Fix problem where __start_ and __stop_ section symbols do not honor version script.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // or the symbol should be globally unique (GNU_UNIQUE),
423 // and the symbol is defined in a regular object and is
424 // externally visible, we need to add it.
425 if ((parameters->options().export_dynamic()
426 || parameters->options().shared()
427 || (parameters->options().gnu_unique()
428 && this->binding() == elfcpp::STB_GNU_UNIQUE))
429 && !this->is_from_dynobj()
430 && !this->is_undefined()
431 && this->is_externally_visible())
432 return true;
433
434 return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443 // If we are not generating an executable, then no final values are
444 // known, since they will change at runtime, with the exception of
445 // TLS symbols in a position-independent executable.
446 if ((parameters->options().output_is_position_independent()
447 || parameters->options().relocatable())
448 && !(this->type() == elfcpp::STT_TLS
449 && parameters->options().pie()))
450 return false;
451
452 // If the symbol is not from an object file, and is not undefined,
453 // then it is defined, and known.
454 if (this->source_ != FROM_OBJECT)
455 {
456 if (this->source_ != IS_UNDEFINED)
457 return true;
458 }
459 else
460 {
461 // If the symbol is from a dynamic object, then the final value
462 // is not known.
463 if (this->object()->is_dynamic())
464 return false;
465
466 // If the symbol is not undefined (it is defined or common),
467 // then the final value is known.
468 if (!this->is_undefined())
469 return true;
470 }
471
472 // If the symbol is undefined, then whether the final value is known
473 // depends on whether we are doing a static link. If we are doing a
474 // dynamic link, then the final value could be filled in at runtime.
475 // This could reasonably be the case for a weak undefined symbol.
476 return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484 switch (this->source_)
485 {
486 case FROM_OBJECT:
487 {
488 unsigned int shndx = this->u_.from_object.shndx;
489 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490 {
491 gold_assert(!this->u_.from_object.object->is_dynamic());
492 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494 return relobj->output_section(shndx);
495 }
496 return NULL;
497 }
498
499 case IN_OUTPUT_DATA:
500 return this->u_.in_output_data.output_data->output_section();
501
502 case IN_OUTPUT_SEGMENT:
503 case IS_CONSTANT:
504 case IS_UNDEFINED:
505 return NULL;
506
507 default:
508 gold_unreachable();
509 }
510 }
511
512 // Set the symbol's output section. This is used for symbols defined
513 // in scripts. This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519 switch (this->source_)
520 {
521 case FROM_OBJECT:
522 case IN_OUTPUT_DATA:
523 gold_assert(this->output_section() == os);
524 break;
525 case IS_CONSTANT:
526 this->source_ = IN_OUTPUT_DATA;
527 this->u_.in_output_data.output_data = os;
528 this->u_.in_output_data.offset_is_from_end = false;
529 break;
530 case IN_OUTPUT_SEGMENT:
531 case IS_UNDEFINED:
532 default:
533 gold_unreachable();
534 }
535 }
536
537 // Set the symbol's output segment. This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544 gold_assert(this->is_predefined_);
545 this->source_ = IN_OUTPUT_SEGMENT;
546 this->u_.in_output_segment.output_segment = os;
547 this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined. This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557 this->source_ = IS_UNDEFINED;
558 this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564 const Version_script_info& version_script)
565 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566 forwarders_(), commons_(), tls_commons_(), small_commons_(),
567 large_commons_(), forced_locals_(), warnings_(),
568 version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570 namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function. This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582 const Symbol_table_key& k2) const
583 {
584 return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590 return (parameters->options().icf_enabled()
591 && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600 for (options::String_set::const_iterator p =
601 parameters->options().undefined_begin();
602 p != parameters->options().undefined_end();
603 ++p)
604 {
605 const char* name = p->c_str();
606 Symbol* sym = this->lookup(name);
607 gold_assert(sym != NULL);
608 if (sym->source() == Symbol::FROM_OBJECT
609 && !sym->object()->is_dynamic())
610 {
611 this->gc_mark_symbol(sym);
612 }
613 }
614
615 for (options::String_set::const_iterator p =
616 parameters->options().export_dynamic_symbol_begin();
617 p != parameters->options().export_dynamic_symbol_end();
618 ++p)
619 {
620 const char* name = p->c_str();
621 Symbol* sym = this->lookup(name);
622 // It's not an error if a symbol named by --export-dynamic-symbol
623 // is undefined.
624 if (sym != NULL
625 && sym->source() == Symbol::FROM_OBJECT
626 && !sym->object()->is_dynamic())
627 {
628 this->gc_mark_symbol(sym);
629 }
630 }
631
632 for (Script_options::referenced_const_iterator p =
633 layout->script_options()->referenced_begin();
634 p != layout->script_options()->referenced_end();
635 ++p)
636 {
637 Symbol* sym = this->lookup(p->c_str());
638 gold_assert(sym != NULL);
639 if (sym->source() == Symbol::FROM_OBJECT
640 && !sym->object()->is_dynamic())
641 {
642 this->gc_mark_symbol(sym);
643 }
644 }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650 // Add the object and section to the work list.
651 bool is_ordinary;
652 unsigned int shndx = sym->shndx(&is_ordinary);
653 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654 {
655 gold_assert(this->gc_!= NULL);
656 Relobj* relobj = static_cast<Relobj*>(sym->object());
657 this->gc_->worklist().push_back(Section_id(relobj, shndx));
658 }
659 parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668 && !sym->object()->is_dynamic())
669 this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677 gold_assert(from != to);
678 gold_assert(!from->is_forwarder() && !to->is_forwarder());
679 this->forwarders_[from] = to;
680 from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688 gold_assert(from->is_forwarder());
689 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690 this->forwarders_.find(from);
691 gold_assert(p != this->forwarders_.end());
692 return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700 Stringpool::Key name_key;
701 name = this->namepool_.find(name, &name_key);
702 if (name == NULL)
703 return NULL;
704
705 Stringpool::Key version_key = 0;
706 if (version != NULL)
707 {
708 version = this->namepool_.find(version, &version_key);
709 if (version == NULL)
710 return NULL;
711 }
712
713 Symbol_table_key key(name_key, version_key);
714 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715 if (p == this->table_.end())
716 return NULL;
717 return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol. This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version. Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731 elfcpp::Sym_write<size, big_endian> esym(buf);
732 // We don't bother to set the st_name or the st_shndx field.
733 esym.put_st_value(from->value());
734 esym.put_st_size(from->symsize());
735 esym.put_st_info(from->binding(), from->type());
736 esym.put_st_other(from->visibility(), from->nonvis());
737 bool is_ordinary;
738 unsigned int shndx = from->shndx(&is_ordinary);
739 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740 from->version());
741 if (from->in_reg())
742 to->set_in_reg();
743 if (from->in_dyn())
744 to->set_in_dyn();
745 if (parameters->options().gc_sections())
746 this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755 if (!sym->is_defined() && !sym->is_common())
756 return;
757 if (sym->is_forced_local())
758 {
759 // We already got this one.
760 return;
761 }
762 sym->set_is_forced_local();
763 this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773 // For some targets, we need to ignore a specific character when
774 // wrapping, and add it back later.
775 char prefix = '\0';
776 if (name[0] == parameters->target().wrap_char())
777 {
778 prefix = name[0];
779 ++name;
780 }
781
782 if (parameters->options().is_wrap(name))
783 {
784 // Turn NAME into __wrap_NAME.
785 std::string s;
786 if (prefix != '\0')
787 s += prefix;
788 s += "__wrap_";
789 s += name;
790
791 // This will give us both the old and new name in NAMEPOOL_, but
792 // that is OK. Only the versions we need will wind up in the
793 // real string table in the output file.
794 return this->namepool_.add(s.c_str(), true, name_key);
795 }
796
797 const char* const real_prefix = "__real_";
798 const size_t real_prefix_length = strlen(real_prefix);
799 if (strncmp(name, real_prefix, real_prefix_length) == 0
800 && parameters->options().is_wrap(name + real_prefix_length))
801 {
802 // Turn __real_NAME into NAME.
803 std::string s;
804 if (prefix != '\0')
805 s += prefix;
806 s += name + real_prefix_length;
807 return this->namepool_.add(s.c_str(), true, name_key);
808 }
809
810 return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version. SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822 bool default_is_new,
823 Symbol_table_type::iterator pdef)
824 {
825 if (default_is_new)
826 {
827 // This is the first time we have seen NAME/NULL. Make
828 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829 // version.
830 pdef->second = sym;
831 sym->set_is_default();
832 }
833 else if (pdef->second == sym)
834 {
835 // NAME/NULL already points to NAME/VERSION. Don't mark the
836 // symbol as the default if it is not already the default.
837 }
838 else
839 {
840 // This is the unfortunate case where we already have entries
841 // for both NAME/VERSION and NAME/NULL. We now see a symbol
842 // NAME/VERSION where VERSION is the default version. We have
843 // already resolved this new symbol with the existing
844 // NAME/VERSION symbol.
845
846 // It's possible that NAME/NULL and NAME/VERSION are both
847 // defined in regular objects. This can only happen if one
848 // object file defines foo and another defines foo@@ver. This
849 // is somewhat obscure, but we call it a multiple definition
850 // error.
851
852 // It's possible that NAME/NULL actually has a version, in which
853 // case it won't be the same as VERSION. This happens with
854 // ver_test_7.so in the testsuite for the symbol t2_2. We see
855 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
856 // then see an unadorned t2_2 in an object file and give it
857 // version VER1 from the version script. This looks like a
858 // default definition for VER1, so it looks like we should merge
859 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
860 // not obvious that this is an error, either. So we just punt.
861
862 // If one of the symbols has non-default visibility, and the
863 // other is defined in a shared object, then they are different
864 // symbols.
865
866 // Otherwise, we just resolve the symbols as though they were
867 // the same.
868
869 if (pdef->second->version() != NULL)
870 gold_assert(pdef->second->version() != sym->version());
871 else if (sym->visibility() != elfcpp::STV_DEFAULT
872 && pdef->second->is_from_dynobj())
873 ;
874 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875 && sym->is_from_dynobj())
876 ;
877 else
878 {
879 const Sized_symbol<size>* symdef;
880 symdef = this->get_sized_symbol<size>(pdef->second);
881 Symbol_table::resolve<size, big_endian>(sym, symdef);
882 this->make_forwarder(pdef->second, sym);
883 pdef->second = sym;
884 sym->set_is_default();
885 }
886 }
887 }
888
889 // Add one symbol from OBJECT to the symbol table. NAME is symbol
890 // name and VERSION is the version; both are canonicalized. DEF is
891 // whether this is the default version. ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol. That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol. This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION. If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure. That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table. We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files. So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code. ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922 const char* name,
923 Stringpool::Key name_key,
924 const char* version,
925 Stringpool::Key version_key,
926 bool is_default_version,
927 const elfcpp::Sym<size, big_endian>& sym,
928 unsigned int st_shndx,
929 bool is_ordinary,
930 unsigned int orig_st_shndx)
931 {
932 // Print a message if this symbol is being traced.
933 if (parameters->options().is_trace_symbol(name))
934 {
935 if (orig_st_shndx == elfcpp::SHN_UNDEF)
936 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937 else
938 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939 }
940
941 // For an undefined symbol, we may need to adjust the name using
942 // --wrap.
943 if (orig_st_shndx == elfcpp::SHN_UNDEF
944 && parameters->options().any_wrap())
945 {
946 const char* wrap_name = this->wrap_symbol(name, &name_key);
947 if (wrap_name != name)
948 {
949 // If we see a reference to malloc with version GLIBC_2.0,
950 // and we turn it into a reference to __wrap_malloc, then we
951 // discard the version number. Otherwise the user would be
952 // required to specify the correct version for
953 // __wrap_malloc.
954 version = NULL;
955 version_key = 0;
956 name = wrap_name;
957 }
958 }
959
960 Symbol* const snull = NULL;
961 std::pair<typename Symbol_table_type::iterator, bool> ins =
962 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963 snull));
964
965 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966 std::make_pair(this->table_.end(), false);
967 if (is_default_version)
968 {
969 const Stringpool::Key vnull_key = 0;
970 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971 vnull_key),
972 snull));
973 }
974
975 // ins.first: an iterator, which is a pointer to a pair.
976 // ins.first->first: the key (a pair of name and version).
977 // ins.first->second: the value (Symbol*).
