Copyright update for binutils
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // or the symbol should be globally unique (GNU_UNIQUE),
423 // and the symbol is defined in a regular object and is
424 // externally visible, we need to add it.
425 if ((parameters->options().export_dynamic()
426 || parameters->options().shared()
427 || (parameters->options().gnu_unique()
428 && this->binding() == elfcpp::STB_GNU_UNIQUE))
429 && !this->is_from_dynobj()
430 && !this->is_undefined()
431 && this->is_externally_visible())
432 return true;
433
434 return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443 // If we are not generating an executable, then no final values are
444 // known, since they will change at runtime, with the exception of
445 // TLS symbols in a position-independent executable.
446 if ((parameters->options().output_is_position_independent()
447 || parameters->options().relocatable())
448 && !(this->type() == elfcpp::STT_TLS
449 && parameters->options().pie()))
450 return false;
451
452 // If the symbol is not from an object file, and is not undefined,
453 // then it is defined, and known.
454 if (this->source_ != FROM_OBJECT)
455 {
456 if (this->source_ != IS_UNDEFINED)
457 return true;
458 }
459 else
460 {
461 // If the symbol is from a dynamic object, then the final value
462 // is not known.
463 if (this->object()->is_dynamic())
464 return false;
465
466 // If the symbol is not undefined (it is defined or common),
467 // then the final value is known.
468 if (!this->is_undefined())
469 return true;
470 }
471
472 // If the symbol is undefined, then whether the final value is known
473 // depends on whether we are doing a static link. If we are doing a
474 // dynamic link, then the final value could be filled in at runtime.
475 // This could reasonably be the case for a weak undefined symbol.
476 return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484 switch (this->source_)
485 {
486 case FROM_OBJECT:
487 {
488 unsigned int shndx = this->u_.from_object.shndx;
489 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490 {
491 gold_assert(!this->u_.from_object.object->is_dynamic());
492 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494 return relobj->output_section(shndx);
495 }
496 return NULL;
497 }
498
499 case IN_OUTPUT_DATA:
500 return this->u_.in_output_data.output_data->output_section();
501
502 case IN_OUTPUT_SEGMENT:
503 case IS_CONSTANT:
504 case IS_UNDEFINED:
505 return NULL;
506
507 default:
508 gold_unreachable();
509 }
510 }
511
512 // Set the symbol's output section. This is used for symbols defined
513 // in scripts. This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519 switch (this->source_)
520 {
521 case FROM_OBJECT:
522 case IN_OUTPUT_DATA:
523 gold_assert(this->output_section() == os);
524 break;
525 case IS_CONSTANT:
526 this->source_ = IN_OUTPUT_DATA;
527 this->u_.in_output_data.output_data = os;
528 this->u_.in_output_data.offset_is_from_end = false;
529 break;
530 case IN_OUTPUT_SEGMENT:
531 case IS_UNDEFINED:
532 default:
533 gold_unreachable();
534 }
535 }
536
537 // Set the symbol's output segment. This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544 gold_assert(this->is_predefined_);
545 this->source_ = IN_OUTPUT_SEGMENT;
546 this->u_.in_output_segment.output_segment = os;
547 this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined. This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557 this->source_ = IS_UNDEFINED;
558 this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564 const Version_script_info& version_script)
565 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566 forwarders_(), commons_(), tls_commons_(), small_commons_(),
567 large_commons_(), forced_locals_(), warnings_(),
568 version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570 namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function. This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582 const Symbol_table_key& k2) const
583 {
584 return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590 return (parameters->options().icf_enabled()
591 && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600 for (options::String_set::const_iterator p =
601 parameters->options().undefined_begin();
602 p != parameters->options().undefined_end();
603 ++p)
604 {
605 const char* name = p->c_str();
606 Symbol* sym = this->lookup(name);
607 gold_assert(sym != NULL);
608 if (sym->source() == Symbol::FROM_OBJECT
609 && !sym->object()->is_dynamic())
610 {
611 this->gc_mark_symbol(sym);
612 }
613 }
614
615 for (options::String_set::const_iterator p =
616 parameters->options().export_dynamic_symbol_begin();
617 p != parameters->options().export_dynamic_symbol_end();
618 ++p)
619 {
620 const char* name = p->c_str();
621 Symbol* sym = this->lookup(name);
622 // It's not an error if a symbol named by --export-dynamic-symbol
623 // is undefined.
624 if (sym != NULL
625 && sym->source() == Symbol::FROM_OBJECT
626 && !sym->object()->is_dynamic())
627 {
628 this->gc_mark_symbol(sym);
629 }
630 }
631
632 for (Script_options::referenced_const_iterator p =
633 layout->script_options()->referenced_begin();
634 p != layout->script_options()->referenced_end();
635 ++p)
636 {
637 Symbol* sym = this->lookup(p->c_str());
638 gold_assert(sym != NULL);
639 if (sym->source() == Symbol::FROM_OBJECT
640 && !sym->object()->is_dynamic())
641 {
642 this->gc_mark_symbol(sym);
643 }
644 }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650 // Add the object and section to the work list.
651 bool is_ordinary;
652 unsigned int shndx = sym->shndx(&is_ordinary);
653 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654 {
655 gold_assert(this->gc_!= NULL);
656 Relobj* relobj = static_cast<Relobj*>(sym->object());
657 this->gc_->worklist().push_back(Section_id(relobj, shndx));
658 }
659 parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668 && !sym->object()->is_dynamic())
669 this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677 gold_assert(from != to);
678 gold_assert(!from->is_forwarder() && !to->is_forwarder());
679 this->forwarders_[from] = to;
680 from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688 gold_assert(from->is_forwarder());
689 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690 this->forwarders_.find(from);
691 gold_assert(p != this->forwarders_.end());
692 return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700 Stringpool::Key name_key;
701 name = this->namepool_.find(name, &name_key);
702 if (name == NULL)
703 return NULL;
704
705 Stringpool::Key version_key = 0;
706 if (version != NULL)
707 {
708 version = this->namepool_.find(version, &version_key);
709 if (version == NULL)
710 return NULL;
711 }
712
713 Symbol_table_key key(name_key, version_key);
714 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715 if (p == this->table_.end())
716 return NULL;
717 return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol. This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version. Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731 elfcpp::Sym_write<size, big_endian> esym(buf);
732 // We don't bother to set the st_name or the st_shndx field.
733 esym.put_st_value(from->value());
734 esym.put_st_size(from->symsize());
735 esym.put_st_info(from->binding(), from->type());
736 esym.put_st_other(from->visibility(), from->nonvis());
737 bool is_ordinary;
738 unsigned int shndx = from->shndx(&is_ordinary);
739 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740 from->version(), true);
741 if (from->in_reg())
742 to->set_in_reg();
743 if (from->in_dyn())
744 to->set_in_dyn();
745 if (parameters->options().gc_sections())
746 this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755 if (!sym->is_defined() && !sym->is_common())
756 return;
757 if (sym->is_forced_local())
758 {
759 // We already got this one.
760 return;
761 }
762 sym->set_is_forced_local();
763 this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773 // For some targets, we need to ignore a specific character when
774 // wrapping, and add it back later.
775 char prefix = '\0';
776 if (name[0] == parameters->target().wrap_char())
777 {
778 prefix = name[0];
779 ++name;
780 }
781
782 if (parameters->options().is_wrap(name))
783 {
784 // Turn NAME into __wrap_NAME.
785 std::string s;
786 if (prefix != '\0')
787 s += prefix;
788 s += "__wrap_";
789 s += name;
790
791 // This will give us both the old and new name in NAMEPOOL_, but
792 // that is OK. Only the versions we need will wind up in the
793 // real string table in the output file.
794 return this->namepool_.add(s.c_str(), true, name_key);
795 }
796
797 const char* const real_prefix = "__real_";
798 const size_t real_prefix_length = strlen(real_prefix);
799 if (strncmp(name, real_prefix, real_prefix_length) == 0
800 && parameters->options().is_wrap(name + real_prefix_length))
801 {
802 // Turn __real_NAME into NAME.
803 std::string s;
804 if (prefix != '\0')
805 s += prefix;
806 s += name + real_prefix_length;
807 return this->namepool_.add(s.c_str(), true, name_key);
808 }
809
810 return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version. SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822 bool default_is_new,
823 Symbol_table_type::iterator pdef)
824 {
825 if (default_is_new)
826 {
827 // This is the first time we have seen NAME/NULL. Make
828 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829 // version.
830 pdef->second = sym;
831 sym->set_is_default();
832 }
833 else if (pdef->second == sym)
834 {
835 // NAME/NULL already points to NAME/VERSION. Don't mark the
836 // symbol as the default if it is not already the default.
837 }
838 else
839 {
840 // This is the unfortunate case where we already have entries
841 // for both NAME/VERSION and NAME/NULL. We now see a symbol
842 // NAME/VERSION where VERSION is the default version. We have
843 // already resolved this new symbol with the existing
844 // NAME/VERSION symbol.
845
846 // It's possible that NAME/NULL and NAME/VERSION are both
847 // defined in regular objects. This can only happen if one
848 // object file defines foo and another defines foo@@ver. This
849 // is somewhat obscure, but we call it a multiple definition
850 // error.
851
852 // It's possible that NAME/NULL actually has a version, in which
853 // case it won't be the same as VERSION. This happens with
854 // ver_test_7.so in the testsuite for the symbol t2_2. We see
855 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
856 // then see an unadorned t2_2 in an object file and give it
857 // version VER1 from the version script. This looks like a
858 // default definition for VER1, so it looks like we should merge
859 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
860 // not obvious that this is an error, either. So we just punt.
861
862 // If one of the symbols has non-default visibility, and the
863 // other is defined in a shared object, then they are different
864 // symbols.
865
866 // Otherwise, we just resolve the symbols as though they were
867 // the same.
868
869 if (pdef->second->version() != NULL)
870 gold_assert(pdef->second->version() != sym->version());
871 else if (sym->visibility() != elfcpp::STV_DEFAULT
872 && pdef->second->is_from_dynobj())
873 ;
874 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875 && sym->is_from_dynobj())
876 ;
877 else
878 {
879 const Sized_symbol<size>* symdef;
880 symdef = this->get_sized_symbol<size>(pdef->second);
881 Symbol_table::resolve<size, big_endian>(sym, symdef);
882 this->make_forwarder(pdef->second, sym);
883 pdef->second = sym;
884 sym->set_is_default();
885 }
886 }
887 }
888
889 // Add one symbol from OBJECT to the symbol table. NAME is symbol
890 // name and VERSION is the version; both are canonicalized. DEF is
891 // whether this is the default version. ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol. That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol. This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION. If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure. That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table. We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files. So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code. ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922 const char* name,
923 Stringpool::Key name_key,
924 const char* version,
925 Stringpool::Key version_key,
926 bool is_default_version,
927 const elfcpp::Sym<size, big_endian>& sym,
928 unsigned int st_shndx,
929 bool is_ordinary,
930 unsigned int orig_st_shndx)
931 {
932 // Print a message if this symbol is being traced.
933 if (parameters->options().is_trace_symbol(name))
934 {
935 if (orig_st_shndx == elfcpp::SHN_UNDEF)
936 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937 else
938 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939 }
940
941 // For an undefined symbol, we may need to adjust the name using
942 // --wrap.
943 if (orig_st_shndx == elfcpp::SHN_UNDEF
944 && parameters->options().any_wrap())
945 {
946 const char* wrap_name = this->wrap_symbol(name, &name_key);
947 if (wrap_name != name)
948 {
949 // If we see a reference to malloc with version GLIBC_2.0,
950 // and we turn it into a reference to __wrap_malloc, then we
951 // discard the version number. Otherwise the user would be
952 // required to specify the correct version for
953 // __wrap_malloc.
954 version = NULL;
955 version_key = 0;
956 name = wrap_name;
957 }
958 }
959
960 Symbol* const snull = NULL;
961 std::pair<typename Symbol_table_type::iterator, bool> ins =
962 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963 snull));
964
965 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966 std::make_pair(this->table_.end(), false);
967 if (is_default_version)
968 {
969 const Stringpool::Key vnull_key = 0;
970 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971 vnull_key),
972 snull));
973 }
974
975 // ins.first: an iterator, which is a pointer to a pair.
976 // ins.first->first: the key (a pair of name and version).
977 // ins.first->second: the value (Symbol*).
978 // ins.second: true if new entry was inserted, false if not.
979
980 Sized_symbol<size>* ret;
981 bool was_undefined;
982 bool was_common;
983 if (!ins.second)
984 {
985 // We already have an entry for NAME/VERSION.
