Fix problem where undef can fail to trigger archive rescan.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 this->non_zero_localentry_ = false;
85 }
86
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
89
90 static std::string
91 demangle(const char* name)
92 {
93 if (!parameters->options().do_demangle())
94 return name;
95
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99 if (demangled_name == NULL)
100 return name;
101
102 std::string retval(demangled_name);
103 free(demangled_name);
104 return retval;
105 }
106
107 std::string
108 Symbol::demangled_name() const
109 {
110 return demangle(this->name());
111 }
112
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118 const elfcpp::Sym<size, big_endian>& sym,
119 unsigned int st_shndx, bool is_ordinary)
120 {
121 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122 sym.get_st_visibility(), sym.get_st_nonvis());
123 this->u1_.object = object;
124 this->u2_.shndx = st_shndx;
125 this->is_ordinary_shndx_ = is_ordinary;
126 this->source_ = FROM_OBJECT;
127 this->in_reg_ = !object->is_dynamic();
128 this->in_dyn_ = object->is_dynamic();
129 this->in_real_elf_ = object->pluginobj() == NULL;
130 }
131
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
134
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137 Output_data* od, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, bool offset_is_from_end,
140 bool is_predefined)
141 {
142 this->init_fields(name, version, type, binding, visibility, nonvis);
143 this->u1_.output_data = od;
144 this->u2_.offset_is_from_end = offset_is_from_end;
145 this->source_ = IN_OUTPUT_DATA;
146 this->in_reg_ = true;
147 this->in_real_elf_ = true;
148 this->is_predefined_ = is_predefined;
149 }
150
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
153
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156 Output_segment* os, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis,
159 Segment_offset_base offset_base,
160 bool is_predefined)
161 {
162 this->init_fields(name, version, type, binding, visibility, nonvis);
163 this->u1_.output_segment = os;
164 this->u2_.offset_base = offset_base;
165 this->source_ = IN_OUTPUT_SEGMENT;
166 this->in_reg_ = true;
167 this->in_real_elf_ = true;
168 this->is_predefined_ = is_predefined;
169 }
170
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
173
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176 elfcpp::STT type, elfcpp::STB binding,
177 elfcpp::STV visibility, unsigned char nonvis,
178 bool is_predefined)
179 {
180 this->init_fields(name, version, type, binding, visibility, nonvis);
181 this->source_ = IS_CONSTANT;
182 this->in_reg_ = true;
183 this->in_real_elf_ = true;
184 this->is_predefined_ = is_predefined;
185 }
186
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
189
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis)
194 {
195 this->init_fields(name, version, type, binding, visibility, nonvis);
196 this->dynsym_index_ = -1U;
197 this->source_ = IS_UNDEFINED;
198 this->in_reg_ = true;
199 this->in_real_elf_ = true;
200 }
201
202 // Allocate a common symbol in the base.
203
204 void
205 Symbol::allocate_base_common(Output_data* od)
206 {
207 gold_assert(this->is_common());
208 this->source_ = IN_OUTPUT_DATA;
209 this->u1_.output_data = od;
210 this->u2_.offset_is_from_end = false;
211 }
212
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219 Object* object,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary)
222 {
223 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224 this->value_ = sym.get_st_value();
225 this->symsize_ = sym.get_st_size();
226 }
227
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
230
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234 Output_data* od, Value_type value,
235 Size_type symsize, elfcpp::STT type,
236 elfcpp::STB binding,
237 elfcpp::STV visibility,
238 unsigned char nonvis,
239 bool offset_is_from_end,
240 bool is_predefined)
241 {
242 this->init_base_output_data(name, version, od, type, binding, visibility,
243 nonvis, offset_is_from_end, is_predefined);
244 this->value_ = value;
245 this->symsize_ = symsize;
246 }
247
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
250
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254 Output_segment* os, Value_type value,
255 Size_type symsize, elfcpp::STT type,
256 elfcpp::STB binding,
257 elfcpp::STV visibility,
258 unsigned char nonvis,
259 Segment_offset_base offset_base,
260 bool is_predefined)
261 {
262 this->init_base_output_segment(name, version, os, type, binding, visibility,
263 nonvis, offset_base, is_predefined);
264 this->value_ = value;
265 this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274 Value_type value, Size_type symsize,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis,
277 bool is_predefined)
278 {
279 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 is_predefined);
281 this->value_ = value;
282 this->symsize_ = symsize;
283 }
284
285 // Initialize the fields in Sized_symbol for an undefined symbol.
286
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290 Value_type value, elfcpp::STT type,
291 elfcpp::STB binding, elfcpp::STV visibility,
292 unsigned char nonvis)
293 {
294 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295 this->value_ = value;
296 this->symsize_ = 0;
297 }
298
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
301
302 std::string
303 Symbol::versioned_name() const
304 {
305 gold_assert(this->version_ != NULL);
306 std::string ret = this->name_;
307 ret.push_back('@');
308 if (this->is_def_)
309 ret.push_back('@');
310 ret += this->version_;
311 return ret;
312 }
313
314 // Return true if SHNDX represents a common symbol.
315
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
318 {
319 return (shndx == elfcpp::SHN_COMMON
320 || shndx == parameters->target().small_common_shndx()
321 || shndx == parameters->target().large_common_shndx());
322 }
323
324 // Allocate a common symbol.
325
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 {
330 this->allocate_base_common(od);
331 this->value_ = value;
332 }
333
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
336
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
339
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 {
343 // If the symbol is only present on plugin files, the plugin decided we
344 // don't need it.
345 if (!this->in_real_elf())
346 return false;
347
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
350 return true;
351
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters->options().gc_sections()
356 && !parameters->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
359 {
360 Relobj* relobj = static_cast<Relobj*>(this->object());
361 bool is_ordinary;
362 unsigned int shndx = this->shndx(&is_ordinary);
363 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364 && !relobj->is_section_included(shndx)
365 && !symtab->is_section_folded(relobj, shndx))
366 return false;
367 }
368
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters->options().in_dynamic_list(this->name())
373 || parameters->options().is_export_dynamic_symbol(this->name())))
374 {
375 if (!this->is_forced_local())
376 return true;
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
379 return false;
380 }
381
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
384 return false;
385
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT)
390 return true;
391
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters->options().dynamic_list_cpp_new()
395 || parameters->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
397 {
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name = cplus_demangle(this->name(),
401 DMGL_ANSI | DMGL_PARAMS);
402 if (demangled_name == NULL)
403 {
404 // Not a C++ symbol, so it can't satisfy these flags
405 }
406 else if (parameters->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name, "operator new")
408 || strprefix(demangled_name, "operator delete")))
409 {
410 free(demangled_name);
411 return true;
412 }
413 else if (parameters->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name, "typeinfo name for")
415 || strprefix(demangled_name, "typeinfo for")))
416 {
417 free(demangled_name);
418 return true;
419 }
420 else
421 free(demangled_name);
422 }
423
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters->options().export_dynamic()
429 || parameters->options().shared()
430 || (parameters->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
435 return true;
436
437 return false;
438 }
439
440 // Return true if the final value of this symbol is known at link
441 // time.
442
443 bool
444 Symbol::final_value_is_known() const
445 {
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters->options().output_is_position_independent()
450 || parameters->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters->options().pie()))
453 return false;
454
455 // If the symbol is not from an object file, and is not undefined,
456 // then it is defined, and known.
457 if (this->source_ != FROM_OBJECT)
458 {
459 if (this->source_ != IS_UNDEFINED)
460 return true;
461 }
462 else
463 {
464 // If the symbol is from a dynamic object, then the final value
465 // is not known.
466 if (this->object()->is_dynamic())
467 return false;
468
469 // If the symbol is not undefined (it is defined or common),
470 // then the final value is known.
471 if (!this->is_undefined())
472 return true;
473 }
474
475 // If the symbol is undefined, then whether the final value is known
476 // depends on whether we are doing a static link. If we are doing a
477 // dynamic link, then the final value could be filled in at runtime.
478 // This could reasonably be the case for a weak undefined symbol.
479 return parameters->doing_static_link();
480 }
481
482 // Return the output section where this symbol is defined.
483
484 Output_section*
485 Symbol::output_section() const
486 {
487 switch (this->source_)
488 {
489 case FROM_OBJECT:
490 {
491 unsigned int shndx = this->u2_.shndx;
492 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493 {
494 gold_assert(!this->u1_.object->is_dynamic());
495 gold_assert(this->u1_.object->pluginobj() == NULL);
496 Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497 return relobj->output_section(shndx);
498 }
499 return NULL;
500 }
501
502 case IN_OUTPUT_DATA:
503 return this->u1_.output_data->output_section();
504
505 case IN_OUTPUT_SEGMENT:
506 case IS_CONSTANT:
507 case IS_UNDEFINED:
508 return NULL;
509
510 default:
511 gold_unreachable();
512 }
513 }
514
515 // Set the symbol's output section. This is used for symbols defined
516 // in scripts. This should only be called after the symbol table has
517 // been finalized.
518
519 void
520 Symbol::set_output_section(Output_section* os)
521 {
522 switch (this->source_)
523 {
524 case FROM_OBJECT:
525 case IN_OUTPUT_DATA:
526 gold_assert(this->output_section() == os);
527 break;
528 case IS_CONSTANT:
529 this->source_ = IN_OUTPUT_DATA;
530 this->u1_.output_data = os;
531 this->u2_.offset_is_from_end = false;
532 break;
533 case IN_OUTPUT_SEGMENT:
534 case IS_UNDEFINED:
535 default:
536 gold_unreachable();
537 }
538 }
539
540 // Set the symbol's output segment. This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
543
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 {
547 gold_assert(this->is_predefined_);
548 this->source_ = IN_OUTPUT_SEGMENT;
549 this->u1_.output_segment = os;
550 this->u2_.offset_base = base;
551 }
552
553 // Set the symbol to undefined. This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
556
557 void
558 Symbol::set_undefined()
559 {
560 this->source_ = IS_UNDEFINED;
561 this->is_predefined_ = false;
562 }
563
564 // Class Symbol_table.
565
566 Symbol_table::Symbol_table(unsigned int count,
567 const Version_script_info& version_script)
568 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
569 forwarders_(), commons_(), tls_commons_(), small_commons_(),
570 large_commons_(), forced_locals_(), warnings_(),
571 version_script_(version_script), gc_(NULL), icf_(NULL),
572 target_symbols_()
573 {
574 namepool_.reserve(count);
575 }
576
577 Symbol_table::~Symbol_table()
578 {
579 }
580
581 // The symbol table key equality function. This is called with
582 // Stringpool keys.
583
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586 const Symbol_table_key& k2) const
587 {
588 return k1.first == k2.first && k1.second == k2.second;
589 }
590
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 {
594 return (parameters->options().icf_enabled()
595 && this->icf_->is_section_folded(obj, shndx));
596 }
597
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
600
601 void
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 {
604 for (options::String_set::const_iterator p =
605 parameters->options().undefined_begin();
606 p != parameters->options().undefined_end();
607 ++p)
608 {
609 const char* name = p->c_str();
610 Symbol* sym = this->lookup(name);
611 gold_assert(sym != NULL);
612 if (sym->source() == Symbol::FROM_OBJECT
613 && !sym->object()->is_dynamic())
614 {
615 this->gc_mark_symbol(sym);
616 }
617 }
618
619 for (options::String_set::const_iterator p =
620 parameters->options().export_dynamic_symbol_begin();
621 p != parameters->options().export_dynamic_symbol_end();
622 ++p)
623 {
624 const char* name = p->c_str();
625 Symbol* sym = this->lookup(name);
626 // It's not an error if a symbol named by --export-dynamic-symbol
627 // is undefined.
628 if (sym != NULL
629 && sym->source() == Symbol::FROM_OBJECT
630 && !sym->object()->is_dynamic())
631 {
632 this->gc_mark_symbol(sym);
633 }
634 }
635
636 for (Script_options::referenced_const_iterator p =
637 layout->script_options()->referenced_begin();
638 p != layout->script_options()->referenced_end();
639 ++p)
640 {
641 Symbol* sym = this->lookup(p->c_str());
642 gold_assert(sym != NULL);
643 if (sym->source() == Symbol::FROM_OBJECT
644 && !sym->object()->is_dynamic())
645 {
646 this->gc_mark_symbol(sym);
647 }
648 }
649 }
650
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
653 {
654 // Add the object and section to the work list.
655 bool is_ordinary;
656 unsigned int shndx = sym->shndx(&is_ordinary);
657 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658 {
659 gold_assert(this->gc_!= NULL);
660 Relobj* relobj = static_cast<Relobj*>(sym->object());
661 this->gc_->worklist().push_back(Section_id(relobj, shndx));
662 }
663 parameters->target().gc_mark_symbol(this, sym);
664 }
665
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 {
671 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672 && !sym->object()->is_dynamic())
673 this->gc_mark_symbol(sym);
674 }
675
676 // Make TO a symbol which forwards to FROM.