978 // ins.second: true if new entry was inserted, false if not.
979
980 Sized_symbol<size>* ret;
981 bool was_undefined;
982 bool was_common;
983 if (!ins.second)
984 {
985 // We already have an entry for NAME/VERSION.
986 ret = this->get_sized_symbol<size>(ins.first->second);
987 gold_assert(ret != NULL);
988
989 was_undefined = ret->is_undefined();
990 // Commons from plugins are just placeholders.
991 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994 version);
995 if (parameters->options().gc_sections())
996 this->gc_mark_dyn_syms(ret);
997
998 if (is_default_version)
999 this->define_default_version<size, big_endian>(ret, insdefault.second,
1000 insdefault.first);
1001 }
1002 else
1003 {
1004 // This is the first time we have seen NAME/VERSION.
1005 gold_assert(ins.first->second == NULL);
1006
1007 if (is_default_version && !insdefault.second)
1008 {
1009 // We already have an entry for NAME/NULL. If we override
1010 // it, then change it to NAME/VERSION.
1011 ret = this->get_sized_symbol<size>(insdefault.first->second);
1012
1013 was_undefined = ret->is_undefined();
1014 // Commons from plugins are just placeholders.
1015 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1016
1017 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1018 version);
1019 if (parameters->options().gc_sections())
1020 this->gc_mark_dyn_syms(ret);
1021 ins.first->second = ret;
1022 }
1023 else
1024 {
1025 was_undefined = false;
1026 was_common = false;
1027
1028 Sized_target<size, big_endian>* target =
1029 parameters->sized_target<size, big_endian>();
1030 if (!target->has_make_symbol())
1031 ret = new Sized_symbol<size>();
1032 else
1033 {
1034 ret = target->make_symbol();
1035 if (ret == NULL)
1036 {
1037 // This means that we don't want a symbol table
1038 // entry after all.
1039 if (!is_default_version)
1040 this->table_.erase(ins.first);
1041 else
1042 {
1043 this->table_.erase(insdefault.first);
1044 // Inserting INSDEFAULT invalidated INS.
1045 this->table_.erase(std::make_pair(name_key,
1046 version_key));
1047 }
1048 return NULL;
1049 }
1050 }
1051
1052 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1053
1054 ins.first->second = ret;
1055 if (is_default_version)
1056 {
1057 // This is the first time we have seen NAME/NULL. Point
1058 // it at the new entry for NAME/VERSION.
1059 gold_assert(insdefault.second);
1060 insdefault.first->second = ret;
1061 }
1062 }
1063
1064 if (is_default_version)
1065 ret->set_is_default();
1066 }
1067
1068 // Record every time we see a new undefined symbol, to speed up
1069 // archive groups.
1070 if (!was_undefined && ret->is_undefined())
1071 {
1072 ++this->saw_undefined_;
1073 if (parameters->options().has_plugins())
1074 parameters->options().plugins()->new_undefined_symbol(ret);
1075 }
1076
1077 // Keep track of common symbols, to speed up common symbol
1078 // allocation. Don't record commons from plugin objects;
1079 // we need to wait until we see the real symbol in the
1080 // replacement file.
1081 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1082 {
1083 if (ret->type() == elfcpp::STT_TLS)
1084 this->tls_commons_.push_back(ret);
1085 else if (!is_ordinary
1086 && st_shndx == parameters->target().small_common_shndx())
1087 this->small_commons_.push_back(ret);
1088 else if (!is_ordinary
1089 && st_shndx == parameters->target().large_common_shndx())
1090 this->large_commons_.push_back(ret);
1091 else
1092 this->commons_.push_back(ret);
1093 }
1094
1095 // If we're not doing a relocatable link, then any symbol with
1096 // hidden or internal visibility is local.
1097 if ((ret->visibility() == elfcpp::STV_HIDDEN
1098 || ret->visibility() == elfcpp::STV_INTERNAL)
1099 && (ret->binding() == elfcpp::STB_GLOBAL
1100 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1101 || ret->binding() == elfcpp::STB_WEAK)
1102 && !parameters->options().relocatable())
1103 this->force_local(ret);
1104
1105 return ret;
1106 }
1107
1108 // Add all the symbols in a relocatable object to the hash table.
1109
1110 template<int size, bool big_endian>
1111 void
1112 Symbol_table::add_from_relobj(
1113 Sized_relobj_file<size, big_endian>* relobj,
1114 const unsigned char* syms,
1115 size_t count,
1116 size_t symndx_offset,
1117 const char* sym_names,
1118 size_t sym_name_size,
1119 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1120 size_t* defined)
1121 {
1122 *defined = 0;
1123
1124 gold_assert(size == parameters->target().get_size());
1125
1126 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1127
1128 const bool just_symbols = relobj->just_symbols();
1129
1130 const unsigned char* p = syms;
1131 for (size_t i = 0; i < count; ++i, p += sym_size)
1132 {
1133 (*sympointers)[i] = NULL;
1134
1135 elfcpp::Sym<size, big_endian> sym(p);
1136
1137 unsigned int st_name = sym.get_st_name();
1138 if (st_name >= sym_name_size)
1139 {
1140 relobj->error(_("bad global symbol name offset %u at %zu"),
1141 st_name, i);
1142 continue;
1143 }
1144
1145 const char* name = sym_names + st_name;
1146
1147 if (strcmp (name, "__gnu_lto_slim") == 0)
1148 gold_info(_("%s: plugin needed to handle lto object"),
1149 relobj->name().c_str());
1150
1151 bool is_ordinary;
1152 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1153 sym.get_st_shndx(),
1154 &is_ordinary);
1155 unsigned int orig_st_shndx = st_shndx;
1156 if (!is_ordinary)
1157 orig_st_shndx = elfcpp::SHN_UNDEF;
1158
1159 if (st_shndx != elfcpp::SHN_UNDEF)
1160 ++*defined;
1161
1162 // A symbol defined in a section which we are not including must
1163 // be treated as an undefined symbol.
1164 bool is_defined_in_discarded_section = false;
1165 if (st_shndx != elfcpp::SHN_UNDEF
1166 && is_ordinary
1167 && !relobj->is_section_included(st_shndx)
1168 && !this->is_section_folded(relobj, st_shndx))
1169 {
1170 st_shndx = elfcpp::SHN_UNDEF;
1171 is_defined_in_discarded_section = true;
1172 }
1173
1174 // In an object file, an '@' in the name separates the symbol
1175 // name from the version name. If there are two '@' characters,
1176 // this is the default version.
1177 const char* ver = strchr(name, '@');
1178 Stringpool::Key ver_key = 0;
1179 int namelen = 0;
1180 // IS_DEFAULT_VERSION: is the version default?
1181 // IS_FORCED_LOCAL: is the symbol forced local?
1182 bool is_default_version = false;
1183 bool is_forced_local = false;
1184
1185 // FIXME: For incremental links, we don't store version information,
1186 // so we need to ignore version symbols for now.
1187 if (parameters->incremental_update() && ver != NULL)
1188 {
1189 namelen = ver - name;
1190 ver = NULL;
1191 }
1192
1193 if (ver != NULL)
1194 {
1195 // The symbol name is of the form foo@VERSION or foo@@VERSION
1196 namelen = ver - name;
1197 ++ver;
1198 if (*ver == '@')
1199 {
1200 is_default_version = true;
1201 ++ver;
1202 }
1203 ver = this->namepool_.add(ver, true, &ver_key);
1204 }
1205 // We don't want to assign a version to an undefined symbol,
1206 // even if it is listed in the version script. FIXME: What
1207 // about a common symbol?
1208 else
1209 {
1210 namelen = strlen(name);
1211 if (!this->version_script_.empty()
1212 && st_shndx != elfcpp::SHN_UNDEF)
1213 {
1214 // The symbol name did not have a version, but the
1215 // version script may assign a version anyway.
1216 std::string version;
1217 bool is_global;
1218 if (this->version_script_.get_symbol_version(name, &version,
1219 &is_global))
1220 {
1221 if (!is_global)
1222 is_forced_local = true;
1223 else if (!version.empty())
1224 {
1225 ver = this->namepool_.add_with_length(version.c_str(),
1226 version.length(),
1227 true,
1228 &ver_key);
1229 is_default_version = true;
1230 }
1231 }
1232 }
1233 }
1234
1235 elfcpp::Sym<size, big_endian>* psym = &sym;
1236 unsigned char symbuf[sym_size];
1237 elfcpp::Sym<size, big_endian> sym2(symbuf);
1238 if (just_symbols)
1239 {
1240 memcpy(symbuf, p, sym_size);
1241 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1242 if (orig_st_shndx != elfcpp::SHN_UNDEF
1243 && is_ordinary
1244 && relobj->e_type() == elfcpp::ET_REL)
1245 {
1246 // Symbol values in relocatable object files are section
1247 // relative. This is normally what we want, but since here
1248 // we are converting the symbol to absolute we need to add
1249 // the section address. The section address in an object
1250 // file is normally zero, but people can use a linker
1251 // script to change it.
1252 sw.put_st_value(sym.get_st_value()
1253 + relobj->section_address(orig_st_shndx));
1254 }
1255 st_shndx = elfcpp::SHN_ABS;
1256 is_ordinary = false;
1257 psym = &sym2;
1258 }
1259
1260 // Fix up visibility if object has no-export set.
1261 if (relobj->no_export()
1262 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1263 {
1264 // We may have copied symbol already above.
1265 if (psym != &sym2)
1266 {
1267 memcpy(symbuf, p, sym_size);
1268 psym = &sym2;
1269 }
1270
1271 elfcpp::STV visibility = sym2.get_st_visibility();
1272 if (visibility == elfcpp::STV_DEFAULT
1273 || visibility == elfcpp::STV_PROTECTED)
1274 {
1275 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1276 unsigned char nonvis = sym2.get_st_nonvis();
1277 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1278 }
1279 }
1280
1281 Stringpool::Key name_key;
1282 name = this->namepool_.add_with_length(name, namelen, true,
1283 &name_key);
1284
1285 Sized_symbol<size>* res;
1286 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1287 is_default_version, *psym, st_shndx,
1288 is_ordinary, orig_st_shndx);
1289
1290 if (is_forced_local)
1291 this->force_local(res);
1292
1293 // Do not treat this symbol as garbage if this symbol will be
1294 // exported to the dynamic symbol table. This is true when
1295 // building a shared library or using --export-dynamic and
1296 // the symbol is externally visible.
1297 if (parameters->options().gc_sections()
1298 && res->is_externally_visible()
1299 && !res->is_from_dynobj()
1300 && (parameters->options().shared()
1301 || parameters->options().export_dynamic()
1302 || parameters->options().in_dynamic_list(res->name())))
1303 this->gc_mark_symbol(res);
1304
1305 if (is_defined_in_discarded_section)
1306 res->set_is_defined_in_discarded_section();
1307
1308 (*sympointers)[i] = res;
1309 }
1310 }
1311
1312 // Add a symbol from a plugin-claimed file.
1313
1314 template<int size, bool big_endian>
1315 Symbol*
1316 Symbol_table::add_from_pluginobj(
1317 Sized_pluginobj<size, big_endian>* obj,
1318 const char* name,
1319 const char* ver,
1320 elfcpp::Sym<size, big_endian>* sym)
1321 {
1322 unsigned int st_shndx = sym->get_st_shndx();
1323 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1324
1325 Stringpool::Key ver_key = 0;
1326 bool is_default_version = false;
1327 bool is_forced_local = false;
1328
1329 if (ver != NULL)
1330 {
1331 ver = this->namepool_.add(ver, true, &ver_key);
1332 }
1333 // We don't want to assign a version to an undefined symbol,
1334 // even if it is listed in the version script. FIXME: What
1335 // about a common symbol?
1336 else
1337 {
1338 if (!this->version_script_.empty()
1339 && st_shndx != elfcpp::SHN_UNDEF)
1340 {
1341 // The symbol name did not have a version, but the
1342 // version script may assign a version anyway.
1343 std::string version;
1344 bool is_global;
1345 if (this->version_script_.get_symbol_version(name, &version,
1346 &is_global))
1347 {
1348 if (!is_global)
1349 is_forced_local = true;
1350 else if (!version.empty())
1351 {
1352 ver = this->namepool_.add_with_length(version.c_str(),
1353 version.length(),
1354 true,
1355 &ver_key);
1356 is_default_version = true;
1357 }
1358 }
1359 }
1360 }
1361
1362 Stringpool::Key name_key;
1363 name = this->namepool_.add(name, true, &name_key);
1364
1365 Sized_symbol<size>* res;
1366 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1367 is_default_version, *sym, st_shndx,
1368 is_ordinary, st_shndx);
1369
1370 if (is_forced_local)
1371 this->force_local(res);
1372
1373 return res;
1374 }
1375
1376 // Add all the symbols in a dynamic object to the hash table.
