gold/
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Class Symbol_table.
531
532 Symbol_table::Symbol_table(unsigned int count,
533 const Version_script_info& version_script)
534 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535 forwarders_(), commons_(), tls_commons_(), small_commons_(),
536 large_commons_(), forced_locals_(), warnings_(),
537 version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539 namepool_.reserve(count);
540 }
541
542 Symbol_table::~Symbol_table()
543 {
544 }
545
546 // The symbol table key equality function. This is called with
547 // Stringpool keys.
548
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551 const Symbol_table_key& k2) const
552 {
553 return k1.first == k2.first && k1.second == k2.second;
554 }
555
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559 return (parameters->options().icf_enabled()
560 && this->icf_->is_section_folded(obj, shndx));
561 }
562
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565
566 void
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569 for (options::String_set::const_iterator p =
570 parameters->options().undefined_begin();
571 p != parameters->options().undefined_end();
572 ++p)
573 {
574 const char* name = p->c_str();
575 Symbol* sym = this->lookup(name);
576 gold_assert(sym != NULL);
577 if (sym->source() == Symbol::FROM_OBJECT
578 && !sym->object()->is_dynamic())
579 {
580 this->gc_mark_symbol(sym);
581 }
582 }
583
584 for (options::String_set::const_iterator p =
585 parameters->options().export_dynamic_symbol_begin();
586 p != parameters->options().export_dynamic_symbol_end();
587 ++p)
588 {
589 const char* name = p->c_str();
590 Symbol* sym = this->lookup(name);
591 // It's not an error if a symbol named by --export-dynamic-symbol
592 // is undefined.
593 if (sym != NULL
594 && sym->source() == Symbol::FROM_OBJECT
595 && !sym->object()->is_dynamic())
596 {
597 this->gc_mark_symbol(sym);
598 }
599 }
600
601 for (Script_options::referenced_const_iterator p =
602 layout->script_options()->referenced_begin();
603 p != layout->script_options()->referenced_end();
604 ++p)
605 {
606 Symbol* sym = this->lookup(p->c_str());
607 gold_assert(sym != NULL);
608 if (sym->source() == Symbol::FROM_OBJECT
609 && !sym->object()->is_dynamic())
610 {
611 this->gc_mark_symbol(sym);
612 }
613 }
614 }
615
616 void
617 Symbol_table::gc_mark_symbol(Symbol* sym)
618 {
619 // Add the object and section to the work list.
620 bool is_ordinary;
621 unsigned int shndx = sym->shndx(&is_ordinary);
622 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
623 {
624 gold_assert(this->gc_!= NULL);
625 this->gc_->worklist().push(Section_id(sym->object(), shndx));
626 }
627 parameters->target().gc_mark_symbol(this, sym);
628 }
629
630 // When doing garbage collection, keep symbols that have been seen in
631 // dynamic objects.
632 inline void
633 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
634 {
635 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
636 && !sym->object()->is_dynamic())
637 this->gc_mark_symbol(sym);
638 }
639
640 // Make TO a symbol which forwards to FROM.
641
642 void
643 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
644 {
645 gold_assert(from != to);
646 gold_assert(!from->is_forwarder() && !to->is_forwarder());
647 this->forwarders_[from] = to;
648 from->set_forwarder();
649 }
650
651 // Resolve the forwards from FROM, returning the real symbol.
652
653 Symbol*
654 Symbol_table::resolve_forwards(const Symbol* from) const
655 {
656 gold_assert(from->is_forwarder());
657 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
658 this->forwarders_.find(from);
659 gold_assert(p != this->forwarders_.end());
660 return p->second;
661 }
662
663 // Look up a symbol by name.
664
665 Symbol*
666 Symbol_table::lookup(const char* name, const char* version) const
667 {
668 Stringpool::Key name_key;
669 name = this->namepool_.find(name, &name_key);
670 if (name == NULL)
671 return NULL;
672
673 Stringpool::Key version_key = 0;
674 if (version != NULL)
675 {
676 version = this->namepool_.find(version, &version_key);
677 if (version == NULL)
678 return NULL;
679 }
680
681 Symbol_table_key key(name_key, version_key);
682 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
683 if (p == this->table_.end())
684 return NULL;
685 return p->second;
686 }
687
688 // Resolve a Symbol with another Symbol. This is only used in the
689 // unusual case where there are references to both an unversioned
690 // symbol and a symbol with a version, and we then discover that that
691 // version is the default version. Because this is unusual, we do
692 // this the slow way, by converting back to an ELF symbol.
693
694 template<int size, bool big_endian>
695 void
696 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
697 {
698 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
699 elfcpp::Sym_write<size, big_endian> esym(buf);
700 // We don't bother to set the st_name or the st_shndx field.
701 esym.put_st_value(from->value());
702 esym.put_st_size(from->symsize());
703 esym.put_st_info(from->binding(), from->type());
704 esym.put_st_other(from->visibility(), from->nonvis());
705 bool is_ordinary;
706 unsigned int shndx = from->shndx(&is_ordinary);
707 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
708 from->version());
709 if (from->in_reg())
710 to->set_in_reg();
711 if (from->in_dyn())
712 to->set_in_dyn();
713 if (parameters->options().gc_sections())
714 this->gc_mark_dyn_syms(to);
715 }
716
717 // Record that a symbol is forced to be local by a version script or
718 // by visibility.
719
720 void
721 Symbol_table::force_local(Symbol* sym)
722 {
723 if (!sym->is_defined() && !sym->is_common())
724 return;
725 if (sym->is_forced_local())
726 {
727 // We already got this one.
728 return;
729 }
730 sym->set_is_forced_local();
731 this->forced_locals_.push_back(sym);
732 }
733
734 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
735 // is only called for undefined symbols, when at least one --wrap
736 // option was used.
737
738 const char*
739 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
740 {
741 // For some targets, we need to ignore a specific character when
742 // wrapping, and add it back later.
743 char prefix = '\0';
744 if (name[0] == parameters->target().wrap_char())
745 {
746 prefix = name[0];
747 ++name;
748 }
749
750 if (parameters->options().is_wrap(name))
751 {
752 // Turn NAME into __wrap_NAME.
753 std::string s;
754 if (prefix != '\0')
755 s += prefix;
756 s += "__wrap_";
757 s += name;
758
759 // This will give us both the old and new name in NAMEPOOL_, but
760 // that is OK. Only the versions we need will wind up in the
761 // real string table in the output file.
762 return this->namepool_.add(s.c_str(), true, name_key);
763 }
764
765 const char* const real_prefix = "__real_";
766 const size_t real_prefix_length = strlen(real_prefix);
767 if (strncmp(name, real_prefix, real_prefix_length) == 0
768 && parameters->options().is_wrap(name + real_prefix_length))
769 {
770 // Turn __real_NAME into NAME.
771 std::string s;
772 if (prefix != '\0')
773 s += prefix;
774 s += name + real_prefix_length;
775 return this->namepool_.add(s.c_str(), true, name_key);
776 }
777
778 return name;
779 }
780
781 // This is called when we see a symbol NAME/VERSION, and the symbol
782 // already exists in the symbol table, and VERSION is marked as being
783 // the default version. SYM is the NAME/VERSION symbol we just added.
784 // DEFAULT_IS_NEW is true if this is the first time we have seen the
785 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
786
787 template<int size, bool big_endian>
788 void
789 Symbol_table::define_default_version(Sized_symbol<size>* sym,
790 bool default_is_new,
791 Symbol_table_type::iterator pdef)
792 {
793 if (default_is_new)
794 {
795 // This is the first time we have seen NAME/NULL. Make
796 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
797 // version.
798 pdef->second = sym;
799 sym->set_is_default();
800 }
801 else if (pdef->second == sym)
802 {
803 // NAME/NULL already points to NAME/VERSION. Don't mark the
804 // symbol as the default if it is not already the default.
805 }
806 else
807 {
808 // This is the unfortunate case where we already have entries
809 // for both NAME/VERSION and NAME/NULL. We now see a symbol
810 // NAME/VERSION where VERSION is the default version. We have
811 // already resolved this new symbol with the existing
812 // NAME/VERSION symbol.
813
814 // It's possible that NAME/NULL and NAME/VERSION are both
815 // defined in regular objects. This can only happen if one
816 // object file defines foo and another defines foo@@ver. This
817 // is somewhat obscure, but we call it a multiple definition
818 // error.
819
820 // It's possible that NAME/NULL actually has a version, in which
821 // case it won't be the same as VERSION. This happens with
822 // ver_test_7.so in the testsuite for the symbol t2_2. We see
823 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
824 // then see an unadorned t2_2 in an object file and give it
825 // version VER1 from the version script. This looks like a
826 // default definition for VER1, so it looks like we should merge
827 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
828 // not obvious that this is an error, either. So we just punt.
829
830 // If one of the symbols has non-default visibility, and the
831 // other is defined in a shared object, then they are different
832 // symbols.
833
834 // Otherwise, we just resolve the symbols as though they were
835 // the same.
836
837 if (pdef->second->version() != NULL)
838 gold_assert(pdef->second->version() != sym->version());
839 else if (sym->visibility() != elfcpp::STV_DEFAULT
840 && pdef->second->is_from_dynobj())
841 ;
842 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
843 && sym->is_from_dynobj())
844 ;
845 else
846 {
847 const Sized_symbol<size>* symdef;
848 symdef = this->get_sized_symbol<size>(pdef->second);
849 Symbol_table::resolve<size, big_endian>(sym, symdef);
850 this->make_forwarder(pdef->second, sym);
851 pdef->second = sym;
852 sym->set_is_default();
853 }
854 }
855 }
856
857 // Add one symbol from OBJECT to the symbol table. NAME is symbol
858 // name and VERSION is the version; both are canonicalized. DEF is
859 // whether this is the default version. ST_SHNDX is the symbol's
860 // section index; IS_ORDINARY is whether this is a normal section
861 // rather than a special code.
862
863 // If IS_DEFAULT_VERSION is true, then this is the definition of a
864 // default version of a symbol. That means that any lookup of
865 // NAME/NULL and any lookup of NAME/VERSION should always return the
866 // same symbol. This is obvious for references, but in particular we
867 // want to do this for definitions: overriding NAME/NULL should also
868 // override NAME/VERSION. If we don't do that, it would be very hard
869 // to override functions in a shared library which uses versioning.
870
871 // We implement this by simply making both entries in the hash table
872 // point to the same Symbol structure. That is easy enough if this is
873 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
874 // that we have seen both already, in which case they will both have
875 // independent entries in the symbol table. We can't simply change
876 // the symbol table entry, because we have pointers to the entries
877 // attached to the object files. So we mark the entry attached to the
878 // object file as a forwarder, and record it in the forwarders_ map.
879 // Note that entries in the hash table will never be marked as
880 // forwarders.
881 //
882 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
883 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
884 // for a special section code. ST_SHNDX may be modified if the symbol
885 // is defined in a section being discarded.
886
887 template<int size, bool big_endian>
888 Sized_symbol<size>*
889 Symbol_table::add_from_object(Object* object,
890 const char* name,
891 Stringpool::Key name_key,
892 const char* version,
893 Stringpool::Key version_key,
894 bool is_default_version,
895 const elfcpp::Sym<size, big_endian>& sym,
896 unsigned int st_shndx,
897 bool is_ordinary,
898 unsigned int orig_st_shndx)
899 {
900 // Print a message if this symbol is being traced.
901 if (parameters->options().is_trace_symbol(name))
902 {
903 if (orig_st_shndx == elfcpp::SHN_UNDEF)
904 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
905 else
906 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
907 }
908
909 // For an undefined symbol, we may need to adjust the name using
910 // --wrap.
911 if (orig_st_shndx == elfcpp::SHN_UNDEF
912 && parameters->options().any_wrap())
913 {
914 const char* wrap_name = this->wrap_symbol(name, &name_key);
915 if (wrap_name != name)
916 {
917 // If we see a reference to malloc with version GLIBC_2.0,
918 // and we turn it into a reference to __wrap_malloc, then we
919 // discard the version number. Otherwise the user would be
920 // required to specify the correct version for
921 // __wrap_malloc.
