Don't allow COPY relocations for protected symbols.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 }
85
86 // Return the demangled version of the symbol's name, but only
87 // if the --demangle flag was set.
88
89 static std::string
90 demangle(const char* name)
91 {
92 if (!parameters->options().do_demangle())
93 return name;
94
95 // cplus_demangle allocates memory for the result it returns,
96 // and returns NULL if the name is already demangled.
97 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
98 if (demangled_name == NULL)
99 return name;
100
101 std::string retval(demangled_name);
102 free(demangled_name);
103 return retval;
104 }
105
106 std::string
107 Symbol::demangled_name() const
108 {
109 return demangle(this->name());
110 }
111
112 // Initialize the fields in the base class Symbol for SYM in OBJECT.
113
114 template<int size, bool big_endian>
115 void
116 Symbol::init_base_object(const char* name, const char* version, Object* object,
117 const elfcpp::Sym<size, big_endian>& sym,
118 unsigned int st_shndx, bool is_ordinary)
119 {
120 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
121 sym.get_st_visibility(), sym.get_st_nonvis());
122 this->u_.from_object.object = object;
123 this->u_.from_object.shndx = st_shndx;
124 this->is_ordinary_shndx_ = is_ordinary;
125 this->source_ = FROM_OBJECT;
126 this->in_reg_ = !object->is_dynamic();
127 this->in_dyn_ = object->is_dynamic();
128 this->in_real_elf_ = object->pluginobj() == NULL;
129 }
130
131 // Initialize the fields in the base class Symbol for a symbol defined
132 // in an Output_data.
133
134 void
135 Symbol::init_base_output_data(const char* name, const char* version,
136 Output_data* od, elfcpp::STT type,
137 elfcpp::STB binding, elfcpp::STV visibility,
138 unsigned char nonvis, bool offset_is_from_end,
139 bool is_predefined)
140 {
141 this->init_fields(name, version, type, binding, visibility, nonvis);
142 this->u_.in_output_data.output_data = od;
143 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
144 this->source_ = IN_OUTPUT_DATA;
145 this->in_reg_ = true;
146 this->in_real_elf_ = true;
147 this->is_predefined_ = is_predefined;
148 }
149
150 // Initialize the fields in the base class Symbol for a symbol defined
151 // in an Output_segment.
152
153 void
154 Symbol::init_base_output_segment(const char* name, const char* version,
155 Output_segment* os, elfcpp::STT type,
156 elfcpp::STB binding, elfcpp::STV visibility,
157 unsigned char nonvis,
158 Segment_offset_base offset_base,
159 bool is_predefined)
160 {
161 this->init_fields(name, version, type, binding, visibility, nonvis);
162 this->u_.in_output_segment.output_segment = os;
163 this->u_.in_output_segment.offset_base = offset_base;
164 this->source_ = IN_OUTPUT_SEGMENT;
165 this->in_reg_ = true;
166 this->in_real_elf_ = true;
167 this->is_predefined_ = is_predefined;
168 }
169
170 // Initialize the fields in the base class Symbol for a symbol defined
171 // as a constant.
172
173 void
174 Symbol::init_base_constant(const char* name, const char* version,
175 elfcpp::STT type, elfcpp::STB binding,
176 elfcpp::STV visibility, unsigned char nonvis,
177 bool is_predefined)
178 {
179 this->init_fields(name, version, type, binding, visibility, nonvis);
180 this->source_ = IS_CONSTANT;
181 this->in_reg_ = true;
182 this->in_real_elf_ = true;
183 this->is_predefined_ = is_predefined;
184 }
185
186 // Initialize the fields in the base class Symbol for an undefined
187 // symbol.
188
189 void
190 Symbol::init_base_undefined(const char* name, const char* version,
191 elfcpp::STT type, elfcpp::STB binding,
192 elfcpp::STV visibility, unsigned char nonvis)
193 {
194 this->init_fields(name, version, type, binding, visibility, nonvis);
195 this->dynsym_index_ = -1U;
196 this->source_ = IS_UNDEFINED;
197 this->in_reg_ = true;
198 this->in_real_elf_ = true;
199 }
200
201 // Allocate a common symbol in the base.
202
203 void
204 Symbol::allocate_base_common(Output_data* od)
205 {
206 gold_assert(this->is_common());
207 this->source_ = IN_OUTPUT_DATA;
208 this->u_.in_output_data.output_data = od;
209 this->u_.in_output_data.offset_is_from_end = false;
210 }
211
212 // Initialize the fields in Sized_symbol for SYM in OBJECT.
213
214 template<int size>
215 template<bool big_endian>
216 void
217 Sized_symbol<size>::init_object(const char* name, const char* version,
218 Object* object,
219 const elfcpp::Sym<size, big_endian>& sym,
220 unsigned int st_shndx, bool is_ordinary)
221 {
222 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
223 this->value_ = sym.get_st_value();
224 this->symsize_ = sym.get_st_size();
225 }
226
227 // Initialize the fields in Sized_symbol for a symbol defined in an
228 // Output_data.
229
230 template<int size>
231 void
232 Sized_symbol<size>::init_output_data(const char* name, const char* version,
233 Output_data* od, Value_type value,
234 Size_type symsize, elfcpp::STT type,
235 elfcpp::STB binding,
236 elfcpp::STV visibility,
237 unsigned char nonvis,
238 bool offset_is_from_end,
239 bool is_predefined)
240 {
241 this->init_base_output_data(name, version, od, type, binding, visibility,
242 nonvis, offset_is_from_end, is_predefined);
243 this->value_ = value;
244 this->symsize_ = symsize;
245 }
246
247 // Initialize the fields in Sized_symbol for a symbol defined in an
248 // Output_segment.
249
250 template<int size>
251 void
252 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
253 Output_segment* os, Value_type value,
254 Size_type symsize, elfcpp::STT type,
255 elfcpp::STB binding,
256 elfcpp::STV visibility,
257 unsigned char nonvis,
258 Segment_offset_base offset_base,
259 bool is_predefined)
260 {
261 this->init_base_output_segment(name, version, os, type, binding, visibility,
262 nonvis, offset_base, is_predefined);
263 this->value_ = value;
264 this->symsize_ = symsize;
265 }
266
267 // Initialize the fields in Sized_symbol for a symbol defined as a
268 // constant.
269
270 template<int size>
271 void
272 Sized_symbol<size>::init_constant(const char* name, const char* version,
273 Value_type value, Size_type symsize,
274 elfcpp::STT type, elfcpp::STB binding,
275 elfcpp::STV visibility, unsigned char nonvis,
276 bool is_predefined)
277 {
278 this->init_base_constant(name, version, type, binding, visibility, nonvis,
279 is_predefined);
280 this->value_ = value;
281 this->symsize_ = symsize;
282 }
283
284 // Initialize the fields in Sized_symbol for an undefined symbol.
285
286 template<int size>
287 void
288 Sized_symbol<size>::init_undefined(const char* name, const char* version,
289 Value_type value, elfcpp::STT type,
290 elfcpp::STB binding, elfcpp::STV visibility,
291 unsigned char nonvis)
292 {
293 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
294 this->value_ = value;
295 this->symsize_ = 0;
296 }
297
298 // Return an allocated string holding the symbol's name as
299 // name@version. This is used for relocatable links.
300
301 std::string
302 Symbol::versioned_name() const
303 {
304 gold_assert(this->version_ != NULL);
305 std::string ret = this->name_;
306 ret.push_back('@');
307 if (this->is_def_)
308 ret.push_back('@');
309 ret += this->version_;
310 return ret;
311 }
312
313 // Return true if SHNDX represents a common symbol.
314
315 bool
316 Symbol::is_common_shndx(unsigned int shndx)
317 {
318 return (shndx == elfcpp::SHN_COMMON
319 || shndx == parameters->target().small_common_shndx()
320 || shndx == parameters->target().large_common_shndx());
321 }
322
323 // Allocate a common symbol.
324
325 template<int size>
326 void
327 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
328 {
329 this->allocate_base_common(od);
330 this->value_ = value;
331 }
332
333 // The ""'s around str ensure str is a string literal, so sizeof works.
334 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
335
336 // Return true if this symbol should be added to the dynamic symbol
337 // table.
338
339 bool
340 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
341 {
342 // If the symbol is only present on plugin files, the plugin decided we
343 // don't need it.
344 if (!this->in_real_elf())
345 return false;
346
347 // If the symbol is used by a dynamic relocation, we need to add it.
348 if (this->needs_dynsym_entry())
349 return true;
350
351 // If this symbol's section is not added, the symbol need not be added.
352 // The section may have been GCed. Note that export_dynamic is being
353 // overridden here. This should not be done for shared objects.
354 if (parameters->options().gc_sections()
355 && !parameters->options().shared()
356 && this->source() == Symbol::FROM_OBJECT
357 && !this->object()->is_dynamic())
358 {
359 Relobj* relobj = static_cast<Relobj*>(this->object());
360 bool is_ordinary;
361 unsigned int shndx = this->shndx(&is_ordinary);
362 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
363 && !relobj->is_section_included(shndx)
364 && !symtab->is_section_folded(relobj, shndx))
365 return false;
366 }
367
368 // If the symbol was forced dynamic in a --dynamic-list file
369 // or an --export-dynamic-symbol option, add it.
370 if (!this->is_from_dynobj()
371 && (parameters->options().in_dynamic_list(this->name())
372 || parameters->options().is_export_dynamic_symbol(this->name())))
373 {
374 if (!this->is_forced_local())
375 return true;
376 gold_warning(_("Cannot export local symbol '%s'"),
377 this->demangled_name().c_str());
378 return false;
379 }
380
381 // If the symbol was forced local in a version script, do not add it.
382 if (this->is_forced_local())
383 return false;
384
385 // If dynamic-list-data was specified, add any STT_OBJECT.
386 if (parameters->options().dynamic_list_data()
387 && !this->is_from_dynobj()
388 && this->type() == elfcpp::STT_OBJECT)
389 return true;
390
391 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
392 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
393 if ((parameters->options().dynamic_list_cpp_new()
394 || parameters->options().dynamic_list_cpp_typeinfo())
395 && !this->is_from_dynobj())
396 {
397 // TODO(csilvers): We could probably figure out if we're an operator
398 // new/delete or typeinfo without the need to demangle.
399 char* demangled_name = cplus_demangle(this->name(),
400 DMGL_ANSI | DMGL_PARAMS);
401 if (demangled_name == NULL)
402 {
403 // Not a C++ symbol, so it can't satisfy these flags
404 }
405 else if (parameters->options().dynamic_list_cpp_new()
406 && (strprefix(demangled_name, "operator new")
407 || strprefix(demangled_name, "operator delete")))
408 {
409 free(demangled_name);
410 return true;
411 }
412 else if (parameters->options().dynamic_list_cpp_typeinfo()
413 && (strprefix(demangled_name, "typeinfo name for")
414 || strprefix(demangled_name, "typeinfo for")))
415 {
416 free(demangled_name);
417 return true;
418 }
419 else
420 free(demangled_name);
421 }
422
423 // If exporting all symbols or building a shared library,
424 // or the symbol should be globally unique (GNU_UNIQUE),
425 // and the symbol is defined in a regular object and is
426 // externally visible, we need to add it.
427 if ((parameters->options().export_dynamic()
428 || parameters->options().shared()
429 || (parameters->options().gnu_unique()
430 && this->binding() == elfcpp::STB_GNU_UNIQUE))
431 && !this->is_from_dynobj()
432 && !this->is_undefined()
433 && this->is_externally_visible())
434 return true;
435
436 return false;
437 }
438
439 // Return true if the final value of this symbol is known at link
440 // time.
441
442 bool
443 Symbol::final_value_is_known() const
444 {
445 // If we are not generating an executable, then no final values are
446 // known, since they will change at runtime, with the exception of
447 // TLS symbols in a position-independent executable.
448 if ((parameters->options().output_is_position_independent()
449 || parameters->options().relocatable())
450 && !(this->type() == elfcpp::STT_TLS
451 && parameters->options().pie()))
452 return false;
453
454 // If the symbol is not from an object file, and is not undefined,
455 // then it is defined, and known.
456 if (this->source_ != FROM_OBJECT)
457 {
458 if (this->source_ != IS_UNDEFINED)
459 return true;
460 }
461 else
462 {
463 // If the symbol is from a dynamic object, then the final value
464 // is not known.
465 if (this->object()->is_dynamic())
466 return false;
467
468 // If the symbol is not undefined (it is defined or common),
469 // then the final value is known.
470 if (!this->is_undefined())
471 return true;
472 }
473
474 // If the symbol is undefined, then whether the final value is known
475 // depends on whether we are doing a static link. If we are doing a
476 // dynamic link, then the final value could be filled in at runtime.
477 // This could reasonably be the case for a weak undefined symbol.
478 return parameters->doing_static_link();
479 }
480
481 // Return the output section where this symbol is defined.
482
483 Output_section*
484 Symbol::output_section() const
485 {
486 switch (this->source_)
487 {
488 case FROM_OBJECT:
489 {
490 unsigned int shndx = this->u_.from_object.shndx;
491 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
492 {
493 gold_assert(!this->u_.from_object.object->is_dynamic());
494 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
495 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
496 return relobj->output_section(shndx);
497 }
498 return NULL;
499 }
500
501 case IN_OUTPUT_DATA:
502 return this->u_.in_output_data.output_data->output_section();
503
504 case IN_OUTPUT_SEGMENT:
505 case IS_CONSTANT:
506 case IS_UNDEFINED:
507 return NULL;
508
509 default:
510 gold_unreachable();
511 }
512 }
513
514 // Set the symbol's output section. This is used for symbols defined
515 // in scripts. This should only be called after the symbol table has
516 // been finalized.
517
518 void
519 Symbol::set_output_section(Output_section* os)
520 {
521 switch (this->source_)
522 {
523 case FROM_OBJECT:
524 case IN_OUTPUT_DATA:
525 gold_assert(this->output_section() == os);
526 break;
527 case IS_CONSTANT:
528 this->source_ = IN_OUTPUT_DATA;
529 this->u_.in_output_data.output_data = os;
530 this->u_.in_output_data.offset_is_from_end = false;
531 break;
532 case IN_OUTPUT_SEGMENT:
533 case IS_UNDEFINED:
534 default:
535 gold_unreachable();
536 }
537 }
538
539 // Set the symbol's output segment. This is used for pre-defined
540 // symbols whose segments aren't known until after layout is done
541 // (e.g., __ehdr_start).
542
543 void
544 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
545 {
546 gold_assert(this->is_predefined_);
547 this->source_ = IN_OUTPUT_SEGMENT;
548 this->u_.in_output_segment.output_segment = os;
549 this->u_.in_output_segment.offset_base = base;
550 }
551
552 // Set the symbol to undefined. This is used for pre-defined
553 // symbols whose segments aren't known until after layout is done
554 // (e.g., __ehdr_start).
