Fix internal error caused by IFUNC patch.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // or the symbol should be globally unique (GNU_UNIQUE),
423 // and the symbol is defined in a regular object and is
424 // externally visible, we need to add it.
425 if ((parameters->options().export_dynamic()
426 || parameters->options().shared()
427 || (parameters->options().gnu_unique()
428 && this->binding() == elfcpp::STB_GNU_UNIQUE))
429 && !this->is_from_dynobj()
430 && !this->is_undefined()
431 && this->is_externally_visible())
432 return true;
433
434 return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443 // If we are not generating an executable, then no final values are
444 // known, since they will change at runtime, with the exception of
445 // TLS symbols in a position-independent executable.
446 if ((parameters->options().output_is_position_independent()
447 || parameters->options().relocatable())
448 && !(this->type() == elfcpp::STT_TLS
449 && parameters->options().pie()))
450 return false;
451
452 // If the symbol is not from an object file, and is not undefined,
453 // then it is defined, and known.
454 if (this->source_ != FROM_OBJECT)
455 {
456 if (this->source_ != IS_UNDEFINED)
457 return true;
458 }
459 else
460 {
461 // If the symbol is from a dynamic object, then the final value
462 // is not known.
463 if (this->object()->is_dynamic())
464 return false;
465
466 // If the symbol is not undefined (it is defined or common),
467 // then the final value is known.
468 if (!this->is_undefined())
469 return true;
470 }
471
472 // If the symbol is undefined, then whether the final value is known
473 // depends on whether we are doing a static link. If we are doing a
474 // dynamic link, then the final value could be filled in at runtime.
475 // This could reasonably be the case for a weak undefined symbol.
476 return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484 switch (this->source_)
485 {
486 case FROM_OBJECT:
487 {
488 unsigned int shndx = this->u_.from_object.shndx;
489 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490 {
491 gold_assert(!this->u_.from_object.object->is_dynamic());
492 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494 return relobj->output_section(shndx);
495 }
496 return NULL;
497 }
498
499 case IN_OUTPUT_DATA:
500 return this->u_.in_output_data.output_data->output_section();
501
502 case IN_OUTPUT_SEGMENT:
503 case IS_CONSTANT:
504 case IS_UNDEFINED:
505 return NULL;
506
507 default:
508 gold_unreachable();
509 }
510 }
511
512 // Set the symbol's output section. This is used for symbols defined
513 // in scripts. This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519 switch (this->source_)
520 {
521 case FROM_OBJECT:
522 case IN_OUTPUT_DATA:
523 gold_assert(this->output_section() == os);
524 break;
525 case IS_CONSTANT:
526 this->source_ = IN_OUTPUT_DATA;
527 this->u_.in_output_data.output_data = os;
528 this->u_.in_output_data.offset_is_from_end = false;
529 break;
530 case IN_OUTPUT_SEGMENT:
531 case IS_UNDEFINED:
532 default:
533 gold_unreachable();
534 }
535 }
536
537 // Set the symbol's output segment. This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544 gold_assert(this->is_predefined_);
545 this->source_ = IN_OUTPUT_SEGMENT;
546 this->u_.in_output_segment.output_segment = os;
547 this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined. This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557 this->source_ = IS_UNDEFINED;
558 this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564 const Version_script_info& version_script)
565 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566 forwarders_(), commons_(), tls_commons_(), small_commons_(),
567 large_commons_(), forced_locals_(), warnings_(),
568 version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570 namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function. This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582 const Symbol_table_key& k2) const
583 {
584 return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590 return (parameters->options().icf_enabled()
591 && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600 for (options::String_set::const_iterator p =
601 parameters->options().undefined_begin();
602 p != parameters->options().undefined_end();
603 ++p)
604 {
605 const char* name = p->c_str();
606 Symbol* sym = this->lookup(name);
607 gold_assert(sym != NULL);
608 if (sym->source() == Symbol::FROM_OBJECT
609 && !sym->object()->is_dynamic())
610 {
611 this->gc_mark_symbol(sym);
612 }
613 }
614
615 for (options::String_set::const_iterator p =
616 parameters->options().export_dynamic_symbol_begin();
617 p != parameters->options().export_dynamic_symbol_end();
618 ++p)
619 {
620 const char* name = p->c_str();
621 Symbol* sym = this->lookup(name);
622 // It's not an error if a symbol named by --export-dynamic-symbol
623 // is undefined.
624 if (sym != NULL
625 && sym->source() == Symbol::FROM_OBJECT
626 && !sym->object()->is_dynamic())
627 {
628 this->gc_mark_symbol(sym);
629 }
630 }
631
632 for (Script_options::referenced_const_iterator p =
633 layout->script_options()->referenced_begin();
634 p != layout->script_options()->referenced_end();
635 ++p)
636 {
637 Symbol* sym = this->lookup(p->c_str());
638 gold_assert(sym != NULL);
639 if (sym->source() == Symbol::FROM_OBJECT
640 && !sym->object()->is_dynamic())
641 {
642 this->gc_mark_symbol(sym);
643 }
644 }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650 // Add the object and section to the work list.
651 bool is_ordinary;
652 unsigned int shndx = sym->shndx(&is_ordinary);
653 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654 {
655 gold_assert(this->gc_!= NULL);
656 Relobj* relobj = static_cast<Relobj*>(sym->object());
657 this->gc_->worklist().push_back(Section_id(relobj, shndx));
658 }
659 parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668 && !sym->object()->is_dynamic())
669 this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677 gold_assert(from != to);
678 gold_assert(!from->is_forwarder() && !to->is_forwarder());
679 this->forwarders_[from] = to;
680 from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688 gold_assert(from->is_forwarder());
689 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690 this->forwarders_.find(from);
691 gold_assert(p != this->forwarders_.end());
692 return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700 Stringpool::Key name_key;
701 name = this->namepool_.find(name, &name_key);
702 if (name == NULL)
703 return NULL;
704
705 Stringpool::Key version_key = 0;
706 if (version != NULL)
707 {
708 version = this->namepool_.find(version, &version_key);
709 if (version == NULL)
710 return NULL;
711 }
712
713 Symbol_table_key key(name_key, version_key);
714 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715 if (p == this->table_.end())
716 return NULL;
717 return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol. This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version. Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731 elfcpp::Sym_write<size, big_endian> esym(buf);
732 // We don't bother to set the st_name or the st_shndx field.
733 esym.put_st_value(from->value());
734 esym.put_st_size(from->symsize());
735 esym.put_st_info(from->binding(), from->type());
736 esym.put_st_other(from->visibility(), from->nonvis());
737 bool is_ordinary;
738 unsigned int shndx = from->shndx(&is_ordinary);
739 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740 from->version(), true);
741 if (from->in_reg())
742 to->set_in_reg();
743 if (from->in_dyn())
744 to->set_in_dyn();
745 if (parameters->options().gc_sections())
746 this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755 if (!sym->is_defined() && !sym->is_common())
756 return;
757 if (sym->is_forced_local())
758 {
759 // We already got this one.
760 return;
761 }
762 sym->set_is_forced_local();
763 this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773 // For some targets, we need to ignore a specific character when
774 // wrapping, and add it back later.
775 char prefix = '\0';
776 if (name[0] == parameters->target().wrap_char())
777 {
778 prefix = name[0];
779 ++name;
780 }
781
782 if (parameters->options().is_wrap(name))
783 {
784 // Turn NAME into __wrap_NAME.
785 std::string s;
786 if (prefix != '\0')
787 s += prefix;
788 s += "__wrap_";
789 s += name;
790
791 // This will give us both the old and new name in NAMEPOOL_, but
792 // that is OK. Only the versions we need will wind up in the
793 // real string table in the output file.
794 return this->namepool_.add(s.c_str(), true, name_key);
795 }
796
797 const char* const real_prefix = "__real_";
798 const size_t real_prefix_length = strlen(real_prefix);
799 if (strncmp(name, real_prefix, real_prefix_length) == 0
800 && parameters->options().is_wrap(name + real_prefix_length))
801 {
802 // Turn __real_NAME into NAME.
803 std::string s;
804 if (prefix != '\0')
805 s += prefix;
806 s += name + real_prefix_length;
807 return this->namepool_.add(s.c_str(), true, name_key);
808 }
809
810 return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version. SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822 bool default_is_new,
823 Symbol_table_type::iterator pdef)
824 {
825 if (default_is_new)
826 {
827 // This is the first time we have seen NAME/NULL. Make
828 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829 // version.
830 pdef->second = sym;
831 sym->set_is_default();
832 }
833 else if (pdef->second == sym)
834 {
835 // NAME/NULL already points to NAME/VERSION. Don't mark the
836 // symbol as the default if it is not already the default.
837 }
838 else
839 {
840 // This is the unfortunate case where we already have entries
841 // for both NAME/VERSION and NAME/NULL. We now see a symbol
842 // NAME/VERSION where VERSION is the default version. We have
843 // already resolved this new symbol with the existing
844 // NAME/VERSION symbol.
845
846 // It's possible that NAME/NULL and NAME/VERSION are both
847 // defined in regular objects. This can only happen if one
848 // object file defines foo and another defines foo@@ver. This
849 // is somewhat obscure, but we call it a multiple definition
850 // error.
851
852 // It's possible that NAME/NULL actually has a version, in which
853 // case it won't be the same as VERSION. This happens with
854 // ver_test_7.so in the testsuite for the symbol t2_2. We see
855 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
856 // then see an unadorned t2_2 in an object file and give it
857 // version VER1 from the version script. This looks like a
858 // default definition for VER1, so it looks like we should merge
859 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
860 // not obvious that this is an error, either. So we just punt.
861
862 // If one of the symbols has non-default visibility, and the
863 // other is defined in a shared object, then they are different
864 // symbols.
865
866 // Otherwise, we just resolve the symbols as though they were
867 // the same.
868
869 if (pdef->second->version() != NULL)
870 gold_assert(pdef->second->version() != sym->version());
871 else if (sym->visibility() != elfcpp::STV_DEFAULT
872 && pdef->second->is_from_dynobj())
873 ;
874 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875 && sym->is_from_dynobj())
876 ;
877 else
878 {
879 const Sized_symbol<size>* symdef;
880 symdef = this->get_sized_symbol<size>(pdef->second);
881 Symbol_table::resolve<size, big_endian>(sym, symdef);
882 this->make_forwarder(pdef->second, sym);
883 pdef->second = sym;
884 sym->set_is_default();
885 }
886 }
887 }
888
889 // Add one symbol from OBJECT to the symbol table. NAME is symbol
890 // name and VERSION is the version; both are canonicalized. DEF is
891 // whether this is the default version. ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol. That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol. This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION. If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure. That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table. We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files. So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code. ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922 const char* name,
923 Stringpool::Key name_key,
924 const char* version,
925 Stringpool::Key version_key,
926 bool is_default_version,
927 const elfcpp::Sym<size, big_endian>& sym,
928 unsigned int st_shndx,
929 bool is_ordinary,
930 unsigned int orig_st_shndx)
931 {
932 // Print a message if this symbol is being traced.
933 if (parameters->options().is_trace_symbol(name))
934 {
935 if (orig_st_shndx == elfcpp::SHN_UNDEF)
936 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937 else
938 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939 }
940
941 // For an undefined symbol, we may need to adjust the name using
942 // --wrap.
943 if (orig_st_shndx == elfcpp::SHN_UNDEF
944 && parameters->options().any_wrap())
945 {
946 const char* wrap_name = this->wrap_symbol(name, &name_key);
947 if (wrap_name != name)
948 {
949 // If we see a reference to malloc with version GLIBC_2.0,
950 // and we turn it into a reference to __wrap_malloc, then we
951 // discard the version number. Otherwise the user would be
952 // required to specify the correct version for
953 // __wrap_malloc.
954 version = NULL;
955 version_key = 0;
956 name = wrap_name;
957 }
958 }
959
960 Symbol* const snull = NULL;
961 std::pair<typename Symbol_table_type::iterator, bool> ins =
962 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963 snull));
964
965 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966 std::make_pair(this->table_.end(), false);
967 if (is_default_version)
968 {
969 const Stringpool::Key vnull_key = 0;
970 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971 vnull_key),
972 snull));
973 }
974
975 // ins.first: an iterator, which is a pointer to a pair.
976 // ins.first->first: the key (a pair of name and version).
977 // ins.first->second: the value (Symbol*).
978 // ins.second: true if new entry was inserted, false if not.
979
980 Sized_symbol<size>* ret;
981 bool was_undefined;
982 bool was_common;
983 if (!ins.second)
984 {
985 // We already have an entry for NAME/VERSION.
