* symtab.cc (Symbol::versioned_name): New function.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced local in a version script, do not add it.
367 if (this->is_forced_local())
368 return false;
369
370 // If the symbol was forced dynamic in a --dynamic-list file, add it.
371 if (parameters->options().in_dynamic_list(this->name()))
372 return true;
373
374 // If dynamic-list-data was specified, add any STT_OBJECT.
375 if (parameters->options().dynamic_list_data()
376 && !this->is_from_dynobj()
377 && this->type() == elfcpp::STT_OBJECT)
378 return true;
379
380 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382 if ((parameters->options().dynamic_list_cpp_new()
383 || parameters->options().dynamic_list_cpp_typeinfo())
384 && !this->is_from_dynobj())
385 {
386 // TODO(csilvers): We could probably figure out if we're an operator
387 // new/delete or typeinfo without the need to demangle.
388 char* demangled_name = cplus_demangle(this->name(),
389 DMGL_ANSI | DMGL_PARAMS);
390 if (demangled_name == NULL)
391 {
392 // Not a C++ symbol, so it can't satisfy these flags
393 }
394 else if (parameters->options().dynamic_list_cpp_new()
395 && (strprefix(demangled_name, "operator new")
396 || strprefix(demangled_name, "operator delete")))
397 {
398 free(demangled_name);
399 return true;
400 }
401 else if (parameters->options().dynamic_list_cpp_typeinfo()
402 && (strprefix(demangled_name, "typeinfo name for")
403 || strprefix(demangled_name, "typeinfo for")))
404 {
405 free(demangled_name);
406 return true;
407 }
408 else
409 free(demangled_name);
410 }
411
412 // If exporting all symbols or building a shared library,
413 // and the symbol is defined in a regular object and is
414 // externally visible, we need to add it.
415 if ((parameters->options().export_dynamic() || parameters->options().shared())
416 && !this->is_from_dynobj()
417 && this->is_externally_visible())
418 return true;
419
420 return false;
421 }
422
423 // Return true if the final value of this symbol is known at link
424 // time.
425
426 bool
427 Symbol::final_value_is_known() const
428 {
429 // If we are not generating an executable, then no final values are
430 // known, since they will change at runtime.
431 if (parameters->options().output_is_position_independent()
432 || parameters->options().relocatable())
433 return false;
434
435 // If the symbol is not from an object file, and is not undefined,
436 // then it is defined, and known.
437 if (this->source_ != FROM_OBJECT)
438 {
439 if (this->source_ != IS_UNDEFINED)
440 return true;
441 }
442 else
443 {
444 // If the symbol is from a dynamic object, then the final value
445 // is not known.
446 if (this->object()->is_dynamic())
447 return false;
448
449 // If the symbol is not undefined (it is defined or common),
450 // then the final value is known.
451 if (!this->is_undefined())
452 return true;
453 }
454
455 // If the symbol is undefined, then whether the final value is known
456 // depends on whether we are doing a static link. If we are doing a
457 // dynamic link, then the final value could be filled in at runtime.
458 // This could reasonably be the case for a weak undefined symbol.
459 return parameters->doing_static_link();
460 }
461
462 // Return the output section where this symbol is defined.
463
464 Output_section*
465 Symbol::output_section() const
466 {
467 switch (this->source_)
468 {
469 case FROM_OBJECT:
470 {
471 unsigned int shndx = this->u_.from_object.shndx;
472 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
473 {
474 gold_assert(!this->u_.from_object.object->is_dynamic());
475 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
476 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
477 return relobj->output_section(shndx);
478 }
479 return NULL;
480 }
481
482 case IN_OUTPUT_DATA:
483 return this->u_.in_output_data.output_data->output_section();
484
485 case IN_OUTPUT_SEGMENT:
486 case IS_CONSTANT:
487 case IS_UNDEFINED:
488 return NULL;
489
490 default:
491 gold_unreachable();
492 }
493 }
494
495 // Set the symbol's output section. This is used for symbols defined
496 // in scripts. This should only be called after the symbol table has
497 // been finalized.
498
499 void
500 Symbol::set_output_section(Output_section* os)
501 {
502 switch (this->source_)
503 {
504 case FROM_OBJECT:
505 case IN_OUTPUT_DATA:
506 gold_assert(this->output_section() == os);
507 break;
508 case IS_CONSTANT:
509 this->source_ = IN_OUTPUT_DATA;
510 this->u_.in_output_data.output_data = os;
511 this->u_.in_output_data.offset_is_from_end = false;
512 break;
513 case IN_OUTPUT_SEGMENT:
514 case IS_UNDEFINED:
515 default:
516 gold_unreachable();
517 }
518 }
519
520 // Class Symbol_table.
521
522 Symbol_table::Symbol_table(unsigned int count,
523 const Version_script_info& version_script)
524 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
525 forwarders_(), commons_(), tls_commons_(), small_commons_(),
526 large_commons_(), forced_locals_(), warnings_(),
527 version_script_(version_script), gc_(NULL), icf_(NULL)
528 {
529 namepool_.reserve(count);
530 }
531
532 Symbol_table::~Symbol_table()
533 {
534 }
535
536 // The symbol table key equality function. This is called with
537 // Stringpool keys.
538
539 inline bool
540 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
541 const Symbol_table_key& k2) const
542 {
543 return k1.first == k2.first && k1.second == k2.second;
544 }
545
546 bool
547 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
548 {
549 return (parameters->options().icf_enabled()
550 && this->icf_->is_section_folded(obj, shndx));
551 }
552
553 // For symbols that have been listed with -u option, add them to the
554 // work list to avoid gc'ing them.
555
556 void
557 Symbol_table::gc_mark_undef_symbols(Layout* layout)
558 {
559 for (options::String_set::const_iterator p =
560 parameters->options().undefined_begin();
561 p != parameters->options().undefined_end();
562 ++p)
563 {
564 const char* name = p->c_str();
565 Symbol* sym = this->lookup(name);
566 gold_assert(sym != NULL);
567 if (sym->source() == Symbol::FROM_OBJECT
568 && !sym->object()->is_dynamic())
569 {
570 Relobj* obj = static_cast<Relobj*>(sym->object());
571 bool is_ordinary;
572 unsigned int shndx = sym->shndx(&is_ordinary);
573 if (is_ordinary)
574 {
575 gold_assert(this->gc_ != NULL);
576 this->gc_->worklist().push(Section_id(obj, shndx));
577 }
578 }
579 }
580
581 for (Script_options::referenced_const_iterator p =
582 layout->script_options()->referenced_begin();
583 p != layout->script_options()->referenced_end();
584 ++p)
585 {
586 Symbol* sym = this->lookup(p->c_str());
587 gold_assert(sym != NULL);
588 if (sym->source() == Symbol::FROM_OBJECT
589 && !sym->object()->is_dynamic())
590 {
591 Relobj* obj = static_cast<Relobj*>(sym->object());
592 bool is_ordinary;
593 unsigned int shndx = sym->shndx(&is_ordinary);
594 if (is_ordinary)
595 {
596 gold_assert(this->gc_ != NULL);
597 this->gc_->worklist().push(Section_id(obj, shndx));
598 }
599 }
600 }
601 }
602
603 void
604 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
605 {
606 if (!sym->is_from_dynobj()
607 && sym->is_externally_visible())
608 {
609 //Add the object and section to the work list.
610 Relobj* obj = static_cast<Relobj*>(sym->object());
611 bool is_ordinary;
612 unsigned int shndx = sym->shndx(&is_ordinary);
613 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
614 {
615 gold_assert(this->gc_!= NULL);
616 this->gc_->worklist().push(Section_id(obj, shndx));
617 }
618 }
619 }
620
621 // When doing garbage collection, keep symbols that have been seen in
622 // dynamic objects.
623 inline void
624 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
625 {
626 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
627 && !sym->object()->is_dynamic())
628 {
629 Relobj* obj = static_cast<Relobj*>(sym->object());
630 bool is_ordinary;
631 unsigned int shndx = sym->shndx(&is_ordinary);
632 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
633 {
634 gold_assert(this->gc_ != NULL);
635 this->gc_->worklist().push(Section_id(obj, shndx));
636 }
637 }
638 }
639
640 // Make TO a symbol which forwards to FROM.
641
642 void
643 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
644 {
645 gold_assert(from != to);
646 gold_assert(!from->is_forwarder() && !to->is_forwarder());
647 this->forwarders_[from] = to;
648 from->set_forwarder();
649 }
650
651 // Resolve the forwards from FROM, returning the real symbol.
652
653 Symbol*
654 Symbol_table::resolve_forwards(const Symbol* from) const
655 {
656 gold_assert(from->is_forwarder());
657 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
658 this->forwarders_.find(from);
659 gold_assert(p != this->forwarders_.end());
660 return p->second;
661 }
662
663 // Look up a symbol by name.
664
665 Symbol*
666 Symbol_table::lookup(const char* name, const char* version) const
667 {
668 Stringpool::Key name_key;
669 name = this->namepool_.find(name, &name_key);
670 if (name == NULL)
671 return NULL;
672
673 Stringpool::Key version_key = 0;
674 if (version != NULL)
675 {
676 version = this->namepool_.find(version, &version_key);
677 if (version == NULL)
678 return NULL;
679 }
680
681 Symbol_table_key key(name_key, version_key);
682 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
683 if (p == this->table_.end())
684 return NULL;
685 return p->second;
686 }
687
688 // Resolve a Symbol with another Symbol. This is only used in the
689 // unusual case where there are references to both an unversioned
690 // symbol and a symbol with a version, and we then discover that that
691 // version is the default version. Because this is unusual, we do
692 // this the slow way, by converting back to an ELF symbol.
693
694 template<int size, bool big_endian>
695 void
696 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
697 {
698 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
699 elfcpp::Sym_write<size, big_endian> esym(buf);
700 // We don't bother to set the st_name or the st_shndx field.
701 esym.put_st_value(from->value());
702 esym.put_st_size(from->symsize());
703 esym.put_st_info(from->binding(), from->type());
704 esym.put_st_other(from->visibility(), from->nonvis());
705 bool is_ordinary;
706 unsigned int shndx = from->shndx(&is_ordinary);
707 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
708 from->version());
709 if (from->in_reg())
710 to->set_in_reg();
711 if (from->in_dyn())
712 to->set_in_dyn();
713 if (parameters->options().gc_sections())
714 this->gc_mark_dyn_syms(to);
715 }
716
717 // Record that a symbol is forced to be local by a version script or
718 // by visibility.
719
720 void
721 Symbol_table::force_local(Symbol* sym)
722 {
723 if (!sym->is_defined() && !sym->is_common())
724 return;
725 if (sym->is_forced_local())
726 {
727 // We already got this one.
728 return;
729 }
730 sym->set_is_forced_local();
731 this->forced_locals_.push_back(sym);
732 }
733
734 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
735 // is only called for undefined symbols, when at least one --wrap
736 // option was used.
737
738 const char*
739 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
740 {
741 // For some targets, we need to ignore a specific character when
742 // wrapping, and add it back later.
743 char prefix = '\0';
744 if (name[0] == parameters->target().wrap_char())
745 {
746 prefix = name[0];
747 ++name;
748 }
749
750 if (parameters->options().is_wrap(name))
751 {
752 // Turn NAME into __wrap_NAME.
753 std::string s;
754 if (prefix != '\0')
755 s += prefix;
756 s += "__wrap_";
757 s += name;
758
759 // This will give us both the old and new name in NAMEPOOL_, but
760 // that is OK. Only the versions we need will wind up in the
761 // real string table in the output file.
762 return this->namepool_.add(s.c_str(), true, name_key);
763 }
764
765 const char* const real_prefix = "__real_";
766 const size_t real_prefix_length = strlen(real_prefix);
767 if (strncmp(name, real_prefix, real_prefix_length) == 0
768 && parameters->options().is_wrap(name + real_prefix_length))
769 {
770 // Turn __real_NAME into NAME.
771 std::string s;
772 if (prefix != '\0')
773 s += prefix;
774 s += name + real_prefix_length;
775 return this->namepool_.add(s.c_str(), true, name_key);
776 }
777
778 return name;
779 }
780
781 // This is called when we see a symbol NAME/VERSION, and the symbol
782 // already exists in the symbol table, and VERSION is marked as being
783 // the default version. SYM is the NAME/VERSION symbol we just added.