922 version = NULL;
923 version_key = 0;
924 name = wrap_name;
925 }
926 }
927
928 Symbol* const snull = NULL;
929 std::pair<typename Symbol_table_type::iterator, bool> ins =
930 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
931 snull));
932
933 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
934 std::make_pair(this->table_.end(), false);
935 if (is_default_version)
936 {
937 const Stringpool::Key vnull_key = 0;
938 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
939 vnull_key),
940 snull));
941 }
942
943 // ins.first: an iterator, which is a pointer to a pair.
944 // ins.first->first: the key (a pair of name and version).
945 // ins.first->second: the value (Symbol*).
946 // ins.second: true if new entry was inserted, false if not.
947
948 Sized_symbol<size>* ret;
949 bool was_undefined;
950 bool was_common;
951 if (!ins.second)
952 {
953 // We already have an entry for NAME/VERSION.
954 ret = this->get_sized_symbol<size>(ins.first->second);
955 gold_assert(ret != NULL);
956
957 was_undefined = ret->is_undefined();
958 was_common = ret->is_common();
959
960 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
961 version);
962 if (parameters->options().gc_sections())
963 this->gc_mark_dyn_syms(ret);
964
965 if (is_default_version)
966 this->define_default_version<size, big_endian>(ret, insdefault.second,
967 insdefault.first);
968 }
969 else
970 {
971 // This is the first time we have seen NAME/VERSION.
972 gold_assert(ins.first->second == NULL);
973
974 if (is_default_version && !insdefault.second)
975 {
976 // We already have an entry for NAME/NULL. If we override
977 // it, then change it to NAME/VERSION.
978 ret = this->get_sized_symbol<size>(insdefault.first->second);
979
980 was_undefined = ret->is_undefined();
981 was_common = ret->is_common();
982
983 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
984 version);
985 if (parameters->options().gc_sections())
986 this->gc_mark_dyn_syms(ret);
987 ins.first->second = ret;
988 }
989 else
990 {
991 was_undefined = false;
992 was_common = false;
993
994 Sized_target<size, big_endian>* target =
995 parameters->sized_target<size, big_endian>();
996 if (!target->has_make_symbol())
997 ret = new Sized_symbol<size>();
998 else
999 {
1000 ret = target->make_symbol();
1001 if (ret == NULL)
1002 {
1003 // This means that we don't want a symbol table
1004 // entry after all.
1005 if (!is_default_version)
1006 this->table_.erase(ins.first);
1007 else
1008 {
1009 this->table_.erase(insdefault.first);
1010 // Inserting INSDEFAULT invalidated INS.
1011 this->table_.erase(std::make_pair(name_key,
1012 version_key));
1013 }
1014 return NULL;
1015 }
1016 }
1017
1018 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1019
1020 ins.first->second = ret;
1021 if (is_default_version)
1022 {
1023 // This is the first time we have seen NAME/NULL. Point
1024 // it at the new entry for NAME/VERSION.
1025 gold_assert(insdefault.second);
1026 insdefault.first->second = ret;
1027 }
1028 }
1029
1030 if (is_default_version)
1031 ret->set_is_default();
1032 }
1033
1034 // Record every time we see a new undefined symbol, to speed up
1035 // archive groups.
1036 if (!was_undefined && ret->is_undefined())
1037 {
1038 ++this->saw_undefined_;
1039 if (parameters->options().has_plugins())
1040 parameters->options().plugins()->new_undefined_symbol(ret);
1041 }
1042
1043 // Keep track of common symbols, to speed up common symbol
1044 // allocation.
1045 if (!was_common && ret->is_common())
1046 {
1047 if (ret->type() == elfcpp::STT_TLS)
1048 this->tls_commons_.push_back(ret);
1049 else if (!is_ordinary
1050 && st_shndx == parameters->target().small_common_shndx())
1051 this->small_commons_.push_back(ret);
1052 else if (!is_ordinary
1053 && st_shndx == parameters->target().large_common_shndx())
1054 this->large_commons_.push_back(ret);
1055 else
1056 this->commons_.push_back(ret);
1057 }
1058
1059 // If we're not doing a relocatable link, then any symbol with
1060 // hidden or internal visibility is local.
1061 if ((ret->visibility() == elfcpp::STV_HIDDEN
1062 || ret->visibility() == elfcpp::STV_INTERNAL)
1063 && (ret->binding() == elfcpp::STB_GLOBAL
1064 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1065 || ret->binding() == elfcpp::STB_WEAK)
1066 && !parameters->options().relocatable())
1067 this->force_local(ret);
1068
1069 return ret;
1070 }
1071
1072 // Add all the symbols in a relocatable object to the hash table.
1073
1074 template<int size, bool big_endian>
1075 void
1076 Symbol_table::add_from_relobj(
1077 Sized_relobj_file<size, big_endian>* relobj,
1078 const unsigned char* syms,
1079 size_t count,
1080 size_t symndx_offset,
1081 const char* sym_names,
1082 size_t sym_name_size,
1083 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1084 size_t* defined)
1085 {
1086 *defined = 0;
1087
1088 gold_assert(size == parameters->target().get_size());
1089
1090 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1091
1092 const bool just_symbols = relobj->just_symbols();
1093
1094 const unsigned char* p = syms;
1095 for (size_t i = 0; i < count; ++i, p += sym_size)
1096 {
1097 (*sympointers)[i] = NULL;
1098
1099 elfcpp::Sym<size, big_endian> sym(p);
1100
1101 unsigned int st_name = sym.get_st_name();
1102 if (st_name >= sym_name_size)
1103 {
1104 relobj->error(_("bad global symbol name offset %u at %zu"),
1105 st_name, i);
1106 continue;
1107 }
1108
1109 const char* name = sym_names + st_name;
1110
1111 bool is_ordinary;
1112 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1113 sym.get_st_shndx(),
1114 &is_ordinary);
1115 unsigned int orig_st_shndx = st_shndx;
1116 if (!is_ordinary)
1117 orig_st_shndx = elfcpp::SHN_UNDEF;
1118
1119 if (st_shndx != elfcpp::SHN_UNDEF)
1120 ++*defined;
1121
1122 // A symbol defined in a section which we are not including must
1123 // be treated as an undefined symbol.
1124 bool is_defined_in_discarded_section = false;
1125 if (st_shndx != elfcpp::SHN_UNDEF
1126 && is_ordinary
1127 && !relobj->is_section_included(st_shndx)
1128 && !this->is_section_folded(relobj, st_shndx))
1129 {
1130 st_shndx = elfcpp::SHN_UNDEF;
1131 is_defined_in_discarded_section = true;
1132 }
1133
1134 // In an object file, an '@' in the name separates the symbol
1135 // name from the version name. If there are two '@' characters,
1136 // this is the default version.
1137 const char* ver = strchr(name, '@');
1138 Stringpool::Key ver_key = 0;
1139 int namelen = 0;
1140 // IS_DEFAULT_VERSION: is the version default?
1141 // IS_FORCED_LOCAL: is the symbol forced local?
1142 bool is_default_version = false;
1143 bool is_forced_local = false;
1144
1145 // FIXME: For incremental links, we don't store version information,
1146 // so we need to ignore version symbols for now.
1147 if (parameters->incremental_update() && ver != NULL)
1148 {
1149 namelen = ver - name;
1150 ver = NULL;
1151 }
1152
1153 if (ver != NULL)
1154 {
1155 // The symbol name is of the form foo@VERSION or foo@@VERSION
1156 namelen = ver - name;
1157 ++ver;
1158 if (*ver == '@')
1159 {
1160 is_default_version = true;
1161 ++ver;
1162 }
1163 ver = this->namepool_.add(ver, true, &ver_key);
1164 }
1165 // We don't want to assign a version to an undefined symbol,
1166 // even if it is listed in the version script. FIXME: What
1167 // about a common symbol?
1168 else
1169 {
1170 namelen = strlen(name);
1171 if (!this->version_script_.empty()
1172 && st_shndx != elfcpp::SHN_UNDEF)
1173 {
1174 // The symbol name did not have a version, but the
1175 // version script may assign a version anyway.
1176 std::string version;
1177 bool is_global;
1178 if (this->version_script_.get_symbol_version(name, &version,
1179 &is_global))
1180 {
1181 if (!is_global)
1182 is_forced_local = true;
1183 else if (!version.empty())
1184 {
1185 ver = this->namepool_.add_with_length(version.c_str(),
1186 version.length(),
1187 true,
1188 &ver_key);
1189 is_default_version = true;
1190 }
1191 }
1192 }
1193 }
1194
1195 elfcpp::Sym<size, big_endian>* psym = &sym;
1196 unsigned char symbuf[sym_size];
1197 elfcpp::Sym<size, big_endian> sym2(symbuf);
1198 if (just_symbols)
1199 {
1200 memcpy(symbuf, p, sym_size);
1201 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1202 if (orig_st_shndx != elfcpp::SHN_UNDEF
1203 && is_ordinary
1204 && relobj->e_type() == elfcpp::ET_REL)
1205 {
1206 // Symbol values in relocatable object files are section
1207 // relative. This is normally what we want, but since here
1208 // we are converting the symbol to absolute we need to add
1209 // the section address. The section address in an object
1210 // file is normally zero, but people can use a linker
1211 // script to change it.
1212 sw.put_st_value(sym.get_st_value()
1213 + relobj->section_address(orig_st_shndx));
1214 }
1215 st_shndx = elfcpp::SHN_ABS;
1216 is_ordinary = false;
1217 psym = &sym2;
1218 }
1219
1220 // Fix up visibility if object has no-export set.
1221 if (relobj->no_export()
1222 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1223 {
1224 // We may have copied symbol already above.
1225 if (psym != &sym2)
1226 {
1227 memcpy(symbuf, p, sym_size);
1228 psym = &sym2;
1229 }
1230
1231 elfcpp::STV visibility = sym2.get_st_visibility();
1232 if (visibility == elfcpp::STV_DEFAULT
1233 || visibility == elfcpp::STV_PROTECTED)
1234 {
1235 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1236 unsigned char nonvis = sym2.get_st_nonvis();
1237 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1238 }
1239 }
1240
1241 Stringpool::Key name_key;
1242 name = this->namepool_.add_with_length(name, namelen, true,
1243 &name_key);
1244
1245 Sized_symbol<size>* res;
1246 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1247 is_default_version, *psym, st_shndx,
1248 is_ordinary, orig_st_shndx);
1249
1250 if (is_forced_local)
1251 this->force_local(res);
1252
1253 // Do not treat this symbol as garbage if this symbol will be
1254 // exported to the dynamic symbol table. This is true when
1255 // building a shared library or using --export-dynamic and
1256 // the symbol is externally visible.
1257 if (parameters->options().gc_sections()
1258 && res->is_externally_visible()
1259 && !res->is_from_dynobj()
1260 && (parameters->options().shared()
1261 || parameters->options().export_dynamic()))
1262 this->gc_mark_symbol(res);
1263
1264 if (is_defined_in_discarded_section)
1265 res->set_is_defined_in_discarded_section();
1266
1267 (*sympointers)[i] = res;
1268 }
1269 }
1270
1271 // Add a symbol from a plugin-claimed file.
1272
1273 template<int size, bool big_endian>
1274 Symbol*
1275 Symbol_table::add_from_pluginobj(
1276 Sized_pluginobj<size, big_endian>* obj,
1277 const char* name,
1278 const char* ver,
1279 elfcpp::Sym<size, big_endian>* sym)
1280 {
1281 unsigned int st_shndx = sym->get_st_shndx();
1282 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1283
1284 Stringpool::Key ver_key = 0;
1285 bool is_default_version = false;
1286 bool is_forced_local = false;
1287
1288 if (ver != NULL)
1289 {
1290 ver = this->namepool_.add(ver, true, &ver_key);
1291 }
1292 // We don't want to assign a version to an undefined symbol,
1293 // even if it is listed in the version script. FIXME: What
1294 // about a common symbol?
1295 else
1296 {
1297 if (!this->version_script_.empty()
1298 && st_shndx != elfcpp::SHN_UNDEF)
1299 {
1300 // The symbol name did not have a version, but the
1301 // version script may assign a version anyway.
