym;
1903 }
1904
1905 // Define a symbol based on an Output_data.
1906
1907 Symbol*
1908 Symbol_table::define_in_output_data(const char* name,
1909 const char* version,
1910 Defined defined,
1911 Output_data* od,
1912 uint64_t value,
1913 uint64_t symsize,
1914 elfcpp::STT type,
1915 elfcpp::STB binding,
1916 elfcpp::STV visibility,
1917 unsigned char nonvis,
1918 bool offset_is_from_end,
1919 bool only_if_ref)
1920 {
1921 if (parameters->target().get_size() == 32)
1922 {
1923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1924 return this->do_define_in_output_data<32>(name, version, defined, od,
1925 value, symsize, type, binding,
1926 visibility, nonvis,
1927 offset_is_from_end,
1928 only_if_ref);
1929 #else
1930 gold_unreachable();
1931 #endif
1932 }
1933 else if (parameters->target().get_size() == 64)
1934 {
1935 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1936 return this->do_define_in_output_data<64>(name, version, defined, od,
1937 value, symsize, type, binding,
1938 visibility, nonvis,
1939 offset_is_from_end,
1940 only_if_ref);
1941 #else
1942 gold_unreachable();
1943 #endif
1944 }
1945 else
1946 gold_unreachable();
1947 }
1948
1949 // Define a symbol in an Output_data, sized version.
1950
1951 template<int size>
1952 Sized_symbol<size>*
1953 Symbol_table::do_define_in_output_data(
1954 const char* name,
1955 const char* version,
1956 Defined defined,
1957 Output_data* od,
1958 typename elfcpp::Elf_types<size>::Elf_Addr value,
1959 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1960 elfcpp::STT type,
1961 elfcpp::STB binding,
1962 elfcpp::STV visibility,
1963 unsigned char nonvis,
1964 bool offset_is_from_end,
1965 bool only_if_ref)
1966 {
1967 Sized_symbol<size>* sym;
1968 Sized_symbol<size>* oldsym;
1969 bool resolve_oldsym;
1970 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1971
1972 if (parameters->target().is_big_endian())
1973 {
1974 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1975 sym = this->define_special_symbol<size, true>(&name, &version,
1976 only_if_ref, &oldsym,
1977 &resolve_oldsym,
1978 is_forced_local);
1979 #else
1980 gold_unreachable();
1981 #endif
1982 }
1983 else
1984 {
1985 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1986 sym = this->define_special_symbol<size, false>(&name, &version,
1987 only_if_ref, &oldsym,
1988 &resolve_oldsym,
1989 is_forced_local);
1990 #else
1991 gold_unreachable();
1992 #endif
1993 }
1994
1995 if (sym == NULL)
1996 return NULL;
1997
1998 sym->init_output_data(name, version, od, value, symsize, type, binding,
1999 visibility, nonvis, offset_is_from_end,
2000 defined == PREDEFINED);
2001
2002 if (oldsym == NULL)
2003 {
2004 if (is_forced_local || this->version_script_.symbol_is_local(name))
2005 this->force_local(sym);
2006 else if (version != NULL)
2007 sym->set_is_default();
2008 return sym;
2009 }
2010
2011 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2012 this->override_with_special(oldsym, sym);
2013
2014 if (resolve_oldsym)
2015 return sym;
2016 else
2017 {
2018 if (defined == PREDEFINED
2019 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2020 this->force_local(oldsym);
2021 delete sym;
2022 return oldsym;
2023 }
2024 }
2025
2026 // Define a symbol based on an Output_segment.
2027
2028 Symbol*
2029 Symbol_table::define_in_output_segment(const char* name,
2030 const char* version,
2031 Defined defined,
2032 Output_segment* os,
2033 uint64_t value,
2034 uint64_t symsize,
2035 elfcpp::STT type,
2036 elfcpp::STB binding,
2037 elfcpp::STV visibility,
2038 unsigned char nonvis,
2039 Symbol::Segment_offset_base offset_base,
2040 bool only_if_ref)
2041 {
2042 if (parameters->target().get_size() == 32)
2043 {
2044 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2045 return this->do_define_in_output_segment<32>(name, version, defined, os,
2046 value, symsize, type,
2047 binding, visibility, nonvis,
2048 offset_base, only_if_ref);
2049 #else
2050 gold_unreachable();
2051 #endif
2052 }
2053 else if (parameters->target().get_size() == 64)
2054 {
2055 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2056 return this->do_define_in_output_segment<64>(name, version, defined, os,
2057 value, symsize, type,
2058 binding, visibility, nonvis,
2059 offset_base, only_if_ref);
2060 #else
2061 gold_unreachable();
2062 #endif
2063 }
2064 else
2065 gold_unreachable();
2066 }
2067
2068 // Define a symbol in an Output_segment, sized version.
2069
2070 template<int size>
2071 Sized_symbol<size>*
2072 Symbol_table::do_define_in_output_segment(
2073 const char* name,
2074 const char* version,
2075 Defined defined,
2076 Output_segment* os,
2077 typename elfcpp::Elf_types<size>::Elf_Addr value,
2078 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2079 elfcpp::STT type,
2080 elfcpp::STB binding,
2081 elfcpp::STV visibility,
2082 unsigned char nonvis,
2083 Symbol::Segment_offset_base offset_base,
2084 bool only_if_ref)
2085 {
2086 Sized_symbol<size>* sym;
2087 Sized_symbol<size>* oldsym;
2088 bool resolve_oldsym;
2089 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2090
2091 if (parameters->target().is_big_endian())
2092 {
2093 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2094 sym = this->define_special_symbol<size, true>(&name, &version,
2095 only_if_ref, &oldsym,
2096 &resolve_oldsym,
2097 is_forced_local);
2098 #else
2099 gold_unreachable();
2100 #endif
2101 }
2102 else
2103 {
2104 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2105 sym = this->define_special_symbol<size, false>(&name, &version,
2106 only_if_ref, &oldsym,
2107 &resolve_oldsym,
2108 is_forced_local);
2109 #else
2110 gold_unreachable();
2111 #endif
2112 }
2113
2114 if (sym == NULL)
2115 return NULL;
2116
2117 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2118 visibility, nonvis, offset_base,
2119 defined == PREDEFINED);
2120
2121 if (oldsym == NULL)
2122 {
2123 if (is_forced_local || this->version_script_.symbol_is_local(name))
2124 this->force_local(sym);
2125 else if (version != NULL)
2126 sym->set_is_default();
2127 return sym;
2128 }
2129
2130 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2131 this->override_with_special(oldsym, sym);
2132
2133 if (resolve_oldsym)
2134 return sym;
2135 else
2136 {
2137 if (is_forced_local || this->version_script_.symbol_is_local(name))
2138 this->force_local(oldsym);
2139 delete sym;
2140 return oldsym;
2141 }
2142 }
2143
2144 // Define a special symbol with a constant value. It is a multiple
2145 // definition error if this symbol is already defined.
2146
2147 Symbol*
2148 Symbol_table::define_as_constant(const char* name,
2149 const char* version,
2150 Defined defined,
2151 uint64_t value,
2152 uint64_t symsize,
2153 elfcpp::STT type,
2154 elfcpp::STB binding,
2155 elfcpp::STV visibility,
2156 unsigned char nonvis,
2157 bool only_if_ref,
2158 bool force_override)
2159 {
2160 if (parameters->target().get_size() == 32)
2161 {
2162 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2163 return this->do_define_as_constant<32>(name, version, defined, value,
2164 symsize, type, binding,
2165 visibility, nonvis, only_if_ref,
2166 force_override);
2167 #else
2168 gold_unreachable();
2169 #endif
2170 }
2171 else if (parameters->target().get_size() == 64)
2172 {
2173 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2174 return this->do_define_as_constant<64>(name, version, defined, value,
2175 symsize, type, binding,
2176 visibility, nonvis, only_if_ref,
2177 force_override);
2178 #else
2179 gold_unreachable();
2180 #endif
2181 }
2182 else
2183 gold_unreachable();
2184 }
2185
2186 // Define a symbol as a constant, sized version.