986 ret = this->get_sized_symbol<size>(ins.first->second);
987 gold_assert(ret != NULL);
988
989 was_undefined = ret->is_undefined();
990 // Commons from plugins are just placeholders.
991 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994 version, is_default_version);
995 if (parameters->options().gc_sections())
996 this->gc_mark_dyn_syms(ret);
997
998 if (is_default_version)
999 this->define_default_version<size, big_endian>(ret, insdefault.second,
1000 insdefault.first);
1001 else
1002 {
1003 bool dummy;
1004 if (version != NULL
1005 && ret->source() == Symbol::FROM_OBJECT
1006 && ret->object() == object
1007 && is_ordinary
1008 && ret->shndx(&dummy) == st_shndx
1009 && ret->is_default())
1010 {
1011 // We have seen NAME/VERSION already, and marked it as the
1012 // default version, but now we see a definition for
1013 // NAME/VERSION that is not the default version. This can
1014 // happen when the assembler generates two symbols for
1015 // a symbol as a result of a ".symver foo,foo@VER"
1016 // directive. We see the first unversioned symbol and
1017 // we may mark it as the default version (from a
1018 // version script); then we see the second versioned
1019 // symbol and we need to override the first.
1020 // In any other case, the two symbols should have generated
1021 // a multiple definition error.
1022 // (See PR gold/18703.)
1023 ret->set_is_not_default();
1024 const Stringpool::Key vnull_key = 0;
1025 this->table_.erase(std::make_pair(name_key, vnull_key));
1026 }
1027 }
1028 }
1029 else
1030 {
1031 // This is the first time we have seen NAME/VERSION.
1032 gold_assert(ins.first->second == NULL);
1033
1034 if (is_default_version && !insdefault.second)
1035 {
1036 // We already have an entry for NAME/NULL. If we override
1037 // it, then change it to NAME/VERSION.
1038 ret = this->get_sized_symbol<size>(insdefault.first->second);
1039
1040 was_undefined = ret->is_undefined();
1041 // Commons from plugins are just placeholders.
1042 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1043
1044 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1045 version, is_default_version);
1046 if (parameters->options().gc_sections())
1047 this->gc_mark_dyn_syms(ret);
1048 ins.first->second = ret;
1049 }
1050 else
1051 {
1052 was_undefined = false;
1053 was_common = false;
1054
1055 Sized_target<size, big_endian>* target =
1056 parameters->sized_target<size, big_endian>();
1057 if (!target->has_make_symbol())
1058 ret = new Sized_symbol<size>();
1059 else
1060 {
1061 ret = target->make_symbol();
1062 if (ret == NULL)
1063 {
1064 // This means that we don't want a symbol table
1065 // entry after all.
1066 if (!is_default_version)
1067 this->table_.erase(ins.first);
1068 else
1069 {
1070 this->table_.erase(insdefault.first);
1071 // Inserting INSDEFAULT invalidated INS.
1072 this->table_.erase(std::make_pair(name_key,
1073 version_key));
1074 }
1075 return NULL;
1076 }
1077 }
1078
1079 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1080
1081 ins.first->second = ret;
1082 if (is_default_version)
1083 {
1084 // This is the first time we have seen NAME/NULL. Point
1085 // it at the new entry for NAME/VERSION.
1086 gold_assert(insdefault.second);
1087 insdefault.first->second = ret;
1088 }
1089 }
1090
1091 if (is_default_version)
1092 ret->set_is_default();
1093 }
1094
1095 // Record every time we see a new undefined symbol, to speed up
1096 // archive groups.
1097 if (!was_undefined && ret->is_undefined())
1098 {
1099 ++this->saw_undefined_;
1100 if (parameters->options().has_plugins())
1101 parameters->options().plugins()->new_undefined_symbol(ret);
1102 }
1103
1104 // Keep track of common symbols, to speed up common symbol
1105 // allocation. Don't record commons from plugin objects;
1106 // we need to wait until we see the real symbol in the
1107 // replacement file.
1108 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1109 {
1110 if (ret->type() == elfcpp::STT_TLS)
1111 this->tls_commons_.push_back(ret);
1112 else if (!is_ordinary
1113 && st_shndx == parameters->target().small_common_shndx())
1114 this->small_commons_.push_back(ret);
1115 else if (!is_ordinary
1116 && st_shndx == parameters->target().large_common_shndx())
1117 this->large_commons_.push_back(ret);
1118 else
1119 this->commons_.push_back(ret);
1120 }
1121
1122 // If we're not doing a relocatable link, then any symbol with
1123 // hidden or internal visibility is local.
1124 if ((ret->visibility() == elfcpp::STV_HIDDEN
1125 || ret->visibility() == elfcpp::STV_INTERNAL)
1126 && (ret->binding() == elfcpp::STB_GLOBAL
1127 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1128 || ret->binding() == elfcpp::STB_WEAK)
1129 && !parameters->options().relocatable())
1130 this->force_local(ret);
1131
1132 return ret;
1133 }
1134
1135 // Add all the symbols in a relocatable object to the hash table.
1136
1137 template<int size, bool big_endian>
1138 void
1139 Symbol_table::add_from_relobj(
1140 Sized_relobj_file<size, big_endian>* relobj,
1141 const unsigned char* syms,
1142 size_t count,
1143 size_t symndx_offset,
1144 const char* sym_names,
1145 size_t sym_name_size,
1146 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1147 size_t* defined)
1148 {
1149 *defined = 0;
1150
1151 gold_assert(size == parameters->target().get_size());
1152
1153 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1154
1155 const bool just_symbols = relobj->just_symbols();
1156
1157 const unsigned char* p = syms;
1158 for (size_t i = 0; i < count; ++i, p += sym_size)
1159 {
1160 (*sympointers)[i] = NULL;
1161
1162 elfcpp::Sym<size, big_endian> sym(p);
1163
1164 unsigned int st_name = sym.get_st_name();
1165 if (st_name >= sym_name_size)
1166 {
1167 relobj->error(_("bad global symbol name offset %u at %zu"),
1168 st_name, i);
1169 continue;
1170 }
1171
1172 const char* name = sym_names + st_name;
1173
1174 if (strcmp (name, "__gnu_lto_slim") == 0)
1175 gold_info(_("%s: plugin needed to handle lto object"),
1176 relobj->name().c_str());
1177
1178 bool is_ordinary;
1179 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1180 sym.get_st_shndx(),
1181 &is_ordinary);
1182 unsigned int orig_st_shndx = st_shndx;
1183 if (!is_ordinary)
1184 orig_st_shndx = elfcpp::SHN_UNDEF;
1185
1186 if (st_shndx != elfcpp::SHN_UNDEF)
1187 ++*defined;
1188
1189 // A symbol defined in a section which we are not including must
1190 // be treated as an undefined symbol.
1191 bool is_defined_in_discarded_section = false;
1192 if (st_shndx != elfcpp::SHN_UNDEF
1193 && is_ordinary
1194 && !relobj->is_section_included(st_shndx)
1195 && !this->is_section_folded(relobj, st_shndx))
1196 {
1197 st_shndx = elfcpp::SHN_UNDEF;
1198 is_defined_in_discarded_section = true;
1199 }
1200
1201 // In an object file, an '@' in the name separates the symbol
1202 // name from the version name. If there are two '@' characters,
1203 // this is the default version.
1204 const char* ver = strchr(name, '@');
1205 Stringpool::Key ver_key = 0;
1206 int namelen = 0;
1207 // IS_DEFAULT_VERSION: is the version default?
1208 // IS_FORCED_LOCAL: is the symbol forced local?
1209 bool is_default_version = false;
1210 bool is_forced_local = false;
1211
1212 // FIXME: For incremental links, we don't store version information,
1213 // so we need to ignore version symbols for now.
1214 if (parameters->incremental_update() && ver != NULL)
1215 {
1216 namelen = ver - name;
1217 ver = NULL;
1218 }
1219
1220 if (ver != NULL)
1221 {
1222 // The symbol name is of the form foo@VERSION or foo@@VERSION
1223 namelen = ver - name;
1224 ++ver;
1225 if (*ver == '@')
1226 {
1227 is_default_version = true;
1228 ++ver;
1229 }
1230 ver = this->namepool_.add(ver, true, &ver_key);
1231 }
1232 // We don't want to assign a version to an undefined symbol,
1233 // even if it is listed in the version script. FIXME: What
1234 // about a common symbol?
1235 else
1236 {
1237 namelen = strlen(name);
1238 if (!this->version_script_.empty()
1239 && st_shndx != elfcpp::SHN_UNDEF)
1240 {
1241 // The symbol name did not have a version, but the
1242 // version script may assign a version anyway.
1243 std::string version;
1244 bool is_global;
1245 if (this->version_script_.get_symbol_version(name, &version,
1246 &is_global))
1247 {
1248 if (!is_global)
1249 is_forced_local = true;
1250 else if (!version.empty())
1251 {
1252 ver = this->namepool_.add_with_length(version.c_str(),
1253 version.length(),
1254 true,
1255 &ver_key);
1256 is_default_version = true;
1257 }
1258 }
1259 }
1260 }
1261
1262 elfcpp::Sym<size, big_endian>* psym = &sym;
1263 unsigned char symbuf[sym_size];
1264 elfcpp::Sym<size, big_endian> sym2(symbuf);
1265 if (just_symbols)
1266 {
1267 memcpy(symbuf, p, sym_size);
1268 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1269 if (orig_st_shndx != elfcpp::SHN_UNDEF
1270 && is_ordinary
1271 && relobj->e_type() == elfcpp::ET_REL)
1272 {
1273 // Symbol values in relocatable object files are section
1274 // relative. This is normally what we want, but since here
1275 // we are converting the symbol to absolute we need to add
1276 // the section address. The section address in an object
1277 // file is normally zero, but people can use a linker
1278 // script to change it.
1279 sw.put_st_value(sym.get_st_value()
1280 + relobj->section_address(orig_st_shndx));
1281 }
1282 st_shndx = elfcpp::SHN_ABS;
1283 is_ordinary = false;
1284 psym = &sym2;
1285 }
1286
1287 // Fix up visibility if object has no-export set.
1288 if (relobj->no_export()
1289 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1290 {
1291 // We may have copied symbol already above.
1292 if (psym != &sym2)
1293 {
1294 memcpy(symbuf, p, sym_size);
1295 psym = &sym2;
1296 }
1297
1298 elfcpp::STV visibility = sym2.get_st_visibility();
1299 if (visibility == elfcpp::STV_DEFAULT
1300 || visibility == elfcpp::STV_PROTECTED)
1301 {
1302 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1303 unsigned char nonvis = sym2.get_st_nonvis();
1304 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1305 }
1306 }
1307
1308 Stringpool::Key name_key;
1309 name = this->namepool_.add_with_length(name, namelen, true,
1310 &name_key);
1311
1312 Sized_symbol<size>* res;
1313 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1314 is_default_version, *psym, st_shndx,
1315 is_ordinary, orig_st_shndx);
1316
1317 if (is_forced_local)
1318 this->force_local(res);
1319
1320 // Do not treat this symbol as garbage if this symbol will be
1321 // exported to the dynamic symbol table. This is true when
1322 // building a shared library or using --export-dynamic and
1323 // the symbol is externally visible.
1324 if (parameters->options().gc_sections()
1325 && res->is_externally_visible()
1326 && !res->is_from_dynobj()
1327 && (parameters->options().shared()
1328 || parameters->options().export_dynamic()
1329 || parameters->options().in_dynamic_list(res->name())))
1330 this->gc_mark_symbol(res);
1331
1332 if (is_defined_in_discarded_section)
1333 res->set_is_defined_in_discarded_section();
1334
1335 (*sympointers)[i] = res;
1336 }
1337 }
1338
1339 // Add a symbol from a plugin-claimed file.
1340
1341 template<int size, bool big_endian>
1342 Symbol*
1343 Symbol_table::add_from_pluginobj(
1344 Sized_pluginobj<size, big_endian>* obj,
1345 const char* name,
1346 const char* ver,
1347 elfcpp::Sym<size, big_endian>* sym)
1348 {
1349 unsigned int st_shndx = sym->get_st_shndx();
1350 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1351
1352 Stringpool::Key ver_key = 0;
1353 bool is_default_version = false;
1354 bool is_forced_local = false;
1355
1356 if (ver != NULL)
1357 {
1358 ver = this->namepool_.add(ver, true, &ver_key);
1359 }
1360 // We don't want to assign a version to an undefined symbol,
1361 // even if it is listed in the version script. FIXME: What
1362 // about a common symbol?