784 // DEFAULT_IS_NEW is true if this is the first time we have seen the
785 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
786
787 template<int size, bool big_endian>
788 void
789 Symbol_table::define_default_version(Sized_symbol<size>* sym,
790 bool default_is_new,
791 Symbol_table_type::iterator pdef)
792 {
793 if (default_is_new)
794 {
795 // This is the first time we have seen NAME/NULL. Make
796 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
797 // version.
798 pdef->second = sym;
799 sym->set_is_default();
800 }
801 else if (pdef->second == sym)
802 {
803 // NAME/NULL already points to NAME/VERSION. Don't mark the
804 // symbol as the default if it is not already the default.
805 }
806 else
807 {
808 // This is the unfortunate case where we already have entries
809 // for both NAME/VERSION and NAME/NULL. We now see a symbol
810 // NAME/VERSION where VERSION is the default version. We have
811 // already resolved this new symbol with the existing
812 // NAME/VERSION symbol.
813
814 // It's possible that NAME/NULL and NAME/VERSION are both
815 // defined in regular objects. This can only happen if one
816 // object file defines foo and another defines foo@@ver. This
817 // is somewhat obscure, but we call it a multiple definition
818 // error.
819
820 // It's possible that NAME/NULL actually has a version, in which
821 // case it won't be the same as VERSION. This happens with
822 // ver_test_7.so in the testsuite for the symbol t2_2. We see
823 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
824 // then see an unadorned t2_2 in an object file and give it
825 // version VER1 from the version script. This looks like a
826 // default definition for VER1, so it looks like we should merge
827 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
828 // not obvious that this is an error, either. So we just punt.
829
830 // If one of the symbols has non-default visibility, and the
831 // other is defined in a shared object, then they are different
832 // symbols.
833
834 // Otherwise, we just resolve the symbols as though they were
835 // the same.
836
837 if (pdef->second->version() != NULL)
838 gold_assert(pdef->second->version() != sym->version());
839 else if (sym->visibility() != elfcpp::STV_DEFAULT
840 && pdef->second->is_from_dynobj())
841 ;
842 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
843 && sym->is_from_dynobj())
844 ;
845 else
846 {
847 const Sized_symbol<size>* symdef;
848 symdef = this->get_sized_symbol<size>(pdef->second);
849 Symbol_table::resolve<size, big_endian>(sym, symdef);
850 this->make_forwarder(pdef->second, sym);
851 pdef->second = sym;
852 sym->set_is_default();
853 }
854 }
855 }
856
857 // Add one symbol from OBJECT to the symbol table. NAME is symbol
858 // name and VERSION is the version; both are canonicalized. DEF is
859 // whether this is the default version. ST_SHNDX is the symbol's
860 // section index; IS_ORDINARY is whether this is a normal section
861 // rather than a special code.
862
863 // If IS_DEFAULT_VERSION is true, then this is the definition of a
864 // default version of a symbol. That means that any lookup of
865 // NAME/NULL and any lookup of NAME/VERSION should always return the
866 // same symbol. This is obvious for references, but in particular we
867 // want to do this for definitions: overriding NAME/NULL should also
868 // override NAME/VERSION. If we don't do that, it would be very hard
869 // to override functions in a shared library which uses versioning.
870
871 // We implement this by simply making both entries in the hash table
872 // point to the same Symbol structure. That is easy enough if this is
873 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
874 // that we have seen both already, in which case they will both have
875 // independent entries in the symbol table. We can't simply change
876 // the symbol table entry, because we have pointers to the entries
877 // attached to the object files. So we mark the entry attached to the
878 // object file as a forwarder, and record it in the forwarders_ map.
879 // Note that entries in the hash table will never be marked as
880 // forwarders.
881 //
882 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
883 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
884 // for a special section code. ST_SHNDX may be modified if the symbol
885 // is defined in a section being discarded.
886
887 template<int size, bool big_endian>
888 Sized_symbol<size>*
889 Symbol_table::add_from_object(Object* object,
890 const char* name,
891 Stringpool::Key name_key,
892 const char* version,
893 Stringpool::Key version_key,
894 bool is_default_version,
895 const elfcpp::Sym<size, big_endian>& sym,
896 unsigned int st_shndx,
897 bool is_ordinary,
898 unsigned int orig_st_shndx)
899 {
900 // Print a message if this symbol is being traced.
901 if (parameters->options().is_trace_symbol(name))
902 {
903 if (orig_st_shndx == elfcpp::SHN_UNDEF)
904 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
905 else
906 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
907 }
908
909 // For an undefined symbol, we may need to adjust the name using
910 // --wrap.
911 if (orig_st_shndx == elfcpp::SHN_UNDEF
912 && parameters->options().any_wrap())
913 {
914 const char* wrap_name = this->wrap_symbol(name, &name_key);
915 if (wrap_name != name)
916 {
917 // If we see a reference to malloc with version GLIBC_2.0,
918 // and we turn it into a reference to __wrap_malloc, then we
919 // discard the version number. Otherwise the user would be
920 // required to specify the correct version for
921 // __wrap_malloc.
922 version = NULL;
923 version_key = 0;
924 name = wrap_name;
925 }
926 }
927
928 Symbol* const snull = NULL;
929 std::pair<typename Symbol_table_type::iterator, bool> ins =
930 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
931 snull));
932
933 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
934 std::make_pair(this->table_.end(), false);
935 if (is_default_version)
936 {
937 const Stringpool::Key vnull_key = 0;
938 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
939 vnull_key),
940 snull));
941 }
942
943 // ins.first: an iterator, which is a pointer to a pair.
944 // ins.first->first: the key (a pair of name and version).
945 // ins.first->second: the value (Symbol*).
946 // ins.second: true if new entry was inserted, false if not.
947
948 Sized_symbol<size>* ret;
949 bool was_undefined;
950 bool was_common;
951 if (!ins.second)
952 {
953 // We already have an entry for NAME/VERSION.
954 ret = this->get_sized_symbol<size>(ins.first->second);
955 gold_assert(ret != NULL);
956
957 was_undefined = ret->is_undefined();
958 was_common = ret->is_common();
959
960 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
961 version);
962 if (parameters->options().gc_sections())
963 this->gc_mark_dyn_syms(ret);
964
965 if (is_default_version)
966 this->define_default_version<size, big_endian>(ret, insdefault.second,
967 insdefault.first);
968 }
969 else
970 {
971 // This is the first time we have seen NAME/VERSION.
972 gold_assert(ins.first->second == NULL);
973
974 if (is_default_version && !insdefault.second)
975 {
976 // We already have an entry for NAME/NULL. If we override
977 // it, then change it to NAME/VERSION.
978 ret = this->get_sized_symbol<size>(insdefault.first->second);
979
980 was_undefined = ret->is_undefined();
981 was_common = ret->is_common();
982
983 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
984 version);
985 if (parameters->options().gc_sections())
986 this->gc_mark_dyn_syms(ret);
987 ins.first->second = ret;
988 }
989 else
990 {
991 was_undefined = false;
992 was_common = false;
993
994 Sized_target<size, big_endian>* target =
995 parameters->sized_target<size, big_endian>();
996 if (!target->has_make_symbol())
997 ret = new Sized_symbol<size>();
998 else
999 {
1000 ret = target->make_symbol();
1001 if (ret == NULL)
1002 {
1003 // This means that we don't want a symbol table
1004 // entry after all.
1005 if (!is_default_version)
1006 this->table_.erase(ins.first);
1007 else
1008 {
1009 this->table_.erase(insdefault.first);
1010 // Inserting INSDEFAULT invalidated INS.
1011 this->table_.erase(std::make_pair(name_key,
1012 version_key));
1013 }
1014 return NULL;
1015 }
1016 }
1017
1018 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1019
1020 ins.first->second = ret;
1021 if (is_default_version)
1022 {
1023 // This is the first time we have seen NAME/NULL. Point
1024 // it at the new entry for NAME/VERSION.
1025 gold_assert(insdefault.second);
1026 insdefault.first->second = ret;
1027 }
1028 }
1029
1030 if (is_default_version)
1031 ret->set_is_default();
1032 }
1033
1034 // Record every time we see a new undefined symbol, to speed up
1035 // archive groups.
1036 if (!was_undefined && ret->is_undefined())
1037 {
1038 ++this->saw_undefined_;
1039 if (parameters->options().has_plugins())
1040 parameters->options().plugins()->new_undefined_symbol(ret);
1041 }
1042
1043 // Keep track of common symbols, to speed up common symbol
1044 // allocation.
1045 if (!was_common && ret->is_common())
1046 {
1047 if (ret->type() == elfcpp::STT_TLS)
1048 this->tls_commons_.push_back(ret);
1049 else if (!is_ordinary
1050 && st_shndx == parameters->target().small_common_shndx())
1051 this->small_commons_.push_back(ret);
1052 else if (!is_ordinary
1053 && st_shndx == parameters->target().large_common_shndx())
1054 this->large_commons_.push_back(ret);
1055 else
1056 this->commons_.push_back(ret);
1057 }
1058
1059 // If we're not doing a relocatable link, then any symbol with
1060 // hidden or internal visibility is local.
1061 if ((ret->visibility() == elfcpp::STV_HIDDEN
1062 || ret->visibility() == elfcpp::STV_INTERNAL)
1063 && (ret->binding() == elfcpp::STB_GLOBAL
1064 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1065 || ret->binding() == elfcpp::STB_WEAK)
1066 && !parameters->options().relocatable())
1067 this->force_local(ret);
1068
1069 return ret;
1070 }
1071
1072 // Add all the symbols in a relocatable object to the hash table.
1073
1074 template<int size, bool big_endian>
1075 void
1076 Symbol_table::add_from_relobj(
1077 Sized_relobj_file<size, big_endian>* relobj,
1078 const unsigned char* syms,
1079 size_t count,
1080 size_t symndx_offset,
1081 const char* sym_names,
1082 size_t sym_name_size,
1083 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1084 size_t* defined)
1085 {
1086 *defined = 0;
1087
1088 gold_assert(size == parameters->target().get_size());
1089
1090 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1091
1092 const bool just_symbols = relobj->just_symbols();
1093
1094 const unsigned char* p = syms;
1095 for (size_t i = 0; i < count; ++i, p += sym_size)
1096 {
1097 (*sympointers)[i] = NULL;
1098
1099 elfcpp::Sym<size, big_endian> sym(p);
1100
1101 unsigned int st_name = sym.get_st_name();
1102 if (st_name >= sym_name_size)
1103 {
1104 relobj->error(_("bad global symbol name offset %u at %zu"),
1105 st_name, i);
1106 continue;
1107 }
1108
1109 const char* name = sym_names + st_name;
1110
1111 bool is_ordinary;
1112 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1113 sym.get_st_shndx(),
1114 &is_ordinary);
1115 unsigned int orig_st_shndx = st_shndx;
1116 if (!is_ordinary)
1117 orig_st_shndx = elfcpp::SHN_UNDEF;
1118
1119 if (st_shndx != elfcpp::SHN_UNDEF)
1120 ++*defined;
1121
1122 // A symbol defined in a section which we are not including must
1123 // be treated as an undefined symbol.
1124 bool is_defined_in_discarded_section = false;
1125 if (st_shndx != elfcpp::SHN_UNDEF
1126 && is_ordinary
1127 && !relobj->is_section_included(st_shndx)
1128 && !this->is_section_folded(relobj, st_shndx))
1129 {
1130 st_shndx = elfcpp::SHN_UNDEF;
1131 is_defined_in_discarded_section = true;
1132 }
1133
1134 // In an object file, an '@' in the name separates the symbol
1135 // name from the version name. If there are two '@' characters,
1136 // this is the default version.
1137 const char* ver = strchr(name, '@');
1138 Stringpool::Key ver_key = 0;
1139 int namelen = 0;
1140 // IS_DEFAULT_VERSION: is the version default?
1141 // IS_FORCED_LOCAL: is the symbol forced local?
1142 bool is_default_version = false;
1143 bool is_forced_local = false;
1144
1145 if (ver != NULL)
1146 {
1147 // The symbol name is of the form foo@VERSION or foo@@VERSION
1148 namelen = ver - name;
1149 ++ver;
1150 if (*ver == '@')
1151 {
1152 is_default_version = true;
1153 ++ver;
1154 }
1155 ver = this->namepool_.add(ver, true, &ver_key);
1156 }
1157 // We don't want to assign a version to an undefined symbol,
1158 // even if it is listed in the version script. FIXME: What
1159 // about a common symbol?
1160 else
1161 {
1162 namelen = strlen(name);
1163 if (!this->version_script_.empty()
1164 && st_shndx != elfcpp::SHN_UNDEF)
1165 {
1166 // The symbol name did not have a version, but the
1167 // version script may assign a version anyway.