1377
1378 template<int size, bool big_endian>
1379 void
1380 Symbol_table::add_from_dynobj(
1381 Sized_dynobj<size, big_endian>* dynobj,
1382 const unsigned char* syms,
1383 size_t count,
1384 const char* sym_names,
1385 size_t sym_name_size,
1386 const unsigned char* versym,
1387 size_t versym_size,
1388 const std::vector<const char*>* version_map,
1389 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1390 size_t* defined)
1391 {
1392 *defined = 0;
1393
1394 gold_assert(size == parameters->target().get_size());
1395
1396 if (dynobj->just_symbols())
1397 {
1398 gold_error(_("--just-symbols does not make sense with a shared object"));
1399 return;
1400 }
1401
1402 // FIXME: For incremental links, we don't store version information,
1403 // so we need to ignore version symbols for now.
1404 if (parameters->incremental_update())
1405 versym = NULL;
1406
1407 if (versym != NULL && versym_size / 2 < count)
1408 {
1409 dynobj->error(_("too few symbol versions"));
1410 return;
1411 }
1412
1413 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1414
1415 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1416 // weak aliases. This is necessary because if the dynamic object
1417 // provides the same variable under two names, one of which is a
1418 // weak definition, and the regular object refers to the weak
1419 // definition, we have to put both the weak definition and the
1420 // strong definition into the dynamic symbol table. Given a weak
1421 // definition, the only way that we can find the corresponding
1422 // strong definition, if any, is to search the symbol table.
1423 std::vector<Sized_symbol<size>*> object_symbols;
1424
1425 const unsigned char* p = syms;
1426 const unsigned char* vs = versym;
1427 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1428 {
1429 elfcpp::Sym<size, big_endian> sym(p);
1430
1431 if (sympointers != NULL)
1432 (*sympointers)[i] = NULL;
1433
1434 // Ignore symbols with local binding or that have
1435 // internal or hidden visibility.
1436 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1437 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1438 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1439 continue;
1440
1441 // A protected symbol in a shared library must be treated as a
1442 // normal symbol when viewed from outside the shared library.
1443 // Implement this by overriding the visibility here.
1444 elfcpp::Sym<size, big_endian>* psym = &sym;
1445 unsigned char symbuf[sym_size];
1446 elfcpp::Sym<size, big_endian> sym2(symbuf);
1447 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1448 {
1449 memcpy(symbuf, p, sym_size);
1450 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1451 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1452 psym = &sym2;
1453 }
1454
1455 unsigned int st_name = psym->get_st_name();
1456 if (st_name >= sym_name_size)
1457 {
1458 dynobj->error(_("bad symbol name offset %u at %zu"),
1459 st_name, i);
1460 continue;
1461 }
1462
1463 const char* name = sym_names + st_name;
1464
1465 bool is_ordinary;
1466 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1467 &is_ordinary);
1468
1469 if (st_shndx != elfcpp::SHN_UNDEF)
1470 ++*defined;
1471
1472 Sized_symbol<size>* res;
1473
1474 if (versym == NULL)
1475 {
1476 Stringpool::Key name_key;
1477 name = this->namepool_.add(name, true, &name_key);
1478 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1479 false, *psym, st_shndx, is_ordinary,
1480 st_shndx);
1481 }
1482 else
1483 {
1484 // Read the version information.
1485
1486 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1487
1488 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1489 v &= elfcpp::VERSYM_VERSION;
1490
1491 // The Sun documentation says that V can be VER_NDX_LOCAL,
1492 // or VER_NDX_GLOBAL, or a version index. The meaning of
1493 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1494 // The old GNU linker will happily generate VER_NDX_LOCAL
1495 // for an undefined symbol. I don't know what the Sun
1496 // linker will generate.
1497
1498 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1499 && st_shndx != elfcpp::SHN_UNDEF)
1500 {
1501 // This symbol should not be visible outside the object.
1502 continue;
1503 }
1504
1505 // At this point we are definitely going to add this symbol.
1506 Stringpool::Key name_key;
1507 name = this->namepool_.add(name, true, &name_key);
1508
1509 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1510 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1511 {
1512 // This symbol does not have a version.
1513 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1514 false, *psym, st_shndx, is_ordinary,
1515 st_shndx);
1516 }
1517 else
1518 {
1519 if (v >= version_map->size())
1520 {
1521 dynobj->error(_("versym for symbol %zu out of range: %u"),
1522 i, v);
1523 continue;
1524 }
1525
1526 const char* version = (*version_map)[v];
1527 if (version == NULL)
1528 {
1529 dynobj->error(_("versym for symbol %zu has no name: %u"),
1530 i, v);
1531 continue;
1532 }
1533
1534 Stringpool::Key version_key;
1535 version = this->namepool_.add(version, true, &version_key);
1536
1537 // If this is an absolute symbol, and the version name
1538 // and symbol name are the same, then this is the
1539 // version definition symbol. These symbols exist to
1540 // support using -u to pull in particular versions. We
1541 // do not want to record a version for them.
1542 if (st_shndx == elfcpp::SHN_ABS
1543 && !is_ordinary
1544 && name_key == version_key)
1545 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1546 false, *psym, st_shndx, is_ordinary,
1547 st_shndx);
1548 else
1549 {
1550 const bool is_default_version =
1551 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1552 res = this->add_from_object(dynobj, name, name_key, version,
1553 version_key, is_default_version,
1554 *psym, st_shndx,
1555 is_ordinary, st_shndx);
1556 }
1557 }
1558 }
1559
1560 // Note that it is possible that RES was overridden by an
1561 // earlier object, in which case it can't be aliased here.
1562 if (st_shndx != elfcpp::SHN_UNDEF
1563 && is_ordinary
1564 && psym->get_st_type() == elfcpp::STT_OBJECT
1565 && res->source() == Symbol::FROM_OBJECT
1566 && res->object() == dynobj)
1567 object_symbols.push_back(res);
1568
1569 if (sympointers != NULL)
1570 (*sympointers)[i] = res;
1571 }
1572
1573 this->record_weak_aliases(&object_symbols);
1574 }
1575
1576 // Add a symbol from a incremental object file.
1577
1578 template<int size, bool big_endian>
1579 Sized_symbol<size>*
1580 Symbol_table::add_from_incrobj(
1581 Object* obj,
1582 const char* name,
1583 const char* ver,
1584 elfcpp::Sym<size, big_endian>* sym)
1585 {
1586 unsigned int st_shndx = sym->get_st_shndx();
1587 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1588
1589 Stringpool::Key ver_key = 0;
1590 bool is_default_version = false;
1591 bool is_forced_local = false;
1592
1593 Stringpool::Key name_key;
1594 name = this->namepool_.add(name, true, &name_key);
1595
1596 Sized_symbol<size>* res;
1597 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1598 is_default_version, *sym, st_shndx,
1599 is_ordinary, st_shndx);
1600
1601 if (is_forced_local)
1602 this->force_local(res);
1603
1604 return res;
1605 }
1606
1607 // This is used to sort weak aliases. We sort them first by section
1608 // index, then by offset, then by weak ahead of strong.
1609
1610 template<int size>
1611 class Weak_alias_sorter
1612 {
1613 public:
1614 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1615 };
1616
1617 template<int size>
1618 bool
1619 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1620 const Sized_symbol<size>* s2) const
1621 {
1622 bool is_ordinary;
1623 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1624 gold_assert(is_ordinary);
1625 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1626 gold_assert(is_ordinary);
1627 if (s1_shndx != s2_shndx)
1628 return s1_shndx < s2_shndx;
1629
1630 if (s1->value() != s2->value())
1631 return s1->value() < s2->value();
1632 if (s1->binding() != s2->binding())
1633 {
1634 if (s1->binding() == elfcpp::STB_WEAK)
1635 return true;
1636 if (s2->binding() == elfcpp::STB_WEAK)
1637 return false;
1638 }
1639 return std::string(s1->name()) < std::string(s2->name());
1640 }
1641
1642 // SYMBOLS is a list of object symbols from a dynamic object. Look
1643 // for any weak aliases, and record them so that if we add the weak
1644 // alias to the dynamic symbol table, we also add the corresponding
1645 // strong symbol.
1646
1647 template<int size>
1648 void
1649 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1650 {
1651 // Sort the vector by section index, then by offset, then by weak
1652 // ahead of strong.
1653 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1654
1655 // Walk through the vector. For each weak definition, record
1656 // aliases.
1657 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1658 symbols->begin();
1659 p != symbols->end();
1660 ++p)
1661 {
1662 if ((*p)->binding() != elfcpp::STB_WEAK)
1663 continue;
1664
1665 // Build a circular list of weak aliases. Each symbol points to
1666 // the next one in the circular list.
1667
1668 Sized_symbol<size>* from_sym = *p;
1669 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1670 for (q = p + 1; q != symbols->end(); ++q)
1671 {
1672 bool dummy;
1673 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1674 || (*q)->value() != from_sym->value())
1675 break;
1676
1677 this->weak_aliases_[from_sym] = *q;
1678 from_sym->set_has_alias();
1679 from_sym = *q;
1680 }
1681
1682 if (from_sym != *p)
1683 {
1684 this->weak_aliases_[from_sym] = *p;
1685 from_sym->set_has_alias();
1686 }
1687
1688 p = q - 1;
1689 }
1690 }
1691
1692 // Create and return a specially defined symbol. If ONLY_IF_REF is
1693 // true, then only create the symbol if there is a reference to it.
1694 // If this does not return NULL, it sets *POLDSYM to the existing
1695 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1696 // resolve the newly created symbol to the old one. This
1697 // canonicalizes *PNAME and *PVERSION.
1698
1699 template<int size, bool big_endian>
1700 Sized_symbol<size>*
1701 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1702 bool only_if_ref,
1703 Sized_symbol<size>** poldsym,
1704 bool* resolve_oldsym)
1705 {
1706 *resolve_oldsym = false;
1707 *poldsym = NULL;
1708
1709 // If the caller didn't give us a version, see if we get one from
1710 // the version script.
1711 std::string v;
1712 bool is_default_version = false;
1713 if (*pversion == NULL)
1714 {
1715 bool is_global;
1716 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1717 {
1718 if (is_global && !v.empty())
1719 {
1720 *pversion = v.c_str();
1721 // If we get the version from a version script, then we
1722 // are also the default version.
1723 is_default_version = true;
1724 }
1725 }
1726 }
1727
1728 Symbol* oldsym;
1729 Sized_symbol<size>* sym;
1730
1731 bool add_to_table = false;
1732 typename Symbol_table_type::iterator add_loc = this->table_.end();
1733 bool add_def_to_table = false;
1734 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1735
1736 if (only_if_ref)
1737 {
1738 oldsym = this->lookup(*pname, *pversion);
1739 if (oldsym == NULL && is_default_version)
1740 oldsym = this->lookup(*pname, NULL);
1741 if (oldsym == NULL || !oldsym->is_undefined())
1742 return NULL;
1743
1744 *pname = oldsym->name();
1745 if (is_default_version)
1746 *pversion = this->namepool_.add(*pversion, true, NULL);
1747 else
1748 *pversion = oldsym->version();
1749 }
1750 else
1751 {
1752 // Canonicalize NAME and VERSION.
1753 Stringpool::Key name_key;
1754 *pname = this->namepool_.add(*pname, true, &name_key);
1755
1756 Stringpool::Key version_key = 0;
1757 if (*pversion != NULL)
1758 *pversion = this->namepool_.add(*pversion, true, &version_key);
1759
1760 Symbol* const snull = NULL;
1761 std::pair<typename Symbol_table_type::iterator, bool> ins =
1762 this->table_.insert(std::make_pair(std::make_pair(name_key,
1763 version_key),
1764 snull));
1765
1766 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1767 std::make_pair(this->table_.end(), false);
1768 if (is_default_version)
1769 {
1770 const Stringpool::Key vnull = 0;
1771 insdefault =
1772 this->table_.insert(std::make_pair(std::make_pair(name_key,
1773 vnull),
1774 snull));
1775 }
1776
1777 if (!ins.second)
1778 {
1779 // We already have a symbol table entry for NAME/VERSION.