1363 else
1364 {
1365 if (!this->version_script_.empty()
1366 && st_shndx != elfcpp::SHN_UNDEF)
1367 {
1368 // The symbol name did not have a version, but the
1369 // version script may assign a version anyway.
1370 std::string version;
1371 bool is_global;
1372 if (this->version_script_.get_symbol_version(name, &version,
1373 &is_global))
1374 {
1375 if (!is_global)
1376 is_forced_local = true;
1377 else if (!version.empty())
1378 {
1379 ver = this->namepool_.add_with_length(version.c_str(),
1380 version.length(),
1381 true,
1382 &ver_key);
1383 is_default_version = true;
1384 }
1385 }
1386 }
1387 }
1388
1389 Stringpool::Key name_key;
1390 name = this->namepool_.add(name, true, &name_key);
1391
1392 Sized_symbol<size>* res;
1393 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1394 is_default_version, *sym, st_shndx,
1395 is_ordinary, st_shndx);
1396
1397 if (is_forced_local)
1398 this->force_local(res);
1399
1400 return res;
1401 }
1402
1403 // Add all the symbols in a dynamic object to the hash table.
1404
1405 template<int size, bool big_endian>
1406 void
1407 Symbol_table::add_from_dynobj(
1408 Sized_dynobj<size, big_endian>* dynobj,
1409 const unsigned char* syms,
1410 size_t count,
1411 const char* sym_names,
1412 size_t sym_name_size,
1413 const unsigned char* versym,
1414 size_t versym_size,
1415 const std::vector<const char*>* version_map,
1416 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1417 size_t* defined)
1418 {
1419 *defined = 0;
1420
1421 gold_assert(size == parameters->target().get_size());
1422
1423 if (dynobj->just_symbols())
1424 {
1425 gold_error(_("--just-symbols does not make sense with a shared object"));
1426 return;
1427 }
1428
1429 // FIXME: For incremental links, we don't store version information,
1430 // so we need to ignore version symbols for now.
1431 if (parameters->incremental_update())
1432 versym = NULL;
1433
1434 if (versym != NULL && versym_size / 2 < count)
1435 {
1436 dynobj->error(_("too few symbol versions"));
1437 return;
1438 }
1439
1440 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1441
1442 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1443 // weak aliases. This is necessary because if the dynamic object
1444 // provides the same variable under two names, one of which is a
1445 // weak definition, and the regular object refers to the weak
1446 // definition, we have to put both the weak definition and the
1447 // strong definition into the dynamic symbol table. Given a weak
1448 // definition, the only way that we can find the corresponding
1449 // strong definition, if any, is to search the symbol table.
1450 std::vector<Sized_symbol<size>*> object_symbols;
1451
1452 const unsigned char* p = syms;
1453 const unsigned char* vs = versym;
1454 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1455 {
1456 elfcpp::Sym<size, big_endian> sym(p);
1457
1458 if (sympointers != NULL)
1459 (*sympointers)[i] = NULL;
1460
1461 // Ignore symbols with local binding or that have
1462 // internal or hidden visibility.
1463 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1464 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1465 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1466 continue;
1467
1468 // A protected symbol in a shared library must be treated as a
1469 // normal symbol when viewed from outside the shared library.
1470 // Implement this by overriding the visibility here.
1471 // Likewise, an IFUNC symbol in a shared library must be treated
1472 // as a normal FUNC symbol.
1473 elfcpp::Sym<size, big_endian>* psym = &sym;
1474 unsigned char symbuf[sym_size];
1475 elfcpp::Sym<size, big_endian> sym2(symbuf);
1476 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1477 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1478 {
1479 memcpy(symbuf, p, sym_size);
1480 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1481 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1482 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1483 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1484 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1485 psym = &sym2;
1486 }
1487
1488 unsigned int st_name = psym->get_st_name();
1489 if (st_name >= sym_name_size)
1490 {
1491 dynobj->error(_("bad symbol name offset %u at %zu"),
1492 st_name, i);
1493 continue;
1494 }
1495
1496 const char* name = sym_names + st_name;
1497
1498 bool is_ordinary;
1499 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1500 &is_ordinary);
1501
1502 if (st_shndx != elfcpp::SHN_UNDEF)
1503 ++*defined;
1504
1505 Sized_symbol<size>* res;
1506
1507 if (versym == NULL)
1508 {
1509 Stringpool::Key name_key;
1510 name = this->namepool_.add(name, true, &name_key);
1511 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1512 false, *psym, st_shndx, is_ordinary,
1513 st_shndx);
1514 }
1515 else
1516 {
1517 // Read the version information.
1518
1519 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1520
1521 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1522 v &= elfcpp::VERSYM_VERSION;
1523
1524 // The Sun documentation says that V can be VER_NDX_LOCAL,
1525 // or VER_NDX_GLOBAL, or a version index. The meaning of
1526 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1527 // The old GNU linker will happily generate VER_NDX_LOCAL
1528 // for an undefined symbol. I don't know what the Sun
1529 // linker will generate.
1530
1531 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1532 && st_shndx != elfcpp::SHN_UNDEF)
1533 {
1534 // This symbol should not be visible outside the object.
1535 continue;
1536 }
1537
1538 // At this point we are definitely going to add this symbol.
1539 Stringpool::Key name_key;
1540 name = this->namepool_.add(name, true, &name_key);
1541
1542 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1543 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1544 {
1545 // This symbol does not have a version.
1546 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1547 false, *psym, st_shndx, is_ordinary,
1548 st_shndx);
1549 }
1550 else
1551 {
1552 if (v >= version_map->size())
1553 {
1554 dynobj->error(_("versym for symbol %zu out of range: %u"),
1555 i, v);
1556 continue;
1557 }
1558
1559 const char* version = (*version_map)[v];
1560 if (version == NULL)
1561 {
1562 dynobj->error(_("versym for symbol %zu has no name: %u"),
1563 i, v);
1564 continue;
1565 }
1566
1567 Stringpool::Key version_key;
1568 version = this->namepool_.add(version, true, &version_key);
1569
1570 // If this is an absolute symbol, and the version name
1571 // and symbol name are the same, then this is the
1572 // version definition symbol. These symbols exist to
1573 // support using -u to pull in particular versions. We
1574 // do not want to record a version for them.
1575 if (st_shndx == elfcpp::SHN_ABS
1576 && !is_ordinary
1577 && name_key == version_key)
1578 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1579 false, *psym, st_shndx, is_ordinary,
1580 st_shndx);
1581 else
1582 {
1583 const bool is_default_version =
1584 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1585 res = this->add_from_object(dynobj, name, name_key, version,
1586 version_key, is_default_version,
1587 *psym, st_shndx,
1588 is_ordinary, st_shndx);
1589 }
1590 }
1591 }
1592
1593 // Note that it is possible that RES was overridden by an
1594 // earlier object, in which case it can't be aliased here.
1595 if (st_shndx != elfcpp::SHN_UNDEF
1596 && is_ordinary
1597 && psym->get_st_type() == elfcpp::STT_OBJECT
1598 && res->source() == Symbol::FROM_OBJECT
1599 && res->object() == dynobj)
1600 object_symbols.push_back(res);
1601
1602 if (sympointers != NULL)
1603 (*sympointers)[i] = res;
1604 }
1605
1606 this->record_weak_aliases(&object_symbols);
1607 }
1608
1609 // Add a symbol from a incremental object file.
1610
1611 template<int size, bool big_endian>
1612 Sized_symbol<size>*
1613 Symbol_table::add_from_incrobj(
1614 Object* obj,
1615 const char* name,
1616 const char* ver,
1617 elfcpp::Sym<size, big_endian>* sym)
1618 {
1619 unsigned int st_shndx = sym->get_st_shndx();
1620 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1621
1622 Stringpool::Key ver_key = 0;
1623 bool is_default_version = false;
1624 bool is_forced_local = false;
1625
1626 Stringpool::Key name_key;
1627 name = this->namepool_.add(name, true, &name_key);
1628
1629 Sized_symbol<size>* res;
1630 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1631 is_default_version, *sym, st_shndx,
1632 is_ordinary, st_shndx);
1633
1634 if (is_forced_local)
1635 this->force_local(res);
1636
1637 return res;
1638 }
1639
1640 // This is used to sort weak aliases. We sort them first by section
1641 // index, then by offset, then by weak ahead of strong.
1642
1643 template<int size>
1644 class Weak_alias_sorter
1645 {
1646 public:
1647 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1648 };
1649
1650 template<int size>
1651 bool
1652 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1653 const Sized_symbol<size>* s2) const
1654 {
1655 bool is_ordinary;
1656 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1657 gold_assert(is_ordinary);
1658 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1659 gold_assert(is_ordinary);
1660 if (s1_shndx != s2_shndx)
1661 return s1_shndx < s2_shndx;
1662
1663 if (s1->value() != s2->value())
1664 return s1->value() < s2->value();
1665 if (s1->binding() != s2->binding())
1666 {
1667 if (s1->binding() == elfcpp::STB_WEAK)
1668 return true;
1669 if (s2->binding() == elfcpp::STB_WEAK)
1670 return false;
1671 }
1672 return std::string(s1->name()) < std::string(s2->name());
1673 }
1674
1675 // SYMBOLS is a list of object symbols from a dynamic object. Look
1676 // for any weak aliases, and record them so that if we add the weak
1677 // alias to the dynamic symbol table, we also add the corresponding
1678 // strong symbol.
1679
1680 template<int size>
1681 void
1682 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1683 {
1684 // Sort the vector by section index, then by offset, then by weak
1685 // ahead of strong.
1686 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1687
1688 // Walk through the vector. For each weak definition, record
1689 // aliases.
1690 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1691 symbols->begin();
1692 p != symbols->end();
1693 ++p)
1694 {
1695 if ((*p)->binding() != elfcpp::STB_WEAK)
1696 continue;
1697
1698 // Build a circular list of weak aliases. Each symbol points to
1699 // the next one in the circular list.
1700
1701 Sized_symbol<size>* from_sym = *p;
1702 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1703 for (q = p + 1; q != symbols->end(); ++q)
1704 {
1705 bool dummy;
1706 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1707 || (*q)->value() != from_sym->value())
1708 break;
1709
1710 this->weak_aliases_[from_sym] = *q;
1711 from_sym->set_has_alias();
1712 from_sym = *q;
1713 }
1714
1715 if (from_sym != *p)
1716 {
1717 this->weak_aliases_[from_sym] = *p;
1718 from_sym->set_has_alias();
1719 }
1720
1721 p = q - 1;
1722 }
1723 }
1724
1725 // Create and return a specially defined symbol. If ONLY_IF_REF is
1726 // true, then only create the symbol if there is a reference to it.
1727 // If this does not return NULL, it sets *POLDSYM to the existing
1728 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1729 // resolve the newly created symbol to the old one. This
1730 // canonicalizes *PNAME and *PVERSION.
1731
1732 template<int size, bool big_endian>
1733 Sized_symbol<size>*
1734 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1735 bool only_if_ref,
1736 Sized_symbol<size>** poldsym,
1737 bool* resolve_oldsym)
1738 {
1739 *resolve_oldsym = false;
1740 *poldsym = NULL;
1741
1742 // If the caller didn't give us a version, see if we get one from
1743 // the version script.
1744 std::string v;
1745 bool is_default_version = false;
1746 if (*pversion == NULL)
1747 {
1748 bool is_global;
1749 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1750 {
1751 if (is_global && !v.empty())
1752 {
1753 *pversion = v.c_str();
1754 // If we get the version from a version script, then we
1755 // are also the default version.
1756 is_default_version = true;
1757 }
1758 }
1759 }
1760
1761 Symbol* oldsym;
1762 Sized_symbol<size>* sym;
1763
1764 bool add_to_table = false;
1765 typename Symbol_table_type::iterator add_loc = this->table_.end();
1766 bool add_def_to_table = false;
1767 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1768
1769 if (only_if_ref)
1770 {
1771 oldsym = this->lookup(*pname, *pversion);
1772 if (oldsym == NULL && is_default_version)
1773 oldsym = this->lookup(*pname, NULL);
1774 if (oldsym == NULL || !oldsym->is_undefined())
1775 return NULL;
1776
1777 *pname = oldsym->name();
1778 if (is_default_version)
1779 *pversion = this->namepool_.add(*pversion, true, NULL);
1780 else
1781 *pversion = oldsym->version();
1782 }
1783 else
1784 {
1785 // Canonicalize NAME and VERSION.