555
556 void
557 Symbol::set_undefined()
558 {
559 this->source_ = IS_UNDEFINED;
560 this->is_predefined_ = false;
561 }
562
563 // Class Symbol_table.
564
565 Symbol_table::Symbol_table(unsigned int count,
566 const Version_script_info& version_script)
567 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
568 forwarders_(), commons_(), tls_commons_(), small_commons_(),
569 large_commons_(), forced_locals_(), warnings_(),
570 version_script_(version_script), gc_(NULL), icf_(NULL),
571 target_symbols_()
572 {
573 namepool_.reserve(count);
574 }
575
576 Symbol_table::~Symbol_table()
577 {
578 }
579
580 // The symbol table key equality function. This is called with
581 // Stringpool keys.
582
583 inline bool
584 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
585 const Symbol_table_key& k2) const
586 {
587 return k1.first == k2.first && k1.second == k2.second;
588 }
589
590 bool
591 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
592 {
593 return (parameters->options().icf_enabled()
594 && this->icf_->is_section_folded(obj, shndx));
595 }
596
597 // For symbols that have been listed with a -u or --export-dynamic-symbol
598 // option, add them to the work list to avoid gc'ing them.
599
600 void
601 Symbol_table::gc_mark_undef_symbols(Layout* layout)
602 {
603 for (options::String_set::const_iterator p =
604 parameters->options().undefined_begin();
605 p != parameters->options().undefined_end();
606 ++p)
607 {
608 const char* name = p->c_str();
609 Symbol* sym = this->lookup(name);
610 gold_assert(sym != NULL);
611 if (sym->source() == Symbol::FROM_OBJECT
612 && !sym->object()->is_dynamic())
613 {
614 this->gc_mark_symbol(sym);
615 }
616 }
617
618 for (options::String_set::const_iterator p =
619 parameters->options().export_dynamic_symbol_begin();
620 p != parameters->options().export_dynamic_symbol_end();
621 ++p)
622 {
623 const char* name = p->c_str();
624 Symbol* sym = this->lookup(name);
625 // It's not an error if a symbol named by --export-dynamic-symbol
626 // is undefined.
627 if (sym != NULL
628 && sym->source() == Symbol::FROM_OBJECT
629 && !sym->object()->is_dynamic())
630 {
631 this->gc_mark_symbol(sym);
632 }
633 }
634
635 for (Script_options::referenced_const_iterator p =
636 layout->script_options()->referenced_begin();
637 p != layout->script_options()->referenced_end();
638 ++p)
639 {
640 Symbol* sym = this->lookup(p->c_str());
641 gold_assert(sym != NULL);
642 if (sym->source() == Symbol::FROM_OBJECT
643 && !sym->object()->is_dynamic())
644 {
645 this->gc_mark_symbol(sym);
646 }
647 }
648 }
649
650 void
651 Symbol_table::gc_mark_symbol(Symbol* sym)
652 {
653 // Add the object and section to the work list.
654 bool is_ordinary;
655 unsigned int shndx = sym->shndx(&is_ordinary);
656 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
657 {
658 gold_assert(this->gc_!= NULL);
659 Relobj* relobj = static_cast<Relobj*>(sym->object());
660 this->gc_->worklist().push_back(Section_id(relobj, shndx));
661 }
662 parameters->target().gc_mark_symbol(this, sym);
663 }
664
665 // When doing garbage collection, keep symbols that have been seen in
666 // dynamic objects.
667 inline void
668 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
669 {
670 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
671 && !sym->object()->is_dynamic())
672 this->gc_mark_symbol(sym);
673 }
674
675 // Make TO a symbol which forwards to FROM.
676
677 void
678 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
679 {
680 gold_assert(from != to);
681 gold_assert(!from->is_forwarder() && !to->is_forwarder());
682 this->forwarders_[from] = to;
683 from->set_forwarder();
684 }
685
686 // Resolve the forwards from FROM, returning the real symbol.
687
688 Symbol*
689 Symbol_table::resolve_forwards(const Symbol* from) const
690 {
691 gold_assert(from->is_forwarder());
692 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
693 this->forwarders_.find(from);
694 gold_assert(p != this->forwarders_.end());
695 return p->second;
696 }
697
698 // Look up a symbol by name.
699
700 Symbol*
701 Symbol_table::lookup(const char* name, const char* version) const
702 {
703 Stringpool::Key name_key;
704 name = this->namepool_.find(name, &name_key);
705 if (name == NULL)
706 return NULL;
707
708 Stringpool::Key version_key = 0;
709 if (version != NULL)
710 {
711 version = this->namepool_.find(version, &version_key);
712 if (version == NULL)
713 return NULL;
714 }
715
716 Symbol_table_key key(name_key, version_key);
717 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
718 if (p == this->table_.end())
719 return NULL;
720 return p->second;
721 }
722
723 // Resolve a Symbol with another Symbol. This is only used in the
724 // unusual case where there are references to both an unversioned
725 // symbol and a symbol with a version, and we then discover that that
726 // version is the default version. Because this is unusual, we do
727 // this the slow way, by converting back to an ELF symbol.
728
729 template<int size, bool big_endian>
730 void
731 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
732 {
733 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
734 elfcpp::Sym_write<size, big_endian> esym(buf);
735 // We don't bother to set the st_name or the st_shndx field.
736 esym.put_st_value(from->value());
737 esym.put_st_size(from->symsize());
738 esym.put_st_info(from->binding(), from->type());
739 esym.put_st_other(from->visibility(), from->nonvis());
740 bool is_ordinary;
741 unsigned int shndx = from->shndx(&is_ordinary);
742 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
743 from->version(), true);
744 if (from->in_reg())
745 to->set_in_reg();
746 if (from->in_dyn())
747 to->set_in_dyn();
748 if (parameters->options().gc_sections())
749 this->gc_mark_dyn_syms(to);
750 }
751
752 // Record that a symbol is forced to be local by a version script or
753 // by visibility.
754
755 void
756 Symbol_table::force_local(Symbol* sym)
757 {
758 if (!sym->is_defined() && !sym->is_common())
759 return;
760 if (sym->is_forced_local())
761 {
762 // We already got this one.
763 return;
764 }
765 sym->set_is_forced_local();
766 this->forced_locals_.push_back(sym);
767 }
768
769 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
770 // is only called for undefined symbols, when at least one --wrap
771 // option was used.
772
773 const char*
774 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
775 {
776 // For some targets, we need to ignore a specific character when
777 // wrapping, and add it back later.
778 char prefix = '\0';
779 if (name[0] == parameters->target().wrap_char())
780 {
781 prefix = name[0];
782 ++name;
783 }
784
785 if (parameters->options().is_wrap(name))
786 {
787 // Turn NAME into __wrap_NAME.
788 std::string s;
789 if (prefix != '\0')
790 s += prefix;
791 s += "__wrap_";
792 s += name;
793
794 // This will give us both the old and new name in NAMEPOOL_, but
795 // that is OK. Only the versions we need will wind up in the
796 // real string table in the output file.
797 return this->namepool_.add(s.c_str(), true, name_key);
798 }
799
800 const char* const real_prefix = "__real_";
801 const size_t real_prefix_length = strlen(real_prefix);
802 if (strncmp(name, real_prefix, real_prefix_length) == 0
803 && parameters->options().is_wrap(name + real_prefix_length))
804 {
805 // Turn __real_NAME into NAME.
806 std::string s;
807 if (prefix != '\0')
808 s += prefix;
809 s += name + real_prefix_length;
810 return this->namepool_.add(s.c_str(), true, name_key);
811 }
812
813 return name;
814 }
815
816 // This is called when we see a symbol NAME/VERSION, and the symbol
817 // already exists in the symbol table, and VERSION is marked as being
818 // the default version. SYM is the NAME/VERSION symbol we just added.
819 // DEFAULT_IS_NEW is true if this is the first time we have seen the
820 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
821
822 template<int size, bool big_endian>
823 void
824 Symbol_table::define_default_version(Sized_symbol<size>* sym,
825 bool default_is_new,
826 Symbol_table_type::iterator pdef)
827 {
828 if (default_is_new)
829 {
830 // This is the first time we have seen NAME/NULL. Make
831 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
832 // version.
833 pdef->second = sym;
834 sym->set_is_default();
835 }
836 else if (pdef->second == sym)
837 {
838 // NAME/NULL already points to NAME/VERSION. Don't mark the
839 // symbol as the default if it is not already the default.
840 }
841 else
842 {
843 // This is the unfortunate case where we already have entries
844 // for both NAME/VERSION and NAME/NULL. We now see a symbol
845 // NAME/VERSION where VERSION is the default version. We have
846 // already resolved this new symbol with the existing
847 // NAME/VERSION symbol.
848
849 // It's possible that NAME/NULL and NAME/VERSION are both
850 // defined in regular objects. This can only happen if one
851 // object file defines foo and another defines foo@@ver. This
852 // is somewhat obscure, but we call it a multiple definition
853 // error.
854
855 // It's possible that NAME/NULL actually has a version, in which
856 // case it won't be the same as VERSION. This happens with
857 // ver_test_7.so in the testsuite for the symbol t2_2. We see
858 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
859 // then see an unadorned t2_2 in an object file and give it
860 // version VER1 from the version script. This looks like a
861 // default definition for VER1, so it looks like we should merge
862 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
863 // not obvious that this is an error, either. So we just punt.
864
865 // If one of the symbols has non-default visibility, and the
866 // other is defined in a shared object, then they are different
867 // symbols.
868
869 // If the two symbols are from different shared objects,
870 // they are different symbols.
871
872 // Otherwise, we just resolve the symbols as though they were
873 // the same.
874
875 if (pdef->second->version() != NULL)
876 gold_assert(pdef->second->version() != sym->version());
877 else if (sym->visibility() != elfcpp::STV_DEFAULT
878 && pdef->second->is_from_dynobj())
879 ;
880 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
881 && sym->is_from_dynobj())
882 ;
883 else if (pdef->second->is_from_dynobj()
884 && sym->is_from_dynobj()
885 && pdef->second->object() != sym->object())
886 ;
887 else
888 {
889 const Sized_symbol<size>* symdef;
890 symdef = this->get_sized_symbol<size>(pdef->second);
891 Symbol_table::resolve<size, big_endian>(sym, symdef);
892 this->make_forwarder(pdef->second, sym);
893 pdef->second = sym;
894 sym->set_is_default();
895 }
896 }
897 }
898
899 // Add one symbol from OBJECT to the symbol table. NAME is symbol
900 // name and VERSION is the version; both are canonicalized. DEF is
901 // whether this is the default version. ST_SHNDX is the symbol's
902 // section index; IS_ORDINARY is whether this is a normal section
903 // rather than a special code.
904
905 // If IS_DEFAULT_VERSION is true, then this is the definition of a
906 // default version of a symbol. That means that any lookup of
907 // NAME/NULL and any lookup of NAME/VERSION should always return the
908 // same symbol. This is obvious for references, but in particular we
909 // want to do this for definitions: overriding NAME/NULL should also
910 // override NAME/VERSION. If we don't do that, it would be very hard
911 // to override functions in a shared library which uses versioning.
912
913 // We implement this by simply making both entries in the hash table
914 // point to the same Symbol structure. That is easy enough if this is
915 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
916 // that we have seen both already, in which case they will both have
917 // independent entries in the symbol table. We can't simply change
918 // the symbol table entry, because we have pointers to the entries
919 // attached to the object files. So we mark the entry attached to the
920 // object file as a forwarder, and record it in the forwarders_ map.
921 // Note that entries in the hash table will never be marked as
922 // forwarders.
923 //
924 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
925 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
926 // for a special section code. ST_SHNDX may be modified if the symbol
927 // is defined in a section being discarded.
928
929 template<int size, bool big_endian>
930 Sized_symbol<size>*
931 Symbol_table::add_from_object(Object* object,
932 const char* name,
933 Stringpool::Key name_key,
934 const char* version,
935 Stringpool::Key version_key,
936 bool is_default_version,
937 const elfcpp::Sym<size, big_endian>& sym,
938 unsigned int st_shndx,
939 bool is_ordinary,
940 unsigned int orig_st_shndx)
941 {
942 // Print a message if this symbol is being traced.
943 if (parameters->options().is_trace_symbol(name))
944 {
945 if (orig_st_shndx == elfcpp::SHN_UNDEF)
946 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
947 else
948 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
949 }
950
951 // For an undefined symbol, we may need to adjust the name using
952 // --wrap.
953 if (orig_st_shndx == elfcpp::SHN_UNDEF
954 && parameters->options().any_wrap())
955 {
956 const char* wrap_name = this->wrap_symbol(name, &name_key);
957 if (wrap_name != name)
958 {
959 // If we see a reference to malloc with version GLIBC_2.0,
960 // and we turn it into a reference to __wrap_malloc, then we
961 // discard the version number. Otherwise the user would be
962 // required to specify the correct version for
963 // __wrap_malloc.
964 version = NULL;
965 version_key = 0;
966 name = wrap_name;
967 }
968 }
969
970 Symbol* const snull = NULL;
971 std::pair<typename Symbol_table_type::iterator, bool> ins =
972 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
973 snull));
974
975 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
976 std::make_pair(this->table_.end(), false);
977 if (is_default_version)
978 {
979 const Stringpool::Key vnull_key = 0;
980 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
981 vnull_key),
982 snull));
983 }
984
985 // ins.first: an iterator, which is a pointer to a pair.
986 // ins.first->first: the key (a pair of name and version).
987 // ins.first->second: the value (Symbol*).
988 // ins.second: true if new entry was inserted, false if not.
989
990 Sized_symbol<size>* ret;
991 bool was_undefined;
992 bool was_common;
993 if (!ins.second)
994 {
995 // We already have an entry for NAME/VERSION.
996 ret = this->get_sized_symbol<size>(ins.first->second);
997 gold_assert(ret != NULL);
998
999 was_undefined = ret->is_undefined();
1000 // Commons from plugins are just placeholders.
1001 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1002
1003 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1004 version, is_default_version);
1005 if (parameters->options().gc_sections())
1006 this->gc_mark_dyn_syms(ret);
1007
1008 if (is_default_version)
1009 this->define_default_version<size, big_endian>(ret, insdefault.second,
1010 insdefault.first);
1011 else
1012 {
1013 bool dummy;
1014 if (version != NULL
1015 && ret->source() == Symbol::FROM_OBJECT
1016 && ret->object() == object
1017 && is_ordinary
1018 && ret->shndx(&dummy) == st_shndx
1019 && ret->is_default())
1020 {
1021 // We have seen NAME/VERSION already, and marked it as the
1022 // default version, but now we see a definition for
1023 // NAME/VERSION that is not the default version. This can
1024 // happen when the assembler generates two symbols for
1025 // a symbol as a result of a ".symver foo,foo@VER"
1026 // directive. We see the first unversioned symbol and
1027 // we may mark it as the default version (from a
1028 // version script); then we see the second versioned
1029 // symbol and we need to override the first.