1302 std::string version;
1303 bool is_global;
1304 if (this->version_script_.get_symbol_version(name, &version,
1305 &is_global))
1306 {
1307 if (!is_global)
1308 is_forced_local = true;
1309 else if (!version.empty())
1310 {
1311 ver = this->namepool_.add_with_length(version.c_str(),
1312 version.length(),
1313 true,
1314 &ver_key);
1315 is_default_version = true;
1316 }
1317 }
1318 }
1319 }
1320
1321 Stringpool::Key name_key;
1322 name = this->namepool_.add(name, true, &name_key);
1323
1324 Sized_symbol<size>* res;
1325 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1326 is_default_version, *sym, st_shndx,
1327 is_ordinary, st_shndx);
1328
1329 if (is_forced_local)
1330 this->force_local(res);
1331
1332 return res;
1333 }
1334
1335 // Add all the symbols in a dynamic object to the hash table.
1336
1337 template<int size, bool big_endian>
1338 void
1339 Symbol_table::add_from_dynobj(
1340 Sized_dynobj<size, big_endian>* dynobj,
1341 const unsigned char* syms,
1342 size_t count,
1343 const char* sym_names,
1344 size_t sym_name_size,
1345 const unsigned char* versym,
1346 size_t versym_size,
1347 const std::vector<const char*>* version_map,
1348 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1349 size_t* defined)
1350 {
1351 *defined = 0;
1352
1353 gold_assert(size == parameters->target().get_size());
1354
1355 if (dynobj->just_symbols())
1356 {
1357 gold_error(_("--just-symbols does not make sense with a shared object"));
1358 return;
1359 }
1360
1361 // FIXME: For incremental links, we don't store version information,
1362 // so we need to ignore version symbols for now.
1363 if (parameters->incremental_update())
1364 versym = NULL;
1365
1366 if (versym != NULL && versym_size / 2 < count)
1367 {
1368 dynobj->error(_("too few symbol versions"));
1369 return;
1370 }
1371
1372 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1373
1374 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1375 // weak aliases. This is necessary because if the dynamic object
1376 // provides the same variable under two names, one of which is a
1377 // weak definition, and the regular object refers to the weak
1378 // definition, we have to put both the weak definition and the
1379 // strong definition into the dynamic symbol table. Given a weak
1380 // definition, the only way that we can find the corresponding
1381 // strong definition, if any, is to search the symbol table.
1382 std::vector<Sized_symbol<size>*> object_symbols;
1383
1384 const unsigned char* p = syms;
1385 const unsigned char* vs = versym;
1386 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1387 {
1388 elfcpp::Sym<size, big_endian> sym(p);
1389
1390 if (sympointers != NULL)
1391 (*sympointers)[i] = NULL;
1392
1393 // Ignore symbols with local binding or that have
1394 // internal or hidden visibility.
1395 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1396 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1397 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1398 continue;
1399
1400 // A protected symbol in a shared library must be treated as a
1401 // normal symbol when viewed from outside the shared library.
1402 // Implement this by overriding the visibility here.
1403 elfcpp::Sym<size, big_endian>* psym = &sym;
1404 unsigned char symbuf[sym_size];
1405 elfcpp::Sym<size, big_endian> sym2(symbuf);
1406 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1407 {
1408 memcpy(symbuf, p, sym_size);
1409 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1410 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1411 psym = &sym2;
1412 }
1413
1414 unsigned int st_name = psym->get_st_name();
1415 if (st_name >= sym_name_size)
1416 {
1417 dynobj->error(_("bad symbol name offset %u at %zu"),
1418 st_name, i);
1419 continue;
1420 }
1421
1422 const char* name = sym_names + st_name;
1423
1424 bool is_ordinary;
1425 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1426 &is_ordinary);
1427
1428 if (st_shndx != elfcpp::SHN_UNDEF)
1429 ++*defined;
1430
1431 Sized_symbol<size>* res;
1432
1433 if (versym == NULL)
1434 {
1435 Stringpool::Key name_key;
1436 name = this->namepool_.add(name, true, &name_key);
1437 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1438 false, *psym, st_shndx, is_ordinary,
1439 st_shndx);
1440 }
1441 else
1442 {
1443 // Read the version information.
1444
1445 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1446
1447 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1448 v &= elfcpp::VERSYM_VERSION;
1449
1450 // The Sun documentation says that V can be VER_NDX_LOCAL,
1451 // or VER_NDX_GLOBAL, or a version index. The meaning of
1452 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1453 // The old GNU linker will happily generate VER_NDX_LOCAL
1454 // for an undefined symbol. I don't know what the Sun
1455 // linker will generate.
1456
1457 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1458 && st_shndx != elfcpp::SHN_UNDEF)
1459 {
1460 // This symbol should not be visible outside the object.
1461 continue;
1462 }
1463
1464 // At this point we are definitely going to add this symbol.
1465 Stringpool::Key name_key;
1466 name = this->namepool_.add(name, true, &name_key);
1467
1468 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1469 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1470 {
1471 // This symbol does not have a version.
1472 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1473 false, *psym, st_shndx, is_ordinary,
1474 st_shndx);
1475 }
1476 else
1477 {
1478 if (v >= version_map->size())
1479 {
1480 dynobj->error(_("versym for symbol %zu out of range: %u"),
1481 i, v);
1482 continue;
1483 }
1484
1485 const char* version = (*version_map)[v];
1486 if (version == NULL)
1487 {
1488 dynobj->error(_("versym for symbol %zu has no name: %u"),
1489 i, v);
1490 continue;
1491 }
1492
1493 Stringpool::Key version_key;
1494 version = this->namepool_.add(version, true, &version_key);
1495
1496 // If this is an absolute symbol, and the version name
1497 // and symbol name are the same, then this is the
1498 // version definition symbol. These symbols exist to
1499 // support using -u to pull in particular versions. We
1500 // do not want to record a version for them.
1501 if (st_shndx == elfcpp::SHN_ABS
1502 && !is_ordinary
1503 && name_key == version_key)
1504 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1505 false, *psym, st_shndx, is_ordinary,
1506 st_shndx);
1507 else
1508 {
1509 const bool is_default_version =
1510 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1511 res = this->add_from_object(dynobj, name, name_key, version,
1512 version_key, is_default_version,
1513 *psym, st_shndx,
1514 is_ordinary, st_shndx);
1515 }
1516 }
1517 }
1518
1519 // Note that it is possible that RES was overridden by an
1520 // earlier object, in which case it can't be aliased here.
1521 if (st_shndx != elfcpp::SHN_UNDEF
1522 && is_ordinary
1523 && psym->get_st_type() == elfcpp::STT_OBJECT
1524 && res->source() == Symbol::FROM_OBJECT
1525 && res->object() == dynobj)
1526 object_symbols.push_back(res);
1527
1528 if (sympointers != NULL)
1529 (*sympointers)[i] = res;
1530 }
1531
1532 this->record_weak_aliases(&object_symbols);
1533 }
1534
1535 // Add a symbol from a incremental object file.
1536
1537 template<int size, bool big_endian>
1538 Sized_symbol<size>*
1539 Symbol_table::add_from_incrobj(
1540 Object* obj,
1541 const char* name,
1542 const char* ver,
1543 elfcpp::Sym<size, big_endian>* sym)
1544 {
1545 unsigned int st_shndx = sym->get_st_shndx();
1546 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1547
1548 Stringpool::Key ver_key = 0;
1549 bool is_default_version = false;
1550 bool is_forced_local = false;
1551
1552 Stringpool::Key name_key;
1553 name = this->namepool_.add(name, true, &name_key);
1554
1555 Sized_symbol<size>* res;
1556 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1557 is_default_version, *sym, st_shndx,
1558 is_ordinary, st_shndx);
1559
1560 if (is_forced_local)
1561 this->force_local(res);
1562
1563 return res;
1564 }
1565
1566 // This is used to sort weak aliases. We sort them first by section
1567 // index, then by offset, then by weak ahead of strong.
1568
1569 template<int size>
1570 class Weak_alias_sorter
1571 {
1572 public:
1573 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1574 };
1575
1576 template<int size>
1577 bool
1578 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1579 const Sized_symbol<size>* s2) const
1580 {
1581 bool is_ordinary;
1582 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1583 gold_assert(is_ordinary);
1584 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1585 gold_assert(is_ordinary);
1586 if (s1_shndx != s2_shndx)
1587 return s1_shndx < s2_shndx;
1588
1589 if (s1->value() != s2->value())
1590 return s1->value() < s2->value();
1591 if (s1->binding() != s2->binding())
1592 {
1593 if (s1->binding() == elfcpp::STB_WEAK)
1594 return true;
1595 if (s2->binding() == elfcpp::STB_WEAK)
1596 return false;
1597 }
1598 return std::string(s1->name()) < std::string(s2->name());
1599 }
1600
1601 // SYMBOLS is a list of object symbols from a dynamic object. Look
1602 // for any weak aliases, and record them so that if we add the weak
1603 // alias to the dynamic symbol table, we also add the corresponding
1604 // strong symbol.
1605
1606 template<int size>
1607 void
1608 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1609 {
1610 // Sort the vector by section index, then by offset, then by weak
1611 // ahead of strong.
1612 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1613
1614 // Walk through the vector. For each weak definition, record
1615 // aliases.
1616 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1617 symbols->begin();
1618 p != symbols->end();
1619 ++p)
1620 {
1621 if ((*p)->binding() != elfcpp::STB_WEAK)
1622 continue;
1623
1624 // Build a circular list of weak aliases. Each symbol points to
1625 // the next one in the circular list.
1626
1627 Sized_symbol<size>* from_sym = *p;
1628 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1629 for (q = p + 1; q != symbols->end(); ++q)
1630 {
1631 bool dummy;
1632 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1633 || (*q)->value() != from_sym->value())
1634 break;
1635
1636 this->weak_aliases_[from_sym] = *q;
1637 from_sym->set_has_alias();
1638 from_sym = *q;
1639 }
1640
1641 if (from_sym != *p)
1642 {
1643 this->weak_aliases_[from_sym] = *p;
1644 from_sym->set_has_alias();
1645 }
1646
1647 p = q - 1;
1648 }
1649 }
1650
1651 // Create and return a specially defined symbol. If ONLY_IF_REF is
1652 // true, then only create the symbol if there is a reference to it.
1653 // If this does not return NULL, it sets *POLDSYM to the existing
1654 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1655 // resolve the newly created symbol to the old one. This
1656 // canonicalizes *PNAME and *PVERSION.
1657
1658 template<int size, bool big_endian>
1659 Sized_symbol<size>*
1660 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1661 bool only_if_ref,
1662 Sized_symbol<size>** poldsym,
1663 bool* resolve_oldsym)
1664 {
1665 *resolve_oldsym = false;
1666 *poldsym = NULL;
1667
1668 // If the caller didn't give us a version, see if we get one from
1669 // the version script.
1670 std::string v;
1671 bool is_default_version = false;
1672 if (*pversion == NULL)
1673 {
1674 bool is_global;
1675 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1676 {
1677 if (is_global && !v.empty())
1678 {
1679 *pversion = v.c_str();
1680 // If we get the version from a version script, then we
1681 // are also the default version.
1682 is_default_version = true;
1683 }
1684 }
1685 }
1686
1687 Symbol* oldsym;
1688 Sized_symbol<size>* sym;
1689
1690 bool add_to_table = false;
1691 typename Symbol_table_type::iterator add_loc = this->table_.end();
1692 bool add_def_to_table = false;
1693 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1694
1695 if (only_if_ref)
1696 {
1697 oldsym = this->lookup(*pname, *pversion);
1698 if (oldsym == NULL && is_default_version)
1699 oldsym = this->lookup(*pname, NULL);
1700 if (oldsym == NULL || !oldsym->is_undefined())
1701 return NULL;
1702
1703 *pname = oldsym->name();
1704 if (is_default_version)
1705 *pversion = this->namepool_.add(*pversion, true, NULL);
1706 else
1707 *pversion = oldsym->version();
1708 }
1709 else
1710 {
1711 // Canonicalize NAME and VERSION.