1780 oldsym = ins.first->second;
1781 gold_assert(oldsym != NULL);
1782
1783 if (is_default_version)
1784 {
1785 Sized_symbol<size>* soldsym =
1786 this->get_sized_symbol<size>(oldsym);
1787 this->define_default_version<size, big_endian>(soldsym,
1788 insdefault.second,
1789 insdefault.first);
1790 }
1791 }
1792 else
1793 {
1794 // We haven't seen this symbol before.
1795 gold_assert(ins.first->second == NULL);
1796
1797 add_to_table = true;
1798 add_loc = ins.first;
1799
1800 if (is_default_version && !insdefault.second)
1801 {
1802 // We are adding NAME/VERSION, and it is the default
1803 // version. We already have an entry for NAME/NULL.
1804 oldsym = insdefault.first->second;
1805 *resolve_oldsym = true;
1806 }
1807 else
1808 {
1809 oldsym = NULL;
1810
1811 if (is_default_version)
1812 {
1813 add_def_to_table = true;
1814 add_def_loc = insdefault.first;
1815 }
1816 }
1817 }
1818 }
1819
1820 const Target& target = parameters->target();
1821 if (!target.has_make_symbol())
1822 sym = new Sized_symbol<size>();
1823 else
1824 {
1825 Sized_target<size, big_endian>* sized_target =
1826 parameters->sized_target<size, big_endian>();
1827 sym = sized_target->make_symbol();
1828 if (sym == NULL)
1829 return NULL;
1830 }
1831
1832 if (add_to_table)
1833 add_loc->second = sym;
1834 else
1835 gold_assert(oldsym != NULL);
1836
1837 if (add_def_to_table)
1838 add_def_loc->second = sym;
1839
1840 *poldsym = this->get_sized_symbol<size>(oldsym);
1841
1842 return sym;
1843 }
1844
1845 // Define a symbol based on an Output_data.
1846
1847 Symbol*
1848 Symbol_table::define_in_output_data(const char* name,
1849 const char* version,
1850 Defined defined,
1851 Output_data* od,
1852 uint64_t value,
1853 uint64_t symsize,
1854 elfcpp::STT type,
1855 elfcpp::STB binding,
1856 elfcpp::STV visibility,
1857 unsigned char nonvis,
1858 bool offset_is_from_end,
1859 bool only_if_ref)
1860 {
1861 if (parameters->target().get_size() == 32)
1862 {
1863 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1864 return this->do_define_in_output_data<32>(name, version, defined, od,
1865 value, symsize, type, binding,
1866 visibility, nonvis,
1867 offset_is_from_end,
1868 only_if_ref);
1869 #else
1870 gold_unreachable();
1871 #endif
1872 }
1873 else if (parameters->target().get_size() == 64)
1874 {
1875 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1876 return this->do_define_in_output_data<64>(name, version, defined, od,
1877 value, symsize, type, binding,
1878 visibility, nonvis,
1879 offset_is_from_end,
1880 only_if_ref);
1881 #else
1882 gold_unreachable();
1883 #endif
1884 }
1885 else
1886 gold_unreachable();
1887 }
1888
1889 // Define a symbol in an Output_data, sized version.
1890
1891 template<int size>
1892 Sized_symbol<size>*
1893 Symbol_table::do_define_in_output_data(
1894 const char* name,
1895 const char* version,
1896 Defined defined,
1897 Output_data* od,
1898 typename elfcpp::Elf_types<size>::Elf_Addr value,
1899 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1900 elfcpp::STT type,
1901 elfcpp::STB binding,
1902 elfcpp::STV visibility,
1903 unsigned char nonvis,
1904 bool offset_is_from_end,
1905 bool only_if_ref)
1906 {
1907 Sized_symbol<size>* sym;
1908 Sized_symbol<size>* oldsym;
1909 bool resolve_oldsym;
1910
1911 if (parameters->target().is_big_endian())
1912 {
1913 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1914 sym = this->define_special_symbol<size, true>(&name, &version,
1915 only_if_ref, &oldsym,
1916 &resolve_oldsym);
1917 #else
1918 gold_unreachable();
1919 #endif
1920 }
1921 else
1922 {
1923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1924 sym = this->define_special_symbol<size, false>(&name, &version,
1925 only_if_ref, &oldsym,
1926 &resolve_oldsym);
1927 #else
1928 gold_unreachable();
1929 #endif
1930 }
1931
1932 if (sym == NULL)
1933 return NULL;
1934
1935 sym->init_output_data(name, version, od, value, symsize, type, binding,
1936 visibility, nonvis, offset_is_from_end,
1937 defined == PREDEFINED);
1938
1939 if (oldsym == NULL)
1940 {
1941 if (binding == elfcpp::STB_LOCAL
1942 || this->version_script_.symbol_is_local(name))
1943 this->force_local(sym);
1944 else if (version != NULL)
1945 sym->set_is_default();
1946 return sym;
1947 }
1948
1949 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1950 this->override_with_special(oldsym, sym);
1951
1952 if (resolve_oldsym)
1953 return sym;
1954 else
1955 {
1956 if (binding == elfcpp::STB_LOCAL
1957 || this->version_script_.symbol_is_local(name))
1958 this->force_local(oldsym);
1959 delete sym;
1960 return oldsym;
1961 }
1962 }
1963
1964 // Define a symbol based on an Output_segment.
1965
1966 Symbol*
1967 Symbol_table::define_in_output_segment(const char* name,
1968 const char* version,
1969 Defined defined,
1970 Output_segment* os,
1971 uint64_t value,
1972 uint64_t symsize,
1973 elfcpp::STT type,
1974 elfcpp::STB binding,
1975 elfcpp::STV visibility,
1976 unsigned char nonvis,
1977 Symbol::Segment_offset_base offset_base,
1978 bool only_if_ref)
1979 {
1980 if (parameters->target().get_size() == 32)
1981 {
1982 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1983 return this->do_define_in_output_segment<32>(name, version, defined, os,
1984 value, symsize, type,
1985 binding, visibility, nonvis,
1986 offset_base, only_if_ref);
1987 #else
1988 gold_unreachable();
1989 #endif
1990 }
1991 else if (parameters->target().get_size() == 64)
1992 {
1993 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1994 return this->do_define_in_output_segment<64>(name, version, defined, os,
1995 value, symsize, type,
1996 binding, visibility, nonvis,
1997 offset_base, only_if_ref);
1998 #else
1999 gold_unreachable();
2000 #endif
2001 }
2002 else
2003 gold_unreachable();
2004 }
2005
2006 // Define a symbol in an Output_segment, sized version.
2007
2008 template<int size>
2009 Sized_symbol<size>*
2010 Symbol_table::do_define_in_output_segment(
2011 const char* name,
2012 const char* version,
2013 Defined defined,
2014 Output_segment* os,
2015 typename elfcpp::Elf_types<size>::Elf_Addr value,
2016 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2017 elfcpp::STT type,
2018 elfcpp::STB binding,
2019 elfcpp::STV visibility,
2020 unsigned char nonvis,
2021 Symbol::Segment_offset_base offset_base,
2022 bool only_if_ref)
2023 {
2024 Sized_symbol<size>* sym;
2025 Sized_symbol<size>* oldsym;
2026 bool resolve_oldsym;
2027
2028 if (parameters->target().is_big_endian())
2029 {
2030 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2031 sym = this->define_special_symbol<size, true>(&name, &version,
2032 only_if_ref, &oldsym,
2033 &resolve_oldsym);
2034 #else
2035 gold_unreachable();
2036 #endif
2037 }
2038 else
2039 {
2040 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2041 sym = this->define_special_symbol<size, false>(&name, &version,
2042 only_if_ref, &oldsym,
2043 &resolve_oldsym);
2044 #else
2045 gold_unreachable();
2046 #endif
2047 }
2048
2049 if (sym == NULL)
2050 return NULL;
2051
2052 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2053 visibility, nonvis, offset_base,
2054 defined == PREDEFINED);
2055
2056 if (oldsym == NULL)
2057 {
2058 if (binding == elfcpp::STB_LOCAL
2059 || this->version_script_.symbol_is_local(name))
2060 this->force_local(sym);
2061 else if (version != NULL)
2062 sym->set_is_default();
2063 return sym;
2064 }
2065
2066 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2067 this->override_with_special(oldsym, sym);
2068
2069 if (resolve_oldsym)
2070 return sym;
2071 else
2072 {
2073 if (binding == elfcpp::STB_LOCAL
2074 || this->version_script_.symbol_is_local(name))
2075 this->force_local(oldsym);
2076 delete sym;
2077 return oldsym;
2078 }
2079 }
2080
2081 // Define a special symbol with a constant value. It is a multiple
2082 // definition error if this symbol is already defined.
2083
2084 Symbol*
2085 Symbol_table::define_as_constant(const char* name,
2086 const char* version,
2087 Defined defined,
2088 uint64_t value,
2089 uint64_t symsize,
2090 elfcpp::STT type,
2091 elfcpp::STB binding,
2092 elfcpp::STV visibility,
2093 unsigned char nonvis,
2094 bool only_if_ref,
2095 bool force_override)
2096 {
2097 if (parameters->target().get_size() == 32)
2098 {
2099 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2100 return this->do_define_as_constant<32>(name, version, defined, value,
2101 symsize, type, binding,
2102 visibility, nonvis, only_if_ref,
2103 force_override);
2104 #else
2105 gold_unreachable();
2106 #endif
2107 }
2108 else if (parameters->target().get_size() == 64)
2109 {
2110 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2111 return this->do_define_as_constant<64>(name, version, defined, value,
2112 symsize, type, binding,
2113 visibility, nonvis, only_if_ref,
2114 force_override);
2115 #else
2116 gold_unreachable();
2117 #endif
2118 }
2119 else
2120 gold_unreachable();
2121 }
2122
2123 // Define a symbol as a constant, sized version.
2124
2125 template<int size>
2126 Sized_symbol<size>*
2127 Symbol_table::do_define_as_constant(
2128 const char* name,
2129 const char* version,
2130 Defined defined,
2131 typename elfcpp::Elf_types<size>::Elf_Addr value,
2132 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2133 elfcpp::STT type,
2134 elfcpp::STB binding,
2135 elfcpp::STV visibility,
2136 unsigned char nonvis,
2137 bool only_if_ref,
2138 bool force_override)
2139 {
2140 Sized_symbol<size>* sym;
2141 Sized_symbol<size>* oldsym;
2142 bool resolve_oldsym;
2143
2144 if (parameters->target().is_big_endian())
2145 {
2146 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2147 sym = this->define_special_symbol<size, true>(&name, &version,
2148 only_if_ref, &oldsym,
2149 &resolve_oldsym);
2150 #else
2151 gold_unreachable();
2152 #endif
2153 }
2154 else
2155 {
2156 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2157 sym = this->define_special_symbol<size, false>(&name, &version,
2158 only_if_ref, &oldsym,
2159 &resolve_oldsym);
2160 #else
2161 gold_unreachable();
2162 #endif
2163 }
2164
2165 if (sym == NULL)
2166 return NULL;
2167
2168 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2169 nonvis, defined == PREDEFINED);
2170
2171 if (oldsym == NULL)
2172 {
2173 // Version symbols are absolute symbols with name == version.
2174 // We don't want to force them to be local.
2175 if ((version == NULL
2176 || name != version
2177 || value != 0)
2178 && (binding == elfcpp::STB_LOCAL
2179 || this->version_script_.symbol_is_local(name)))
2180 this->force_local(sym);
2181 else if (version != NULL
2182 && (name != version || value != 0))
2183 sym->set_is_default();
2184 return sym;
2185 }
2186
2187 if (force_override
2188 || Symbol_table::should_override_with_special(oldsym, type, defined))
2189 this->override_with_special(oldsym, sym);
2190
2191 if (resolve_oldsym)
2192 return sym;
2193 else
2194 {
2195 if (binding == elfcpp::STB_LOCAL
2196 || this->version_script_.symbol_is_local(name))
2197 this->force_local(oldsym);
2198 delete sym;
2199 return oldsym;
2200 }
2201 }
2202
2203 // Define a set of symbols in output sections.