677
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 {
681 gold_assert(from != to);
682 gold_assert(!from->is_forwarder() && !to->is_forwarder());
683 this->forwarders_[from] = to;
684 from->set_forwarder();
685 }
686
687 // Resolve the forwards from FROM, returning the real symbol.
688
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
691 {
692 gold_assert(from->is_forwarder());
693 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694 this->forwarders_.find(from);
695 gold_assert(p != this->forwarders_.end());
696 return p->second;
697 }
698
699 // Look up a symbol by name.
700
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
703 {
704 Stringpool::Key name_key;
705 name = this->namepool_.find(name, &name_key);
706 if (name == NULL)
707 return NULL;
708
709 Stringpool::Key version_key = 0;
710 if (version != NULL)
711 {
712 version = this->namepool_.find(version, &version_key);
713 if (version == NULL)
714 return NULL;
715 }
716
717 Symbol_table_key key(name_key, version_key);
718 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719 if (p == this->table_.end())
720 return NULL;
721 return p->second;
722 }
723
724 // Resolve a Symbol with another Symbol. This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version. Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
729
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 {
734 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735 elfcpp::Sym_write<size, big_endian> esym(buf);
736 // We don't bother to set the st_name or the st_shndx field.
737 esym.put_st_value(from->value());
738 esym.put_st_size(from->symsize());
739 esym.put_st_info(from->binding(), from->type());
740 esym.put_st_other(from->visibility(), from->nonvis());
741 bool is_ordinary;
742 unsigned int shndx = from->shndx(&is_ordinary);
743 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744 from->version(), true);
745 if (from->in_reg())
746 to->set_in_reg();
747 if (from->in_dyn())
748 to->set_in_dyn();
749 if (parameters->options().gc_sections())
750 this->gc_mark_dyn_syms(to);
751 }
752
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
755
756 void
757 Symbol_table::force_local(Symbol* sym)
758 {
759 if (!sym->is_defined() && !sym->is_common())
760 return;
761 if (sym->is_forced_local())
762 {
763 // We already got this one.
764 return;
765 }
766 sym->set_is_forced_local();
767 this->forced_locals_.push_back(sym);
768 }
769
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
773
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 {
777 // For some targets, we need to ignore a specific character when
778 // wrapping, and add it back later.
779 char prefix = '\0';
780 if (name[0] == parameters->target().wrap_char())
781 {
782 prefix = name[0];
783 ++name;
784 }
785
786 if (parameters->options().is_wrap(name))
787 {
788 // Turn NAME into __wrap_NAME.
789 std::string s;
790 if (prefix != '\0')
791 s += prefix;
792 s += "__wrap_";
793 s += name;
794
795 // This will give us both the old and new name in NAMEPOOL_, but
796 // that is OK. Only the versions we need will wind up in the
797 // real string table in the output file.
798 return this->namepool_.add(s.c_str(), true, name_key);
799 }
800
801 const char* const real_prefix = "__real_";
802 const size_t real_prefix_length = strlen(real_prefix);
803 if (strncmp(name, real_prefix, real_prefix_length) == 0
804 && parameters->options().is_wrap(name + real_prefix_length))
805 {
806 // Turn __real_NAME into NAME.
807 std::string s;
808 if (prefix != '\0')
809 s += prefix;
810 s += name + real_prefix_length;
811 return this->namepool_.add(s.c_str(), true, name_key);
812 }
813
814 return name;
815 }
816
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version. SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
822
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826 bool default_is_new,
827 Symbol_table_type::iterator pdef)
828 {
829 if (default_is_new)
830 {
831 // This is the first time we have seen NAME/NULL. Make
832 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833 // version.
834 pdef->second = sym;
835 sym->set_is_default();
836 }
837 else if (pdef->second == sym)
838 {
839 // NAME/NULL already points to NAME/VERSION. Don't mark the
840 // symbol as the default if it is not already the default.
841 }
842 else
843 {
844 // This is the unfortunate case where we already have entries
845 // for both NAME/VERSION and NAME/NULL. We now see a symbol
846 // NAME/VERSION where VERSION is the default version. We have
847 // already resolved this new symbol with the existing
848 // NAME/VERSION symbol.
849
850 // It's possible that NAME/NULL and NAME/VERSION are both
851 // defined in regular objects. This can only happen if one
852 // object file defines foo and another defines foo@@ver. This
853 // is somewhat obscure, but we call it a multiple definition
854 // error.
855
856 // It's possible that NAME/NULL actually has a version, in which
857 // case it won't be the same as VERSION. This happens with
858 // ver_test_7.so in the testsuite for the symbol t2_2. We see
859 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
860 // then see an unadorned t2_2 in an object file and give it
861 // version VER1 from the version script. This looks like a
862 // default definition for VER1, so it looks like we should merge
863 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
864 // not obvious that this is an error, either. So we just punt.
865
866 // If one of the symbols has non-default visibility, and the
867 // other is defined in a shared object, then they are different
868 // symbols.
869
870 // If the two symbols are from different shared objects,
871 // they are different symbols.
872
873 // Otherwise, we just resolve the symbols as though they were
874 // the same.
875
876 if (pdef->second->version() != NULL)
877 gold_assert(pdef->second->version() != sym->version());
878 else if (sym->visibility() != elfcpp::STV_DEFAULT
879 && pdef->second->is_from_dynobj())
880 ;
881 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882 && sym->is_from_dynobj())
883 ;
884 else if (pdef->second->is_from_dynobj()
885 && sym->is_from_dynobj()
886 && pdef->second->is_defined()
887 && pdef->second->object() != sym->object())
888 ;
889 else
890 {
891 const Sized_symbol<size>* symdef;
892 symdef = this->get_sized_symbol<size>(pdef->second);
893 Symbol_table::resolve<size, big_endian>(sym, symdef);
894 this->make_forwarder(pdef->second, sym);
895 pdef->second = sym;
896 sym->set_is_default();
897 }
898 }
899 }
900
901 // Add one symbol from OBJECT to the symbol table. NAME is symbol
902 // name and VERSION is the version; both are canonicalized. DEF is
903 // whether this is the default version. ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
906
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol. That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol. This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION. If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
914
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure. That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table. We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files. So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
925 //
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code. ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
930
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934 const char* name,
935 Stringpool::Key name_key,
936 const char* version,
937 Stringpool::Key version_key,
938 bool is_default_version,
939 const elfcpp::Sym<size, big_endian>& sym,
940 unsigned int st_shndx,
941 bool is_ordinary,
942 unsigned int orig_st_shndx)
943 {
944 // Print a message if this symbol is being traced.
945 if (parameters->options().is_trace_symbol(name))
946 {
947 if (orig_st_shndx == elfcpp::SHN_UNDEF)
948 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949 else
950 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
951 }
952
953 // For an undefined symbol, we may need to adjust the name using
954 // --wrap.
955 if (orig_st_shndx == elfcpp::SHN_UNDEF
956 && parameters->options().any_wrap())
957 {
958 const char* wrap_name = this->wrap_symbol(name, &name_key);
959 if (wrap_name != name)
960 {
961 // If we see a reference to malloc with version GLIBC_2.0,
962 // and we turn it into a reference to __wrap_malloc, then we
963 // discard the version number. Otherwise the user would be
964 // required to specify the correct version for
965 // __wrap_malloc.
966 version = NULL;
967 version_key = 0;
968 name = wrap_name;
969 }
970 }
971
972 Symbol* const snull = NULL;
973 std::pair<typename Symbol_table_type::iterator, bool> ins =
974 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975 snull));
976
977 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978 std::make_pair(this->table_.end(), false);
979 if (is_default_version)
980 {
981 const Stringpool::Key vnull_key = 0;
982 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983 vnull_key),
984 snull));
985 }
986
987 // ins.first: an iterator, which is a pointer to a pair.
988 // ins.first->first: the key (a pair of name and version).
989 // ins.first->second: the value (Symbol*).
990 // ins.second: true if new entry was inserted, false if not.
991
992 Sized_symbol<size>* ret;
993 bool was_undefined_in_reg;
994 bool was_common;
995 if (!ins.second)
996 {
997 // We already have an entry for NAME/VERSION.
998 ret = this->get_sized_symbol<size>(ins.first->second);
999 gold_assert(ret != NULL);
1000
1001 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1002 // Commons from plugins are just placeholders.
1003 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004
1005 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006 version, is_default_version);
1007 if (parameters->options().gc_sections())
1008 this->gc_mark_dyn_syms(ret);
1009
1010 if (is_default_version)
1011 this->define_default_version<size, big_endian>(ret, insdefault.second,
1012 insdefault.first);
1013 else
1014 {
1015 bool dummy;
1016 if (version != NULL
1017 && ret->source() == Symbol::FROM_OBJECT
1018 && ret->object() == object
1019 && is_ordinary
1020 && ret->shndx(&dummy) == st_shndx
1021 && ret->is_default())
1022 {
1023 // We have seen NAME/VERSION already, and marked it as the
1024 // default version, but now we see a definition for
1025 // NAME/VERSION that is not the default version. This can
1026 // happen when the assembler generates two symbols for
1027 // a symbol as a result of a ".symver foo,foo@VER"
1028 // directive. We see the first unversioned symbol and
1029 // we may mark it as the default version (from a
1030 // version script); then we see the second versioned
1031 // symbol and we need to override the first.
1032 // In any other case, the two symbols should have generated
1033 // a multiple definition error.
1034 // (See PR gold/18703.)
1035 ret->set_is_not_default();
1036 const Stringpool::Key vnull_key = 0;
1037 this->table_.erase(std::make_pair(name_key, vnull_key));
1038 }
1039 }
1040 }
1041 else
1042 {
1043 // This is the first time we have seen NAME/VERSION.
1044 gold_assert(ins.first->second == NULL);
1045
1046 if (is_default_version && !insdefault.second)
1047 {
1048 // We already have an entry for NAME/NULL. If we override
1049 // it, then change it to NAME/VERSION.
1050 ret = this->get_sized_symbol<size>(insdefault.first->second);
1051
1052 was_undefined_in_reg = ret->is_undefined() && ret->in_reg();
1053 // Commons from plugins are just placeholders.
1054 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1055
1056 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1057 version, is_default_version);
1058 if (parameters->options().gc_sections())
1059 this->gc_mark_dyn_syms(ret);
1060 ins.first->second = ret;
1061 }
1062 else
1063 {
1064 was_undefined_in_reg = false;
1065 was_common = false;
1066
1067 Sized_target<size, big_endian>* target =
1068 parameters->sized_target<size, big_endian>();
1069 if (!target->has_make_symbol())
1070 ret = new Sized_symbol<size>();
1071 else
1072 {
1073 ret = target->make_symbol(name, sym.get_st_type(), object,
1074 st_shndx, sym.get_st_value());
1075 if (ret == NULL)
1076 {
1077 // This means that we don't want a symbol table
1078 // entry after all.
1079 if (!is_default_version)
1080 this->table_.erase(ins.first);
1081 else
1082 {
1083 this->table_.erase(insdefault.first);
1084 // Inserting INSDEFAULT invalidated INS.
1085 this->table_.erase(std::make_pair(name_key,
1086 version_key));
1087 }
1088 return NULL;
1089 }
1090 }
1091
1092 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1093
1094 ins.first->second = ret;
1095 if (is_default_version)
1096 {
1097 // This is the first time we have seen NAME/NULL. Point
1098 // it at the new entry for NAME/VERSION.
1099 gold_assert(insdefault.second);
1100 insdefault.first->second = ret;
1101 }
1102 }
1103
1104 if (is_default_version)
1105 ret->set_is_default();
1106 }
1107
1108 // Record every time we see a new undefined symbol, to speed up archive
1109 // groups. We only care about symbols undefined in regular objects here
1110 // because undefined symbols only in dynamic objects should't trigger rescans.
1111 if (!was_undefined_in_reg && ret->is_undefined() && ret->in_reg())
1112 {
1113 ++this->saw_undefined_;
1114 if (parameters->options().has_plugins())
1115 parameters->options().plugins()->new_undefined_symbol(ret);
1116 }
1117
1118 // Keep track of common symbols, to speed up common symbol
1119 // allocation. Don't record commons from plugin objects;
1120 // we need to wait until we see the real symbol in the
1121 // replacement file.
1122 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1123 {
1124 if (ret->type() == elfcpp::STT_TLS)
1125 this->tls_commons_.push_back(ret);
1126 else if (!is_ordinary
1127 && st_shndx == parameters->target().small_common_shndx())
1128 this->small_commons_.push_back(ret);
1129 else if (!is_ordinary
1130 && st_shndx == parameters->target().large_common_shndx())
1131 this->large_commons_.push_back(ret);
1132 else
1133 this->commons_.push_back(ret);
1134 }
1135
1136 // If we're not doing a relocatable link, then any symbol with
1137 // hidden or internal visibility is local.
1138 if ((ret->visibility() == elfcpp::STV_HIDDEN
1139 || ret->visibility() == elfcpp::STV_INTERNAL)
1140 && (ret->binding() == elfcpp::STB_GLOBAL
1141 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1142 || ret->binding() == elfcpp::STB_WEAK)
1143 && !parameters->options().relocatable())
1144 this->force_local(ret);
1145
1146 return ret;
1147 }
1148
1149 // Add all the symbols in a relocatable object to the hash table.