986 ret = this->get_sized_symbol<size>(ins.first->second);
987 gold_assert(ret != NULL);
988
989 was_undefined = ret->is_undefined();
990 // Commons from plugins are just placeholders.
991 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994 version, is_default_version);
995 if (parameters->options().gc_sections())
996 this->gc_mark_dyn_syms(ret);
997
998 if (is_default_version)
999 this->define_default_version<size, big_endian>(ret, insdefault.second,
1000 insdefault.first);
1001 else
1002 {
1003 bool dummy;
1004 if (version != NULL
1005 && ret->source() == Symbol::FROM_OBJECT
1006 && ret->object() == object
1007 && is_ordinary
1008 && ret->shndx(&dummy) == st_shndx
1009 && ret->is_default())
1010 {
1011 // We have seen NAME/VERSION already, and marked it as the
1012 // default version, but now we see a definition for
1013 // NAME/VERSION that is not the default version. This can
1014 // happen when the assembler generates two symbols for
1015 // a symbol as a result of a ".symver foo,foo@VER"
1016 // directive. We see the first unversioned symbol and
1017 // we may mark it as the default version (from a
1018 // version script); then we see the second versioned
1019 // symbol and we need to override the first.
1020 // In any other case, the two symbols should have generated
1021 // a multiple definition error.
1022 // (See PR gold/18703.)
1023 ret->set_is_not_default();
1024 const Stringpool::Key vnull_key = 0;
1025 this->table_.erase(std::make_pair(name_key, vnull_key));
1026 }
1027 }
1028 }
1029 else
1030 {
1031 // This is the first time we have seen NAME/VERSION.
1032 gold_assert(ins.first->second == NULL);
1033
1034 if (is_default_version && !insdefault.second)
1035 {
1036 // We already have an entry for NAME/NULL. If we override
1037 // it, then change it to NAME/VERSION.
1038 ret = this->get_sized_symbol<size>(insdefault.first->second);
1039
1040 was_undefined = ret->is_undefined();
1041 // Commons from plugins are just placeholders.
1042 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1043
1044 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1045 version, is_default_version);
1046 if (parameters->options().gc_sections())
1047 this->gc_mark_dyn_syms(ret);
1048 ins.first->second = ret;
1049 }
1050 else
1051 {
1052 was_undefined = false;
1053 was_common = false;
1054
1055 Sized_target<size, big_endian>* target =
1056 parameters->sized_target<size, big_endian>();
1057 if (!target->has_make_symbol())
1058 ret = new Sized_symbol<size>();
1059 else
1060 {
1061 ret = target->make_symbol();
1062 if (ret == NULL)
1063 {
1064 // This means that we don't want a symbol table
1065 // entry after all.
1066 if (!is_default_version)
1067 this->table_.erase(ins.first);
1068 else
1069 {
1070 this->table_.erase(insdefault.first);
1071 // Inserting INSDEFAULT invalidated INS.
1072 this->table_.erase(std::make_pair(name_key,
1073 version_key));
1074 }
1075 return NULL;
1076 }
1077 }
1078
1079 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1080
1081 ins.first->second = ret;
1082 if (is_default_version)
1083 {
1084 // This is the first time we have seen NAME/NULL. Point
1085 // it at the new entry for NAME/VERSION.
1086 gold_assert(insdefault.second);
1087 insdefault.first->second = ret;
1088 }
1089 }
1090
1091 if (is_default_version)
1092 ret->set_is_default();
1093 }
1094
1095 // Record every time we see a new undefined symbol, to speed up
1096 // archive groups.
1097 if (!was_undefined && ret->is_undefined())
1098 {
1099 ++this->saw_undefined_;
1100 if (parameters->options().has_plugins())
1101 parameters->options().plugins()->new_undefined_symbol(ret);
1102 }
1103
1104 // Keep track of common symbols, to speed up common symbol
1105 // allocation. Don't record commons from plugin objects;
1106 // we need to wait until we see the real symbol in the
1107 // replacement file.
1108 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1109 {
1110 if (ret->type() == elfcpp::STT_TLS)
1111 this->tls_commons_.push_back(ret);
1112 else if (!is_ordinary
1113 && st_shndx == parameters->target().small_common_shndx())
1114 this->small_commons_.push_back(ret);
1115 else if (!is_ordinary
1116 && st_shndx == parameters->target().large_common_shndx())
1117 this->large_commons_.push_back(ret);
1118 else
1119 this->commons_.push_back(ret);
1120 }
1121
1122 // If we're not doing a relocatable link, then any symbol with
1123 // hidden or internal visibility is local.
1124 if ((ret->visibility() == elfcpp::STV_HIDDEN
1125 || ret->visibility() == elfcpp::STV_INTERNAL)
1126 && (ret->binding() == elfcpp::STB_GLOBAL
1127 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1128 || ret->binding() == elfcpp::STB_WEAK)
1129 && !parameters->options().relocatable())
1130 this->force_local(ret);
1131
1132 return ret;
1133 }
1134
1135 // Add all the symbols in a relocatable object to the hash table.
1136
1137 template<int size, bool big_endian>
1138 void
1139 Symbol_table::add_from_relobj(
1140 Sized_relobj_file<size, big_endian>* relobj,
1141 const unsigned char* syms,
1142 size_t count,
1143 size_t symndx_offset,
1144 const char* sym_names,
1145 size_t sym_name_size,
1146 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1147 size_t* defined)
1148 {
1149 *defined = 0;
1150
1151 gold_assert(size == parameters->target().get_size());
1152
1153 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1154
1155 const bool just_symbols = relobj->just_symbols();
1156
1157 const unsigned char* p = syms;
1158 for (size_t i = 0; i < count; ++i, p += sym_size)
1159 {
1160 (*sympointers)[i] = NULL;
1161
1162 elfcpp::Sym<size, big_endian> sym(p);
1163
1164 unsigned int st_name = sym.get_st_name();
1165 if (st_name >= sym_name_size)
1166 {
1167 relobj->error(_("bad global symbol name offset %u at %zu"),
1168 st_name, i);
1169 continue;
1170 }
1171
1172 const char* name = sym_names + st_name;
1173
1174 if (!parameters->options().relocatable()
1175 && strcmp (name, "__gnu_lto_slim") == 0)
1176 gold_info(_("%s: plugin needed to handle lto object"),
1177 relobj->name().c_str());
1178
1179 bool is_ordinary;
1180 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1181 sym.get_st_shndx(),
1182 &is_ordinary);
1183 unsigned int orig_st_shndx = st_shndx;
1184 if (!is_ordinary)
1185 orig_st_shndx = elfcpp::SHN_UNDEF;
1186
1187 if (st_shndx != elfcpp::SHN_UNDEF)
1188 ++*defined;
1189
1190 // A symbol defined in a section which we are not including must
1191 // be treated as an undefined symbol.
1192 bool is_defined_in_discarded_section = false;
1193 if (st_shndx != elfcpp::SHN_UNDEF
1194 && is_ordinary
1195 && !relobj->is_section_included(st_shndx)
1196 && !this->is_section_folded(relobj, st_shndx))
1197 {
1198 st_shndx = elfcpp::SHN_UNDEF;
1199 is_defined_in_discarded_section = true;
1200 }
1201
1202 // In an object file, an '@' in the name separates the symbol
1203 // name from the version name. If there are two '@' characters,
1204 // this is the default version.
1205 const char* ver = strchr(name, '@');
1206 Stringpool::Key ver_key = 0;
1207 int namelen = 0;
1208 // IS_DEFAULT_VERSION: is the version default?
1209 // IS_FORCED_LOCAL: is the symbol forced local?
1210 bool is_default_version = false;
1211 bool is_forced_local = false;
1212
1213 // FIXME: For incremental links, we don't store version information,
1214 // so we need to ignore version symbols for now.
1215 if (parameters->incremental_update() && ver != NULL)
1216 {
1217 namelen = ver - name;
1218 ver = NULL;
1219 }
1220
1221 if (ver != NULL)
1222 {
1223 // The symbol name is of the form foo@VERSION or foo@@VERSION
1224 namelen = ver - name;
1225 ++ver;
1226 if (*ver == '@')
1227 {
1228 is_default_version = true;
1229 ++ver;
1230 }
1231 ver = this->namepool_.add(ver, true, &ver_key);
1232 }
1233 // We don't want to assign a version to an undefined symbol,
1234 // even if it is listed in the version script. FIXME: What
1235 // about a common symbol?
1236 else
1237 {
1238 namelen = strlen(name);
1239 if (!this->version_script_.empty()
1240 && st_shndx != elfcpp::SHN_UNDEF)
1241 {
1242 // The symbol name did not have a version, but the
1243 // version script may assign a version anyway.
1244 std::string version;
1245 bool is_global;
1246 if (this->version_script_.get_symbol_version(name, &version,
1247 &is_global))
1248 {
1249 if (!is_global)
1250 is_forced_local = true;
1251 else if (!version.empty())
1252 {
1253 ver = this->namepool_.add_with_length(version.c_str(),
1254 version.length(),
1255 true,
1256 &ver_key);
1257 is_default_version = true;
1258 }
1259 }
1260 }
1261 }
1262
1263 elfcpp::Sym<size, big_endian>* psym = &sym;
1264 unsigned char symbuf[sym_size];
1265 elfcpp::Sym<size, big_endian> sym2(symbuf);
1266 if (just_symbols)
1267 {
1268 memcpy(symbuf, p, sym_size);
1269 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1270 if (orig_st_shndx != elfcpp::SHN_UNDEF
1271 && is_ordinary
1272 && relobj->e_type() == elfcpp::ET_REL)
1273 {
1274 // Symbol values in relocatable object files are section
1275 // relative. This is normally what we want, but since here
1276 // we are converting the symbol to absolute we need to add
1277 // the section address. The section address in an object
1278 // file is normally zero, but people can use a linker
1279 // script to change it.
1280 sw.put_st_value(sym.get_st_value()
1281 + relobj->section_address(orig_st_shndx));
1282 }
1283 st_shndx = elfcpp::SHN_ABS;
1284 is_ordinary = false;
1285 psym = &sym2;
1286 }
1287
1288 // Fix up visibility if object has no-export set.
1289 if (relobj->no_export()
1290 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1291 {
1292 // We may have copied symbol already above.
1293 if (psym != &sym2)
1294 {
1295 memcpy(symbuf, p, sym_size);
1296 psym = &sym2;
1297 }
1298
1299 elfcpp::STV visibility = sym2.get_st_visibility();
1300 if (visibility == elfcpp::STV_DEFAULT
1301 || visibility == elfcpp::STV_PROTECTED)
1302 {
1303 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1304 unsigned char nonvis = sym2.get_st_nonvis();
1305 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1306 }
1307 }
1308
1309 Stringpool::Key name_key;
1310 name = this->namepool_.add_with_length(name, namelen, true,
1311 &name_key);
1312
1313 Sized_symbol<size>* res;
1314 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1315 is_default_version, *psym, st_shndx,
1316 is_ordinary, orig_st_shndx);
1317
1318 if (is_forced_local)
1319 this->force_local(res);
1320
1321 // Do not treat this symbol as garbage if this symbol will be
1322 // exported to the dynamic symbol table. This is true when
1323 // building a shared library or using --export-dynamic and
1324 // the symbol is externally visible.
1325 if (parameters->options().gc_sections()
1326 && res->is_externally_visible()
1327 && !res->is_from_dynobj()
1328 && (parameters->options().shared()
1329 || parameters->options().export_dynamic()
1330 || parameters->options().in_dynamic_list(res->name())))
1331 this->gc_mark_symbol(res);
1332
1333 if (is_defined_in_discarded_section)
1334 res->set_is_defined_in_discarded_section();
1335
1336 (*sympointers)[i] = res;
1337 }
1338 }
1339
1340 // Add a symbol from a plugin-claimed file.
1341
1342 template<int size, bool big_endian>
1343 Symbol*
1344 Symbol_table::add_from_pluginobj(
1345 Sized_pluginobj<size, big_endian>* obj,
1346 const char* name,
1347 const char* ver,
1348 elfcpp::Sym<size, big_endian>* sym)
1349 {
1350 unsigned int st_shndx = sym->get_st_shndx();
1351 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1352
1353 Stringpool::Key ver_key = 0;
1354 bool is_default_version = false;
1355 bool is_forced_local = false;
1356
1357 if (ver != NULL)
1358 {
1359 ver = this->namepool_.add(ver, true, &ver_key);
1360 }
1361 // We don't want to assign a version to an undefined symbol,
1362 // even if it is listed in the version script. FIXME: What
1363 // about a common symbol?