2204
2205 void
2206 Symbol_table::define_symbols(const Layout* layout, int count,
2207 const Define_symbol_in_section* p,
2208 bool only_if_ref)
2209 {
2210 for (int i = 0; i < count; ++i, ++p)
2211 {
2212 Output_section* os = layout->find_output_section(p->output_section);
2213 if (os != NULL)
2214 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2215 p->size, p->type, p->binding,
2216 p->visibility, p->nonvis,
2217 p->offset_is_from_end,
2218 only_if_ref || p->only_if_ref);
2219 else
2220 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2221 p->type, p->binding, p->visibility, p->nonvis,
2222 only_if_ref || p->only_if_ref,
2223 false);
2224 }
2225 }
2226
2227 // Define a set of symbols in output segments.
2228
2229 void
2230 Symbol_table::define_symbols(const Layout* layout, int count,
2231 const Define_symbol_in_segment* p,
2232 bool only_if_ref)
2233 {
2234 for (int i = 0; i < count; ++i, ++p)
2235 {
2236 Output_segment* os = layout->find_output_segment(p->segment_type,
2237 p->segment_flags_set,
2238 p->segment_flags_clear);
2239 if (os != NULL)
2240 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2241 p->size, p->type, p->binding,
2242 p->visibility, p->nonvis,
2243 p->offset_base,
2244 only_if_ref || p->only_if_ref);
2245 else
2246 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2247 p->type, p->binding, p->visibility, p->nonvis,
2248 only_if_ref || p->only_if_ref,
2249 false);
2250 }
2251 }
2252
2253 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2254 // symbol should be defined--typically a .dyn.bss section. VALUE is
2255 // the offset within POSD.
2256
2257 template<int size>
2258 void
2259 Symbol_table::define_with_copy_reloc(
2260 Sized_symbol<size>* csym,
2261 Output_data* posd,
2262 typename elfcpp::Elf_types<size>::Elf_Addr value)
2263 {
2264 gold_assert(csym->is_from_dynobj());
2265 gold_assert(!csym->is_copied_from_dynobj());
2266 Object* object = csym->object();
2267 gold_assert(object->is_dynamic());
2268 Dynobj* dynobj = static_cast<Dynobj*>(object);
2269
2270 // Our copied variable has to override any variable in a shared
2271 // library.
2272 elfcpp::STB binding = csym->binding();
2273 if (binding == elfcpp::STB_WEAK)
2274 binding = elfcpp::STB_GLOBAL;
2275
2276 this->define_in_output_data(csym->name(), csym->version(), COPY,
2277 posd, value, csym->symsize(),
2278 csym->type(), binding,
2279 csym->visibility(), csym->nonvis(),
2280 false, false);
2281
2282 csym->set_is_copied_from_dynobj();
2283 csym->set_needs_dynsym_entry();
2284
2285 this->copied_symbol_dynobjs_[csym] = dynobj;
2286
2287 // We have now defined all aliases, but we have not entered them all
2288 // in the copied_symbol_dynobjs_ map.
2289 if (csym->has_alias())
2290 {
2291 Symbol* sym = csym;
2292 while (true)
2293 {
2294 sym = this->weak_aliases_[sym];
2295 if (sym == csym)
2296 break;
2297 gold_assert(sym->output_data() == posd);
2298
2299 sym->set_is_copied_from_dynobj();
2300 this->copied_symbol_dynobjs_[sym] = dynobj;
2301 }
2302 }
2303 }
2304
2305 // SYM is defined using a COPY reloc. Return the dynamic object where
2306 // the original definition was found.
2307
2308 Dynobj*
2309 Symbol_table::get_copy_source(const Symbol* sym) const
2310 {
2311 gold_assert(sym->is_copied_from_dynobj());
2312 Copied_symbol_dynobjs::const_iterator p =
2313 this->copied_symbol_dynobjs_.find(sym);
2314 gold_assert(p != this->copied_symbol_dynobjs_.end());
2315 return p->second;
2316 }
2317
2318 // Add any undefined symbols named on the command line.
2319
2320 void
2321 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2322 {
2323 if (parameters->options().any_undefined()
2324 || layout->script_options()->any_unreferenced())
2325 {
2326 if (parameters->target().get_size() == 32)
2327 {
2328 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2329 this->do_add_undefined_symbols_from_command_line<32>(layout);
2330 #else
2331 gold_unreachable();
2332 #endif
2333 }
2334 else if (parameters->target().get_size() == 64)
2335 {
2336 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2337 this->do_add_undefined_symbols_from_command_line<64>(layout);
2338 #else
2339 gold_unreachable();
2340 #endif
2341 }
2342 else
2343 gold_unreachable();
2344 }
2345 }
2346
2347 template<int size>
2348 void
2349 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2350 {
2351 for (options::String_set::const_iterator p =
2352 parameters->options().undefined_begin();
2353 p != parameters->options().undefined_end();
2354 ++p)
2355 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2356
2357 for (options::String_set::const_iterator p =
2358 parameters->options().export_dynamic_symbol_begin();
2359 p != parameters->options().export_dynamic_symbol_end();
2360 ++p)
2361 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2362
2363 for (Script_options::referenced_const_iterator p =
2364 layout->script_options()->referenced_begin();
2365 p != layout->script_options()->referenced_end();
2366 ++p)
2367 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2368 }
2369
2370 template<int size>
2371 void
2372 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2373 {
2374 if (this->lookup(name) != NULL)
2375 return;
2376
2377 const char* version = NULL;
2378
2379 Sized_symbol<size>* sym;
2380 Sized_symbol<size>* oldsym;
2381 bool resolve_oldsym;
2382 if (parameters->target().is_big_endian())
2383 {
2384 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2385 sym = this->define_special_symbol<size, true>(&name, &version,
2386 false, &oldsym,
2387 &resolve_oldsym);
2388 #else
2389 gold_unreachable();
2390 #endif
2391 }
2392 else
2393 {
2394 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2395 sym = this->define_special_symbol<size, false>(&name, &version,
2396 false, &oldsym,
2397 &resolve_oldsym);
2398 #else
2399 gold_unreachable();
2400 #endif
2401 }
2402
2403 gold_assert(oldsym == NULL);
2404
2405 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2406 elfcpp::STV_DEFAULT, 0);
2407 ++this->saw_undefined_;
2408 }
2409
2410 // Set the dynamic symbol indexes. INDEX is the index of the first
2411 // global dynamic symbol. Pointers to the symbols are stored into the
2412 // vector SYMS. The names are added to DYNPOOL. This returns an
2413 // updated dynamic symbol index.
2414
2415 unsigned int
2416 Symbol_table::set_dynsym_indexes(unsigned int index,
2417 std::vector<Symbol*>* syms,
2418 Stringpool* dynpool,
2419 Versions* versions)
2420 {
2421 std::vector<Symbol*> as_needed_sym;
2422
2423 // Allow a target to set dynsym indexes.
2424 if (parameters->target().has_custom_set_dynsym_indexes())
2425 {
2426 std::vector<Symbol*> dyn_symbols;
2427 for (Symbol_table_type::iterator p = this->table_.begin();
2428 p != this->table_.end();
2429 ++p)
2430 {
2431 Symbol* sym = p->second;
2432 if (!sym->should_add_dynsym_entry(this))
2433 sym->set_dynsym_index(-1U);
2434 else
2435 dyn_symbols.push_back(sym);
2436 }
2437
2438 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2439 dynpool, versions, this);
2440 }
2441
2442 for (Symbol_table_type::iterator p = this->table_.begin();
2443 p != this->table_.end();
2444 ++p)
2445 {
2446 Symbol* sym = p->second;
2447
2448 // Note that SYM may already have a dynamic symbol index, since
2449 // some symbols appear more than once in the symbol table, with
2450 // and without a version.
2451
2452 if (!sym->should_add_dynsym_entry(this))
2453 sym->set_dynsym_index(-1U);
2454 else if (!sym->has_dynsym_index())
2455 {
2456 sym->set_dynsym_index(index);
2457 ++index;
2458 syms->push_back(sym);
2459 dynpool->add(sym->name(), false, NULL);
2460
2461 // If the symbol is defined in a dynamic object and is
2462 // referenced strongly in a regular object, then mark the
2463 // dynamic object as needed. This is used to implement
2464 // --as-needed.
2465 if (sym->is_from_dynobj()
2466 && sym->in_reg()
2467 && !sym->is_undef_binding_weak())
2468 sym->object()->set_is_needed();
2469
2470 // Record any version information, except those from
2471 // as-needed libraries not seen to be needed. Note that the
2472 // is_needed state for such libraries can change in this loop.
2473 if (sym->version() != NULL)
2474 {
2475 if (!sym->is_from_dynobj()
2476 || !sym->object()->as_needed()
2477 || sym->object()->is_needed())
2478 versions->record_version(this, dynpool, sym);
2479 else
2480 as_needed_sym.push_back(sym);
2481 }
2482 }
2483 }
2484
2485 // Process version information for symbols from as-needed libraries.
2486 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2487 p != as_needed_sym.end();
2488 ++p)
2489 {
2490 Symbol* sym = *p;
2491
2492 if (sym->object()->is_needed())
2493 versions->record_version(this, dynpool, sym);
2494 else
2495 sym->clear_version();
2496 }
2497
2498 // Finish up the versions. In some cases this may add new dynamic
2499 // symbols.
2500 index = versions->finalize(this, index, syms);
2501
2502 return index;
2503 }
2504
2505 // Set the final values for all the symbols. The index of the first
2506 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2507 // file offset OFF. Add their names to POOL. Return the new file
2508 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2509
2510 off_t
2511 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2512 size_t dyncount, Stringpool* pool,
2513 unsigned int* plocal_symcount)
2514 {
2515 off_t ret;
2516
2517 gold_assert(*plocal_symcount != 0);
2518 this->first_global_index_ = *plocal_symcount;
2519
2520 this->dynamic_offset_ = dynoff;
2521 this->first_dynamic_global_index_ = dyn_global_index;
2522 this->dynamic_count_ = dyncount;
2523
2524 if (parameters->target().get_size() == 32)
2525 {
2526 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2527 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2528 #else
2529 gold_unreachable();
2530 #endif
2531 }
2532 else if (parameters->target().get_size() == 64)
2533 {
2534 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2535 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2536 #else
2537 gold_unreachable();
2538 #endif
2539 }
2540 else
2541 gold_unreachable();
2542
2543 // Now that we have the final symbol table, we can reliably note
2544 // which symbols should get warnings.
2545 this->warnings_.note_warnings(this);
2546
2547 return ret;
2548 }
2549
2550 // SYM is going into the symbol table at *PINDEX. Add the name to
2551 // POOL, update *PINDEX and *POFF.
2552
2553 template<int size>
2554 void
2555 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2556 unsigned int* pindex, off_t* poff)
2557 {
2558 sym->set_symtab_index(*pindex);
2559 if (sym->version() == NULL || !parameters->options().relocatable())
2560 pool->add(sym->name(), false, NULL);
2561 else
2562 pool->add(sym->versioned_name(), true, NULL);
2563 ++*pindex;
2564 *poff += elfcpp::Elf_sizes<size>::sym_size;
2565 }
2566
2567 // Set the final value for all the symbols. This is called after
2568 // Layout::finalize, so all the output sections have their final
2569 // address.
2570
2571 template<int size>
2572 off_t
2573 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2574 unsigned int* plocal_symcount)
2575 {
2576 off = align_address(off, size >> 3);
2577 this->offset_ = off;
2578
2579 unsigned int index = *plocal_symcount;
2580 const unsigned int orig_index = index;
2581
2582 // First do all the symbols which have been forced to be local, as
2583 // they must appear before all global symbols.
2584 for (Forced_locals::iterator p = this->forced_locals_.begin();
2585 p != this->forced_locals_.end();
2586 ++p)
2587 {
2588 Symbol* sym = *p;
2589 gold_assert(sym->is_forced_local());
2590 if (this->sized_finalize_symbol<size>(sym))
2591 {
2592 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2593 ++*plocal_symcount;
2594 }
2595 }
2596
2597 // Now do all the remaining symbols.
2598 for (Symbol_table_type::iterator p = this->table_.begin();
2599 p != this->table_.end();
2600 ++p)
2601 {
2602 Symbol* sym = p->second;
2603 if (this->sized_finalize_symbol<size>(sym))
2604 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2605 }
2606
2607 this->output_count_ = index - orig_index;
2608
2609 return off;
2610 }
2611
2612 // Compute the final value of SYM and store status in location PSTATUS.
2613 // During relaxation, this may be called multiple times for a symbol to
2614 // compute its would-be final value in each relaxation pass.