1150
1151 template<int size, bool big_endian>
1152 void
1153 Symbol_table::add_from_relobj(
1154 Sized_relobj_file<size, big_endian>* relobj,
1155 const unsigned char* syms,
1156 size_t count,
1157 size_t symndx_offset,
1158 const char* sym_names,
1159 size_t sym_name_size,
1160 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1161 size_t* defined)
1162 {
1163 *defined = 0;
1164
1165 gold_assert(size == parameters->target().get_size());
1166
1167 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1168
1169 const bool just_symbols = relobj->just_symbols();
1170
1171 const unsigned char* p = syms;
1172 for (size_t i = 0; i < count; ++i, p += sym_size)
1173 {
1174 (*sympointers)[i] = NULL;
1175
1176 elfcpp::Sym<size, big_endian> sym(p);
1177
1178 unsigned int st_name = sym.get_st_name();
1179 if (st_name >= sym_name_size)
1180 {
1181 relobj->error(_("bad global symbol name offset %u at %zu"),
1182 st_name, i);
1183 continue;
1184 }
1185
1186 const char* name = sym_names + st_name;
1187
1188 if (!parameters->options().relocatable()
1189 && name[0] == '_'
1190 && name[1] == '_'
1191 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1192 gold_info(_("%s: plugin needed to handle lto object"),
1193 relobj->name().c_str());
1194
1195 bool is_ordinary;
1196 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1197 sym.get_st_shndx(),
1198 &is_ordinary);
1199 unsigned int orig_st_shndx = st_shndx;
1200 if (!is_ordinary)
1201 orig_st_shndx = elfcpp::SHN_UNDEF;
1202
1203 if (st_shndx != elfcpp::SHN_UNDEF)
1204 ++*defined;
1205
1206 // A symbol defined in a section which we are not including must
1207 // be treated as an undefined symbol.
1208 bool is_defined_in_discarded_section = false;
1209 if (st_shndx != elfcpp::SHN_UNDEF
1210 && is_ordinary
1211 && !relobj->is_section_included(st_shndx)
1212 && !this->is_section_folded(relobj, st_shndx))
1213 {
1214 st_shndx = elfcpp::SHN_UNDEF;
1215 is_defined_in_discarded_section = true;
1216 }
1217
1218 // In an object file, an '@' in the name separates the symbol
1219 // name from the version name. If there are two '@' characters,
1220 // this is the default version.
1221 const char* ver = strchr(name, '@');
1222 Stringpool::Key ver_key = 0;
1223 int namelen = 0;
1224 // IS_DEFAULT_VERSION: is the version default?
1225 // IS_FORCED_LOCAL: is the symbol forced local?
1226 bool is_default_version = false;
1227 bool is_forced_local = false;
1228
1229 // FIXME: For incremental links, we don't store version information,
1230 // so we need to ignore version symbols for now.
1231 if (parameters->incremental_update() && ver != NULL)
1232 {
1233 namelen = ver - name;
1234 ver = NULL;
1235 }
1236
1237 if (ver != NULL)
1238 {
1239 // The symbol name is of the form foo@VERSION or foo@@VERSION
1240 namelen = ver - name;
1241 ++ver;
1242 if (*ver == '@')
1243 {
1244 is_default_version = true;
1245 ++ver;
1246 }
1247 ver = this->namepool_.add(ver, true, &ver_key);
1248 }
1249 // We don't want to assign a version to an undefined symbol,
1250 // even if it is listed in the version script. FIXME: What
1251 // about a common symbol?
1252 else
1253 {
1254 namelen = strlen(name);
1255 if (!this->version_script_.empty()
1256 && st_shndx != elfcpp::SHN_UNDEF)
1257 {
1258 // The symbol name did not have a version, but the
1259 // version script may assign a version anyway.
1260 std::string version;
1261 bool is_global;
1262 if (this->version_script_.get_symbol_version(name, &version,
1263 &is_global))
1264 {
1265 if (!is_global)
1266 is_forced_local = true;
1267 else if (!version.empty())
1268 {
1269 ver = this->namepool_.add_with_length(version.c_str(),
1270 version.length(),
1271 true,
1272 &ver_key);
1273 is_default_version = true;
1274 }
1275 }
1276 }
1277 }
1278
1279 elfcpp::Sym<size, big_endian>* psym = &sym;
1280 unsigned char symbuf[sym_size];
1281 elfcpp::Sym<size, big_endian> sym2(symbuf);
1282 if (just_symbols)
1283 {
1284 memcpy(symbuf, p, sym_size);
1285 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1286 if (orig_st_shndx != elfcpp::SHN_UNDEF
1287 && is_ordinary
1288 && relobj->e_type() == elfcpp::ET_REL)
1289 {
1290 // Symbol values in relocatable object files are section
1291 // relative. This is normally what we want, but since here
1292 // we are converting the symbol to absolute we need to add
1293 // the section address. The section address in an object
1294 // file is normally zero, but people can use a linker
1295 // script to change it.
1296 sw.put_st_value(sym.get_st_value()
1297 + relobj->section_address(orig_st_shndx));
1298 }
1299 st_shndx = elfcpp::SHN_ABS;
1300 is_ordinary = false;
1301 psym = &sym2;
1302 }
1303
1304 // Fix up visibility if object has no-export set.
1305 if (relobj->no_export()
1306 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1307 {
1308 // We may have copied symbol already above.
1309 if (psym != &sym2)
1310 {
1311 memcpy(symbuf, p, sym_size);
1312 psym = &sym2;
1313 }
1314
1315 elfcpp::STV visibility = sym2.get_st_visibility();
1316 if (visibility == elfcpp::STV_DEFAULT
1317 || visibility == elfcpp::STV_PROTECTED)
1318 {
1319 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1320 unsigned char nonvis = sym2.get_st_nonvis();
1321 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1322 }
1323 }
1324
1325 Stringpool::Key name_key;
1326 name = this->namepool_.add_with_length(name, namelen, true,
1327 &name_key);
1328
1329 Sized_symbol<size>* res;
1330 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1331 is_default_version, *psym, st_shndx,
1332 is_ordinary, orig_st_shndx);
1333
1334 if (res == NULL)
1335 continue;
1336
1337 if (is_forced_local)
1338 this->force_local(res);
1339
1340 // Do not treat this symbol as garbage if this symbol will be
1341 // exported to the dynamic symbol table. This is true when
1342 // building a shared library or using --export-dynamic and
1343 // the symbol is externally visible.
1344 if (parameters->options().gc_sections()
1345 && res->is_externally_visible()
1346 && !res->is_from_dynobj()
1347 && (parameters->options().shared()
1348 || parameters->options().export_dynamic()
1349 || parameters->options().in_dynamic_list(res->name())))
1350 this->gc_mark_symbol(res);
1351
1352 if (is_defined_in_discarded_section)
1353 res->set_is_defined_in_discarded_section();
1354
1355 (*sympointers)[i] = res;
1356 }
1357 }
1358
1359 // Add a symbol from a plugin-claimed file.
1360
1361 template<int size, bool big_endian>
1362 Symbol*
1363 Symbol_table::add_from_pluginobj(
1364 Sized_pluginobj<size, big_endian>* obj,
1365 const char* name,
1366 const char* ver,
1367 elfcpp::Sym<size, big_endian>* sym)
1368 {
1369 unsigned int st_shndx = sym->get_st_shndx();
1370 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1371
1372 Stringpool::Key ver_key = 0;
1373 bool is_default_version = false;
1374 bool is_forced_local = false;
1375
1376 if (ver != NULL)
1377 {
1378 ver = this->namepool_.add(ver, true, &ver_key);
1379 }
1380 // We don't want to assign a version to an undefined symbol,
1381 // even if it is listed in the version script. FIXME: What
1382 // about a common symbol?
1383 else
1384 {
1385 if (!this->version_script_.empty()
1386 && st_shndx != elfcpp::SHN_UNDEF)
1387 {
1388 // The symbol name did not have a version, but the
1389 // version script may assign a version anyway.
1390 std::string version;
1391 bool is_global;
1392 if (this->version_script_.get_symbol_version(name, &version,
1393 &is_global))
1394 {
1395 if (!is_global)
1396 is_forced_local = true;
1397 else if (!version.empty())
1398 {
1399 ver = this->namepool_.add_with_length(version.c_str(),
1400 version.length(),
1401 true,
1402 &ver_key);
1403 is_default_version = true;
1404 }
1405 }
1406 }
1407 }
1408
1409 Stringpool::Key name_key;
1410 name = this->namepool_.add(name, true, &name_key);
1411
1412 Sized_symbol<size>* res;
1413 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1414 is_default_version, *sym, st_shndx,
1415 is_ordinary, st_shndx);
1416
1417 if (res == NULL)
1418 return NULL;
1419
1420 if (is_forced_local)
1421 this->force_local(res);
1422
1423 return res;
1424 }
1425
1426 // Add all the symbols in a dynamic object to the hash table.
1427
1428 template<int size, bool big_endian>
1429 void
1430 Symbol_table::add_from_dynobj(
1431 Sized_dynobj<size, big_endian>* dynobj,
1432 const unsigned char* syms,
1433 size_t count,
1434 const char* sym_names,
1435 size_t sym_name_size,
1436 const unsigned char* versym,
1437 size_t versym_size,
1438 const std::vector<const char*>* version_map,
1439 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1440 size_t* defined)
1441 {
1442 *defined = 0;
1443
1444 gold_assert(size == parameters->target().get_size());
1445
1446 if (dynobj->just_symbols())
1447 {
1448 gold_error(_("--just-symbols does not make sense with a shared object"));
1449 return;
1450 }
1451
1452 // FIXME: For incremental links, we don't store version information,
1453 // so we need to ignore version symbols for now.
1454 if (parameters->incremental_update())
1455 versym = NULL;
1456
1457 if (versym != NULL && versym_size / 2 < count)
1458 {
1459 dynobj->error(_("too few symbol versions"));
1460 return;
1461 }
1462
1463 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1464
1465 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1466 // weak aliases. This is necessary because if the dynamic object
1467 // provides the same variable under two names, one of which is a
1468 // weak definition, and the regular object refers to the weak
1469 // definition, we have to put both the weak definition and the
1470 // strong definition into the dynamic symbol table. Given a weak
1471 // definition, the only way that we can find the corresponding
1472 // strong definition, if any, is to search the symbol table.
1473 std::vector<Sized_symbol<size>*> object_symbols;
1474
1475 const unsigned char* p = syms;
1476 const unsigned char* vs = versym;
1477 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1478 {
1479 elfcpp::Sym<size, big_endian> sym(p);
1480
1481 if (sympointers != NULL)
1482 (*sympointers)[i] = NULL;
1483
1484 // Ignore symbols with local binding or that have
1485 // internal or hidden visibility.
1486 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1487 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1488 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1489 continue;
1490
1491 // A protected symbol in a shared library must be treated as a
1492 // normal symbol when viewed from outside the shared library.
1493 // Implement this by overriding the visibility here.
1494 // Likewise, an IFUNC symbol in a shared library must be treated
1495 // as a normal FUNC symbol.
1496 elfcpp::Sym<size, big_endian>* psym = &sym;
1497 unsigned char symbuf[sym_size];
1498 elfcpp::Sym<size, big_endian> sym2(symbuf);
1499 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1500 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1501 {
1502 memcpy(symbuf, p, sym_size);
1503 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1504 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1505 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1506 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1507 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1508 psym = &sym2;
1509 }
1510
1511 unsigned int st_name = psym->get_st_name();
1512 if (st_name >= sym_name_size)
1513 {
1514 dynobj->error(_("bad symbol name offset %u at %zu"),
1515 st_name, i);
1516 continue;
1517 }
1518
1519 const char* name = sym_names + st_name;
1520
1521 bool is_ordinary;
1522 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1523 &is_ordinary);
1524
1525 if (st_shndx != elfcpp::SHN_UNDEF)
1526 ++*defined;
1527
1528 Sized_symbol<size>* res;
1529
1530 if (versym == NULL)
1531 {
1532 Stringpool::Key name_key;
1533 name = this->namepool_.add(name, true, &name_key);
1534 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1535 false, *psym, st_shndx, is_ordinary,
1536 st_shndx);
1537 }
1538 else
1539 {
1540 // Read the version information.
1541
1542 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1543
1544 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1545 v &= elfcpp::VERSYM_VERSION;
1546
1547 // The Sun documentation says that V can be VER_NDX_LOCAL,
1548 // or VER_NDX_GLOBAL, or a version index. The meaning of
1549 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1550 // The old GNU linker will happily generate VER_NDX_LOCAL
1551 // for an undefined symbol. I don't know what the Sun
1552 // linker will generate.
1553
1554 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1555 && st_shndx != elfcpp::SHN_UNDEF)
1556 {
1557 // This symbol should not be visible outside the object.
1558 continue;
1559 }
1560
1561 // At this point we are definitely going to add this symbol.