1030 // In any other case, the two symbols should have generated
1031 // a multiple definition error.
1032 // (See PR gold/18703.)
1033 ret->set_is_not_default();
1034 const Stringpool::Key vnull_key = 0;
1035 this->table_.erase(std::make_pair(name_key, vnull_key));
1036 }
1037 }
1038 }
1039 else
1040 {
1041 // This is the first time we have seen NAME/VERSION.
1042 gold_assert(ins.first->second == NULL);
1043
1044 if (is_default_version && !insdefault.second)
1045 {
1046 // We already have an entry for NAME/NULL. If we override
1047 // it, then change it to NAME/VERSION.
1048 ret = this->get_sized_symbol<size>(insdefault.first->second);
1049
1050 was_undefined = ret->is_undefined();
1051 // Commons from plugins are just placeholders.
1052 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1053
1054 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1055 version, is_default_version);
1056 if (parameters->options().gc_sections())
1057 this->gc_mark_dyn_syms(ret);
1058 ins.first->second = ret;
1059 }
1060 else
1061 {
1062 was_undefined = false;
1063 was_common = false;
1064
1065 Sized_target<size, big_endian>* target =
1066 parameters->sized_target<size, big_endian>();
1067 if (!target->has_make_symbol())
1068 ret = new Sized_symbol<size>();
1069 else
1070 {
1071 ret = target->make_symbol(name, sym.get_st_type(), object,
1072 st_shndx, sym.get_st_value());
1073 if (ret == NULL)
1074 {
1075 // This means that we don't want a symbol table
1076 // entry after all.
1077 if (!is_default_version)
1078 this->table_.erase(ins.first);
1079 else
1080 {
1081 this->table_.erase(insdefault.first);
1082 // Inserting INSDEFAULT invalidated INS.
1083 this->table_.erase(std::make_pair(name_key,
1084 version_key));
1085 }
1086 return NULL;
1087 }
1088 }
1089
1090 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1091
1092 ins.first->second = ret;
1093 if (is_default_version)
1094 {
1095 // This is the first time we have seen NAME/NULL. Point
1096 // it at the new entry for NAME/VERSION.
1097 gold_assert(insdefault.second);
1098 insdefault.first->second = ret;
1099 }
1100 }
1101
1102 if (is_default_version)
1103 ret->set_is_default();
1104 }
1105
1106 // Record every time we see a new undefined symbol, to speed up
1107 // archive groups.
1108 if (!was_undefined && ret->is_undefined())
1109 {
1110 ++this->saw_undefined_;
1111 if (parameters->options().has_plugins())
1112 parameters->options().plugins()->new_undefined_symbol(ret);
1113 }
1114
1115 // Keep track of common symbols, to speed up common symbol
1116 // allocation. Don't record commons from plugin objects;
1117 // we need to wait until we see the real symbol in the
1118 // replacement file.
1119 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1120 {
1121 if (ret->type() == elfcpp::STT_TLS)
1122 this->tls_commons_.push_back(ret);
1123 else if (!is_ordinary
1124 && st_shndx == parameters->target().small_common_shndx())
1125 this->small_commons_.push_back(ret);
1126 else if (!is_ordinary
1127 && st_shndx == parameters->target().large_common_shndx())
1128 this->large_commons_.push_back(ret);
1129 else
1130 this->commons_.push_back(ret);
1131 }
1132
1133 // If we're not doing a relocatable link, then any symbol with
1134 // hidden or internal visibility is local.
1135 if ((ret->visibility() == elfcpp::STV_HIDDEN
1136 || ret->visibility() == elfcpp::STV_INTERNAL)
1137 && (ret->binding() == elfcpp::STB_GLOBAL
1138 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1139 || ret->binding() == elfcpp::STB_WEAK)
1140 && !parameters->options().relocatable())
1141 this->force_local(ret);
1142
1143 return ret;
1144 }
1145
1146 // Add all the symbols in a relocatable object to the hash table.
1147
1148 template<int size, bool big_endian>
1149 void
1150 Symbol_table::add_from_relobj(
1151 Sized_relobj_file<size, big_endian>* relobj,
1152 const unsigned char* syms,
1153 size_t count,
1154 size_t symndx_offset,
1155 const char* sym_names,
1156 size_t sym_name_size,
1157 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1158 size_t* defined)
1159 {
1160 *defined = 0;
1161
1162 gold_assert(size == parameters->target().get_size());
1163
1164 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1165
1166 const bool just_symbols = relobj->just_symbols();
1167
1168 const unsigned char* p = syms;
1169 for (size_t i = 0; i < count; ++i, p += sym_size)
1170 {
1171 (*sympointers)[i] = NULL;
1172
1173 elfcpp::Sym<size, big_endian> sym(p);
1174
1175 unsigned int st_name = sym.get_st_name();
1176 if (st_name >= sym_name_size)
1177 {
1178 relobj->error(_("bad global symbol name offset %u at %zu"),
1179 st_name, i);
1180 continue;
1181 }
1182
1183 const char* name = sym_names + st_name;
1184
1185 if (!parameters->options().relocatable()
1186 && strcmp (name, "__gnu_lto_slim") == 0)
1187 gold_info(_("%s: plugin needed to handle lto object"),
1188 relobj->name().c_str());
1189
1190 bool is_ordinary;
1191 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1192 sym.get_st_shndx(),
1193 &is_ordinary);
1194 unsigned int orig_st_shndx = st_shndx;
1195 if (!is_ordinary)
1196 orig_st_shndx = elfcpp::SHN_UNDEF;
1197
1198 if (st_shndx != elfcpp::SHN_UNDEF)
1199 ++*defined;
1200
1201 // A symbol defined in a section which we are not including must
1202 // be treated as an undefined symbol.
1203 bool is_defined_in_discarded_section = false;
1204 if (st_shndx != elfcpp::SHN_UNDEF
1205 && is_ordinary
1206 && !relobj->is_section_included(st_shndx)
1207 && !this->is_section_folded(relobj, st_shndx))
1208 {
1209 st_shndx = elfcpp::SHN_UNDEF;
1210 is_defined_in_discarded_section = true;
1211 }
1212
1213 // In an object file, an '@' in the name separates the symbol
1214 // name from the version name. If there are two '@' characters,
1215 // this is the default version.
1216 const char* ver = strchr(name, '@');
1217 Stringpool::Key ver_key = 0;
1218 int namelen = 0;
1219 // IS_DEFAULT_VERSION: is the version default?
1220 // IS_FORCED_LOCAL: is the symbol forced local?
1221 bool is_default_version = false;
1222 bool is_forced_local = false;
1223
1224 // FIXME: For incremental links, we don't store version information,
1225 // so we need to ignore version symbols for now.
1226 if (parameters->incremental_update() && ver != NULL)
1227 {
1228 namelen = ver - name;
1229 ver = NULL;
1230 }
1231
1232 if (ver != NULL)
1233 {
1234 // The symbol name is of the form foo@VERSION or foo@@VERSION
1235 namelen = ver - name;
1236 ++ver;
1237 if (*ver == '@')
1238 {
1239 is_default_version = true;
1240 ++ver;
1241 }
1242 ver = this->namepool_.add(ver, true, &ver_key);
1243 }
1244 // We don't want to assign a version to an undefined symbol,
1245 // even if it is listed in the version script. FIXME: What
1246 // about a common symbol?
1247 else
1248 {
1249 namelen = strlen(name);
1250 if (!this->version_script_.empty()
1251 && st_shndx != elfcpp::SHN_UNDEF)
1252 {
1253 // The symbol name did not have a version, but the
1254 // version script may assign a version anyway.
1255 std::string version;
1256 bool is_global;
1257 if (this->version_script_.get_symbol_version(name, &version,
1258 &is_global))
1259 {
1260 if (!is_global)
1261 is_forced_local = true;
1262 else if (!version.empty())
1263 {
1264 ver = this->namepool_.add_with_length(version.c_str(),
1265 version.length(),
1266 true,
1267 &ver_key);
1268 is_default_version = true;
1269 }
1270 }
1271 }
1272 }
1273
1274 elfcpp::Sym<size, big_endian>* psym = &sym;
1275 unsigned char symbuf[sym_size];
1276 elfcpp::Sym<size, big_endian> sym2(symbuf);
1277 if (just_symbols)
1278 {
1279 memcpy(symbuf, p, sym_size);
1280 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1281 if (orig_st_shndx != elfcpp::SHN_UNDEF
1282 && is_ordinary
1283 && relobj->e_type() == elfcpp::ET_REL)
1284 {
1285 // Symbol values in relocatable object files are section
1286 // relative. This is normally what we want, but since here
1287 // we are converting the symbol to absolute we need to add
1288 // the section address. The section address in an object
1289 // file is normally zero, but people can use a linker
1290 // script to change it.
1291 sw.put_st_value(sym.get_st_value()
1292 + relobj->section_address(orig_st_shndx));
1293 }
1294 st_shndx = elfcpp::SHN_ABS;
1295 is_ordinary = false;
1296 psym = &sym2;
1297 }
1298
1299 // Fix up visibility if object has no-export set.
1300 if (relobj->no_export()
1301 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1302 {
1303 // We may have copied symbol already above.
1304 if (psym != &sym2)
1305 {
1306 memcpy(symbuf, p, sym_size);
1307 psym = &sym2;
1308 }
1309
1310 elfcpp::STV visibility = sym2.get_st_visibility();
1311 if (visibility == elfcpp::STV_DEFAULT
1312 || visibility == elfcpp::STV_PROTECTED)
1313 {
1314 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1315 unsigned char nonvis = sym2.get_st_nonvis();
1316 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1317 }
1318 }
1319
1320 Stringpool::Key name_key;
1321 name = this->namepool_.add_with_length(name, namelen, true,
1322 &name_key);
1323
1324 Sized_symbol<size>* res;
1325 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1326 is_default_version, *psym, st_shndx,
1327 is_ordinary, orig_st_shndx);
1328
1329 if (is_forced_local)
1330 this->force_local(res);
1331
1332 // Do not treat this symbol as garbage if this symbol will be
1333 // exported to the dynamic symbol table. This is true when
1334 // building a shared library or using --export-dynamic and
1335 // the symbol is externally visible.
1336 if (parameters->options().gc_sections()
1337 && res->is_externally_visible()
1338 && !res->is_from_dynobj()
1339 && (parameters->options().shared()
1340 || parameters->options().export_dynamic()
1341 || parameters->options().in_dynamic_list(res->name())))
1342 this->gc_mark_symbol(res);
1343
1344 if (is_defined_in_discarded_section)
1345 res->set_is_defined_in_discarded_section();
1346
1347 (*sympointers)[i] = res;
1348 }
1349 }
1350
1351 // Add a symbol from a plugin-claimed file.
1352
1353 template<int size, bool big_endian>
1354 Symbol*
1355 Symbol_table::add_from_pluginobj(
1356 Sized_pluginobj<size, big_endian>* obj,
1357 const char* name,
1358 const char* ver,
1359 elfcpp::Sym<size, big_endian>* sym)
1360 {
1361 unsigned int st_shndx = sym->get_st_shndx();
1362 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1363
1364 Stringpool::Key ver_key = 0;
1365 bool is_default_version = false;
1366 bool is_forced_local = false;
1367
1368 if (ver != NULL)
1369 {
1370 ver = this->namepool_.add(ver, true, &ver_key);
1371 }
1372 // We don't want to assign a version to an undefined symbol,
1373 // even if it is listed in the version script. FIXME: What
1374 // about a common symbol?
1375 else
1376 {
1377 if (!this->version_script_.empty()
1378 && st_shndx != elfcpp::SHN_UNDEF)
1379 {
1380 // The symbol name did not have a version, but the
1381 // version script may assign a version anyway.
1382 std::string version;
1383 bool is_global;
1384 if (this->version_script_.get_symbol_version(name, &version,
1385 &is_global))
1386 {
1387 if (!is_global)
1388 is_forced_local = true;
1389 else if (!version.empty())
1390 {
1391 ver = this->namepool_.add_with_length(version.c_str(),
1392 version.length(),
1393 true,
1394 &ver_key);
1395 is_default_version = true;
1396 }
1397 }
1398 }
1399 }
1400
1401 Stringpool::Key name_key;
1402 name = this->namepool_.add(name, true, &name_key);
1403
1404 Sized_symbol<size>* res;
1405 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1406 is_default_version, *sym, st_shndx,
1407 is_ordinary, st_shndx);
1408
1409 if (is_forced_local)
1410 this->force_local(res);
1411
1412 return res;
1413 }
1414
1415 // Add all the symbols in a dynamic object to the hash table.
1416
1417 template<int size, bool big_endian>
1418 void
1419 Symbol_table::add_from_dynobj(
1420 Sized_dynobj<size, big_endian>* dynobj,
1421 const unsigned char* syms,
1422 size_t count,
1423 const char* sym_names,
1424 size_t sym_name_size,
1425 const unsigned char* versym,
1426 size_t versym_size,
1427 const std::vector<const char*>* version_map,
1428 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1429 size_t* defined)
1430 {
1431 *defined = 0;
1432
1433 gold_assert(size == parameters->target().get_size());
1434
1435 if (dynobj->just_symbols())
1436 {
1437 gold_error(_("--just-symbols does not make sense with a shared object"));
1438 return;
1439 }
1440
1441 // FIXME: For incremental links, we don't store version information,
1442 // so we need to ignore version symbols for now.
1443 if (parameters->incremental_update())
1444 versym = NULL;
1445
1446 if (versym != NULL && versym_size / 2 < count)
1447 {
1448 dynobj->error(_("too few symbol versions"));
1449 return;
1450 }
1451
1452 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1453
1454 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1455 // weak aliases. This is necessary because if the dynamic object
1456 // provides the same variable under two names, one of which is a
1457 // weak definition, and the regular object refers to the weak
1458 // definition, we have to put both the weak definition and the
1459 // strong definition into the dynamic symbol table. Given a weak
1460 // definition, the only way that we can find the corresponding
1461 // strong definition, if any, is to search the symbol table.
1462 std::vector<Sized_symbol<size>*> object_symbols;
1463
1464 const unsigned char* p = syms;
1465 const unsigned char* vs = versym;
1466 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1467 {
1468 elfcpp::Sym<size, big_endian> sym(p);
1469
1470 if (sympointers != NULL)
1471 (*sympointers)[i] = NULL;
1472
1473 // Ignore symbols with local binding or that have
1474 // internal or hidden visibility.
1475 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1476 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1477 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1478 continue;
1479
1480 // A protected symbol in a shared library must be treated as a
1481 // normal symbol when viewed from outside the shared library.
1482 // Implement this by overriding the visibility here.
1483 // Likewise, an IFUNC symbol in a shared library must be treated
1484 // as a normal FUNC symbol.