1712 Stringpool::Key name_key;
1713 *pname = this->namepool_.add(*pname, true, &name_key);
1714
1715 Stringpool::Key version_key = 0;
1716 if (*pversion != NULL)
1717 *pversion = this->namepool_.add(*pversion, true, &version_key);
1718
1719 Symbol* const snull = NULL;
1720 std::pair<typename Symbol_table_type::iterator, bool> ins =
1721 this->table_.insert(std::make_pair(std::make_pair(name_key,
1722 version_key),
1723 snull));
1724
1725 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1726 std::make_pair(this->table_.end(), false);
1727 if (is_default_version)
1728 {
1729 const Stringpool::Key vnull = 0;
1730 insdefault =
1731 this->table_.insert(std::make_pair(std::make_pair(name_key,
1732 vnull),
1733 snull));
1734 }
1735
1736 if (!ins.second)
1737 {
1738 // We already have a symbol table entry for NAME/VERSION.
1739 oldsym = ins.first->second;
1740 gold_assert(oldsym != NULL);
1741
1742 if (is_default_version)
1743 {
1744 Sized_symbol<size>* soldsym =
1745 this->get_sized_symbol<size>(oldsym);
1746 this->define_default_version<size, big_endian>(soldsym,
1747 insdefault.second,
1748 insdefault.first);
1749 }
1750 }
1751 else
1752 {
1753 // We haven't seen this symbol before.
1754 gold_assert(ins.first->second == NULL);
1755
1756 add_to_table = true;
1757 add_loc = ins.first;
1758
1759 if (is_default_version && !insdefault.second)
1760 {
1761 // We are adding NAME/VERSION, and it is the default
1762 // version. We already have an entry for NAME/NULL.
1763 oldsym = insdefault.first->second;
1764 *resolve_oldsym = true;
1765 }
1766 else
1767 {
1768 oldsym = NULL;
1769
1770 if (is_default_version)
1771 {
1772 add_def_to_table = true;
1773 add_def_loc = insdefault.first;
1774 }
1775 }
1776 }
1777 }
1778
1779 const Target& target = parameters->target();
1780 if (!target.has_make_symbol())
1781 sym = new Sized_symbol<size>();
1782 else
1783 {
1784 Sized_target<size, big_endian>* sized_target =
1785 parameters->sized_target<size, big_endian>();
1786 sym = sized_target->make_symbol();
1787 if (sym == NULL)
1788 return NULL;
1789 }
1790
1791 if (add_to_table)
1792 add_loc->second = sym;
1793 else
1794 gold_assert(oldsym != NULL);
1795
1796 if (add_def_to_table)
1797 add_def_loc->second = sym;
1798
1799 *poldsym = this->get_sized_symbol<size>(oldsym);
1800
1801 return sym;
1802 }
1803
1804 // Define a symbol based on an Output_data.
1805
1806 Symbol*
1807 Symbol_table::define_in_output_data(const char* name,
1808 const char* version,
1809 Defined defined,
1810 Output_data* od,
1811 uint64_t value,
1812 uint64_t symsize,
1813 elfcpp::STT type,
1814 elfcpp::STB binding,
1815 elfcpp::STV visibility,
1816 unsigned char nonvis,
1817 bool offset_is_from_end,
1818 bool only_if_ref)
1819 {
1820 if (parameters->target().get_size() == 32)
1821 {
1822 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1823 return this->do_define_in_output_data<32>(name, version, defined, od,
1824 value, symsize, type, binding,
1825 visibility, nonvis,
1826 offset_is_from_end,
1827 only_if_ref);
1828 #else
1829 gold_unreachable();
1830 #endif
1831 }
1832 else if (parameters->target().get_size() == 64)
1833 {
1834 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1835 return this->do_define_in_output_data<64>(name, version, defined, od,
1836 value, symsize, type, binding,
1837 visibility, nonvis,
1838 offset_is_from_end,
1839 only_if_ref);
1840 #else
1841 gold_unreachable();
1842 #endif
1843 }
1844 else
1845 gold_unreachable();
1846 }
1847
1848 // Define a symbol in an Output_data, sized version.
1849
1850 template<int size>
1851 Sized_symbol<size>*
1852 Symbol_table::do_define_in_output_data(
1853 const char* name,
1854 const char* version,
1855 Defined defined,
1856 Output_data* od,
1857 typename elfcpp::Elf_types<size>::Elf_Addr value,
1858 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1859 elfcpp::STT type,
1860 elfcpp::STB binding,
1861 elfcpp::STV visibility,
1862 unsigned char nonvis,
1863 bool offset_is_from_end,
1864 bool only_if_ref)
1865 {
1866 Sized_symbol<size>* sym;
1867 Sized_symbol<size>* oldsym;
1868 bool resolve_oldsym;
1869
1870 if (parameters->target().is_big_endian())
1871 {
1872 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1873 sym = this->define_special_symbol<size, true>(&name, &version,
1874 only_if_ref, &oldsym,
1875 &resolve_oldsym);
1876 #else
1877 gold_unreachable();
1878 #endif
1879 }
1880 else
1881 {
1882 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1883 sym = this->define_special_symbol<size, false>(&name, &version,
1884 only_if_ref, &oldsym,
1885 &resolve_oldsym);
1886 #else
1887 gold_unreachable();
1888 #endif
1889 }
1890
1891 if (sym == NULL)
1892 return NULL;
1893
1894 sym->init_output_data(name, version, od, value, symsize, type, binding,
1895 visibility, nonvis, offset_is_from_end,
1896 defined == PREDEFINED);
1897
1898 if (oldsym == NULL)
1899 {
1900 if (binding == elfcpp::STB_LOCAL
1901 || this->version_script_.symbol_is_local(name))
1902 this->force_local(sym);
1903 else if (version != NULL)
1904 sym->set_is_default();
1905 return sym;
1906 }
1907
1908 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1909 this->override_with_special(oldsym, sym);
1910
1911 if (resolve_oldsym)
1912 return sym;
1913 else
1914 {
1915 delete sym;
1916 return oldsym;
1917 }
1918 }
1919
1920 // Define a symbol based on an Output_segment.
1921
1922 Symbol*
1923 Symbol_table::define_in_output_segment(const char* name,
1924 const char* version,
1925 Defined defined,
1926 Output_segment* os,
1927 uint64_t value,
1928 uint64_t symsize,
1929 elfcpp::STT type,
1930 elfcpp::STB binding,
1931 elfcpp::STV visibility,
1932 unsigned char nonvis,
1933 Symbol::Segment_offset_base offset_base,
1934 bool only_if_ref)
1935 {
1936 if (parameters->target().get_size() == 32)
1937 {
1938 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1939 return this->do_define_in_output_segment<32>(name, version, defined, os,
1940 value, symsize, type,
1941 binding, visibility, nonvis,
1942 offset_base, only_if_ref);
1943 #else
1944 gold_unreachable();
1945 #endif
1946 }
1947 else if (parameters->target().get_size() == 64)
1948 {
1949 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1950 return this->do_define_in_output_segment<64>(name, version, defined, os,
1951 value, symsize, type,
1952 binding, visibility, nonvis,
1953 offset_base, only_if_ref);
1954 #else
1955 gold_unreachable();
1956 #endif
1957 }
1958 else
1959 gold_unreachable();
1960 }
1961
1962 // Define a symbol in an Output_segment, sized version.
1963
1964 template<int size>
1965 Sized_symbol<size>*
1966 Symbol_table::do_define_in_output_segment(
1967 const char* name,
1968 const char* version,
1969 Defined defined,
1970 Output_segment* os,
1971 typename elfcpp::Elf_types<size>::Elf_Addr value,
1972 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1973 elfcpp::STT type,
1974 elfcpp::STB binding,
1975 elfcpp::STV visibility,
1976 unsigned char nonvis,
1977 Symbol::Segment_offset_base offset_base,
1978 bool only_if_ref)
1979 {
1980 Sized_symbol<size>* sym;
1981 Sized_symbol<size>* oldsym;
1982 bool resolve_oldsym;
1983
1984 if (parameters->target().is_big_endian())
1985 {
1986 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1987 sym = this->define_special_symbol<size, true>(&name, &version,
1988 only_if_ref, &oldsym,
1989 &resolve_oldsym);
1990 #else
1991 gold_unreachable();
1992 #endif
1993 }
1994 else
1995 {
1996 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1997 sym = this->define_special_symbol<size, false>(&name, &version,
1998 only_if_ref, &oldsym,
1999 &resolve_oldsym);
2000 #else
2001 gold_unreachable();
2002 #endif
2003 }
2004
2005 if (sym == NULL)
2006 return NULL;
2007
2008 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2009 visibility, nonvis, offset_base,
2010 defined == PREDEFINED);
2011
2012 if (oldsym == NULL)
2013 {
2014 if (binding == elfcpp::STB_LOCAL
2015 || this->version_script_.symbol_is_local(name))
2016 this->force_local(sym);
2017 else if (version != NULL)
2018 sym->set_is_default();
2019 return sym;
2020 }
2021
2022 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2023 this->override_with_special(oldsym, sym);
2024
2025 if (resolve_oldsym)
2026 return sym;
2027 else
2028 {
2029 delete sym;
2030 return oldsym;
2031 }
2032 }
2033
2034 // Define a special symbol with a constant value. It is a multiple
2035 // definition error if this symbol is already defined.
2036
2037 Symbol*
2038 Symbol_table::define_as_constant(const char* name,
2039 const char* version,
2040 Defined defined,
2041 uint64_t value,
2042 uint64_t symsize,
2043 elfcpp::STT type,
2044 elfcpp::STB binding,
2045 elfcpp::STV visibility,
2046 unsigned char nonvis,
2047 bool only_if_ref,
2048 bool force_override)
2049 {
2050 if (parameters->target().get_size() == 32)
2051 {
2052 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2053 return this->do_define_as_constant<32>(name, version, defined, value,
2054 symsize, type, binding,
2055 visibility, nonvis, only_if_ref,
2056 force_override);
2057 #else
2058 gold_unreachable();
2059 #endif
2060 }
2061 else if (parameters->target().get_size() == 64)
2062 {
2063 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2064 return this->do_define_as_constant<64>(name, version, defined, value,
2065 symsize, type, binding,
2066 visibility, nonvis, only_if_ref,
2067 force_override);
2068 #else
2069 gold_unreachable();
2070 #endif
2071 }
2072 else
2073 gold_unreachable();
2074 }
2075
2076 // Define a symbol as a constant, sized version.
2077
2078 template<int size>
2079 Sized_symbol<size>*
2080 Symbol_table::do_define_as_constant(
2081 const char* name,
2082 const char* version,
2083 Defined defined,
2084 typename elfcpp::Elf_types<size>::Elf_Addr value,
2085 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2086 elfcpp::STT type,
2087 elfcpp::STB binding,
2088 elfcpp::STV visibility,
2089 unsigned char nonvis,
2090 bool only_if_ref,
2091 bool force_override)
2092 {
2093 Sized_symbol<size>* sym;
2094 Sized_symbol<size>* oldsym;
2095 bool resolve_oldsym;
2096
2097 if (parameters->target().is_big_endian())
2098 {
2099 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2100 sym = this->define_special_symbol<size, true>(&name, &version,
2101 only_if_ref, &oldsym,
2102 &resolve_oldsym);
2103 #else
2104 gold_unreachable();
2105 #endif
2106 }
2107 else
2108 {
2109 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2110 sym = this->define_special_symbol<size, false>(&name, &version,
2111 only_if_ref, &oldsym,
2112 &resolve_oldsym);
2113 #else
2114 gold_unreachable();
2115 #endif
2116 }
2117
2118 if (sym == NULL)
2119 return NULL;
2120
2121 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2122 nonvis, defined == PREDEFINED);
2123
2124 if (oldsym == NULL)
2125 {
2126 // Version symbols are absolute symbols with name == version.
2127 // We don't want to force them to be local.