1562 Stringpool::Key name_key;
1563 name = this->namepool_.add(name, true, &name_key);
1564
1565 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1566 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1567 {
1568 // This symbol does not have a version.
1569 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1570 false, *psym, st_shndx, is_ordinary,
1571 st_shndx);
1572 }
1573 else
1574 {
1575 if (v >= version_map->size())
1576 {
1577 dynobj->error(_("versym for symbol %zu out of range: %u"),
1578 i, v);
1579 continue;
1580 }
1581
1582 const char* version = (*version_map)[v];
1583 if (version == NULL)
1584 {
1585 dynobj->error(_("versym for symbol %zu has no name: %u"),
1586 i, v);
1587 continue;
1588 }
1589
1590 Stringpool::Key version_key;
1591 version = this->namepool_.add(version, true, &version_key);
1592
1593 // If this is an absolute symbol, and the version name
1594 // and symbol name are the same, then this is the
1595 // version definition symbol. These symbols exist to
1596 // support using -u to pull in particular versions. We
1597 // do not want to record a version for them.
1598 if (st_shndx == elfcpp::SHN_ABS
1599 && !is_ordinary
1600 && name_key == version_key)
1601 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1602 false, *psym, st_shndx, is_ordinary,
1603 st_shndx);
1604 else
1605 {
1606 const bool is_default_version =
1607 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1608 res = this->add_from_object(dynobj, name, name_key, version,
1609 version_key, is_default_version,
1610 *psym, st_shndx,
1611 is_ordinary, st_shndx);
1612 }
1613 }
1614 }
1615
1616 if (res == NULL)
1617 continue;
1618
1619 // Note that it is possible that RES was overridden by an
1620 // earlier object, in which case it can't be aliased here.
1621 if (st_shndx != elfcpp::SHN_UNDEF
1622 && is_ordinary
1623 && psym->get_st_type() == elfcpp::STT_OBJECT
1624 && res->source() == Symbol::FROM_OBJECT
1625 && res->object() == dynobj)
1626 object_symbols.push_back(res);
1627
1628 // If the symbol has protected visibility in the dynobj,
1629 // mark it as such if it was not overridden.
1630 if (res->source() == Symbol::FROM_OBJECT
1631 && res->object() == dynobj
1632 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1633 res->set_is_protected();
1634
1635 if (sympointers != NULL)
1636 (*sympointers)[i] = res;
1637 }
1638
1639 this->record_weak_aliases(&object_symbols);
1640 }
1641
1642 // Add a symbol from a incremental object file.
1643
1644 template<int size, bool big_endian>
1645 Sized_symbol<size>*
1646 Symbol_table::add_from_incrobj(
1647 Object* obj,
1648 const char* name,
1649 const char* ver,
1650 elfcpp::Sym<size, big_endian>* sym)
1651 {
1652 unsigned int st_shndx = sym->get_st_shndx();
1653 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1654
1655 Stringpool::Key ver_key = 0;
1656 bool is_default_version = false;
1657
1658 Stringpool::Key name_key;
1659 name = this->namepool_.add(name, true, &name_key);
1660
1661 Sized_symbol<size>* res;
1662 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1663 is_default_version, *sym, st_shndx,
1664 is_ordinary, st_shndx);
1665
1666 return res;
1667 }
1668
1669 // This is used to sort weak aliases. We sort them first by section
1670 // index, then by offset, then by weak ahead of strong.
1671
1672 template<int size>
1673 class Weak_alias_sorter
1674 {
1675 public:
1676 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1677 };
1678
1679 template<int size>
1680 bool
1681 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1682 const Sized_symbol<size>* s2) const
1683 {
1684 bool is_ordinary;
1685 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1686 gold_assert(is_ordinary);
1687 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1688 gold_assert(is_ordinary);
1689 if (s1_shndx != s2_shndx)
1690 return s1_shndx < s2_shndx;
1691
1692 if (s1->value() != s2->value())
1693 return s1->value() < s2->value();
1694 if (s1->binding() != s2->binding())
1695 {
1696 if (s1->binding() == elfcpp::STB_WEAK)
1697 return true;
1698 if (s2->binding() == elfcpp::STB_WEAK)
1699 return false;
1700 }
1701 return std::string(s1->name()) < std::string(s2->name());
1702 }
1703
1704 // SYMBOLS is a list of object symbols from a dynamic object. Look
1705 // for any weak aliases, and record them so that if we add the weak
1706 // alias to the dynamic symbol table, we also add the corresponding
1707 // strong symbol.
1708
1709 template<int size>
1710 void
1711 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1712 {
1713 // Sort the vector by section index, then by offset, then by weak
1714 // ahead of strong.
1715 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1716
1717 // Walk through the vector. For each weak definition, record
1718 // aliases.
1719 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1720 symbols->begin();
1721 p != symbols->end();
1722 ++p)
1723 {
1724 if ((*p)->binding() != elfcpp::STB_WEAK)
1725 continue;
1726
1727 // Build a circular list of weak aliases. Each symbol points to
1728 // the next one in the circular list.
1729
1730 Sized_symbol<size>* from_sym = *p;
1731 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1732 for (q = p + 1; q != symbols->end(); ++q)
1733 {
1734 bool dummy;
1735 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1736 || (*q)->value() != from_sym->value())
1737 break;
1738
1739 this->weak_aliases_[from_sym] = *q;
1740 from_sym->set_has_alias();
1741 from_sym = *q;
1742 }
1743
1744 if (from_sym != *p)
1745 {
1746 this->weak_aliases_[from_sym] = *p;
1747 from_sym->set_has_alias();
1748 }
1749
1750 p = q - 1;
1751 }
1752 }
1753
1754 // Create and return a specially defined symbol. If ONLY_IF_REF is
1755 // true, then only create the symbol if there is a reference to it.
1756 // If this does not return NULL, it sets *POLDSYM to the existing
1757 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1758 // resolve the newly created symbol to the old one. This
1759 // canonicalizes *PNAME and *PVERSION.
1760
1761 template<int size, bool big_endian>
1762 Sized_symbol<size>*
1763 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1764 bool only_if_ref,
1765 elfcpp::STV visibility,
1766 Sized_symbol<size>** poldsym,
1767 bool* resolve_oldsym, bool is_forced_local)
1768 {
1769 *resolve_oldsym = false;
1770 *poldsym = NULL;
1771
1772 // If the caller didn't give us a version, see if we get one from
1773 // the version script.
1774 std::string v;
1775 bool is_default_version = false;
1776 if (!is_forced_local && *pversion == NULL)
1777 {
1778 bool is_global;
1779 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1780 {
1781 if (is_global && !v.empty())
1782 {
1783 *pversion = v.c_str();
1784 // If we get the version from a version script, then we
1785 // are also the default version.
1786 is_default_version = true;
1787 }
1788 }
1789 }
1790
1791 Symbol* oldsym;
1792 Sized_symbol<size>* sym;
1793
1794 bool add_to_table = false;
1795 typename Symbol_table_type::iterator add_loc = this->table_.end();
1796 bool add_def_to_table = false;
1797 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1798
1799 if (only_if_ref)
1800 {
1801 oldsym = this->lookup(*pname, *pversion);
1802 if (oldsym == NULL && is_default_version)
1803 oldsym = this->lookup(*pname, NULL);
1804 if (oldsym == NULL)
1805 return NULL;
1806 if (!oldsym->is_undefined())
1807 {
1808 // Skip if the old definition is from a regular object.
1809 if (!oldsym->is_from_dynobj())
1810 return NULL;
1811
1812 // If the symbol has hidden or internal visibility, ignore
1813 // definition and reference from a dynamic object.
1814 if ((visibility == elfcpp::STV_HIDDEN
1815 || visibility == elfcpp::STV_INTERNAL)
1816 && !oldsym->in_reg())
1817 return NULL;
1818 }
1819
1820 *pname = oldsym->name();
1821 if (is_default_version)
1822 *pversion = this->namepool_.add(*pversion, true, NULL);
1823 else
1824 *pversion = oldsym->version();
1825 }
1826 else
1827 {
1828 // Canonicalize NAME and VERSION.
1829 Stringpool::Key name_key;
1830 *pname = this->namepool_.add(*pname, true, &name_key);
1831
1832 Stringpool::Key version_key = 0;
1833 if (*pversion != NULL)
1834 *pversion = this->namepool_.add(*pversion, true, &version_key);
1835
1836 Symbol* const snull = NULL;
1837 std::pair<typename Symbol_table_type::iterator, bool> ins =
1838 this->table_.insert(std::make_pair(std::make_pair(name_key,
1839 version_key),
1840 snull));
1841
1842 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1843 std::make_pair(this->table_.end(), false);
1844 if (is_default_version)
1845 {
1846 const Stringpool::Key vnull = 0;
1847 insdefault =
1848 this->table_.insert(std::make_pair(std::make_pair(name_key,
1849 vnull),
1850 snull));
1851 }
1852
1853 if (!ins.second)
1854 {
1855 // We already have a symbol table entry for NAME/VERSION.
1856 oldsym = ins.first->second;
1857 gold_assert(oldsym != NULL);
1858
1859 if (is_default_version)
1860 {
1861 Sized_symbol<size>* soldsym =
1862 this->get_sized_symbol<size>(oldsym);
1863 this->define_default_version<size, big_endian>(soldsym,
1864 insdefault.second,
1865 insdefault.first);
1866 }
1867 }
1868 else
1869 {
1870 // We haven't seen this symbol before.
1871 gold_assert(ins.first->second == NULL);
1872
1873 add_to_table = true;
1874 add_loc = ins.first;
1875
1876 if (is_default_version && !insdefault.second)
1877 {
1878 // We are adding NAME/VERSION, and it is the default
1879 // version. We already have an entry for NAME/NULL.
1880 oldsym = insdefault.first->second;
1881 *resolve_oldsym = true;
1882 }
1883 else
1884 {
1885 oldsym = NULL;
1886
1887 if (is_default_version)
1888 {
1889 add_def_to_table = true;
1890 add_def_loc = insdefault.first;
1891 }
1892 }
1893 }
1894 }
1895
1896 const Target& target = parameters->target();
1897 if (!target.has_make_symbol())
1898 sym = new Sized_symbol<size>();
1899 else
1900 {
1901 Sized_target<size, big_endian>* sized_target =
1902 parameters->sized_target<size, big_endian>();
1903 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1904 NULL, elfcpp::SHN_UNDEF, 0);
1905 if (sym == NULL)
1906 return NULL;
1907 }
1908
1909 if (add_to_table)
1910 add_loc->second = sym;
1911 else
1912 gold_assert(oldsym != NULL);
1913
1914 if (add_def_to_table)
1915 add_def_loc->second = sym;
1916
1917 *poldsym = this->get_sized_symbol<size>(oldsym);
1918
1919 return sym;
1920 }
1921
1922 // Define a symbol based on an Output_data.
1923
1924 Symbol*
1925 Symbol_table::define_in_output_data(const char* name,
1926 const char* version,
1927 Defined defined,
1928 Output_data* od,
1929 uint64_t value,
1930 uint64_t symsize,
1931 elfcpp::STT type,
1932 elfcpp::STB binding,
1933 elfcpp::STV visibility,
1934 unsigned char nonvis,
1935 bool offset_is_from_end,
1936 bool only_if_ref)
1937 {
1938 if (parameters->target().get_size() == 32)
1939 {
1940 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1941 return this->do_define_in_output_data<32>(name, version, defined, od,
1942 value, symsize, type, binding,
1943 visibility, nonvis,
1944 offset_is_from_end,
1945 only_if_ref);
1946 #else
1947 gold_unreachable();
1948 #endif
1949 }
1950 else if (parameters->target().get_size() == 64)
1951 {
1952 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1953 return this->do_define_in_output_data<64>(name, version, defined, od,
1954 value, symsize, type, binding,
1955 visibility, nonvis,
1956 offset_is_from_end,
1957 only_if_ref);
1958 #else
1959 gold_unreachable();
1960 #endif
1961 }
1962 else
1963 gold_unreachable();
1964 }
1965
1966 // Define a symbol in an Output_data, sized version.