1168 std::string version;
1169 bool is_global;
1170 if (this->version_script_.get_symbol_version(name, &version,
1171 &is_global))
1172 {
1173 if (!is_global)
1174 is_forced_local = true;
1175 else if (!version.empty())
1176 {
1177 ver = this->namepool_.add_with_length(version.c_str(),
1178 version.length(),
1179 true,
1180 &ver_key);
1181 is_default_version = true;
1182 }
1183 }
1184 }
1185 }
1186
1187 elfcpp::Sym<size, big_endian>* psym = &sym;
1188 unsigned char symbuf[sym_size];
1189 elfcpp::Sym<size, big_endian> sym2(symbuf);
1190 if (just_symbols)
1191 {
1192 memcpy(symbuf, p, sym_size);
1193 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1194 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1195 {
1196 // Symbol values in object files are section relative.
1197 // This is normally what we want, but since here we are
1198 // converting the symbol to absolute we need to add the
1199 // section address. The section address in an object
1200 // file is normally zero, but people can use a linker
1201 // script to change it.
1202 sw.put_st_value(sym.get_st_value()
1203 + relobj->section_address(orig_st_shndx));
1204 }
1205 st_shndx = elfcpp::SHN_ABS;
1206 is_ordinary = false;
1207 psym = &sym2;
1208 }
1209
1210 // Fix up visibility if object has no-export set.
1211 if (relobj->no_export()
1212 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1213 {
1214 // We may have copied symbol already above.
1215 if (psym != &sym2)
1216 {
1217 memcpy(symbuf, p, sym_size);
1218 psym = &sym2;
1219 }
1220
1221 elfcpp::STV visibility = sym2.get_st_visibility();
1222 if (visibility == elfcpp::STV_DEFAULT
1223 || visibility == elfcpp::STV_PROTECTED)
1224 {
1225 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1226 unsigned char nonvis = sym2.get_st_nonvis();
1227 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1228 }
1229 }
1230
1231 Stringpool::Key name_key;
1232 name = this->namepool_.add_with_length(name, namelen, true,
1233 &name_key);
1234
1235 Sized_symbol<size>* res;
1236 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1237 is_default_version, *psym, st_shndx,
1238 is_ordinary, orig_st_shndx);
1239
1240 // If building a shared library using garbage collection, do not
1241 // treat externally visible symbols as garbage.
1242 if (parameters->options().gc_sections()
1243 && parameters->options().shared())
1244 this->gc_mark_symbol_for_shlib(res);
1245
1246 if (is_forced_local)
1247 this->force_local(res);
1248
1249 if (is_defined_in_discarded_section)
1250 res->set_is_defined_in_discarded_section();
1251
1252 (*sympointers)[i] = res;
1253 }
1254 }
1255
1256 // Add a symbol from a plugin-claimed file.
1257
1258 template<int size, bool big_endian>
1259 Symbol*
1260 Symbol_table::add_from_pluginobj(
1261 Sized_pluginobj<size, big_endian>* obj,
1262 const char* name,
1263 const char* ver,
1264 elfcpp::Sym<size, big_endian>* sym)
1265 {
1266 unsigned int st_shndx = sym->get_st_shndx();
1267 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1268
1269 Stringpool::Key ver_key = 0;
1270 bool is_default_version = false;
1271 bool is_forced_local = false;
1272
1273 if (ver != NULL)
1274 {
1275 ver = this->namepool_.add(ver, true, &ver_key);
1276 }
1277 // We don't want to assign a version to an undefined symbol,
1278 // even if it is listed in the version script. FIXME: What
1279 // about a common symbol?
1280 else
1281 {
1282 if (!this->version_script_.empty()
1283 && st_shndx != elfcpp::SHN_UNDEF)
1284 {
1285 // The symbol name did not have a version, but the
1286 // version script may assign a version anyway.
1287 std::string version;
1288 bool is_global;
1289 if (this->version_script_.get_symbol_version(name, &version,
1290 &is_global))
1291 {
1292 if (!is_global)
1293 is_forced_local = true;
1294 else if (!version.empty())
1295 {
1296 ver = this->namepool_.add_with_length(version.c_str(),
1297 version.length(),
1298 true,
1299 &ver_key);
1300 is_default_version = true;
1301 }
1302 }
1303 }
1304 }
1305
1306 Stringpool::Key name_key;
1307 name = this->namepool_.add(name, true, &name_key);
1308
1309 Sized_symbol<size>* res;
1310 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1311 is_default_version, *sym, st_shndx,
1312 is_ordinary, st_shndx);
1313
1314 if (is_forced_local)
1315 this->force_local(res);
1316
1317 return res;
1318 }
1319
1320 // Add all the symbols in a dynamic object to the hash table.
1321
1322 template<int size, bool big_endian>
1323 void
1324 Symbol_table::add_from_dynobj(
1325 Sized_dynobj<size, big_endian>* dynobj,
1326 const unsigned char* syms,
1327 size_t count,
1328 const char* sym_names,
1329 size_t sym_name_size,
1330 const unsigned char* versym,
1331 size_t versym_size,
1332 const std::vector<const char*>* version_map,
1333 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1334 size_t* defined)
1335 {
1336 *defined = 0;
1337
1338 gold_assert(size == parameters->target().get_size());
1339
1340 if (dynobj->just_symbols())
1341 {
1342 gold_error(_("--just-symbols does not make sense with a shared object"));
1343 return;
1344 }
1345
1346 if (versym != NULL && versym_size / 2 < count)
1347 {
1348 dynobj->error(_("too few symbol versions"));
1349 return;
1350 }
1351
1352 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1353
1354 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1355 // weak aliases. This is necessary because if the dynamic object
1356 // provides the same variable under two names, one of which is a
1357 // weak definition, and the regular object refers to the weak
1358 // definition, we have to put both the weak definition and the
1359 // strong definition into the dynamic symbol table. Given a weak
1360 // definition, the only way that we can find the corresponding
1361 // strong definition, if any, is to search the symbol table.
1362 std::vector<Sized_symbol<size>*> object_symbols;
1363
1364 const unsigned char* p = syms;
1365 const unsigned char* vs = versym;
1366 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1367 {
1368 elfcpp::Sym<size, big_endian> sym(p);
1369
1370 if (sympointers != NULL)
1371 (*sympointers)[i] = NULL;
1372
1373 // Ignore symbols with local binding or that have
1374 // internal or hidden visibility.
1375 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1376 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1377 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1378 continue;
1379
1380 // A protected symbol in a shared library must be treated as a
1381 // normal symbol when viewed from outside the shared library.
1382 // Implement this by overriding the visibility here.
1383 elfcpp::Sym<size, big_endian>* psym = &sym;
1384 unsigned char symbuf[sym_size];
1385 elfcpp::Sym<size, big_endian> sym2(symbuf);
1386 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1387 {
1388 memcpy(symbuf, p, sym_size);
1389 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1390 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1391 psym = &sym2;
1392 }
1393
1394 unsigned int st_name = psym->get_st_name();
1395 if (st_name >= sym_name_size)
1396 {
1397 dynobj->error(_("bad symbol name offset %u at %zu"),
1398 st_name, i);
1399 continue;
1400 }
1401
1402 const char* name = sym_names + st_name;
1403
1404 bool is_ordinary;
1405 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1406 &is_ordinary);
1407
1408 if (st_shndx != elfcpp::SHN_UNDEF)
1409 ++*defined;
1410
1411 Sized_symbol<size>* res;
1412
1413 if (versym == NULL)
1414 {
1415 Stringpool::Key name_key;
1416 name = this->namepool_.add(name, true, &name_key);
1417 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1418 false, *psym, st_shndx, is_ordinary,
1419 st_shndx);
1420 }
1421 else
1422 {
1423 // Read the version information.
1424
1425 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1426
1427 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1428 v &= elfcpp::VERSYM_VERSION;
1429
1430 // The Sun documentation says that V can be VER_NDX_LOCAL,
1431 // or VER_NDX_GLOBAL, or a version index. The meaning of
1432 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1433 // The old GNU linker will happily generate VER_NDX_LOCAL
1434 // for an undefined symbol. I don't know what the Sun
1435 // linker will generate.
1436
1437 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1438 && st_shndx != elfcpp::SHN_UNDEF)
1439 {
1440 // This symbol should not be visible outside the object.
1441 continue;
1442 }
1443
1444 // At this point we are definitely going to add this symbol.
1445 Stringpool::Key name_key;
1446 name = this->namepool_.add(name, true, &name_key);
1447
1448 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1449 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1450 {
1451 // This symbol does not have a version.
1452 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1453 false, *psym, st_shndx, is_ordinary,
1454 st_shndx);
1455 }
1456 else
1457 {
1458 if (v >= version_map->size())
1459 {
1460 dynobj->error(_("versym for symbol %zu out of range: %u"),
1461 i, v);
1462 continue;
1463 }
1464
1465 const char* version = (*version_map)[v];
1466 if (version == NULL)
1467 {
1468 dynobj->error(_("versym for symbol %zu has no name: %u"),
1469 i, v);
1470 continue;
1471 }
1472
1473 Stringpool::Key version_key;
1474 version = this->namepool_.add(version, true, &version_key);
1475
1476 // If this is an absolute symbol, and the version name
1477 // and symbol name are the same, then this is the
1478 // version definition symbol. These symbols exist to
1479 // support using -u to pull in particular versions. We
1480 // do not want to record a version for them.
1481 if (st_shndx == elfcpp::SHN_ABS
1482 && !is_ordinary
1483 && name_key == version_key)
1484 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1485 false, *psym, st_shndx, is_ordinary,
1486 st_shndx);
1487 else
1488 {
1489 const bool is_default_version =
1490 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1491 res = this->add_from_object(dynobj, name, name_key, version,
1492 version_key, is_default_version,
1493 *psym, st_shndx,
1494 is_ordinary, st_shndx);
1495 }
1496 }
1497 }
1498
1499 // Note that it is possible that RES was overridden by an
1500 // earlier object, in which case it can't be aliased here.
1501 if (st_shndx != elfcpp::SHN_UNDEF
1502 && is_ordinary
1503 && psym->get_st_type() == elfcpp::STT_OBJECT
1504 && res->source() == Symbol::FROM_OBJECT
1505 && res->object() == dynobj)
1506 object_symbols.push_back(res);
1507
1508 if (sympointers != NULL)
1509 (*sympointers)[i] = res;
1510 }
1511
1512 this->record_weak_aliases(&object_symbols);
1513 }
1514
1515 // Add a symbol from a incremental object file.
1516
1517 template<int size, bool big_endian>
1518 Sized_symbol<size>*
1519 Symbol_table::add_from_incrobj(
1520 Object* obj,
1521 const char* name,
1522 const char* ver,
1523 elfcpp::Sym<size, big_endian>* sym)
1524 {
1525 unsigned int st_shndx = sym->get_st_shndx();
1526 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1527
1528 Stringpool::Key ver_key = 0;
1529 bool is_default_version = false;
1530 bool is_forced_local = false;
1531
1532 Stringpool::Key name_key;
1533 name = this->namepool_.add(name, true, &name_key);
1534
1535 Sized_symbol<size>* res;
1536 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1537 is_default_version, *sym, st_shndx,
1538 is_ordinary, st_shndx);
1539
1540 if (is_forced_local)
1541 this->force_local(res);
1542
1543 return res;
1544 }
1545
1546 // This is used to sort weak aliases. We sort them first by section
1547 // index, then by offset, then by weak ahead of strong.
1548
1549 template<int size>
1550 class Weak_alias_sorter
1551 {
1552 public:
1553 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1554 };
1555
1556 template<int size>
1557 bool
1558 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1559 const Sized_symbol<size>* s2) const
1560 {
1561 bool is_ordinary;
1562 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1563 gold_assert(is_ordinary);
1564 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1565 gold_assert(is_ordinary);
1566 if (s1_shndx != s2_shndx)
1567 return s1_shndx < s2_shndx;
1568
1569 if (s1->value() != s2->value())
1570 return s1->value() < s2->value();
1571 if (s1->binding() != s2->binding())
1572 {
1573 if (s1->binding() == elfcpp::STB_WEAK)
1574 return true;
1575 if (s2->binding() == elfcpp::STB_WEAK)
1576 return false;
1577 }
1578 return std::string(s1->name()) < std::string(s2->name());
1579 }
1580
1581 // SYMBOLS is a list of object symbols from a dynamic object. Look
1582 // for any weak aliases, and record them so that if we add the weak
1583 // alias to the dynamic symbol table, we also add the corresponding
1584 // strong symbol.