2187
2188 template<int size>
2189 Sized_symbol<size>*
2190 Symbol_table::do_define_as_constant(
2191 const char* name,
2192 const char* version,
2193 Defined defined,
2194 typename elfcpp::Elf_types<size>::Elf_Addr value,
2195 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2196 elfcpp::STT type,
2197 elfcpp::STB binding,
2198 elfcpp::STV visibility,
2199 unsigned char nonvis,
2200 bool only_if_ref,
2201 bool force_override)
2202 {
2203 Sized_symbol<size>* sym;
2204 Sized_symbol<size>* oldsym;
2205 bool resolve_oldsym;
2206 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2207
2208 if (parameters->target().is_big_endian())
2209 {
2210 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2211 sym = this->define_special_symbol<size, true>(&name, &version,
2212 only_if_ref, &oldsym,
2213 &resolve_oldsym,
2214 is_forced_local);
2215 #else
2216 gold_unreachable();
2217 #endif
2218 }
2219 else
2220 {
2221 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2222 sym = this->define_special_symbol<size, false>(&name, &version,
2223 only_if_ref, &oldsym,
2224 &resolve_oldsym,
2225 is_forced_local);
2226 #else
2227 gold_unreachable();
2228 #endif
2229 }
2230
2231 if (sym == NULL)
2232 return NULL;
2233
2234 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2235 nonvis, defined == PREDEFINED);
2236
2237 if (oldsym == NULL)
2238 {
2239 // Version symbols are absolute symbols with name == version.
2240 // We don't want to force them to be local.
2241 if ((version == NULL
2242 || name != version
2243 || value != 0)
2244 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2245 this->force_local(sym);
2246 else if (version != NULL
2247 && (name != version || value != 0))
2248 sym->set_is_default();
2249 return sym;
2250 }
2251
2252 if (force_override
2253 || Symbol_table::should_override_with_special(oldsym, type, defined))
2254 this->override_with_special(oldsym, sym);
2255
2256 if (resolve_oldsym)
2257 return sym;
2258 else
2259 {
2260 if (is_forced_local || this->version_script_.symbol_is_local(name))
2261 this->force_local(oldsym);
2262 delete sym;
2263 return oldsym;
2264 }
2265 }
2266
2267 // Define a set of symbols in output sections.
2268
2269 void
2270 Symbol_table::define_symbols(const Layout* layout, int count,
2271 const Define_symbol_in_section* p,
2272 bool only_if_ref)
2273 {
2274 for (int i = 0; i < count; ++i, ++p)
2275 {
2276 Output_section* os = layout->find_output_section(p->output_section);
2277 if (os != NULL)
2278 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2279 p->size, p->type, p->binding,
2280 p->visibility, p->nonvis,
2281 p->offset_is_from_end,
2282 only_if_ref || p->only_if_ref);
2283 else
2284 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2285 p->type, p->binding, p->visibility, p->nonvis,
2286 only_if_ref || p->only_if_ref,
2287 false);
2288 }
2289 }
2290
2291 // Define a set of symbols in output segments.
2292
2293 void
2294 Symbol_table::define_symbols(const Layout* layout, int count,
2295 const Define_symbol_in_segment* p,
2296 bool only_if_ref)
2297 {
2298 for (int i = 0; i < count; ++i, ++p)
2299 {
2300 Output_segment* os = layout->find_output_segment(p->segment_type,
2301 p->segment_flags_set,
2302 p->segment_flags_clear);
2303 if (os != NULL)
2304 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2305 p->size, p->type, p->binding,
2306 p->visibility, p->nonvis,
2307 p->offset_base,
2308 only_if_ref || p->only_if_ref);
2309 else
2310 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2311 p->type, p->binding, p->visibility, p->nonvis,
2312 only_if_ref || p->only_if_ref,
2313 false);
2314 }
2315 }
2316
2317 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2318 // symbol should be defined--typically a .dyn.bss section. VALUE is
2319 // the offset within POSD.
2320
2321 template<int size>
2322 void
2323 Symbol_table::define_with_copy_reloc(
2324 Sized_symbol<size>* csym,
2325 Output_data* posd,
2326 typename elfcpp::Elf_types<size>::Elf_Addr value)
2327 {
2328 gold_assert(csym->is_from_dynobj());
2329 gold_assert(!csym->is_copied_from_dynobj());
2330 Object* object = csym->object();
2331 gold_assert(object->is_dynamic());
2332 Dynobj* dynobj = static_cast<Dynobj*>(object);
2333
2334 // Our copied variable has to override any variable in a shared
2335 // library.
2336 elfcpp::STB binding = csym->binding();
2337 if (binding == elfcpp::STB_WEAK)
2338 binding = elfcpp::STB_GLOBAL;
2339
2340 this->define_in_output_data(csym->name(), csym->version(), COPY,
2341 posd, value, csym->symsize(),
2342 csym->type(), binding,
2343 csym->visibility(), csym->nonvis(),
2344 false, false);
2345
2346 csym->set_is_copied_from_dynobj();
2347 csym->set_needs_dynsym_entry();
2348
2349 this->copied_symbol_dynobjs_[csym] = dynobj;
2350
2351 // We have now defined all aliases, but we have not entered them all
2352 // in the copied_symbol_dynobjs_ map.
2353 if (csym->has_alias())
2354 {
2355 Symbol* sym = csym;
2356 while (true)
2357 {
2358 sym = this->weak_aliases_[sym];
2359 if (sym == csym)
2360 break;
2361 gold_assert(sym->output_data() == posd);
2362
2363 sym->set_is_copied_from_dynobj();
2364 this->copied_symbol_dynobjs_[sym] = dynobj;
2365 }
2366 }
2367 }
2368
2369 // SYM is defined using a COPY reloc. Return the dynamic object where
2370 // the original definition was found.
2371
2372 Dynobj*
2373 Symbol_table::get_copy_source(const Symbol* sym) const
2374 {
2375 gold_assert(sym->is_copied_from_dynobj());
2376 Copied_symbol_dynobjs::const_iterator p =
2377 this->copied_symbol_dynobjs_.find(sym);
2378 gold_assert(p != this->copied_symbol_dynobjs_.end());
2379 return p->second;
2380 }
2381
2382 // Add any undefined symbols named on the command line.
2383
2384 void
2385 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2386 {
2387 if (parameters->options().any_undefined()
2388 || layout->script_options()->any_unreferenced())
2389 {
2390 if (parameters->target().get_size() == 32)
2391 {
2392 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2393 this->do_add_undefined_symbols_from_command_line<32>(layout);
2394 #else
2395 gold_unreachable();
2396 #endif
2397 }
2398 else if (parameters->target().get_size() == 64)
2399 {
2400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2401 this->do_add_undefined_symbols_from_command_line<64>(layout);
2402 #else
2403 gold_unreachable();
2404 #endif
2405 }
2406 else
2407 gold_unreachable();
2408 }
2409 }
2410
2411 template<int size>
2412 void
2413 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2414 {
2415 for (options::String_set::const_iterator p =
2416 parameters->options().undefined_begin();
2417 p != parameters->options().undefined_end();
2418 ++p)
2419 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2420
2421 for (options::String_set::const_iterator p =
2422 parameters->options().export_dynamic_symbol_begin();
2423 p != parameters->options().export_dynamic_symbol_end();
2424 ++p)
2425 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2426
2427 for (Script_options::referenced_const_iterator p =
2428 layout->script_options()->referenced_begin();
2429 p != layout->script_options()->referenced_end();
2430 ++p)
2431 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2432 }
2433
2434 template<int size>
2435 void
2436 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2437 {
2438 if (this->lookup(name) != NULL)
2439 return;
2440
2441 const char* version = NULL;
2442
2443 Sized_symbol<size>* sym;
2444 Sized_symbol<size>* oldsym;
2445 bool resolve_oldsym;
2446 if (parameters->target().is_big_endian())
2447 {
2448 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2449 sym = this->define_special_symbol<size, true>(&name, &version,
2450 false, &oldsym,
2451 &resolve_oldsym,
2452 false);
2453 #else
2454 gold_unreachable();
2455 #endif
2456 }
2457 else
2458 {
2459 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2460 sym = this->define_special_symbol<size, false>(&name, &version,
2461 false, &oldsym,
2462 &resolve_oldsym,
2463 false);
2464 #else
2465 gold_unreachable();
2466 #endif
2467 }
2468
2469 gold_assert(oldsym == NULL);
2470
2471 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2472 elfcpp::STV_DEFAULT, 0);
2473 ++this->saw_undefined_;
2474 }
2475
2476 // Set the dynamic symbol indexes. INDEX is the index of the first
2477 // global dynamic symbol. Pointers to the global symbols are stored
2478 // into the vector SYMS. The names are added to DYNPOOL.