1967
1968 template<int size>
1969 Sized_symbol<size>*
1970 Symbol_table::do_define_in_output_data(
1971 const char* name,
1972 const char* version,
1973 Defined defined,
1974 Output_data* od,
1975 typename elfcpp::Elf_types<size>::Elf_Addr value,
1976 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1977 elfcpp::STT type,
1978 elfcpp::STB binding,
1979 elfcpp::STV visibility,
1980 unsigned char nonvis,
1981 bool offset_is_from_end,
1982 bool only_if_ref)
1983 {
1984 Sized_symbol<size>* sym;
1985 Sized_symbol<size>* oldsym;
1986 bool resolve_oldsym;
1987 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1988
1989 if (parameters->target().is_big_endian())
1990 {
1991 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1992 sym = this->define_special_symbol<size, true>(&name, &version,
1993 only_if_ref,
1994 visibility,
1995 &oldsym,
1996 &resolve_oldsym,
1997 is_forced_local);
1998 #else
1999 gold_unreachable();
2000 #endif
2001 }
2002 else
2003 {
2004 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2005 sym = this->define_special_symbol<size, false>(&name, &version,
2006 only_if_ref,
2007 visibility,
2008 &oldsym,
2009 &resolve_oldsym,
2010 is_forced_local);
2011 #else
2012 gold_unreachable();
2013 #endif
2014 }
2015
2016 if (sym == NULL)
2017 return NULL;
2018
2019 sym->init_output_data(name, version, od, value, symsize, type, binding,
2020 visibility, nonvis, offset_is_from_end,
2021 defined == PREDEFINED);
2022
2023 if (oldsym == NULL)
2024 {
2025 if (is_forced_local || this->version_script_.symbol_is_local(name))
2026 this->force_local(sym);
2027 else if (version != NULL)
2028 sym->set_is_default();
2029 return sym;
2030 }
2031
2032 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2033 this->override_with_special(oldsym, sym);
2034
2035 if (resolve_oldsym)
2036 return sym;
2037 else
2038 {
2039 if (defined == PREDEFINED
2040 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2041 this->force_local(oldsym);
2042 delete sym;
2043 return oldsym;
2044 }
2045 }
2046
2047 // Define a symbol based on an Output_segment.
2048
2049 Symbol*
2050 Symbol_table::define_in_output_segment(const char* name,
2051 const char* version,
2052 Defined defined,
2053 Output_segment* os,
2054 uint64_t value,
2055 uint64_t symsize,
2056 elfcpp::STT type,
2057 elfcpp::STB binding,
2058 elfcpp::STV visibility,
2059 unsigned char nonvis,
2060 Symbol::Segment_offset_base offset_base,
2061 bool only_if_ref)
2062 {
2063 if (parameters->target().get_size() == 32)
2064 {
2065 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2066 return this->do_define_in_output_segment<32>(name, version, defined, os,
2067 value, symsize, type,
2068 binding, visibility, nonvis,
2069 offset_base, only_if_ref);
2070 #else
2071 gold_unreachable();
2072 #endif
2073 }
2074 else if (parameters->target().get_size() == 64)
2075 {
2076 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2077 return this->do_define_in_output_segment<64>(name, version, defined, os,
2078 value, symsize, type,
2079 binding, visibility, nonvis,
2080 offset_base, only_if_ref);
2081 #else
2082 gold_unreachable();
2083 #endif
2084 }
2085 else
2086 gold_unreachable();
2087 }
2088
2089 // Define a symbol in an Output_segment, sized version.
2090
2091 template<int size>
2092 Sized_symbol<size>*
2093 Symbol_table::do_define_in_output_segment(
2094 const char* name,
2095 const char* version,
2096 Defined defined,
2097 Output_segment* os,
2098 typename elfcpp::Elf_types<size>::Elf_Addr value,
2099 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2100 elfcpp::STT type,
2101 elfcpp::STB binding,
2102 elfcpp::STV visibility,
2103 unsigned char nonvis,
2104 Symbol::Segment_offset_base offset_base,
2105 bool only_if_ref)
2106 {
2107 Sized_symbol<size>* sym;
2108 Sized_symbol<size>* oldsym;
2109 bool resolve_oldsym;
2110 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2111
2112 if (parameters->target().is_big_endian())
2113 {
2114 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2115 sym = this->define_special_symbol<size, true>(&name, &version,
2116 only_if_ref,
2117 visibility,
2118 &oldsym,
2119 &resolve_oldsym,
2120 is_forced_local);
2121 #else
2122 gold_unreachable();
2123 #endif
2124 }
2125 else
2126 {
2127 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2128 sym = this->define_special_symbol<size, false>(&name, &version,
2129 only_if_ref,
2130 visibility,
2131 &oldsym,
2132 &resolve_oldsym,
2133 is_forced_local);
2134 #else
2135 gold_unreachable();
2136 #endif
2137 }
2138
2139 if (sym == NULL)
2140 return NULL;
2141
2142 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2143 visibility, nonvis, offset_base,
2144 defined == PREDEFINED);
2145
2146 if (oldsym == NULL)
2147 {
2148 if (is_forced_local || this->version_script_.symbol_is_local(name))
2149 this->force_local(sym);
2150 else if (version != NULL)
2151 sym->set_is_default();
2152 return sym;
2153 }
2154
2155 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2156 this->override_with_special(oldsym, sym);
2157
2158 if (resolve_oldsym)
2159 return sym;
2160 else
2161 {
2162 if (is_forced_local || this->version_script_.symbol_is_local(name))
2163 this->force_local(oldsym);
2164 delete sym;
2165 return oldsym;
2166 }
2167 }
2168
2169 // Define a special symbol with a constant value. It is a multiple
2170 // definition error if this symbol is already defined.
2171
2172 Symbol*
2173 Symbol_table::define_as_constant(const char* name,
2174 const char* version,
2175 Defined defined,
2176 uint64_t value,
2177 uint64_t symsize,
2178 elfcpp::STT type,
2179 elfcpp::STB binding,
2180 elfcpp::STV visibility,
2181 unsigned char nonvis,
2182 bool only_if_ref,
2183 bool force_override)
2184 {
2185 if (parameters->target().get_size() == 32)
2186 {
2187 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2188 return this->do_define_as_constant<32>(name, version, defined, value,
2189 symsize, type, binding,
2190 visibility, nonvis, only_if_ref,
2191 force_override);
2192 #else
2193 gold_unreachable();
2194 #endif
2195 }
2196 else if (parameters->target().get_size() == 64)
2197 {
2198 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2199 return this->do_define_as_constant<64>(name, version, defined, value,
2200 symsize, type, binding,
2201 visibility, nonvis, only_if_ref,
2202 force_override);
2203 #else
2204 gold_unreachable();
2205 #endif
2206 }
2207 else
2208 gold_unreachable();
2209 }
2210
2211 // Define a symbol as a constant, sized version.
2212
2213 template<int size>
2214 Sized_symbol<size>*
2215 Symbol_table::do_define_as_constant(
2216 const char* name,
2217 const char* version,
2218 Defined defined,
2219 typename elfcpp::Elf_types<size>::Elf_Addr value,
2220 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2221 elfcpp::STT type,
2222 elfcpp::STB binding,
2223 elfcpp::STV visibility,
2224 unsigned char nonvis,
2225 bool only_if_ref,
2226 bool force_override)
2227 {
2228 Sized_symbol<size>* sym;
2229 Sized_symbol<size>* oldsym;
2230 bool resolve_oldsym;
2231 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2232
2233 if (parameters->target().is_big_endian())
2234 {
2235 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2236 sym = this->define_special_symbol<size, true>(&name, &version,
2237 only_if_ref,
2238 visibility,
2239 &oldsym,
2240 &resolve_oldsym,
2241 is_forced_local);
2242 #else
2243 gold_unreachable();
2244 #endif
2245 }
2246 else
2247 {
2248 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2249 sym = this->define_special_symbol<size, false>(&name, &version,
2250 only_if_ref,
2251 visibility,
2252 &oldsym,
2253 &resolve_oldsym,
2254 is_forced_local);
2255 #else
2256 gold_unreachable();
2257 #endif
2258 }
2259
2260 if (sym == NULL)
2261 return NULL;
2262
2263 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2264 nonvis, defined == PREDEFINED);
2265
2266 if (oldsym == NULL)
2267 {
2268 // Version symbols are absolute symbols with name == version.
2269 // We don't want to force them to be local.
2270 if ((version == NULL
2271 || name != version
2272 || value != 0)
2273 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2274 this->force_local(sym);
2275 else if (version != NULL
2276 && (name != version || value != 0))
2277 sym->set_is_default();
2278 return sym;
2279 }
2280
2281 if (force_override
2282 || Symbol_table::should_override_with_special(oldsym, type, defined))
2283 this->override_with_special(oldsym, sym);
2284
2285 if (resolve_oldsym)
2286 return sym;
2287 else
2288 {
2289 if (is_forced_local || this->version_script_.symbol_is_local(name))
2290 this->force_local(oldsym);
2291 delete sym;
2292 return oldsym;
2293 }
2294 }
2295
2296 // Define a set of symbols in output sections.
2297
2298 void
2299 Symbol_table::define_symbols(const Layout* layout, int count,
2300 const Define_symbol_in_section* p,
2301 bool only_if_ref)
2302 {
2303 for (int i = 0; i < count; ++i, ++p)
2304 {
2305 Output_section* os = layout->find_output_section(p->output_section);
2306 if (os != NULL)
2307 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2308 p->size, p->type, p->binding,
2309 p->visibility, p->nonvis,
2310 p->offset_is_from_end,
2311 only_if_ref || p->only_if_ref);
2312 else
2313 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2314 p->type, p->binding, p->visibility, p->nonvis,
2315 only_if_ref || p->only_if_ref,
2316 false);
2317 }
2318 }
2319
2320 // Define a set of symbols in output segments.
2321
2322 void
2323 Symbol_table::define_symbols(const Layout* layout, int count,
2324 const Define_symbol_in_segment* p,
2325 bool only_if_ref)
2326 {
2327 for (int i = 0; i < count; ++i, ++p)
2328 {
2329 Output_segment* os = layout->find_output_segment(p->segment_type,
2330 p->segment_flags_set,
2331 p->segment_flags_clear);
2332 if (os != NULL)
2333 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2334 p->size, p->type, p->binding,
2335 p->visibility, p->nonvis,
2336 p->offset_base,
2337 only_if_ref || p->only_if_ref);
2338 else
2339 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2340 p->type, p->binding, p->visibility, p->nonvis,
2341 only_if_ref || p->only_if_ref,
2342 false);
2343 }
2344 }
2345
2346 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2347 // symbol should be defined--typically a .dyn.bss section. VALUE is
2348 // the offset within POSD.
2349
2350 template<int size>
2351 void
2352 Symbol_table::define_with_copy_reloc(
2353 Sized_symbol<size>* csym,
2354 Output_data* posd,
2355 typename elfcpp::Elf_types<size>::Elf_Addr value)
2356 {
2357 gold_assert(csym->is_from_dynobj());
2358 gold_assert(!csym->is_copied_from_dynobj());
2359 Object* object = csym->object();
2360 gold_assert(object->is_dynamic());
2361 Dynobj* dynobj = static_cast<Dynobj*>(object);
2362
2363 // Our copied variable has to override any variable in a shared
2364 // library.
2365 elfcpp::STB binding = csym->binding();
2366 if (binding == elfcpp::STB_WEAK)
2367 binding = elfcpp::STB_GLOBAL;
2368
2369 this->define_in_output_data(csym->name(), csym->version(), COPY,
2370 posd, value, csym->symsize(),
2371 csym->type(), binding,
2372 csym->visibility(), csym->nonvis(),
2373 false, false);
2374
2375 csym->set_is_copied_from_dynobj();
2376 csym->set_needs_dynsym_entry();
2377
2378 this->copied_symbol_dynobjs_[csym] = dynobj;
2379
2380 // We have now defined all aliases, but we have not entered them all
2381 // in the copied_symbol_dynobjs_ map.
2382 if (csym->has_alias())
2383 {
2384 Symbol* sym = csym;
2385 while (true)
2386 {
2387 sym = this->weak_aliases_[sym];
2388 if (sym == csym)
2389 break;
2390 gold_assert(sym->output_data() == posd);
2391
2392 sym->set_is_copied_from_dynobj();
2393 this->copied_symbol_dynobjs_[sym] = dynobj;
2394 }
2395 }
2396 }
2397
2398 // SYM is defined using a COPY reloc. Return the dynamic object where
2399 // the original definition was found.
2400
2401 Dynobj*
2402 Symbol_table::get_copy_source(const Symbol* sym) const
2403 {
2404 gold_assert(sym->is_copied_from_dynobj());
2405 Copied_symbol_dynobjs::const_iterator p =
2406 this->copied_symbol_dynobjs_.find(sym);
2407 gold_assert(p != this->copied_symbol_dynobjs_.end());
2408 return p->second;
2409 }
2410
2411 // Add any undefined symbols named on the command line.