1585
1586 template<int size>
1587 void
1588 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1589 {
1590 // Sort the vector by section index, then by offset, then by weak
1591 // ahead of strong.
1592 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1593
1594 // Walk through the vector. For each weak definition, record
1595 // aliases.
1596 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1597 symbols->begin();
1598 p != symbols->end();
1599 ++p)
1600 {
1601 if ((*p)->binding() != elfcpp::STB_WEAK)
1602 continue;
1603
1604 // Build a circular list of weak aliases. Each symbol points to
1605 // the next one in the circular list.
1606
1607 Sized_symbol<size>* from_sym = *p;
1608 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1609 for (q = p + 1; q != symbols->end(); ++q)
1610 {
1611 bool dummy;
1612 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1613 || (*q)->value() != from_sym->value())
1614 break;
1615
1616 this->weak_aliases_[from_sym] = *q;
1617 from_sym->set_has_alias();
1618 from_sym = *q;
1619 }
1620
1621 if (from_sym != *p)
1622 {
1623 this->weak_aliases_[from_sym] = *p;
1624 from_sym->set_has_alias();
1625 }
1626
1627 p = q - 1;
1628 }
1629 }
1630
1631 // Create and return a specially defined symbol. If ONLY_IF_REF is
1632 // true, then only create the symbol if there is a reference to it.
1633 // If this does not return NULL, it sets *POLDSYM to the existing
1634 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1635 // resolve the newly created symbol to the old one. This
1636 // canonicalizes *PNAME and *PVERSION.
1637
1638 template<int size, bool big_endian>
1639 Sized_symbol<size>*
1640 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1641 bool only_if_ref,
1642 Sized_symbol<size>** poldsym,
1643 bool* resolve_oldsym)
1644 {
1645 *resolve_oldsym = false;
1646
1647 // If the caller didn't give us a version, see if we get one from
1648 // the version script.
1649 std::string v;
1650 bool is_default_version = false;
1651 if (*pversion == NULL)
1652 {
1653 bool is_global;
1654 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1655 {
1656 if (is_global && !v.empty())
1657 {
1658 *pversion = v.c_str();
1659 // If we get the version from a version script, then we
1660 // are also the default version.
1661 is_default_version = true;
1662 }
1663 }
1664 }
1665
1666 Symbol* oldsym;
1667 Sized_symbol<size>* sym;
1668
1669 bool add_to_table = false;
1670 typename Symbol_table_type::iterator add_loc = this->table_.end();
1671 bool add_def_to_table = false;
1672 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1673
1674 if (only_if_ref)
1675 {
1676 oldsym = this->lookup(*pname, *pversion);
1677 if (oldsym == NULL && is_default_version)
1678 oldsym = this->lookup(*pname, NULL);
1679 if (oldsym == NULL || !oldsym->is_undefined())
1680 return NULL;
1681
1682 *pname = oldsym->name();
1683 if (!is_default_version)
1684 *pversion = oldsym->version();
1685 }
1686 else
1687 {
1688 // Canonicalize NAME and VERSION.
1689 Stringpool::Key name_key;
1690 *pname = this->namepool_.add(*pname, true, &name_key);
1691
1692 Stringpool::Key version_key = 0;
1693 if (*pversion != NULL)
1694 *pversion = this->namepool_.add(*pversion, true, &version_key);
1695
1696 Symbol* const snull = NULL;
1697 std::pair<typename Symbol_table_type::iterator, bool> ins =
1698 this->table_.insert(std::make_pair(std::make_pair(name_key,
1699 version_key),
1700 snull));
1701
1702 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1703 std::make_pair(this->table_.end(), false);
1704 if (is_default_version)
1705 {
1706 const Stringpool::Key vnull = 0;
1707 insdefault =
1708 this->table_.insert(std::make_pair(std::make_pair(name_key,
1709 vnull),
1710 snull));
1711 }
1712
1713 if (!ins.second)
1714 {
1715 // We already have a symbol table entry for NAME/VERSION.
1716 oldsym = ins.first->second;
1717 gold_assert(oldsym != NULL);
1718
1719 if (is_default_version)
1720 {
1721 Sized_symbol<size>* soldsym =
1722 this->get_sized_symbol<size>(oldsym);
1723 this->define_default_version<size, big_endian>(soldsym,
1724 insdefault.second,
1725 insdefault.first);
1726 }
1727 }
1728 else
1729 {
1730 // We haven't seen this symbol before.
1731 gold_assert(ins.first->second == NULL);
1732
1733 add_to_table = true;
1734 add_loc = ins.first;
1735
1736 if (is_default_version && !insdefault.second)
1737 {
1738 // We are adding NAME/VERSION, and it is the default
1739 // version. We already have an entry for NAME/NULL.
1740 oldsym = insdefault.first->second;
1741 *resolve_oldsym = true;
1742 }
1743 else
1744 {
1745 oldsym = NULL;
1746
1747 if (is_default_version)
1748 {
1749 add_def_to_table = true;
1750 add_def_loc = insdefault.first;
1751 }
1752 }
1753 }
1754 }
1755
1756 const Target& target = parameters->target();
1757 if (!target.has_make_symbol())
1758 sym = new Sized_symbol<size>();
1759 else
1760 {
1761 Sized_target<size, big_endian>* sized_target =
1762 parameters->sized_target<size, big_endian>();
1763 sym = sized_target->make_symbol();
1764 if (sym == NULL)
1765 return NULL;
1766 }
1767
1768 if (add_to_table)
1769 add_loc->second = sym;
1770 else
1771 gold_assert(oldsym != NULL);
1772
1773 if (add_def_to_table)
1774 add_def_loc->second = sym;
1775
1776 *poldsym = this->get_sized_symbol<size>(oldsym);
1777
1778 return sym;
1779 }
1780
1781 // Define a symbol based on an Output_data.
1782
1783 Symbol*
1784 Symbol_table::define_in_output_data(const char* name,
1785 const char* version,
1786 Defined defined,
1787 Output_data* od,
1788 uint64_t value,
1789 uint64_t symsize,
1790 elfcpp::STT type,
1791 elfcpp::STB binding,
1792 elfcpp::STV visibility,
1793 unsigned char nonvis,
1794 bool offset_is_from_end,
1795 bool only_if_ref)
1796 {
1797 if (parameters->target().get_size() == 32)
1798 {
1799 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1800 return this->do_define_in_output_data<32>(name, version, defined, od,
1801 value, symsize, type, binding,
1802 visibility, nonvis,
1803 offset_is_from_end,
1804 only_if_ref);
1805 #else
1806 gold_unreachable();
1807 #endif
1808 }
1809 else if (parameters->target().get_size() == 64)
1810 {
1811 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1812 return this->do_define_in_output_data<64>(name, version, defined, od,
1813 value, symsize, type, binding,
1814 visibility, nonvis,
1815 offset_is_from_end,
1816 only_if_ref);
1817 #else
1818 gold_unreachable();
1819 #endif
1820 }
1821 else
1822 gold_unreachable();
1823 }
1824
1825 // Define a symbol in an Output_data, sized version.
1826
1827 template<int size>
1828 Sized_symbol<size>*
1829 Symbol_table::do_define_in_output_data(
1830 const char* name,
1831 const char* version,
1832 Defined defined,
1833 Output_data* od,
1834 typename elfcpp::Elf_types<size>::Elf_Addr value,
1835 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1836 elfcpp::STT type,
1837 elfcpp::STB binding,
1838 elfcpp::STV visibility,
1839 unsigned char nonvis,
1840 bool offset_is_from_end,
1841 bool only_if_ref)
1842 {
1843 Sized_symbol<size>* sym;
1844 Sized_symbol<size>* oldsym;
1845 bool resolve_oldsym;
1846
1847 if (parameters->target().is_big_endian())
1848 {
1849 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1850 sym = this->define_special_symbol<size, true>(&name, &version,
1851 only_if_ref, &oldsym,
1852 &resolve_oldsym);
1853 #else
1854 gold_unreachable();
1855 #endif
1856 }
1857 else
1858 {
1859 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1860 sym = this->define_special_symbol<size, false>(&name, &version,
1861 only_if_ref, &oldsym,
1862 &resolve_oldsym);
1863 #else
1864 gold_unreachable();
1865 #endif
1866 }
1867
1868 if (sym == NULL)
1869 return NULL;
1870
1871 sym->init_output_data(name, version, od, value, symsize, type, binding,
1872 visibility, nonvis, offset_is_from_end,
1873 defined == PREDEFINED);
1874
1875 if (oldsym == NULL)
1876 {
1877 if (binding == elfcpp::STB_LOCAL
1878 || this->version_script_.symbol_is_local(name))
1879 this->force_local(sym);
1880 else if (version != NULL)
1881 sym->set_is_default();
1882 return sym;
1883 }
1884
1885 if (Symbol_table::should_override_with_special(oldsym, defined))
1886 this->override_with_special(oldsym, sym);
1887
1888 if (resolve_oldsym)
1889 return sym;
1890 else
1891 {
1892 delete sym;
1893 return oldsym;
1894 }
1895 }
1896
1897 // Define a symbol based on an Output_segment.
1898
1899 Symbol*
1900 Symbol_table::define_in_output_segment(const char* name,
1901 const char* version,
1902 Defined defined,
1903 Output_segment* os,
1904 uint64_t value,
1905 uint64_t symsize,
1906 elfcpp::STT type,
1907 elfcpp::STB binding,
1908 elfcpp::STV visibility,
1909 unsigned char nonvis,
1910 Symbol::Segment_offset_base offset_base,
1911 bool only_if_ref)
1912 {
1913 if (parameters->target().get_size() == 32)
1914 {
1915 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1916 return this->do_define_in_output_segment<32>(name, version, defined, os,
1917 value, symsize, type,
1918 binding, visibility, nonvis,
1919 offset_base, only_if_ref);
1920 #else
1921 gold_unreachable();
1922 #endif
1923 }
1924 else if (parameters->target().get_size() == 64)
1925 {
1926 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1927 return this->do_define_in_output_segment<64>(name, version, defined, os,
1928 value, symsize, type,
1929 binding, visibility, nonvis,
1930 offset_base, only_if_ref);
1931 #else
1932 gold_unreachable();
1933 #endif
1934 }
1935 else
1936 gold_unreachable();
1937 }
1938
1939 // Define a symbol in an Output_segment, sized version.
1940
1941 template<int size>
1942 Sized_symbol<size>*
1943 Symbol_table::do_define_in_output_segment(
1944 const char* name,
1945 const char* version,
1946 Defined defined,
1947 Output_segment* os,
1948 typename elfcpp::Elf_types<size>::Elf_Addr value,
1949 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1950 elfcpp::STT type,
1951 elfcpp::STB binding,
1952 elfcpp::STV visibility,
1953 unsigned char nonvis,
1954 Symbol::Segment_offset_base offset_base,
1955 bool only_if_ref)
1956 {
1957 Sized_symbol<size>* sym;
1958 Sized_symbol<size>* oldsym;
1959 bool resolve_oldsym;
1960
1961 if (parameters->target().is_big_endian())
1962 {
1963 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1964 sym = this->define_special_symbol<size, true>(&name, &version,
1965 only_if_ref, &oldsym,
1966 &resolve_oldsym);
1967 #else
1968 gold_unreachable();
1969 #endif
1970 }
1971 else
1972 {
1973 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1974 sym = this->define_special_symbol<size, false>(&name, &version,
1975 only_if_ref, &oldsym,
1976 &resolve_oldsym);
1977 #else
1978 gold_unreachable();
1979 #endif
1980 }
1981
1982 if (sym == NULL)
1983 return NULL;
1984
1985 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1986 visibility, nonvis, offset_base,
1987 defined == PREDEFINED);
1988
1989 if (oldsym == NULL)
1990 {
1991 if (binding == elfcpp::STB_LOCAL
1992 || this->version_script_.symbol_is_local(name))
1993 this->force_local(sym);
1994 else if (version != NULL)
1995 sym->set_is_default();
1996 return sym;
1997 }
1998
1999 if (Symbol_table::should_override_with_special(oldsym, defined))
2000 this->override_with_special(oldsym, sym);
2001
2002 if (resolve_oldsym)
2003 return sym;
2004 else
2005 {
2006 delete sym;
2007 return oldsym;
2008 }
2009 }
2010
2011 // Define a special symbol with a constant value. It is a multiple
2012 // definition error if this symbol is already defined.