1485 elfcpp::Sym<size, big_endian>* psym = &sym;
1486 unsigned char symbuf[sym_size];
1487 elfcpp::Sym<size, big_endian> sym2(symbuf);
1488 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1489 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1490 {
1491 memcpy(symbuf, p, sym_size);
1492 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1493 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1494 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1495 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1496 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1497 psym = &sym2;
1498 }
1499
1500 unsigned int st_name = psym->get_st_name();
1501 if (st_name >= sym_name_size)
1502 {
1503 dynobj->error(_("bad symbol name offset %u at %zu"),
1504 st_name, i);
1505 continue;
1506 }
1507
1508 const char* name = sym_names + st_name;
1509
1510 bool is_ordinary;
1511 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1512 &is_ordinary);
1513
1514 if (st_shndx != elfcpp::SHN_UNDEF)
1515 ++*defined;
1516
1517 Sized_symbol<size>* res;
1518
1519 if (versym == NULL)
1520 {
1521 Stringpool::Key name_key;
1522 name = this->namepool_.add(name, true, &name_key);
1523 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1524 false, *psym, st_shndx, is_ordinary,
1525 st_shndx);
1526 }
1527 else
1528 {
1529 // Read the version information.
1530
1531 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1532
1533 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1534 v &= elfcpp::VERSYM_VERSION;
1535
1536 // The Sun documentation says that V can be VER_NDX_LOCAL,
1537 // or VER_NDX_GLOBAL, or a version index. The meaning of
1538 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1539 // The old GNU linker will happily generate VER_NDX_LOCAL
1540 // for an undefined symbol. I don't know what the Sun
1541 // linker will generate.
1542
1543 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1544 && st_shndx != elfcpp::SHN_UNDEF)
1545 {
1546 // This symbol should not be visible outside the object.
1547 continue;
1548 }
1549
1550 // At this point we are definitely going to add this symbol.
1551 Stringpool::Key name_key;
1552 name = this->namepool_.add(name, true, &name_key);
1553
1554 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1555 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1556 {
1557 // This symbol does not have a version.
1558 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1559 false, *psym, st_shndx, is_ordinary,
1560 st_shndx);
1561 }
1562 else
1563 {
1564 if (v >= version_map->size())
1565 {
1566 dynobj->error(_("versym for symbol %zu out of range: %u"),
1567 i, v);
1568 continue;
1569 }
1570
1571 const char* version = (*version_map)[v];
1572 if (version == NULL)
1573 {
1574 dynobj->error(_("versym for symbol %zu has no name: %u"),
1575 i, v);
1576 continue;
1577 }
1578
1579 Stringpool::Key version_key;
1580 version = this->namepool_.add(version, true, &version_key);
1581
1582 // If this is an absolute symbol, and the version name
1583 // and symbol name are the same, then this is the
1584 // version definition symbol. These symbols exist to
1585 // support using -u to pull in particular versions. We
1586 // do not want to record a version for them.
1587 if (st_shndx == elfcpp::SHN_ABS
1588 && !is_ordinary
1589 && name_key == version_key)
1590 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1591 false, *psym, st_shndx, is_ordinary,
1592 st_shndx);
1593 else
1594 {
1595 const bool is_default_version =
1596 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1597 res = this->add_from_object(dynobj, name, name_key, version,
1598 version_key, is_default_version,
1599 *psym, st_shndx,
1600 is_ordinary, st_shndx);
1601 }
1602 }
1603 }
1604
1605 // Note that it is possible that RES was overridden by an
1606 // earlier object, in which case it can't be aliased here.
1607 if (st_shndx != elfcpp::SHN_UNDEF
1608 && is_ordinary
1609 && psym->get_st_type() == elfcpp::STT_OBJECT
1610 && res->source() == Symbol::FROM_OBJECT
1611 && res->object() == dynobj)
1612 object_symbols.push_back(res);
1613
1614 // If the symbol has protected visibility in the dynobj,
1615 // mark it as such if it was not overridden.
1616 if (res->source() == Symbol::FROM_OBJECT
1617 && res->object() == dynobj
1618 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1619 res->set_is_protected();
1620
1621 if (sympointers != NULL)
1622 (*sympointers)[i] = res;
1623 }
1624
1625 this->record_weak_aliases(&object_symbols);
1626 }
1627
1628 // Add a symbol from a incremental object file.
1629
1630 template<int size, bool big_endian>
1631 Sized_symbol<size>*
1632 Symbol_table::add_from_incrobj(
1633 Object* obj,
1634 const char* name,
1635 const char* ver,
1636 elfcpp::Sym<size, big_endian>* sym)
1637 {
1638 unsigned int st_shndx = sym->get_st_shndx();
1639 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1640
1641 Stringpool::Key ver_key = 0;
1642 bool is_default_version = false;
1643 bool is_forced_local = false;
1644
1645 Stringpool::Key name_key;
1646 name = this->namepool_.add(name, true, &name_key);
1647
1648 Sized_symbol<size>* res;
1649 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1650 is_default_version, *sym, st_shndx,
1651 is_ordinary, st_shndx);
1652
1653 if (is_forced_local)
1654 this->force_local(res);
1655
1656 return res;
1657 }
1658
1659 // This is used to sort weak aliases. We sort them first by section
1660 // index, then by offset, then by weak ahead of strong.
1661
1662 template<int size>
1663 class Weak_alias_sorter
1664 {
1665 public:
1666 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1667 };
1668
1669 template<int size>
1670 bool
1671 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1672 const Sized_symbol<size>* s2) const
1673 {
1674 bool is_ordinary;
1675 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1676 gold_assert(is_ordinary);
1677 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1678 gold_assert(is_ordinary);
1679 if (s1_shndx != s2_shndx)
1680 return s1_shndx < s2_shndx;
1681
1682 if (s1->value() != s2->value())
1683 return s1->value() < s2->value();
1684 if (s1->binding() != s2->binding())
1685 {
1686 if (s1->binding() == elfcpp::STB_WEAK)
1687 return true;
1688 if (s2->binding() == elfcpp::STB_WEAK)
1689 return false;
1690 }
1691 return std::string(s1->name()) < std::string(s2->name());
1692 }
1693
1694 // SYMBOLS is a list of object symbols from a dynamic object. Look
1695 // for any weak aliases, and record them so that if we add the weak
1696 // alias to the dynamic symbol table, we also add the corresponding
1697 // strong symbol.
1698
1699 template<int size>
1700 void
1701 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1702 {
1703 // Sort the vector by section index, then by offset, then by weak
1704 // ahead of strong.
1705 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1706
1707 // Walk through the vector. For each weak definition, record
1708 // aliases.
1709 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1710 symbols->begin();
1711 p != symbols->end();
1712 ++p)
1713 {
1714 if ((*p)->binding() != elfcpp::STB_WEAK)
1715 continue;
1716
1717 // Build a circular list of weak aliases. Each symbol points to
1718 // the next one in the circular list.
1719
1720 Sized_symbol<size>* from_sym = *p;
1721 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1722 for (q = p + 1; q != symbols->end(); ++q)
1723 {
1724 bool dummy;
1725 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1726 || (*q)->value() != from_sym->value())
1727 break;
1728
1729 this->weak_aliases_[from_sym] = *q;
1730 from_sym->set_has_alias();
1731 from_sym = *q;
1732 }
1733
1734 if (from_sym != *p)
1735 {
1736 this->weak_aliases_[from_sym] = *p;
1737 from_sym->set_has_alias();
1738 }
1739
1740 p = q - 1;
1741 }
1742 }
1743
1744 // Create and return a specially defined symbol. If ONLY_IF_REF is
1745 // true, then only create the symbol if there is a reference to it.
1746 // If this does not return NULL, it sets *POLDSYM to the existing
1747 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1748 // resolve the newly created symbol to the old one. This
1749 // canonicalizes *PNAME and *PVERSION.
1750
1751 template<int size, bool big_endian>
1752 Sized_symbol<size>*
1753 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1754 bool only_if_ref,
1755 Sized_symbol<size>** poldsym,
1756 bool* resolve_oldsym)
1757 {
1758 *resolve_oldsym = false;
1759 *poldsym = NULL;
1760
1761 // If the caller didn't give us a version, see if we get one from
1762 // the version script.
1763 std::string v;
1764 bool is_default_version = false;
1765 if (*pversion == NULL)
1766 {
1767 bool is_global;
1768 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1769 {
1770 if (is_global && !v.empty())
1771 {
1772 *pversion = v.c_str();
1773 // If we get the version from a version script, then we
1774 // are also the default version.
1775 is_default_version = true;
1776 }
1777 }
1778 }
1779
1780 Symbol* oldsym;
1781 Sized_symbol<size>* sym;
1782
1783 bool add_to_table = false;
1784 typename Symbol_table_type::iterator add_loc = this->table_.end();
1785 bool add_def_to_table = false;
1786 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1787
1788 if (only_if_ref)
1789 {
1790 oldsym = this->lookup(*pname, *pversion);
1791 if (oldsym == NULL && is_default_version)
1792 oldsym = this->lookup(*pname, NULL);
1793 if (oldsym == NULL || !oldsym->is_undefined())
1794 return NULL;
1795
1796 *pname = oldsym->name();
1797 if (is_default_version)
1798 *pversion = this->namepool_.add(*pversion, true, NULL);
1799 else
1800 *pversion = oldsym->version();
1801 }
1802 else
1803 {
1804 // Canonicalize NAME and VERSION.
1805 Stringpool::Key name_key;
1806 *pname = this->namepool_.add(*pname, true, &name_key);
1807
1808 Stringpool::Key version_key = 0;
1809 if (*pversion != NULL)
1810 *pversion = this->namepool_.add(*pversion, true, &version_key);
1811
1812 Symbol* const snull = NULL;
1813 std::pair<typename Symbol_table_type::iterator, bool> ins =
1814 this->table_.insert(std::make_pair(std::make_pair(name_key,
1815 version_key),
1816 snull));
1817
1818 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1819 std::make_pair(this->table_.end(), false);
1820 if (is_default_version)
1821 {
1822 const Stringpool::Key vnull = 0;
1823 insdefault =
1824 this->table_.insert(std::make_pair(std::make_pair(name_key,
1825 vnull),
1826 snull));
1827 }
1828
1829 if (!ins.second)
1830 {
1831 // We already have a symbol table entry for NAME/VERSION.
1832 oldsym = ins.first->second;
1833 gold_assert(oldsym != NULL);
1834
1835 if (is_default_version)
1836 {
1837 Sized_symbol<size>* soldsym =
1838 this->get_sized_symbol<size>(oldsym);
1839 this->define_default_version<size, big_endian>(soldsym,
1840 insdefault.second,
1841 insdefault.first);
1842 }
1843 }
1844 else
1845 {
1846 // We haven't seen this symbol before.
1847 gold_assert(ins.first->second == NULL);
1848
1849 add_to_table = true;
1850 add_loc = ins.first;
1851
1852 if (is_default_version && !insdefault.second)
1853 {
1854 // We are adding NAME/VERSION, and it is the default
1855 // version. We already have an entry for NAME/NULL.
1856 oldsym = insdefault.first->second;
1857 *resolve_oldsym = true;
1858 }
1859 else
1860 {
1861 oldsym = NULL;
1862
1863 if (is_default_version)
1864 {
1865 add_def_to_table = true;
1866 add_def_loc = insdefault.first;
1867 }
1868 }
1869 }
1870 }
1871
1872 const Target& target = parameters->target();
1873 if (!target.has_make_symbol())
1874 sym = new Sized_symbol<size>();
1875 else
1876 {
1877 Sized_target<size, big_endian>* sized_target =
1878 parameters->sized_target<size, big_endian>();
1879 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1880 NULL, elfcpp::SHN_UNDEF, 0);
1881 if (sym == NULL)
1882 return NULL;
1883 }
1884
1885 if (add_to_table)
1886 add_loc->second = sym;
1887 else
1888 gold_assert(oldsym != NULL);
1889
1890 if (add_def_to_table)
1891 add_def_loc->second = sym;
1892
1893 *poldsym = this->get_sized_symbol<size>(oldsym);
1894
1895 return sym;
1896 }
1897
1898 // Define a symbol based on an Output_data.
1899
1900 Symbol*
1901 Symbol_table::define_in_output_data(const char* name,
1902 const char* version,
1903 Defined defined,
1904 Output_data* od,
1905 uint64_t value,
1906 uint64_t symsize,
1907 elfcpp::STT type,
1908 elfcpp::STB binding,
1909 elfcpp::STV visibility,
1910 unsigned char nonvis,
1911 bool offset_is_from_end,
1912 bool only_if_ref)
1913 {
1914 if (parameters->target().get_size() == 32)
1915 {
1916 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1917 return this->do_define_in_output_data<32>(name, version, defined, od,
1918 value, symsize, type, binding,
1919 visibility, nonvis,
1920 offset_is_from_end,
1921 only_if_ref);
1922 #else
1923 gold_unreachable();
1924 #endif
1925 }
1926 else if (parameters->target().get_size() == 64)
1927 {
1928 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1929 return this->do_define_in_output_data<64>(name, version, defined, od,
1930 value, symsize, type, binding,
1931 visibility, nonvis,
1932 offset_is_from_end,
1933 only_if_ref);
1934 #else
1935 gold_unreachable();
1936 #endif
1937 }
1938 else
1939 gold_unreachable();
1940 }
1941
1942 // Define a symbol in an Output_data, sized version.
1943
1944 template<int size>
1945 Sized_symbol<size>*
1946 Symbol_table::do_define_in_output_data(
1947 const char* name,
1948 const char* version,
1949 Defined defined,
1950 Output_data* od,
1951 typename elfcpp::Elf_types<size>::Elf_Addr value,
1952 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1953 elfcpp::STT type,
1954 elfcpp::STB binding,
1955 elfcpp::STV visibility,
1956 unsigned char nonvis,
1957 bool offset_is_from_end,
1958 bool only_if_ref)
1959 {
1960 Sized_symbol<size>* sym;
1961 Sized_symbol<size>* oldsym;
1962 bool resolve_oldsym;
1963
1964 if (parameters->target().is_big_endian())
1965 {
1966 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1967 sym = this->define_special_symbol<size, true>(&name, &version,
1968 only_if_ref, &oldsym,
1969 &resolve_oldsym);
1970 #else
1971 gold_unreachable();
1972 #endif
1973 }
1974 else
1975 {
1976 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1977 sym = this->define_special_symbol<size, false>(&name, &version,
1978 only_if_ref, &oldsym,
1979 &resolve_oldsym);
1980 #else
1981 gold_unreachable();
1982 #endif
1983 }
1984
1985 if (sym == NULL)
1986 return NULL;
1987
1988 sym->init_output_data(name, version, od, value, symsize, type, binding,
1989 visibility, nonvis, offset_is_from_end,
1990 defined == PREDEFINED);
1991
1992 if (oldsym == NULL)
1993 {
1994 if (binding == elfcpp::STB_LOCAL
1995 || this->version_script_.symbol_is_local(name))
1996 this->force_local(sym);
1997 else if (version != NULL)
1998 sym->set_is_default();
1999 return sym;
2000 }
2001
2002 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2003 this->override_with_special(oldsym, sym);
2004
2005 if (resolve_oldsym)
2006 return sym;
2007 else
2008 {
2009 if (defined == PREDEFINED
2010 && (binding == elfcpp::STB_LOCAL
2011 || this->version_script_.symbol_is_local(name)))
2012 this->force_local(oldsym);
2013 delete sym;
2014 return oldsym;
2015 }
2016 }
2017
2018 // Define a symbol based on an Output_segment.