2479 // This returns an updated dynamic symbol index.
2480
2481 unsigned int
2482 Symbol_table::set_dynsym_indexes(unsigned int index,
2483 unsigned int* pforced_local_count,
2484 std::vector<Symbol*>* syms,
2485 Stringpool* dynpool,
2486 Versions* versions)
2487 {
2488 std::vector<Symbol*> as_needed_sym;
2489
2490 // First process all the symbols which have been forced to be local,
2491 // as they must appear before all global symbols.
2492 unsigned int forced_local_count = 0;
2493 for (Forced_locals::iterator p = this->forced_locals_.begin();
2494 p != this->forced_locals_.end();
2495 ++p)
2496 {
2497 Symbol* sym = *p;
2498 gold_assert(sym->is_forced_local());
2499 if (sym->has_dynsym_index())
2500 continue;
2501 if (!sym->should_add_dynsym_entry(this))
2502 sym->set_dynsym_index(-1U);
2503 else
2504 {
2505 sym->set_dynsym_index(index);
2506 ++index;
2507 ++forced_local_count;
2508 dynpool->add(sym->name(), false, NULL);
2509 }
2510 }
2511 *pforced_local_count = forced_local_count;
2512
2513 // Allow a target to set dynsym indexes.
2514 if (parameters->target().has_custom_set_dynsym_indexes())
2515 {
2516 std::vector<Symbol*> dyn_symbols;
2517 for (Symbol_table_type::iterator p = this->table_.begin();
2518 p != this->table_.end();
2519 ++p)
2520 {
2521 Symbol* sym = p->second;
2522 if (sym->is_forced_local())
2523 continue;
2524 if (!sym->should_add_dynsym_entry(this))
2525 sym->set_dynsym_index(-1U);
2526 else
2527 dyn_symbols.push_back(sym);
2528 }
2529
2530 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2531 dynpool, versions, this);
2532 }
2533
2534 for (Symbol_table_type::iterator p = this->table_.begin();
2535 p != this->table_.end();
2536 ++p)
2537 {
2538 Symbol* sym = p->second;
2539
2540 if (sym->is_forced_local())
2541 continue;
2542
2543 // Note that SYM may already have a dynamic symbol index, since
2544 // some symbols appear more than once in the symbol table, with
2545 // and without a version.
2546
2547 if (!sym->should_add_dynsym_entry(this))
2548 sym->set_dynsym_index(-1U);
2549 else if (!sym->has_dynsym_index())
2550 {
2551 sym->set_dynsym_index(index);
2552 ++index;
2553 syms->push_back(sym);
2554 dynpool->add(sym->name(), false, NULL);
2555
2556 // If the symbol is defined in a dynamic object and is
2557 // referenced strongly in a regular object, then mark the
2558 // dynamic object as needed. This is used to implement
2559 // --as-needed.
2560 if (sym->is_from_dynobj()
2561 && sym->in_reg()
2562 && !sym->is_undef_binding_weak())
2563 sym->object()->set_is_needed();
2564
2565 // Record any version information, except those from
2566 // as-needed libraries not seen to be needed. Note that the
2567 // is_needed state for such libraries can change in this loop.
2568 if (sym->version() != NULL)
2569 {
2570 if (!sym->is_from_dynobj()
2571 || !sym->object()->as_needed()
2572 || sym->object()->is_needed())
2573 versions->record_version(this, dynpool, sym);
2574 else
2575 as_needed_sym.push_back(sym);
2576 }
2577 }
2578 }
2579
2580 // Process version information for symbols from as-needed libraries.
2581 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2582 p != as_needed_sym.end();
2583 ++p)
2584 {
2585 Symbol* sym = *p;
2586
2587 if (sym->object()->is_needed())
2588 versions->record_version(this, dynpool, sym);
2589 else
2590 sym->clear_version();
2591 }
2592
2593 // Finish up the versions. In some cases this may add new dynamic
2594 // symbols.
2595 index = versions->finalize(this, index, syms);
2596
2597 // Process target-specific symbols.
2598 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2599 p != this->target_symbols_.end();
2600 ++p)
2601 {
2602 (*p)->set_dynsym_index(index);
2603 ++index;
2604 syms->push_back(*p);
2605 dynpool->add((*p)->name(), false, NULL);
2606 }
2607
2608 return index;
2609 }
2610
2611 // Set the final values for all the symbols. The index of the first
2612 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2613 // file offset OFF. Add their names to POOL. Return the new file
2614 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2615 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2616 // written from the global symbol table in Symtab::write_globals(),
2617 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2618 // not necessarily the same as the sh_info field for the .dynsym
2619 // section, which will point to the first real global symbol.
2620
2621 off_t
2622 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2623 size_t dyncount, Stringpool* pool,
2624 unsigned int* plocal_symcount)
2625 {
2626 off_t ret;
2627
2628 gold_assert(*plocal_symcount != 0);
2629 this->first_global_index_ = *plocal_symcount;
2630
2631 this->dynamic_offset_ = dynoff;
2632 this->first_dynamic_global_index_ = dyn_global_index;
2633 this->dynamic_count_ = dyncount;
2634
2635 if (parameters->target().get_size() == 32)
2636 {
2637 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2638 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2639 #else
2640 gold_unreachable();
2641 #endif
2642 }
2643 else if (parameters->target().get_size() == 64)
2644 {
2645 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2646 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2647 #else
2648 gold_unreachable();
2649 #endif
2650 }
2651 else
2652 gold_unreachable();
2653
2654 // Now that we have the final symbol table, we can reliably note
2655 // which symbols should get warnings.
2656 this->warnings_.note_warnings(this);
2657
2658 return ret;
2659 }
2660
2661 // SYM is going into the symbol table at *PINDEX. Add the name to
2662 // POOL, update *PINDEX and *POFF.
2663
2664 template<int size>
2665 void
2666 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2667 unsigned int* pindex, off_t* poff)
2668 {
2669 sym->set_symtab_index(*pindex);
2670 if (sym->version() == NULL || !parameters->options().relocatable())
2671 pool->add(sym->name(), false, NULL);
2672 else
2673 pool->add(sym->versioned_name(), true, NULL);
2674 ++*pindex;
2675 *poff += elfcpp::Elf_sizes<size>::sym_size;
2676 }
2677
2678 // Set the final value for all the symbols. This is called after
2679 // Layout::finalize, so all the output sections have their final
2680 // address.
2681
2682 template<int size>
2683 off_t
2684 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2685 unsigned int* plocal_symcount)
2686 {
2687 off = align_address(off, size >> 3);
2688 this->offset_ = off;
2689
2690 unsigned int index = *plocal_symcount;
2691 const unsigned int orig_index = index;
2692
2693 // First do all the symbols which have been forced to be local, as
2694 // they must appear before all global symbols.
2695 for (Forced_locals::iterator p = this->forced_locals_.begin();
2696 p != this->forced_locals_.end();
2697 ++p)
2698 {
2699 Symbol* sym = *p;
2700 gold_assert(sym->is_forced_local());
2701 if (this->sized_finalize_symbol<size>(sym))
2702 {
2703 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2704 ++*plocal_symcount;
2705 }
2706 }
2707
2708 // Now do all the remaining symbols.
2709 for (Symbol_table_type::iterator p = this->table_.begin();
2710 p != this->table_.end();
2711 ++p)
2712 {
2713 Symbol* sym = p->second;
2714 if (this->sized_finalize_symbol<size>(sym))
2715 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2716 }
2717
2718 // Now do target-specific symbols.