2013
2014 Symbol*
2015 Symbol_table::define_as_constant(const char* name,
2016 const char* version,
2017 Defined defined,
2018 uint64_t value,
2019 uint64_t symsize,
2020 elfcpp::STT type,
2021 elfcpp::STB binding,
2022 elfcpp::STV visibility,
2023 unsigned char nonvis,
2024 bool only_if_ref,
2025 bool force_override)
2026 {
2027 if (parameters->target().get_size() == 32)
2028 {
2029 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2030 return this->do_define_as_constant<32>(name, version, defined, value,
2031 symsize, type, binding,
2032 visibility, nonvis, only_if_ref,
2033 force_override);
2034 #else
2035 gold_unreachable();
2036 #endif
2037 }
2038 else if (parameters->target().get_size() == 64)
2039 {
2040 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2041 return this->do_define_as_constant<64>(name, version, defined, value,
2042 symsize, type, binding,
2043 visibility, nonvis, only_if_ref,
2044 force_override);
2045 #else
2046 gold_unreachable();
2047 #endif
2048 }
2049 else
2050 gold_unreachable();
2051 }
2052
2053 // Define a symbol as a constant, sized version.
2054
2055 template<int size>
2056 Sized_symbol<size>*
2057 Symbol_table::do_define_as_constant(
2058 const char* name,
2059 const char* version,
2060 Defined defined,
2061 typename elfcpp::Elf_types<size>::Elf_Addr value,
2062 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2063 elfcpp::STT type,
2064 elfcpp::STB binding,
2065 elfcpp::STV visibility,
2066 unsigned char nonvis,
2067 bool only_if_ref,
2068 bool force_override)
2069 {
2070 Sized_symbol<size>* sym;
2071 Sized_symbol<size>* oldsym;
2072 bool resolve_oldsym;
2073
2074 if (parameters->target().is_big_endian())
2075 {
2076 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2077 sym = this->define_special_symbol<size, true>(&name, &version,
2078 only_if_ref, &oldsym,
2079 &resolve_oldsym);
2080 #else
2081 gold_unreachable();
2082 #endif
2083 }
2084 else
2085 {
2086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2087 sym = this->define_special_symbol<size, false>(&name, &version,
2088 only_if_ref, &oldsym,
2089 &resolve_oldsym);
2090 #else
2091 gold_unreachable();
2092 #endif
2093 }
2094
2095 if (sym == NULL)
2096 return NULL;
2097
2098 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2099 nonvis, defined == PREDEFINED);
2100
2101 if (oldsym == NULL)
2102 {
2103 // Version symbols are absolute symbols with name == version.
2104 // We don't want to force them to be local.
2105 if ((version == NULL
2106 || name != version
2107 || value != 0)
2108 && (binding == elfcpp::STB_LOCAL
2109 || this->version_script_.symbol_is_local(name)))
2110 this->force_local(sym);
2111 else if (version != NULL
2112 && (name != version || value != 0))
2113 sym->set_is_default();
2114 return sym;
2115 }
2116
2117 if (force_override
2118 || Symbol_table::should_override_with_special(oldsym, defined))
2119 this->override_with_special(oldsym, sym);
2120
2121 if (resolve_oldsym)
2122 return sym;
2123 else
2124 {
2125 delete sym;
2126 return oldsym;
2127 }
2128 }
2129
2130 // Define a set of symbols in output sections.
2131
2132 void
2133 Symbol_table::define_symbols(const Layout* layout, int count,
2134 const Define_symbol_in_section* p,
2135 bool only_if_ref)
2136 {
2137 for (int i = 0; i < count; ++i, ++p)
2138 {
2139 Output_section* os = layout->find_output_section(p->output_section);
2140 if (os != NULL)
2141 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2142 p->size, p->type, p->binding,
2143 p->visibility, p->nonvis,
2144 p->offset_is_from_end,
2145 only_if_ref || p->only_if_ref);
2146 else
2147 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2148 p->type, p->binding, p->visibility, p->nonvis,
2149 only_if_ref || p->only_if_ref,
2150 false);
2151 }
2152 }
2153
2154 // Define a set of symbols in output segments.
2155
2156 void
2157 Symbol_table::define_symbols(const Layout* layout, int count,
2158 const Define_symbol_in_segment* p,
2159 bool only_if_ref)
2160 {
2161 for (int i = 0; i < count; ++i, ++p)
2162 {
2163 Output_segment* os = layout->find_output_segment(p->segment_type,
2164 p->segment_flags_set,
2165 p->segment_flags_clear);
2166 if (os != NULL)
2167 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2168 p->size, p->type, p->binding,
2169 p->visibility, p->nonvis,
2170 p->offset_base,
2171 only_if_ref || p->only_if_ref);
2172 else
2173 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2174 p->type, p->binding, p->visibility, p->nonvis,
2175 only_if_ref || p->only_if_ref,
2176 false);
2177 }
2178 }
2179
2180 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2181 // symbol should be defined--typically a .dyn.bss section. VALUE is
2182 // the offset within POSD.
2183
2184 template<int size>
2185 void
2186 Symbol_table::define_with_copy_reloc(
2187 Sized_symbol<size>* csym,
2188 Output_data* posd,
2189 typename elfcpp::Elf_types<size>::Elf_Addr value)
2190 {
2191 gold_assert(csym->is_from_dynobj());
2192 gold_assert(!csym->is_copied_from_dynobj());
2193 Object* object = csym->object();
2194 gold_assert(object->is_dynamic());
2195 Dynobj* dynobj = static_cast<Dynobj*>(object);
2196
2197 // Our copied variable has to override any variable in a shared
2198 // library.
2199 elfcpp::STB binding = csym->binding();
2200 if (binding == elfcpp::STB_WEAK)
2201 binding = elfcpp::STB_GLOBAL;
2202
2203 this->define_in_output_data(csym->name(), csym->version(), COPY,
2204 posd, value, csym->symsize(),
2205 csym->type(), binding,
2206 csym->visibility(), csym->nonvis(),
2207 false, false);
2208
2209 csym->set_is_copied_from_dynobj();
2210 csym->set_needs_dynsym_entry();
2211
2212 this->copied_symbol_dynobjs_[csym] = dynobj;
2213
2214 // We have now defined all aliases, but we have not entered them all
2215 // in the copied_symbol_dynobjs_ map.
2216 if (csym->has_alias())
2217 {
2218 Symbol* sym = csym;
2219 while (true)
2220 {
2221 sym = this->weak_aliases_[sym];
2222 if (sym == csym)
2223 break;
2224 gold_assert(sym->output_data() == posd);
2225
2226 sym->set_is_copied_from_dynobj();
2227 this->copied_symbol_dynobjs_[sym] = dynobj;
2228 }
2229 }
2230 }
2231
2232 // SYM is defined using a COPY reloc. Return the dynamic object where
2233 // the original definition was found.
2234
2235 Dynobj*
2236 Symbol_table::get_copy_source(const Symbol* sym) const
2237 {
2238 gold_assert(sym->is_copied_from_dynobj());
2239 Copied_symbol_dynobjs::const_iterator p =
2240 this->copied_symbol_dynobjs_.find(sym);
2241 gold_assert(p != this->copied_symbol_dynobjs_.end());
2242 return p->second;
2243 }
2244
2245 // Add any undefined symbols named on the command line.
2246
2247 void
2248 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2249 {
2250 if (parameters->options().any_undefined()
2251 || layout->script_options()->any_unreferenced())
2252 {
2253 if (parameters->target().get_size() == 32)
2254 {
2255 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2256 this->do_add_undefined_symbols_from_command_line<32>(layout);
2257 #else
2258 gold_unreachable();
2259 #endif
2260 }
2261 else if (parameters->target().get_size() == 64)
2262 {
2263 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2264 this->do_add_undefined_symbols_from_command_line<64>(layout);
2265 #else
2266 gold_unreachable();
2267 #endif
2268 }
2269 else
2270 gold_unreachable();
2271 }
2272 }
2273
2274 template<int size>
2275 void
2276 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2277 {
2278 for (options::String_set::const_iterator p =
2279 parameters->options().undefined_begin();
2280 p != parameters->options().undefined_end();
2281 ++p)
2282 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2283
2284 for (Script_options::referenced_const_iterator p =
2285 layout->script_options()->referenced_begin();
2286 p != layout->script_options()->referenced_end();
2287 ++p)
2288 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2289 }
2290
2291 template<int size>
2292 void
2293 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2294 {
2295 if (this->lookup(name) != NULL)
2296 return;
2297
2298 const char* version = NULL;
2299
2300 Sized_symbol<size>* sym;
2301 Sized_symbol<size>* oldsym;
2302 bool resolve_oldsym;
2303 if (parameters->target().is_big_endian())
2304 {
2305 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2306 sym = this->define_special_symbol<size, true>(&name, &version,
2307 false, &oldsym,
2308 &resolve_oldsym);
2309 #else
2310 gold_unreachable();
2311 #endif
2312 }
2313 else
2314 {
2315 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2316 sym = this->define_special_symbol<size, false>(&name, &version,
2317 false, &oldsym,
2318 &resolve_oldsym);
2319 #else
2320 gold_unreachable();
2321 #endif
2322 }
2323
2324 gold_assert(oldsym == NULL);
2325
2326 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2327 elfcpp::STV_DEFAULT, 0);
2328 ++this->saw_undefined_;
2329 }
2330
2331 // Set the dynamic symbol indexes. INDEX is the index of the first
2332 // global dynamic symbol. Pointers to the symbols are stored into the
2333 // vector SYMS. The names are added to DYNPOOL. This returns an
2334 // updated dynamic symbol index.
2335
2336 unsigned int
2337 Symbol_table::set_dynsym_indexes(unsigned int index,
2338 std::vector<Symbol*>* syms,
2339 Stringpool* dynpool,
2340 Versions* versions)
2341 {
2342 for (Symbol_table_type::iterator p = this->table_.begin();
2343 p != this->table_.end();
2344 ++p)
2345 {
2346 Symbol* sym = p->second;
2347
2348 // Note that SYM may already have a dynamic symbol index, since
2349 // some symbols appear more than once in the symbol table, with
2350 // and without a version.
2351
2352 if (!sym->should_add_dynsym_entry(this))
2353 sym->set_dynsym_index(-1U);
2354 else if (!sym->has_dynsym_index())
2355 {
2356 sym->set_dynsym_index(index);
2357 ++index;
2358 syms->push_back(sym);
2359 dynpool->add(sym->name(), false, NULL);
2360
2361 // Record any version information.
2362 if (sym->version() != NULL)
2363 versions->record_version(this, dynpool, sym);
2364
2365 // If the symbol is defined in a dynamic object and is
2366 // referenced in a regular object, then mark the dynamic
2367 // object as needed. This is used to implement --as-needed.
2368 if (sym->is_from_dynobj() && sym->in_reg())
2369 sym->object()->set_is_needed();
2370 }
2371 }
2372
2373 // Finish up the versions. In some cases this may add new dynamic
2374 // symbols.
2375 index = versions->finalize(this, index, syms);
2376
2377 return index;
2378 }
2379
2380 // Set the final values for all the symbols. The index of the first
2381 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2382 // file offset OFF. Add their names to POOL. Return the new file
2383 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2384
2385 off_t
2386 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2387 size_t dyncount, Stringpool* pool,
2388 unsigned int* plocal_symcount)
2389 {
2390 off_t ret;
2391
2392 gold_assert(*plocal_symcount != 0);
2393 this->first_global_index_ = *plocal_symcount;
2394
2395 this->dynamic_offset_ = dynoff;
2396 this->first_dynamic_global_index_ = dyn_global_index;
2397 this->dynamic_count_ = dyncount;
2398
2399 if (parameters->target().get_size() == 32)
2400 {
2401 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2402 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2403 #else
2404 gold_unreachable();
2405 #endif
2406 }
2407 else if (parameters->target().get_size() == 64)
2408 {
2409 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2410 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2411 #else
2412 gold_unreachable();
2413 #endif
2414 }
2415 else
2416 gold_unreachable();
2417
2418 // Now that we have the final symbol table, we can reliably note
2419 // which symbols should get warnings.
2420 this->warnings_.note_warnings(this);
2421
2422 return ret;
2423 }
2424
2425 // SYM is going into the symbol table at *PINDEX. Add the name to
2426 // POOL, update *PINDEX and *POFF.