1786 Stringpool::Key name_key;
1787 *pname = this->namepool_.add(*pname, true, &name_key);
1788
1789 Stringpool::Key version_key = 0;
1790 if (*pversion != NULL)
1791 *pversion = this->namepool_.add(*pversion, true, &version_key);
1792
1793 Symbol* const snull = NULL;
1794 std::pair<typename Symbol_table_type::iterator, bool> ins =
1795 this->table_.insert(std::make_pair(std::make_pair(name_key,
1796 version_key),
1797 snull));
1798
1799 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1800 std::make_pair(this->table_.end(), false);
1801 if (is_default_version)
1802 {
1803 const Stringpool::Key vnull = 0;
1804 insdefault =
1805 this->table_.insert(std::make_pair(std::make_pair(name_key,
1806 vnull),
1807 snull));
1808 }
1809
1810 if (!ins.second)
1811 {
1812 // We already have a symbol table entry for NAME/VERSION.
1813 oldsym = ins.first->second;
1814 gold_assert(oldsym != NULL);
1815
1816 if (is_default_version)
1817 {
1818 Sized_symbol<size>* soldsym =
1819 this->get_sized_symbol<size>(oldsym);
1820 this->define_default_version<size, big_endian>(soldsym,
1821 insdefault.second,
1822 insdefault.first);
1823 }
1824 }
1825 else
1826 {
1827 // We haven't seen this symbol before.
1828 gold_assert(ins.first->second == NULL);
1829
1830 add_to_table = true;
1831 add_loc = ins.first;
1832
1833 if (is_default_version && !insdefault.second)
1834 {
1835 // We are adding NAME/VERSION, and it is the default
1836 // version. We already have an entry for NAME/NULL.
1837 oldsym = insdefault.first->second;
1838 *resolve_oldsym = true;
1839 }
1840 else
1841 {
1842 oldsym = NULL;
1843
1844 if (is_default_version)
1845 {
1846 add_def_to_table = true;
1847 add_def_loc = insdefault.first;
1848 }
1849 }
1850 }
1851 }
1852
1853 const Target& target = parameters->target();
1854 if (!target.has_make_symbol())
1855 sym = new Sized_symbol<size>();
1856 else
1857 {
1858 Sized_target<size, big_endian>* sized_target =
1859 parameters->sized_target<size, big_endian>();
1860 sym = sized_target->make_symbol();
1861 if (sym == NULL)
1862 return NULL;
1863 }
1864
1865 if (add_to_table)
1866 add_loc->second = sym;
1867 else
1868 gold_assert(oldsym != NULL);
1869
1870 if (add_def_to_table)
1871 add_def_loc->second = sym;
1872
1873 *poldsym = this->get_sized_symbol<size>(oldsym);
1874
1875 return sym;
1876 }
1877
1878 // Define a symbol based on an Output_data.
1879
1880 Symbol*
1881 Symbol_table::define_in_output_data(const char* name,
1882 const char* version,
1883 Defined defined,
1884 Output_data* od,
1885 uint64_t value,
1886 uint64_t symsize,
1887 elfcpp::STT type,
1888 elfcpp::STB binding,
1889 elfcpp::STV visibility,
1890 unsigned char nonvis,
1891 bool offset_is_from_end,
1892 bool only_if_ref)
1893 {
1894 if (parameters->target().get_size() == 32)
1895 {
1896 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1897 return this->do_define_in_output_data<32>(name, version, defined, od,
1898 value, symsize, type, binding,
1899 visibility, nonvis,
1900 offset_is_from_end,
1901 only_if_ref);
1902 #else
1903 gold_unreachable();
1904 #endif
1905 }
1906 else if (parameters->target().get_size() == 64)
1907 {
1908 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1909 return this->do_define_in_output_data<64>(name, version, defined, od,
1910 value, symsize, type, binding,
1911 visibility, nonvis,
1912 offset_is_from_end,
1913 only_if_ref);
1914 #else
1915 gold_unreachable();
1916 #endif
1917 }
1918 else
1919 gold_unreachable();
1920 }
1921
1922 // Define a symbol in an Output_data, sized version.
1923
1924 template<int size>
1925 Sized_symbol<size>*
1926 Symbol_table::do_define_in_output_data(
1927 const char* name,
1928 const char* version,
1929 Defined defined,
1930 Output_data* od,
1931 typename elfcpp::Elf_types<size>::Elf_Addr value,
1932 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1933 elfcpp::STT type,
1934 elfcpp::STB binding,
1935 elfcpp::STV visibility,
1936 unsigned char nonvis,
1937 bool offset_is_from_end,
1938 bool only_if_ref)
1939 {
1940 Sized_symbol<size>* sym;
1941 Sized_symbol<size>* oldsym;
1942 bool resolve_oldsym;
1943
1944 if (parameters->target().is_big_endian())
1945 {
1946 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1947 sym = this->define_special_symbol<size, true>(&name, &version,
1948 only_if_ref, &oldsym,
1949 &resolve_oldsym);
1950 #else
1951 gold_unreachable();
1952 #endif
1953 }
1954 else
1955 {
1956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1957 sym = this->define_special_symbol<size, false>(&name, &version,
1958 only_if_ref, &oldsym,
1959 &resolve_oldsym);
1960 #else
1961 gold_unreachable();
1962 #endif
1963 }
1964
1965 if (sym == NULL)
1966 return NULL;
1967
1968 sym->init_output_data(name, version, od, value, symsize, type, binding,
1969 visibility, nonvis, offset_is_from_end,
1970 defined == PREDEFINED);
1971
1972 if (oldsym == NULL)
1973 {
1974 if (binding == elfcpp::STB_LOCAL
1975 || this->version_script_.symbol_is_local(name))
1976 this->force_local(sym);
1977 else if (version != NULL)
1978 sym->set_is_default();
1979 return sym;
1980 }
1981
1982 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1983 this->override_with_special(oldsym, sym);
1984
1985 if (resolve_oldsym)
1986 return sym;
1987 else
1988 {
1989 if (binding == elfcpp::STB_LOCAL
1990 || this->version_script_.symbol_is_local(name))
1991 this->force_local(oldsym);
1992 delete sym;
1993 return oldsym;
1994 }
1995 }
1996
1997 // Define a symbol based on an Output_segment.
1998
1999 Symbol*
2000 Symbol_table::define_in_output_segment(const char* name,
2001 const char* version,
2002 Defined defined,
2003 Output_segment* os,
2004 uint64_t value,
2005 uint64_t symsize,
2006 elfcpp::STT type,
2007 elfcpp::STB binding,
2008 elfcpp::STV visibility,
2009 unsigned char nonvis,
2010 Symbol::Segment_offset_base offset_base,
2011 bool only_if_ref)
2012 {
2013 if (parameters->target().get_size() == 32)
2014 {
2015 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2016 return this->do_define_in_output_segment<32>(name, version, defined, os,
2017 value, symsize, type,
2018 binding, visibility, nonvis,
2019 offset_base, only_if_ref);
2020 #else
2021 gold_unreachable();
2022 #endif
2023 }
2024 else if (parameters->target().get_size() == 64)
2025 {
2026 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2027 return this->do_define_in_output_segment<64>(name, version, defined, os,
2028 value, symsize, type,
2029 binding, visibility, nonvis,
2030 offset_base, only_if_ref);
2031 #else
2032 gold_unreachable();
2033 #endif
2034 }
2035 else
2036 gold_unreachable();
2037 }
2038
2039 // Define a symbol in an Output_segment, sized version.
2040
2041 template<int size>
2042 Sized_symbol<size>*
2043 Symbol_table::do_define_in_output_segment(
2044 const char* name,
2045 const char* version,
2046 Defined defined,
2047 Output_segment* os,
2048 typename elfcpp::Elf_types<size>::Elf_Addr value,
2049 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2050 elfcpp::STT type,
2051 elfcpp::STB binding,
2052 elfcpp::STV visibility,
2053 unsigned char nonvis,
2054 Symbol::Segment_offset_base offset_base,
2055 bool only_if_ref)
2056 {
2057 Sized_symbol<size>* sym;
2058 Sized_symbol<size>* oldsym;
2059 bool resolve_oldsym;
2060
2061 if (parameters->target().is_big_endian())
2062 {
2063 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2064 sym = this->define_special_symbol<size, true>(&name, &version,
2065 only_if_ref, &oldsym,
2066 &resolve_oldsym);
2067 #else
2068 gold_unreachable();
2069 #endif
2070 }
2071 else
2072 {
2073 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2074 sym = this->define_special_symbol<size, false>(&name, &version,
2075 only_if_ref, &oldsym,
2076 &resolve_oldsym);
2077 #else
2078 gold_unreachable();
2079 #endif
2080 }
2081
2082 if (sym == NULL)
2083 return NULL;
2084
2085 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2086 visibility, nonvis, offset_base,
2087 defined == PREDEFINED);
2088
2089 if (oldsym == NULL)
2090 {
2091 if (binding == elfcpp::STB_LOCAL
2092 || this->version_script_.symbol_is_local(name))
2093 this->force_local(sym);
2094 else if (version != NULL)
2095 sym->set_is_default();
2096 return sym;
2097 }
2098
2099 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2100 this->override_with_special(oldsym, sym);
2101
2102 if (resolve_oldsym)
2103 return sym;
2104 else
2105 {
2106 if (binding == elfcpp::STB_LOCAL
2107 || this->version_script_.symbol_is_local(name))
2108 this->force_local(oldsym);
2109 delete sym;
2110 return oldsym;
2111 }
2112 }
2113
2114 // Define a special symbol with a constant value. It is a multiple
2115 // definition error if this symbol is already defined.
2116
2117 Symbol*
2118 Symbol_table::define_as_constant(const char* name,
2119 const char* version,
2120 Defined defined,
2121 uint64_t value,
2122 uint64_t symsize,
2123 elfcpp::STT type,
2124 elfcpp::STB binding,
2125 elfcpp::STV visibility,
2126 unsigned char nonvis,
2127 bool only_if_ref,
2128 bool force_override)
2129 {
2130 if (parameters->target().get_size() == 32)
2131 {
2132 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2133 return this->do_define_as_constant<32>(name, version, defined, value,
2134 symsize, type, binding,
2135 visibility, nonvis, only_if_ref,
2136 force_override);
2137 #else
2138 gold_unreachable();
2139 #endif
2140 }
2141 else if (parameters->target().get_size() == 64)
2142 {
2143 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2144 return this->do_define_as_constant<64>(name, version, defined, value,
2145 symsize, type, binding,
2146 visibility, nonvis, only_if_ref,
2147 force_override);
2148 #else
2149 gold_unreachable();
2150 #endif
2151 }
2152 else
2153 gold_unreachable();
2154 }
2155
2156 // Define a symbol as a constant, sized version.
2157
2158 template<int size>
2159 Sized_symbol<size>*
2160 Symbol_table::do_define_as_constant(
2161 const char* name,
2162 const char* version,
2163 Defined defined,
2164 typename elfcpp::Elf_types<size>::Elf_Addr value,
2165 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2166 elfcpp::STT type,
2167 elfcpp::STB binding,
2168 elfcpp::STV visibility,
2169 unsigned char nonvis,
2170 bool only_if_ref,
2171 bool force_override)
2172 {
2173 Sized_symbol<size>* sym;
2174 Sized_symbol<size>* oldsym;
2175 bool resolve_oldsym;
2176
2177 if (parameters->target().is_big_endian())
2178 {
2179 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2180 sym = this->define_special_symbol<size, true>(&name, &version,
2181 only_if_ref, &oldsym,
2182 &resolve_oldsym);
2183 #else
2184 gold_unreachable();
2185 #endif
2186 }
2187 else
2188 {
2189 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2190 sym = this->define_special_symbol<size, false>(&name, &version,
2191 only_if_ref, &oldsym,
2192 &resolve_oldsym);
2193 #else
2194 gold_unreachable();
2195 #endif
2196 }
2197
2198 if (sym == NULL)
2199 return NULL;
2200
2201 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2202 nonvis, defined == PREDEFINED);
2203
2204 if (oldsym == NULL)
2205 {
2206 // Version symbols are absolute symbols with name == version.
2207 // We don't want to force them to be local.