2019
2020 Symbol*
2021 Symbol_table::define_in_output_segment(const char* name,
2022 const char* version,
2023 Defined defined,
2024 Output_segment* os,
2025 uint64_t value,
2026 uint64_t symsize,
2027 elfcpp::STT type,
2028 elfcpp::STB binding,
2029 elfcpp::STV visibility,
2030 unsigned char nonvis,
2031 Symbol::Segment_offset_base offset_base,
2032 bool only_if_ref)
2033 {
2034 if (parameters->target().get_size() == 32)
2035 {
2036 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2037 return this->do_define_in_output_segment<32>(name, version, defined, os,
2038 value, symsize, type,
2039 binding, visibility, nonvis,
2040 offset_base, only_if_ref);
2041 #else
2042 gold_unreachable();
2043 #endif
2044 }
2045 else if (parameters->target().get_size() == 64)
2046 {
2047 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2048 return this->do_define_in_output_segment<64>(name, version, defined, os,
2049 value, symsize, type,
2050 binding, visibility, nonvis,
2051 offset_base, only_if_ref);
2052 #else
2053 gold_unreachable();
2054 #endif
2055 }
2056 else
2057 gold_unreachable();
2058 }
2059
2060 // Define a symbol in an Output_segment, sized version.
2061
2062 template<int size>
2063 Sized_symbol<size>*
2064 Symbol_table::do_define_in_output_segment(
2065 const char* name,
2066 const char* version,
2067 Defined defined,
2068 Output_segment* os,
2069 typename elfcpp::Elf_types<size>::Elf_Addr value,
2070 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2071 elfcpp::STT type,
2072 elfcpp::STB binding,
2073 elfcpp::STV visibility,
2074 unsigned char nonvis,
2075 Symbol::Segment_offset_base offset_base,
2076 bool only_if_ref)
2077 {
2078 Sized_symbol<size>* sym;
2079 Sized_symbol<size>* oldsym;
2080 bool resolve_oldsym;
2081
2082 if (parameters->target().is_big_endian())
2083 {
2084 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2085 sym = this->define_special_symbol<size, true>(&name, &version,
2086 only_if_ref, &oldsym,
2087 &resolve_oldsym);
2088 #else
2089 gold_unreachable();
2090 #endif
2091 }
2092 else
2093 {
2094 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2095 sym = this->define_special_symbol<size, false>(&name, &version,
2096 only_if_ref, &oldsym,
2097 &resolve_oldsym);
2098 #else
2099 gold_unreachable();
2100 #endif
2101 }
2102
2103 if (sym == NULL)
2104 return NULL;
2105
2106 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2107 visibility, nonvis, offset_base,
2108 defined == PREDEFINED);
2109
2110 if (oldsym == NULL)
2111 {
2112 if (binding == elfcpp::STB_LOCAL
2113 || this->version_script_.symbol_is_local(name))
2114 this->force_local(sym);
2115 else if (version != NULL)
2116 sym->set_is_default();
2117 return sym;
2118 }
2119
2120 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2121 this->override_with_special(oldsym, sym);
2122
2123 if (resolve_oldsym)
2124 return sym;
2125 else
2126 {
2127 if (binding == elfcpp::STB_LOCAL
2128 || this->version_script_.symbol_is_local(name))
2129 this->force_local(oldsym);
2130 delete sym;
2131 return oldsym;
2132 }
2133 }
2134
2135 // Define a special symbol with a constant value. It is a multiple
2136 // definition error if this symbol is already defined.
2137
2138 Symbol*
2139 Symbol_table::define_as_constant(const char* name,
2140 const char* version,
2141 Defined defined,
2142 uint64_t value,
2143 uint64_t symsize,
2144 elfcpp::STT type,
2145 elfcpp::STB binding,
2146 elfcpp::STV visibility,
2147 unsigned char nonvis,
2148 bool only_if_ref,
2149 bool force_override)
2150 {
2151 if (parameters->target().get_size() == 32)
2152 {
2153 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2154 return this->do_define_as_constant<32>(name, version, defined, value,
2155 symsize, type, binding,
2156 visibility, nonvis, only_if_ref,
2157 force_override);
2158 #else
2159 gold_unreachable();
2160 #endif
2161 }
2162 else if (parameters->target().get_size() == 64)
2163 {
2164 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2165 return this->do_define_as_constant<64>(name, version, defined, value,
2166 symsize, type, binding,
2167 visibility, nonvis, only_if_ref,
2168 force_override);
2169 #else
2170 gold_unreachable();
2171 #endif
2172 }
2173 else
2174 gold_unreachable();
2175 }
2176
2177 // Define a symbol as a constant, sized version.
2178
2179 template<int size>
2180 Sized_symbol<size>*
2181 Symbol_table::do_define_as_constant(
2182 const char* name,
2183 const char* version,
2184 Defined defined,
2185 typename elfcpp::Elf_types<size>::Elf_Addr value,
2186 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2187 elfcpp::STT type,
2188 elfcpp::STB binding,
2189 elfcpp::STV visibility,
2190 unsigned char nonvis,
2191 bool only_if_ref,
2192 bool force_override)
2193 {
2194 Sized_symbol<size>* sym;
2195 Sized_symbol<size>* oldsym;
2196 bool resolve_oldsym;
2197
2198 if (parameters->target().is_big_endian())
2199 {
2200 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2201 sym = this->define_special_symbol<size, true>(&name, &version,
2202 only_if_ref, &oldsym,
2203 &resolve_oldsym);
2204 #else
2205 gold_unreachable();
2206 #endif
2207 }
2208 else
2209 {
2210 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2211 sym = this->define_special_symbol<size, false>(&name, &version,
2212 only_if_ref, &oldsym,
2213 &resolve_oldsym);
2214 #else
2215 gold_unreachable();
2216 #endif
2217 }
2218
2219 if (sym == NULL)
2220 return NULL;
2221
2222 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2223 nonvis, defined == PREDEFINED);
2224
2225 if (oldsym == NULL)
2226 {
2227 // Version symbols are absolute symbols with name == version.
2228 // We don't want to force them to be local.
2229 if ((version == NULL
2230 || name != version
2231 || value != 0)
2232 && (binding == elfcpp::STB_LOCAL
2233 || this->version_script_.symbol_is_local(name)))
2234 this->force_local(sym);
2235 else if (version != NULL
2236 && (name != version || value != 0))
2237 sym->set_is_default();
2238 return sym;
2239 }
2240
2241 if (force_override
2242 || Symbol_table::should_override_with_special(oldsym, type, defined))
2243 this->override_with_special(oldsym, sym);
2244
2245 if (resolve_oldsym)
2246 return sym;
2247 else
2248 {
2249 if (binding == elfcpp::STB_LOCAL
2250 || this->version_script_.symbol_is_local(name))
2251 this->force_local(oldsym);
2252 delete sym;
2253 return oldsym;
2254 }
2255 }
2256
2257 // Define a set of symbols in output sections.
2258
2259 void
2260 Symbol_table::define_symbols(const Layout* layout, int count,
2261 const Define_symbol_in_section* p,
2262 bool only_if_ref)
2263 {
2264 for (int i = 0; i < count; ++i, ++p)
2265 {
2266 Output_section* os = layout->find_output_section(p->output_section);
2267 if (os != NULL)
2268 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2269 p->size, p->type, p->binding,
2270 p->visibility, p->nonvis,
2271 p->offset_is_from_end,
2272 only_if_ref || p->only_if_ref);
2273 else
2274 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2275 p->type, p->binding, p->visibility, p->nonvis,
2276 only_if_ref || p->only_if_ref,
2277 false);
2278 }
2279 }
2280
2281 // Define a set of symbols in output segments.
2282
2283 void
2284 Symbol_table::define_symbols(const Layout* layout, int count,
2285 const Define_symbol_in_segment* p,
2286 bool only_if_ref)
2287 {
2288 for (int i = 0; i < count; ++i, ++p)
2289 {
2290 Output_segment* os = layout->find_output_segment(p->segment_type,
2291 p->segment_flags_set,
2292 p->segment_flags_clear);
2293 if (os != NULL)
2294 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2295 p->size, p->type, p->binding,
2296 p->visibility, p->nonvis,
2297 p->offset_base,
2298 only_if_ref || p->only_if_ref);
2299 else
2300 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2301 p->type, p->binding, p->visibility, p->nonvis,
2302 only_if_ref || p->only_if_ref,
2303 false);
2304 }
2305 }
2306
2307 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2308 // symbol should be defined--typically a .dyn.bss section. VALUE is
2309 // the offset within POSD.
2310
2311 template<int size>
2312 void
2313 Symbol_table::define_with_copy_reloc(
2314 Sized_symbol<size>* csym,
2315 Output_data* posd,
2316 typename elfcpp::Elf_types<size>::Elf_Addr value)
2317 {
2318 gold_assert(csym->is_from_dynobj());
2319 gold_assert(!csym->is_copied_from_dynobj());
2320 Object* object = csym->object();
2321 gold_assert(object->is_dynamic());
2322 Dynobj* dynobj = static_cast<Dynobj*>(object);
2323
2324 // Our copied variable has to override any variable in a shared
2325 // library.
2326 elfcpp::STB binding = csym->binding();
2327 if (binding == elfcpp::STB_WEAK)
2328 binding = elfcpp::STB_GLOBAL;
2329
2330 this->define_in_output_data(csym->name(), csym->version(), COPY,
2331 posd, value, csym->symsize(),
2332 csym->type(), binding,
2333 csym->visibility(), csym->nonvis(),
2334 false, false);
2335
2336 csym->set_is_copied_from_dynobj();
2337 csym->set_needs_dynsym_entry();
2338
2339 this->copied_symbol_dynobjs_[csym] = dynobj;
2340
2341 // We have now defined all aliases, but we have not entered them all
2342 // in the copied_symbol_dynobjs_ map.
2343 if (csym->has_alias())
2344 {
2345 Symbol* sym = csym;
2346 while (true)
2347 {
2348 sym = this->weak_aliases_[sym];
2349 if (sym == csym)
2350 break;
2351 gold_assert(sym->output_data() == posd);
2352
2353 sym->set_is_copied_from_dynobj();
2354 this->copied_symbol_dynobjs_[sym] = dynobj;
2355 }
2356 }
2357 }
2358
2359 // SYM is defined using a COPY reloc. Return the dynamic object where
2360 // the original definition was found.
2361
2362 Dynobj*
2363 Symbol_table::get_copy_source(const Symbol* sym) const
2364 {
2365 gold_assert(sym->is_copied_from_dynobj());
2366 Copied_symbol_dynobjs::const_iterator p =
2367 this->copied_symbol_dynobjs_.find(sym);
2368 gold_assert(p != this->copied_symbol_dynobjs_.end());
2369 return p->second;
2370 }
2371
2372 // Add any undefined symbols named on the command line.
2373
2374 void
2375 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2376 {
2377 if (parameters->options().any_undefined()
2378 || layout->script_options()->any_unreferenced())
2379 {
2380 if (parameters->target().get_size() == 32)
2381 {
2382 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2383 this->do_add_undefined_symbols_from_command_line<32>(layout);
2384 #else
2385 gold_unreachable();
2386 #endif
2387 }
2388 else if (parameters->target().get_size() == 64)
2389 {
2390 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2391 this->do_add_undefined_symbols_from_command_line<64>(layout);
2392 #else
2393 gold_unreachable();
2394 #endif
2395 }
2396 else
2397 gold_unreachable();
2398 }
2399 }
2400
2401 template<int size>
2402 void
2403 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2404 {
2405 for (options::String_set::const_iterator p =
2406 parameters->options().undefined_begin();
2407 p != parameters->options().undefined_end();
2408 ++p)
2409 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2410
2411 for (options::String_set::const_iterator p =
2412 parameters->options().export_dynamic_symbol_begin();
2413 p != parameters->options().export_dynamic_symbol_end();
2414 ++p)
2415 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2416
2417 for (Script_options::referenced_const_iterator p =
2418 layout->script_options()->referenced_begin();
2419 p != layout->script_options()->referenced_end();
2420 ++p)
2421 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2422 }
2423
2424 template<int size>
2425 void
2426 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2427 {
2428 if (this->lookup(name) != NULL)
2429 return;
2430
2431 const char* version = NULL;
2432
2433 Sized_symbol<size>* sym;
2434 Sized_symbol<size>* oldsym;
2435 bool resolve_oldsym;
2436 if (parameters->target().is_big_endian())
2437 {
2438 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2439 sym = this->define_special_symbol<size, true>(&name, &version,
2440 false, &oldsym,
2441 &resolve_oldsym);
2442 #else
2443 gold_unreachable();
2444 #endif
2445 }
2446 else
2447 {
2448 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2449 sym = this->define_special_symbol<size, false>(&name, &version,
2450 false, &oldsym,
2451 &resolve_oldsym);
2452 #else
2453 gold_unreachable();
2454 #endif
2455 }
2456
2457 gold_assert(oldsym == NULL);
2458
2459 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2460 elfcpp::STV_DEFAULT, 0);
2461 ++this->saw_undefined_;
2462 }
2463
2464 // Set the dynamic symbol indexes. INDEX is the index of the first
2465 // global dynamic symbol. Pointers to the symbols are stored into the
2466 // vector SYMS. The names are added to DYNPOOL. This returns an
2467 // updated dynamic symbol index.
2468
2469 unsigned int
2470 Symbol_table::set_dynsym_indexes(unsigned int index,
2471 std::vector<Symbol*>* syms,
2472 Stringpool* dynpool,
2473 Versions* versions)
2474 {
2475 std::vector<Symbol*> as_needed_sym;
2476
2477 // Allow a target to set dynsym indexes.
2478 if (parameters->target().has_custom_set_dynsym_indexes())
2479 {
2480 std::vector<Symbol*> dyn_symbols;
2481 for (Symbol_table_type::iterator p = this->table_.begin();
2482 p != this->table_.end();
2483 ++p)
2484 {
2485 Symbol* sym = p->second;
2486 if (!sym->should_add_dynsym_entry(this))
2487 sym->set_dynsym_index(-1U);
2488 else
2489 dyn_symbols.push_back(sym);
2490 }
2491
2492 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2493 dynpool, versions, this);
2494 }
2495
2496 for (Symbol_table_type::iterator p = this->table_.begin();
2497 p != this->table_.end();
2498 ++p)
2499 {
2500 Symbol* sym = p->second;
2501
2502 // Note that SYM may already have a dynamic symbol index, since
2503 // some symbols appear more than once in the symbol table, with
2504 // and without a version.