2427
2428 template<int size>
2429 void
2430 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2431 unsigned int* pindex, off_t* poff)
2432 {
2433 sym->set_symtab_index(*pindex);
2434 if (sym->version() == NULL || !parameters->options().relocatable())
2435 pool->add(sym->name(), false, NULL);
2436 else
2437 pool->add(sym->versioned_name(), true, NULL);
2438 ++*pindex;
2439 *poff += elfcpp::Elf_sizes<size>::sym_size;
2440 }
2441
2442 // Set the final value for all the symbols. This is called after
2443 // Layout::finalize, so all the output sections have their final
2444 // address.
2445
2446 template<int size>
2447 off_t
2448 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2449 unsigned int* plocal_symcount)
2450 {
2451 off = align_address(off, size >> 3);
2452 this->offset_ = off;
2453
2454 unsigned int index = *plocal_symcount;
2455 const unsigned int orig_index = index;
2456
2457 // First do all the symbols which have been forced to be local, as
2458 // they must appear before all global symbols.
2459 for (Forced_locals::iterator p = this->forced_locals_.begin();
2460 p != this->forced_locals_.end();
2461 ++p)
2462 {
2463 Symbol* sym = *p;
2464 gold_assert(sym->is_forced_local());
2465 if (this->sized_finalize_symbol<size>(sym))
2466 {
2467 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2468 ++*plocal_symcount;
2469 }
2470 }
2471
2472 // Now do all the remaining symbols.
2473 for (Symbol_table_type::iterator p = this->table_.begin();
2474 p != this->table_.end();
2475 ++p)
2476 {
2477 Symbol* sym = p->second;
2478 if (this->sized_finalize_symbol<size>(sym))
2479 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2480 }
2481
2482 this->output_count_ = index - orig_index;
2483
2484 return off;
2485 }
2486
2487 // Compute the final value of SYM and store status in location PSTATUS.
2488 // During relaxation, this may be called multiple times for a symbol to
2489 // compute its would-be final value in each relaxation pass.
2490
2491 template<int size>
2492 typename Sized_symbol<size>::Value_type
2493 Symbol_table::compute_final_value(
2494 const Sized_symbol<size>* sym,
2495 Compute_final_value_status* pstatus) const
2496 {
2497 typedef typename Sized_symbol<size>::Value_type Value_type;
2498 Value_type value;
2499
2500 switch (sym->source())
2501 {
2502 case Symbol::FROM_OBJECT:
2503 {
2504 bool is_ordinary;
2505 unsigned int shndx = sym->shndx(&is_ordinary);
2506
2507 if (!is_ordinary
2508 && shndx != elfcpp::SHN_ABS
2509 && !Symbol::is_common_shndx(shndx))
2510 {
2511 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2512 return 0;
2513 }
2514
2515 Object* symobj = sym->object();
2516 if (symobj->is_dynamic())
2517 {
2518 value = 0;
2519 shndx = elfcpp::SHN_UNDEF;
2520 }
2521 else if (symobj->pluginobj() != NULL)
2522 {
2523 value = 0;
2524 shndx = elfcpp::SHN_UNDEF;
2525 }
2526 else if (shndx == elfcpp::SHN_UNDEF)
2527 value = 0;
2528 else if (!is_ordinary
2529 && (shndx == elfcpp::SHN_ABS
2530 || Symbol::is_common_shndx(shndx)))
2531 value = sym->value();
2532 else
2533 {
2534 Relobj* relobj = static_cast<Relobj*>(symobj);
2535 Output_section* os = relobj->output_section(shndx);
2536
2537 if (this->is_section_folded(relobj, shndx))
2538 {
2539 gold_assert(os == NULL);
2540 // Get the os of the section it is folded onto.
2541 Section_id folded = this->icf_->get_folded_section(relobj,
2542 shndx);
2543 gold_assert(folded.first != NULL);
2544 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2545 unsigned folded_shndx = folded.second;
2546
2547 os = folded_obj->output_section(folded_shndx);
2548 gold_assert(os != NULL);
2549
2550 // Replace (relobj, shndx) with canonical ICF input section.
2551 shndx = folded_shndx;
2552 relobj = folded_obj;
2553 }
2554
2555 uint64_t secoff64 = relobj->output_section_offset(shndx);
2556 if (os == NULL)
2557 {
2558 bool static_or_reloc = (parameters->doing_static_link() ||
2559 parameters->options().relocatable());
2560 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2561
2562 *pstatus = CFVS_NO_OUTPUT_SECTION;
2563 return 0;
2564 }
2565
2566 if (secoff64 == -1ULL)
2567 {
2568 // The section needs special handling (e.g., a merge section).
2569
2570 value = os->output_address(relobj, shndx, sym->value());
2571 }
2572 else
2573 {
2574 Value_type secoff =
2575 convert_types<Value_type, uint64_t>(secoff64);
2576 if (sym->type() == elfcpp::STT_TLS)
2577 value = sym->value() + os->tls_offset() + secoff;
2578 else
2579 value = sym->value() + os->address() + secoff;
2580 }
2581 }
2582 }
2583 break;
2584
2585 case Symbol::IN_OUTPUT_DATA:
2586 {
2587 Output_data* od = sym->output_data();
2588 value = sym->value();
2589 if (sym->type() != elfcpp::STT_TLS)
2590 value += od->address();
2591 else
2592 {
2593 Output_section* os = od->output_section();
2594 gold_assert(os != NULL);
2595 value += os->tls_offset() + (od->address() - os->address());
2596 }
2597 if (sym->offset_is_from_end())
2598 value += od->data_size();
2599 }
2600 break;
2601
2602 case Symbol::IN_OUTPUT_SEGMENT:
2603 {
2604 Output_segment* os = sym->output_segment();
2605 value = sym->value();
2606 if (sym->type() != elfcpp::STT_TLS)
2607 value += os->vaddr();
2608 switch (sym->offset_base())
2609 {
2610 case Symbol::SEGMENT_START:
2611 break;
2612 case Symbol::SEGMENT_END:
2613 value += os->memsz();
2614 break;
2615 case Symbol::SEGMENT_BSS:
2616 value += os->filesz();
2617 break;
2618 default:
2619 gold_unreachable();
2620 }
2621 }
2622 break;
2623
2624 case Symbol::IS_CONSTANT:
2625 value = sym->value();
2626 break;
2627
2628 case Symbol::IS_UNDEFINED:
2629 value = 0;
2630 break;
2631
2632 default:
2633 gold_unreachable();
2634 }
2635
2636 *pstatus = CFVS_OK;
2637 return value;
2638 }
2639
2640 // Finalize the symbol SYM. This returns true if the symbol should be
2641 // added to the symbol table, false otherwise.
2642
2643 template<int size>
2644 bool
2645 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2646 {
2647 typedef typename Sized_symbol<size>::Value_type Value_type;
2648
2649 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2650
2651 // The default version of a symbol may appear twice in the symbol
2652 // table. We only need to finalize it once.
2653 if (sym->has_symtab_index())
2654 return false;
2655
2656 if (!sym->in_reg())
2657 {
2658 gold_assert(!sym->has_symtab_index());
2659 sym->set_symtab_index(-1U);
2660 gold_assert(sym->dynsym_index() == -1U);
2661 return false;
2662 }
2663
2664 // If the symbol is only present on plugin files, the plugin decided we
2665 // don't need it.
2666 if (!sym->in_real_elf())
2667 {
2668 gold_assert(!sym->has_symtab_index());
2669 sym->set_symtab_index(-1U);
2670 return false;
2671 }
2672
2673 // Compute final symbol value.
2674 Compute_final_value_status status;
2675 Value_type value = this->compute_final_value(sym, &status);
2676
2677 switch (status)
2678 {
2679 case CFVS_OK:
2680 break;
2681 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2682 {
2683 bool is_ordinary;
2684 unsigned int shndx = sym->shndx(&is_ordinary);
2685 gold_error(_("%s: unsupported symbol section 0x%x"),
2686 sym->demangled_name().c_str(), shndx);
2687 }
2688 break;
2689 case CFVS_NO_OUTPUT_SECTION:
2690 sym->set_symtab_index(-1U);
2691 return false;
2692 default:
2693 gold_unreachable();
2694 }
2695
2696 sym->set_value(value);
2697
2698 if (parameters->options().strip_all()
2699 || !parameters->options().should_retain_symbol(sym->name()))
2700 {
2701 sym->set_symtab_index(-1U);
2702 return false;
2703 }
2704
2705 return true;
2706 }
2707
2708 // Write out the global symbols.
2709
2710 void
2711 Symbol_table::write_globals(const Stringpool* sympool,
2712 const Stringpool* dynpool,
2713 Output_symtab_xindex* symtab_xindex,
2714 Output_symtab_xindex* dynsym_xindex,
2715 Output_file* of) const
2716 {
2717 switch (parameters->size_and_endianness())
2718 {
2719 #ifdef HAVE_TARGET_32_LITTLE
2720 case Parameters::TARGET_32_LITTLE:
2721 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2722 dynsym_xindex, of);
2723 break;
2724 #endif
2725 #ifdef HAVE_TARGET_32_BIG
2726 case Parameters::TARGET_32_BIG:
2727 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2728 dynsym_xindex, of);
2729 break;
2730 #endif
2731 #ifdef HAVE_TARGET_64_LITTLE
2732 case Parameters::TARGET_64_LITTLE:
2733 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2734 dynsym_xindex, of);
2735 break;
2736 #endif
2737 #ifdef HAVE_TARGET_64_BIG
2738 case Parameters::TARGET_64_BIG:
2739 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2740 dynsym_xindex, of);
2741 break;
2742 #endif
2743 default:
2744 gold_unreachable();
2745 }
2746 }
2747
2748 // Write out the global symbols.
2749
2750 template<int size, bool big_endian>
2751 void
2752 Symbol_table::sized_write_globals(const Stringpool* sympool,
2753 const Stringpool* dynpool,
2754 Output_symtab_xindex* symtab_xindex,
2755 Output_symtab_xindex* dynsym_xindex,
2756 Output_file* of) const
2757 {
2758 const Target& target = parameters->target();
2759
2760 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2761
2762 const unsigned int output_count = this->output_count_;
2763 const section_size_type oview_size = output_count * sym_size;
2764 const unsigned int first_global_index = this->first_global_index_;
2765 unsigned char* psyms;
2766 if (this->offset_ == 0 || output_count == 0)
2767 psyms = NULL;
2768 else
2769 psyms = of->get_output_view(this->offset_, oview_size);
2770
2771 const unsigned int dynamic_count = this->dynamic_count_;
2772 const section_size_type dynamic_size = dynamic_count * sym_size;
2773 const unsigned int first_dynamic_global_index =
2774 this->first_dynamic_global_index_;
2775 unsigned char* dynamic_view;
2776 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2777 dynamic_view = NULL;
2778 else
2779 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2780
2781 for (Symbol_table_type::const_iterator p = this->table_.begin();
2782 p != this->table_.end();
2783 ++p)
2784 {
2785 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2786
2787 // Possibly warn about unresolved symbols in shared libraries.
2788 this->warn_about_undefined_dynobj_symbol(sym);
2789
2790 unsigned int sym_index = sym->symtab_index();
2791 unsigned int dynsym_index;
2792 if (dynamic_view == NULL)
2793 dynsym_index = -1U;
2794 else
2795 dynsym_index = sym->dynsym_index();
2796
2797 if (sym_index == -1U && dynsym_index == -1U)
2798 {
2799 // This symbol is not included in the output file.
2800 continue;
2801 }
2802
2803 unsigned int shndx;
2804 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2805 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2806 elfcpp::STB binding = sym->binding();
2807 switch (sym->source())
2808 {
2809 case Symbol::FROM_OBJECT:
2810 {
2811 bool is_ordinary;
2812 unsigned int in_shndx = sym->shndx(&is_ordinary);
2813
2814 if (!is_ordinary
2815 && in_shndx != elfcpp::SHN_ABS
2816 && !Symbol::is_common_shndx(in_shndx))
2817 {
2818 gold_error(_("%s: unsupported symbol section 0x%x"),
2819 sym->demangled_name().c_str(), in_shndx);
2820 shndx = in_shndx;
2821 }
2822 else
2823 {
2824 Object* symobj = sym->object();
2825 if (symobj->is_dynamic())
2826 {
2827 if (sym->needs_dynsym_value())
2828 dynsym_value = target.dynsym_value(sym);
2829 shndx = elfcpp::SHN_UNDEF;
2830 if (sym->is_undef_binding_weak())
2831 binding = elfcpp::STB_WEAK;
2832 else
2833 binding = elfcpp::STB_GLOBAL;
2834 }
2835 else if (symobj->pluginobj() != NULL)
2836 shndx = elfcpp::SHN_UNDEF;
2837 else if (in_shndx == elfcpp::SHN_UNDEF
2838 || (!is_ordinary
2839 && (in_shndx == elfcpp::SHN_ABS
2840 || Symbol::is_common_shndx(in_shndx))))
2841 shndx = in_shndx;
2842 else
2843 {
2844 Relobj* relobj = static_cast<Relobj*>(symobj);
2845 Output_section* os = relobj->output_section(in_shndx);
2846 if (this->is_section_folded(relobj, in_shndx))
2847 {
2848 // This global symbol must be written out even though
2849 // it is folded.