2128 if ((version == NULL
2129 || name != version
2130 || value != 0)
2131 && (binding == elfcpp::STB_LOCAL
2132 || this->version_script_.symbol_is_local(name)))
2133 this->force_local(sym);
2134 else if (version != NULL
2135 && (name != version || value != 0))
2136 sym->set_is_default();
2137 return sym;
2138 }
2139
2140 if (force_override
2141 || Symbol_table::should_override_with_special(oldsym, type, defined))
2142 this->override_with_special(oldsym, sym);
2143
2144 if (resolve_oldsym)
2145 return sym;
2146 else
2147 {
2148 delete sym;
2149 return oldsym;
2150 }
2151 }
2152
2153 // Define a set of symbols in output sections.
2154
2155 void
2156 Symbol_table::define_symbols(const Layout* layout, int count,
2157 const Define_symbol_in_section* p,
2158 bool only_if_ref)
2159 {
2160 for (int i = 0; i < count; ++i, ++p)
2161 {
2162 Output_section* os = layout->find_output_section(p->output_section);
2163 if (os != NULL)
2164 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2165 p->size, p->type, p->binding,
2166 p->visibility, p->nonvis,
2167 p->offset_is_from_end,
2168 only_if_ref || p->only_if_ref);
2169 else
2170 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2171 p->type, p->binding, p->visibility, p->nonvis,
2172 only_if_ref || p->only_if_ref,
2173 false);
2174 }
2175 }
2176
2177 // Define a set of symbols in output segments.
2178
2179 void
2180 Symbol_table::define_symbols(const Layout* layout, int count,
2181 const Define_symbol_in_segment* p,
2182 bool only_if_ref)
2183 {
2184 for (int i = 0; i < count; ++i, ++p)
2185 {
2186 Output_segment* os = layout->find_output_segment(p->segment_type,
2187 p->segment_flags_set,
2188 p->segment_flags_clear);
2189 if (os != NULL)
2190 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2191 p->size, p->type, p->binding,
2192 p->visibility, p->nonvis,
2193 p->offset_base,
2194 only_if_ref || p->only_if_ref);
2195 else
2196 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2197 p->type, p->binding, p->visibility, p->nonvis,
2198 only_if_ref || p->only_if_ref,
2199 false);
2200 }
2201 }
2202
2203 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2204 // symbol should be defined--typically a .dyn.bss section. VALUE is
2205 // the offset within POSD.
2206
2207 template<int size>
2208 void
2209 Symbol_table::define_with_copy_reloc(
2210 Sized_symbol<size>* csym,
2211 Output_data* posd,
2212 typename elfcpp::Elf_types<size>::Elf_Addr value)
2213 {
2214 gold_assert(csym->is_from_dynobj());
2215 gold_assert(!csym->is_copied_from_dynobj());
2216 Object* object = csym->object();
2217 gold_assert(object->is_dynamic());
2218 Dynobj* dynobj = static_cast<Dynobj*>(object);
2219
2220 // Our copied variable has to override any variable in a shared
2221 // library.
2222 elfcpp::STB binding = csym->binding();
2223 if (binding == elfcpp::STB_WEAK)
2224 binding = elfcpp::STB_GLOBAL;
2225
2226 this->define_in_output_data(csym->name(), csym->version(), COPY,
2227 posd, value, csym->symsize(),
2228 csym->type(), binding,
2229 csym->visibility(), csym->nonvis(),
2230 false, false);
2231
2232 csym->set_is_copied_from_dynobj();
2233 csym->set_needs_dynsym_entry();
2234
2235 this->copied_symbol_dynobjs_[csym] = dynobj;
2236
2237 // We have now defined all aliases, but we have not entered them all
2238 // in the copied_symbol_dynobjs_ map.
2239 if (csym->has_alias())
2240 {
2241 Symbol* sym = csym;
2242 while (true)
2243 {
2244 sym = this->weak_aliases_[sym];
2245 if (sym == csym)
2246 break;
2247 gold_assert(sym->output_data() == posd);
2248
2249 sym->set_is_copied_from_dynobj();
2250 this->copied_symbol_dynobjs_[sym] = dynobj;
2251 }
2252 }
2253 }
2254
2255 // SYM is defined using a COPY reloc. Return the dynamic object where
2256 // the original definition was found.
2257
2258 Dynobj*
2259 Symbol_table::get_copy_source(const Symbol* sym) const
2260 {
2261 gold_assert(sym->is_copied_from_dynobj());
2262 Copied_symbol_dynobjs::const_iterator p =
2263 this->copied_symbol_dynobjs_.find(sym);
2264 gold_assert(p != this->copied_symbol_dynobjs_.end());
2265 return p->second;
2266 }
2267
2268 // Add any undefined symbols named on the command line.
2269
2270 void
2271 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2272 {
2273 if (parameters->options().any_undefined()
2274 || layout->script_options()->any_unreferenced())
2275 {
2276 if (parameters->target().get_size() == 32)
2277 {
2278 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2279 this->do_add_undefined_symbols_from_command_line<32>(layout);
2280 #else
2281 gold_unreachable();
2282 #endif
2283 }
2284 else if (parameters->target().get_size() == 64)
2285 {
2286 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2287 this->do_add_undefined_symbols_from_command_line<64>(layout);
2288 #else
2289 gold_unreachable();
2290 #endif
2291 }
2292 else
2293 gold_unreachable();
2294 }
2295 }
2296
2297 template<int size>
2298 void
2299 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2300 {
2301 for (options::String_set::const_iterator p =
2302 parameters->options().undefined_begin();
2303 p != parameters->options().undefined_end();
2304 ++p)
2305 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2306
2307 for (options::String_set::const_iterator p =
2308 parameters->options().export_dynamic_symbol_begin();
2309 p != parameters->options().export_dynamic_symbol_end();
2310 ++p)
2311 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2312
2313 for (Script_options::referenced_const_iterator p =
2314 layout->script_options()->referenced_begin();
2315 p != layout->script_options()->referenced_end();
2316 ++p)
2317 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2318 }
2319
2320 template<int size>
2321 void
2322 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2323 {
2324 if (this->lookup(name) != NULL)
2325 return;
2326
2327 const char* version = NULL;
2328
2329 Sized_symbol<size>* sym;
2330 Sized_symbol<size>* oldsym;
2331 bool resolve_oldsym;
2332 if (parameters->target().is_big_endian())
2333 {
2334 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2335 sym = this->define_special_symbol<size, true>(&name, &version,
2336 false, &oldsym,
2337 &resolve_oldsym);
2338 #else
2339 gold_unreachable();
2340 #endif
2341 }
2342 else
2343 {
2344 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2345 sym = this->define_special_symbol<size, false>(&name, &version,
2346 false, &oldsym,
2347 &resolve_oldsym);
2348 #else
2349 gold_unreachable();
2350 #endif
2351 }
2352
2353 gold_assert(oldsym == NULL);
2354
2355 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2356 elfcpp::STV_DEFAULT, 0);
2357 ++this->saw_undefined_;
2358 }
2359
2360 // Set the dynamic symbol indexes. INDEX is the index of the first
2361 // global dynamic symbol. Pointers to the symbols are stored into the
2362 // vector SYMS. The names are added to DYNPOOL. This returns an
2363 // updated dynamic symbol index.
2364
2365 unsigned int
2366 Symbol_table::set_dynsym_indexes(unsigned int index,
2367 std::vector<Symbol*>* syms,
2368 Stringpool* dynpool,
2369 Versions* versions)
2370 {
2371 std::vector<Symbol*> as_needed_sym;
2372
2373 for (Symbol_table_type::iterator p = this->table_.begin();
2374 p != this->table_.end();
2375 ++p)
2376 {
2377 Symbol* sym = p->second;
2378
2379 // Note that SYM may already have a dynamic symbol index, since
2380 // some symbols appear more than once in the symbol table, with
2381 // and without a version.
2382
2383 if (!sym->should_add_dynsym_entry(this))
2384 sym->set_dynsym_index(-1U);
2385 else if (!sym->has_dynsym_index())
2386 {
2387 sym->set_dynsym_index(index);
2388 ++index;
2389 syms->push_back(sym);
2390 dynpool->add(sym->name(), false, NULL);
2391
2392 // If the symbol is defined in a dynamic object and is
2393 // referenced strongly in a regular object, then mark the
2394 // dynamic object as needed. This is used to implement
2395 // --as-needed.
2396 if (sym->is_from_dynobj()
2397 && sym->in_reg()
2398 && !sym->is_undef_binding_weak())
2399 sym->object()->set_is_needed();
2400
2401 // Record any version information, except those from
2402 // as-needed libraries not seen to be needed. Note that the
2403 // is_needed state for such libraries can change in this loop.
2404 if (sym->version() != NULL)
2405 {
2406 if (!sym->is_from_dynobj()
2407 || !sym->object()->as_needed()
2408 || sym->object()->is_needed())
2409 versions->record_version(this, dynpool, sym);
2410 else
2411 as_needed_sym.push_back(sym);
2412 }
2413 }
2414 }
2415
2416 // Process version information for symbols from as-needed libraries.
2417 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2418 p != as_needed_sym.end();
2419 ++p)
2420 {
2421 Symbol* sym = *p;
2422
2423 if (sym->object()->is_needed())
2424 versions->record_version(this, dynpool, sym);
2425 else
2426 sym->clear_version();
2427 }
2428
2429 // Finish up the versions. In some cases this may add new dynamic
2430 // symbols.
2431 index = versions->finalize(this, index, syms);
2432
2433 return index;
2434 }
2435
2436 // Set the final values for all the symbols. The index of the first
2437 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2438 // file offset OFF. Add their names to POOL. Return the new file
2439 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2440
2441 off_t
2442 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2443 size_t dyncount, Stringpool* pool,
2444 unsigned int* plocal_symcount)
2445 {
2446 off_t ret;
2447
2448 gold_assert(*plocal_symcount != 0);
2449 this->first_global_index_ = *plocal_symcount;
2450
2451 this->dynamic_offset_ = dynoff;
2452 this->first_dynamic_global_index_ = dyn_global_index;
2453 this->dynamic_count_ = dyncount;
2454
2455 if (parameters->target().get_size() == 32)
2456 {
2457 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2458 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2459 #else
2460 gold_unreachable();
2461 #endif
2462 }
2463 else if (parameters->target().get_size() == 64)
2464 {
2465 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2466 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2467 #else
2468 gold_unreachable();
2469 #endif
2470 }
2471 else
2472 gold_unreachable();
2473
2474 // Now that we have the final symbol table, we can reliably note
2475 // which symbols should get warnings.
2476 this->warnings_.note_warnings(this);
2477
2478 return ret;
2479 }
2480
2481 // SYM is going into the symbol table at *PINDEX. Add the name to
2482 // POOL, update *PINDEX and *POFF.
2483
2484 template<int size>
2485 void
2486 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2487 unsigned int* pindex, off_t* poff)
2488 {
2489 sym->set_symtab_index(*pindex);
2490 if (sym->version() == NULL || !parameters->options().relocatable())
2491 pool->add(sym->name(), false, NULL);
2492 else
2493 pool->add(sym->versioned_name(), true, NULL);
2494 ++*pindex;
2495 *poff += elfcpp::Elf_sizes<size>::sym_size;
2496 }
2497
2498 // Set the final value for all the symbols. This is called after
2499 // Layout::finalize, so all the output sections have their final
2500 // address.
2501
2502 template<int size>
2503 off_t
2504 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2505 unsigned int* plocal_symcount)
2506 {
2507 off = align_address(off, size >> 3);
2508 this->offset_ = off;
2509
2510 unsigned int index = *plocal_symcount;
2511 const unsigned int orig_index = index;
2512
2513 // First do all the symbols which have been forced to be local, as
2514 // they must appear before all global symbols.
2515 for (Forced_locals::iterator p = this->forced_locals_.begin();
2516 p != this->forced_locals_.end();
2517 ++p)
2518 {
2519 Symbol* sym = *p;
2520 gold_assert(sym->is_forced_local());
2521 if (this->sized_finalize_symbol<size>(sym))
2522 {
2523 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2524 ++*plocal_symcount;
2525 }
2526 }
2527
2528 // Now do all the remaining symbols.