1364 else
1365 {
1366 if (!this->version_script_.empty()
1367 && st_shndx != elfcpp::SHN_UNDEF)
1368 {
1369 // The symbol name did not have a version, but the
1370 // version script may assign a version anyway.
1371 std::string version;
1372 bool is_global;
1373 if (this->version_script_.get_symbol_version(name, &version,
1374 &is_global))
1375 {
1376 if (!is_global)
1377 is_forced_local = true;
1378 else if (!version.empty())
1379 {
1380 ver = this->namepool_.add_with_length(version.c_str(),
1381 version.length(),
1382 true,
1383 &ver_key);
1384 is_default_version = true;
1385 }
1386 }
1387 }
1388 }
1389
1390 Stringpool::Key name_key;
1391 name = this->namepool_.add(name, true, &name_key);
1392
1393 Sized_symbol<size>* res;
1394 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1395 is_default_version, *sym, st_shndx,
1396 is_ordinary, st_shndx);
1397
1398 if (is_forced_local)
1399 this->force_local(res);
1400
1401 return res;
1402 }
1403
1404 // Add all the symbols in a dynamic object to the hash table.
1405
1406 template<int size, bool big_endian>
1407 void
1408 Symbol_table::add_from_dynobj(
1409 Sized_dynobj<size, big_endian>* dynobj,
1410 const unsigned char* syms,
1411 size_t count,
1412 const char* sym_names,
1413 size_t sym_name_size,
1414 const unsigned char* versym,
1415 size_t versym_size,
1416 const std::vector<const char*>* version_map,
1417 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1418 size_t* defined)
1419 {
1420 *defined = 0;
1421
1422 gold_assert(size == parameters->target().get_size());
1423
1424 if (dynobj->just_symbols())
1425 {
1426 gold_error(_("--just-symbols does not make sense with a shared object"));
1427 return;
1428 }
1429
1430 // FIXME: For incremental links, we don't store version information,
1431 // so we need to ignore version symbols for now.
1432 if (parameters->incremental_update())
1433 versym = NULL;
1434
1435 if (versym != NULL && versym_size / 2 < count)
1436 {
1437 dynobj->error(_("too few symbol versions"));
1438 return;
1439 }
1440
1441 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1442
1443 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1444 // weak aliases. This is necessary because if the dynamic object
1445 // provides the same variable under two names, one of which is a
1446 // weak definition, and the regular object refers to the weak
1447 // definition, we have to put both the weak definition and the
1448 // strong definition into the dynamic symbol table. Given a weak
1449 // definition, the only way that we can find the corresponding
1450 // strong definition, if any, is to search the symbol table.
1451 std::vector<Sized_symbol<size>*> object_symbols;
1452
1453 const unsigned char* p = syms;
1454 const unsigned char* vs = versym;
1455 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1456 {
1457 elfcpp::Sym<size, big_endian> sym(p);
1458
1459 if (sympointers != NULL)
1460 (*sympointers)[i] = NULL;
1461
1462 // Ignore symbols with local binding or that have
1463 // internal or hidden visibility.
1464 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1465 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1466 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1467 continue;
1468
1469 // A protected symbol in a shared library must be treated as a
1470 // normal symbol when viewed from outside the shared library.
1471 // Implement this by overriding the visibility here.
1472 // Likewise, an IFUNC symbol in a shared library must be treated
1473 // as a normal FUNC symbol.
1474 elfcpp::Sym<size, big_endian>* psym = &sym;
1475 unsigned char symbuf[sym_size];
1476 elfcpp::Sym<size, big_endian> sym2(symbuf);
1477 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1478 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1479 {
1480 memcpy(symbuf, p, sym_size);
1481 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1482 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1483 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1484 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1485 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1486 psym = &sym2;
1487 }
1488
1489 unsigned int st_name = psym->get_st_name();
1490 if (st_name >= sym_name_size)
1491 {
1492 dynobj->error(_("bad symbol name offset %u at %zu"),
1493 st_name, i);
1494 continue;
1495 }
1496
1497 const char* name = sym_names + st_name;
1498
1499 bool is_ordinary;
1500 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1501 &is_ordinary);
1502
1503 if (st_shndx != elfcpp::SHN_UNDEF)
1504 ++*defined;
1505
1506 Sized_symbol<size>* res;
1507
1508 if (versym == NULL)
1509 {
1510 Stringpool::Key name_key;
1511 name = this->namepool_.add(name, true, &name_key);
1512 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1513 false, *psym, st_shndx, is_ordinary,
1514 st_shndx);
1515 }
1516 else
1517 {
1518 // Read the version information.
1519
1520 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1521
1522 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1523 v &= elfcpp::VERSYM_VERSION;
1524
1525 // The Sun documentation says that V can be VER_NDX_LOCAL,
1526 // or VER_NDX_GLOBAL, or a version index. The meaning of
1527 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1528 // The old GNU linker will happily generate VER_NDX_LOCAL
1529 // for an undefined symbol. I don't know what the Sun
1530 // linker will generate.
1531
1532 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1533 && st_shndx != elfcpp::SHN_UNDEF)
1534 {
1535 // This symbol should not be visible outside the object.
1536 continue;
1537 }
1538
1539 // At this point we are definitely going to add this symbol.
1540 Stringpool::Key name_key;
1541 name = this->namepool_.add(name, true, &name_key);
1542
1543 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1544 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1545 {
1546 // This symbol does not have a version.
1547 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1548 false, *psym, st_shndx, is_ordinary,
1549 st_shndx);
1550 }
1551 else
1552 {
1553 if (v >= version_map->size())
1554 {
1555 dynobj->error(_("versym for symbol %zu out of range: %u"),
1556 i, v);
1557 continue;
1558 }
1559
1560 const char* version = (*version_map)[v];
1561 if (version == NULL)
1562 {
1563 dynobj->error(_("versym for symbol %zu has no name: %u"),
1564 i, v);
1565 continue;
1566 }
1567
1568 Stringpool::Key version_key;
1569 version = this->namepool_.add(version, true, &version_key);
1570
1571 // If this is an absolute symbol, and the version name
1572 // and symbol name are the same, then this is the
1573 // version definition symbol. These symbols exist to
1574 // support using -u to pull in particular versions. We
1575 // do not want to record a version for them.
1576 if (st_shndx == elfcpp::SHN_ABS
1577 && !is_ordinary
1578 && name_key == version_key)
1579 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1580 false, *psym, st_shndx, is_ordinary,
1581 st_shndx);
1582 else
1583 {
1584 const bool is_default_version =
1585 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1586 res = this->add_from_object(dynobj, name, name_key, version,
1587 version_key, is_default_version,
1588 *psym, st_shndx,
1589 is_ordinary, st_shndx);
1590 }
1591 }
1592 }
1593
1594 // Note that it is possible that RES was overridden by an
1595 // earlier object, in which case it can't be aliased here.
1596 if (st_shndx != elfcpp::SHN_UNDEF
1597 && is_ordinary
1598 && psym->get_st_type() == elfcpp::STT_OBJECT
1599 && res->source() == Symbol::FROM_OBJECT
1600 && res->object() == dynobj)
1601 object_symbols.push_back(res);
1602
1603 if (sympointers != NULL)
1604 (*sympointers)[i] = res;
1605 }
1606
1607 this->record_weak_aliases(&object_symbols);
1608 }
1609
1610 // Add a symbol from a incremental object file.
1611
1612 template<int size, bool big_endian>
1613 Sized_symbol<size>*
1614 Symbol_table::add_from_incrobj(
1615 Object* obj,
1616 const char* name,
1617 const char* ver,
1618 elfcpp::Sym<size, big_endian>* sym)
1619 {
1620 unsigned int st_shndx = sym->get_st_shndx();
1621 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1622
1623 Stringpool::Key ver_key = 0;
1624 bool is_default_version = false;
1625 bool is_forced_local = false;
1626
1627 Stringpool::Key name_key;
1628 name = this->namepool_.add(name, true, &name_key);
1629
1630 Sized_symbol<size>* res;
1631 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1632 is_default_version, *sym, st_shndx,
1633 is_ordinary, st_shndx);
1634
1635 if (is_forced_local)
1636 this->force_local(res);
1637
1638 return res;
1639 }
1640
1641 // This is used to sort weak aliases. We sort them first by section
1642 // index, then by offset, then by weak ahead of strong.
1643
1644 template<int size>
1645 class Weak_alias_sorter
1646 {
1647 public:
1648 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1649 };
1650
1651 template<int size>
1652 bool
1653 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1654 const Sized_symbol<size>* s2) const
1655 {
1656 bool is_ordinary;
1657 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1658 gold_assert(is_ordinary);
1659 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1660 gold_assert(is_ordinary);
1661 if (s1_shndx != s2_shndx)
1662 return s1_shndx < s2_shndx;
1663
1664 if (s1->value() != s2->value())
1665 return s1->value() < s2->value();
1666 if (s1->binding() != s2->binding())
1667 {
1668 if (s1->binding() == elfcpp::STB_WEAK)
1669 return true;
1670 if (s2->binding() == elfcpp::STB_WEAK)
1671 return false;
1672 }
1673 return std::string(s1->name()) < std::string(s2->name());
1674 }
1675
1676 // SYMBOLS is a list of object symbols from a dynamic object. Look
1677 // for any weak aliases, and record them so that if we add the weak
1678 // alias to the dynamic symbol table, we also add the corresponding
1679 // strong symbol.
1680
1681 template<int size>
1682 void
1683 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1684 {
1685 // Sort the vector by section index, then by offset, then by weak
1686 // ahead of strong.
1687 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1688
1689 // Walk through the vector. For each weak definition, record
1690 // aliases.
1691 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1692 symbols->begin();
1693 p != symbols->end();
1694 ++p)
1695 {
1696 if ((*p)->binding() != elfcpp::STB_WEAK)
1697 continue;
1698
1699 // Build a circular list of weak aliases. Each symbol points to
1700 // the next one in the circular list.
1701
1702 Sized_symbol<size>* from_sym = *p;
1703 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1704 for (q = p + 1; q != symbols->end(); ++q)
1705 {
1706 bool dummy;
1707 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1708 || (*q)->value() != from_sym->value())
1709 break;
1710
1711 this->weak_aliases_[from_sym] = *q;
1712 from_sym->set_has_alias();
1713 from_sym = *q;
1714 }
1715
1716 if (from_sym != *p)
1717 {
1718 this->weak_aliases_[from_sym] = *p;
1719 from_sym->set_has_alias();
1720 }
1721
1722 p = q - 1;
1723 }
1724 }
1725
1726 // Create and return a specially defined symbol. If ONLY_IF_REF is
1727 // true, then only create the symbol if there is a reference to it.
1728 // If this does not return NULL, it sets *POLDSYM to the existing
1729 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1730 // resolve the newly created symbol to the old one. This
1731 // canonicalizes *PNAME and *PVERSION.
1732
1733 template<int size, bool big_endian>
1734 Sized_symbol<size>*
1735 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1736 bool only_if_ref,
1737 Sized_symbol<size>** poldsym,
1738 bool* resolve_oldsym)
1739 {
1740 *resolve_oldsym = false;
1741 *poldsym = NULL;
1742
1743 // If the caller didn't give us a version, see if we get one from
1744 // the version script.
1745 std::string v;
1746 bool is_default_version = false;
1747 if (*pversion == NULL)
1748 {
1749 bool is_global;
1750 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1751 {
1752 if (is_global && !v.empty())
1753 {
1754 *pversion = v.c_str();
1755 // If we get the version from a version script, then we
1756 // are also the default version.
1757 is_default_version = true;
1758 }
1759 }
1760 }
1761
1762 Symbol* oldsym;
1763 Sized_symbol<size>* sym;
1764
1765 bool add_to_table = false;
1766 typename Symbol_table_type::iterator add_loc = this->table_.end();
1767 bool add_def_to_table = false;
1768 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1769
1770 if (only_if_ref)
1771 {
1772 oldsym = this->lookup(*pname, *pversion);
1773 if (oldsym == NULL && is_default_version)
1774 oldsym = this->lookup(*pname, NULL);
1775 if (oldsym == NULL || !oldsym->is_undefined())
1776 return NULL;
1777
1778 *pname = oldsym->name();
1779 if (is_default_version)
1780 *pversion = this->namepool_.add(*pversion, true, NULL);
1781 else
1782 *pversion = oldsym->version();
1783 }
1784 else
1785 {
1786 // Canonicalize NAME and VERSION.