2719 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2720 p != this->target_symbols_.end();
2721 ++p)
2722 {
2723 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2724 }
2725
2726 this->output_count_ = index - orig_index;
2727
2728 return off;
2729 }
2730
2731 // Compute the final value of SYM and store status in location PSTATUS.
2732 // During relaxation, this may be called multiple times for a symbol to
2733 // compute its would-be final value in each relaxation pass.
2734
2735 template<int size>
2736 typename Sized_symbol<size>::Value_type
2737 Symbol_table::compute_final_value(
2738 const Sized_symbol<size>* sym,
2739 Compute_final_value_status* pstatus) const
2740 {
2741 typedef typename Sized_symbol<size>::Value_type Value_type;
2742 Value_type value;
2743
2744 switch (sym->source())
2745 {
2746 case Symbol::FROM_OBJECT:
2747 {
2748 bool is_ordinary;
2749 unsigned int shndx = sym->shndx(&is_ordinary);
2750
2751 if (!is_ordinary
2752 && shndx != elfcpp::SHN_ABS
2753 && !Symbol::is_common_shndx(shndx))
2754 {
2755 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2756 return 0;
2757 }
2758
2759 Object* symobj = sym->object();
2760 if (symobj->is_dynamic())
2761 {
2762 value = 0;
2763 shndx = elfcpp::SHN_UNDEF;
2764 }
2765 else if (symobj->pluginobj() != NULL)
2766 {
2767 value = 0;
2768 shndx = elfcpp::SHN_UNDEF;
2769 }
2770 else if (shndx == elfcpp::SHN_UNDEF)
2771 value = 0;
2772 else if (!is_ordinary
2773 && (shndx == elfcpp::SHN_ABS
2774 || Symbol::is_common_shndx(shndx)))
2775 value = sym->value();
2776 else
2777 {
2778 Relobj* relobj = static_cast<Relobj*>(symobj);
2779 Output_section* os = relobj->output_section(shndx);
2780
2781 if (this->is_section_folded(relobj, shndx))
2782 {
2783 gold_assert(os == NULL);
2784 // Get the os of the section it is folded onto.
2785 Section_id folded = this->icf_->get_folded_section(relobj,
2786 shndx);
2787 gold_assert(folded.first != NULL);
2788 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2789 unsigned folded_shndx = folded.second;
2790
2791 os = folded_obj->output_section(folded_shndx);
2792 gold_assert(os != NULL);
2793
2794 // Replace (relobj, shndx) with canonical ICF input section.
2795 shndx = folded_shndx;
2796 relobj = folded_obj;
2797 }
2798
2799 uint64_t secoff64 = relobj->output_section_offset(shndx);
2800 if (os == NULL)
2801 {
2802 bool static_or_reloc = (parameters->doing_static_link() ||
2803 parameters->options().relocatable());
2804 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2805
2806 *pstatus = CFVS_NO_OUTPUT_SECTION;
2807 return 0;
2808 }
2809
2810 if (secoff64 == -1ULL)
2811 {
2812 // The section needs special handling (e.g., a merge section).
2813
2814 value = os->output_address(relobj, shndx, sym->value());
2815 }
2816 else
2817 {
2818 Value_type secoff =
2819 convert_types<Value_type, uint64_t>(secoff64);
2820 if (sym->type() == elfcpp::STT_TLS)
2821 value = sym->value() + os->tls_offset() + secoff;
2822 else
2823 value = sym->value() + os->address() + secoff;
2824 }
2825 }
2826 }
2827 break;
2828
2829 case Symbol::IN_OUTPUT_DATA:
2830 {
2831 Output_data* od = sym->output_data();
2832 value = sym->value();
2833 if (sym->type() != elfcpp::STT_TLS)
2834 value += od->address();
2835 else
2836 {
2837 Output_section* os = od->output_section();
2838 gold_assert(os != NULL);
2839 value += os->tls_offset() + (od->address() - os->address());
2840 }
2841 if (sym->offset_is_from_end())
2842 value += od->data_size();
2843 }
2844 break;
2845
2846 case Symbol::IN_OUTPUT_SEGMENT:
2847 {
2848 Output_segment* os = sym->output_segment();
2849 value = sym->value();
2850 if (sym->type() != elfcpp::STT_TLS)
2851 value += os->vaddr();
2852 switch (sym->offset_base())
2853 {
2854 case Symbol::SEGMENT_START:
2855 break;
2856 case Symbol::SEGMENT_END:
2857 value += os->memsz();
2858 break;
2859 case Symbol::SEGMENT_BSS:
2860 value += os->filesz();
2861 break;
2862 default:
2863 gold_unreachable();
2864 }
2865 }
2866 break;
2867
2868 case Symbol::IS_CONSTANT:
2869 value = sym->value();
2870 break;
2871
2872 case Symbol::IS_UNDEFINED:
2873 value = 0;
2874 break;
2875
2876 default:
2877 gold_unreachable();
2878 }
2879
2880 *pstatus = CFVS_OK;
2881 return value;
2882 }
2883
2884 // Finalize the symbol SYM. This returns true if the symbol should be
2885 // added to the symbol table, false otherwise.
2886
2887 template<int size>
2888 bool
2889 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2890 {
2891 typedef typename Sized_symbol<size>::Value_type Value_type;
2892
2893 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2894
2895 // The default version of a symbol may appear twice in the symbol
2896 // table. We only need to finalize it once.
2897 if (sym->has_symtab_index())
2898 return false;
2899
2900 if (!sym->in_reg())
2901 {
2902 gold_assert(!sym->has_symtab_index());
2903 sym->set_symtab_index(-1U);
2904 gold_assert(sym->dynsym_index() == -1U);
2905 return false;
2906 }
2907
2908 // If the symbol is only present on plugin files, the plugin decided we
2909 // don't need it.
2910 if (!sym->in_real_elf())
2911 {
2912 gold_assert(!sym->has_symtab_index());
2913 sym->set_symtab_index(-1U);
2914 return false;
2915 }
2916
2917 // Compute final symbol value.
2918 Compute_final_value_status status;
2919 Value_type value = this->compute_final_value(sym, &status);
2920
2921 switch (status)
2922 {
2923 case CFVS_OK:
2924 break;
2925 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2926 {
2927 bool is_ordinary;
2928 unsigned int shndx = sym->shndx(&is_ordinary);
2929 gold_error(_("%s: unsupported symbol section 0x%x"),
2930 sym->demangled_name().c_str(), shndx);
2931 }
2932 break;
2933 case CFVS_NO_OUTPUT_SECTION:
2934 sym->set_symtab_index(-1U);
2935 return false;
2936 default:
2937 gold_unreachable();
2938 }
2939
2940 sym->set_value(value);
2941
2942 if (parameters->options().strip_all()
2943 || !parameters->options().should_retain_symbol(sym->name()))
2944 {
2945 sym->set_symtab_index(-1U);
2946 return false;
2947 }
2948
2949 return true;
2950 }
2951
2952 // Write out the global symbols.
2953
2954 void
2955 Symbol_table::write_globals(const Stringpool* sympool,
2956 const Stringpool* dynpool,
2957 Output_symtab_xindex* symtab_xindex,
2958 Output_symtab_xindex* dynsym_xindex,
2959 Output_file* of) const
2960 {
2961 switch (parameters->size_and_endianness())
2962 {
2963 #ifdef HAVE_TARGET_32_LITTLE
2964 case Parameters::TARGET_32_LITTLE:
2965 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2966 dynsym_xindex, of);
2967 break;
2968 #endif
2969 #ifdef HAVE_TARGET_32_BIG
2970 case Parameters::TARGET_32_BIG:
2971 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2972 dynsym_xindex, of);
2973 break;
2974 #endif
2975 #ifdef HAVE_TARGET_64_LITTLE
2976 case Parameters::TARGET_64_LITTLE:
2977 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2978 dynsym_xindex, of);
2979 break;
2980 #endif
2981 #ifdef HAVE_TARGET_64_BIG
2982 case Parameters::TARGET_64_BIG:
2983 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2984 dynsym_xindex, of);
2985 break;
2986 #endif
2987 default:
2988 gold_unreachable();
2989 }
2990 }
2991
2992 // Write out the global symbols.