2529 for (Symbol_table_type::iterator p = this->table_.begin();
2530 p != this->table_.end();
2531 ++p)
2532 {
2533 Symbol* sym = p->second;
2534 if (this->sized_finalize_symbol<size>(sym))
2535 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2536 }
2537
2538 this->output_count_ = index - orig_index;
2539
2540 return off;
2541 }
2542
2543 // Compute the final value of SYM and store status in location PSTATUS.
2544 // During relaxation, this may be called multiple times for a symbol to
2545 // compute its would-be final value in each relaxation pass.
2546
2547 template<int size>
2548 typename Sized_symbol<size>::Value_type
2549 Symbol_table::compute_final_value(
2550 const Sized_symbol<size>* sym,
2551 Compute_final_value_status* pstatus) const
2552 {
2553 typedef typename Sized_symbol<size>::Value_type Value_type;
2554 Value_type value;
2555
2556 switch (sym->source())
2557 {
2558 case Symbol::FROM_OBJECT:
2559 {
2560 bool is_ordinary;
2561 unsigned int shndx = sym->shndx(&is_ordinary);
2562
2563 if (!is_ordinary
2564 && shndx != elfcpp::SHN_ABS
2565 && !Symbol::is_common_shndx(shndx))
2566 {
2567 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2568 return 0;
2569 }
2570
2571 Object* symobj = sym->object();
2572 if (symobj->is_dynamic())
2573 {
2574 value = 0;
2575 shndx = elfcpp::SHN_UNDEF;
2576 }
2577 else if (symobj->pluginobj() != NULL)
2578 {
2579 value = 0;
2580 shndx = elfcpp::SHN_UNDEF;
2581 }
2582 else if (shndx == elfcpp::SHN_UNDEF)
2583 value = 0;
2584 else if (!is_ordinary
2585 && (shndx == elfcpp::SHN_ABS
2586 || Symbol::is_common_shndx(shndx)))
2587 value = sym->value();
2588 else
2589 {
2590 Relobj* relobj = static_cast<Relobj*>(symobj);
2591 Output_section* os = relobj->output_section(shndx);
2592
2593 if (this->is_section_folded(relobj, shndx))
2594 {
2595 gold_assert(os == NULL);
2596 // Get the os of the section it is folded onto.
2597 Section_id folded = this->icf_->get_folded_section(relobj,
2598 shndx);
2599 gold_assert(folded.first != NULL);
2600 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2601 unsigned folded_shndx = folded.second;
2602
2603 os = folded_obj->output_section(folded_shndx);
2604 gold_assert(os != NULL);
2605
2606 // Replace (relobj, shndx) with canonical ICF input section.
2607 shndx = folded_shndx;
2608 relobj = folded_obj;
2609 }
2610
2611 uint64_t secoff64 = relobj->output_section_offset(shndx);
2612 if (os == NULL)
2613 {
2614 bool static_or_reloc = (parameters->doing_static_link() ||
2615 parameters->options().relocatable());
2616 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2617
2618 *pstatus = CFVS_NO_OUTPUT_SECTION;
2619 return 0;
2620 }
2621
2622 if (secoff64 == -1ULL)
2623 {
2624 // The section needs special handling (e.g., a merge section).
2625
2626 value = os->output_address(relobj, shndx, sym->value());
2627 }
2628 else
2629 {
2630 Value_type secoff =
2631 convert_types<Value_type, uint64_t>(secoff64);
2632 if (sym->type() == elfcpp::STT_TLS)
2633 value = sym->value() + os->tls_offset() + secoff;
2634 else
2635 value = sym->value() + os->address() + secoff;
2636 }
2637 }
2638 }
2639 break;
2640
2641 case Symbol::IN_OUTPUT_DATA:
2642 {
2643 Output_data* od = sym->output_data();
2644 value = sym->value();
2645 if (sym->type() != elfcpp::STT_TLS)
2646 value += od->address();
2647 else
2648 {
2649 Output_section* os = od->output_section();
2650 gold_assert(os != NULL);
2651 value += os->tls_offset() + (od->address() - os->address());
2652 }
2653 if (sym->offset_is_from_end())
2654 value += od->data_size();
2655 }
2656 break;
2657
2658 case Symbol::IN_OUTPUT_SEGMENT:
2659 {
2660 Output_segment* os = sym->output_segment();
2661 value = sym->value();
2662 if (sym->type() != elfcpp::STT_TLS)
2663 value += os->vaddr();
2664 switch (sym->offset_base())
2665 {
2666 case Symbol::SEGMENT_START:
2667 break;
2668 case Symbol::SEGMENT_END:
2669 value += os->memsz();
2670 break;
2671 case Symbol::SEGMENT_BSS:
2672 value += os->filesz();
2673 break;
2674 default:
2675 gold_unreachable();
2676 }
2677 }
2678 break;
2679
2680 case Symbol::IS_CONSTANT:
2681 value = sym->value();
2682 break;
2683
2684 case Symbol::IS_UNDEFINED:
2685 value = 0;
2686 break;
2687
2688 default:
2689 gold_unreachable();
2690 }
2691
2692 *pstatus = CFVS_OK;
2693 return value;
2694 }
2695
2696 // Finalize the symbol SYM. This returns true if the symbol should be
2697 // added to the symbol table, false otherwise.
2698
2699 template<int size>
2700 bool
2701 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2702 {
2703 typedef typename Sized_symbol<size>::Value_type Value_type;
2704
2705 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2706
2707 // The default version of a symbol may appear twice in the symbol
2708 // table. We only need to finalize it once.
2709 if (sym->has_symtab_index())
2710 return false;
2711
2712 if (!sym->in_reg())
2713 {
2714 gold_assert(!sym->has_symtab_index());
2715 sym->set_symtab_index(-1U);
2716 gold_assert(sym->dynsym_index() == -1U);
2717 return false;
2718 }
2719
2720 // If the symbol is only present on plugin files, the plugin decided we
2721 // don't need it.
2722 if (!sym->in_real_elf())
2723 {
2724 gold_assert(!sym->has_symtab_index());
2725 sym->set_symtab_index(-1U);
2726 return false;
2727 }
2728
2729 // Compute final symbol value.
2730 Compute_final_value_status status;
2731 Value_type value = this->compute_final_value(sym, &status);
2732
2733 switch (status)
2734 {
2735 case CFVS_OK:
2736 break;
2737 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2738 {
2739 bool is_ordinary;
2740 unsigned int shndx = sym->shndx(&is_ordinary);
2741 gold_error(_("%s: unsupported symbol section 0x%x"),
2742 sym->demangled_name().c_str(), shndx);
2743 }
2744 break;
2745 case CFVS_NO_OUTPUT_SECTION:
2746 sym->set_symtab_index(-1U);
2747 return false;
2748 default:
2749 gold_unreachable();
2750 }
2751
2752 sym->set_value(value);
2753
2754 if (parameters->options().strip_all()
2755 || !parameters->options().should_retain_symbol(sym->name()))
2756 {
2757 sym->set_symtab_index(-1U);
2758 return false;
2759 }
2760
2761 return true;
2762 }
2763
2764 // Write out the global symbols.
2765
2766 void
2767 Symbol_table::write_globals(const Stringpool* sympool,
2768 const Stringpool* dynpool,
2769 Output_symtab_xindex* symtab_xindex,
2770 Output_symtab_xindex* dynsym_xindex,
2771 Output_file* of) const
2772 {
2773 switch (parameters->size_and_endianness())
2774 {
2775 #ifdef HAVE_TARGET_32_LITTLE
2776 case Parameters::TARGET_32_LITTLE:
2777 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2778 dynsym_xindex, of);
2779 break;
2780 #endif
2781 #ifdef HAVE_TARGET_32_BIG
2782 case Parameters::TARGET_32_BIG:
2783 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2784 dynsym_xindex, of);
2785 break;
2786 #endif
2787 #ifdef HAVE_TARGET_64_LITTLE
2788 case Parameters::TARGET_64_LITTLE:
2789 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2790 dynsym_xindex, of);
2791 break;
2792 #endif
2793 #ifdef HAVE_TARGET_64_BIG
2794 case Parameters::TARGET_64_BIG:
2795 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2796 dynsym_xindex, of);
2797 break;
2798 #endif
2799 default:
2800 gold_unreachable();
2801 }
2802 }
2803
2804 // Write out the global symbols.
2805
2806 template<int size, bool big_endian>
2807 void
2808 Symbol_table::sized_write_globals(const Stringpool* sympool,
2809 const Stringpool* dynpool,
2810 Output_symtab_xindex* symtab_xindex,
2811 Output_symtab_xindex* dynsym_xindex,
2812 Output_file* of) const
2813 {
2814 const Target& target = parameters->target();
2815
2816 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2817
2818 const unsigned int output_count = this->output_count_;
2819 const section_size_type oview_size = output_count * sym_size;
2820 const unsigned int first_global_index = this->first_global_index_;
2821 unsigned char* psyms;
2822 if (this->offset_ == 0 || output_count == 0)
2823 psyms = NULL;
2824 else
2825 psyms = of->get_output_view(this->offset_, oview_size);
2826
2827 const unsigned int dynamic_count = this->dynamic_count_;
2828 const section_size_type dynamic_size = dynamic_count * sym_size;
2829 const unsigned int first_dynamic_global_index =
2830 this->first_dynamic_global_index_;
2831 unsigned char* dynamic_view;
2832 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2833 dynamic_view = NULL;
2834 else
2835 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2836
2837 for (Symbol_table_type::const_iterator p = this->table_.begin();
2838 p != this->table_.end();
2839 ++p)
2840 {
2841 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2842
2843 // Possibly warn about unresolved symbols in shared libraries.
2844 this->warn_about_undefined_dynobj_symbol(sym);
2845
2846 unsigned int sym_index = sym->symtab_index();
2847 unsigned int dynsym_index;
2848 if (dynamic_view == NULL)
2849 dynsym_index = -1U;
2850 else
2851 dynsym_index = sym->dynsym_index();
2852
2853 if (sym_index == -1U && dynsym_index == -1U)
2854 {
2855 // This symbol is not included in the output file.
2856 continue;
2857 }
2858
2859 unsigned int shndx;
2860 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2861 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2862 elfcpp::STB binding = sym->binding();
2863
2864 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2865 if (binding == elfcpp::STB_GNU_UNIQUE
2866 && !parameters->options().gnu_unique())
2867 binding = elfcpp::STB_GLOBAL;
2868
2869 switch (sym->source())
2870 {
2871 case Symbol::FROM_OBJECT:
2872 {
2873 bool is_ordinary;
2874 unsigned int in_shndx = sym->shndx(&is_ordinary);
2875
2876 if (!is_ordinary
2877 && in_shndx != elfcpp::SHN_ABS
2878 && !Symbol::is_common_shndx(in_shndx))
2879 {
2880 gold_error(_("%s: unsupported symbol section 0x%x"),
2881 sym->demangled_name().c_str(), in_shndx);
2882 shndx = in_shndx;
2883 }
2884 else
2885 {
2886 Object* symobj = sym->object();
2887 if (symobj->is_dynamic())
2888 {
2889 if (sym->needs_dynsym_value())
2890 dynsym_value = target.dynsym_value(sym);
2891 shndx = elfcpp::SHN_UNDEF;
2892 if (sym->is_undef_binding_weak())
2893 binding = elfcpp::STB_WEAK;
2894 else
2895 binding = elfcpp::STB_GLOBAL;
2896 }
2897 else if (symobj->pluginobj() != NULL)
2898 shndx = elfcpp::SHN_UNDEF;
2899 else if (in_shndx == elfcpp::SHN_UNDEF
2900 || (!is_ordinary
2901 && (in_shndx == elfcpp::SHN_ABS
2902 || Symbol::is_common_shndx(in_shndx))))
2903 shndx = in_shndx;
2904 else
2905 {
2906 Relobj* relobj = static_cast<Relobj*>(symobj);
2907 Output_section* os = relobj->output_section(in_shndx);
2908 if (this->is_section_folded(relobj, in_shndx))
2909 {
2910 // This global symbol must be written out even though
2911 // it is folded.
2912 // Get the os of the section it is folded onto.