1787 Stringpool::Key name_key;
1788 *pname = this->namepool_.add(*pname, true, &name_key);
1789
1790 Stringpool::Key version_key = 0;
1791 if (*pversion != NULL)
1792 *pversion = this->namepool_.add(*pversion, true, &version_key);
1793
1794 Symbol* const snull = NULL;
1795 std::pair<typename Symbol_table_type::iterator, bool> ins =
1796 this->table_.insert(std::make_pair(std::make_pair(name_key,
1797 version_key),
1798 snull));
1799
1800 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1801 std::make_pair(this->table_.end(), false);
1802 if (is_default_version)
1803 {
1804 const Stringpool::Key vnull = 0;
1805 insdefault =
1806 this->table_.insert(std::make_pair(std::make_pair(name_key,
1807 vnull),
1808 snull));
1809 }
1810
1811 if (!ins.second)
1812 {
1813 // We already have a symbol table entry for NAME/VERSION.
1814 oldsym = ins.first->second;
1815 gold_assert(oldsym != NULL);
1816
1817 if (is_default_version)
1818 {
1819 Sized_symbol<size>* soldsym =
1820 this->get_sized_symbol<size>(oldsym);
1821 this->define_default_version<size, big_endian>(soldsym,
1822 insdefault.second,
1823 insdefault.first);
1824 }
1825 }
1826 else
1827 {
1828 // We haven't seen this symbol before.
1829 gold_assert(ins.first->second == NULL);
1830
1831 add_to_table = true;
1832 add_loc = ins.first;
1833
1834 if (is_default_version && !insdefault.second)
1835 {
1836 // We are adding NAME/VERSION, and it is the default
1837 // version. We already have an entry for NAME/NULL.
1838 oldsym = insdefault.first->second;
1839 *resolve_oldsym = true;
1840 }
1841 else
1842 {
1843 oldsym = NULL;
1844
1845 if (is_default_version)
1846 {
1847 add_def_to_table = true;
1848 add_def_loc = insdefault.first;
1849 }
1850 }
1851 }
1852 }
1853
1854 const Target& target = parameters->target();
1855 if (!target.has_make_symbol())
1856 sym = new Sized_symbol<size>();
1857 else
1858 {
1859 Sized_target<size, big_endian>* sized_target =
1860 parameters->sized_target<size, big_endian>();
1861 sym = sized_target->make_symbol();
1862 if (sym == NULL)
1863 return NULL;
1864 }
1865
1866 if (add_to_table)
1867 add_loc->second = sym;
1868 else
1869 gold_assert(oldsym != NULL);
1870
1871 if (add_def_to_table)
1872 add_def_loc->second = sym;
1873
1874 *poldsym = this->get_sized_symbol<size>(oldsym);
1875
1876 return sym;
1877 }
1878
1879 // Define a symbol based on an Output_data.
1880
1881 Symbol*
1882 Symbol_table::define_in_output_data(const char* name,
1883 const char* version,
1884 Defined defined,
1885 Output_data* od,
1886 uint64_t value,
1887 uint64_t symsize,
1888 elfcpp::STT type,
1889 elfcpp::STB binding,
1890 elfcpp::STV visibility,
1891 unsigned char nonvis,
1892 bool offset_is_from_end,
1893 bool only_if_ref)
1894 {
1895 if (parameters->target().get_size() == 32)
1896 {
1897 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1898 return this->do_define_in_output_data<32>(name, version, defined, od,
1899 value, symsize, type, binding,
1900 visibility, nonvis,
1901 offset_is_from_end,
1902 only_if_ref);
1903 #else
1904 gold_unreachable();
1905 #endif
1906 }
1907 else if (parameters->target().get_size() == 64)
1908 {
1909 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1910 return this->do_define_in_output_data<64>(name, version, defined, od,
1911 value, symsize, type, binding,
1912 visibility, nonvis,
1913 offset_is_from_end,
1914 only_if_ref);
1915 #else
1916 gold_unreachable();
1917 #endif
1918 }
1919 else
1920 gold_unreachable();
1921 }
1922
1923 // Define a symbol in an Output_data, sized version.
1924
1925 template<int size>
1926 Sized_symbol<size>*
1927 Symbol_table::do_define_in_output_data(
1928 const char* name,
1929 const char* version,
1930 Defined defined,
1931 Output_data* od,
1932 typename elfcpp::Elf_types<size>::Elf_Addr value,
1933 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1934 elfcpp::STT type,
1935 elfcpp::STB binding,
1936 elfcpp::STV visibility,
1937 unsigned char nonvis,
1938 bool offset_is_from_end,
1939 bool only_if_ref)
1940 {
1941 Sized_symbol<size>* sym;
1942 Sized_symbol<size>* oldsym;
1943 bool resolve_oldsym;
1944
1945 if (parameters->target().is_big_endian())
1946 {
1947 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1948 sym = this->define_special_symbol<size, true>(&name, &version,
1949 only_if_ref, &oldsym,
1950 &resolve_oldsym);
1951 #else
1952 gold_unreachable();
1953 #endif
1954 }
1955 else
1956 {
1957 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1958 sym = this->define_special_symbol<size, false>(&name, &version,
1959 only_if_ref, &oldsym,
1960 &resolve_oldsym);
1961 #else
1962 gold_unreachable();
1963 #endif
1964 }
1965
1966 if (sym == NULL)
1967 return NULL;
1968
1969 sym->init_output_data(name, version, od, value, symsize, type, binding,
1970 visibility, nonvis, offset_is_from_end,
1971 defined == PREDEFINED);
1972
1973 if (oldsym == NULL)
1974 {
1975 if (binding == elfcpp::STB_LOCAL
1976 || this->version_script_.symbol_is_local(name))
1977 this->force_local(sym);
1978 else if (version != NULL)
1979 sym->set_is_default();
1980 return sym;
1981 }
1982
1983 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1984 this->override_with_special(oldsym, sym);
1985
1986 if (resolve_oldsym)
1987 return sym;
1988 else
1989 {
1990 if (defined == PREDEFINED
1991 && (binding == elfcpp::STB_LOCAL
1992 || this->version_script_.symbol_is_local(name)))
1993 this->force_local(oldsym);
1994 delete sym;
1995 return oldsym;
1996 }
1997 }
1998
1999 // Define a symbol based on an Output_segment.
2000
2001 Symbol*
2002 Symbol_table::define_in_output_segment(const char* name,
2003 const char* version,
2004 Defined defined,
2005 Output_segment* os,
2006 uint64_t value,
2007 uint64_t symsize,
2008 elfcpp::STT type,
2009 elfcpp::STB binding,
2010 elfcpp::STV visibility,
2011 unsigned char nonvis,
2012 Symbol::Segment_offset_base offset_base,
2013 bool only_if_ref)
2014 {
2015 if (parameters->target().get_size() == 32)
2016 {
2017 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2018 return this->do_define_in_output_segment<32>(name, version, defined, os,
2019 value, symsize, type,
2020 binding, visibility, nonvis,
2021 offset_base, only_if_ref);
2022 #else
2023 gold_unreachable();
2024 #endif
2025 }
2026 else if (parameters->target().get_size() == 64)
2027 {
2028 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2029 return this->do_define_in_output_segment<64>(name, version, defined, os,
2030 value, symsize, type,
2031 binding, visibility, nonvis,
2032 offset_base, only_if_ref);
2033 #else
2034 gold_unreachable();
2035 #endif
2036 }
2037 else
2038 gold_unreachable();
2039 }
2040
2041 // Define a symbol in an Output_segment, sized version.
2042
2043 template<int size>
2044 Sized_symbol<size>*
2045 Symbol_table::do_define_in_output_segment(
2046 const char* name,
2047 const char* version,
2048 Defined defined,
2049 Output_segment* os,
2050 typename elfcpp::Elf_types<size>::Elf_Addr value,
2051 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2052 elfcpp::STT type,
2053 elfcpp::STB binding,
2054 elfcpp::STV visibility,
2055 unsigned char nonvis,
2056 Symbol::Segment_offset_base offset_base,
2057 bool only_if_ref)
2058 {
2059 Sized_symbol<size>* sym;
2060 Sized_symbol<size>* oldsym;
2061 bool resolve_oldsym;
2062
2063 if (parameters->target().is_big_endian())
2064 {
2065 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2066 sym = this->define_special_symbol<size, true>(&name, &version,
2067 only_if_ref, &oldsym,
2068 &resolve_oldsym);
2069 #else
2070 gold_unreachable();
2071 #endif
2072 }
2073 else
2074 {
2075 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2076 sym = this->define_special_symbol<size, false>(&name, &version,
2077 only_if_ref, &oldsym,
2078 &resolve_oldsym);
2079 #else
2080 gold_unreachable();
2081 #endif
2082 }
2083
2084 if (sym == NULL)
2085 return NULL;
2086
2087 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2088 visibility, nonvis, offset_base,
2089 defined == PREDEFINED);
2090
2091 if (oldsym == NULL)
2092 {
2093 if (binding == elfcpp::STB_LOCAL
2094 || this->version_script_.symbol_is_local(name))
2095 this->force_local(sym);
2096 else if (version != NULL)
2097 sym->set_is_default();
2098 return sym;
2099 }
2100
2101 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2102 this->override_with_special(oldsym, sym);
2103
2104 if (resolve_oldsym)
2105 return sym;
2106 else
2107 {
2108 if (binding == elfcpp::STB_LOCAL
2109 || this->version_script_.symbol_is_local(name))
2110 this->force_local(oldsym);
2111 delete sym;
2112 return oldsym;
2113 }
2114 }
2115
2116 // Define a special symbol with a constant value. It is a multiple
2117 // definition error if this symbol is already defined.
2118
2119 Symbol*
2120 Symbol_table::define_as_constant(const char* name,
2121 const char* version,
2122 Defined defined,
2123 uint64_t value,
2124 uint64_t symsize,
2125 elfcpp::STT type,
2126 elfcpp::STB binding,
2127 elfcpp::STV visibility,
2128 unsigned char nonvis,
2129 bool only_if_ref,
2130 bool force_override)
2131 {
2132 if (parameters->target().get_size() == 32)
2133 {
2134 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2135 return this->do_define_as_constant<32>(name, version, defined, value,
2136 symsize, type, binding,
2137 visibility, nonvis, only_if_ref,
2138 force_override);
2139 #else
2140 gold_unreachable();
2141 #endif
2142 }
2143 else if (parameters->target().get_size() == 64)
2144 {
2145 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2146 return this->do_define_as_constant<64>(name, version, defined, value,
2147 symsize, type, binding,
2148 visibility, nonvis, only_if_ref,
2149 force_override);
2150 #else
2151 gold_unreachable();
2152 #endif
2153 }
2154 else
2155 gold_unreachable();
2156 }
2157
2158 // Define a symbol as a constant, sized version.
2159
2160 template<int size>
2161 Sized_symbol<size>*
2162 Symbol_table::do_define_as_constant(
2163 const char* name,
2164 const char* version,
2165 Defined defined,
2166 typename elfcpp::Elf_types<size>::Elf_Addr value,
2167 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2168 elfcpp::STT type,
2169 elfcpp::STB binding,
2170 elfcpp::STV visibility,
2171 unsigned char nonvis,
2172 bool only_if_ref,
2173 bool force_override)
2174 {
2175 Sized_symbol<size>* sym;
2176 Sized_symbol<size>* oldsym;
2177 bool resolve_oldsym;
2178
2179 if (parameters->target().is_big_endian())
2180 {
2181 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2182 sym = this->define_special_symbol<size, true>(&name, &version,
2183 only_if_ref, &oldsym,
2184 &resolve_oldsym);
2185 #else
2186 gold_unreachable();
2187 #endif
2188 }
2189 else
2190 {
2191 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2192 sym = this->define_special_symbol<size, false>(&name, &version,
2193 only_if_ref, &oldsym,
2194 &resolve_oldsym);
2195 #else
2196 gold_unreachable();
2197 #endif
2198 }
2199
2200 if (sym == NULL)
2201 return NULL;
2202
2203 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2204 nonvis, defined == PREDEFINED);
2205
2206 if (oldsym == NULL)
2207 {
2208 // Version symbols are absolute symbols with name == version.
2209 // We don't want to force them to be local.