2993
2994 template<int size, bool big_endian>
2995 void
2996 Symbol_table::sized_write_globals(const Stringpool* sympool,
2997 const Stringpool* dynpool,
2998 Output_symtab_xindex* symtab_xindex,
2999 Output_symtab_xindex* dynsym_xindex,
3000 Output_file* of) const
3001 {
3002 const Target& target = parameters->target();
3003
3004 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3005
3006 const unsigned int output_count = this->output_count_;
3007 const section_size_type oview_size = output_count * sym_size;
3008 const unsigned int first_global_index = this->first_global_index_;
3009 unsigned char* psyms;
3010 if (this->offset_ == 0 || output_count == 0)
3011 psyms = NULL;
3012 else
3013 psyms = of->get_output_view(this->offset_, oview_size);
3014
3015 const unsigned int dynamic_count = this->dynamic_count_;
3016 const section_size_type dynamic_size = dynamic_count * sym_size;
3017 const unsigned int first_dynamic_global_index =
3018 this->first_dynamic_global_index_;
3019 unsigned char* dynamic_view;
3020 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3021 dynamic_view = NULL;
3022 else
3023 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3024
3025 for (Symbol_table_type::const_iterator p = this->table_.begin();
3026 p != this->table_.end();
3027 ++p)
3028 {
3029 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3030
3031 // Possibly warn about unresolved symbols in shared libraries.
3032 this->warn_about_undefined_dynobj_symbol(sym);
3033
3034 unsigned int sym_index = sym->symtab_index();
3035 unsigned int dynsym_index;
3036 if (dynamic_view == NULL)
3037 dynsym_index = -1U;
3038 else
3039 dynsym_index = sym->dynsym_index();
3040
3041 if (sym_index == -1U && dynsym_index == -1U)
3042 {
3043 // This symbol is not included in the output file.
3044 continue;
3045 }
3046
3047 unsigned int shndx;
3048 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3049 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3050 elfcpp::STB binding = sym->binding();
3051
3052 // If --weak-unresolved-symbols is set, change binding of unresolved
3053 // global symbols to STB_WEAK.
3054 if (parameters->options().weak_unresolved_symbols()
3055 && binding == elfcpp::STB_GLOBAL
3056 && sym->is_undefined())
3057 binding = elfcpp::STB_WEAK;
3058
3059 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3060 if (binding == elfcpp::STB_GNU_UNIQUE
3061 && !parameters->options().gnu_unique())
3062 binding = elfcpp::STB_GLOBAL;
3063
3064 switch (sym->source())
3065 {
3066 case Symbol::FROM_OBJECT:
3067 {
3068 bool is_ordinary;
3069 unsigned int in_shndx = sym->shndx(&is_ordinary);
3070
3071 if (!is_ordinary
3072 && in_shndx != elfcpp::SHN_ABS
3073 && !Symbol::is_common_shndx(in_shndx))
3074 {
3075 gold_error(_("%s: unsupported symbol section 0x%x"),
3076 sym->demangled_name().c_str(), in_shndx);
3077 shndx = in_shndx;
3078 }
3079 else
3080 {
3081 Object* symobj = sym->object();
3082 if (symobj->is_dynamic())
3083 {
3084 if (sym->needs_dynsym_value())
3085 dynsym_value = target.dynsym_value(sym);
3086 shndx = elfcpp::SHN_UNDEF;
3087 if (sym->is_undef_binding_weak())
3088 binding = elfcpp::STB_WEAK;
3089 else
3090 binding = elfcpp::STB_GLOBAL;
3091 }
3092 else if (symobj->pluginobj() != NULL)
3093 shndx = elfcpp::SHN_UNDEF;
3094 else if (in_shndx == elfcpp::SHN_UNDEF
3095 || (!is_ordinary
3096 && (in_shndx == elfcpp::SHN_ABS
3097 || Symbol::is_common_shndx(in_shndx))))
3098 shndx = in_shndx;
3099 else
3100 {
3101 Relobj* relobj = static_cast<Relobj*>(symobj);
3102 Output_section* os = relobj->output_section(in_shndx);
3103 if (this->is_section_folded(relobj, in_shndx))
3104 {
3105 // This global symbol must be written out even though
3106 // it is folded.
3107 // Get the os of the section it is folded onto.
3108 Section_id folded =
3109 this->icf_->get_folded_section(relobj, in_shndx);
3110 gold_assert(folded.first !=NULL);
3111 Relobj* folded_obj =
3112 reinterpret_cast<Relobj*>(folded.first);
3113 os = folded_obj->output_section(folded.second);
3114 gold_assert(os != NULL);
3115 }
3116 gold_assert(os != NULL);
3117 shndx = os->out_shndx();
3118
3119 if (shndx >= elfcpp::SHN_LORESERVE)
3120 {
3121 if (sym_index != -1U)
3122 symtab_xindex->add(sym_index, shndx);
3123 if (dynsym_index != -1U)
3124 dynsym_xindex->add(dynsym_index, shndx);
3125 shndx = elfcpp::SHN_XINDEX;
3126 }
3127
3128 // In object files symbol values are section
3129 // relative.
3130 if (parameters->options().relocatable())
3131 sym_value -= os->address();
3132 }
3133 }
3134 }
3135 break;
3136
3137 case Symbol::IN_OUTPUT_DATA:
3138 {
3139 Output_data* od = sym->output_data();
3140
3141 shndx = od->out_shndx();
3142 if (shndx >= elfcpp::SHN_LORESERVE)
3143 {
3144 if (sym_index != -1U)
3145 symtab_xindex->add(sym_index, shndx);
3146 if (dynsym_index != -1U)
3147 dynsym_xindex->add(dynsym_index, shndx);
3148 shndx = elfcpp::SHN_XINDEX;
3149 }
3150
3151 // In object files symbol values are section
3152 // relative.
3153 if (parameters->options().relocatable())
3154 {
3155 Output_section* os = od->output_section();
3156 gold_assert(os != NULL);
3157 sym_value -= os->address();
3158 }
3159 }
3160 break;
3161
3162 case Symbol::IN_OUTPUT_SEGMENT:
3163 {
3164 Output_segment* oseg = sym->output_segment();
3165 Output_section* osect = oseg->first_section();
3166 if (osect == NULL)
3167 shndx = elfcpp::SHN_ABS;
3168 else
3169 shndx = osect->out_shndx();
3170 }
3171 break;
3172
3173 case Symbol::IS_CONSTANT:
3174 shndx = elfcpp::SHN_ABS;
3175 break;
3176
3177 case Symbol::IS_UNDEFINED:
3178 shndx = elfcpp::SHN_UNDEF;
3179 break;
3180
3181 default:
3182 gold_unreachable();
3183 }
3184
3185 if (sym_index != -1U)
3186 {
3187 sym_index -= first_global_index;
3188 gold_assert(sym_index < output_count);
3189 unsigned char* ps = psyms + (sym_index * sym_size);
3190 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3191 binding, sympool, ps);
3192 }
3193
3194 if (dynsym_index != -1U)
3195 {
3196 dynsym_index -= first_dynamic_global_index;
3197 gold_assert(dynsym_index < dynamic_count);
3198 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3199 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3200 binding, dynpool, pd);
3201 // Allow a target to adjust dynamic symbol value.
3202 parameters->target().adjust_dyn_symbol(sym, pd);
3203 }
3204 }
3205
3206 // Write the target-specific symbols.