2850 // Get the os of the section it is folded onto.
2851 Section_id folded =
2852 this->icf_->get_folded_section(relobj, in_shndx);
2853 gold_assert(folded.first !=NULL);
2854 Relobj* folded_obj =
2855 reinterpret_cast<Relobj*>(folded.first);
2856 os = folded_obj->output_section(folded.second);
2857 gold_assert(os != NULL);
2858 }
2859 gold_assert(os != NULL);
2860 shndx = os->out_shndx();
2861
2862 if (shndx >= elfcpp::SHN_LORESERVE)
2863 {
2864 if (sym_index != -1U)
2865 symtab_xindex->add(sym_index, shndx);
2866 if (dynsym_index != -1U)
2867 dynsym_xindex->add(dynsym_index, shndx);
2868 shndx = elfcpp::SHN_XINDEX;
2869 }
2870
2871 // In object files symbol values are section
2872 // relative.
2873 if (parameters->options().relocatable())
2874 sym_value -= os->address();
2875 }
2876 }
2877 }
2878 break;
2879
2880 case Symbol::IN_OUTPUT_DATA:
2881 shndx = sym->output_data()->out_shndx();
2882 if (shndx >= elfcpp::SHN_LORESERVE)
2883 {
2884 if (sym_index != -1U)
2885 symtab_xindex->add(sym_index, shndx);
2886 if (dynsym_index != -1U)
2887 dynsym_xindex->add(dynsym_index, shndx);
2888 shndx = elfcpp::SHN_XINDEX;
2889 }
2890 break;
2891
2892 case Symbol::IN_OUTPUT_SEGMENT:
2893 shndx = elfcpp::SHN_ABS;
2894 break;
2895
2896 case Symbol::IS_CONSTANT:
2897 shndx = elfcpp::SHN_ABS;
2898 break;
2899
2900 case Symbol::IS_UNDEFINED:
2901 shndx = elfcpp::SHN_UNDEF;
2902 break;
2903
2904 default:
2905 gold_unreachable();
2906 }
2907
2908 if (sym_index != -1U)
2909 {
2910 sym_index -= first_global_index;
2911 gold_assert(sym_index < output_count);
2912 unsigned char* ps = psyms + (sym_index * sym_size);
2913 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2914 binding, sympool, ps);
2915 }
2916
2917 if (dynsym_index != -1U)
2918 {
2919 dynsym_index -= first_dynamic_global_index;
2920 gold_assert(dynsym_index < dynamic_count);
2921 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2922 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2923 binding, dynpool, pd);
2924 }
2925 }
2926
2927 of->write_output_view(this->offset_, oview_size, psyms);
2928 if (dynamic_view != NULL)
2929 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2930 }
2931
2932 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2933 // strtab holding the name.
2934
2935 template<int size, bool big_endian>
2936 void
2937 Symbol_table::sized_write_symbol(
2938 Sized_symbol<size>* sym,
2939 typename elfcpp::Elf_types<size>::Elf_Addr value,
2940 unsigned int shndx,
2941 elfcpp::STB binding,
2942 const Stringpool* pool,
2943 unsigned char* p) const
2944 {
2945 elfcpp::Sym_write<size, big_endian> osym(p);
2946 if (sym->version() == NULL || !parameters->options().relocatable())
2947 osym.put_st_name(pool->get_offset(sym->name()));
2948 else
2949 osym.put_st_name(pool->get_offset(sym->versioned_name()));
2950 osym.put_st_value(value);
2951 // Use a symbol size of zero for undefined symbols from shared libraries.
2952 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2953 osym.put_st_size(0);
2954 else
2955 osym.put_st_size(sym->symsize());
2956 elfcpp::STT type = sym->type();
2957 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2958 if (type == elfcpp::STT_GNU_IFUNC
2959 && sym->is_from_dynobj())
2960 type = elfcpp::STT_FUNC;
2961 // A version script may have overridden the default binding.
2962 if (sym->is_forced_local())
2963 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2964 else
2965 osym.put_st_info(elfcpp::elf_st_info(binding, type));
2966 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2967 osym.put_st_shndx(shndx);
2968 }
2969
2970 // Check for unresolved symbols in shared libraries. This is
2971 // controlled by the --allow-shlib-undefined option.
2972
2973 // We only warn about libraries for which we have seen all the
2974 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2975 // which were not seen in this link. If we didn't see a DT_NEEDED
2976 // entry, we aren't going to be able to reliably report whether the
2977 // symbol is undefined.
2978
2979 // We also don't warn about libraries found in a system library
2980 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2981 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2982 // can have undefined references satisfied by ld-linux.so.
2983
2984 inline void
2985 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2986 {
2987 bool dummy;
2988 if (sym->source() == Symbol::FROM_OBJECT
2989 && sym->object()->is_dynamic()
2990 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2991 && sym->binding() != elfcpp::STB_WEAK
2992 && !parameters->options().allow_shlib_undefined()
2993 && !parameters->target().is_defined_by_abi(sym)
2994 && !sym->object()->is_in_system_directory())
2995 {
2996 // A very ugly cast.
2997 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2998 if (!dynobj->has_unknown_needed_entries())
2999 gold_undefined_symbol(sym);
3000 }
3001 }
3002
3003 // Write out a section symbol. Return the update offset.
3004
3005 void
3006 Symbol_table::write_section_symbol(const Output_section* os,
3007 Output_symtab_xindex* symtab_xindex,
3008 Output_file* of,
3009 off_t offset) const
3010 {
3011 switch (parameters->size_and_endianness())
3012 {
3013 #ifdef HAVE_TARGET_32_LITTLE
3014 case Parameters::TARGET_32_LITTLE:
3015 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3016 offset);
3017 break;
3018 #endif
3019 #ifdef HAVE_TARGET_32_BIG
3020 case Parameters::TARGET_32_BIG:
3021 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3022 offset);
3023 break;
3024 #endif
3025 #ifdef HAVE_TARGET_64_LITTLE
3026 case Parameters::TARGET_64_LITTLE:
3027 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3028 offset);
3029 break;
3030 #endif
3031 #ifdef HAVE_TARGET_64_BIG
3032 case Parameters::TARGET_64_BIG:
3033 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3034 offset);
3035 break;
3036 #endif
3037 default:
3038 gold_unreachable();
3039 }
3040 }
3041
3042 // Write out a section symbol, specialized for size and endianness.
3043
3044 template<int size, bool big_endian>
3045 void
3046 Symbol_table::sized_write_section_symbol(const Output_section* os,
3047 Output_symtab_xindex* symtab_xindex,
3048 Output_file* of,
3049 off_t offset) const
3050 {
3051 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3052
3053 unsigned char* pov = of->get_output_view(offset, sym_size);
3054
3055 elfcpp::Sym_write<size, big_endian> osym(pov);
3056 osym.put_st_name(0);
3057 if (parameters->options().relocatable())
3058 osym.put_st_value(0);
3059 else
3060 osym.put_st_value(os->address());
3061 osym.put_st_size(0);
3062 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3063 elfcpp::STT_SECTION));
3064 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3065
3066 unsigned int shndx = os->out_shndx();
3067 if (shndx >= elfcpp::SHN_LORESERVE)
3068 {
3069 symtab_xindex->add(os->symtab_index(), shndx);
3070 shndx = elfcpp::SHN_XINDEX;
3071 }
3072 osym.put_st_shndx(shndx);
3073
3074 of->write_output_view(offset, sym_size, pov);
3075 }
3076
3077 // Print statistical information to stderr. This is used for --stats.
3078
3079 void
3080 Symbol_table::print_stats() const
3081 {
3082 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3083 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3084 program_name, this->table_.size(), this->table_.bucket_count());
3085 #else
3086 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3087 program_name, this->table_.size());
3088 #endif
3089 this->namepool_.print_stats("symbol table stringpool");
3090 }
3091
3092 // We check for ODR violations by looking for symbols with the same
3093 // name for which the debugging information reports that they were
3094 // defined in disjoint source locations. When comparing the source
3095 // location, we consider instances with the same base filename to be
3096 // the same. This is because different object files/shared libraries
3097 // can include the same header file using different paths, and
3098 // different optimization settings can make the line number appear to
3099 // be a couple lines off, and we don't want to report an ODR violation
3100 // in those cases.
3101
3102 // This struct is used to compare line information, as returned by
3103 // Dwarf_line_info::one_addr2line. It implements a < comparison
3104 // operator used with std::sort.
3105
3106 struct Odr_violation_compare
3107 {
3108 bool
3109 operator()(const std::string& s1, const std::string& s2) const
3110 {
3111 // Inputs should be of the form "dirname/filename:linenum" where
3112 // "dirname/" is optional. We want to compare just the filename:linenum.
3113
3114 // Find the last '/' in each string.
3115 std::string::size_type s1begin = s1.rfind('/');
3116 std::string::size_type s2begin = s2.rfind('/');
3117 // If there was no '/' in a string, start at the beginning.
3118 if (s1begin == std::string::npos)
3119 s1begin = 0;
3120 if (s2begin == std::string::npos)
3121 s2begin = 0;
3122 return s1.compare(s1begin, std::string::npos,
3123 s2, s2begin, std::string::npos) < 0;
3124 }
3125 };
3126
3127 // Returns all of the lines attached to LOC, not just the one the
3128 // instruction actually came from.
3129 std::vector<std::string>
3130 Symbol_table::linenos_from_loc(const Task* task,
3131 const Symbol_location& loc)
3132 {
3133 // We need to lock the object in order to read it. This
3134 // means that we have to run in a singleton Task. If we
3135 // want to run this in a general Task for better
3136 // performance, we will need one Task for object, plus
3137 // appropriate locking to ensure that we don't conflict with
3138 // other uses of the object. Also note, one_addr2line is not
3139 // currently thread-safe.
3140 Task_lock_obj<Object> tl(task, loc.object);
3141
3142 std::vector<std::string> result;
3143 // 16 is the size of the object-cache that one_addr2line should use.
3144 std::string canonical_result = Dwarf_line_info::one_addr2line(
3145 loc.object, loc.shndx, loc.offset, 16, &result);
3146 if (!canonical_result.empty())
3147 result.push_back(canonical_result);
3148 return result;
3149 }
3150
3151 // OutputIterator that records if it was ever assigned to. This
3152 // allows it to be used with std::set_intersection() to check for
3153 // intersection rather than computing the intersection.
3154 struct Check_intersection
3155 {
3156 Check_intersection()
3157 : value_(false)
3158 {}
3159
3160 bool had_intersection() const
3161 { return this->value_; }
3162
3163 Check_intersection& operator++()
3164 { return *this; }
3165
3166 Check_intersection& operator*()
3167 { return *this; }
3168
3169 template<typename T>
3170 Check_intersection& operator=(const T&)
3171 {
3172 this->value_ = true;
3173 return *this;
3174 }
3175
3176 private:
3177 bool value_;
3178 };
3179
3180 // Check candidate_odr_violations_ to find symbols with the same name
3181 // but apparently different definitions (different source-file/line-no
3182 // for each line assigned to the first instruction).
3183
3184 void
3185 Symbol_table::detect_odr_violations(const Task* task,
3186 const char* output_file_name) const
3187 {
3188 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3189 it != candidate_odr_violations_.end();
3190 ++it)
3191 {
3192 const char* const symbol_name = it->first;
3193
3194 std::string first_object_name;
3195 std::vector<std::string> first_object_linenos;
3196
3197 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3198 locs = it->second.begin();
3199 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3200 locs_end = it->second.end();
3201 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3202 {
3203 // Save the line numbers from the first definition to
3204 // compare to the other definitions. Ideally, we'd compare
3205 // every definition to every other, but we don't want to
3206 // take O(N^2) time to do this. This shortcut may cause
3207 // false negatives that appear or disappear depending on the
3208 // link order, but it won't cause false positives.