2913 Section_id folded =
2914 this->icf_->get_folded_section(relobj, in_shndx);
2915 gold_assert(folded.first !=NULL);
2916 Relobj* folded_obj =
2917 reinterpret_cast<Relobj*>(folded.first);
2918 os = folded_obj->output_section(folded.second);
2919 gold_assert(os != NULL);
2920 }
2921 gold_assert(os != NULL);
2922 shndx = os->out_shndx();
2923
2924 if (shndx >= elfcpp::SHN_LORESERVE)
2925 {
2926 if (sym_index != -1U)
2927 symtab_xindex->add(sym_index, shndx);
2928 if (dynsym_index != -1U)
2929 dynsym_xindex->add(dynsym_index, shndx);
2930 shndx = elfcpp::SHN_XINDEX;
2931 }
2932
2933 // In object files symbol values are section
2934 // relative.
2935 if (parameters->options().relocatable())
2936 sym_value -= os->address();
2937 }
2938 }
2939 }
2940 break;
2941
2942 case Symbol::IN_OUTPUT_DATA:
2943 {
2944 Output_data* od = sym->output_data();
2945
2946 shndx = od->out_shndx();
2947 if (shndx >= elfcpp::SHN_LORESERVE)
2948 {
2949 if (sym_index != -1U)
2950 symtab_xindex->add(sym_index, shndx);
2951 if (dynsym_index != -1U)
2952 dynsym_xindex->add(dynsym_index, shndx);
2953 shndx = elfcpp::SHN_XINDEX;
2954 }
2955
2956 // In object files symbol values are section
2957 // relative.
2958 if (parameters->options().relocatable())
2959 sym_value -= od->address();
2960 }
2961 break;
2962
2963 case Symbol::IN_OUTPUT_SEGMENT:
2964 shndx = elfcpp::SHN_ABS;
2965 break;
2966
2967 case Symbol::IS_CONSTANT:
2968 shndx = elfcpp::SHN_ABS;
2969 break;
2970
2971 case Symbol::IS_UNDEFINED:
2972 shndx = elfcpp::SHN_UNDEF;
2973 break;
2974
2975 default:
2976 gold_unreachable();
2977 }
2978
2979 if (sym_index != -1U)
2980 {
2981 sym_index -= first_global_index;
2982 gold_assert(sym_index < output_count);
2983 unsigned char* ps = psyms + (sym_index * sym_size);
2984 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2985 binding, sympool, ps);
2986 }
2987
2988 if (dynsym_index != -1U)
2989 {
2990 dynsym_index -= first_dynamic_global_index;
2991 gold_assert(dynsym_index < dynamic_count);
2992 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2993 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2994 binding, dynpool, pd);
2995 }
2996 }
2997
2998 of->write_output_view(this->offset_, oview_size, psyms);
2999 if (dynamic_view != NULL)
3000 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3001 }
3002
3003 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3004 // strtab holding the name.
3005
3006 template<int size, bool big_endian>
3007 void
3008 Symbol_table::sized_write_symbol(
3009 Sized_symbol<size>* sym,
3010 typename elfcpp::Elf_types<size>::Elf_Addr value,
3011 unsigned int shndx,
3012 elfcpp::STB binding,
3013 const Stringpool* pool,
3014 unsigned char* p) const
3015 {
3016 elfcpp::Sym_write<size, big_endian> osym(p);
3017 if (sym->version() == NULL || !parameters->options().relocatable())
3018 osym.put_st_name(pool->get_offset(sym->name()));
3019 else
3020 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3021 osym.put_st_value(value);
3022 // Use a symbol size of zero for undefined symbols from shared libraries.
3023 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3024 osym.put_st_size(0);
3025 else
3026 osym.put_st_size(sym->symsize());
3027 elfcpp::STT type = sym->type();
3028 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3029 if (type == elfcpp::STT_GNU_IFUNC
3030 && sym->is_from_dynobj())
3031 type = elfcpp::STT_FUNC;
3032 // A version script may have overridden the default binding.
3033 if (sym->is_forced_local())
3034 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3035 else
3036 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3037 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3038 osym.put_st_shndx(shndx);
3039 }
3040
3041 // Check for unresolved symbols in shared libraries. This is
3042 // controlled by the --allow-shlib-undefined option.
3043
3044 // We only warn about libraries for which we have seen all the
3045 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3046 // which were not seen in this link. If we didn't see a DT_NEEDED
3047 // entry, we aren't going to be able to reliably report whether the
3048 // symbol is undefined.
3049
3050 // We also don't warn about libraries found in a system library
3051 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3052 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3053 // can have undefined references satisfied by ld-linux.so.
3054
3055 inline void
3056 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3057 {
3058 bool dummy;
3059 if (sym->source() == Symbol::FROM_OBJECT
3060 && sym->object()->is_dynamic()
3061 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3062 && sym->binding() != elfcpp::STB_WEAK
3063 && !parameters->options().allow_shlib_undefined()
3064 && !parameters->target().is_defined_by_abi(sym)
3065 && !sym->object()->is_in_system_directory())
3066 {
3067 // A very ugly cast.
3068 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3069 if (!dynobj->has_unknown_needed_entries())
3070 gold_undefined_symbol(sym);
3071 }
3072 }
3073
3074 // Write out a section symbol. Return the update offset.
3075
3076 void
3077 Symbol_table::write_section_symbol(const Output_section* os,
3078 Output_symtab_xindex* symtab_xindex,
3079 Output_file* of,
3080 off_t offset) const
3081 {
3082 switch (parameters->size_and_endianness())
3083 {
3084 #ifdef HAVE_TARGET_32_LITTLE
3085 case Parameters::TARGET_32_LITTLE:
3086 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3087 offset);
3088 break;
3089 #endif
3090 #ifdef HAVE_TARGET_32_BIG
3091 case Parameters::TARGET_32_BIG:
3092 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3093 offset);
3094 break;
3095 #endif
3096 #ifdef HAVE_TARGET_64_LITTLE
3097 case Parameters::TARGET_64_LITTLE:
3098 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3099 offset);
3100 break;
3101 #endif
3102 #ifdef HAVE_TARGET_64_BIG
3103 case Parameters::TARGET_64_BIG:
3104 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3105 offset);
3106 break;
3107 #endif
3108 default:
3109 gold_unreachable();
3110 }
3111 }
3112
3113 // Write out a section symbol, specialized for size and endianness.
3114
3115 template<int size, bool big_endian>
3116 void
3117 Symbol_table::sized_write_section_symbol(const Output_section* os,
3118 Output_symtab_xindex* symtab_xindex,
3119 Output_file* of,
3120 off_t offset) const
3121 {
3122 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3123
3124 unsigned char* pov = of->get_output_view(offset, sym_size);
3125
3126 elfcpp::Sym_write<size, big_endian> osym(pov);
3127 osym.put_st_name(0);
3128 if (parameters->options().relocatable())
3129 osym.put_st_value(0);
3130 else
3131 osym.put_st_value(os->address());
3132 osym.put_st_size(0);
3133 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3134 elfcpp::STT_SECTION));
3135 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3136
3137 unsigned int shndx = os->out_shndx();
3138 if (shndx >= elfcpp::SHN_LORESERVE)
3139 {
3140 symtab_xindex->add(os->symtab_index(), shndx);
3141 shndx = elfcpp::SHN_XINDEX;
3142 }
3143 osym.put_st_shndx(shndx);
3144
3145 of->write_output_view(offset, sym_size, pov);
3146 }
3147
3148 // Print statistical information to stderr. This is used for --stats.
3149
3150 void
3151 Symbol_table::print_stats() const
3152 {
3153 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3154 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3155 program_name, this->table_.size(), this->table_.bucket_count());
3156 #else
3157 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3158 program_name, this->table_.size());
3159 #endif
3160 this->namepool_.print_stats("symbol table stringpool");
3161 }
3162
3163 // We check for ODR violations by looking for symbols with the same
3164 // name for which the debugging information reports that they were
3165 // defined in disjoint source locations. When comparing the source
3166 // location, we consider instances with the same base filename to be
3167 // the same. This is because different object files/shared libraries
3168 // can include the same header file using different paths, and
3169 // different optimization settings can make the line number appear to
3170 // be a couple lines off, and we don't want to report an ODR violation
3171 // in those cases.
3172
3173 // This struct is used to compare line information, as returned by
3174 // Dwarf_line_info::one_addr2line. It implements a < comparison
3175 // operator used with std::sort.
3176
3177 struct Odr_violation_compare
3178 {
3179 bool
3180 operator()(const std::string& s1, const std::string& s2) const
3181 {
3182 // Inputs should be of the form "dirname/filename:linenum" where
3183 // "dirname/" is optional. We want to compare just the filename:linenum.
3184
3185 // Find the last '/' in each string.
3186 std::string::size_type s1begin = s1.rfind('/');
3187 std::string::size_type s2begin = s2.rfind('/');
3188 // If there was no '/' in a string, start at the beginning.
3189 if (s1begin == std::string::npos)
3190 s1begin = 0;
3191 if (s2begin == std::string::npos)
3192 s2begin = 0;
3193 return s1.compare(s1begin, std::string::npos,
3194 s2, s2begin, std::string::npos) < 0;
3195 }
3196 };
3197
3198 // Returns all of the lines attached to LOC, not just the one the
3199 // instruction actually came from.
3200 std::vector<std::string>
3201 Symbol_table::linenos_from_loc(const Task* task,
3202 const Symbol_location& loc)
3203 {
3204 // We need to lock the object in order to read it. This
3205 // means that we have to run in a singleton Task. If we
3206 // want to run this in a general Task for better
3207 // performance, we will need one Task for object, plus
3208 // appropriate locking to ensure that we don't conflict with
3209 // other uses of the object. Also note, one_addr2line is not
3210 // currently thread-safe.
3211 Task_lock_obj<Object> tl(task, loc.object);
3212
3213 std::vector<std::string> result;
3214 Symbol_location code_loc = loc;
3215 parameters->target().function_location(&code_loc);
3216 // 16 is the size of the object-cache that one_addr2line should use.
3217 std::string canonical_result = Dwarf_line_info::one_addr2line(
3218 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3219 if (!canonical_result.empty())
3220 result.push_back(canonical_result);
3221 return result;
3222 }
3223
3224 // OutputIterator that records if it was ever assigned to. This
3225 // allows it to be used with std::set_intersection() to check for
3226 // intersection rather than computing the intersection.
3227 struct Check_intersection
3228 {
3229 Check_intersection()
3230 : value_(false)
3231 {}
3232
3233 bool had_intersection() const
3234 { return this->value_; }
3235
3236 Check_intersection& operator++()
3237 { return *this; }
3238
3239 Check_intersection& operator*()
3240 { return *this; }
3241
3242 template<typename T>
3243 Check_intersection& operator=(const T&)
3244 {
3245 this->value_ = true;
3246 return *this;
3247 }
3248
3249 private:
3250 bool value_;
3251 };
3252
3253 // Check candidate_odr_violations_ to find symbols with the same name
3254 // but apparently different definitions (different source-file/line-no
3255 // for each line assigned to the first instruction).
3256
3257 void
3258 Symbol_table::detect_odr_violations(const Task* task,
3259 const char* output_file_name) const
3260 {
3261 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3262 it != candidate_odr_violations_.end();
3263 ++it)
3264 {
3265 const char* const symbol_name = it->first;
3266
3267 std::string first_object_name;
3268 std::vector<std::string> first_object_linenos;
3269
3270 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3271 locs = it->second.begin();
3272 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3273 locs_end = it->second.end();
3274 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3275 {
3276 // Save the line numbers from the first definition to
3277 // compare to the other definitions. Ideally, we'd compare
3278 // every definition to every other, but we don't want to
3279 // take O(N^2) time to do this. This shortcut may cause
3280 // false negatives that appear or disappear depending on the
3281 // link order, but it won't cause false positives.
3282 first_object_name = locs->object->name();
3283 first_object_linenos = this->linenos_from_loc(task, *locs);
3284 }
3285
3286 // Sort by Odr_violation_compare to make std::set_intersection work.
3287 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3288 Odr_violation_compare());
3289
3290 for (; locs != locs_end; ++locs)
3291 {
3292 std::vector<std::string> linenos =
3293 this->linenos_from_loc(task, *locs);
3294 // linenos will be empty if we couldn't parse the debug info.