3207 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3208 p != this->target_symbols_.end();
3209 ++p)
3210 {
3211 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3212
3213 unsigned int sym_index = sym->symtab_index();
3214 unsigned int dynsym_index;
3215 if (dynamic_view == NULL)
3216 dynsym_index = -1U;
3217 else
3218 dynsym_index = sym->dynsym_index();
3219
3220 unsigned int shndx;
3221 switch (sym->source())
3222 {
3223 case Symbol::IS_CONSTANT:
3224 shndx = elfcpp::SHN_ABS;
3225 break;
3226 case Symbol::IS_UNDEFINED:
3227 shndx = elfcpp::SHN_UNDEF;
3228 break;
3229 default:
3230 gold_unreachable();
3231 }
3232
3233 if (sym_index != -1U)
3234 {
3235 sym_index -= first_global_index;
3236 gold_assert(sym_index < output_count);
3237 unsigned char* ps = psyms + (sym_index * sym_size);
3238 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3239 sym->binding(), sympool,
3240 ps);
3241 }
3242
3243 if (dynsym_index != -1U)
3244 {
3245 dynsym_index -= first_dynamic_global_index;
3246 gold_assert(dynsym_index < dynamic_count);
3247 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3248 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3249 sym->binding(), dynpool,
3250 pd);
3251 }
3252 }
3253
3254 of->write_output_view(this->offset_, oview_size, psyms);
3255 if (dynamic_view != NULL)
3256 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3257 }
3258
3259 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3260 // strtab holding the name.
3261
3262 template<int size, bool big_endian>
3263 void
3264 Symbol_table::sized_write_symbol(
3265 Sized_symbol<size>* sym,
3266 typename elfcpp::Elf_types<size>::Elf_Addr value,
3267 unsigned int shndx,
3268 elfcpp::STB binding,
3269 const Stringpool* pool,
3270 unsigned char* p) const
3271 {
3272 elfcpp::Sym_write<size, big_endian> osym(p);
3273 if (sym->version() == NULL || !parameters->options().relocatable())
3274 osym.put_st_name(pool->get_offset(sym->name()));
3275 else
3276 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3277 osym.put_st_value(value);
3278 // Use a symbol size of zero for undefined symbols from shared libraries.
3279 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3280 osym.put_st_size(0);
3281 else
3282 osym.put_st_size(sym->symsize());
3283 elfcpp::STT type = sym->type();
3284 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3285 // A version script may have overridden the default binding.
3286 if (sym->is_forced_local())
3287 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3288 else
3289 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3290 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3291 osym.put_st_shndx(shndx);
3292 }
3293
3294 // Check for unresolved symbols in shared libraries. This is
3295 // controlled by the --allow-shlib-undefined option.
3296
3297 // We only warn about libraries for which we have seen all the
3298 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3299 // which were not seen in this link. If we didn't see a DT_NEEDED
3300 // entry, we aren't going to be able to reliably report whether the
3301 // symbol is undefined.
3302
3303 // We also don't warn about libraries found in a system library
3304 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3305 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3306 // can have undefined references satisfied by ld-linux.so.
3307
3308 inline void
3309 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3310 {
3311 bool dummy;
3312 if (sym->source() == Symbol::FROM_OBJECT
3313 && sym->object()->is_dynamic()
3314 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3315 && sym->binding() != elfcpp::STB_WEAK
3316 && !parameters->options().allow_shlib_undefined()
3317 && !parameters->target().is_defined_by_abi(sym)
3318 && !sym->object()->is_in_system_directory())
3319 {
3320 // A very ugly cast.
3321 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3322 if (!dynobj->has_unknown_needed_entries())
3323 gold_undefined_symbol(sym);
3324 }
3325 }
3326
3327 // Write out a section symbol. Return the update offset.
3328
3329 void
3330 Symbol_table::write_section_symbol(const Output_section* os,
3331 Output_symtab_xindex* symtab_xindex,
3332 Output_file* of,
3333 off_t offset) const
3334 {
3335 switch (parameters->size_and_endianness())
3336 {
3337 #ifdef HAVE_TARGET_32_LITTLE
3338 case Parameters::TARGET_32_LITTLE:
3339 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3340 offset);
3341 break;
3342 #endif
3343 #ifdef HAVE_TARGET_32_BIG
3344 case Parameters::TARGET_32_BIG:
3345 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3346 offset);
3347 break;
3348 #endif
3349 #ifdef HAVE_TARGET_64_LITTLE
3350 case Parameters::TARGET_64_LITTLE:
3351 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3352 offset);
3353 break;
3354 #endif
3355 #ifdef HAVE_TARGET_64_BIG
3356 case Parameters::TARGET_64_BIG:
3357 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3358 offset);
3359 break;
3360 #endif
3361 default:
3362 gold_unreachable();
3363 }
3364 }
3365
3366 // Write out a section symbol, specialized for size and endianness.
3367
3368 template<int size, bool big_endian>
3369 void
3370 Symbol_table::sized_write_section_symbol(const Output_section* os,
3371 Output_symtab_xindex* symtab_xindex,
3372 Output_file* of,
3373 off_t offset) const
3374 {
3375 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3376
3377 unsigned char* pov = of->get_output_view(offset, sym_size);
3378
3379 elfcpp::Sym_write<size, big_endian> osym(pov);
3380 osym.put_st_name(0);
3381 if (parameters->options().relocatable())
3382 osym.put_st_value(0);
3383 else
3384 osym.put_st_value(os->address());
3385 osym.put_st_size(0);
3386 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3387 elfcpp::STT_SECTION));
3388 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3389
3390 unsigned int shndx = os->out_shndx();
3391 if (shndx >= elfcpp::SHN_LORESERVE)
3392 {
3393 symtab_xindex->add(os->symtab_index(), shndx);
3394 shndx = elfcpp::SHN_XINDEX;
3395 }
3396 osym.put_st_shndx(shndx);
3397
3398 of->write_output_view(offset, sym_size, pov);
3399 }
3400
3401 // Print statistical information to stderr. This is used for --stats.
3402
3403 void
3404 Symbol_table::print_stats() const
3405 {
3406 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3407 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3408 program_name, this->table_.size(), this->table_.bucket_count());
3409 #else
3410 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3411 program_name, this->table_.size());
3412 #endif
3413 this->namepool_.print_stats("symbol table stringpool");
3414 }
3415
3416 // We check for ODR violations by looking for symbols with the same
3417 // name for which the debugging information reports that they were
3418 // defined in disjoint source locations. When comparing the source
3419 // location, we consider instances with the same base filename to be
3420 // the same. This is because different object files/shared libraries
3421 // can include the same header file using different paths, and
3422 // different optimization settings can make the line number appear to
3423 // be a couple lines off, and we don't want to report an ODR violation
3424 // in those cases.
3425
3426 // This struct is used to compare line information, as returned by
3427 // Dwarf_line_info::one_addr2line. It implements a < comparison
3428 // operator used with std::sort.
3429
3430 struct Odr_violation_compare
3431 {
3432 bool
3433 operator()(const std::string& s1, const std::string& s2) const
3434 {
3435 // Inputs should be of the form "dirname/filename:linenum" where
3436 // "dirname/" is optional. We want to compare just the filename:linenum.
3437
3438 // Find the last '/' in each string.
3439 std::string::size_type s1begin = s1.rfind('/');
3440 std::string::size_type s2begin = s2.rfind('/');
3441 // If there was no '/' in a string, start at the beginning.
3442 if (s1begin == std::string::npos)
3443 s1begin = 0;
3444 if (s2begin == std::string::npos)
3445 s2begin = 0;
3446 return s1.compare(s1begin, std::string::npos,
3447 s2, s2begin, std::string::npos) < 0;
3448 }
3449 };
3450
3451 // Returns all of the lines attached to LOC, not just the one the
3452 // instruction actually came from.
3453 std::vector<std::string>
3454 Symbol_table::linenos_from_loc(const Task* task,
3455 const Symbol_location& loc)
3456 {
3457 // We need to lock the object in order to read it. This
3458 // means that we have to run in a singleton Task. If we
3459 // want to run this in a general Task for better
3460 // performance, we will need one Task for object, plus
3461 // appropriate locking to ensure that we don't conflict with
3462 // other uses of the object. Also note, one_addr2line is not
3463 // currently thread-safe.
3464 Task_lock_obj<Object> tl(task, loc.object);
3465
3466 std::vector<std::string> result;
3467 Symbol_location code_loc = loc;
3468 parameters->target().function_location(&code_loc);
3469 // 16 is the size of the object-cache that one_addr2line should use.