3209 first_object_name = locs->object->name();
3210 first_object_linenos = this->linenos_from_loc(task, *locs);
3211 }
3212
3213 // Sort by Odr_violation_compare to make std::set_intersection work.
3214 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3215 Odr_violation_compare());
3216
3217 for (; locs != locs_end; ++locs)
3218 {
3219 std::vector<std::string> linenos =
3220 this->linenos_from_loc(task, *locs);
3221 // linenos will be empty if we couldn't parse the debug info.
3222 if (linenos.empty())
3223 continue;
3224 // Sort by Odr_violation_compare to make std::set_intersection work.
3225 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3226
3227 Check_intersection intersection_result =
3228 std::set_intersection(first_object_linenos.begin(),
3229 first_object_linenos.end(),
3230 linenos.begin(),
3231 linenos.end(),
3232 Check_intersection(),
3233 Odr_violation_compare());
3234 if (!intersection_result.had_intersection())
3235 {
3236 gold_warning(_("while linking %s: symbol '%s' defined in "
3237 "multiple places (possible ODR violation):"),
3238 output_file_name, demangle(symbol_name).c_str());
3239 // This only prints one location from each definition,
3240 // which may not be the location we expect to intersect
3241 // with another definition. We could print the whole
3242 // set of locations, but that seems too verbose.
3243 gold_assert(!first_object_linenos.empty());
3244 gold_assert(!linenos.empty());
3245 fprintf(stderr, _(" %s from %s\n"),
3246 first_object_linenos[0].c_str(),
3247 first_object_name.c_str());
3248 fprintf(stderr, _(" %s from %s\n"),
3249 linenos[0].c_str(),
3250 locs->object->name().c_str());
3251 // Only print one broken pair, to avoid needing to
3252 // compare against a list of the disjoint definition
3253 // locations we've found so far. (If we kept comparing
3254 // against just the first one, we'd get a lot of
3255 // redundant complaints about the second definition
3256 // location.)
3257 break;
3258 }
3259 }
3260 }
3261 // We only call one_addr2line() in this function, so we can clear its cache.
3262 Dwarf_line_info::clear_addr2line_cache();
3263 }
3264
3265 // Warnings functions.
3266
3267 // Add a new warning.
3268
3269 void
3270 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3271 const std::string& warning)
3272 {
3273 name = symtab->canonicalize_name(name);
3274 this->warnings_[name].set(obj, warning);
3275 }
3276
3277 // Look through the warnings and mark the symbols for which we should
3278 // warn. This is called during Layout::finalize when we know the
3279 // sources for all the symbols.
3280
3281 void
3282 Warnings::note_warnings(Symbol_table* symtab)
3283 {
3284 for (Warning_table::iterator p = this->warnings_.begin();
3285 p != this->warnings_.end();
3286 ++p)
3287 {
3288 Symbol* sym = symtab->lookup(p->first, NULL);
3289 if (sym != NULL
3290 && sym->source() == Symbol::FROM_OBJECT
3291 && sym->object() == p->second.object)
3292 sym->set_has_warning();
3293 }
3294 }
3295
3296 // Issue a warning. This is called when we see a relocation against a
3297 // symbol for which has a warning.
3298
3299 template<int size, bool big_endian>
3300 void
3301 Warnings::issue_warning(const Symbol* sym,
3302 const Relocate_info<size, big_endian>* relinfo,
3303 size_t relnum, off_t reloffset) const
3304 {
3305 gold_assert(sym->has_warning());
3306
3307 // We don't want to issue a warning for a relocation against the
3308 // symbol in the same object file in which the symbol is defined.
3309 if (sym->object() == relinfo->object)
3310 return;
3311
3312 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3313 gold_assert(p != this->warnings_.end());
3314 gold_warning_at_location(relinfo, relnum, reloffset,
3315 "%s", p->second.text.c_str());
3316 }
3317
3318 // Instantiate the templates we need. We could use the configure
3319 // script to restrict this to only the ones needed for implemented
3320 // targets.
3321
3322 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3323 template
3324 void
3325 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3326 #endif
3327
3328 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3329 template
3330 void
3331 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3332 #endif
3333
3334 #ifdef HAVE_TARGET_32_LITTLE
3335 template
3336 void
3337 Symbol_table::add_from_relobj<32, false>(
3338 Sized_relobj_file<32, false>* relobj,
3339 const unsigned char* syms,
3340 size_t count,
3341 size_t symndx_offset,
3342 const char* sym_names,
3343 size_t sym_name_size,
3344 Sized_relobj_file<32, false>::Symbols* sympointers,
3345 size_t* defined);
3346 #endif
3347
3348 #ifdef HAVE_TARGET_32_BIG
3349 template
3350 void
3351 Symbol_table::add_from_relobj<32, true>(
3352 Sized_relobj_file<32, true>* relobj,
3353 const unsigned char* syms,
3354 size_t count,
3355 size_t symndx_offset,
3356 const char* sym_names,
3357 size_t sym_name_size,
3358 Sized_relobj_file<32, true>::Symbols* sympointers,
3359 size_t* defined);
3360 #endif
3361
3362 #ifdef HAVE_TARGET_64_LITTLE
3363 template
3364 void
3365 Symbol_table::add_from_relobj<64, false>(
3366 Sized_relobj_file<64, false>* relobj,
3367 const unsigned char* syms,
3368 size_t count,
3369 size_t symndx_offset,
3370 const char* sym_names,
3371 size_t sym_name_size,
3372 Sized_relobj_file<64, false>::Symbols* sympointers,
3373 size_t* defined);
3374 #endif
3375
3376 #ifdef HAVE_TARGET_64_BIG
3377 template
3378 void
3379 Symbol_table::add_from_relobj<64, true>(
3380 Sized_relobj_file<64, true>* relobj,
3381 const unsigned char* syms,
3382 size_t count,
3383 size_t symndx_offset,
3384 const char* sym_names,
3385 size_t sym_name_size,
3386 Sized_relobj_file<64, true>::Symbols* sympointers,
3387 size_t* defined);
3388 #endif
3389
3390 #ifdef HAVE_TARGET_32_LITTLE
3391 template
3392 Symbol*
3393 Symbol_table::add_from_pluginobj<32, false>(
3394 Sized_pluginobj<32, false>* obj,
3395 const char* name,
3396 const char* ver,
3397 elfcpp::Sym<32, false>* sym);
3398 #endif
3399
3400 #ifdef HAVE_TARGET_32_BIG
3401 template
3402 Symbol*
3403 Symbol_table::add_from_pluginobj<32, true>(
3404 Sized_pluginobj<32, true>* obj,
3405 const char* name,
3406 const char* ver,
3407 elfcpp::Sym<32, true>* sym);
3408 #endif
3409
3410 #ifdef HAVE_TARGET_64_LITTLE
3411 template
3412 Symbol*
3413 Symbol_table::add_from_pluginobj<64, false>(
3414 Sized_pluginobj<64, false>* obj,
3415 const char* name,
3416 const char* ver,
3417 elfcpp::Sym<64, false>* sym);
3418 #endif
3419
3420 #ifdef HAVE_TARGET_64_BIG
3421 template
3422 Symbol*
3423 Symbol_table::add_from_pluginobj<64, true>(
3424 Sized_pluginobj<64, true>* obj,
3425 const char* name,
3426 const char* ver,
3427 elfcpp::Sym<64, true>* sym);
3428 #endif
3429
3430 #ifdef HAVE_TARGET_32_LITTLE
3431 template
3432 void
3433 Symbol_table::add_from_dynobj<32, false>(
3434 Sized_dynobj<32, false>* dynobj,
3435 const unsigned char* syms,
3436 size_t count,
3437 const char* sym_names,
3438 size_t sym_name_size,
3439 const unsigned char* versym,
3440 size_t versym_size,
3441 const std::vector<const char*>* version_map,
3442 Sized_relobj_file<32, false>::Symbols* sympointers,
3443 size_t* defined);
3444 #endif
3445
3446 #ifdef HAVE_TARGET_32_BIG
3447 template
3448 void
3449 Symbol_table::add_from_dynobj<32, true>(
3450 Sized_dynobj<32, true>* dynobj,
3451 const unsigned char* syms,
3452 size_t count,
3453 const char* sym_names,
3454 size_t sym_name_size,
3455 const unsigned char* versym,
3456 size_t versym_size,
3457 const std::vector<const char*>* version_map,
3458 Sized_relobj_file<32, true>::Symbols* sympointers,
3459 size_t* defined);
3460 #endif
3461
3462 #ifdef HAVE_TARGET_64_LITTLE
3463 template
3464 void
3465 Symbol_table::add_from_dynobj<64, false>(
3466 Sized_dynobj<64, false>* dynobj,
3467 const unsigned char* syms,
3468 size_t count,
3469 const char* sym_names,
3470 size_t sym_name_size,
3471 const unsigned char* versym,
3472 size_t versym_size,
3473 const std::vector<const char*>* version_map,
3474 Sized_relobj_file<64, false>::Symbols* sympointers,
3475 size_t* defined);
3476 #endif
3477
3478 #ifdef HAVE_TARGET_64_BIG
3479 template
3480 void
3481 Symbol_table::add_from_dynobj<64, true>(
3482 Sized_dynobj<64, true>* dynobj,
3483 const unsigned char* syms,
3484 size_t count,
3485 const char* sym_names,
3486 size_t sym_name_size,
3487 const unsigned char* versym,
3488 size_t versym_size,
3489 const std::vector<const char*>* version_map,
3490 Sized_relobj_file<64, true>::Symbols* sympointers,
3491 size_t* defined);
3492 #endif
3493
3494 #ifdef HAVE_TARGET_32_LITTLE
3495 template
3496 Sized_symbol<32>*
3497 Symbol_table::add_from_incrobj(
3498 Object* obj,
3499 const char* name,
3500 const char* ver,
3501 elfcpp::Sym<32, false>* sym);
3502 #endif
3503
3504 #ifdef HAVE_TARGET_32_BIG
3505 template
3506 Sized_symbol<32>*
3507 Symbol_table::add_from_incrobj(
3508 Object* obj,
3509 const char* name,
3510 const char* ver,
3511 elfcpp::Sym<32, true>* sym);
3512 #endif
3513
3514 #ifdef HAVE_TARGET_64_LITTLE
3515 template
3516 Sized_symbol<64>*
3517 Symbol_table::add_from_incrobj(
3518 Object* obj,
3519 const char* name,
3520 const char* ver,
3521 elfcpp::Sym<64, false>* sym);
3522 #endif
3523
3524 #ifdef HAVE_TARGET_64_BIG
3525 template
3526 Sized_symbol<64>*
3527 Symbol_table::add_from_incrobj(
3528 Object* obj,
3529 const char* name,
3530 const char* ver,
3531 elfcpp::Sym<64, true>* sym);
3532 #endif
3533
3534 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3535 template
3536 void
3537 Symbol_table::define_with_copy_reloc<32>(
3538 Sized_symbol<32>* sym,
3539 Output_data* posd,
3540 elfcpp::Elf_types<32>::Elf_Addr value);
3541 #endif
3542
3543 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3544 template
3545 void
3546 Symbol_table::define_with_copy_reloc<64>(
3547 Sized_symbol<64>* sym,
3548 Output_data* posd,
3549 elfcpp::Elf_types<64>::Elf_Addr value);
3550 #endif
3551
3552 #ifdef HAVE_TARGET_32_LITTLE
3553 template
3554 void
3555 Warnings::issue_warning<32, false>(const Symbol* sym,
3556 const Relocate_info<32, false>* relinfo,
3557 size_t relnum, off_t reloffset) const;
3558 #endif
3559
3560 #ifdef HAVE_TARGET_32_BIG
3561 template
3562 void
3563 Warnings::issue_warning<32, true>(const Symbol* sym,
3564 const Relocate_info<32, true>* relinfo,
3565 size_t relnum, off_t reloffset) const;
3566 #endif
3567
3568 #ifdef HAVE_TARGET_64_LITTLE
3569 template
3570 void
3571 Warnings::issue_warning<64, false>(const Symbol* sym,
3572 const Relocate_info<64, false>* relinfo,
3573 size_t relnum, off_t reloffset) const;
3574 #endif
3575
3576 #ifdef HAVE_TARGET_64_BIG
3577 template
3578 void
3579 Warnings::issue_warning<64, true>(const Symbol* sym,
3580 const Relocate_info<64, true>* relinfo,
3581 size_t relnum, off_t reloffset) const;
3582 #endif
3583
3584 } // End namespace gold.
This page took 0.100216 seconds and 5 git commands to generate.