2208 if ((version == NULL
2209 || name != version
2210 || value != 0)
2211 && (binding == elfcpp::STB_LOCAL
2212 || this->version_script_.symbol_is_local(name)))
2213 this->force_local(sym);
2214 else if (version != NULL
2215 && (name != version || value != 0))
2216 sym->set_is_default();
2217 return sym;
2218 }
2219
2220 if (force_override
2221 || Symbol_table::should_override_with_special(oldsym, type, defined))
2222 this->override_with_special(oldsym, sym);
2223
2224 if (resolve_oldsym)
2225 return sym;
2226 else
2227 {
2228 if (binding == elfcpp::STB_LOCAL
2229 || this->version_script_.symbol_is_local(name))
2230 this->force_local(oldsym);
2231 delete sym;
2232 return oldsym;
2233 }
2234 }
2235
2236 // Define a set of symbols in output sections.
2237
2238 void
2239 Symbol_table::define_symbols(const Layout* layout, int count,
2240 const Define_symbol_in_section* p,
2241 bool only_if_ref)
2242 {
2243 for (int i = 0; i < count; ++i, ++p)
2244 {
2245 Output_section* os = layout->find_output_section(p->output_section);
2246 if (os != NULL)
2247 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2248 p->size, p->type, p->binding,
2249 p->visibility, p->nonvis,
2250 p->offset_is_from_end,
2251 only_if_ref || p->only_if_ref);
2252 else
2253 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2254 p->type, p->binding, p->visibility, p->nonvis,
2255 only_if_ref || p->only_if_ref,
2256 false);
2257 }
2258 }
2259
2260 // Define a set of symbols in output segments.
2261
2262 void
2263 Symbol_table::define_symbols(const Layout* layout, int count,
2264 const Define_symbol_in_segment* p,
2265 bool only_if_ref)
2266 {
2267 for (int i = 0; i < count; ++i, ++p)
2268 {
2269 Output_segment* os = layout->find_output_segment(p->segment_type,
2270 p->segment_flags_set,
2271 p->segment_flags_clear);
2272 if (os != NULL)
2273 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2274 p->size, p->type, p->binding,
2275 p->visibility, p->nonvis,
2276 p->offset_base,
2277 only_if_ref || p->only_if_ref);
2278 else
2279 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2280 p->type, p->binding, p->visibility, p->nonvis,
2281 only_if_ref || p->only_if_ref,
2282 false);
2283 }
2284 }
2285
2286 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2287 // symbol should be defined--typically a .dyn.bss section. VALUE is
2288 // the offset within POSD.
2289
2290 template<int size>
2291 void
2292 Symbol_table::define_with_copy_reloc(
2293 Sized_symbol<size>* csym,
2294 Output_data* posd,
2295 typename elfcpp::Elf_types<size>::Elf_Addr value)
2296 {
2297 gold_assert(csym->is_from_dynobj());
2298 gold_assert(!csym->is_copied_from_dynobj());
2299 Object* object = csym->object();
2300 gold_assert(object->is_dynamic());
2301 Dynobj* dynobj = static_cast<Dynobj*>(object);
2302
2303 // Our copied variable has to override any variable in a shared
2304 // library.
2305 elfcpp::STB binding = csym->binding();
2306 if (binding == elfcpp::STB_WEAK)
2307 binding = elfcpp::STB_GLOBAL;
2308
2309 this->define_in_output_data(csym->name(), csym->version(), COPY,
2310 posd, value, csym->symsize(),
2311 csym->type(), binding,
2312 csym->visibility(), csym->nonvis(),
2313 false, false);
2314
2315 csym->set_is_copied_from_dynobj();
2316 csym->set_needs_dynsym_entry();
2317
2318 this->copied_symbol_dynobjs_[csym] = dynobj;
2319
2320 // We have now defined all aliases, but we have not entered them all
2321 // in the copied_symbol_dynobjs_ map.
2322 if (csym->has_alias())
2323 {
2324 Symbol* sym = csym;
2325 while (true)
2326 {
2327 sym = this->weak_aliases_[sym];
2328 if (sym == csym)
2329 break;
2330 gold_assert(sym->output_data() == posd);
2331
2332 sym->set_is_copied_from_dynobj();
2333 this->copied_symbol_dynobjs_[sym] = dynobj;
2334 }
2335 }
2336 }
2337
2338 // SYM is defined using a COPY reloc. Return the dynamic object where
2339 // the original definition was found.
2340
2341 Dynobj*
2342 Symbol_table::get_copy_source(const Symbol* sym) const
2343 {
2344 gold_assert(sym->is_copied_from_dynobj());
2345 Copied_symbol_dynobjs::const_iterator p =
2346 this->copied_symbol_dynobjs_.find(sym);
2347 gold_assert(p != this->copied_symbol_dynobjs_.end());
2348 return p->second;
2349 }
2350
2351 // Add any undefined symbols named on the command line.
2352
2353 void
2354 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2355 {
2356 if (parameters->options().any_undefined()
2357 || layout->script_options()->any_unreferenced())
2358 {
2359 if (parameters->target().get_size() == 32)
2360 {
2361 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2362 this->do_add_undefined_symbols_from_command_line<32>(layout);
2363 #else
2364 gold_unreachable();
2365 #endif
2366 }
2367 else if (parameters->target().get_size() == 64)
2368 {
2369 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2370 this->do_add_undefined_symbols_from_command_line<64>(layout);
2371 #else
2372 gold_unreachable();
2373 #endif
2374 }
2375 else
2376 gold_unreachable();
2377 }
2378 }
2379
2380 template<int size>
2381 void
2382 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2383 {
2384 for (options::String_set::const_iterator p =
2385 parameters->options().undefined_begin();
2386 p != parameters->options().undefined_end();
2387 ++p)
2388 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2389
2390 for (options::String_set::const_iterator p =
2391 parameters->options().export_dynamic_symbol_begin();
2392 p != parameters->options().export_dynamic_symbol_end();
2393 ++p)
2394 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2395
2396 for (Script_options::referenced_const_iterator p =
2397 layout->script_options()->referenced_begin();
2398 p != layout->script_options()->referenced_end();
2399 ++p)
2400 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2401 }
2402
2403 template<int size>
2404 void
2405 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2406 {
2407 if (this->lookup(name) != NULL)
2408 return;
2409
2410 const char* version = NULL;
2411
2412 Sized_symbol<size>* sym;
2413 Sized_symbol<size>* oldsym;
2414 bool resolve_oldsym;
2415 if (parameters->target().is_big_endian())
2416 {
2417 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2418 sym = this->define_special_symbol<size, true>(&name, &version,
2419 false, &oldsym,
2420 &resolve_oldsym);
2421 #else
2422 gold_unreachable();
2423 #endif
2424 }
2425 else
2426 {
2427 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2428 sym = this->define_special_symbol<size, false>(&name, &version,
2429 false, &oldsym,
2430 &resolve_oldsym);
2431 #else
2432 gold_unreachable();
2433 #endif
2434 }
2435
2436 gold_assert(oldsym == NULL);
2437
2438 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2439 elfcpp::STV_DEFAULT, 0);
2440 ++this->saw_undefined_;
2441 }
2442
2443 // Set the dynamic symbol indexes. INDEX is the index of the first
2444 // global dynamic symbol. Pointers to the symbols are stored into the
2445 // vector SYMS. The names are added to DYNPOOL. This returns an
2446 // updated dynamic symbol index.
2447
2448 unsigned int
2449 Symbol_table::set_dynsym_indexes(unsigned int index,
2450 std::vector<Symbol*>* syms,
2451 Stringpool* dynpool,
2452 Versions* versions)
2453 {
2454 std::vector<Symbol*> as_needed_sym;
2455
2456 // Allow a target to set dynsym indexes.
2457 if (parameters->target().has_custom_set_dynsym_indexes())
2458 {
2459 std::vector<Symbol*> dyn_symbols;
2460 for (Symbol_table_type::iterator p = this->table_.begin();
2461 p != this->table_.end();
2462 ++p)
2463 {
2464 Symbol* sym = p->second;
2465 if (!sym->should_add_dynsym_entry(this))
2466 sym->set_dynsym_index(-1U);
2467 else
2468 dyn_symbols.push_back(sym);
2469 }
2470
2471 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2472 dynpool, versions, this);
2473 }
2474
2475 for (Symbol_table_type::iterator p = this->table_.begin();
2476 p != this->table_.end();
2477 ++p)
2478 {
2479 Symbol* sym = p->second;
2480
2481 // Note that SYM may already have a dynamic symbol index, since
2482 // some symbols appear more than once in the symbol table, with
2483 // and without a version.
2484
2485 if (!sym->should_add_dynsym_entry(this))
2486 sym->set_dynsym_index(-1U);
2487 else if (!sym->has_dynsym_index())
2488 {
2489 sym->set_dynsym_index(index);
2490 ++index;
2491 syms->push_back(sym);
2492 dynpool->add(sym->name(), false, NULL);
2493
2494 // If the symbol is defined in a dynamic object and is
2495 // referenced strongly in a regular object, then mark the
2496 // dynamic object as needed. This is used to implement
2497 // --as-needed.
2498 if (sym->is_from_dynobj()
2499 && sym->in_reg()
2500 && !sym->is_undef_binding_weak())
2501 sym->object()->set_is_needed();
2502
2503 // Record any version information, except those from
2504 // as-needed libraries not seen to be needed. Note that the
2505 // is_needed state for such libraries can change in this loop.
2506 if (sym->version() != NULL)
2507 {
2508 if (!sym->is_from_dynobj()
2509 || !sym->object()->as_needed()
2510 || sym->object()->is_needed())
2511 versions->record_version(this, dynpool, sym);
2512 else
2513 as_needed_sym.push_back(sym);
2514 }
2515 }
2516 }
2517
2518 // Process version information for symbols from as-needed libraries.
2519 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2520 p != as_needed_sym.end();
2521 ++p)
2522 {
2523 Symbol* sym = *p;
2524
2525 if (sym->object()->is_needed())
2526 versions->record_version(this, dynpool, sym);
2527 else
2528 sym->clear_version();
2529 }
2530
2531 // Finish up the versions. In some cases this may add new dynamic
2532 // symbols.
2533 index = versions->finalize(this, index, syms);
2534
2535 return index;
2536 }
2537
2538 // Set the final values for all the symbols. The index of the first
2539 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2540 // file offset OFF. Add their names to POOL. Return the new file
2541 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2542
2543 off_t
2544 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2545 size_t dyncount, Stringpool* pool,
2546 unsigned int* plocal_symcount)
2547 {
2548 off_t ret;
2549
2550 gold_assert(*plocal_symcount != 0);
2551 this->first_global_index_ = *plocal_symcount;
2552
2553 this->dynamic_offset_ = dynoff;
2554 this->first_dynamic_global_index_ = dyn_global_index;
2555 this->dynamic_count_ = dyncount;
2556
2557 if (parameters->target().get_size() == 32)
2558 {
2559 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2560 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2561 #else
2562 gold_unreachable();
2563 #endif
2564 }
2565 else if (parameters->target().get_size() == 64)
2566 {
2567 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2568 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2569 #else
2570 gold_unreachable();
2571 #endif
2572 }
2573 else
2574 gold_unreachable();
2575
2576 // Now that we have the final symbol table, we can reliably note
2577 // which symbols should get warnings.
2578 this->warnings_.note_warnings(this);
2579
2580 return ret;
2581 }
2582
2583 // SYM is going into the symbol table at *PINDEX. Add the name to
2584 // POOL, update *PINDEX and *POFF.
2585
2586 template<int size>
2587 void
2588 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2589 unsigned int* pindex, off_t* poff)
2590 {
2591 sym->set_symtab_index(*pindex);
2592 if (sym->version() == NULL || !parameters->options().relocatable())
2593 pool->add(sym->name(), false, NULL);
2594 else
2595 pool->add(sym->versioned_name(), true, NULL);
2596 ++*pindex;
2597 *poff += elfcpp::Elf_sizes<size>::sym_size;
2598 }
2599
2600 // Set the final value for all the symbols. This is called after
2601 // Layout::finalize, so all the output sections have their final
2602 // address.
2603
2604 template<int size>
2605 off_t
2606 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2607 unsigned int* plocal_symcount)
2608 {
2609 off = align_address(off, size >> 3);
2610 this->offset_ = off;
2611
2612 unsigned int index = *plocal_symcount;
2613 const unsigned int orig_index = index;
2614
2615 // First do all the symbols which have been forced to be local, as
2616 // they must appear before all global symbols.
2617 for (Forced_locals::iterator p = this->forced_locals_.begin();
2618 p != this->forced_locals_.end();
2619 ++p)
2620 {
2621 Symbol* sym = *p;
2622 gold_assert(sym->is_forced_local());
2623 if (this->sized_finalize_symbol<size>(sym))
2624 {
2625 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2626 ++*plocal_symcount;
2627 }
2628 }
2629
2630 // Now do all the remaining symbols.