3470 std::string canonical_result = Dwarf_line_info::one_addr2line(
3471 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3472 if (!canonical_result.empty())
3473 result.push_back(canonical_result);
3474 return result;
3475 }
3476
3477 // OutputIterator that records if it was ever assigned to. This
3478 // allows it to be used with std::set_intersection() to check for
3479 // intersection rather than computing the intersection.
3480 struct Check_intersection
3481 {
3482 Check_intersection()
3483 : value_(false)
3484 {}
3485
3486 bool had_intersection() const
3487 { return this->value_; }
3488
3489 Check_intersection& operator++()
3490 { return *this; }
3491
3492 Check_intersection& operator*()
3493 { return *this; }
3494
3495 template<typename T>
3496 Check_intersection& operator=(const T&)
3497 {
3498 this->value_ = true;
3499 return *this;
3500 }
3501
3502 private:
3503 bool value_;
3504 };
3505
3506 // Check candidate_odr_violations_ to find symbols with the same name
3507 // but apparently different definitions (different source-file/line-no
3508 // for each line assigned to the first instruction).
3509
3510 void
3511 Symbol_table::detect_odr_violations(const Task* task,
3512 const char* output_file_name) const
3513 {
3514 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3515 it != candidate_odr_violations_.end();
3516 ++it)
3517 {
3518 const char* const symbol_name = it->first;
3519
3520 std::string first_object_name;
3521 std::vector<std::string> first_object_linenos;
3522
3523 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3524 locs = it->second.begin();
3525 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3526 locs_end = it->second.end();
3527 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3528 {
3529 // Save the line numbers from the first definition to
3530 // compare to the other definitions. Ideally, we'd compare
3531 // every definition to every other, but we don't want to
3532 // take O(N^2) time to do this. This shortcut may cause
3533 // false negatives that appear or disappear depending on the
3534 // link order, but it won't cause false positives.
3535 first_object_name = locs->object->name();
3536 first_object_linenos = this->linenos_from_loc(task, *locs);
3537 }
3538 if (first_object_linenos.empty())
3539 continue;
3540
3541 // Sort by Odr_violation_compare to make std::set_intersection work.
3542 std::string first_object_canonical_result = first_object_linenos.back();
3543 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3544 Odr_violation_compare());
3545
3546 for (; locs != locs_end; ++locs)
3547 {
3548 std::vector<std::string> linenos =
3549 this->linenos_from_loc(task, *locs);
3550 // linenos will be empty if we couldn't parse the debug info.
3551 if (linenos.empty())
3552 continue;
3553 // Sort by Odr_violation_compare to make std::set_intersection work.
3554 gold_assert(!linenos.empty());
3555 std::string second_object_canonical_result = linenos.back();
3556 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3557
3558 Check_intersection intersection_result =
3559 std::set_intersection(first_object_linenos.begin(),
3560 first_object_linenos.end(),
3561 linenos.begin(),
3562 linenos.end(),
3563 Check_intersection(),
3564 Odr_violation_compare());
3565 if (!intersection_result.had_intersection())
3566 {
3567 gold_warning(_("while linking %s: symbol '%s' defined in "
3568 "multiple places (possible ODR violation):"),
3569 output_file_name, demangle(symbol_name).c_str());
3570 // This only prints one location from each definition,
3571 // which may not be the location we expect to intersect
3572 // with another definition. We could print the whole
3573 // set of locations, but that seems too verbose.
3574 fprintf(stderr, _(" %s from %s\n"),
3575 first_object_canonical_result.c_str(),
3576 first_object_name.c_str());
3577 fprintf(stderr, _(" %s from %s\n"),
3578 second_object_canonical_result.c_str(),
3579 locs->object->name().c_str());
3580 // Only print one broken pair, to avoid needing to
3581 // compare against a list of the disjoint definition
3582 // locations we've found so far. (If we kept comparing
3583 // against just the first one, we'd get a lot of
3584 // redundant complaints about the second definition
3585 // location.)
3586 break;
3587 }
3588 }
3589 }
3590 // We only call one_addr2line() in this function, so we can clear its cache.
3591 Dwarf_line_info::clear_addr2line_cache();
3592 }
3593
3594 // Warnings functions.
3595
3596 // Add a new warning.
3597
3598 void
3599 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3600 const std::string& warning)
3601 {
3602 name = symtab->canonicalize_name(name);
3603 this->warnings_[name].set(obj, warning);
3604 }
3605
3606 // Look through the warnings and mark the symbols for which we should
3607 // warn. This is called during Layout::finalize when we know the
3608 // sources for all the symbols.
3609
3610 void
3611 Warnings::note_warnings(Symbol_table* symtab)
3612 {
3613 for (Warning_table::iterator p = this->warnings_.begin();
3614 p != this->warnings_.end();
3615 ++p)
3616 {
3617 Symbol* sym = symtab->lookup(p->first, NULL);
3618 if (sym != NULL
3619 && sym->source() == Symbol::FROM_OBJECT
3620 && sym->object() == p->second.object)
3621 sym->set_has_warning();
3622 }
3623 }
3624
3625 // Issue a warning. This is called when we see a relocation against a
3626 // symbol for which has a warning.
3627
3628 template<int size, bool big_endian>
3629 void
3630 Warnings::issue_warning(const Symbol* sym,
3631 const Relocate_info<size, big_endian>* relinfo,
3632 size_t relnum, off_t reloffset) const
3633 {
3634 gold_assert(sym->has_warning());
3635
3636 // We don't want to issue a warning for a relocation against the
3637 // symbol in the same object file in which the symbol is defined.
3638 if (sym->object() == relinfo->object)
3639 return;
3640
3641 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3642 gold_assert(p != this->warnings_.end());
3643 gold_warning_at_location(relinfo, relnum, reloffset,
3644 "%s", p->second.text.c_str());
3645 }
3646
3647 // Instantiate the templates we need. We could use the configure
3648 // script to restrict this to only the ones needed for implemented
3649 // targets.