2505
2506 if (!sym->should_add_dynsym_entry(this))
2507 sym->set_dynsym_index(-1U);
2508 else if (!sym->has_dynsym_index())
2509 {
2510 sym->set_dynsym_index(index);
2511 ++index;
2512 syms->push_back(sym);
2513 dynpool->add(sym->name(), false, NULL);
2514
2515 // If the symbol is defined in a dynamic object and is
2516 // referenced strongly in a regular object, then mark the
2517 // dynamic object as needed. This is used to implement
2518 // --as-needed.
2519 if (sym->is_from_dynobj()
2520 && sym->in_reg()
2521 && !sym->is_undef_binding_weak())
2522 sym->object()->set_is_needed();
2523
2524 // Record any version information, except those from
2525 // as-needed libraries not seen to be needed. Note that the
2526 // is_needed state for such libraries can change in this loop.
2527 if (sym->version() != NULL)
2528 {
2529 if (!sym->is_from_dynobj()
2530 || !sym->object()->as_needed()
2531 || sym->object()->is_needed())
2532 versions->record_version(this, dynpool, sym);
2533 else
2534 as_needed_sym.push_back(sym);
2535 }
2536 }
2537 }
2538
2539 // Process version information for symbols from as-needed libraries.
2540 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2541 p != as_needed_sym.end();
2542 ++p)
2543 {
2544 Symbol* sym = *p;
2545
2546 if (sym->object()->is_needed())
2547 versions->record_version(this, dynpool, sym);
2548 else
2549 sym->clear_version();
2550 }
2551
2552 // Finish up the versions. In some cases this may add new dynamic
2553 // symbols.
2554 index = versions->finalize(this, index, syms);
2555
2556 // Process target-specific symbols.
2557 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2558 p != this->target_symbols_.end();
2559 ++p)
2560 {
2561 (*p)->set_dynsym_index(index);
2562 ++index;
2563 syms->push_back(*p);
2564 dynpool->add((*p)->name(), false, NULL);
2565 }
2566
2567 return index;
2568 }
2569
2570 // Set the final values for all the symbols. The index of the first
2571 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2572 // file offset OFF. Add their names to POOL. Return the new file
2573 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2574
2575 off_t
2576 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2577 size_t dyncount, Stringpool* pool,
2578 unsigned int* plocal_symcount)
2579 {
2580 off_t ret;
2581
2582 gold_assert(*plocal_symcount != 0);
2583 this->first_global_index_ = *plocal_symcount;
2584
2585 this->dynamic_offset_ = dynoff;
2586 this->first_dynamic_global_index_ = dyn_global_index;
2587 this->dynamic_count_ = dyncount;
2588
2589 if (parameters->target().get_size() == 32)
2590 {
2591 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2592 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2593 #else
2594 gold_unreachable();
2595 #endif
2596 }
2597 else if (parameters->target().get_size() == 64)
2598 {
2599 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2600 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2601 #else
2602 gold_unreachable();
2603 #endif
2604 }
2605 else
2606 gold_unreachable();
2607
2608 // Now that we have the final symbol table, we can reliably note
2609 // which symbols should get warnings.
2610 this->warnings_.note_warnings(this);
2611
2612 return ret;
2613 }
2614
2615 // SYM is going into the symbol table at *PINDEX. Add the name to
2616 // POOL, update *PINDEX and *POFF.
2617
2618 template<int size>
2619 void
2620 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2621 unsigned int* pindex, off_t* poff)
2622 {
2623 sym->set_symtab_index(*pindex);
2624 if (sym->version() == NULL || !parameters->options().relocatable())
2625 pool->add(sym->name(), false, NULL);
2626 else
2627 pool->add(sym->versioned_name(), true, NULL);
2628 ++*pindex;
2629 *poff += elfcpp::Elf_sizes<size>::sym_size;
2630 }
2631
2632 // Set the final value for all the symbols. This is called after
2633 // Layout::finalize, so all the output sections have their final
2634 // address.
2635
2636 template<int size>
2637 off_t
2638 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2639 unsigned int* plocal_symcount)
2640 {
2641 off = align_address(off, size >> 3);
2642 this->offset_ = off;
2643
2644 unsigned int index = *plocal_symcount;
2645 const unsigned int orig_index = index;
2646
2647 // First do all the symbols which have been forced to be local, as
2648 // they must appear before all global symbols.
2649 for (Forced_locals::iterator p = this->forced_locals_.begin();
2650 p != this->forced_locals_.end();
2651 ++p)
2652 {
2653 Symbol* sym = *p;
2654 gold_assert(sym->is_forced_local());
2655 if (this->sized_finalize_symbol<size>(sym))
2656 {
2657 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2658 ++*plocal_symcount;
2659 }
2660 }
2661
2662 // Now do all the remaining symbols.
2663 for (Symbol_table_type::iterator p = this->table_.begin();
2664 p != this->table_.end();
2665 ++p)
2666 {
2667 Symbol* sym = p->second;
2668 if (this->sized_finalize_symbol<size>(sym))
2669 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2670 }
2671
2672 // Now do target-specific symbols.
2673 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2674 p != this->target_symbols_.end();
2675 ++p)
2676 {
2677 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2678 }
2679
2680 this->output_count_ = index - orig_index;
2681
2682 return off;
2683 }
2684
2685 // Compute the final value of SYM and store status in location PSTATUS.
2686 // During relaxation, this may be called multiple times for a symbol to
2687 // compute its would-be final value in each relaxation pass.
2688
2689 template<int size>
2690 typename Sized_symbol<size>::Value_type
2691 Symbol_table::compute_final_value(
2692 const Sized_symbol<size>* sym,
2693 Compute_final_value_status* pstatus) const
2694 {
2695 typedef typename Sized_symbol<size>::Value_type Value_type;
2696 Value_type value;
2697
2698 switch (sym->source())
2699 {
2700 case Symbol::FROM_OBJECT:
2701 {
2702 bool is_ordinary;
2703 unsigned int shndx = sym->shndx(&is_ordinary);
2704
2705 if (!is_ordinary
2706 && shndx != elfcpp::SHN_ABS
2707 && !Symbol::is_common_shndx(shndx))
2708 {
2709 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2710 return 0;
2711 }
2712
2713 Object* symobj = sym->object();
2714 if (symobj->is_dynamic())
2715 {
2716 value = 0;
2717 shndx = elfcpp::SHN_UNDEF;
2718 }
2719 else if (symobj->pluginobj() != NULL)
2720 {
2721 value = 0;
2722 shndx = elfcpp::SHN_UNDEF;
2723 }
2724 else if (shndx == elfcpp::SHN_UNDEF)
2725 value = 0;
2726 else if (!is_ordinary
2727 && (shndx == elfcpp::SHN_ABS
2728 || Symbol::is_common_shndx(shndx)))
2729 value = sym->value();
2730 else
2731 {
2732 Relobj* relobj = static_cast<Relobj*>(symobj);
2733 Output_section* os = relobj->output_section(shndx);
2734
2735 if (this->is_section_folded(relobj, shndx))
2736 {
2737 gold_assert(os == NULL);
2738 // Get the os of the section it is folded onto.
2739 Section_id folded = this->icf_->get_folded_section(relobj,
2740 shndx);
2741 gold_assert(folded.first != NULL);
2742 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2743 unsigned folded_shndx = folded.second;
2744
2745 os = folded_obj->output_section(folded_shndx);
2746 gold_assert(os != NULL);
2747
2748 // Replace (relobj, shndx) with canonical ICF input section.
2749 shndx = folded_shndx;
2750 relobj = folded_obj;
2751 }
2752
2753 uint64_t secoff64 = relobj->output_section_offset(shndx);
2754 if (os == NULL)
2755 {
2756 bool static_or_reloc = (parameters->doing_static_link() ||
2757 parameters->options().relocatable());
2758 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2759
2760 *pstatus = CFVS_NO_OUTPUT_SECTION;
2761 return 0;
2762 }
2763
2764 if (secoff64 == -1ULL)
2765 {
2766 // The section needs special handling (e.g., a merge section).
2767
2768 value = os->output_address(relobj, shndx, sym->value());
2769 }
2770 else
2771 {
2772 Value_type secoff =
2773 convert_types<Value_type, uint64_t>(secoff64);
2774 if (sym->type() == elfcpp::STT_TLS)
2775 value = sym->value() + os->tls_offset() + secoff;
2776 else
2777 value = sym->value() + os->address() + secoff;
2778 }
2779 }
2780 }
2781 break;
2782
2783 case Symbol::IN_OUTPUT_DATA:
2784 {
2785 Output_data* od = sym->output_data();
2786 value = sym->value();
2787 if (sym->type() != elfcpp::STT_TLS)
2788 value += od->address();
2789 else
2790 {
2791 Output_section* os = od->output_section();
2792 gold_assert(os != NULL);
2793 value += os->tls_offset() + (od->address() - os->address());
2794 }
2795 if (sym->offset_is_from_end())
2796 value += od->data_size();
2797 }
2798 break;
2799
2800 case Symbol::IN_OUTPUT_SEGMENT:
2801 {
2802 Output_segment* os = sym->output_segment();
2803 value = sym->value();
2804 if (sym->type() != elfcpp::STT_TLS)
2805 value += os->vaddr();
2806 switch (sym->offset_base())
2807 {
2808 case Symbol::SEGMENT_START:
2809 break;
2810 case Symbol::SEGMENT_END:
2811 value += os->memsz();
2812 break;
2813 case Symbol::SEGMENT_BSS:
2814 value += os->filesz();
2815 break;
2816 default:
2817 gold_unreachable();
2818 }
2819 }
2820 break;
2821
2822 case Symbol::IS_CONSTANT:
2823 value = sym->value();
2824 break;
2825
2826 case Symbol::IS_UNDEFINED:
2827 value = 0;
2828 break;
2829
2830 default:
2831 gold_unreachable();
2832 }
2833
2834 *pstatus = CFVS_OK;
2835 return value;
2836 }
2837
2838 // Finalize the symbol SYM. This returns true if the symbol should be
2839 // added to the symbol table, false otherwise.
2840
2841 template<int size>
2842 bool
2843 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2844 {
2845 typedef typename Sized_symbol<size>::Value_type Value_type;
2846
2847 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2848
2849 // The default version of a symbol may appear twice in the symbol
2850 // table. We only need to finalize it once.
2851 if (sym->has_symtab_index())
2852 return false;
2853
2854 if (!sym->in_reg())
2855 {
2856 gold_assert(!sym->has_symtab_index());
2857 sym->set_symtab_index(-1U);
2858 gold_assert(sym->dynsym_index() == -1U);
2859 return false;
2860 }
2861
2862 // If the symbol is only present on plugin files, the plugin decided we
2863 // don't need it.
2864 if (!sym->in_real_elf())
2865 {
2866 gold_assert(!sym->has_symtab_index());
2867 sym->set_symtab_index(-1U);
2868 return false;
2869 }
2870
2871 // Compute final symbol value.
2872 Compute_final_value_status status;
2873 Value_type value = this->compute_final_value(sym, &status);
2874
2875 switch (status)
2876 {
2877 case CFVS_OK:
2878 break;
2879 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2880 {
2881 bool is_ordinary;
2882 unsigned int shndx = sym->shndx(&is_ordinary);
2883 gold_error(_("%s: unsupported symbol section 0x%x"),
2884 sym->demangled_name().c_str(), shndx);
2885 }
2886 break;
2887 case CFVS_NO_OUTPUT_SECTION:
2888 sym->set_symtab_index(-1U);
2889 return false;
2890 default:
2891 gold_unreachable();
2892 }
2893
2894 sym->set_value(value);
2895
2896 if (parameters->options().strip_all()
2897 || !parameters->options().should_retain_symbol(sym->name()))
2898 {
2899 sym->set_symtab_index(-1U);
2900 return false;
2901 }
2902
2903 return true;
2904 }
2905
2906 // Write out the global symbols.
2907
2908 void
2909 Symbol_table::write_globals(const Stringpool* sympool,
2910 const Stringpool* dynpool,
2911 Output_symtab_xindex* symtab_xindex,
2912 Output_symtab_xindex* dynsym_xindex,
2913 Output_file* of) const
2914 {
2915 switch (parameters->size_and_endianness())
2916 {
2917 #ifdef HAVE_TARGET_32_LITTLE
2918 case Parameters::TARGET_32_LITTLE:
2919 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2920 dynsym_xindex, of);
2921 break;
2922 #endif
2923 #ifdef HAVE_TARGET_32_BIG
2924 case Parameters::TARGET_32_BIG:
2925 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2926 dynsym_xindex, of);
2927 break;
2928 #endif
2929 #ifdef HAVE_TARGET_64_LITTLE
2930 case Parameters::TARGET_64_LITTLE:
2931 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2932 dynsym_xindex, of);
2933 break;
2934 #endif
2935 #ifdef HAVE_TARGET_64_BIG
2936 case Parameters::TARGET_64_BIG:
2937 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2938 dynsym_xindex, of);
2939 break;
2940 #endif
2941 default:
2942 gold_unreachable();
2943 }
2944 }
2945
2946 // Write out the global symbols.
2947
2948 template<int size, bool big_endian>
2949 void
2950 Symbol_table::sized_write_globals(const Stringpool* sympool,
2951 const Stringpool* dynpool,
2952 Output_symtab_xindex* symtab_xindex,
2953 Output_symtab_xindex* dynsym_xindex,
2954 Output_file* of) const
2955 {
2956 const Target& target = parameters->target();
2957
2958 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2959
2960 const unsigned int output_count = this->output_count_;
2961 const section_size_type oview_size = output_count * sym_size;
2962 const unsigned int first_global_index = this->first_global_index_;
2963 unsigned char* psyms;
2964 if (this->offset_ == 0 || output_count == 0)
2965 psyms = NULL;
2966 else
2967 psyms = of->get_output_view(this->offset_, oview_size);
2968
2969 const unsigned int dynamic_count = this->dynamic_count_;
2970 const section_size_type dynamic_size = dynamic_count * sym_size;
2971 const unsigned int first_dynamic_global_index =
2972 this->first_dynamic_global_index_;
2973 unsigned char* dynamic_view;
2974 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2975 dynamic_view = NULL;
2976 else
2977 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2978
2979 for (Symbol_table_type::const_iterator p = this->table_.begin();
2980 p != this->table_.end();
2981 ++p)
2982 {
2983 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2984
2985 // Possibly warn about unresolved symbols in shared libraries.
2986 this->warn_about_undefined_dynobj_symbol(sym);
2987
2988 unsigned int sym_index = sym->symtab_index();
2989 unsigned int dynsym_index;
2990 if (dynamic_view == NULL)
2991 dynsym_index = -1U;
2992 else
2993 dynsym_index = sym->dynsym_index();
2994
2995 if (sym_index == -1U && dynsym_index == -1U)
2996 {
2997 // This symbol is not included in the output file.