2412
2413 void
2414 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2415 {
2416 if (parameters->options().any_undefined()
2417 || layout->script_options()->any_unreferenced())
2418 {
2419 if (parameters->target().get_size() == 32)
2420 {
2421 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2422 this->do_add_undefined_symbols_from_command_line<32>(layout);
2423 #else
2424 gold_unreachable();
2425 #endif
2426 }
2427 else if (parameters->target().get_size() == 64)
2428 {
2429 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2430 this->do_add_undefined_symbols_from_command_line<64>(layout);
2431 #else
2432 gold_unreachable();
2433 #endif
2434 }
2435 else
2436 gold_unreachable();
2437 }
2438 }
2439
2440 template<int size>
2441 void
2442 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2443 {
2444 for (options::String_set::const_iterator p =
2445 parameters->options().undefined_begin();
2446 p != parameters->options().undefined_end();
2447 ++p)
2448 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2449
2450 for (options::String_set::const_iterator p =
2451 parameters->options().export_dynamic_symbol_begin();
2452 p != parameters->options().export_dynamic_symbol_end();
2453 ++p)
2454 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2455
2456 for (Script_options::referenced_const_iterator p =
2457 layout->script_options()->referenced_begin();
2458 p != layout->script_options()->referenced_end();
2459 ++p)
2460 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2461 }
2462
2463 template<int size>
2464 void
2465 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2466 {
2467 if (this->lookup(name) != NULL)
2468 return;
2469
2470 const char* version = NULL;
2471
2472 Sized_symbol<size>* sym;
2473 Sized_symbol<size>* oldsym;
2474 bool resolve_oldsym;
2475 if (parameters->target().is_big_endian())
2476 {
2477 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2478 sym = this->define_special_symbol<size, true>(&name, &version,
2479 false,
2480 elfcpp::STV_DEFAULT,
2481 &oldsym,
2482 &resolve_oldsym,
2483 false);
2484 #else
2485 gold_unreachable();
2486 #endif
2487 }
2488 else
2489 {
2490 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2491 sym = this->define_special_symbol<size, false>(&name, &version,
2492 false,
2493 elfcpp::STV_DEFAULT,
2494 &oldsym,
2495 &resolve_oldsym,
2496 false);
2497 #else
2498 gold_unreachable();
2499 #endif
2500 }
2501
2502 gold_assert(oldsym == NULL);
2503
2504 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2505 elfcpp::STV_DEFAULT, 0);
2506 ++this->saw_undefined_;
2507 }
2508
2509 // Set the dynamic symbol indexes. INDEX is the index of the first
2510 // global dynamic symbol. Pointers to the global symbols are stored
2511 // into the vector SYMS. The names are added to DYNPOOL.
2512 // This returns an updated dynamic symbol index.
2513
2514 unsigned int
2515 Symbol_table::set_dynsym_indexes(unsigned int index,
2516 unsigned int* pforced_local_count,
2517 std::vector<Symbol*>* syms,
2518 Stringpool* dynpool,
2519 Versions* versions)
2520 {
2521 std::vector<Symbol*> as_needed_sym;
2522
2523 // First process all the symbols which have been forced to be local,
2524 // as they must appear before all global symbols.
2525 unsigned int forced_local_count = 0;
2526 for (Forced_locals::iterator p = this->forced_locals_.begin();
2527 p != this->forced_locals_.end();
2528 ++p)
2529 {
2530 Symbol* sym = *p;
2531 gold_assert(sym->is_forced_local());
2532 if (sym->has_dynsym_index())
2533 continue;
2534 if (!sym->should_add_dynsym_entry(this))
2535 sym->set_dynsym_index(-1U);
2536 else
2537 {
2538 sym->set_dynsym_index(index);
2539 ++index;
2540 ++forced_local_count;
2541 dynpool->add(sym->name(), false, NULL);
2542 }
2543 }
2544 *pforced_local_count = forced_local_count;
2545
2546 // Allow a target to set dynsym indexes.
2547 if (parameters->target().has_custom_set_dynsym_indexes())
2548 {
2549 std::vector<Symbol*> dyn_symbols;
2550 for (Symbol_table_type::iterator p = this->table_.begin();
2551 p != this->table_.end();
2552 ++p)
2553 {
2554 Symbol* sym = p->second;
2555 if (sym->is_forced_local())
2556 continue;
2557 if (!sym->should_add_dynsym_entry(this))
2558 sym->set_dynsym_index(-1U);
2559 else
2560 dyn_symbols.push_back(sym);
2561 }
2562
2563 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2564 dynpool, versions, this);
2565 }
2566
2567 for (Symbol_table_type::iterator p = this->table_.begin();
2568 p != this->table_.end();
2569 ++p)
2570 {
2571 Symbol* sym = p->second;
2572
2573 if (sym->is_forced_local())
2574 continue;
2575
2576 // Note that SYM may already have a dynamic symbol index, since
2577 // some symbols appear more than once in the symbol table, with
2578 // and without a version.
2579
2580 if (!sym->should_add_dynsym_entry(this))
2581 sym->set_dynsym_index(-1U);
2582 else if (!sym->has_dynsym_index())
2583 {
2584 sym->set_dynsym_index(index);
2585 ++index;
2586 syms->push_back(sym);
2587 dynpool->add(sym->name(), false, NULL);
2588
2589 // If the symbol is defined in a dynamic object and is
2590 // referenced strongly in a regular object, then mark the
2591 // dynamic object as needed. This is used to implement
2592 // --as-needed.
2593 if (sym->is_from_dynobj()
2594 && sym->in_reg()
2595 && !sym->is_undef_binding_weak())
2596 sym->object()->set_is_needed();
2597
2598 // Record any version information, except those from
2599 // as-needed libraries not seen to be needed. Note that the
2600 // is_needed state for such libraries can change in this loop.
2601 if (sym->version() != NULL)
2602 {
2603 if (!sym->is_from_dynobj()
2604 || !sym->object()->as_needed()
2605 || sym->object()->is_needed())
2606 versions->record_version(this, dynpool, sym);
2607 else
2608 as_needed_sym.push_back(sym);
2609 }
2610 }
2611 }
2612
2613 // Process version information for symbols from as-needed libraries.
2614 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2615 p != as_needed_sym.end();
2616 ++p)
2617 {
2618 Symbol* sym = *p;
2619
2620 if (sym->object()->is_needed())
2621 versions->record_version(this, dynpool, sym);
2622 else
2623 sym->clear_version();
2624 }
2625
2626 // Finish up the versions. In some cases this may add new dynamic
2627 // symbols.
2628 index = versions->finalize(this, index, syms);
2629
2630 // Process target-specific symbols.
2631 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2632 p != this->target_symbols_.end();
2633 ++p)
2634 {
2635 (*p)->set_dynsym_index(index);
2636 ++index;
2637 syms->push_back(*p);
2638 dynpool->add((*p)->name(), false, NULL);
2639 }
2640
2641 return index;
2642 }
2643
2644 // Set the final values for all the symbols. The index of the first
2645 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2646 // file offset OFF. Add their names to POOL. Return the new file
2647 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2648 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2649 // written from the global symbol table in Symtab::write_globals(),
2650 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2651 // not necessarily the same as the sh_info field for the .dynsym
2652 // section, which will point to the first real global symbol.
2653
2654 off_t
2655 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2656 size_t dyncount, Stringpool* pool,
2657 unsigned int* plocal_symcount)
2658 {
2659 off_t ret;
2660
2661 gold_assert(*plocal_symcount != 0);
2662 this->first_global_index_ = *plocal_symcount;
2663
2664 this->dynamic_offset_ = dynoff;
2665 this->first_dynamic_global_index_ = dyn_global_index;
2666 this->dynamic_count_ = dyncount;
2667
2668 if (parameters->target().get_size() == 32)
2669 {
2670 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2671 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2672 #else
2673 gold_unreachable();
2674 #endif
2675 }
2676 else if (parameters->target().get_size() == 64)
2677 {
2678 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2679 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2680 #else
2681 gold_unreachable();
2682 #endif
2683 }
2684 else
2685 gold_unreachable();
2686
2687 // Now that we have the final symbol table, we can reliably note
2688 // which symbols should get warnings.
2689 this->warnings_.note_warnings(this);
2690
2691 return ret;
2692 }
2693
2694 // SYM is going into the symbol table at *PINDEX. Add the name to
2695 // POOL, update *PINDEX and *POFF.
2696
2697 template<int size>
2698 void
2699 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2700 unsigned int* pindex, off_t* poff)
2701 {
2702 sym->set_symtab_index(*pindex);
2703 if (sym->version() == NULL || !parameters->options().relocatable())
2704 pool->add(sym->name(), false, NULL);
2705 else
2706 pool->add(sym->versioned_name(), true, NULL);
2707 ++*pindex;
2708 *poff += elfcpp::Elf_sizes<size>::sym_size;
2709 }
2710
2711 // Set the final value for all the symbols. This is called after
2712 // Layout::finalize, so all the output sections have their final
2713 // address.
2714
2715 template<int size>
2716 off_t
2717 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2718 unsigned int* plocal_symcount)
2719 {
2720 off = align_address(off, size >> 3);
2721 this->offset_ = off;
2722
2723 unsigned int index = *plocal_symcount;
2724 const unsigned int orig_index = index;
2725
2726 // First do all the symbols which have been forced to be local, as
2727 // they must appear before all global symbols.
2728 for (Forced_locals::iterator p = this->forced_locals_.begin();
2729 p != this->forced_locals_.end();
2730 ++p)
2731 {
2732 Symbol* sym = *p;
2733 gold_assert(sym->is_forced_local());
2734 if (this->sized_finalize_symbol<size>(sym))
2735 {
2736 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2737 ++*plocal_symcount;
2738 }
2739 }
2740
2741 // Now do all the remaining symbols.
2742 for (Symbol_table_type::iterator p = this->table_.begin();
2743 p != this->table_.end();
2744 ++p)
2745 {
2746 Symbol* sym = p->second;
2747 if (this->sized_finalize_symbol<size>(sym))
2748 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2749 }
2750
2751 // Now do target-specific symbols.
2752 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2753 p != this->target_symbols_.end();
2754 ++p)
2755 {
2756 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2757 }
2758
2759 this->output_count_ = index - orig_index;
2760
2761 return off;
2762 }
2763
2764 // Compute the final value of SYM and store status in location PSTATUS.
2765 // During relaxation, this may be called multiple times for a symbol to
2766 // compute its would-be final value in each relaxation pass.
2767
2768 template<int size>
2769 typename Sized_symbol<size>::Value_type
2770 Symbol_table::compute_final_value(
2771 const Sized_symbol<size>* sym,
2772 Compute_final_value_status* pstatus) const
2773 {
2774 typedef typename Sized_symbol<size>::Value_type Value_type;
2775 Value_type value;
2776
2777 switch (sym->source())
2778 {
2779 case Symbol::FROM_OBJECT:
2780 {
2781 bool is_ordinary;
2782 unsigned int shndx = sym->shndx(&is_ordinary);
2783
2784 if (!is_ordinary
2785 && shndx != elfcpp::SHN_ABS
2786 && !Symbol::is_common_shndx(shndx))
2787 {
2788 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2789 return 0;
2790 }
2791
2792 Object* symobj = sym->object();
2793 if (symobj->is_dynamic())
2794 {
2795 value = 0;
2796 shndx = elfcpp::SHN_UNDEF;
2797 }
2798 else if (symobj->pluginobj() != NULL)
2799 {
2800 value = 0;
2801 shndx = elfcpp::SHN_UNDEF;
2802 }
2803 else if (shndx == elfcpp::SHN_UNDEF)
2804 value = 0;
2805 else if (!is_ordinary
2806 && (shndx == elfcpp::SHN_ABS
2807 || Symbol::is_common_shndx(shndx)))
2808 value = sym->value();
2809 else
2810 {
2811 Relobj* relobj = static_cast<Relobj*>(symobj);
2812 Output_section* os = relobj->output_section(shndx);
2813
2814 if (this->is_section_folded(relobj, shndx))
2815 {
2816 gold_assert(os == NULL);
2817 // Get the os of the section it is folded onto.
2818 Section_id folded = this->icf_->get_folded_section(relobj,
2819 shndx);
2820 gold_assert(folded.first != NULL);
2821 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2822 unsigned folded_shndx = folded.second;
2823
2824 os = folded_obj->output_section(folded_shndx);
2825 gold_assert(os != NULL);
2826
2827 // Replace (relobj, shndx) with canonical ICF input section.
2828 shndx = folded_shndx;
2829 relobj = folded_obj;
2830 }
2831
2832 uint64_t secoff64 = relobj->output_section_offset(shndx);
2833 if (os == NULL)
2834 {
2835 bool static_or_reloc = (parameters->doing_static_link() ||
2836 parameters->options().relocatable());
2837 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2838
2839 *pstatus = CFVS_NO_OUTPUT_SECTION;
2840 return 0;
2841 }
2842
2843 if (secoff64 == -1ULL)
2844 {
2845 // The section needs special handling (e.g., a merge section).
2846
2847 value = os->output_address(relobj, shndx, sym->value());
2848 }
2849 else
2850 {
2851 Value_type secoff =
2852 convert_types<Value_type, uint64_t>(secoff64);
2853 if (sym->type() == elfcpp::STT_TLS)
2854 value = sym->value() + os->tls_offset() + secoff;
2855 else
2856 value = sym->value() + os->address() + secoff;
2857 }
2858 }
2859 }
2860 break;
2861
2862 case Symbol::IN_OUTPUT_DATA:
2863 {
2864 Output_data* od = sym->output_data();
2865 value = sym->value();
2866 if (sym->type() != elfcpp::STT_TLS)
2867 value += od->address();
2868 else
2869 {
2870 Output_section* os = od->output_section();
2871 gold_assert(os != NULL);
2872 value += os->tls_offset() + (od->address() - os->address());
2873 }
2874 if (sym->offset_is_from_end())
2875 value += od->data_size();
2876 }
2877 break;
2878
2879 case Symbol::IN_OUTPUT_SEGMENT:
2880 {
2881 Output_segment* os = sym->output_segment();
2882 value = sym->value();
2883 if (sym->type() != elfcpp::STT_TLS)
2884 value += os->vaddr();
2885 switch (sym->offset_base())
2886 {
2887 case Symbol::SEGMENT_START:
2888 break;
2889 case Symbol::SEGMENT_END:
2890 value += os->memsz();
2891 break;
2892 case Symbol::SEGMENT_BSS:
2893 value += os->filesz();
2894 break;
2895 default:
2896 gold_unreachable();
2897 }
2898 }
2899 break;
2900
2901 case Symbol::IS_CONSTANT:
2902 value = sym->value();
2903 break;
2904
2905 case Symbol::IS_UNDEFINED:
2906 value = 0;
2907 break;
2908
2909 default:
2910 gold_unreachable();
2911 }
2912
2913 *pstatus = CFVS_OK;
2914 return value;
2915 }
2916
2917 // Finalize the symbol SYM. This returns true if the symbol should be
2918 // added to the symbol table, false otherwise.