3295 if (linenos.empty())
3296 continue;
3297 // Sort by Odr_violation_compare to make std::set_intersection work.
3298 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3299
3300 Check_intersection intersection_result =
3301 std::set_intersection(first_object_linenos.begin(),
3302 first_object_linenos.end(),
3303 linenos.begin(),
3304 linenos.end(),
3305 Check_intersection(),
3306 Odr_violation_compare());
3307 if (!intersection_result.had_intersection())
3308 {
3309 gold_warning(_("while linking %s: symbol '%s' defined in "
3310 "multiple places (possible ODR violation):"),
3311 output_file_name, demangle(symbol_name).c_str());
3312 // This only prints one location from each definition,
3313 // which may not be the location we expect to intersect
3314 // with another definition. We could print the whole
3315 // set of locations, but that seems too verbose.
3316 gold_assert(!first_object_linenos.empty());
3317 gold_assert(!linenos.empty());
3318 fprintf(stderr, _(" %s from %s\n"),
3319 first_object_linenos[0].c_str(),
3320 first_object_name.c_str());
3321 fprintf(stderr, _(" %s from %s\n"),
3322 linenos[0].c_str(),
3323 locs->object->name().c_str());
3324 // Only print one broken pair, to avoid needing to
3325 // compare against a list of the disjoint definition
3326 // locations we've found so far. (If we kept comparing
3327 // against just the first one, we'd get a lot of
3328 // redundant complaints about the second definition
3329 // location.)
3330 break;
3331 }
3332 }
3333 }
3334 // We only call one_addr2line() in this function, so we can clear its cache.
3335 Dwarf_line_info::clear_addr2line_cache();
3336 }
3337
3338 // Warnings functions.
3339
3340 // Add a new warning.
3341
3342 void
3343 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3344 const std::string& warning)
3345 {
3346 name = symtab->canonicalize_name(name);
3347 this->warnings_[name].set(obj, warning);
3348 }
3349
3350 // Look through the warnings and mark the symbols for which we should
3351 // warn. This is called during Layout::finalize when we know the
3352 // sources for all the symbols.
3353
3354 void
3355 Warnings::note_warnings(Symbol_table* symtab)
3356 {
3357 for (Warning_table::iterator p = this->warnings_.begin();
3358 p != this->warnings_.end();
3359 ++p)
3360 {
3361 Symbol* sym = symtab->lookup(p->first, NULL);
3362 if (sym != NULL
3363 && sym->source() == Symbol::FROM_OBJECT
3364 && sym->object() == p->second.object)
3365 sym->set_has_warning();
3366 }
3367 }
3368
3369 // Issue a warning. This is called when we see a relocation against a
3370 // symbol for which has a warning.
3371
3372 template<int size, bool big_endian>
3373 void
3374 Warnings::issue_warning(const Symbol* sym,
3375 const Relocate_info<size, big_endian>* relinfo,
3376 size_t relnum, off_t reloffset) const
3377 {
3378 gold_assert(sym->has_warning());
3379
3380 // We don't want to issue a warning for a relocation against the
3381 // symbol in the same object file in which the symbol is defined.
3382 if (sym->object() == relinfo->object)
3383 return;
3384
3385 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3386 gold_assert(p != this->warnings_.end());
3387 gold_warning_at_location(relinfo, relnum, reloffset,
3388 "%s", p->second.text.c_str());
3389 }
3390
3391 // Instantiate the templates we need. We could use the configure
3392 // script to restrict this to only the ones needed for implemented
3393 // targets.
3394
3395 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3396 template
3397 void
3398 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3399 #endif
3400
3401 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3402 template
3403 void
3404 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3405 #endif
3406
3407 #ifdef HAVE_TARGET_32_LITTLE
3408 template
3409 void
3410 Symbol_table::add_from_relobj<32, false>(
3411 Sized_relobj_file<32, false>* relobj,
3412 const unsigned char* syms,
3413 size_t count,
3414 size_t symndx_offset,
3415 const char* sym_names,
3416 size_t sym_name_size,
3417 Sized_relobj_file<32, false>::Symbols* sympointers,
3418 size_t* defined);
3419 #endif
3420
3421 #ifdef HAVE_TARGET_32_BIG
3422 template
3423 void
3424 Symbol_table::add_from_relobj<32, true>(
3425 Sized_relobj_file<32, true>* relobj,
3426 const unsigned char* syms,
3427 size_t count,
3428 size_t symndx_offset,
3429 const char* sym_names,
3430 size_t sym_name_size,
3431 Sized_relobj_file<32, true>::Symbols* sympointers,
3432 size_t* defined);
3433 #endif
3434
3435 #ifdef HAVE_TARGET_64_LITTLE
3436 template
3437 void
3438 Symbol_table::add_from_relobj<64, false>(
3439 Sized_relobj_file<64, false>* relobj,
3440 const unsigned char* syms,
3441 size_t count,
3442 size_t symndx_offset,
3443 const char* sym_names,
3444 size_t sym_name_size,
3445 Sized_relobj_file<64, false>::Symbols* sympointers,
3446 size_t* defined);
3447 #endif
3448
3449 #ifdef HAVE_TARGET_64_BIG
3450 template
3451 void
3452 Symbol_table::add_from_relobj<64, true>(
3453 Sized_relobj_file<64, true>* relobj,
3454 const unsigned char* syms,
3455 size_t count,
3456 size_t symndx_offset,
3457 const char* sym_names,
3458 size_t sym_name_size,
3459 Sized_relobj_file<64, true>::Symbols* sympointers,
3460 size_t* defined);
3461 #endif
3462
3463 #ifdef HAVE_TARGET_32_LITTLE
3464 template
3465 Symbol*
3466 Symbol_table::add_from_pluginobj<32, false>(
3467 Sized_pluginobj<32, false>* obj,
3468 const char* name,
3469 const char* ver,
3470 elfcpp::Sym<32, false>* sym);
3471 #endif
3472
3473 #ifdef HAVE_TARGET_32_BIG
3474 template
3475 Symbol*
3476 Symbol_table::add_from_pluginobj<32, true>(
3477 Sized_pluginobj<32, true>* obj,
3478 const char* name,
3479 const char* ver,
3480 elfcpp::Sym<32, true>* sym);
3481 #endif
3482
3483 #ifdef HAVE_TARGET_64_LITTLE
3484 template
3485 Symbol*
3486 Symbol_table::add_from_pluginobj<64, false>(
3487 Sized_pluginobj<64, false>* obj,
3488 const char* name,
3489 const char* ver,
3490 elfcpp::Sym<64, false>* sym);
3491 #endif
3492
3493 #ifdef HAVE_TARGET_64_BIG
3494 template
3495 Symbol*
3496 Symbol_table::add_from_pluginobj<64, true>(
3497 Sized_pluginobj<64, true>* obj,
3498 const char* name,
3499 const char* ver,
3500 elfcpp::Sym<64, true>* sym);
3501 #endif
3502
3503 #ifdef HAVE_TARGET_32_LITTLE
3504 template
3505 void
3506 Symbol_table::add_from_dynobj<32, false>(
3507 Sized_dynobj<32, false>* dynobj,
3508 const unsigned char* syms,
3509 size_t count,
3510 const char* sym_names,
3511 size_t sym_name_size,
3512 const unsigned char* versym,
3513 size_t versym_size,
3514 const std::vector<const char*>* version_map,
3515 Sized_relobj_file<32, false>::Symbols* sympointers,
3516 size_t* defined);
3517 #endif
3518
3519 #ifdef HAVE_TARGET_32_BIG
3520 template
3521 void
3522 Symbol_table::add_from_dynobj<32, true>(
3523 Sized_dynobj<32, true>* dynobj,
3524 const unsigned char* syms,
3525 size_t count,
3526 const char* sym_names,
3527 size_t sym_name_size,
3528 const unsigned char* versym,
3529 size_t versym_size,
3530 const std::vector<const char*>* version_map,
3531 Sized_relobj_file<32, true>::Symbols* sympointers,
3532 size_t* defined);
3533 #endif
3534
3535 #ifdef HAVE_TARGET_64_LITTLE
3536 template
3537 void
3538 Symbol_table::add_from_dynobj<64, false>(
3539 Sized_dynobj<64, false>* dynobj,
3540 const unsigned char* syms,
3541 size_t count,
3542 const char* sym_names,
3543 size_t sym_name_size,
3544 const unsigned char* versym,
3545 size_t versym_size,
3546 const std::vector<const char*>* version_map,
3547 Sized_relobj_file<64, false>::Symbols* sympointers,
3548 size_t* defined);
3549 #endif
3550
3551 #ifdef HAVE_TARGET_64_BIG
3552 template
3553 void
3554 Symbol_table::add_from_dynobj<64, true>(
3555 Sized_dynobj<64, true>* dynobj,
3556 const unsigned char* syms,
3557 size_t count,
3558 const char* sym_names,
3559 size_t sym_name_size,
3560 const unsigned char* versym,
3561 size_t versym_size,
3562 const std::vector<const char*>* version_map,
3563 Sized_relobj_file<64, true>::Symbols* sympointers,
3564 size_t* defined);
3565 #endif
3566
3567 #ifdef HAVE_TARGET_32_LITTLE
3568 template
3569 Sized_symbol<32>*
3570 Symbol_table::add_from_incrobj(
3571 Object* obj,
3572 const char* name,
3573 const char* ver,
3574 elfcpp::Sym<32, false>* sym);
3575 #endif
3576
3577 #ifdef HAVE_TARGET_32_BIG
3578 template
3579 Sized_symbol<32>*
3580 Symbol_table::add_from_incrobj(
3581 Object* obj,
3582 const char* name,
3583 const char* ver,
3584 elfcpp::Sym<32, true>* sym);
3585 #endif
3586
3587 #ifdef HAVE_TARGET_64_LITTLE
3588 template
3589 Sized_symbol<64>*
3590 Symbol_table::add_from_incrobj(
3591 Object* obj,
3592 const char* name,
3593 const char* ver,
3594 elfcpp::Sym<64, false>* sym);
3595 #endif
3596
3597 #ifdef HAVE_TARGET_64_BIG
3598 template
3599 Sized_symbol<64>*
3600 Symbol_table::add_from_incrobj(
3601 Object* obj,
3602 const char* name,
3603 const char* ver,
3604 elfcpp::Sym<64, true>* sym);
3605 #endif
3606
3607 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3608 template
3609 void
3610 Symbol_table::define_with_copy_reloc<32>(
3611 Sized_symbol<32>* sym,
3612 Output_data* posd,
3613 elfcpp::Elf_types<32>::Elf_Addr value);
3614 #endif
3615
3616 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3617 template
3618 void
3619 Symbol_table::define_with_copy_reloc<64>(
3620 Sized_symbol<64>* sym,
3621 Output_data* posd,
3622 elfcpp::Elf_types<64>::Elf_Addr value);
3623 #endif
3624
3625 #ifdef HAVE_TARGET_32_LITTLE
3626 template
3627 void
3628 Warnings::issue_warning<32, false>(const Symbol* sym,
3629 const Relocate_info<32, false>* relinfo,
3630 size_t relnum, off_t reloffset) const;
3631 #endif
3632
3633 #ifdef HAVE_TARGET_32_BIG
3634 template
3635 void
3636 Warnings::issue_warning<32, true>(const Symbol* sym,
3637 const Relocate_info<32, true>* relinfo,
3638 size_t relnum, off_t reloffset) const;
3639 #endif
3640
3641 #ifdef HAVE_TARGET_64_LITTLE
3642 template
3643 void
3644 Warnings::issue_warning<64, false>(const Symbol* sym,
3645 const Relocate_info<64, false>* relinfo,
3646 size_t relnum, off_t reloffset) const;
3647 #endif
3648
3649 #ifdef HAVE_TARGET_64_BIG
3650 template
3651 void
3652 Warnings::issue_warning<64, true>(const Symbol* sym,
3653 const Relocate_info<64, true>* relinfo,
3654 size_t relnum, off_t reloffset) const;
3655 #endif
3656
3657 } // End namespace gold.
This page took 0.111417 seconds and 5 git commands to generate.