2615
2616 template<int size>
2617 typename Sized_symbol<size>::Value_type
2618 Symbol_table::compute_final_value(
2619 const Sized_symbol<size>* sym,
2620 Compute_final_value_status* pstatus) const
2621 {
2622 typedef typename Sized_symbol<size>::Value_type Value_type;
2623 Value_type value;
2624
2625 switch (sym->source())
2626 {
2627 case Symbol::FROM_OBJECT:
2628 {
2629 bool is_ordinary;
2630 unsigned int shndx = sym->shndx(&is_ordinary);
2631
2632 if (!is_ordinary
2633 && shndx != elfcpp::SHN_ABS
2634 && !Symbol::is_common_shndx(shndx))
2635 {
2636 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2637 return 0;
2638 }
2639
2640 Object* symobj = sym->object();
2641 if (symobj->is_dynamic())
2642 {
2643 value = 0;
2644 shndx = elfcpp::SHN_UNDEF;
2645 }
2646 else if (symobj->pluginobj() != NULL)
2647 {
2648 value = 0;
2649 shndx = elfcpp::SHN_UNDEF;
2650 }
2651 else if (shndx == elfcpp::SHN_UNDEF)
2652 value = 0;
2653 else if (!is_ordinary
2654 && (shndx == elfcpp::SHN_ABS
2655 || Symbol::is_common_shndx(shndx)))
2656 value = sym->value();
2657 else
2658 {
2659 Relobj* relobj = static_cast<Relobj*>(symobj);
2660 Output_section* os = relobj->output_section(shndx);
2661
2662 if (this->is_section_folded(relobj, shndx))
2663 {
2664 gold_assert(os == NULL);
2665 // Get the os of the section it is folded onto.
2666 Section_id folded = this->icf_->get_folded_section(relobj,
2667 shndx);
2668 gold_assert(folded.first != NULL);
2669 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2670 unsigned folded_shndx = folded.second;
2671
2672 os = folded_obj->output_section(folded_shndx);
2673 gold_assert(os != NULL);
2674
2675 // Replace (relobj, shndx) with canonical ICF input section.
2676 shndx = folded_shndx;
2677 relobj = folded_obj;
2678 }
2679
2680 uint64_t secoff64 = relobj->output_section_offset(shndx);
2681 if (os == NULL)
2682 {
2683 bool static_or_reloc = (parameters->doing_static_link() ||
2684 parameters->options().relocatable());
2685 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2686
2687 *pstatus = CFVS_NO_OUTPUT_SECTION;
2688 return 0;
2689 }
2690
2691 if (secoff64 == -1ULL)
2692 {
2693 // The section needs special handling (e.g., a merge section).
2694
2695 value = os->output_address(relobj, shndx, sym->value());
2696 }
2697 else
2698 {
2699 Value_type secoff =
2700 convert_types<Value_type, uint64_t>(secoff64);
2701 if (sym->type() == elfcpp::STT_TLS)
2702 value = sym->value() + os->tls_offset() + secoff;
2703 else
2704 value = sym->value() + os->address() + secoff;
2705 }
2706 }
2707 }
2708 break;
2709
2710 case Symbol::IN_OUTPUT_DATA:
2711 {
2712 Output_data* od = sym->output_data();
2713 value = sym->value();
2714 if (sym->type() != elfcpp::STT_TLS)
2715 value += od->address();
2716 else
2717 {
2718 Output_section* os = od->output_section();
2719 gold_assert(os != NULL);
2720 value += os->tls_offset() + (od->address() - os->address());
2721 }
2722 if (sym->offset_is_from_end())
2723 value += od->data_size();
2724 }
2725 break;
2726
2727 case Symbol::IN_OUTPUT_SEGMENT:
2728 {
2729 Output_segment* os = sym->output_segment();
2730 value = sym->value();
2731 if (sym->type() != elfcpp::STT_TLS)
2732 value += os->vaddr();
2733 switch (sym->offset_base())
2734 {
2735 case Symbol::SEGMENT_START:
2736 break;
2737 case Symbol::SEGMENT_END:
2738 value += os->memsz();
2739 break;
2740 case Symbol::SEGMENT_BSS:
2741 value += os->filesz();
2742 break;
2743 default:
2744 gold_unreachable();
2745 }
2746 }
2747 break;
2748
2749 case Symbol::IS_CONSTANT:
2750 value = sym->value();
2751 break;
2752
2753 case Symbol::IS_UNDEFINED:
2754 value = 0;
2755 break;
2756
2757 default:
2758 gold_unreachable();
2759 }
2760
2761 *pstatus = CFVS_OK;
2762 return value;
2763 }
2764
2765 // Finalize the symbol SYM. This returns true if the symbol should be
2766 // added to the symbol table, false otherwise.
2767
2768 template<int size>
2769 bool
2770 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2771 {
2772 typedef typename Sized_symbol<size>::Value_type Value_type;
2773
2774 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2775
2776 // The default version of a symbol may appear twice in the symbol
2777 // table. We only need to finalize it once.
2778 if (sym->has_symtab_index())
2779 return false;
2780
2781 if (!sym->in_reg())
2782 {
2783 gold_assert(!sym->has_symtab_index());
2784 sym->set_symtab_index(-1U);
2785 gold_assert(sym->dynsym_index() == -1U);
2786 return false;
2787 }
2788
2789 // If the symbol is only present on plugin files, the plugin decided we
2790 // don't need it.
2791 if (!sym->in_real_elf())
2792 {
2793 gold_assert(!sym->has_symtab_index());
2794 sym->set_symtab_index(-1U);
2795 return false;
2796 }
2797
2798 // Compute final symbol value.
2799 Compute_final_value_status status;
2800 Value_type value = this->compute_final_value(sym, &status);
2801
2802 switch (status)
2803 {
2804 case CFVS_OK:
2805 break;
2806 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2807 {
2808 bool is_ordinary;
2809 unsigned int shndx = sym->shndx(&is_ordinary);
2810 gold_error(_("%s: unsupported symbol section 0x%x"),
2811 sym->demangled_name().c_str(), shndx);
2812 }
2813 break;
2814 case CFVS_NO_OUTPUT_SECTION:
2815 sym->set_symtab_index(-1U);
2816 return false;
2817 default:
2818 gold_unreachable();
2819 }
2820
2821 sym->set_value(value);
2822
2823 if (parameters->options().strip_all()
2824 || !parameters->options().should_retain_symbol(sym->name()))
2825 {
2826 sym->set_symtab_index(-1U);
2827 return false;
2828 }
2829
2830 return true;
2831 }
2832
2833 // Write out the global symbols.
2834
2835 void
2836 Symbol_table::write_globals(const Stringpool* sympool,
2837 const Stringpool* dynpool,
2838 Output_symtab_xindex* symtab_xindex,
2839 Output_symtab_xindex* dynsym_xindex,
2840 Output_file* of) const
2841 {
2842 switch (parameters->size_and_endianness())
2843 {
2844 #ifdef HAVE_TARGET_32_LITTLE
2845 case Parameters::TARGET_32_LITTLE:
2846 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2847 dynsym_xindex, of);
2848 break;
2849 #endif
2850 #ifdef HAVE_TARGET_32_BIG
2851 case Parameters::TARGET_32_BIG:
2852 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2853 dynsym_xindex, of);
2854 break;
2855 #endif
2856 #ifdef HAVE_TARGET_64_LITTLE
2857 case Parameters::TARGET_64_LITTLE:
2858 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2859 dynsym_xindex, of);
2860 break;
2861 #endif
2862 #ifdef HAVE_TARGET_64_BIG
2863 case Parameters::TARGET_64_BIG:
2864 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2865 dynsym_xindex, of);
2866 break;
2867 #endif
2868 default:
2869 gold_unreachable();
2870 }
2871 }
2872
2873 // Write out the global symbols.
2874
2875 template<int size, bool big_endian>
2876 void
2877 Symbol_table::sized_write_globals(const Stringpool* sympool,
2878 const Stringpool* dynpool,
2879 Output_symtab_xindex* symtab_xindex,
2880 Output_symtab_xindex* dynsym_xindex,
2881 Output_file* of) const
2882 {
2883 const Target& target = parameters->target();
2884
2885 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2886
2887 const unsigned int output_count = this->output_count_;
2888 const section_size_type oview_size = output_count * sym_size;
2889 const unsigned int first_global_index = this->first_global_index_;
2890 unsigned char* psyms;
2891 if (this->offset_ == 0 || output_count == 0)
2892 psyms = NULL;
2893 else
2894 psyms = of->get_output_view(this->offset_, oview_size);
2895
2896 const unsigned int dynamic_count = this->dynamic_count_;
2897 const section_size_type dynamic_size = dynamic_count * sym_size;
2898 const unsigned int first_dynamic_global_index =
2899 this->first_dynamic_global_index_;
2900 unsigned char* dynamic_view;
2901 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2902 dynamic_view = NULL;
2903 else
2904 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2905
2906 for (Symbol_table_type::const_iterator p = this->table_.begin();
2907 p != this->table_.end();
2908 ++p)
2909 {
2910 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2911
2912 // Possibly warn about unresolved symbols in shared libraries.
2913 this->warn_about_undefined_dynobj_symbol(sym);
2914
2915 unsigned int sym_index = sym->symtab_index();
2916 unsigned int dynsym_index;
2917 if (dynamic_view == NULL)
2918 dynsym_index = -1U;
2919 else
2920 dynsym_index = sym->dynsym_index();
2921
2922 if (sym_index == -1U && dynsym_index == -1U)
2923 {
2924 // This symbol is not included in the output file.
2925 continue;
2926 }
2927
2928 unsigned int shndx;
2929 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2930 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2931 elfcpp::STB binding = sym->binding();
2932
2933 // If --weak-unresolved-symbols is set, change binding of unresolved
2934 // global symbols to STB_WEAK.
2935 if (parameters->options().weak_unresolved_symbols()
2936 && binding == elfcpp::STB_GLOBAL
2937 && sym->is_undefined())
2938 binding = elfcpp::STB_WEAK;
2939
2940 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2941 if (binding == elfcpp::STB_GNU_UNIQUE
2942 && !parameters->options().gnu_unique())
2943 binding = elfcpp::STB_GLOBAL;
2944
2945 switch (sym->source())
2946 {
2947 case Symbol::FROM_OBJECT:
2948 {
2949 bool is_ordinary;
2950 unsigned int in_shndx = sym->shndx(&is_ordinary);
2951
2952 if (!is_ordinary
2953 && in_shndx != elfcpp::SHN_ABS
2954 && !Symbol::is_common_shndx(in_shndx))
2955 {
2956 gold_error(_("%s: unsupported symbol section 0x%x"),
2957 sym->demangled_name().c_str(), in_shndx);
2958 shndx = in_shndx;
2959 }
2960 else
2961 {
2962 Object* symobj = sym->object();
2963 if (symobj->is_dynamic())
2964 {
2965 if (sym->needs_dynsym_value())
2966 dynsym_value = target.dynsym_value(sym);
2967 shndx = elfcpp::SHN_UNDEF;
2968 if (sym->is_undef_binding_weak())
2969 binding = elfcpp::STB_WEAK;
2970 else
2971 binding = elfcpp::STB_GLOBAL;
2972 }
2973 else if (symobj->pluginobj() != NULL)
2974 shndx = elfcpp::SHN_UNDEF;
2975 else if (in_shndx == elfcpp::SHN_UNDEF
2976 || (!is_ordinary
2977 && (in_shndx == elfcpp::SHN_ABS
2978 || Symbol::is_common_shndx(in_shndx))))
2979 shndx = in_shndx;
2980 else
2981 {
2982 Relobj* relobj = static_cast<Relobj*>(symobj);
2983 Output_section* os = relobj->output_section(in_shndx);
2984 if (this->is_section_folded(relobj, in_shndx))
2985 {
2986 // This global symbol must be written out even though
2987 // it is folded.
2988 // Get the os of the section it is folded onto.
2989 Section_id folded =
2990 this->icf_->get_folded_section(relobj, in_shndx);
2991 gold_assert(folded.first !=NULL);
2992 Relobj* folded_obj =
2993 reinterpret_cast<Relobj*>(folded.first);
2994 os = folded_obj->output_section(folded.second);
2995 gold_assert(os != NULL);
2996 }
2997 gold_assert(os != NULL);
2998 shndx = os->out_shndx();
2999
3000 if (shndx >= elfcpp::SHN_LORESERVE)
3001 {
3002 if (sym_index != -1U)
3003 symtab_xindex->add(sym_index, shndx);
3004 if (dynsym_index != -1U)
3005 dynsym_xindex->add(dynsym_index, shndx);
3006 shndx = elfcpp::SHN_XINDEX;
3007 }
3008
3009 // In object files symbol values are section
3010 // relative.