2919
2920 template<int size>
2921 bool
2922 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2923 {
2924 typedef typename Sized_symbol<size>::Value_type Value_type;
2925
2926 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2927
2928 // The default version of a symbol may appear twice in the symbol
2929 // table. We only need to finalize it once.
2930 if (sym->has_symtab_index())
2931 return false;
2932
2933 if (!sym->in_reg())
2934 {
2935 gold_assert(!sym->has_symtab_index());
2936 sym->set_symtab_index(-1U);
2937 gold_assert(sym->dynsym_index() == -1U);
2938 return false;
2939 }
2940
2941 // If the symbol is only present on plugin files, the plugin decided we
2942 // don't need it.
2943 if (!sym->in_real_elf())
2944 {
2945 gold_assert(!sym->has_symtab_index());
2946 sym->set_symtab_index(-1U);
2947 return false;
2948 }
2949
2950 // Compute final symbol value.
2951 Compute_final_value_status status;
2952 Value_type value = this->compute_final_value(sym, &status);
2953
2954 switch (status)
2955 {
2956 case CFVS_OK:
2957 break;
2958 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2959 {
2960 bool is_ordinary;
2961 unsigned int shndx = sym->shndx(&is_ordinary);
2962 gold_error(_("%s: unsupported symbol section 0x%x"),
2963 sym->demangled_name().c_str(), shndx);
2964 }
2965 break;
2966 case CFVS_NO_OUTPUT_SECTION:
2967 sym->set_symtab_index(-1U);
2968 return false;
2969 default:
2970 gold_unreachable();
2971 }
2972
2973 sym->set_value(value);
2974
2975 if (parameters->options().strip_all()
2976 || !parameters->options().should_retain_symbol(sym->name()))
2977 {
2978 sym->set_symtab_index(-1U);
2979 return false;
2980 }
2981
2982 return true;
2983 }
2984
2985 // Write out the global symbols.
2986
2987 void
2988 Symbol_table::write_globals(const Stringpool* sympool,
2989 const Stringpool* dynpool,
2990 Output_symtab_xindex* symtab_xindex,
2991 Output_symtab_xindex* dynsym_xindex,
2992 Output_file* of) const
2993 {
2994 switch (parameters->size_and_endianness())
2995 {
2996 #ifdef HAVE_TARGET_32_LITTLE
2997 case Parameters::TARGET_32_LITTLE:
2998 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2999 dynsym_xindex, of);
3000 break;
3001 #endif
3002 #ifdef HAVE_TARGET_32_BIG
3003 case Parameters::TARGET_32_BIG:
3004 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
3005 dynsym_xindex, of);
3006 break;
3007 #endif
3008 #ifdef HAVE_TARGET_64_LITTLE
3009 case Parameters::TARGET_64_LITTLE:
3010 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
3011 dynsym_xindex, of);
3012 break;
3013 #endif
3014 #ifdef HAVE_TARGET_64_BIG
3015 case Parameters::TARGET_64_BIG:
3016 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
3017 dynsym_xindex, of);
3018 break;
3019 #endif
3020 default:
3021 gold_unreachable();
3022 }
3023 }
3024
3025 // Write out the global symbols.
3026
3027 template<int size, bool big_endian>
3028 void
3029 Symbol_table::sized_write_globals(const Stringpool* sympool,
3030 const Stringpool* dynpool,
3031 Output_symtab_xindex* symtab_xindex,
3032 Output_symtab_xindex* dynsym_xindex,
3033 Output_file* of) const
3034 {
3035 const Target& target = parameters->target();
3036
3037 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3038
3039 const unsigned int output_count = this->output_count_;
3040 const section_size_type oview_size = output_count * sym_size;
3041 const unsigned int first_global_index = this->first_global_index_;
3042 unsigned char* psyms;
3043 if (this->offset_ == 0 || output_count == 0)
3044 psyms = NULL;
3045 else
3046 psyms = of->get_output_view(this->offset_, oview_size);
3047
3048 const unsigned int dynamic_count = this->dynamic_count_;
3049 const section_size_type dynamic_size = dynamic_count * sym_size;
3050 const unsigned int first_dynamic_global_index =
3051 this->first_dynamic_global_index_;
3052 unsigned char* dynamic_view;
3053 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3054 dynamic_view = NULL;
3055 else
3056 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3057
3058 for (Symbol_table_type::const_iterator p = this->table_.begin();
3059 p != this->table_.end();
3060 ++p)
3061 {
3062 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3063
3064 // Possibly warn about unresolved symbols in shared libraries.
3065 this->warn_about_undefined_dynobj_symbol(sym);
3066
3067 unsigned int sym_index = sym->symtab_index();
3068 unsigned int dynsym_index;
3069 if (dynamic_view == NULL)
3070 dynsym_index = -1U;
3071 else
3072 dynsym_index = sym->dynsym_index();
3073
3074 if (sym_index == -1U && dynsym_index == -1U)
3075 {
3076 // This symbol is not included in the output file.
3077 continue;
3078 }
3079
3080 unsigned int shndx;
3081 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3082 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3083 elfcpp::STB binding = sym->binding();
3084
3085 // If --weak-unresolved-symbols is set, change binding of unresolved
3086 // global symbols to STB_WEAK.
3087 if (parameters->options().weak_unresolved_symbols()
3088 && binding == elfcpp::STB_GLOBAL
3089 && sym->is_undefined())
3090 binding = elfcpp::STB_WEAK;
3091
3092 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3093 if (binding == elfcpp::STB_GNU_UNIQUE
3094 && !parameters->options().gnu_unique())
3095 binding = elfcpp::STB_GLOBAL;
3096
3097 switch (sym->source())
3098 {
3099 case Symbol::FROM_OBJECT:
3100 {
3101 bool is_ordinary;
3102 unsigned int in_shndx = sym->shndx(&is_ordinary);
3103
3104 if (!is_ordinary
3105 && in_shndx != elfcpp::SHN_ABS
3106 && !Symbol::is_common_shndx(in_shndx))
3107 {
3108 gold_error(_("%s: unsupported symbol section 0x%x"),
3109 sym->demangled_name().c_str(), in_shndx);
3110 shndx = in_shndx;
3111 }
3112 else
3113 {
3114 Object* symobj = sym->object();
3115 if (symobj->is_dynamic())
3116 {
3117 if (sym->needs_dynsym_value())
3118 dynsym_value = target.dynsym_value(sym);
3119 shndx = elfcpp::SHN_UNDEF;
3120 if (sym->is_undef_binding_weak())
3121 binding = elfcpp::STB_WEAK;
3122 else
3123 binding = elfcpp::STB_GLOBAL;
3124 }
3125 else if (symobj->pluginobj() != NULL)
3126 shndx = elfcpp::SHN_UNDEF;
3127 else if (in_shndx == elfcpp::SHN_UNDEF
3128 || (!is_ordinary
3129 && (in_shndx == elfcpp::SHN_ABS
3130 || Symbol::is_common_shndx(in_shndx))))
3131 shndx = in_shndx;
3132 else
3133 {
3134 Relobj* relobj = static_cast<Relobj*>(symobj);
3135 Output_section* os = relobj->output_section(in_shndx);
3136 if (this->is_section_folded(relobj, in_shndx))
3137 {
3138 // This global symbol must be written out even though
3139 // it is folded.
3140 // Get the os of the section it is folded onto.
3141 Section_id folded =
3142 this->icf_->get_folded_section(relobj, in_shndx);
3143 gold_assert(folded.first !=NULL);
3144 Relobj* folded_obj =
3145 reinterpret_cast<Relobj*>(folded.first);
3146 os = folded_obj->output_section(folded.second);
3147 gold_assert(os != NULL);
3148 }
3149 gold_assert(os != NULL);
3150 shndx = os->out_shndx();
3151
3152 if (shndx >= elfcpp::SHN_LORESERVE)
3153 {
3154 if (sym_index != -1U)
3155 symtab_xindex->add(sym_index, shndx);
3156 if (dynsym_index != -1U)
3157 dynsym_xindex->add(dynsym_index, shndx);
3158 shndx = elfcpp::SHN_XINDEX;
3159 }
3160
3161 // In object files symbol values are section
3162 // relative.
3163 if (parameters->options().relocatable())
3164 sym_value -= os->address();
3165 }
3166 }
3167 }
3168 break;
3169
3170 case Symbol::IN_OUTPUT_DATA:
3171 {
3172 Output_data* od = sym->output_data();
3173
3174 shndx = od->out_shndx();
3175 if (shndx >= elfcpp::SHN_LORESERVE)
3176 {
3177 if (sym_index != -1U)
3178 symtab_xindex->add(sym_index, shndx);
3179 if (dynsym_index != -1U)
3180 dynsym_xindex->add(dynsym_index, shndx);
3181 shndx = elfcpp::SHN_XINDEX;
3182 }
3183
3184 // In object files symbol values are section
3185 // relative.
3186 if (parameters->options().relocatable())
3187 {
3188 Output_section* os = od->output_section();
3189 gold_assert(os != NULL);
3190 sym_value -= os->address();
3191 }
3192 }
3193 break;
3194
3195 case Symbol::IN_OUTPUT_SEGMENT:
3196 {
3197 Output_segment* oseg = sym->output_segment();
3198 Output_section* osect = oseg->first_section();
3199 if (osect == NULL)
3200 shndx = elfcpp::SHN_ABS;
3201 else
3202 shndx = osect->out_shndx();
3203 }
3204 break;
3205
3206 case Symbol::IS_CONSTANT:
3207 shndx = elfcpp::SHN_ABS;
3208 break;
3209
3210 case Symbol::IS_UNDEFINED:
3211 shndx = elfcpp::SHN_UNDEF;
3212 break;
3213
3214 default:
3215 gold_unreachable();
3216 }
3217
3218 if (sym_index != -1U)
3219 {
3220 sym_index -= first_global_index;
3221 gold_assert(sym_index < output_count);
3222 unsigned char* ps = psyms + (sym_index * sym_size);
3223 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3224 binding, sympool, ps);
3225 }
3226
3227 if (dynsym_index != -1U)
3228 {
3229 dynsym_index -= first_dynamic_global_index;
3230 gold_assert(dynsym_index < dynamic_count);
3231 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3232 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3233 binding, dynpool, pd);
3234 // Allow a target to adjust dynamic symbol value.
3235 parameters->target().adjust_dyn_symbol(sym, pd);
3236 }
3237 }
3238
3239 // Write the target-specific symbols.
3240 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3241 p != this->target_symbols_.end();
3242 ++p)
3243 {
3244 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3245
3246 unsigned int sym_index = sym->symtab_index();
3247 unsigned int dynsym_index;
3248 if (dynamic_view == NULL)
3249 dynsym_index = -1U;
3250 else
3251 dynsym_index = sym->dynsym_index();
3252
3253 unsigned int shndx;
3254 switch (sym->source())
3255 {
3256 case Symbol::IS_CONSTANT:
3257 shndx = elfcpp::SHN_ABS;
3258 break;
3259 case Symbol::IS_UNDEFINED:
3260 shndx = elfcpp::SHN_UNDEF;
3261 break;
3262 default:
3263 gold_unreachable();
3264 }
3265
3266 if (sym_index != -1U)
3267 {
3268 sym_index -= first_global_index;
3269 gold_assert(sym_index < output_count);
3270 unsigned char* ps = psyms + (sym_index * sym_size);
3271 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3272 sym->binding(), sympool,
3273 ps);
3274 }
3275
3276 if (dynsym_index != -1U)
3277 {
3278 dynsym_index -= first_dynamic_global_index;
3279 gold_assert(dynsym_index < dynamic_count);
3280 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3281 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3282 sym->binding(), dynpool,
3283 pd);
3284 }
3285 }
3286
3287 of->write_output_view(this->offset_, oview_size, psyms);
3288 if (dynamic_view != NULL)
3289 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3290 }
3291
3292 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3293 // strtab holding the name.