2210 if ((version == NULL
2211 || name != version
2212 || value != 0)
2213 && (binding == elfcpp::STB_LOCAL
2214 || this->version_script_.symbol_is_local(name)))
2215 this->force_local(sym);
2216 else if (version != NULL
2217 && (name != version || value != 0))
2218 sym->set_is_default();
2219 return sym;
2220 }
2221
2222 if (force_override
2223 || Symbol_table::should_override_with_special(oldsym, type, defined))
2224 this->override_with_special(oldsym, sym);
2225
2226 if (resolve_oldsym)
2227 return sym;
2228 else
2229 {
2230 if (binding == elfcpp::STB_LOCAL
2231 || this->version_script_.symbol_is_local(name))
2232 this->force_local(oldsym);
2233 delete sym;
2234 return oldsym;
2235 }
2236 }
2237
2238 // Define a set of symbols in output sections.
2239
2240 void
2241 Symbol_table::define_symbols(const Layout* layout, int count,
2242 const Define_symbol_in_section* p,
2243 bool only_if_ref)
2244 {
2245 for (int i = 0; i < count; ++i, ++p)
2246 {
2247 Output_section* os = layout->find_output_section(p->output_section);
2248 if (os != NULL)
2249 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2250 p->size, p->type, p->binding,
2251 p->visibility, p->nonvis,
2252 p->offset_is_from_end,
2253 only_if_ref || p->only_if_ref);
2254 else
2255 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2256 p->type, p->binding, p->visibility, p->nonvis,
2257 only_if_ref || p->only_if_ref,
2258 false);
2259 }
2260 }
2261
2262 // Define a set of symbols in output segments.
2263
2264 void
2265 Symbol_table::define_symbols(const Layout* layout, int count,
2266 const Define_symbol_in_segment* p,
2267 bool only_if_ref)
2268 {
2269 for (int i = 0; i < count; ++i, ++p)
2270 {
2271 Output_segment* os = layout->find_output_segment(p->segment_type,
2272 p->segment_flags_set,
2273 p->segment_flags_clear);
2274 if (os != NULL)
2275 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2276 p->size, p->type, p->binding,
2277 p->visibility, p->nonvis,
2278 p->offset_base,
2279 only_if_ref || p->only_if_ref);
2280 else
2281 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2282 p->type, p->binding, p->visibility, p->nonvis,
2283 only_if_ref || p->only_if_ref,
2284 false);
2285 }
2286 }
2287
2288 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2289 // symbol should be defined--typically a .dyn.bss section. VALUE is
2290 // the offset within POSD.
2291
2292 template<int size>
2293 void
2294 Symbol_table::define_with_copy_reloc(
2295 Sized_symbol<size>* csym,
2296 Output_data* posd,
2297 typename elfcpp::Elf_types<size>::Elf_Addr value)
2298 {
2299 gold_assert(csym->is_from_dynobj());
2300 gold_assert(!csym->is_copied_from_dynobj());
2301 Object* object = csym->object();
2302 gold_assert(object->is_dynamic());
2303 Dynobj* dynobj = static_cast<Dynobj*>(object);
2304
2305 // Our copied variable has to override any variable in a shared
2306 // library.
2307 elfcpp::STB binding = csym->binding();
2308 if (binding == elfcpp::STB_WEAK)
2309 binding = elfcpp::STB_GLOBAL;
2310
2311 this->define_in_output_data(csym->name(), csym->version(), COPY,
2312 posd, value, csym->symsize(),
2313 csym->type(), binding,
2314 csym->visibility(), csym->nonvis(),
2315 false, false);
2316
2317 csym->set_is_copied_from_dynobj();
2318 csym->set_needs_dynsym_entry();
2319
2320 this->copied_symbol_dynobjs_[csym] = dynobj;
2321
2322 // We have now defined all aliases, but we have not entered them all
2323 // in the copied_symbol_dynobjs_ map.
2324 if (csym->has_alias())
2325 {
2326 Symbol* sym = csym;
2327 while (true)
2328 {
2329 sym = this->weak_aliases_[sym];
2330 if (sym == csym)
2331 break;
2332 gold_assert(sym->output_data() == posd);
2333
2334 sym->set_is_copied_from_dynobj();
2335 this->copied_symbol_dynobjs_[sym] = dynobj;
2336 }
2337 }
2338 }
2339
2340 // SYM is defined using a COPY reloc. Return the dynamic object where
2341 // the original definition was found.
2342
2343 Dynobj*
2344 Symbol_table::get_copy_source(const Symbol* sym) const
2345 {
2346 gold_assert(sym->is_copied_from_dynobj());
2347 Copied_symbol_dynobjs::const_iterator p =
2348 this->copied_symbol_dynobjs_.find(sym);
2349 gold_assert(p != this->copied_symbol_dynobjs_.end());
2350 return p->second;
2351 }
2352
2353 // Add any undefined symbols named on the command line.
2354
2355 void
2356 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2357 {
2358 if (parameters->options().any_undefined()
2359 || layout->script_options()->any_unreferenced())
2360 {
2361 if (parameters->target().get_size() == 32)
2362 {
2363 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2364 this->do_add_undefined_symbols_from_command_line<32>(layout);
2365 #else
2366 gold_unreachable();
2367 #endif
2368 }
2369 else if (parameters->target().get_size() == 64)
2370 {
2371 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2372 this->do_add_undefined_symbols_from_command_line<64>(layout);
2373 #else
2374 gold_unreachable();
2375 #endif
2376 }
2377 else
2378 gold_unreachable();
2379 }
2380 }
2381
2382 template<int size>
2383 void
2384 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2385 {
2386 for (options::String_set::const_iterator p =
2387 parameters->options().undefined_begin();
2388 p != parameters->options().undefined_end();
2389 ++p)
2390 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2391
2392 for (options::String_set::const_iterator p =
2393 parameters->options().export_dynamic_symbol_begin();
2394 p != parameters->options().export_dynamic_symbol_end();
2395 ++p)
2396 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2397
2398 for (Script_options::referenced_const_iterator p =
2399 layout->script_options()->referenced_begin();
2400 p != layout->script_options()->referenced_end();
2401 ++p)
2402 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2403 }
2404
2405 template<int size>
2406 void
2407 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2408 {
2409 if (this->lookup(name) != NULL)
2410 return;
2411
2412 const char* version = NULL;
2413
2414 Sized_symbol<size>* sym;
2415 Sized_symbol<size>* oldsym;
2416 bool resolve_oldsym;
2417 if (parameters->target().is_big_endian())
2418 {
2419 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2420 sym = this->define_special_symbol<size, true>(&name, &version,
2421 false, &oldsym,
2422 &resolve_oldsym);
2423 #else
2424 gold_unreachable();
2425 #endif
2426 }
2427 else
2428 {
2429 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2430 sym = this->define_special_symbol<size, false>(&name, &version,
2431 false, &oldsym,
2432 &resolve_oldsym);
2433 #else
2434 gold_unreachable();
2435 #endif
2436 }
2437
2438 gold_assert(oldsym == NULL);
2439
2440 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2441 elfcpp::STV_DEFAULT, 0);
2442 ++this->saw_undefined_;
2443 }
2444
2445 // Set the dynamic symbol indexes. INDEX is the index of the first
2446 // global dynamic symbol. Pointers to the symbols are stored into the
2447 // vector SYMS. The names are added to DYNPOOL. This returns an
2448 // updated dynamic symbol index.
2449
2450 unsigned int
2451 Symbol_table::set_dynsym_indexes(unsigned int index,
2452 std::vector<Symbol*>* syms,
2453 Stringpool* dynpool,
2454 Versions* versions)
2455 {
2456 std::vector<Symbol*> as_needed_sym;
2457
2458 // Allow a target to set dynsym indexes.
2459 if (parameters->target().has_custom_set_dynsym_indexes())
2460 {
2461 std::vector<Symbol*> dyn_symbols;
2462 for (Symbol_table_type::iterator p = this->table_.begin();
2463 p != this->table_.end();
2464 ++p)
2465 {
2466 Symbol* sym = p->second;
2467 if (!sym->should_add_dynsym_entry(this))
2468 sym->set_dynsym_index(-1U);
2469 else
2470 dyn_symbols.push_back(sym);
2471 }
2472
2473 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2474 dynpool, versions, this);
2475 }
2476
2477 for (Symbol_table_type::iterator p = this->table_.begin();
2478 p != this->table_.end();
2479 ++p)
2480 {
2481 Symbol* sym = p->second;
2482
2483 // Note that SYM may already have a dynamic symbol index, since
2484 // some symbols appear more than once in the symbol table, with
2485 // and without a version.
2486
2487 if (!sym->should_add_dynsym_entry(this))
2488 sym->set_dynsym_index(-1U);
2489 else if (!sym->has_dynsym_index())
2490 {
2491 sym->set_dynsym_index(index);
2492 ++index;
2493 syms->push_back(sym);
2494 dynpool->add(sym->name(), false, NULL);
2495
2496 // If the symbol is defined in a dynamic object and is
2497 // referenced strongly in a regular object, then mark the
2498 // dynamic object as needed. This is used to implement
2499 // --as-needed.
2500 if (sym->is_from_dynobj()
2501 && sym->in_reg()
2502 && !sym->is_undef_binding_weak())
2503 sym->object()->set_is_needed();
2504
2505 // Record any version information, except those from
2506 // as-needed libraries not seen to be needed. Note that the
2507 // is_needed state for such libraries can change in this loop.
2508 if (sym->version() != NULL)
2509 {
2510 if (!sym->is_from_dynobj()
2511 || !sym->object()->as_needed()
2512 || sym->object()->is_needed())
2513 versions->record_version(this, dynpool, sym);
2514 else
2515 as_needed_sym.push_back(sym);
2516 }
2517 }
2518 }
2519
2520 // Process version information for symbols from as-needed libraries.
2521 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2522 p != as_needed_sym.end();
2523 ++p)
2524 {
2525 Symbol* sym = *p;
2526
2527 if (sym->object()->is_needed())
2528 versions->record_version(this, dynpool, sym);
2529 else
2530 sym->clear_version();
2531 }
2532
2533 // Finish up the versions. In some cases this may add new dynamic
2534 // symbols.
2535 index = versions->finalize(this, index, syms);
2536
2537 return index;
2538 }
2539
2540 // Set the final values for all the symbols. The index of the first
2541 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2542 // file offset OFF. Add their names to POOL. Return the new file
2543 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2544
2545 off_t
2546 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2547 size_t dyncount, Stringpool* pool,
2548 unsigned int* plocal_symcount)
2549 {
2550 off_t ret;
2551
2552 gold_assert(*plocal_symcount != 0);
2553 this->first_global_index_ = *plocal_symcount;
2554
2555 this->dynamic_offset_ = dynoff;
2556 this->first_dynamic_global_index_ = dyn_global_index;
2557 this->dynamic_count_ = dyncount;
2558
2559 if (parameters->target().get_size() == 32)
2560 {
2561 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2562 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2563 #else
2564 gold_unreachable();
2565 #endif
2566 }
2567 else if (parameters->target().get_size() == 64)
2568 {
2569 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2570 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2571 #else
2572 gold_unreachable();
2573 #endif
2574 }
2575 else
2576 gold_unreachable();
2577
2578 // Now that we have the final symbol table, we can reliably note
2579 // which symbols should get warnings.
2580 this->warnings_.note_warnings(this);
2581
2582 return ret;
2583 }
2584
2585 // SYM is going into the symbol table at *PINDEX. Add the name to
2586 // POOL, update *PINDEX and *POFF.
2587
2588 template<int size>
2589 void
2590 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2591 unsigned int* pindex, off_t* poff)
2592 {
2593 sym->set_symtab_index(*pindex);
2594 if (sym->version() == NULL || !parameters->options().relocatable())
2595 pool->add(sym->name(), false, NULL);
2596 else
2597 pool->add(sym->versioned_name(), true, NULL);
2598 ++*pindex;
2599 *poff += elfcpp::Elf_sizes<size>::sym_size;
2600 }
2601
2602 // Set the final value for all the symbols. This is called after
2603 // Layout::finalize, so all the output sections have their final
2604 // address.
2605
2606 template<int size>
2607 off_t
2608 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2609 unsigned int* plocal_symcount)
2610 {
2611 off = align_address(off, size >> 3);
2612 this->offset_ = off;
2613
2614 unsigned int index = *plocal_symcount;
2615 const unsigned int orig_index = index;
2616
2617 // First do all the symbols which have been forced to be local, as
2618 // they must appear before all global symbols.
2619 for (Forced_locals::iterator p = this->forced_locals_.begin();
2620 p != this->forced_locals_.end();
2621 ++p)
2622 {
2623 Symbol* sym = *p;
2624 gold_assert(sym->is_forced_local());
2625 if (this->sized_finalize_symbol<size>(sym))
2626 {
2627 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2628 ++*plocal_symcount;
2629 }
2630 }
2631
2632 // Now do all the remaining symbols.