2998 continue;
2999 }
3000
3001 unsigned int shndx;
3002 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3003 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3004 elfcpp::STB binding = sym->binding();
3005
3006 // If --weak-unresolved-symbols is set, change binding of unresolved
3007 // global symbols to STB_WEAK.
3008 if (parameters->options().weak_unresolved_symbols()
3009 && binding == elfcpp::STB_GLOBAL
3010 && sym->is_undefined())
3011 binding = elfcpp::STB_WEAK;
3012
3013 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3014 if (binding == elfcpp::STB_GNU_UNIQUE
3015 && !parameters->options().gnu_unique())
3016 binding = elfcpp::STB_GLOBAL;
3017
3018 switch (sym->source())
3019 {
3020 case Symbol::FROM_OBJECT:
3021 {
3022 bool is_ordinary;
3023 unsigned int in_shndx = sym->shndx(&is_ordinary);
3024
3025 if (!is_ordinary
3026 && in_shndx != elfcpp::SHN_ABS
3027 && !Symbol::is_common_shndx(in_shndx))
3028 {
3029 gold_error(_("%s: unsupported symbol section 0x%x"),
3030 sym->demangled_name().c_str(), in_shndx);
3031 shndx = in_shndx;
3032 }
3033 else
3034 {
3035 Object* symobj = sym->object();
3036 if (symobj->is_dynamic())
3037 {
3038 if (sym->needs_dynsym_value())
3039 dynsym_value = target.dynsym_value(sym);
3040 shndx = elfcpp::SHN_UNDEF;
3041 if (sym->is_undef_binding_weak())
3042 binding = elfcpp::STB_WEAK;
3043 else
3044 binding = elfcpp::STB_GLOBAL;
3045 }
3046 else if (symobj->pluginobj() != NULL)
3047 shndx = elfcpp::SHN_UNDEF;
3048 else if (in_shndx == elfcpp::SHN_UNDEF
3049 || (!is_ordinary
3050 && (in_shndx == elfcpp::SHN_ABS
3051 || Symbol::is_common_shndx(in_shndx))))
3052 shndx = in_shndx;
3053 else
3054 {
3055 Relobj* relobj = static_cast<Relobj*>(symobj);
3056 Output_section* os = relobj->output_section(in_shndx);
3057 if (this->is_section_folded(relobj, in_shndx))
3058 {
3059 // This global symbol must be written out even though
3060 // it is folded.
3061 // Get the os of the section it is folded onto.
3062 Section_id folded =
3063 this->icf_->get_folded_section(relobj, in_shndx);
3064 gold_assert(folded.first !=NULL);
3065 Relobj* folded_obj =
3066 reinterpret_cast<Relobj*>(folded.first);
3067 os = folded_obj->output_section(folded.second);
3068 gold_assert(os != NULL);
3069 }
3070 gold_assert(os != NULL);
3071 shndx = os->out_shndx();
3072
3073 if (shndx >= elfcpp::SHN_LORESERVE)
3074 {
3075 if (sym_index != -1U)
3076 symtab_xindex->add(sym_index, shndx);
3077 if (dynsym_index != -1U)
3078 dynsym_xindex->add(dynsym_index, shndx);
3079 shndx = elfcpp::SHN_XINDEX;
3080 }
3081
3082 // In object files symbol values are section
3083 // relative.
3084 if (parameters->options().relocatable())
3085 sym_value -= os->address();
3086 }
3087 }
3088 }
3089 break;
3090
3091 case Symbol::IN_OUTPUT_DATA:
3092 {
3093 Output_data* od = sym->output_data();
3094
3095 shndx = od->out_shndx();
3096 if (shndx >= elfcpp::SHN_LORESERVE)
3097 {
3098 if (sym_index != -1U)
3099 symtab_xindex->add(sym_index, shndx);
3100 if (dynsym_index != -1U)
3101 dynsym_xindex->add(dynsym_index, shndx);
3102 shndx = elfcpp::SHN_XINDEX;
3103 }
3104
3105 // In object files symbol values are section
3106 // relative.
3107 if (parameters->options().relocatable())
3108 sym_value -= od->address();
3109 }
3110 break;
3111
3112 case Symbol::IN_OUTPUT_SEGMENT:
3113 shndx = elfcpp::SHN_ABS;
3114 break;
3115
3116 case Symbol::IS_CONSTANT:
3117 shndx = elfcpp::SHN_ABS;
3118 break;
3119
3120 case Symbol::IS_UNDEFINED:
3121 shndx = elfcpp::SHN_UNDEF;
3122 break;
3123
3124 default:
3125 gold_unreachable();
3126 }
3127
3128 if (sym_index != -1U)
3129 {
3130 sym_index -= first_global_index;
3131 gold_assert(sym_index < output_count);
3132 unsigned char* ps = psyms + (sym_index * sym_size);
3133 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3134 binding, sympool, ps);
3135 }
3136
3137 if (dynsym_index != -1U)
3138 {
3139 dynsym_index -= first_dynamic_global_index;
3140 gold_assert(dynsym_index < dynamic_count);
3141 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3142 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3143 binding, dynpool, pd);
3144 // Allow a target to adjust dynamic symbol value.
3145 parameters->target().adjust_dyn_symbol(sym, pd);
3146 }
3147 }
3148
3149 // Write the target-specific symbols.
3150 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3151 p != this->target_symbols_.end();
3152 ++p)
3153 {
3154 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3155
3156 unsigned int sym_index = sym->symtab_index();
3157 unsigned int dynsym_index;
3158 if (dynamic_view == NULL)
3159 dynsym_index = -1U;
3160 else
3161 dynsym_index = sym->dynsym_index();
3162
3163 unsigned int shndx;
3164 switch (sym->source())
3165 {
3166 case Symbol::IS_CONSTANT:
3167 shndx = elfcpp::SHN_ABS;
3168 break;
3169 case Symbol::IS_UNDEFINED:
3170 shndx = elfcpp::SHN_UNDEF;
3171 break;
3172 default:
3173 gold_unreachable();
3174 }
3175
3176 if (sym_index != -1U)
3177 {
3178 sym_index -= first_global_index;
3179 gold_assert(sym_index < output_count);
3180 unsigned char* ps = psyms + (sym_index * sym_size);
3181 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3182 sym->binding(), sympool,
3183 ps);
3184 }
3185
3186 if (dynsym_index != -1U)
3187 {
3188 dynsym_index -= first_dynamic_global_index;
3189 gold_assert(dynsym_index < dynamic_count);
3190 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3191 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3192 sym->binding(), dynpool,
3193 pd);
3194 }
3195 }
3196
3197 of->write_output_view(this->offset_, oview_size, psyms);
3198 if (dynamic_view != NULL)
3199 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3200 }
3201
3202 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3203 // strtab holding the name.
3204
3205 template<int size, bool big_endian>
3206 void
3207 Symbol_table::sized_write_symbol(
3208 Sized_symbol<size>* sym,
3209 typename elfcpp::Elf_types<size>::Elf_Addr value,
3210 unsigned int shndx,
3211 elfcpp::STB binding,
3212 const Stringpool* pool,
3213 unsigned char* p) const
3214 {
3215 elfcpp::Sym_write<size, big_endian> osym(p);
3216 if (sym->version() == NULL || !parameters->options().relocatable())
3217 osym.put_st_name(pool->get_offset(sym->name()));
3218 else
3219 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3220 osym.put_st_value(value);
3221 // Use a symbol size of zero for undefined symbols from shared libraries.
3222 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3223 osym.put_st_size(0);
3224 else
3225 osym.put_st_size(sym->symsize());
3226 elfcpp::STT type = sym->type();
3227 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3228 // A version script may have overridden the default binding.
3229 if (sym->is_forced_local())
3230 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3231 else
3232 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3233 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3234 osym.put_st_shndx(shndx);
3235 }
3236
3237 // Check for unresolved symbols in shared libraries. This is
3238 // controlled by the --allow-shlib-undefined option.
3239
3240 // We only warn about libraries for which we have seen all the
3241 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3242 // which were not seen in this link. If we didn't see a DT_NEEDED
3243 // entry, we aren't going to be able to reliably report whether the
3244 // symbol is undefined.
3245
3246 // We also don't warn about libraries found in a system library
3247 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3248 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3249 // can have undefined references satisfied by ld-linux.so.
3250
3251 inline void
3252 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3253 {
3254 bool dummy;
3255 if (sym->source() == Symbol::FROM_OBJECT
3256 && sym->object()->is_dynamic()
3257 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3258 && sym->binding() != elfcpp::STB_WEAK
3259 && !parameters->options().allow_shlib_undefined()
3260 && !parameters->target().is_defined_by_abi(sym)
3261 && !sym->object()->is_in_system_directory())
3262 {
3263 // A very ugly cast.
3264 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3265 if (!dynobj->has_unknown_needed_entries())
3266 gold_undefined_symbol(sym);
3267 }
3268 }
3269
3270 // Write out a section symbol. Return the update offset.
3271
3272 void
3273 Symbol_table::write_section_symbol(const Output_section* os,
3274 Output_symtab_xindex* symtab_xindex,
3275 Output_file* of,
3276 off_t offset) const
3277 {
3278 switch (parameters->size_and_endianness())
3279 {
3280 #ifdef HAVE_TARGET_32_LITTLE
3281 case Parameters::TARGET_32_LITTLE:
3282 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3283 offset);
3284 break;
3285 #endif
3286 #ifdef HAVE_TARGET_32_BIG
3287 case Parameters::TARGET_32_BIG:
3288 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3289 offset);
3290 break;
3291 #endif
3292 #ifdef HAVE_TARGET_64_LITTLE
3293 case Parameters::TARGET_64_LITTLE:
3294 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3295 offset);
3296 break;
3297 #endif
3298 #ifdef HAVE_TARGET_64_BIG
3299 case Parameters::TARGET_64_BIG:
3300 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3301 offset);
3302 break;
3303 #endif
3304 default:
3305 gold_unreachable();
3306 }
3307 }
3308
3309 // Write out a section symbol, specialized for size and endianness.
3310
3311 template<int size, bool big_endian>
3312 void
3313 Symbol_table::sized_write_section_symbol(const Output_section* os,
3314 Output_symtab_xindex* symtab_xindex,
3315 Output_file* of,
3316 off_t offset) const
3317 {
3318 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3319
3320 unsigned char* pov = of->get_output_view(offset, sym_size);
3321
3322 elfcpp::Sym_write<size, big_endian> osym(pov);
3323 osym.put_st_name(0);
3324 if (parameters->options().relocatable())
3325 osym.put_st_value(0);
3326 else
3327 osym.put_st_value(os->address());
3328 osym.put_st_size(0);
3329 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3330 elfcpp::STT_SECTION));
3331 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3332
3333 unsigned int shndx = os->out_shndx();
3334 if (shndx >= elfcpp::SHN_LORESERVE)
3335 {
3336 symtab_xindex->add(os->symtab_index(), shndx);
3337 shndx = elfcpp::SHN_XINDEX;
3338 }
3339 osym.put_st_shndx(shndx);
3340
3341 of->write_output_view(offset, sym_size, pov);
3342 }
3343
3344 // Print statistical information to stderr. This is used for --stats.
3345
3346 void
3347 Symbol_table::print_stats() const
3348 {
3349 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3350 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3351 program_name, this->table_.size(), this->table_.bucket_count());
3352 #else
3353 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3354 program_name, this->table_.size());
3355 #endif
3356 this->namepool_.print_stats("symbol table stringpool");
3357 }
3358
3359 // We check for ODR violations by looking for symbols with the same
3360 // name for which the debugging information reports that they were
3361 // defined in disjoint source locations. When comparing the source
3362 // location, we consider instances with the same base filename to be
3363 // the same. This is because different object files/shared libraries
3364 // can include the same header file using different paths, and
3365 // different optimization settings can make the line number appear to
3366 // be a couple lines off, and we don't want to report an ODR violation
3367 // in those cases.
3368
3369 // This struct is used to compare line information, as returned by
3370 // Dwarf_line_info::one_addr2line. It implements a < comparison
3371 // operator used with std::sort.
3372
3373 struct Odr_violation_compare
3374 {
3375 bool
3376 operator()(const std::string& s1, const std::string& s2) const
3377 {
3378 // Inputs should be of the form "dirname/filename:linenum" where
3379 // "dirname/" is optional. We want to compare just the filename:linenum.
3380
3381 // Find the last '/' in each string.
3382 std::string::size_type s1begin = s1.rfind('/');
3383 std::string::size_type s2begin = s2.rfind('/');
3384 // If there was no '/' in a string, start at the beginning.
3385 if (s1begin == std::string::npos)
3386 s1begin = 0;
3387 if (s2begin == std::string::npos)
3388 s2begin = 0;
3389 return s1.compare(s1begin, std::string::npos,
3390 s2, s2begin, std::string::npos) < 0;
3391 }
3392 };
3393
3394 // Returns all of the lines attached to LOC, not just the one the
3395 // instruction actually came from.
3396 std::vector<std::string>
3397 Symbol_table::linenos_from_loc(const Task* task,
3398 const Symbol_location& loc)
3399 {
3400 // We need to lock the object in order to read it. This
3401 // means that we have to run in a singleton Task. If we
3402 // want to run this in a general Task for better
3403 // performance, we will need one Task for object, plus
3404 // appropriate locking to ensure that we don't conflict with
3405 // other uses of the object. Also note, one_addr2line is not
3406 // currently thread-safe.
3407 Task_lock_obj<Object> tl(task, loc.object);
3408
3409 std::vector<std::string> result;
3410 Symbol_location code_loc = loc;
3411 parameters->target().function_location(&code_loc);
3412 // 16 is the size of the object-cache that one_addr2line should use.
3413 std::string canonical_result = Dwarf_line_info::one_addr2line(
3414 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3415 if (!canonical_result.empty())
3416 result.push_back(canonical_result);
3417 return result;
3418 }
3419
3420 // OutputIterator that records if it was ever assigned to. This
3421 // allows it to be used with std::set_intersection() to check for
3422 // intersection rather than computing the intersection.
3423 struct Check_intersection
3424 {
3425 Check_intersection()
3426 : value_(false)
3427 {}
3428
3429 bool had_intersection() const
3430 { return this->value_; }
3431
3432 Check_intersection& operator++()
3433 { return *this; }
3434
3435 Check_intersection& operator*()
3436 { return *this; }
3437
3438 template<typename T>
3439 Check_intersection& operator=(const T&)
3440 {
3441 this->value_ = true;
3442 return *this;
3443 }
3444
3445 private:
3446 bool value_;
3447 };
3448
3449 // Check candidate_odr_violations_ to find symbols with the same name
3450 // but apparently different definitions (different source-file/line-no
3451 // for each line assigned to the first instruction).