2631 for (Symbol_table_type::iterator p = this->table_.begin();
2632 p != this->table_.end();
2633 ++p)
2634 {
2635 Symbol* sym = p->second;
2636 if (this->sized_finalize_symbol<size>(sym))
2637 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2638 }
2639
2640 this->output_count_ = index - orig_index;
2641
2642 return off;
2643 }
2644
2645 // Compute the final value of SYM and store status in location PSTATUS.
2646 // During relaxation, this may be called multiple times for a symbol to
2647 // compute its would-be final value in each relaxation pass.
2648
2649 template<int size>
2650 typename Sized_symbol<size>::Value_type
2651 Symbol_table::compute_final_value(
2652 const Sized_symbol<size>* sym,
2653 Compute_final_value_status* pstatus) const
2654 {
2655 typedef typename Sized_symbol<size>::Value_type Value_type;
2656 Value_type value;
2657
2658 switch (sym->source())
2659 {
2660 case Symbol::FROM_OBJECT:
2661 {
2662 bool is_ordinary;
2663 unsigned int shndx = sym->shndx(&is_ordinary);
2664
2665 if (!is_ordinary
2666 && shndx != elfcpp::SHN_ABS
2667 && !Symbol::is_common_shndx(shndx))
2668 {
2669 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2670 return 0;
2671 }
2672
2673 Object* symobj = sym->object();
2674 if (symobj->is_dynamic())
2675 {
2676 value = 0;
2677 shndx = elfcpp::SHN_UNDEF;
2678 }
2679 else if (symobj->pluginobj() != NULL)
2680 {
2681 value = 0;
2682 shndx = elfcpp::SHN_UNDEF;
2683 }
2684 else if (shndx == elfcpp::SHN_UNDEF)
2685 value = 0;
2686 else if (!is_ordinary
2687 && (shndx == elfcpp::SHN_ABS
2688 || Symbol::is_common_shndx(shndx)))
2689 value = sym->value();
2690 else
2691 {
2692 Relobj* relobj = static_cast<Relobj*>(symobj);
2693 Output_section* os = relobj->output_section(shndx);
2694
2695 if (this->is_section_folded(relobj, shndx))
2696 {
2697 gold_assert(os == NULL);
2698 // Get the os of the section it is folded onto.
2699 Section_id folded = this->icf_->get_folded_section(relobj,
2700 shndx);
2701 gold_assert(folded.first != NULL);
2702 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2703 unsigned folded_shndx = folded.second;
2704
2705 os = folded_obj->output_section(folded_shndx);
2706 gold_assert(os != NULL);
2707
2708 // Replace (relobj, shndx) with canonical ICF input section.
2709 shndx = folded_shndx;
2710 relobj = folded_obj;
2711 }
2712
2713 uint64_t secoff64 = relobj->output_section_offset(shndx);
2714 if (os == NULL)
2715 {
2716 bool static_or_reloc = (parameters->doing_static_link() ||
2717 parameters->options().relocatable());
2718 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2719
2720 *pstatus = CFVS_NO_OUTPUT_SECTION;
2721 return 0;
2722 }
2723
2724 if (secoff64 == -1ULL)
2725 {
2726 // The section needs special handling (e.g., a merge section).
2727
2728 value = os->output_address(relobj, shndx, sym->value());
2729 }
2730 else
2731 {
2732 Value_type secoff =
2733 convert_types<Value_type, uint64_t>(secoff64);
2734 if (sym->type() == elfcpp::STT_TLS)
2735 value = sym->value() + os->tls_offset() + secoff;
2736 else
2737 value = sym->value() + os->address() + secoff;
2738 }
2739 }
2740 }
2741 break;
2742
2743 case Symbol::IN_OUTPUT_DATA:
2744 {
2745 Output_data* od = sym->output_data();
2746 value = sym->value();
2747 if (sym->type() != elfcpp::STT_TLS)
2748 value += od->address();
2749 else
2750 {
2751 Output_section* os = od->output_section();
2752 gold_assert(os != NULL);
2753 value += os->tls_offset() + (od->address() - os->address());
2754 }
2755 if (sym->offset_is_from_end())
2756 value += od->data_size();
2757 }
2758 break;
2759
2760 case Symbol::IN_OUTPUT_SEGMENT:
2761 {
2762 Output_segment* os = sym->output_segment();
2763 value = sym->value();
2764 if (sym->type() != elfcpp::STT_TLS)
2765 value += os->vaddr();
2766 switch (sym->offset_base())
2767 {
2768 case Symbol::SEGMENT_START:
2769 break;
2770 case Symbol::SEGMENT_END:
2771 value += os->memsz();
2772 break;
2773 case Symbol::SEGMENT_BSS:
2774 value += os->filesz();
2775 break;
2776 default:
2777 gold_unreachable();
2778 }
2779 }
2780 break;
2781
2782 case Symbol::IS_CONSTANT:
2783 value = sym->value();
2784 break;
2785
2786 case Symbol::IS_UNDEFINED:
2787 value = 0;
2788 break;
2789
2790 default:
2791 gold_unreachable();
2792 }
2793
2794 *pstatus = CFVS_OK;
2795 return value;
2796 }
2797
2798 // Finalize the symbol SYM. This returns true if the symbol should be
2799 // added to the symbol table, false otherwise.
2800
2801 template<int size>
2802 bool
2803 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2804 {
2805 typedef typename Sized_symbol<size>::Value_type Value_type;
2806
2807 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2808
2809 // The default version of a symbol may appear twice in the symbol
2810 // table. We only need to finalize it once.
2811 if (sym->has_symtab_index())
2812 return false;
2813
2814 if (!sym->in_reg())
2815 {
2816 gold_assert(!sym->has_symtab_index());
2817 sym->set_symtab_index(-1U);
2818 gold_assert(sym->dynsym_index() == -1U);
2819 return false;
2820 }
2821
2822 // If the symbol is only present on plugin files, the plugin decided we
2823 // don't need it.
2824 if (!sym->in_real_elf())
2825 {
2826 gold_assert(!sym->has_symtab_index());
2827 sym->set_symtab_index(-1U);
2828 return false;
2829 }
2830
2831 // Compute final symbol value.
2832 Compute_final_value_status status;
2833 Value_type value = this->compute_final_value(sym, &status);
2834
2835 switch (status)
2836 {
2837 case CFVS_OK:
2838 break;
2839 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2840 {
2841 bool is_ordinary;
2842 unsigned int shndx = sym->shndx(&is_ordinary);
2843 gold_error(_("%s: unsupported symbol section 0x%x"),
2844 sym->demangled_name().c_str(), shndx);
2845 }
2846 break;
2847 case CFVS_NO_OUTPUT_SECTION:
2848 sym->set_symtab_index(-1U);
2849 return false;
2850 default:
2851 gold_unreachable();
2852 }
2853
2854 sym->set_value(value);
2855
2856 if (parameters->options().strip_all()
2857 || !parameters->options().should_retain_symbol(sym->name()))
2858 {
2859 sym->set_symtab_index(-1U);
2860 return false;
2861 }
2862
2863 return true;
2864 }
2865
2866 // Write out the global symbols.
2867
2868 void
2869 Symbol_table::write_globals(const Stringpool* sympool,
2870 const Stringpool* dynpool,
2871 Output_symtab_xindex* symtab_xindex,
2872 Output_symtab_xindex* dynsym_xindex,
2873 Output_file* of) const
2874 {
2875 switch (parameters->size_and_endianness())
2876 {
2877 #ifdef HAVE_TARGET_32_LITTLE
2878 case Parameters::TARGET_32_LITTLE:
2879 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2880 dynsym_xindex, of);
2881 break;
2882 #endif
2883 #ifdef HAVE_TARGET_32_BIG
2884 case Parameters::TARGET_32_BIG:
2885 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2886 dynsym_xindex, of);
2887 break;
2888 #endif
2889 #ifdef HAVE_TARGET_64_LITTLE
2890 case Parameters::TARGET_64_LITTLE:
2891 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2892 dynsym_xindex, of);
2893 break;
2894 #endif
2895 #ifdef HAVE_TARGET_64_BIG
2896 case Parameters::TARGET_64_BIG:
2897 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2898 dynsym_xindex, of);
2899 break;
2900 #endif
2901 default:
2902 gold_unreachable();
2903 }
2904 }
2905
2906 // Write out the global symbols.
2907
2908 template<int size, bool big_endian>
2909 void
2910 Symbol_table::sized_write_globals(const Stringpool* sympool,
2911 const Stringpool* dynpool,
2912 Output_symtab_xindex* symtab_xindex,
2913 Output_symtab_xindex* dynsym_xindex,
2914 Output_file* of) const
2915 {
2916 const Target& target = parameters->target();
2917
2918 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2919
2920 const unsigned int output_count = this->output_count_;
2921 const section_size_type oview_size = output_count * sym_size;
2922 const unsigned int first_global_index = this->first_global_index_;
2923 unsigned char* psyms;
2924 if (this->offset_ == 0 || output_count == 0)
2925 psyms = NULL;
2926 else
2927 psyms = of->get_output_view(this->offset_, oview_size);
2928
2929 const unsigned int dynamic_count = this->dynamic_count_;
2930 const section_size_type dynamic_size = dynamic_count * sym_size;
2931 const unsigned int first_dynamic_global_index =
2932 this->first_dynamic_global_index_;
2933 unsigned char* dynamic_view;
2934 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2935 dynamic_view = NULL;
2936 else
2937 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2938
2939 for (Symbol_table_type::const_iterator p = this->table_.begin();
2940 p != this->table_.end();
2941 ++p)
2942 {
2943 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2944
2945 // Possibly warn about unresolved symbols in shared libraries.
2946 this->warn_about_undefined_dynobj_symbol(sym);
2947
2948 unsigned int sym_index = sym->symtab_index();
2949 unsigned int dynsym_index;
2950 if (dynamic_view == NULL)
2951 dynsym_index = -1U;
2952 else
2953 dynsym_index = sym->dynsym_index();
2954
2955 if (sym_index == -1U && dynsym_index == -1U)
2956 {
2957 // This symbol is not included in the output file.
2958 continue;
2959 }
2960
2961 unsigned int shndx;
2962 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2963 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2964 elfcpp::STB binding = sym->binding();
2965
2966 // If --weak-unresolved-symbols is set, change binding of unresolved
2967 // global symbols to STB_WEAK.
2968 if (parameters->options().weak_unresolved_symbols()
2969 && binding == elfcpp::STB_GLOBAL
2970 && sym->is_undefined())
2971 binding = elfcpp::STB_WEAK;
2972
2973 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2974 if (binding == elfcpp::STB_GNU_UNIQUE
2975 && !parameters->options().gnu_unique())
2976 binding = elfcpp::STB_GLOBAL;
2977
2978 switch (sym->source())
2979 {
2980 case Symbol::FROM_OBJECT:
2981 {
2982 bool is_ordinary;
2983 unsigned int in_shndx = sym->shndx(&is_ordinary);
2984
2985 if (!is_ordinary
2986 && in_shndx != elfcpp::SHN_ABS
2987 && !Symbol::is_common_shndx(in_shndx))
2988 {
2989 gold_error(_("%s: unsupported symbol section 0x%x"),
2990 sym->demangled_name().c_str(), in_shndx);
2991 shndx = in_shndx;
2992 }
2993 else
2994 {
2995 Object* symobj = sym->object();
2996 if (symobj->is_dynamic())
2997 {
2998 if (sym->needs_dynsym_value())
2999 dynsym_value = target.dynsym_value(sym);
3000 shndx = elfcpp::SHN_UNDEF;
3001 if (sym->is_undef_binding_weak())
3002 binding = elfcpp::STB_WEAK;
3003 else
3004 binding = elfcpp::STB_GLOBAL;
3005 }
3006 else if (symobj->pluginobj() != NULL)
3007 shndx = elfcpp::SHN_UNDEF;
3008 else if (in_shndx == elfcpp::SHN_UNDEF
3009 || (!is_ordinary
3010 && (in_shndx == elfcpp::SHN_ABS
3011 || Symbol::is_common_shndx(in_shndx))))
3012 shndx = in_shndx;
3013 else
3014 {
3015 Relobj* relobj = static_cast<Relobj*>(symobj);
3016 Output_section* os = relobj->output_section(in_shndx);
3017 if (this->is_section_folded(relobj, in_shndx))
3018 {
3019 // This global symbol must be written out even though
3020 // it is folded.
3021 // Get the os of the section it is folded onto.