2633 for (Symbol_table_type::iterator p = this->table_.begin();
2634 p != this->table_.end();
2635 ++p)
2636 {
2637 Symbol* sym = p->second;
2638 if (this->sized_finalize_symbol<size>(sym))
2639 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2640 }
2641
2642 this->output_count_ = index - orig_index;
2643
2644 return off;
2645 }
2646
2647 // Compute the final value of SYM and store status in location PSTATUS.
2648 // During relaxation, this may be called multiple times for a symbol to
2649 // compute its would-be final value in each relaxation pass.
2650
2651 template<int size>
2652 typename Sized_symbol<size>::Value_type
2653 Symbol_table::compute_final_value(
2654 const Sized_symbol<size>* sym,
2655 Compute_final_value_status* pstatus) const
2656 {
2657 typedef typename Sized_symbol<size>::Value_type Value_type;
2658 Value_type value;
2659
2660 switch (sym->source())
2661 {
2662 case Symbol::FROM_OBJECT:
2663 {
2664 bool is_ordinary;
2665 unsigned int shndx = sym->shndx(&is_ordinary);
2666
2667 if (!is_ordinary
2668 && shndx != elfcpp::SHN_ABS
2669 && !Symbol::is_common_shndx(shndx))
2670 {
2671 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2672 return 0;
2673 }
2674
2675 Object* symobj = sym->object();
2676 if (symobj->is_dynamic())
2677 {
2678 value = 0;
2679 shndx = elfcpp::SHN_UNDEF;
2680 }
2681 else if (symobj->pluginobj() != NULL)
2682 {
2683 value = 0;
2684 shndx = elfcpp::SHN_UNDEF;
2685 }
2686 else if (shndx == elfcpp::SHN_UNDEF)
2687 value = 0;
2688 else if (!is_ordinary
2689 && (shndx == elfcpp::SHN_ABS
2690 || Symbol::is_common_shndx(shndx)))
2691 value = sym->value();
2692 else
2693 {
2694 Relobj* relobj = static_cast<Relobj*>(symobj);
2695 Output_section* os = relobj->output_section(shndx);
2696
2697 if (this->is_section_folded(relobj, shndx))
2698 {
2699 gold_assert(os == NULL);
2700 // Get the os of the section it is folded onto.
2701 Section_id folded = this->icf_->get_folded_section(relobj,
2702 shndx);
2703 gold_assert(folded.first != NULL);
2704 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2705 unsigned folded_shndx = folded.second;
2706
2707 os = folded_obj->output_section(folded_shndx);
2708 gold_assert(os != NULL);
2709
2710 // Replace (relobj, shndx) with canonical ICF input section.
2711 shndx = folded_shndx;
2712 relobj = folded_obj;
2713 }
2714
2715 uint64_t secoff64 = relobj->output_section_offset(shndx);
2716 if (os == NULL)
2717 {
2718 bool static_or_reloc = (parameters->doing_static_link() ||
2719 parameters->options().relocatable());
2720 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2721
2722 *pstatus = CFVS_NO_OUTPUT_SECTION;
2723 return 0;
2724 }
2725
2726 if (secoff64 == -1ULL)
2727 {
2728 // The section needs special handling (e.g., a merge section).
2729
2730 value = os->output_address(relobj, shndx, sym->value());
2731 }
2732 else
2733 {
2734 Value_type secoff =
2735 convert_types<Value_type, uint64_t>(secoff64);
2736 if (sym->type() == elfcpp::STT_TLS)
2737 value = sym->value() + os->tls_offset() + secoff;
2738 else
2739 value = sym->value() + os->address() + secoff;
2740 }
2741 }
2742 }
2743 break;
2744
2745 case Symbol::IN_OUTPUT_DATA:
2746 {
2747 Output_data* od = sym->output_data();
2748 value = sym->value();
2749 if (sym->type() != elfcpp::STT_TLS)
2750 value += od->address();
2751 else
2752 {
2753 Output_section* os = od->output_section();
2754 gold_assert(os != NULL);
2755 value += os->tls_offset() + (od->address() - os->address());
2756 }
2757 if (sym->offset_is_from_end())
2758 value += od->data_size();
2759 }
2760 break;
2761
2762 case Symbol::IN_OUTPUT_SEGMENT:
2763 {
2764 Output_segment* os = sym->output_segment();
2765 value = sym->value();
2766 if (sym->type() != elfcpp::STT_TLS)
2767 value += os->vaddr();
2768 switch (sym->offset_base())
2769 {
2770 case Symbol::SEGMENT_START:
2771 break;
2772 case Symbol::SEGMENT_END:
2773 value += os->memsz();
2774 break;
2775 case Symbol::SEGMENT_BSS:
2776 value += os->filesz();
2777 break;
2778 default:
2779 gold_unreachable();
2780 }
2781 }
2782 break;
2783
2784 case Symbol::IS_CONSTANT:
2785 value = sym->value();
2786 break;
2787
2788 case Symbol::IS_UNDEFINED:
2789 value = 0;
2790 break;
2791
2792 default:
2793 gold_unreachable();
2794 }
2795
2796 *pstatus = CFVS_OK;
2797 return value;
2798 }
2799
2800 // Finalize the symbol SYM. This returns true if the symbol should be
2801 // added to the symbol table, false otherwise.
2802
2803 template<int size>
2804 bool
2805 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2806 {
2807 typedef typename Sized_symbol<size>::Value_type Value_type;
2808
2809 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2810
2811 // The default version of a symbol may appear twice in the symbol
2812 // table. We only need to finalize it once.
2813 if (sym->has_symtab_index())
2814 return false;
2815
2816 if (!sym->in_reg())
2817 {
2818 gold_assert(!sym->has_symtab_index());
2819 sym->set_symtab_index(-1U);
2820 gold_assert(sym->dynsym_index() == -1U);
2821 return false;
2822 }
2823
2824 // If the symbol is only present on plugin files, the plugin decided we
2825 // don't need it.
2826 if (!sym->in_real_elf())
2827 {
2828 gold_assert(!sym->has_symtab_index());
2829 sym->set_symtab_index(-1U);
2830 return false;
2831 }
2832
2833 // Compute final symbol value.
2834 Compute_final_value_status status;
2835 Value_type value = this->compute_final_value(sym, &status);
2836
2837 switch (status)
2838 {
2839 case CFVS_OK:
2840 break;
2841 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2842 {
2843 bool is_ordinary;
2844 unsigned int shndx = sym->shndx(&is_ordinary);
2845 gold_error(_("%s: unsupported symbol section 0x%x"),
2846 sym->demangled_name().c_str(), shndx);
2847 }
2848 break;
2849 case CFVS_NO_OUTPUT_SECTION:
2850 sym->set_symtab_index(-1U);
2851 return false;
2852 default:
2853 gold_unreachable();
2854 }
2855
2856 sym->set_value(value);
2857
2858 if (parameters->options().strip_all()
2859 || !parameters->options().should_retain_symbol(sym->name()))
2860 {
2861 sym->set_symtab_index(-1U);
2862 return false;
2863 }
2864
2865 return true;
2866 }
2867
2868 // Write out the global symbols.
2869
2870 void
2871 Symbol_table::write_globals(const Stringpool* sympool,
2872 const Stringpool* dynpool,
2873 Output_symtab_xindex* symtab_xindex,
2874 Output_symtab_xindex* dynsym_xindex,
2875 Output_file* of) const
2876 {
2877 switch (parameters->size_and_endianness())
2878 {
2879 #ifdef HAVE_TARGET_32_LITTLE
2880 case Parameters::TARGET_32_LITTLE:
2881 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2882 dynsym_xindex, of);
2883 break;
2884 #endif
2885 #ifdef HAVE_TARGET_32_BIG
2886 case Parameters::TARGET_32_BIG:
2887 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2888 dynsym_xindex, of);
2889 break;
2890 #endif
2891 #ifdef HAVE_TARGET_64_LITTLE
2892 case Parameters::TARGET_64_LITTLE:
2893 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2894 dynsym_xindex, of);
2895 break;
2896 #endif
2897 #ifdef HAVE_TARGET_64_BIG
2898 case Parameters::TARGET_64_BIG:
2899 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2900 dynsym_xindex, of);
2901 break;
2902 #endif
2903 default:
2904 gold_unreachable();
2905 }
2906 }
2907
2908 // Write out the global symbols.
2909
2910 template<int size, bool big_endian>
2911 void
2912 Symbol_table::sized_write_globals(const Stringpool* sympool,
2913 const Stringpool* dynpool,
2914 Output_symtab_xindex* symtab_xindex,
2915 Output_symtab_xindex* dynsym_xindex,
2916 Output_file* of) const
2917 {
2918 const Target& target = parameters->target();
2919
2920 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2921
2922 const unsigned int output_count = this->output_count_;
2923 const section_size_type oview_size = output_count * sym_size;
2924 const unsigned int first_global_index = this->first_global_index_;
2925 unsigned char* psyms;
2926 if (this->offset_ == 0 || output_count == 0)
2927 psyms = NULL;
2928 else
2929 psyms = of->get_output_view(this->offset_, oview_size);
2930
2931 const unsigned int dynamic_count = this->dynamic_count_;
2932 const section_size_type dynamic_size = dynamic_count * sym_size;
2933 const unsigned int first_dynamic_global_index =
2934 this->first_dynamic_global_index_;
2935 unsigned char* dynamic_view;
2936 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2937 dynamic_view = NULL;
2938 else
2939 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2940
2941 for (Symbol_table_type::const_iterator p = this->table_.begin();
2942 p != this->table_.end();
2943 ++p)
2944 {
2945 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2946
2947 // Possibly warn about unresolved symbols in shared libraries.
2948 this->warn_about_undefined_dynobj_symbol(sym);
2949
2950 unsigned int sym_index = sym->symtab_index();
2951 unsigned int dynsym_index;
2952 if (dynamic_view == NULL)
2953 dynsym_index = -1U;
2954 else
2955 dynsym_index = sym->dynsym_index();
2956
2957 if (sym_index == -1U && dynsym_index == -1U)
2958 {
2959 // This symbol is not included in the output file.
2960 continue;
2961 }
2962
2963 unsigned int shndx;
2964 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2965 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2966 elfcpp::STB binding = sym->binding();
2967
2968 // If --weak-unresolved-symbols is set, change binding of unresolved
2969 // global symbols to STB_WEAK.
2970 if (parameters->options().weak_unresolved_symbols()
2971 && binding == elfcpp::STB_GLOBAL
2972 && sym->is_undefined())
2973 binding = elfcpp::STB_WEAK;
2974
2975 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2976 if (binding == elfcpp::STB_GNU_UNIQUE
2977 && !parameters->options().gnu_unique())
2978 binding = elfcpp::STB_GLOBAL;
2979
2980 switch (sym->source())
2981 {
2982 case Symbol::FROM_OBJECT:
2983 {
2984 bool is_ordinary;
2985 unsigned int in_shndx = sym->shndx(&is_ordinary);
2986
2987 if (!is_ordinary
2988 && in_shndx != elfcpp::SHN_ABS
2989 && !Symbol::is_common_shndx(in_shndx))
2990 {
2991 gold_error(_("%s: unsupported symbol section 0x%x"),
2992 sym->demangled_name().c_str(), in_shndx);
2993 shndx = in_shndx;
2994 }
2995 else
2996 {
2997 Object* symobj = sym->object();
2998 if (symobj->is_dynamic())
2999 {
3000 if (sym->needs_dynsym_value())
3001 dynsym_value = target.dynsym_value(sym);
3002 shndx = elfcpp::SHN_UNDEF;
3003 if (sym->is_undef_binding_weak())
3004 binding = elfcpp::STB_WEAK;
3005 else
3006 binding = elfcpp::STB_GLOBAL;
3007 }
3008 else if (symobj->pluginobj() != NULL)
3009 shndx = elfcpp::SHN_UNDEF;
3010 else if (in_shndx == elfcpp::SHN_UNDEF
3011 || (!is_ordinary
3012 && (in_shndx == elfcpp::SHN_ABS
3013 || Symbol::is_common_shndx(in_shndx))))
3014 shndx = in_shndx;
3015 else
3016 {
3017 Relobj* relobj = static_cast<Relobj*>(symobj);
3018 Output_section* os = relobj->output_section(in_shndx);
3019 if (this->is_section_folded(relobj, in_shndx))
3020 {
3021 // This global symbol must be written out even though
3022 // it is folded.
3023 // Get the os of the section it is folded onto.