3650
3651 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3652 template
3653 void
3654 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3655 #endif
3656
3657 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3658 template
3659 void
3660 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3661 #endif
3662
3663 #ifdef HAVE_TARGET_32_LITTLE
3664 template
3665 void
3666 Symbol_table::add_from_relobj<32, false>(
3667 Sized_relobj_file<32, false>* relobj,
3668 const unsigned char* syms,
3669 size_t count,
3670 size_t symndx_offset,
3671 const char* sym_names,
3672 size_t sym_name_size,
3673 Sized_relobj_file<32, false>::Symbols* sympointers,
3674 size_t* defined);
3675 #endif
3676
3677 #ifdef HAVE_TARGET_32_BIG
3678 template
3679 void
3680 Symbol_table::add_from_relobj<32, true>(
3681 Sized_relobj_file<32, true>* relobj,
3682 const unsigned char* syms,
3683 size_t count,
3684 size_t symndx_offset,
3685 const char* sym_names,
3686 size_t sym_name_size,
3687 Sized_relobj_file<32, true>::Symbols* sympointers,
3688 size_t* defined);
3689 #endif
3690
3691 #ifdef HAVE_TARGET_64_LITTLE
3692 template
3693 void
3694 Symbol_table::add_from_relobj<64, false>(
3695 Sized_relobj_file<64, false>* relobj,
3696 const unsigned char* syms,
3697 size_t count,
3698 size_t symndx_offset,
3699 const char* sym_names,
3700 size_t sym_name_size,
3701 Sized_relobj_file<64, false>::Symbols* sympointers,
3702 size_t* defined);
3703 #endif
3704
3705 #ifdef HAVE_TARGET_64_BIG
3706 template
3707 void
3708 Symbol_table::add_from_relobj<64, true>(
3709 Sized_relobj_file<64, true>* relobj,
3710 const unsigned char* syms,
3711 size_t count,
3712 size_t symndx_offset,
3713 const char* sym_names,
3714 size_t sym_name_size,
3715 Sized_relobj_file<64, true>::Symbols* sympointers,
3716 size_t* defined);
3717 #endif
3718
3719 #ifdef HAVE_TARGET_32_LITTLE
3720 template
3721 Symbol*
3722 Symbol_table::add_from_pluginobj<32, false>(
3723 Sized_pluginobj<32, false>* obj,
3724 const char* name,
3725 const char* ver,
3726 elfcpp::Sym<32, false>* sym);
3727 #endif
3728
3729 #ifdef HAVE_TARGET_32_BIG
3730 template
3731 Symbol*
3732 Symbol_table::add_from_pluginobj<32, true>(
3733 Sized_pluginobj<32, true>* obj,
3734 const char* name,
3735 const char* ver,
3736 elfcpp::Sym<32, true>* sym);
3737 #endif
3738
3739 #ifdef HAVE_TARGET_64_LITTLE
3740 template
3741 Symbol*
3742 Symbol_table::add_from_pluginobj<64, false>(
3743 Sized_pluginobj<64, false>* obj,
3744 const char* name,
3745 const char* ver,
3746 elfcpp::Sym<64, false>* sym);
3747 #endif
3748
3749 #ifdef HAVE_TARGET_64_BIG
3750 template
3751 Symbol*
3752 Symbol_table::add_from_pluginobj<64, true>(
3753 Sized_pluginobj<64, true>* obj,
3754 const char* name,
3755 const char* ver,
3756 elfcpp::Sym<64, true>* sym);
3757 #endif
3758
3759 #ifdef HAVE_TARGET_32_LITTLE
3760 template
3761 void
3762 Symbol_table::add_from_dynobj<32, false>(
3763 Sized_dynobj<32, false>* dynobj,
3764 const unsigned char* syms,
3765 size_t count,
3766 const char* sym_names,
3767 size_t sym_name_size,
3768 const unsigned char* versym,
3769 size_t versym_size,
3770 const std::vector<const char*>* version_map,
3771 Sized_relobj_file<32, false>::Symbols* sympointers,
3772 size_t* defined);
3773 #endif
3774
3775 #ifdef HAVE_TARGET_32_BIG
3776 template
3777 void
3778 Symbol_table::add_from_dynobj<32, true>(
3779 Sized_dynobj<32, true>* dynobj,
3780 const unsigned char* syms,
3781 size_t count,
3782 const char* sym_names,
3783 size_t sym_name_size,
3784 const unsigned char* versym,
3785 size_t versym_size,
3786 const std::vector<const char*>* version_map,
3787 Sized_relobj_file<32, true>::Symbols* sympointers,
3788 size_t* defined);
3789 #endif
3790
3791 #ifdef HAVE_TARGET_64_LITTLE
3792 template
3793 void
3794 Symbol_table::add_from_dynobj<64, false>(
3795 Sized_dynobj<64, false>* dynobj,
3796 const unsigned char* syms,
3797 size_t count,
3798 const char* sym_names,
3799 size_t sym_name_size,
3800 const unsigned char* versym,
3801 size_t versym_size,
3802 const std::vector<const char*>* version_map,
3803 Sized_relobj_file<64, false>::Symbols* sympointers,
3804 size_t* defined);
3805 #endif
3806
3807 #ifdef HAVE_TARGET_64_BIG
3808 template
3809 void
3810 Symbol_table::add_from_dynobj<64, true>(
3811 Sized_dynobj<64, true>* dynobj,
3812 const unsigned char* syms,
3813 size_t count,
3814 const char* sym_names,
3815 size_t sym_name_size,
3816 const unsigned char* versym,
3817 size_t versym_size,
3818 const std::vector<const char*>* version_map,
3819 Sized_relobj_file<64, true>::Symbols* sympointers,
3820 size_t* defined);
3821 #endif
3822
3823 #ifdef HAVE_TARGET_32_LITTLE
3824 template
3825 Sized_symbol<32>*
3826 Symbol_table::add_from_incrobj(
3827 Object* obj,
3828 const char* name,
3829 const char* ver,
3830 elfcpp::Sym<32, false>* sym);
3831 #endif
3832
3833 #ifdef HAVE_TARGET_32_BIG
3834 template
3835 Sized_symbol<32>*
3836 Symbol_table::add_from_incrobj(
3837 Object* obj,
3838 const char* name,
3839 const char* ver,
3840 elfcpp::Sym<32, true>* sym);
3841 #endif
3842
3843 #ifdef HAVE_TARGET_64_LITTLE
3844 template
3845 Sized_symbol<64>*
3846 Symbol_table::add_from_incrobj(
3847 Object* obj,
3848 const char* name,
3849 const char* ver,
3850 elfcpp::Sym<64, false>* sym);
3851 #endif
3852
3853 #ifdef HAVE_TARGET_64_BIG
3854 template
3855 Sized_symbol<64>*
3856 Symbol_table::add_from_incrobj(
3857 Object* obj,
3858 const char* name,
3859 const char* ver,
3860 elfcpp::Sym<64, true>* sym);
3861 #endif
3862
3863 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3864 template
3865 void
3866 Symbol_table::define_with_copy_reloc<32>(
3867 Sized_symbol<32>* sym,
3868 Output_data* posd,
3869 elfcpp::Elf_types<32>::Elf_Addr value);
3870 #endif
3871
3872 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3873 template
3874 void
3875 Symbol_table::define_with_copy_reloc<64>(
3876 Sized_symbol<64>* sym,
3877 Output_data* posd,
3878 elfcpp::Elf_types<64>::Elf_Addr value);
3879 #endif
3880
3881 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3882 template
3883 void
3884 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3885 Output_data* od, Value_type value,
3886 Size_type symsize, elfcpp::STT type,
3887 elfcpp::STB binding,
3888 elfcpp::STV visibility,
3889 unsigned char nonvis,
3890 bool offset_is_from_end,
3891 bool is_predefined);
3892
3893 template
3894 void
3895 Sized_symbol<32>::init_constant(const char* name, const char* version,
3896 Value_type value, Size_type symsize,
3897 elfcpp::STT type, elfcpp::STB binding,
3898 elfcpp::STV visibility, unsigned char nonvis,
3899 bool is_predefined);
3900
3901 template
3902 void
3903 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3904 Value_type value, elfcpp::STT type,
3905 elfcpp::STB binding, elfcpp::STV visibility,
3906 unsigned char nonvis);
3907 #endif
3908
3909 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3910 template
3911 void
3912 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3913 Output_data* od, Value_type value,
3914 Size_type symsize, elfcpp::STT type,
3915 elfcpp::STB binding,
3916 elfcpp::STV visibility,
3917 unsigned char nonvis,
3918 bool offset_is_from_end,
3919 bool is_predefined);
3920
3921 template
3922 void
3923 Sized_symbol<64>::init_constant(const char* name, const char* version,
3924 Value_type value, Size_type symsize,
3925 elfcpp::STT type, elfcpp::STB binding,
3926 elfcpp::STV visibility, unsigned char nonvis,
3927 bool is_predefined);
3928
3929 template
3930 void
3931 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3932 Value_type value, elfcpp::STT type,
3933 elfcpp::STB binding, elfcpp::STV visibility,
3934 unsigned char nonvis);
3935 #endif
3936
3937 #ifdef HAVE_TARGET_32_LITTLE
3938 template
3939 void
3940 Warnings::issue_warning<32, false>(const Symbol* sym,
3941 const Relocate_info<32, false>* relinfo,
3942 size_t relnum, off_t reloffset) const;
3943 #endif
3944
3945 #ifdef HAVE_TARGET_32_BIG
3946 template
3947 void
3948 Warnings::issue_warning<32, true>(const Symbol* sym,
3949 const Relocate_info<32, true>* relinfo,
3950 size_t relnum, off_t reloffset) const;
3951 #endif
3952
3953 #ifdef HAVE_TARGET_64_LITTLE
3954 template
3955 void
3956 Warnings::issue_warning<64, false>(const Symbol* sym,
3957 const Relocate_info<64, false>* relinfo,
3958 size_t relnum, off_t reloffset) const;
3959 #endif
3960
3961 #ifdef HAVE_TARGET_64_BIG
3962 template
3963 void
3964 Warnings::issue_warning<64, true>(const Symbol* sym,
3965 const Relocate_info<64, true>* relinfo,
3966 size_t relnum, off_t reloffset) const;
3967 #endif
3968
3969 } // End namespace gold.
This page took 0.111681 seconds and 5 git commands to generate.