3022 Section_id folded =
3023 this->icf_->get_folded_section(relobj, in_shndx);
3024 gold_assert(folded.first !=NULL);
3025 Relobj* folded_obj =
3026 reinterpret_cast<Relobj*>(folded.first);
3027 os = folded_obj->output_section(folded.second);
3028 gold_assert(os != NULL);
3029 }
3030 gold_assert(os != NULL);
3031 shndx = os->out_shndx();
3032
3033 if (shndx >= elfcpp::SHN_LORESERVE)
3034 {
3035 if (sym_index != -1U)
3036 symtab_xindex->add(sym_index, shndx);
3037 if (dynsym_index != -1U)
3038 dynsym_xindex->add(dynsym_index, shndx);
3039 shndx = elfcpp::SHN_XINDEX;
3040 }
3041
3042 // In object files symbol values are section
3043 // relative.
3044 if (parameters->options().relocatable())
3045 sym_value -= os->address();
3046 }
3047 }
3048 }
3049 break;
3050
3051 case Symbol::IN_OUTPUT_DATA:
3052 {
3053 Output_data* od = sym->output_data();
3054
3055 shndx = od->out_shndx();
3056 if (shndx >= elfcpp::SHN_LORESERVE)
3057 {
3058 if (sym_index != -1U)
3059 symtab_xindex->add(sym_index, shndx);
3060 if (dynsym_index != -1U)
3061 dynsym_xindex->add(dynsym_index, shndx);
3062 shndx = elfcpp::SHN_XINDEX;
3063 }
3064
3065 // In object files symbol values are section
3066 // relative.
3067 if (parameters->options().relocatable())
3068 sym_value -= od->address();
3069 }
3070 break;
3071
3072 case Symbol::IN_OUTPUT_SEGMENT:
3073 shndx = elfcpp::SHN_ABS;
3074 break;
3075
3076 case Symbol::IS_CONSTANT:
3077 shndx = elfcpp::SHN_ABS;
3078 break;
3079
3080 case Symbol::IS_UNDEFINED:
3081 shndx = elfcpp::SHN_UNDEF;
3082 break;
3083
3084 default:
3085 gold_unreachable();
3086 }
3087
3088 if (sym_index != -1U)
3089 {
3090 sym_index -= first_global_index;
3091 gold_assert(sym_index < output_count);
3092 unsigned char* ps = psyms + (sym_index * sym_size);
3093 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3094 binding, sympool, ps);
3095 }
3096
3097 if (dynsym_index != -1U)
3098 {
3099 dynsym_index -= first_dynamic_global_index;
3100 gold_assert(dynsym_index < dynamic_count);
3101 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3102 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3103 binding, dynpool, pd);
3104 // Allow a target to adjust dynamic symbol value.
3105 parameters->target().adjust_dyn_symbol(sym, pd);
3106 }
3107 }
3108
3109 of->write_output_view(this->offset_, oview_size, psyms);
3110 if (dynamic_view != NULL)
3111 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3112 }
3113
3114 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3115 // strtab holding the name.
3116
3117 template<int size, bool big_endian>
3118 void
3119 Symbol_table::sized_write_symbol(
3120 Sized_symbol<size>* sym,
3121 typename elfcpp::Elf_types<size>::Elf_Addr value,
3122 unsigned int shndx,
3123 elfcpp::STB binding,
3124 const Stringpool* pool,
3125 unsigned char* p) const
3126 {
3127 elfcpp::Sym_write<size, big_endian> osym(p);
3128 if (sym->version() == NULL || !parameters->options().relocatable())
3129 osym.put_st_name(pool->get_offset(sym->name()));
3130 else
3131 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3132 osym.put_st_value(value);
3133 // Use a symbol size of zero for undefined symbols from shared libraries.
3134 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3135 osym.put_st_size(0);
3136 else
3137 osym.put_st_size(sym->symsize());
3138 elfcpp::STT type = sym->type();
3139 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3140 // A version script may have overridden the default binding.
3141 if (sym->is_forced_local())
3142 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3143 else
3144 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3145 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3146 osym.put_st_shndx(shndx);
3147 }
3148
3149 // Check for unresolved symbols in shared libraries. This is
3150 // controlled by the --allow-shlib-undefined option.
3151
3152 // We only warn about libraries for which we have seen all the
3153 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3154 // which were not seen in this link. If we didn't see a DT_NEEDED
3155 // entry, we aren't going to be able to reliably report whether the
3156 // symbol is undefined.
3157
3158 // We also don't warn about libraries found in a system library
3159 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3160 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3161 // can have undefined references satisfied by ld-linux.so.
3162
3163 inline void
3164 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3165 {
3166 bool dummy;
3167 if (sym->source() == Symbol::FROM_OBJECT
3168 && sym->object()->is_dynamic()
3169 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3170 && sym->binding() != elfcpp::STB_WEAK
3171 && !parameters->options().allow_shlib_undefined()
3172 && !parameters->target().is_defined_by_abi(sym)
3173 && !sym->object()->is_in_system_directory())
3174 {
3175 // A very ugly cast.
3176 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3177 if (!dynobj->has_unknown_needed_entries())
3178 gold_undefined_symbol(sym);
3179 }
3180 }
3181
3182 // Write out a section symbol. Return the update offset.
3183
3184 void
3185 Symbol_table::write_section_symbol(const Output_section* os,
3186 Output_symtab_xindex* symtab_xindex,
3187 Output_file* of,
3188 off_t offset) const
3189 {
3190 switch (parameters->size_and_endianness())
3191 {
3192 #ifdef HAVE_TARGET_32_LITTLE
3193 case Parameters::TARGET_32_LITTLE:
3194 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3195 offset);
3196 break;
3197 #endif
3198 #ifdef HAVE_TARGET_32_BIG
3199 case Parameters::TARGET_32_BIG:
3200 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3201 offset);
3202 break;
3203 #endif
3204 #ifdef HAVE_TARGET_64_LITTLE
3205 case Parameters::TARGET_64_LITTLE:
3206 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3207 offset);
3208 break;
3209 #endif
3210 #ifdef HAVE_TARGET_64_BIG
3211 case Parameters::TARGET_64_BIG:
3212 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3213 offset);
3214 break;
3215 #endif
3216 default:
3217 gold_unreachable();
3218 }
3219 }
3220
3221 // Write out a section symbol, specialized for size and endianness.
3222
3223 template<int size, bool big_endian>
3224 void
3225 Symbol_table::sized_write_section_symbol(const Output_section* os,
3226 Output_symtab_xindex* symtab_xindex,
3227 Output_file* of,
3228 off_t offset) const
3229 {
3230 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3231
3232 unsigned char* pov = of->get_output_view(offset, sym_size);
3233
3234 elfcpp::Sym_write<size, big_endian> osym(pov);
3235 osym.put_st_name(0);
3236 if (parameters->options().relocatable())
3237 osym.put_st_value(0);
3238 else
3239 osym.put_st_value(os->address());
3240 osym.put_st_size(0);
3241 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3242 elfcpp::STT_SECTION));
3243 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3244
3245 unsigned int shndx = os->out_shndx();
3246 if (shndx >= elfcpp::SHN_LORESERVE)
3247 {
3248 symtab_xindex->add(os->symtab_index(), shndx);
3249 shndx = elfcpp::SHN_XINDEX;
3250 }
3251 osym.put_st_shndx(shndx);
3252
3253 of->write_output_view(offset, sym_size, pov);
3254 }
3255
3256 // Print statistical information to stderr. This is used for --stats.
3257
3258 void
3259 Symbol_table::print_stats() const
3260 {
3261 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3262 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3263 program_name, this->table_.size(), this->table_.bucket_count());
3264 #else
3265 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3266 program_name, this->table_.size());
3267 #endif
3268 this->namepool_.print_stats("symbol table stringpool");
3269 }
3270
3271 // We check for ODR violations by looking for symbols with the same
3272 // name for which the debugging information reports that they were
3273 // defined in disjoint source locations. When comparing the source
3274 // location, we consider instances with the same base filename to be
3275 // the same. This is because different object files/shared libraries
3276 // can include the same header file using different paths, and
3277 // different optimization settings can make the line number appear to
3278 // be a couple lines off, and we don't want to report an ODR violation
3279 // in those cases.
3280
3281 // This struct is used to compare line information, as returned by
3282 // Dwarf_line_info::one_addr2line. It implements a < comparison
3283 // operator used with std::sort.
3284
3285 struct Odr_violation_compare
3286 {
3287 bool
3288 operator()(const std::string& s1, const std::string& s2) const
3289 {
3290 // Inputs should be of the form "dirname/filename:linenum" where
3291 // "dirname/" is optional. We want to compare just the filename:linenum.
3292
3293 // Find the last '/' in each string.
3294 std::string::size_type s1begin = s1.rfind('/');
3295 std::string::size_type s2begin = s2.rfind('/');
3296 // If there was no '/' in a string, start at the beginning.
3297 if (s1begin == std::string::npos)
3298 s1begin = 0;
3299 if (s2begin == std::string::npos)
3300 s2begin = 0;
3301 return s1.compare(s1begin, std::string::npos,
3302 s2, s2begin, std::string::npos) < 0;
3303 }
3304 };
3305
3306 // Returns all of the lines attached to LOC, not just the one the
3307 // instruction actually came from.
3308 std::vector<std::string>
3309 Symbol_table::linenos_from_loc(const Task* task,
3310 const Symbol_location& loc)
3311 {
3312 // We need to lock the object in order to read it. This
3313 // means that we have to run in a singleton Task. If we
3314 // want to run this in a general Task for better
3315 // performance, we will need one Task for object, plus
3316 // appropriate locking to ensure that we don't conflict with
3317 // other uses of the object. Also note, one_addr2line is not
3318 // currently thread-safe.
3319 Task_lock_obj<Object> tl(task, loc.object);
3320
3321 std::vector<std::string> result;
3322 Symbol_location code_loc = loc;
3323 parameters->target().function_location(&code_loc);
3324 // 16 is the size of the object-cache that one_addr2line should use.
3325 std::string canonical_result = Dwarf_line_info::one_addr2line(
3326 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3327 if (!canonical_result.empty())
3328 result.push_back(canonical_result);
3329 return result;
3330 }
3331
3332 // OutputIterator that records if it was ever assigned to. This
3333 // allows it to be used with std::set_intersection() to check for
3334 // intersection rather than computing the intersection.
3335 struct Check_intersection
3336 {
3337 Check_intersection()
3338 : value_(false)
3339 {}
3340
3341 bool had_intersection() const
3342 { return this->value_; }
3343
3344 Check_intersection& operator++()
3345 { return *this; }
3346
3347 Check_intersection& operator*()
3348 { return *this; }
3349
3350 template<typename T>
3351 Check_intersection& operator=(const T&)
3352 {
3353 this->value_ = true;
3354 return *this;
3355 }
3356
3357 private:
3358 bool value_;
3359 };
3360
3361 // Check candidate_odr_violations_ to find symbols with the same name
3362 // but apparently different definitions (different source-file/line-no
3363 // for each line assigned to the first instruction).
3364
3365 void
3366 Symbol_table::detect_odr_violations(const Task* task,
3367 const char* output_file_name) const
3368 {
3369 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3370 it != candidate_odr_violations_.end();
3371 ++it)
3372 {
3373 const char* const symbol_name = it->first;
3374
3375 std::string first_object_name;
3376 std::vector<std::string> first_object_linenos;
3377
3378 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3379 locs = it->second.begin();
3380 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3381 locs_end = it->second.end();
3382 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3383 {
3384 // Save the line numbers from the first definition to
3385 // compare to the other definitions. Ideally, we'd compare
3386 // every definition to every other, but we don't want to
3387 // take O(N^2) time to do this. This shortcut may cause
3388 // false negatives that appear or disappear depending on the
3389 // link order, but it won't cause false positives.
3390 first_object_name = locs->object->name();
3391 first_object_linenos = this->linenos_from_loc(task, *locs);
3392 }
3393 if (first_object_linenos.empty())
3394 continue;
3395
3396 // Sort by Odr_violation_compare to make std::set_intersection work.
3397 std::string first_object_canonical_result = first_object_linenos.back();
3398 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3399 Odr_violation_compare());
3400
3401 for (; locs != locs_end; ++locs)
3402 {
3403 std::vector<std::string> linenos =
3404 this->linenos_from_loc(task, *locs);
3405 // linenos will be empty if we couldn't parse the debug info.
3406 if (linenos.empty())
3407 continue;
3408 // Sort by Odr_violation_compare to make std::set_intersection work.