3011 if (parameters->options().relocatable())
3012 sym_value -= os->address();
3013 }
3014 }
3015 }
3016 break;
3017
3018 case Symbol::IN_OUTPUT_DATA:
3019 {
3020 Output_data* od = sym->output_data();
3021
3022 shndx = od->out_shndx();
3023 if (shndx >= elfcpp::SHN_LORESERVE)
3024 {
3025 if (sym_index != -1U)
3026 symtab_xindex->add(sym_index, shndx);
3027 if (dynsym_index != -1U)
3028 dynsym_xindex->add(dynsym_index, shndx);
3029 shndx = elfcpp::SHN_XINDEX;
3030 }
3031
3032 // In object files symbol values are section
3033 // relative.
3034 if (parameters->options().relocatable())
3035 sym_value -= od->address();
3036 }
3037 break;
3038
3039 case Symbol::IN_OUTPUT_SEGMENT:
3040 shndx = elfcpp::SHN_ABS;
3041 break;
3042
3043 case Symbol::IS_CONSTANT:
3044 shndx = elfcpp::SHN_ABS;
3045 break;
3046
3047 case Symbol::IS_UNDEFINED:
3048 shndx = elfcpp::SHN_UNDEF;
3049 break;
3050
3051 default:
3052 gold_unreachable();
3053 }
3054
3055 if (sym_index != -1U)
3056 {
3057 sym_index -= first_global_index;
3058 gold_assert(sym_index < output_count);
3059 unsigned char* ps = psyms + (sym_index * sym_size);
3060 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3061 binding, sympool, ps);
3062 }
3063
3064 if (dynsym_index != -1U)
3065 {
3066 dynsym_index -= first_dynamic_global_index;
3067 gold_assert(dynsym_index < dynamic_count);
3068 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3069 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3070 binding, dynpool, pd);
3071 // Allow a target to adjust dynamic symbol value.
3072 parameters->target().adjust_dyn_symbol(sym, pd);
3073 }
3074 }
3075
3076 of->write_output_view(this->offset_, oview_size, psyms);
3077 if (dynamic_view != NULL)
3078 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3079 }
3080
3081 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3082 // strtab holding the name.
3083
3084 template<int size, bool big_endian>
3085 void
3086 Symbol_table::sized_write_symbol(
3087 Sized_symbol<size>* sym,
3088 typename elfcpp::Elf_types<size>::Elf_Addr value,
3089 unsigned int shndx,
3090 elfcpp::STB binding,
3091 const Stringpool* pool,
3092 unsigned char* p) const
3093 {
3094 elfcpp::Sym_write<size, big_endian> osym(p);
3095 if (sym->version() == NULL || !parameters->options().relocatable())
3096 osym.put_st_name(pool->get_offset(sym->name()));
3097 else
3098 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3099 osym.put_st_value(value);
3100 // Use a symbol size of zero for undefined symbols from shared libraries.
3101 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3102 osym.put_st_size(0);
3103 else
3104 osym.put_st_size(sym->symsize());
3105 elfcpp::STT type = sym->type();
3106 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3107 if (type == elfcpp::STT_GNU_IFUNC
3108 && sym->is_from_dynobj())
3109 type = elfcpp::STT_FUNC;
3110 // A version script may have overridden the default binding.
3111 if (sym->is_forced_local())
3112 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3113 else
3114 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3115 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3116 osym.put_st_shndx(shndx);
3117 }
3118
3119 // Check for unresolved symbols in shared libraries. This is
3120 // controlled by the --allow-shlib-undefined option.
3121
3122 // We only warn about libraries for which we have seen all the
3123 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3124 // which were not seen in this link. If we didn't see a DT_NEEDED
3125 // entry, we aren't going to be able to reliably report whether the
3126 // symbol is undefined.
3127
3128 // We also don't warn about libraries found in a system library
3129 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3130 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3131 // can have undefined references satisfied by ld-linux.so.
3132
3133 inline void
3134 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3135 {
3136 bool dummy;
3137 if (sym->source() == Symbol::FROM_OBJECT
3138 && sym->object()->is_dynamic()
3139 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3140 && sym->binding() != elfcpp::STB_WEAK
3141 && !parameters->options().allow_shlib_undefined()
3142 && !parameters->target().is_defined_by_abi(sym)
3143 && !sym->object()->is_in_system_directory())
3144 {
3145 // A very ugly cast.
3146 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3147 if (!dynobj->has_unknown_needed_entries())
3148 gold_undefined_symbol(sym);
3149 }
3150 }
3151
3152 // Write out a section symbol. Return the update offset.
3153
3154 void
3155 Symbol_table::write_section_symbol(const Output_section* os,
3156 Output_symtab_xindex* symtab_xindex,
3157 Output_file* of,
3158 off_t offset) const
3159 {
3160 switch (parameters->size_and_endianness())
3161 {
3162 #ifdef HAVE_TARGET_32_LITTLE
3163 case Parameters::TARGET_32_LITTLE:
3164 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3165 offset);
3166 break;
3167 #endif
3168 #ifdef HAVE_TARGET_32_BIG
3169 case Parameters::TARGET_32_BIG:
3170 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3171 offset);
3172 break;
3173 #endif
3174 #ifdef HAVE_TARGET_64_LITTLE
3175 case Parameters::TARGET_64_LITTLE:
3176 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3177 offset);
3178 break;
3179 #endif
3180 #ifdef HAVE_TARGET_64_BIG
3181 case Parameters::TARGET_64_BIG:
3182 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3183 offset);
3184 break;
3185 #endif
3186 default:
3187 gold_unreachable();
3188 }
3189 }
3190
3191 // Write out a section symbol, specialized for size and endianness.
3192
3193 template<int size, bool big_endian>
3194 void
3195 Symbol_table::sized_write_section_symbol(const Output_section* os,
3196 Output_symtab_xindex* symtab_xindex,
3197 Output_file* of,
3198 off_t offset) const
3199 {
3200 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3201
3202 unsigned char* pov = of->get_output_view(offset, sym_size);
3203
3204 elfcpp::Sym_write<size, big_endian> osym(pov);
3205 osym.put_st_name(0);
3206 if (parameters->options().relocatable())
3207 osym.put_st_value(0);
3208 else
3209 osym.put_st_value(os->address());
3210 osym.put_st_size(0);
3211 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3212 elfcpp::STT_SECTION));
3213 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3214
3215 unsigned int shndx = os->out_shndx();
3216 if (shndx >= elfcpp::SHN_LORESERVE)
3217 {
3218 symtab_xindex->add(os->symtab_index(), shndx);
3219 shndx = elfcpp::SHN_XINDEX;
3220 }
3221 osym.put_st_shndx(shndx);
3222
3223 of->write_output_view(offset, sym_size, pov);
3224 }
3225
3226 // Print statistical information to stderr. This is used for --stats.
3227
3228 void
3229 Symbol_table::print_stats() const
3230 {
3231 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3232 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3233 program_name, this->table_.size(), this->table_.bucket_count());
3234 #else
3235 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3236 program_name, this->table_.size());
3237 #endif
3238 this->namepool_.print_stats("symbol table stringpool");
3239 }
3240
3241 // We check for ODR violations by looking for symbols with the same
3242 // name for which the debugging information reports that they were
3243 // defined in disjoint source locations. When comparing the source
3244 // location, we consider instances with the same base filename to be
3245 // the same. This is because different object files/shared libraries
3246 // can include the same header file using different paths, and
3247 // different optimization settings can make the line number appear to
3248 // be a couple lines off, and we don't want to report an ODR violation
3249 // in those cases.
3250
3251 // This struct is used to compare line information, as returned by
3252 // Dwarf_line_info::one_addr2line. It implements a < comparison
3253 // operator used with std::sort.
3254
3255 struct Odr_violation_compare
3256 {
3257 bool
3258 operator()(const std::string& s1, const std::string& s2) const
3259 {
3260 // Inputs should be of the form "dirname/filename:linenum" where
3261 // "dirname/" is optional. We want to compare just the filename:linenum.
3262
3263 // Find the last '/' in each string.
3264 std::string::size_type s1begin = s1.rfind('/');
3265 std::string::size_type s2begin = s2.rfind('/');
3266 // If there was no '/' in a string, start at the beginning.
3267 if (s1begin == std::string::npos)
3268 s1begin = 0;
3269 if (s2begin == std::string::npos)
3270 s2begin = 0;
3271 return s1.compare(s1begin, std::string::npos,
3272 s2, s2begin, std::string::npos) < 0;
3273 }
3274 };
3275
3276 // Returns all of the lines attached to LOC, not just the one the
3277 // instruction actually came from.
3278 std::vector<std::string>
3279 Symbol_table::linenos_from_loc(const Task* task,
3280 const Symbol_location& loc)
3281 {
3282 // We need to lock the object in order to read it. This
3283 // means that we have to run in a singleton Task. If we
3284 // want to run this in a general Task for better
3285 // performance, we will need one Task for object, plus
3286 // appropriate locking to ensure that we don't conflict with
3287 // other uses of the object. Also note, one_addr2line is not
3288 // currently thread-safe.
3289 Task_lock_obj<Object> tl(task, loc.object);
3290
3291 std::vector<std::string> result;
3292 Symbol_location code_loc = loc;
3293 parameters->target().function_location(&code_loc);
3294 // 16 is the size of the object-cache that one_addr2line should use.
3295 std::string canonical_result = Dwarf_line_info::one_addr2line(
3296 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3297 if (!canonical_result.empty())
3298 result.push_back(canonical_result);
3299 return result;
3300 }
3301
3302 // OutputIterator that records if it was ever assigned to. This
3303 // allows it to be used with std::set_intersection() to check for
3304 // intersection rather than computing the intersection.
3305 struct Check_intersection
3306 {
3307 Check_intersection()
3308 : value_(false)
3309 {}
3310
3311 bool had_intersection() const
3312 { return this->value_; }
3313
3314 Check_intersection& operator++()
3315 { return *this; }
3316
3317 Check_intersection& operator*()
3318 { return *this; }
3319
3320 template<typename T>
3321 Check_intersection& operator=(const T&)
3322 {
3323 this->value_ = true;
3324 return *this;
3325 }
3326
3327 private:
3328 bool value_;
3329 };
3330
3331 // Check candidate_odr_violations_ to find symbols with the same name
3332 // but apparently different definitions (different source-file/line-no
3333 // for each line assigned to the first instruction).
3334
3335 void
3336 Symbol_table::detect_odr_violations(const Task* task,
3337 const char* output_file_name) const
3338 {
3339 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3340 it != candidate_odr_violations_.end();
3341 ++it)
3342 {
3343 const char* const symbol_name = it->first;
3344
3345 std::string first_object_name;
3346 std::vector<std::string> first_object_linenos;
3347
3348 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3349 locs = it->second.begin();
3350 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3351 locs_end = it->second.end();
3352 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3353 {
3354 // Save the line numbers from the first definition to
3355 // compare to the other definitions. Ideally, we'd compare
3356 // every definition to every other, but we don't want to
3357 // take O(N^2) time to do this. This shortcut may cause
3358 // false negatives that appear or disappear depending on the
3359 // link order, but it won't cause false positives.
3360 first_object_name = locs->object->name();
3361 first_object_linenos = this->linenos_from_loc(task, *locs);
3362 }
3363 if (first_object_linenos.empty())
3364 continue;
3365
3366 // Sort by Odr_violation_compare to make std::set_intersection work.
3367 std::string first_object_canonical_result = first_object_linenos.back();
3368 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3369 Odr_violation_compare());
3370
3371 for (; locs != locs_end; ++locs)
3372 {
3373 std::vector<std::string> linenos =
3374 this->linenos_from_loc(task, *locs);
3375 // linenos will be empty if we couldn't parse the debug info.
3376 if (linenos.empty())
3377 continue;
3378 // Sort by Odr_violation_compare to make std::set_intersection work.