3024 Section_id folded =
3025 this->icf_->get_folded_section(relobj, in_shndx);
3026 gold_assert(folded.first !=NULL);
3027 Relobj* folded_obj =
3028 reinterpret_cast<Relobj*>(folded.first);
3029 os = folded_obj->output_section(folded.second);
3030 gold_assert(os != NULL);
3031 }
3032 gold_assert(os != NULL);
3033 shndx = os->out_shndx();
3034
3035 if (shndx >= elfcpp::SHN_LORESERVE)
3036 {
3037 if (sym_index != -1U)
3038 symtab_xindex->add(sym_index, shndx);
3039 if (dynsym_index != -1U)
3040 dynsym_xindex->add(dynsym_index, shndx);
3041 shndx = elfcpp::SHN_XINDEX;
3042 }
3043
3044 // In object files symbol values are section
3045 // relative.
3046 if (parameters->options().relocatable())
3047 sym_value -= os->address();
3048 }
3049 }
3050 }
3051 break;
3052
3053 case Symbol::IN_OUTPUT_DATA:
3054 {
3055 Output_data* od = sym->output_data();
3056
3057 shndx = od->out_shndx();
3058 if (shndx >= elfcpp::SHN_LORESERVE)
3059 {
3060 if (sym_index != -1U)
3061 symtab_xindex->add(sym_index, shndx);
3062 if (dynsym_index != -1U)
3063 dynsym_xindex->add(dynsym_index, shndx);
3064 shndx = elfcpp::SHN_XINDEX;
3065 }
3066
3067 // In object files symbol values are section
3068 // relative.
3069 if (parameters->options().relocatable())
3070 sym_value -= od->address();
3071 }
3072 break;
3073
3074 case Symbol::IN_OUTPUT_SEGMENT:
3075 shndx = elfcpp::SHN_ABS;
3076 break;
3077
3078 case Symbol::IS_CONSTANT:
3079 shndx = elfcpp::SHN_ABS;
3080 break;
3081
3082 case Symbol::IS_UNDEFINED:
3083 shndx = elfcpp::SHN_UNDEF;
3084 break;
3085
3086 default:
3087 gold_unreachable();
3088 }
3089
3090 if (sym_index != -1U)
3091 {
3092 sym_index -= first_global_index;
3093 gold_assert(sym_index < output_count);
3094 unsigned char* ps = psyms + (sym_index * sym_size);
3095 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3096 binding, sympool, ps);
3097 }
3098
3099 if (dynsym_index != -1U)
3100 {
3101 dynsym_index -= first_dynamic_global_index;
3102 gold_assert(dynsym_index < dynamic_count);
3103 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3104 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3105 binding, dynpool, pd);
3106 // Allow a target to adjust dynamic symbol value.
3107 parameters->target().adjust_dyn_symbol(sym, pd);
3108 }
3109 }
3110
3111 of->write_output_view(this->offset_, oview_size, psyms);
3112 if (dynamic_view != NULL)
3113 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3114 }
3115
3116 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3117 // strtab holding the name.
3118
3119 template<int size, bool big_endian>
3120 void
3121 Symbol_table::sized_write_symbol(
3122 Sized_symbol<size>* sym,
3123 typename elfcpp::Elf_types<size>::Elf_Addr value,
3124 unsigned int shndx,
3125 elfcpp::STB binding,
3126 const Stringpool* pool,
3127 unsigned char* p) const
3128 {
3129 elfcpp::Sym_write<size, big_endian> osym(p);
3130 if (sym->version() == NULL || !parameters->options().relocatable())
3131 osym.put_st_name(pool->get_offset(sym->name()));
3132 else
3133 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3134 osym.put_st_value(value);
3135 // Use a symbol size of zero for undefined symbols from shared libraries.
3136 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3137 osym.put_st_size(0);
3138 else
3139 osym.put_st_size(sym->symsize());
3140 elfcpp::STT type = sym->type();
3141 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3142 // A version script may have overridden the default binding.
3143 if (sym->is_forced_local())
3144 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3145 else
3146 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3147 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3148 osym.put_st_shndx(shndx);
3149 }
3150
3151 // Check for unresolved symbols in shared libraries. This is
3152 // controlled by the --allow-shlib-undefined option.
3153
3154 // We only warn about libraries for which we have seen all the
3155 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3156 // which were not seen in this link. If we didn't see a DT_NEEDED
3157 // entry, we aren't going to be able to reliably report whether the
3158 // symbol is undefined.
3159
3160 // We also don't warn about libraries found in a system library
3161 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3162 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3163 // can have undefined references satisfied by ld-linux.so.
3164
3165 inline void
3166 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3167 {
3168 bool dummy;
3169 if (sym->source() == Symbol::FROM_OBJECT
3170 && sym->object()->is_dynamic()
3171 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3172 && sym->binding() != elfcpp::STB_WEAK
3173 && !parameters->options().allow_shlib_undefined()
3174 && !parameters->target().is_defined_by_abi(sym)
3175 && !sym->object()->is_in_system_directory())
3176 {
3177 // A very ugly cast.
3178 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3179 if (!dynobj->has_unknown_needed_entries())
3180 gold_undefined_symbol(sym);
3181 }
3182 }
3183
3184 // Write out a section symbol. Return the update offset.
3185
3186 void
3187 Symbol_table::write_section_symbol(const Output_section* os,
3188 Output_symtab_xindex* symtab_xindex,
3189 Output_file* of,
3190 off_t offset) const
3191 {
3192 switch (parameters->size_and_endianness())
3193 {
3194 #ifdef HAVE_TARGET_32_LITTLE
3195 case Parameters::TARGET_32_LITTLE:
3196 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3197 offset);
3198 break;
3199 #endif
3200 #ifdef HAVE_TARGET_32_BIG
3201 case Parameters::TARGET_32_BIG:
3202 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3203 offset);
3204 break;
3205 #endif
3206 #ifdef HAVE_TARGET_64_LITTLE
3207 case Parameters::TARGET_64_LITTLE:
3208 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3209 offset);
3210 break;
3211 #endif
3212 #ifdef HAVE_TARGET_64_BIG
3213 case Parameters::TARGET_64_BIG:
3214 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3215 offset);
3216 break;
3217 #endif
3218 default:
3219 gold_unreachable();
3220 }
3221 }
3222
3223 // Write out a section symbol, specialized for size and endianness.
3224
3225 template<int size, bool big_endian>
3226 void
3227 Symbol_table::sized_write_section_symbol(const Output_section* os,
3228 Output_symtab_xindex* symtab_xindex,
3229 Output_file* of,
3230 off_t offset) const
3231 {
3232 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3233
3234 unsigned char* pov = of->get_output_view(offset, sym_size);
3235
3236 elfcpp::Sym_write<size, big_endian> osym(pov);
3237 osym.put_st_name(0);
3238 if (parameters->options().relocatable())
3239 osym.put_st_value(0);
3240 else
3241 osym.put_st_value(os->address());
3242 osym.put_st_size(0);
3243 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3244 elfcpp::STT_SECTION));
3245 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3246
3247 unsigned int shndx = os->out_shndx();
3248 if (shndx >= elfcpp::SHN_LORESERVE)
3249 {
3250 symtab_xindex->add(os->symtab_index(), shndx);
3251 shndx = elfcpp::SHN_XINDEX;
3252 }
3253 osym.put_st_shndx(shndx);
3254
3255 of->write_output_view(offset, sym_size, pov);
3256 }
3257
3258 // Print statistical information to stderr. This is used for --stats.
3259
3260 void
3261 Symbol_table::print_stats() const
3262 {
3263 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3264 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3265 program_name, this->table_.size(), this->table_.bucket_count());
3266 #else
3267 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3268 program_name, this->table_.size());
3269 #endif
3270 this->namepool_.print_stats("symbol table stringpool");
3271 }
3272
3273 // We check for ODR violations by looking for symbols with the same
3274 // name for which the debugging information reports that they were
3275 // defined in disjoint source locations. When comparing the source
3276 // location, we consider instances with the same base filename to be
3277 // the same. This is because different object files/shared libraries
3278 // can include the same header file using different paths, and
3279 // different optimization settings can make the line number appear to
3280 // be a couple lines off, and we don't want to report an ODR violation
3281 // in those cases.
3282
3283 // This struct is used to compare line information, as returned by
3284 // Dwarf_line_info::one_addr2line. It implements a < comparison
3285 // operator used with std::sort.
3286
3287 struct Odr_violation_compare
3288 {
3289 bool
3290 operator()(const std::string& s1, const std::string& s2) const
3291 {
3292 // Inputs should be of the form "dirname/filename:linenum" where
3293 // "dirname/" is optional. We want to compare just the filename:linenum.
3294
3295 // Find the last '/' in each string.
3296 std::string::size_type s1begin = s1.rfind('/');
3297 std::string::size_type s2begin = s2.rfind('/');
3298 // If there was no '/' in a string, start at the beginning.
3299 if (s1begin == std::string::npos)
3300 s1begin = 0;
3301 if (s2begin == std::string::npos)
3302 s2begin = 0;
3303 return s1.compare(s1begin, std::string::npos,
3304 s2, s2begin, std::string::npos) < 0;
3305 }
3306 };
3307
3308 // Returns all of the lines attached to LOC, not just the one the
3309 // instruction actually came from.
3310 std::vector<std::string>
3311 Symbol_table::linenos_from_loc(const Task* task,
3312 const Symbol_location& loc)
3313 {
3314 // We need to lock the object in order to read it. This
3315 // means that we have to run in a singleton Task. If we
3316 // want to run this in a general Task for better
3317 // performance, we will need one Task for object, plus
3318 // appropriate locking to ensure that we don't conflict with
3319 // other uses of the object. Also note, one_addr2line is not
3320 // currently thread-safe.
3321 Task_lock_obj<Object> tl(task, loc.object);
3322
3323 std::vector<std::string> result;
3324 Symbol_location code_loc = loc;
3325 parameters->target().function_location(&code_loc);
3326 // 16 is the size of the object-cache that one_addr2line should use.
3327 std::string canonical_result = Dwarf_line_info::one_addr2line(
3328 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3329 if (!canonical_result.empty())
3330 result.push_back(canonical_result);
3331 return result;
3332 }
3333
3334 // OutputIterator that records if it was ever assigned to. This
3335 // allows it to be used with std::set_intersection() to check for
3336 // intersection rather than computing the intersection.
3337 struct Check_intersection
3338 {
3339 Check_intersection()
3340 : value_(false)
3341 {}
3342
3343 bool had_intersection() const
3344 { return this->value_; }
3345
3346 Check_intersection& operator++()
3347 { return *this; }
3348
3349 Check_intersection& operator*()
3350 { return *this; }
3351
3352 template<typename T>
3353 Check_intersection& operator=(const T&)
3354 {
3355 this->value_ = true;
3356 return *this;
3357 }
3358
3359 private:
3360 bool value_;
3361 };
3362
3363 // Check candidate_odr_violations_ to find symbols with the same name
3364 // but apparently different definitions (different source-file/line-no
3365 // for each line assigned to the first instruction).
3366
3367 void
3368 Symbol_table::detect_odr_violations(const Task* task,
3369 const char* output_file_name) const
3370 {
3371 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3372 it != candidate_odr_violations_.end();
3373 ++it)
3374 {
3375 const char* const symbol_name = it->first;
3376
3377 std::string first_object_name;
3378 std::vector<std::string> first_object_linenos;
3379
3380 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3381 locs = it->second.begin();
3382 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3383 locs_end = it->second.end();
3384 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3385 {
3386 // Save the line numbers from the first definition to
3387 // compare to the other definitions. Ideally, we'd compare
3388 // every definition to every other, but we don't want to
3389 // take O(N^2) time to do this. This shortcut may cause
3390 // false negatives that appear or disappear depending on the
3391 // link order, but it won't cause false positives.
3392 first_object_name = locs->object->name();
3393 first_object_linenos = this->linenos_from_loc(task, *locs);
3394 }
3395 if (first_object_linenos.empty())
3396 continue;
3397
3398 // Sort by Odr_violation_compare to make std::set_intersection work.
3399 std::string first_object_canonical_result = first_object_linenos.back();
3400 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3401 Odr_violation_compare());
3402
3403 for (; locs != locs_end; ++locs)
3404 {
3405 std::vector<std::string> linenos =
3406 this->linenos_from_loc(task, *locs);
3407 // linenos will be empty if we couldn't parse the debug info.
3408 if (linenos.empty())
3409 continue;
3410 // Sort by Odr_violation_compare to make std::set_intersection work.