3409 gold_assert(!linenos.empty());
3410 std::string second_object_canonical_result = linenos.back();
3411 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3412
3413 Check_intersection intersection_result =
3414 std::set_intersection(first_object_linenos.begin(),
3415 first_object_linenos.end(),
3416 linenos.begin(),
3417 linenos.end(),
3418 Check_intersection(),
3419 Odr_violation_compare());
3420 if (!intersection_result.had_intersection())
3421 {
3422 gold_warning(_("while linking %s: symbol '%s' defined in "
3423 "multiple places (possible ODR violation):"),
3424 output_file_name, demangle(symbol_name).c_str());
3425 // This only prints one location from each definition,
3426 // which may not be the location we expect to intersect
3427 // with another definition. We could print the whole
3428 // set of locations, but that seems too verbose.
3429 fprintf(stderr, _(" %s from %s\n"),
3430 first_object_canonical_result.c_str(),
3431 first_object_name.c_str());
3432 fprintf(stderr, _(" %s from %s\n"),
3433 second_object_canonical_result.c_str(),
3434 locs->object->name().c_str());
3435 // Only print one broken pair, to avoid needing to
3436 // compare against a list of the disjoint definition
3437 // locations we've found so far. (If we kept comparing
3438 // against just the first one, we'd get a lot of
3439 // redundant complaints about the second definition
3440 // location.)
3441 break;
3442 }
3443 }
3444 }
3445 // We only call one_addr2line() in this function, so we can clear its cache.
3446 Dwarf_line_info::clear_addr2line_cache();
3447 }
3448
3449 // Warnings functions.
3450
3451 // Add a new warning.
3452
3453 void
3454 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3455 const std::string& warning)
3456 {
3457 name = symtab->canonicalize_name(name);
3458 this->warnings_[name].set(obj, warning);
3459 }
3460
3461 // Look through the warnings and mark the symbols for which we should
3462 // warn. This is called during Layout::finalize when we know the
3463 // sources for all the symbols.
3464
3465 void
3466 Warnings::note_warnings(Symbol_table* symtab)
3467 {
3468 for (Warning_table::iterator p = this->warnings_.begin();
3469 p != this->warnings_.end();
3470 ++p)
3471 {
3472 Symbol* sym = symtab->lookup(p->first, NULL);
3473 if (sym != NULL
3474 && sym->source() == Symbol::FROM_OBJECT
3475 && sym->object() == p->second.object)
3476 sym->set_has_warning();
3477 }
3478 }
3479
3480 // Issue a warning. This is called when we see a relocation against a
3481 // symbol for which has a warning.
3482
3483 template<int size, bool big_endian>
3484 void
3485 Warnings::issue_warning(const Symbol* sym,
3486 const Relocate_info<size, big_endian>* relinfo,
3487 size_t relnum, off_t reloffset) const
3488 {
3489 gold_assert(sym->has_warning());
3490
3491 // We don't want to issue a warning for a relocation against the
3492 // symbol in the same object file in which the symbol is defined.
3493 if (sym->object() == relinfo->object)
3494 return;
3495
3496 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3497 gold_assert(p != this->warnings_.end());
3498 gold_warning_at_location(relinfo, relnum, reloffset,
3499 "%s", p->second.text.c_str());
3500 }
3501
3502 // Instantiate the templates we need. We could use the configure
3503 // script to restrict this to only the ones needed for implemented
3504 // targets.
3505
3506 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3507 template
3508 void
3509 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3510 #endif
3511
3512 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3513 template
3514 void
3515 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3516 #endif
3517
3518 #ifdef HAVE_TARGET_32_LITTLE
3519 template
3520 void
3521 Symbol_table::add_from_relobj<32, false>(
3522 Sized_relobj_file<32, false>* relobj,
3523 const unsigned char* syms,
3524 size_t count,
3525 size_t symndx_offset,
3526 const char* sym_names,
3527 size_t sym_name_size,
3528 Sized_relobj_file<32, false>::Symbols* sympointers,
3529 size_t* defined);
3530 #endif
3531
3532 #ifdef HAVE_TARGET_32_BIG
3533 template
3534 void
3535 Symbol_table::add_from_relobj<32, true>(
3536 Sized_relobj_file<32, true>* relobj,
3537 const unsigned char* syms,
3538 size_t count,
3539 size_t symndx_offset,
3540 const char* sym_names,
3541 size_t sym_name_size,
3542 Sized_relobj_file<32, true>::Symbols* sympointers,
3543 size_t* defined);
3544 #endif
3545
3546 #ifdef HAVE_TARGET_64_LITTLE
3547 template
3548 void
3549 Symbol_table::add_from_relobj<64, false>(
3550 Sized_relobj_file<64, false>* relobj,
3551 const unsigned char* syms,
3552 size_t count,
3553 size_t symndx_offset,
3554 const char* sym_names,
3555 size_t sym_name_size,
3556 Sized_relobj_file<64, false>::Symbols* sympointers,
3557 size_t* defined);
3558 #endif
3559
3560 #ifdef HAVE_TARGET_64_BIG
3561 template
3562 void
3563 Symbol_table::add_from_relobj<64, true>(
3564 Sized_relobj_file<64, true>* relobj,
3565 const unsigned char* syms,
3566 size_t count,
3567 size_t symndx_offset,
3568 const char* sym_names,
3569 size_t sym_name_size,
3570 Sized_relobj_file<64, true>::Symbols* sympointers,
3571 size_t* defined);
3572 #endif
3573
3574 #ifdef HAVE_TARGET_32_LITTLE
3575 template
3576 Symbol*
3577 Symbol_table::add_from_pluginobj<32, false>(
3578 Sized_pluginobj<32, false>* obj,
3579 const char* name,
3580 const char* ver,
3581 elfcpp::Sym<32, false>* sym);
3582 #endif
3583
3584 #ifdef HAVE_TARGET_32_BIG
3585 template
3586 Symbol*
3587 Symbol_table::add_from_pluginobj<32, true>(
3588 Sized_pluginobj<32, true>* obj,
3589 const char* name,
3590 const char* ver,
3591 elfcpp::Sym<32, true>* sym);
3592 #endif
3593
3594 #ifdef HAVE_TARGET_64_LITTLE
3595 template
3596 Symbol*
3597 Symbol_table::add_from_pluginobj<64, false>(
3598 Sized_pluginobj<64, false>* obj,
3599 const char* name,
3600 const char* ver,
3601 elfcpp::Sym<64, false>* sym);
3602 #endif
3603
3604 #ifdef HAVE_TARGET_64_BIG
3605 template
3606 Symbol*
3607 Symbol_table::add_from_pluginobj<64, true>(
3608 Sized_pluginobj<64, true>* obj,
3609 const char* name,
3610 const char* ver,
3611 elfcpp::Sym<64, true>* sym);
3612 #endif
3613
3614 #ifdef HAVE_TARGET_32_LITTLE
3615 template
3616 void
3617 Symbol_table::add_from_dynobj<32, false>(
3618 Sized_dynobj<32, false>* dynobj,
3619 const unsigned char* syms,
3620 size_t count,
3621 const char* sym_names,
3622 size_t sym_name_size,
3623 const unsigned char* versym,
3624 size_t versym_size,
3625 const std::vector<const char*>* version_map,
3626 Sized_relobj_file<32, false>::Symbols* sympointers,
3627 size_t* defined);
3628 #endif
3629
3630 #ifdef HAVE_TARGET_32_BIG
3631 template
3632 void
3633 Symbol_table::add_from_dynobj<32, true>(
3634 Sized_dynobj<32, true>* dynobj,
3635 const unsigned char* syms,
3636 size_t count,
3637 const char* sym_names,
3638 size_t sym_name_size,
3639 const unsigned char* versym,
3640 size_t versym_size,
3641 const std::vector<const char*>* version_map,
3642 Sized_relobj_file<32, true>::Symbols* sympointers,
3643 size_t* defined);
3644 #endif
3645
3646 #ifdef HAVE_TARGET_64_LITTLE
3647 template
3648 void
3649 Symbol_table::add_from_dynobj<64, false>(
3650 Sized_dynobj<64, false>* dynobj,
3651 const unsigned char* syms,
3652 size_t count,
3653 const char* sym_names,
3654 size_t sym_name_size,
3655 const unsigned char* versym,
3656 size_t versym_size,
3657 const std::vector<const char*>* version_map,
3658 Sized_relobj_file<64, false>::Symbols* sympointers,
3659 size_t* defined);
3660 #endif
3661
3662 #ifdef HAVE_TARGET_64_BIG
3663 template
3664 void
3665 Symbol_table::add_from_dynobj<64, true>(
3666 Sized_dynobj<64, true>* dynobj,
3667 const unsigned char* syms,
3668 size_t count,
3669 const char* sym_names,
3670 size_t sym_name_size,
3671 const unsigned char* versym,
3672 size_t versym_size,
3673 const std::vector<const char*>* version_map,
3674 Sized_relobj_file<64, true>::Symbols* sympointers,
3675 size_t* defined);
3676 #endif
3677
3678 #ifdef HAVE_TARGET_32_LITTLE
3679 template
3680 Sized_symbol<32>*
3681 Symbol_table::add_from_incrobj(
3682 Object* obj,
3683 const char* name,
3684 const char* ver,
3685 elfcpp::Sym<32, false>* sym);
3686 #endif
3687
3688 #ifdef HAVE_TARGET_32_BIG
3689 template
3690 Sized_symbol<32>*
3691 Symbol_table::add_from_incrobj(
3692 Object* obj,
3693 const char* name,
3694 const char* ver,
3695 elfcpp::Sym<32, true>* sym);
3696 #endif
3697
3698 #ifdef HAVE_TARGET_64_LITTLE
3699 template
3700 Sized_symbol<64>*
3701 Symbol_table::add_from_incrobj(
3702 Object* obj,
3703 const char* name,
3704 const char* ver,
3705 elfcpp::Sym<64, false>* sym);
3706 #endif
3707
3708 #ifdef HAVE_TARGET_64_BIG
3709 template
3710 Sized_symbol<64>*
3711 Symbol_table::add_from_incrobj(
3712 Object* obj,
3713 const char* name,
3714 const char* ver,
3715 elfcpp::Sym<64, true>* sym);
3716 #endif
3717
3718 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3719 template
3720 void
3721 Symbol_table::define_with_copy_reloc<32>(
3722 Sized_symbol<32>* sym,
3723 Output_data* posd,
3724 elfcpp::Elf_types<32>::Elf_Addr value);
3725 #endif
3726
3727 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3728 template
3729 void
3730 Symbol_table::define_with_copy_reloc<64>(
3731 Sized_symbol<64>* sym,
3732 Output_data* posd,
3733 elfcpp::Elf_types<64>::Elf_Addr value);
3734 #endif
3735
3736 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3737 template
3738 void
3739 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3740 Output_data* od, Value_type value,
3741 Size_type symsize, elfcpp::STT type,
3742 elfcpp::STB binding,
3743 elfcpp::STV visibility,
3744 unsigned char nonvis,
3745 bool offset_is_from_end,
3746 bool is_predefined);
3747 #endif
3748
3749 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3750 template
3751 void
3752 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3753 Output_data* od, Value_type value,
3754 Size_type symsize, elfcpp::STT type,
3755 elfcpp::STB binding,
3756 elfcpp::STV visibility,
3757 unsigned char nonvis,
3758 bool offset_is_from_end,
3759 bool is_predefined);
3760 #endif
3761
3762 #ifdef HAVE_TARGET_32_LITTLE
3763 template
3764 void
3765 Warnings::issue_warning<32, false>(const Symbol* sym,
3766 const Relocate_info<32, false>* relinfo,
3767 size_t relnum, off_t reloffset) const;
3768 #endif
3769
3770 #ifdef HAVE_TARGET_32_BIG
3771 template
3772 void
3773 Warnings::issue_warning<32, true>(const Symbol* sym,
3774 const Relocate_info<32, true>* relinfo,
3775 size_t relnum, off_t reloffset) const;
3776 #endif
3777
3778 #ifdef HAVE_TARGET_64_LITTLE
3779 template
3780 void
3781 Warnings::issue_warning<64, false>(const Symbol* sym,
3782 const Relocate_info<64, false>* relinfo,
3783 size_t relnum, off_t reloffset) const;
3784 #endif
3785
3786 #ifdef HAVE_TARGET_64_BIG
3787 template
3788 void
3789 Warnings::issue_warning<64, true>(const Symbol* sym,
3790 const Relocate_info<64, true>* relinfo,
3791 size_t relnum, off_t reloffset) const;
3792 #endif
3793
3794 } // End namespace gold.
This page took 0.112708 seconds and 5 git commands to generate.