3452
3453 void
3454 Symbol_table::detect_odr_violations(const Task* task,
3455 const char* output_file_name) const
3456 {
3457 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3458 it != candidate_odr_violations_.end();
3459 ++it)
3460 {
3461 const char* const symbol_name = it->first;
3462
3463 std::string first_object_name;
3464 std::vector<std::string> first_object_linenos;
3465
3466 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3467 locs = it->second.begin();
3468 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3469 locs_end = it->second.end();
3470 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3471 {
3472 // Save the line numbers from the first definition to
3473 // compare to the other definitions. Ideally, we'd compare
3474 // every definition to every other, but we don't want to
3475 // take O(N^2) time to do this. This shortcut may cause
3476 // false negatives that appear or disappear depending on the
3477 // link order, but it won't cause false positives.
3478 first_object_name = locs->object->name();
3479 first_object_linenos = this->linenos_from_loc(task, *locs);
3480 }
3481 if (first_object_linenos.empty())
3482 continue;
3483
3484 // Sort by Odr_violation_compare to make std::set_intersection work.
3485 std::string first_object_canonical_result = first_object_linenos.back();
3486 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3487 Odr_violation_compare());
3488
3489 for (; locs != locs_end; ++locs)
3490 {
3491 std::vector<std::string> linenos =
3492 this->linenos_from_loc(task, *locs);
3493 // linenos will be empty if we couldn't parse the debug info.
3494 if (linenos.empty())
3495 continue;
3496 // Sort by Odr_violation_compare to make std::set_intersection work.
3497 gold_assert(!linenos.empty());
3498 std::string second_object_canonical_result = linenos.back();
3499 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3500
3501 Check_intersection intersection_result =
3502 std::set_intersection(first_object_linenos.begin(),
3503 first_object_linenos.end(),
3504 linenos.begin(),
3505 linenos.end(),
3506 Check_intersection(),
3507 Odr_violation_compare());
3508 if (!intersection_result.had_intersection())
3509 {
3510 gold_warning(_("while linking %s: symbol '%s' defined in "
3511 "multiple places (possible ODR violation):"),
3512 output_file_name, demangle(symbol_name).c_str());
3513 // This only prints one location from each definition,
3514 // which may not be the location we expect to intersect
3515 // with another definition. We could print the whole
3516 // set of locations, but that seems too verbose.
3517 fprintf(stderr, _(" %s from %s\n"),
3518 first_object_canonical_result.c_str(),
3519 first_object_name.c_str());
3520 fprintf(stderr, _(" %s from %s\n"),
3521 second_object_canonical_result.c_str(),
3522 locs->object->name().c_str());
3523 // Only print one broken pair, to avoid needing to
3524 // compare against a list of the disjoint definition
3525 // locations we've found so far. (If we kept comparing
3526 // against just the first one, we'd get a lot of
3527 // redundant complaints about the second definition
3528 // location.)
3529 break;
3530 }
3531 }
3532 }
3533 // We only call one_addr2line() in this function, so we can clear its cache.
3534 Dwarf_line_info::clear_addr2line_cache();
3535 }
3536
3537 // Warnings functions.
3538
3539 // Add a new warning.
3540
3541 void
3542 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3543 const std::string& warning)
3544 {
3545 name = symtab->canonicalize_name(name);
3546 this->warnings_[name].set(obj, warning);
3547 }
3548
3549 // Look through the warnings and mark the symbols for which we should
3550 // warn. This is called during Layout::finalize when we know the
3551 // sources for all the symbols.
3552
3553 void
3554 Warnings::note_warnings(Symbol_table* symtab)
3555 {
3556 for (Warning_table::iterator p = this->warnings_.begin();
3557 p != this->warnings_.end();
3558 ++p)
3559 {
3560 Symbol* sym = symtab->lookup(p->first, NULL);
3561 if (sym != NULL
3562 && sym->source() == Symbol::FROM_OBJECT
3563 && sym->object() == p->second.object)
3564 sym->set_has_warning();
3565 }
3566 }
3567
3568 // Issue a warning. This is called when we see a relocation against a
3569 // symbol for which has a warning.
3570
3571 template<int size, bool big_endian>
3572 void
3573 Warnings::issue_warning(const Symbol* sym,
3574 const Relocate_info<size, big_endian>* relinfo,
3575 size_t relnum, off_t reloffset) const
3576 {
3577 gold_assert(sym->has_warning());
3578
3579 // We don't want to issue a warning for a relocation against the
3580 // symbol in the same object file in which the symbol is defined.
3581 if (sym->object() == relinfo->object)
3582 return;
3583
3584 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3585 gold_assert(p != this->warnings_.end());
3586 gold_warning_at_location(relinfo, relnum, reloffset,
3587 "%s", p->second.text.c_str());
3588 }
3589
3590 // Instantiate the templates we need. We could use the configure
3591 // script to restrict this to only the ones needed for implemented
3592 // targets.
3593
3594 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3595 template
3596 void
3597 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3598 #endif
3599
3600 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3601 template
3602 void
3603 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3604 #endif
3605
3606 #ifdef HAVE_TARGET_32_LITTLE
3607 template
3608 void
3609 Symbol_table::add_from_relobj<32, false>(
3610 Sized_relobj_file<32, false>* relobj,
3611 const unsigned char* syms,
3612 size_t count,
3613 size_t symndx_offset,
3614 const char* sym_names,
3615 size_t sym_name_size,
3616 Sized_relobj_file<32, false>::Symbols* sympointers,
3617 size_t* defined);
3618 #endif
3619
3620 #ifdef HAVE_TARGET_32_BIG
3621 template
3622 void
3623 Symbol_table::add_from_relobj<32, true>(
3624 Sized_relobj_file<32, true>* relobj,
3625 const unsigned char* syms,
3626 size_t count,
3627 size_t symndx_offset,
3628 const char* sym_names,
3629 size_t sym_name_size,
3630 Sized_relobj_file<32, true>::Symbols* sympointers,
3631 size_t* defined);
3632 #endif
3633
3634 #ifdef HAVE_TARGET_64_LITTLE
3635 template
3636 void
3637 Symbol_table::add_from_relobj<64, false>(
3638 Sized_relobj_file<64, false>* relobj,
3639 const unsigned char* syms,
3640 size_t count,
3641 size_t symndx_offset,
3642 const char* sym_names,
3643 size_t sym_name_size,
3644 Sized_relobj_file<64, false>::Symbols* sympointers,
3645 size_t* defined);
3646 #endif
3647
3648 #ifdef HAVE_TARGET_64_BIG
3649 template
3650 void
3651 Symbol_table::add_from_relobj<64, true>(
3652 Sized_relobj_file<64, true>* relobj,
3653 const unsigned char* syms,
3654 size_t count,
3655 size_t symndx_offset,
3656 const char* sym_names,
3657 size_t sym_name_size,
3658 Sized_relobj_file<64, true>::Symbols* sympointers,
3659 size_t* defined);
3660 #endif
3661
3662 #ifdef HAVE_TARGET_32_LITTLE
3663 template
3664 Symbol*
3665 Symbol_table::add_from_pluginobj<32, false>(
3666 Sized_pluginobj<32, false>* obj,
3667 const char* name,
3668 const char* ver,
3669 elfcpp::Sym<32, false>* sym);
3670 #endif
3671
3672 #ifdef HAVE_TARGET_32_BIG
3673 template
3674 Symbol*
3675 Symbol_table::add_from_pluginobj<32, true>(
3676 Sized_pluginobj<32, true>* obj,
3677 const char* name,
3678 const char* ver,
3679 elfcpp::Sym<32, true>* sym);
3680 #endif
3681
3682 #ifdef HAVE_TARGET_64_LITTLE
3683 template
3684 Symbol*
3685 Symbol_table::add_from_pluginobj<64, false>(
3686 Sized_pluginobj<64, false>* obj,
3687 const char* name,
3688 const char* ver,
3689 elfcpp::Sym<64, false>* sym);
3690 #endif
3691
3692 #ifdef HAVE_TARGET_64_BIG
3693 template
3694 Symbol*
3695 Symbol_table::add_from_pluginobj<64, true>(
3696 Sized_pluginobj<64, true>* obj,
3697 const char* name,
3698 const char* ver,
3699 elfcpp::Sym<64, true>* sym);
3700 #endif
3701
3702 #ifdef HAVE_TARGET_32_LITTLE
3703 template
3704 void
3705 Symbol_table::add_from_dynobj<32, false>(
3706 Sized_dynobj<32, false>* dynobj,
3707 const unsigned char* syms,
3708 size_t count,
3709 const char* sym_names,
3710 size_t sym_name_size,
3711 const unsigned char* versym,
3712 size_t versym_size,
3713 const std::vector<const char*>* version_map,
3714 Sized_relobj_file<32, false>::Symbols* sympointers,
3715 size_t* defined);
3716 #endif
3717
3718 #ifdef HAVE_TARGET_32_BIG
3719 template
3720 void
3721 Symbol_table::add_from_dynobj<32, true>(
3722 Sized_dynobj<32, true>* dynobj,
3723 const unsigned char* syms,
3724 size_t count,
3725 const char* sym_names,
3726 size_t sym_name_size,
3727 const unsigned char* versym,
3728 size_t versym_size,
3729 const std::vector<const char*>* version_map,
3730 Sized_relobj_file<32, true>::Symbols* sympointers,
3731 size_t* defined);
3732 #endif
3733
3734 #ifdef HAVE_TARGET_64_LITTLE
3735 template
3736 void
3737 Symbol_table::add_from_dynobj<64, false>(
3738 Sized_dynobj<64, false>* dynobj,
3739 const unsigned char* syms,
3740 size_t count,
3741 const char* sym_names,
3742 size_t sym_name_size,
3743 const unsigned char* versym,
3744 size_t versym_size,
3745 const std::vector<const char*>* version_map,
3746 Sized_relobj_file<64, false>::Symbols* sympointers,
3747 size_t* defined);
3748 #endif
3749
3750 #ifdef HAVE_TARGET_64_BIG
3751 template
3752 void
3753 Symbol_table::add_from_dynobj<64, true>(
3754 Sized_dynobj<64, true>* dynobj,
3755 const unsigned char* syms,
3756 size_t count,
3757 const char* sym_names,
3758 size_t sym_name_size,
3759 const unsigned char* versym,
3760 size_t versym_size,
3761 const std::vector<const char*>* version_map,
3762 Sized_relobj_file<64, true>::Symbols* sympointers,
3763 size_t* defined);
3764 #endif
3765
3766 #ifdef HAVE_TARGET_32_LITTLE
3767 template
3768 Sized_symbol<32>*
3769 Symbol_table::add_from_incrobj(
3770 Object* obj,
3771 const char* name,
3772 const char* ver,
3773 elfcpp::Sym<32, false>* sym);
3774 #endif
3775
3776 #ifdef HAVE_TARGET_32_BIG
3777 template
3778 Sized_symbol<32>*
3779 Symbol_table::add_from_incrobj(
3780 Object* obj,
3781 const char* name,
3782 const char* ver,
3783 elfcpp::Sym<32, true>* sym);
3784 #endif
3785
3786 #ifdef HAVE_TARGET_64_LITTLE
3787 template
3788 Sized_symbol<64>*
3789 Symbol_table::add_from_incrobj(
3790 Object* obj,
3791 const char* name,
3792 const char* ver,
3793 elfcpp::Sym<64, false>* sym);
3794 #endif
3795
3796 #ifdef HAVE_TARGET_64_BIG
3797 template
3798 Sized_symbol<64>*
3799 Symbol_table::add_from_incrobj(
3800 Object* obj,
3801 const char* name,
3802 const char* ver,
3803 elfcpp::Sym<64, true>* sym);
3804 #endif
3805
3806 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3807 template
3808 void
3809 Symbol_table::define_with_copy_reloc<32>(
3810 Sized_symbol<32>* sym,
3811 Output_data* posd,
3812 elfcpp::Elf_types<32>::Elf_Addr value);
3813 #endif
3814
3815 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3816 template
3817 void
3818 Symbol_table::define_with_copy_reloc<64>(
3819 Sized_symbol<64>* sym,
3820 Output_data* posd,
3821 elfcpp::Elf_types<64>::Elf_Addr value);
3822 #endif
3823
3824 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3825 template
3826 void
3827 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3828 Output_data* od, Value_type value,
3829 Size_type symsize, elfcpp::STT type,
3830 elfcpp::STB binding,
3831 elfcpp::STV visibility,
3832 unsigned char nonvis,
3833 bool offset_is_from_end,
3834 bool is_predefined);
3835
3836 template
3837 void
3838 Sized_symbol<32>::init_constant(const char* name, const char* version,
3839 Value_type value, Size_type symsize,
3840 elfcpp::STT type, elfcpp::STB binding,
3841 elfcpp::STV visibility, unsigned char nonvis,
3842 bool is_predefined);
3843
3844 template
3845 void
3846 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3847 Value_type value, elfcpp::STT type,
3848 elfcpp::STB binding, elfcpp::STV visibility,
3849 unsigned char nonvis);
3850 #endif
3851
3852 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3853 template
3854 void
3855 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3856 Output_data* od, Value_type value,
3857 Size_type symsize, elfcpp::STT type,
3858 elfcpp::STB binding,
3859 elfcpp::STV visibility,
3860 unsigned char nonvis,
3861 bool offset_is_from_end,
3862 bool is_predefined);
3863
3864 template
3865 void
3866 Sized_symbol<64>::init_constant(const char* name, const char* version,
3867 Value_type value, Size_type symsize,
3868 elfcpp::STT type, elfcpp::STB binding,
3869 elfcpp::STV visibility, unsigned char nonvis,
3870 bool is_predefined);
3871
3872 template
3873 void
3874 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3875 Value_type value, elfcpp::STT type,
3876 elfcpp::STB binding, elfcpp::STV visibility,
3877 unsigned char nonvis);
3878 #endif
3879
3880 #ifdef HAVE_TARGET_32_LITTLE
3881 template
3882 void
3883 Warnings::issue_warning<32, false>(const Symbol* sym,
3884 const Relocate_info<32, false>* relinfo,
3885 size_t relnum, off_t reloffset) const;
3886 #endif
3887
3888 #ifdef HAVE_TARGET_32_BIG
3889 template
3890 void
3891 Warnings::issue_warning<32, true>(const Symbol* sym,
3892 const Relocate_info<32, true>* relinfo,
3893 size_t relnum, off_t reloffset) const;
3894 #endif
3895
3896 #ifdef HAVE_TARGET_64_LITTLE
3897 template
3898 void
3899 Warnings::issue_warning<64, false>(const Symbol* sym,
3900 const Relocate_info<64, false>* relinfo,
3901 size_t relnum, off_t reloffset) const;
3902 #endif
3903
3904 #ifdef HAVE_TARGET_64_BIG
3905 template
3906 void
3907 Warnings::issue_warning<64, true>(const Symbol* sym,
3908 const Relocate_info<64, true>* relinfo,
3909 size_t relnum, off_t reloffset) const;
3910 #endif
3911
3912 } // End namespace gold.
This page took 0.114551 seconds and 5 git commands to generate.