3411 gold_assert(!linenos.empty());
3412 std::string second_object_canonical_result = linenos.back();
3413 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3414
3415 Check_intersection intersection_result =
3416 std::set_intersection(first_object_linenos.begin(),
3417 first_object_linenos.end(),
3418 linenos.begin(),
3419 linenos.end(),
3420 Check_intersection(),
3421 Odr_violation_compare());
3422 if (!intersection_result.had_intersection())
3423 {
3424 gold_warning(_("while linking %s: symbol '%s' defined in "
3425 "multiple places (possible ODR violation):"),
3426 output_file_name, demangle(symbol_name).c_str());
3427 // This only prints one location from each definition,
3428 // which may not be the location we expect to intersect
3429 // with another definition. We could print the whole
3430 // set of locations, but that seems too verbose.
3431 fprintf(stderr, _(" %s from %s\n"),
3432 first_object_canonical_result.c_str(),
3433 first_object_name.c_str());
3434 fprintf(stderr, _(" %s from %s\n"),
3435 second_object_canonical_result.c_str(),
3436 locs->object->name().c_str());
3437 // Only print one broken pair, to avoid needing to
3438 // compare against a list of the disjoint definition
3439 // locations we've found so far. (If we kept comparing
3440 // against just the first one, we'd get a lot of
3441 // redundant complaints about the second definition
3442 // location.)
3443 break;
3444 }
3445 }
3446 }
3447 // We only call one_addr2line() in this function, so we can clear its cache.
3448 Dwarf_line_info::clear_addr2line_cache();
3449 }
3450
3451 // Warnings functions.
3452
3453 // Add a new warning.
3454
3455 void
3456 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3457 const std::string& warning)
3458 {
3459 name = symtab->canonicalize_name(name);
3460 this->warnings_[name].set(obj, warning);
3461 }
3462
3463 // Look through the warnings and mark the symbols for which we should
3464 // warn. This is called during Layout::finalize when we know the
3465 // sources for all the symbols.
3466
3467 void
3468 Warnings::note_warnings(Symbol_table* symtab)
3469 {
3470 for (Warning_table::iterator p = this->warnings_.begin();
3471 p != this->warnings_.end();
3472 ++p)
3473 {
3474 Symbol* sym = symtab->lookup(p->first, NULL);
3475 if (sym != NULL
3476 && sym->source() == Symbol::FROM_OBJECT
3477 && sym->object() == p->second.object)
3478 sym->set_has_warning();
3479 }
3480 }
3481
3482 // Issue a warning. This is called when we see a relocation against a
3483 // symbol for which has a warning.
3484
3485 template<int size, bool big_endian>
3486 void
3487 Warnings::issue_warning(const Symbol* sym,
3488 const Relocate_info<size, big_endian>* relinfo,
3489 size_t relnum, off_t reloffset) const
3490 {
3491 gold_assert(sym->has_warning());
3492
3493 // We don't want to issue a warning for a relocation against the
3494 // symbol in the same object file in which the symbol is defined.
3495 if (sym->object() == relinfo->object)
3496 return;
3497
3498 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3499 gold_assert(p != this->warnings_.end());
3500 gold_warning_at_location(relinfo, relnum, reloffset,
3501 "%s", p->second.text.c_str());
3502 }
3503
3504 // Instantiate the templates we need. We could use the configure
3505 // script to restrict this to only the ones needed for implemented
3506 // targets.
3507
3508 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3509 template
3510 void
3511 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3512 #endif
3513
3514 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3515 template
3516 void
3517 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3518 #endif
3519
3520 #ifdef HAVE_TARGET_32_LITTLE
3521 template
3522 void
3523 Symbol_table::add_from_relobj<32, false>(
3524 Sized_relobj_file<32, false>* relobj,
3525 const unsigned char* syms,
3526 size_t count,
3527 size_t symndx_offset,
3528 const char* sym_names,
3529 size_t sym_name_size,
3530 Sized_relobj_file<32, false>::Symbols* sympointers,
3531 size_t* defined);
3532 #endif
3533
3534 #ifdef HAVE_TARGET_32_BIG
3535 template
3536 void
3537 Symbol_table::add_from_relobj<32, true>(
3538 Sized_relobj_file<32, true>* relobj,
3539 const unsigned char* syms,
3540 size_t count,
3541 size_t symndx_offset,
3542 const char* sym_names,
3543 size_t sym_name_size,
3544 Sized_relobj_file<32, true>::Symbols* sympointers,
3545 size_t* defined);
3546 #endif
3547
3548 #ifdef HAVE_TARGET_64_LITTLE
3549 template
3550 void
3551 Symbol_table::add_from_relobj<64, false>(
3552 Sized_relobj_file<64, false>* relobj,
3553 const unsigned char* syms,
3554 size_t count,
3555 size_t symndx_offset,
3556 const char* sym_names,
3557 size_t sym_name_size,
3558 Sized_relobj_file<64, false>::Symbols* sympointers,
3559 size_t* defined);
3560 #endif
3561
3562 #ifdef HAVE_TARGET_64_BIG
3563 template
3564 void
3565 Symbol_table::add_from_relobj<64, true>(
3566 Sized_relobj_file<64, true>* relobj,
3567 const unsigned char* syms,
3568 size_t count,
3569 size_t symndx_offset,
3570 const char* sym_names,
3571 size_t sym_name_size,
3572 Sized_relobj_file<64, true>::Symbols* sympointers,
3573 size_t* defined);
3574 #endif
3575
3576 #ifdef HAVE_TARGET_32_LITTLE
3577 template
3578 Symbol*
3579 Symbol_table::add_from_pluginobj<32, false>(
3580 Sized_pluginobj<32, false>* obj,
3581 const char* name,
3582 const char* ver,
3583 elfcpp::Sym<32, false>* sym);
3584 #endif
3585
3586 #ifdef HAVE_TARGET_32_BIG
3587 template
3588 Symbol*
3589 Symbol_table::add_from_pluginobj<32, true>(
3590 Sized_pluginobj<32, true>* obj,
3591 const char* name,
3592 const char* ver,
3593 elfcpp::Sym<32, true>* sym);
3594 #endif
3595
3596 #ifdef HAVE_TARGET_64_LITTLE
3597 template
3598 Symbol*
3599 Symbol_table::add_from_pluginobj<64, false>(
3600 Sized_pluginobj<64, false>* obj,
3601 const char* name,
3602 const char* ver,
3603 elfcpp::Sym<64, false>* sym);
3604 #endif
3605
3606 #ifdef HAVE_TARGET_64_BIG
3607 template
3608 Symbol*
3609 Symbol_table::add_from_pluginobj<64, true>(
3610 Sized_pluginobj<64, true>* obj,
3611 const char* name,
3612 const char* ver,
3613 elfcpp::Sym<64, true>* sym);
3614 #endif
3615
3616 #ifdef HAVE_TARGET_32_LITTLE
3617 template
3618 void
3619 Symbol_table::add_from_dynobj<32, false>(
3620 Sized_dynobj<32, false>* dynobj,
3621 const unsigned char* syms,
3622 size_t count,
3623 const char* sym_names,
3624 size_t sym_name_size,
3625 const unsigned char* versym,
3626 size_t versym_size,
3627 const std::vector<const char*>* version_map,
3628 Sized_relobj_file<32, false>::Symbols* sympointers,
3629 size_t* defined);
3630 #endif
3631
3632 #ifdef HAVE_TARGET_32_BIG
3633 template
3634 void
3635 Symbol_table::add_from_dynobj<32, true>(
3636 Sized_dynobj<32, true>* dynobj,
3637 const unsigned char* syms,
3638 size_t count,
3639 const char* sym_names,
3640 size_t sym_name_size,
3641 const unsigned char* versym,
3642 size_t versym_size,
3643 const std::vector<const char*>* version_map,
3644 Sized_relobj_file<32, true>::Symbols* sympointers,
3645 size_t* defined);
3646 #endif
3647
3648 #ifdef HAVE_TARGET_64_LITTLE
3649 template
3650 void
3651 Symbol_table::add_from_dynobj<64, false>(
3652 Sized_dynobj<64, false>* dynobj,
3653 const unsigned char* syms,
3654 size_t count,
3655 const char* sym_names,
3656 size_t sym_name_size,
3657 const unsigned char* versym,
3658 size_t versym_size,
3659 const std::vector<const char*>* version_map,
3660 Sized_relobj_file<64, false>::Symbols* sympointers,
3661 size_t* defined);
3662 #endif
3663
3664 #ifdef HAVE_TARGET_64_BIG
3665 template
3666 void
3667 Symbol_table::add_from_dynobj<64, true>(
3668 Sized_dynobj<64, true>* dynobj,
3669 const unsigned char* syms,
3670 size_t count,
3671 const char* sym_names,
3672 size_t sym_name_size,
3673 const unsigned char* versym,
3674 size_t versym_size,
3675 const std::vector<const char*>* version_map,
3676 Sized_relobj_file<64, true>::Symbols* sympointers,
3677 size_t* defined);
3678 #endif
3679
3680 #ifdef HAVE_TARGET_32_LITTLE
3681 template
3682 Sized_symbol<32>*
3683 Symbol_table::add_from_incrobj(
3684 Object* obj,
3685 const char* name,
3686 const char* ver,
3687 elfcpp::Sym<32, false>* sym);
3688 #endif
3689
3690 #ifdef HAVE_TARGET_32_BIG
3691 template
3692 Sized_symbol<32>*
3693 Symbol_table::add_from_incrobj(
3694 Object* obj,
3695 const char* name,
3696 const char* ver,
3697 elfcpp::Sym<32, true>* sym);
3698 #endif
3699
3700 #ifdef HAVE_TARGET_64_LITTLE
3701 template
3702 Sized_symbol<64>*
3703 Symbol_table::add_from_incrobj(
3704 Object* obj,
3705 const char* name,
3706 const char* ver,
3707 elfcpp::Sym<64, false>* sym);
3708 #endif
3709
3710 #ifdef HAVE_TARGET_64_BIG
3711 template
3712 Sized_symbol<64>*
3713 Symbol_table::add_from_incrobj(
3714 Object* obj,
3715 const char* name,
3716 const char* ver,
3717 elfcpp::Sym<64, true>* sym);
3718 #endif
3719
3720 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3721 template
3722 void
3723 Symbol_table::define_with_copy_reloc<32>(
3724 Sized_symbol<32>* sym,
3725 Output_data* posd,
3726 elfcpp::Elf_types<32>::Elf_Addr value);
3727 #endif
3728
3729 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3730 template
3731 void
3732 Symbol_table::define_with_copy_reloc<64>(
3733 Sized_symbol<64>* sym,
3734 Output_data* posd,
3735 elfcpp::Elf_types<64>::Elf_Addr value);
3736 #endif
3737
3738 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3739 template
3740 void
3741 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3742 Output_data* od, Value_type value,
3743 Size_type symsize, elfcpp::STT type,
3744 elfcpp::STB binding,
3745 elfcpp::STV visibility,
3746 unsigned char nonvis,
3747 bool offset_is_from_end,
3748 bool is_predefined);
3749 #endif
3750
3751 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3752 template
3753 void
3754 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3755 Output_data* od, Value_type value,
3756 Size_type symsize, elfcpp::STT type,
3757 elfcpp::STB binding,
3758 elfcpp::STV visibility,
3759 unsigned char nonvis,
3760 bool offset_is_from_end,
3761 bool is_predefined);
3762 #endif
3763
3764 #ifdef HAVE_TARGET_32_LITTLE
3765 template
3766 void
3767 Warnings::issue_warning<32, false>(const Symbol* sym,
3768 const Relocate_info<32, false>* relinfo,
3769 size_t relnum, off_t reloffset) const;
3770 #endif
3771
3772 #ifdef HAVE_TARGET_32_BIG
3773 template
3774 void
3775 Warnings::issue_warning<32, true>(const Symbol* sym,
3776 const Relocate_info<32, true>* relinfo,
3777 size_t relnum, off_t reloffset) const;
3778 #endif
3779
3780 #ifdef HAVE_TARGET_64_LITTLE
3781 template
3782 void
3783 Warnings::issue_warning<64, false>(const Symbol* sym,
3784 const Relocate_info<64, false>* relinfo,
3785 size_t relnum, off_t reloffset) const;
3786 #endif
3787
3788 #ifdef HAVE_TARGET_64_BIG
3789 template
3790 void
3791 Warnings::issue_warning<64, true>(const Symbol* sym,
3792 const Relocate_info<64, true>* relinfo,
3793 size_t relnum, off_t reloffset) const;
3794 #endif
3795
3796 } // End namespace gold.
This page took 0.112934 seconds and 5 git commands to generate.