3379 gold_assert(!linenos.empty());
3380 std::string second_object_canonical_result = linenos.back();
3381 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3382
3383 Check_intersection intersection_result =
3384 std::set_intersection(first_object_linenos.begin(),
3385 first_object_linenos.end(),
3386 linenos.begin(),
3387 linenos.end(),
3388 Check_intersection(),
3389 Odr_violation_compare());
3390 if (!intersection_result.had_intersection())
3391 {
3392 gold_warning(_("while linking %s: symbol '%s' defined in "
3393 "multiple places (possible ODR violation):"),
3394 output_file_name, demangle(symbol_name).c_str());
3395 // This only prints one location from each definition,
3396 // which may not be the location we expect to intersect
3397 // with another definition. We could print the whole
3398 // set of locations, but that seems too verbose.
3399 fprintf(stderr, _(" %s from %s\n"),
3400 first_object_canonical_result.c_str(),
3401 first_object_name.c_str());
3402 fprintf(stderr, _(" %s from %s\n"),
3403 second_object_canonical_result.c_str(),
3404 locs->object->name().c_str());
3405 // Only print one broken pair, to avoid needing to
3406 // compare against a list of the disjoint definition
3407 // locations we've found so far. (If we kept comparing
3408 // against just the first one, we'd get a lot of
3409 // redundant complaints about the second definition
3410 // location.)
3411 break;
3412 }
3413 }
3414 }
3415 // We only call one_addr2line() in this function, so we can clear its cache.
3416 Dwarf_line_info::clear_addr2line_cache();
3417 }
3418
3419 // Warnings functions.
3420
3421 // Add a new warning.
3422
3423 void
3424 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3425 const std::string& warning)
3426 {
3427 name = symtab->canonicalize_name(name);
3428 this->warnings_[name].set(obj, warning);
3429 }
3430
3431 // Look through the warnings and mark the symbols for which we should
3432 // warn. This is called during Layout::finalize when we know the
3433 // sources for all the symbols.
3434
3435 void
3436 Warnings::note_warnings(Symbol_table* symtab)
3437 {
3438 for (Warning_table::iterator p = this->warnings_.begin();
3439 p != this->warnings_.end();
3440 ++p)
3441 {
3442 Symbol* sym = symtab->lookup(p->first, NULL);
3443 if (sym != NULL
3444 && sym->source() == Symbol::FROM_OBJECT
3445 && sym->object() == p->second.object)
3446 sym->set_has_warning();
3447 }
3448 }
3449
3450 // Issue a warning. This is called when we see a relocation against a
3451 // symbol for which has a warning.
3452
3453 template<int size, bool big_endian>
3454 void
3455 Warnings::issue_warning(const Symbol* sym,
3456 const Relocate_info<size, big_endian>* relinfo,
3457 size_t relnum, off_t reloffset) const
3458 {
3459 gold_assert(sym->has_warning());
3460
3461 // We don't want to issue a warning for a relocation against the
3462 // symbol in the same object file in which the symbol is defined.
3463 if (sym->object() == relinfo->object)
3464 return;
3465
3466 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3467 gold_assert(p != this->warnings_.end());
3468 gold_warning_at_location(relinfo, relnum, reloffset,
3469 "%s", p->second.text.c_str());
3470 }
3471
3472 // Instantiate the templates we need. We could use the configure
3473 // script to restrict this to only the ones needed for implemented
3474 // targets.
3475
3476 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3477 template
3478 void
3479 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3480 #endif
3481
3482 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3483 template
3484 void
3485 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3486 #endif
3487
3488 #ifdef HAVE_TARGET_32_LITTLE
3489 template
3490 void
3491 Symbol_table::add_from_relobj<32, false>(
3492 Sized_relobj_file<32, false>* relobj,
3493 const unsigned char* syms,
3494 size_t count,
3495 size_t symndx_offset,
3496 const char* sym_names,
3497 size_t sym_name_size,
3498 Sized_relobj_file<32, false>::Symbols* sympointers,
3499 size_t* defined);
3500 #endif
3501
3502 #ifdef HAVE_TARGET_32_BIG
3503 template
3504 void
3505 Symbol_table::add_from_relobj<32, true>(
3506 Sized_relobj_file<32, true>* relobj,
3507 const unsigned char* syms,
3508 size_t count,
3509 size_t symndx_offset,
3510 const char* sym_names,
3511 size_t sym_name_size,
3512 Sized_relobj_file<32, true>::Symbols* sympointers,
3513 size_t* defined);
3514 #endif
3515
3516 #ifdef HAVE_TARGET_64_LITTLE
3517 template
3518 void
3519 Symbol_table::add_from_relobj<64, false>(
3520 Sized_relobj_file<64, false>* relobj,
3521 const unsigned char* syms,
3522 size_t count,
3523 size_t symndx_offset,
3524 const char* sym_names,
3525 size_t sym_name_size,
3526 Sized_relobj_file<64, false>::Symbols* sympointers,
3527 size_t* defined);
3528 #endif
3529
3530 #ifdef HAVE_TARGET_64_BIG
3531 template
3532 void
3533 Symbol_table::add_from_relobj<64, true>(
3534 Sized_relobj_file<64, true>* relobj,
3535 const unsigned char* syms,
3536 size_t count,
3537 size_t symndx_offset,
3538 const char* sym_names,
3539 size_t sym_name_size,
3540 Sized_relobj_file<64, true>::Symbols* sympointers,
3541 size_t* defined);
3542 #endif
3543
3544 #ifdef HAVE_TARGET_32_LITTLE
3545 template
3546 Symbol*
3547 Symbol_table::add_from_pluginobj<32, false>(
3548 Sized_pluginobj<32, false>* obj,
3549 const char* name,
3550 const char* ver,
3551 elfcpp::Sym<32, false>* sym);
3552 #endif
3553
3554 #ifdef HAVE_TARGET_32_BIG
3555 template
3556 Symbol*
3557 Symbol_table::add_from_pluginobj<32, true>(
3558 Sized_pluginobj<32, true>* obj,
3559 const char* name,
3560 const char* ver,
3561 elfcpp::Sym<32, true>* sym);
3562 #endif
3563
3564 #ifdef HAVE_TARGET_64_LITTLE
3565 template
3566 Symbol*
3567 Symbol_table::add_from_pluginobj<64, false>(
3568 Sized_pluginobj<64, false>* obj,
3569 const char* name,
3570 const char* ver,
3571 elfcpp::Sym<64, false>* sym);
3572 #endif
3573
3574 #ifdef HAVE_TARGET_64_BIG
3575 template
3576 Symbol*
3577 Symbol_table::add_from_pluginobj<64, true>(
3578 Sized_pluginobj<64, true>* obj,
3579 const char* name,
3580 const char* ver,
3581 elfcpp::Sym<64, true>* sym);
3582 #endif
3583
3584 #ifdef HAVE_TARGET_32_LITTLE
3585 template
3586 void
3587 Symbol_table::add_from_dynobj<32, false>(
3588 Sized_dynobj<32, false>* dynobj,
3589 const unsigned char* syms,
3590 size_t count,
3591 const char* sym_names,
3592 size_t sym_name_size,
3593 const unsigned char* versym,
3594 size_t versym_size,
3595 const std::vector<const char*>* version_map,
3596 Sized_relobj_file<32, false>::Symbols* sympointers,
3597 size_t* defined);
3598 #endif
3599
3600 #ifdef HAVE_TARGET_32_BIG
3601 template
3602 void
3603 Symbol_table::add_from_dynobj<32, true>(
3604 Sized_dynobj<32, true>* dynobj,
3605 const unsigned char* syms,
3606 size_t count,
3607 const char* sym_names,
3608 size_t sym_name_size,
3609 const unsigned char* versym,
3610 size_t versym_size,
3611 const std::vector<const char*>* version_map,
3612 Sized_relobj_file<32, true>::Symbols* sympointers,
3613 size_t* defined);
3614 #endif
3615
3616 #ifdef HAVE_TARGET_64_LITTLE
3617 template
3618 void
3619 Symbol_table::add_from_dynobj<64, false>(
3620 Sized_dynobj<64, false>* dynobj,
3621 const unsigned char* syms,
3622 size_t count,
3623 const char* sym_names,
3624 size_t sym_name_size,
3625 const unsigned char* versym,
3626 size_t versym_size,
3627 const std::vector<const char*>* version_map,
3628 Sized_relobj_file<64, false>::Symbols* sympointers,
3629 size_t* defined);
3630 #endif
3631
3632 #ifdef HAVE_TARGET_64_BIG
3633 template
3634 void
3635 Symbol_table::add_from_dynobj<64, true>(
3636 Sized_dynobj<64, true>* dynobj,
3637 const unsigned char* syms,
3638 size_t count,
3639 const char* sym_names,
3640 size_t sym_name_size,
3641 const unsigned char* versym,
3642 size_t versym_size,
3643 const std::vector<const char*>* version_map,
3644 Sized_relobj_file<64, true>::Symbols* sympointers,
3645 size_t* defined);
3646 #endif
3647
3648 #ifdef HAVE_TARGET_32_LITTLE
3649 template
3650 Sized_symbol<32>*
3651 Symbol_table::add_from_incrobj(
3652 Object* obj,
3653 const char* name,
3654 const char* ver,
3655 elfcpp::Sym<32, false>* sym);
3656 #endif
3657
3658 #ifdef HAVE_TARGET_32_BIG
3659 template
3660 Sized_symbol<32>*
3661 Symbol_table::add_from_incrobj(
3662 Object* obj,
3663 const char* name,
3664 const char* ver,
3665 elfcpp::Sym<32, true>* sym);
3666 #endif
3667
3668 #ifdef HAVE_TARGET_64_LITTLE
3669 template
3670 Sized_symbol<64>*
3671 Symbol_table::add_from_incrobj(
3672 Object* obj,
3673 const char* name,
3674 const char* ver,
3675 elfcpp::Sym<64, false>* sym);
3676 #endif
3677
3678 #ifdef HAVE_TARGET_64_BIG
3679 template
3680 Sized_symbol<64>*
3681 Symbol_table::add_from_incrobj(
3682 Object* obj,
3683 const char* name,
3684 const char* ver,
3685 elfcpp::Sym<64, true>* sym);
3686 #endif
3687
3688 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3689 template
3690 void
3691 Symbol_table::define_with_copy_reloc<32>(
3692 Sized_symbol<32>* sym,
3693 Output_data* posd,
3694 elfcpp::Elf_types<32>::Elf_Addr value);
3695 #endif
3696
3697 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3698 template
3699 void
3700 Symbol_table::define_with_copy_reloc<64>(
3701 Sized_symbol<64>* sym,
3702 Output_data* posd,
3703 elfcpp::Elf_types<64>::Elf_Addr value);
3704 #endif
3705
3706 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3707 template
3708 void
3709 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3710 Output_data* od, Value_type value,
3711 Size_type symsize, elfcpp::STT type,
3712 elfcpp::STB binding,
3713 elfcpp::STV visibility,
3714 unsigned char nonvis,
3715 bool offset_is_from_end,
3716 bool is_predefined);
3717 #endif
3718
3719 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3720 template
3721 void
3722 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3723 Output_data* od, Value_type value,
3724 Size_type symsize, elfcpp::STT type,
3725 elfcpp::STB binding,
3726 elfcpp::STV visibility,
3727 unsigned char nonvis,
3728 bool offset_is_from_end,
3729 bool is_predefined);
3730 #endif
3731
3732 #ifdef HAVE_TARGET_32_LITTLE
3733 template
3734 void
3735 Warnings::issue_warning<32, false>(const Symbol* sym,
3736 const Relocate_info<32, false>* relinfo,
3737 size_t relnum, off_t reloffset) const;
3738 #endif
3739
3740 #ifdef HAVE_TARGET_32_BIG
3741 template
3742 void
3743 Warnings::issue_warning<32, true>(const Symbol* sym,
3744 const Relocate_info<32, true>* relinfo,
3745 size_t relnum, off_t reloffset) const;
3746 #endif
3747
3748 #ifdef HAVE_TARGET_64_LITTLE
3749 template
3750 void
3751 Warnings::issue_warning<64, false>(const Symbol* sym,
3752 const Relocate_info<64, false>* relinfo,
3753 size_t relnum, off_t reloffset) const;
3754 #endif
3755
3756 #ifdef HAVE_TARGET_64_BIG
3757 template
3758 void
3759 Warnings::issue_warning<64, true>(const Symbol* sym,
3760 const Relocate_info<64, true>* relinfo,
3761 size_t relnum, off_t reloffset) const;
3762 #endif
3763
3764 } // End namespace gold.
This page took 0.10472 seconds and 5 git commands to generate.