3294
3295 template<int size, bool big_endian>
3296 void
3297 Symbol_table::sized_write_symbol(
3298 Sized_symbol<size>* sym,
3299 typename elfcpp::Elf_types<size>::Elf_Addr value,
3300 unsigned int shndx,
3301 elfcpp::STB binding,
3302 const Stringpool* pool,
3303 unsigned char* p) const
3304 {
3305 elfcpp::Sym_write<size, big_endian> osym(p);
3306 if (sym->version() == NULL || !parameters->options().relocatable())
3307 osym.put_st_name(pool->get_offset(sym->name()));
3308 else
3309 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3310 osym.put_st_value(value);
3311 // Use a symbol size of zero for undefined symbols from shared libraries.
3312 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3313 osym.put_st_size(0);
3314 else
3315 osym.put_st_size(sym->symsize());
3316 elfcpp::STT type = sym->type();
3317 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3318 // A version script may have overridden the default binding.
3319 if (sym->is_forced_local())
3320 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3321 else
3322 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3323 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3324 osym.put_st_shndx(shndx);
3325 }
3326
3327 // Check for unresolved symbols in shared libraries. This is
3328 // controlled by the --allow-shlib-undefined option.
3329
3330 // We only warn about libraries for which we have seen all the
3331 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3332 // which were not seen in this link. If we didn't see a DT_NEEDED
3333 // entry, we aren't going to be able to reliably report whether the
3334 // symbol is undefined.
3335
3336 // We also don't warn about libraries found in a system library
3337 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3338 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3339 // can have undefined references satisfied by ld-linux.so.
3340
3341 inline void
3342 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3343 {
3344 bool dummy;
3345 if (sym->source() == Symbol::FROM_OBJECT
3346 && sym->object()->is_dynamic()
3347 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3348 && sym->binding() != elfcpp::STB_WEAK
3349 && !parameters->options().allow_shlib_undefined()
3350 && !parameters->target().is_defined_by_abi(sym)
3351 && !sym->object()->is_in_system_directory())
3352 {
3353 // A very ugly cast.
3354 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3355 if (!dynobj->has_unknown_needed_entries())
3356 gold_undefined_symbol(sym);
3357 }
3358 }
3359
3360 // Write out a section symbol. Return the update offset.
3361
3362 void
3363 Symbol_table::write_section_symbol(const Output_section* os,
3364 Output_symtab_xindex* symtab_xindex,
3365 Output_file* of,
3366 off_t offset) const
3367 {
3368 switch (parameters->size_and_endianness())
3369 {
3370 #ifdef HAVE_TARGET_32_LITTLE
3371 case Parameters::TARGET_32_LITTLE:
3372 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3373 offset);
3374 break;
3375 #endif
3376 #ifdef HAVE_TARGET_32_BIG
3377 case Parameters::TARGET_32_BIG:
3378 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3379 offset);
3380 break;
3381 #endif
3382 #ifdef HAVE_TARGET_64_LITTLE
3383 case Parameters::TARGET_64_LITTLE:
3384 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3385 offset);
3386 break;
3387 #endif
3388 #ifdef HAVE_TARGET_64_BIG
3389 case Parameters::TARGET_64_BIG:
3390 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3391 offset);
3392 break;
3393 #endif
3394 default:
3395 gold_unreachable();
3396 }
3397 }
3398
3399 // Write out a section symbol, specialized for size and endianness.
3400
3401 template<int size, bool big_endian>
3402 void
3403 Symbol_table::sized_write_section_symbol(const Output_section* os,
3404 Output_symtab_xindex* symtab_xindex,
3405 Output_file* of,
3406 off_t offset) const
3407 {
3408 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3409
3410 unsigned char* pov = of->get_output_view(offset, sym_size);
3411
3412 elfcpp::Sym_write<size, big_endian> osym(pov);
3413 osym.put_st_name(0);
3414 if (parameters->options().relocatable())
3415 osym.put_st_value(0);
3416 else
3417 osym.put_st_value(os->address());
3418 osym.put_st_size(0);
3419 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3420 elfcpp::STT_SECTION));
3421 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3422
3423 unsigned int shndx = os->out_shndx();
3424 if (shndx >= elfcpp::SHN_LORESERVE)
3425 {
3426 symtab_xindex->add(os->symtab_index(), shndx);
3427 shndx = elfcpp::SHN_XINDEX;
3428 }
3429 osym.put_st_shndx(shndx);
3430
3431 of->write_output_view(offset, sym_size, pov);
3432 }
3433
3434 // Print statistical information to stderr. This is used for --stats.
3435
3436 void
3437 Symbol_table::print_stats() const
3438 {
3439 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3440 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3441 program_name, this->table_.size(), this->table_.bucket_count());
3442 #else
3443 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3444 program_name, this->table_.size());
3445 #endif
3446 this->namepool_.print_stats("symbol table stringpool");
3447 }
3448
3449 // We check for ODR violations by looking for symbols with the same
3450 // name for which the debugging information reports that they were
3451 // defined in disjoint source locations. When comparing the source
3452 // location, we consider instances with the same base filename to be
3453 // the same. This is because different object files/shared libraries
3454 // can include the same header file using different paths, and
3455 // different optimization settings can make the line number appear to
3456 // be a couple lines off, and we don't want to report an ODR violation
3457 // in those cases.
3458
3459 // This struct is used to compare line information, as returned by
3460 // Dwarf_line_info::one_addr2line. It implements a < comparison
3461 // operator used with std::sort.
3462
3463 struct Odr_violation_compare
3464 {
3465 bool
3466 operator()(const std::string& s1, const std::string& s2) const
3467 {
3468 // Inputs should be of the form "dirname/filename:linenum" where
3469 // "dirname/" is optional. We want to compare just the filename:linenum.
3470
3471 // Find the last '/' in each string.
3472 std::string::size_type s1begin = s1.rfind('/');
3473 std::string::size_type s2begin = s2.rfind('/');
3474 // If there was no '/' in a string, start at the beginning.
3475 if (s1begin == std::string::npos)
3476 s1begin = 0;
3477 if (s2begin == std::string::npos)
3478 s2begin = 0;
3479 return s1.compare(s1begin, std::string::npos,
3480 s2, s2begin, std::string::npos) < 0;
3481 }
3482 };
3483
3484 // Returns all of the lines attached to LOC, not just the one the
3485 // instruction actually came from.
3486 std::vector<std::string>
3487 Symbol_table::linenos_from_loc(const Task* task,
3488 const Symbol_location& loc)
3489 {
3490 // We need to lock the object in order to read it. This
3491 // means that we have to run in a singleton Task. If we
3492 // want to run this in a general Task for better
3493 // performance, we will need one Task for object, plus
3494 // appropriate locking to ensure that we don't conflict with
3495 // other uses of the object. Also note, one_addr2line is not
3496 // currently thread-safe.
3497 Task_lock_obj<Object> tl(task, loc.object);
3498
3499 std::vector<std::string> result;
3500 Symbol_location code_loc = loc;
3501 parameters->target().function_location(&code_loc);
3502 // 16 is the size of the object-cache that one_addr2line should use.
3503 std::string canonical_result = Dwarf_line_info::one_addr2line(
3504 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3505 if (!canonical_result.empty())
3506 result.push_back(canonical_result);
3507 return result;
3508 }
3509
3510 // OutputIterator that records if it was ever assigned to. This
3511 // allows it to be used with std::set_intersection() to check for
3512 // intersection rather than computing the intersection.
3513 struct Check_intersection
3514 {
3515 Check_intersection()
3516 : value_(false)
3517 {}
3518
3519 bool had_intersection() const
3520 { return this->value_; }
3521
3522 Check_intersection& operator++()
3523 { return *this; }
3524
3525 Check_intersection& operator*()
3526 { return *this; }
3527
3528 template<typename T>
3529 Check_intersection& operator=(const T&)
3530 {
3531 this->value_ = true;
3532 return *this;
3533 }
3534
3535 private:
3536 bool value_;
3537 };
3538
3539 // Check candidate_odr_violations_ to find symbols with the same name
3540 // but apparently different definitions (different source-file/line-no
3541 // for each line assigned to the first instruction).
3542
3543 void
3544 Symbol_table::detect_odr_violations(const Task* task,
3545 const char* output_file_name) const
3546 {
3547 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3548 it != candidate_odr_violations_.end();
3549 ++it)
3550 {
3551 const char* const symbol_name = it->first;
3552
3553 std::string first_object_name;
3554 std::vector<std::string> first_object_linenos;
3555
3556 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3557 locs = it->second.begin();
3558 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3559 locs_end = it->second.end();
3560 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3561 {
3562 // Save the line numbers from the first definition to
3563 // compare to the other definitions. Ideally, we'd compare
3564 // every definition to every other, but we don't want to
3565 // take O(N^2) time to do this. This shortcut may cause
3566 // false negatives that appear or disappear depending on the
3567 // link order, but it won't cause false positives.
3568 first_object_name = locs->object->name();
3569 first_object_linenos = this->linenos_from_loc(task, *locs);
3570 }
3571 if (first_object_linenos.empty())
3572 continue;
3573
3574 // Sort by Odr_violation_compare to make std::set_intersection work.
3575 std::string first_object_canonical_result = first_object_linenos.back();
3576 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3577 Odr_violation_compare());
3578
3579 for (; locs != locs_end; ++locs)
3580 {
3581 std::vector<std::string> linenos =
3582 this->linenos_from_loc(task, *locs);
3583 // linenos will be empty if we couldn't parse the debug info.
3584 if (linenos.empty())
3585 continue;
3586 // Sort by Odr_violation_compare to make std::set_intersection work.
3587 gold_assert(!linenos.empty());
3588 std::string second_object_canonical_result = linenos.back();
3589 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3590
3591 Check_intersection intersection_result =
3592 std::set_intersection(first_object_linenos.begin(),
3593 first_object_linenos.end(),
3594 linenos.begin(),
3595 linenos.end(),
3596 Check_intersection(),
3597 Odr_violation_compare());
3598 if (!intersection_result.had_intersection())
3599 {
3600 gold_warning(_("while linking %s: symbol '%s' defined in "
3601 "multiple places (possible ODR violation):"),
3602 output_file_name, demangle(symbol_name).c_str());
3603 // This only prints one location from each definition,
3604 // which may not be the location we expect to intersect
3605 // with another definition. We could print the whole
3606 // set of locations, but that seems too verbose.
3607 fprintf(stderr, _(" %s from %s\n"),
3608 first_object_canonical_result.c_str(),
3609 first_object_name.c_str());
3610 fprintf(stderr, _(" %s from %s\n"),
3611 second_object_canonical_result.c_str(),
3612 locs->object->name().c_str());
3613 // Only print one broken pair, to avoid needing to
3614 // compare against a list of the disjoint definition
3615 // locations we've found so far. (If we kept comparing
3616 // against just the first one, we'd get a lot of
3617 // redundant complaints about the second definition
3618 // location.)
3619 break;
3620 }
3621 }
3622 }
3623 // We only call one_addr2line() in this function, so we can clear its cache.
3624 Dwarf_line_info::clear_addr2line_cache();
3625 }
3626
3627 // Warnings functions.
3628
3629 // Add a new warning.
3630
3631 void
3632 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3633 const std::string& warning)
3634 {
3635 name = symtab->canonicalize_name(name);
3636 this->warnings_[name].set(obj, warning);
3637 }
3638
3639 // Look through the warnings and mark the symbols for which we should
3640 // warn. This is called during Layout::finalize when we know the
3641 // sources for all the symbols.
3642
3643 void
3644 Warnings::note_warnings(Symbol_table* symtab)
3645 {
3646 for (Warning_table::iterator p = this->warnings_.begin();
3647 p != this->warnings_.end();
3648 ++p)
3649 {
3650 Symbol* sym = symtab->lookup(p->first, NULL);
3651 if (sym != NULL
3652 && sym->source() == Symbol::FROM_OBJECT
3653 && sym->object() == p->second.object)
3654 sym->set_has_warning();
3655 }
3656 }
3657
3658 // Issue a warning. This is called when we see a relocation against a
3659 // symbol for which has a warning.
3660
3661 template<int size, bool big_endian>
3662 void
3663 Warnings::issue_warning(const Symbol* sym,
3664 const Relocate_info<size, big_endian>* relinfo,
3665 size_t relnum, off_t reloffset) const
3666 {
3667 gold_assert(sym->has_warning());
3668
3669 // We don't want to issue a warning for a relocation against the
3670 // symbol in the same object file in which the symbol is defined.
3671 if (sym->object() == relinfo->object)
3672 return;
3673
3674 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3675 gold_assert(p != this->warnings_.end());
3676 gold_warning_at_location(relinfo, relnum, reloffset,
3677 "%s", p->second.text.c_str());
3678 }
3679
3680 // Instantiate the templates we need. We could use the configure
3681 // script to restrict this to only the ones needed for implemented
3682 // targets.
3683
3684 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3685 template
3686 void
3687 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3688 #endif
3689
3690 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3691 template
3692 void
3693 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3694 #endif
3695
3696 #ifdef HAVE_TARGET_32_LITTLE
3697 template
3698 void
3699 Symbol_table::add_from_relobj<32, false>(
3700 Sized_relobj_file<32, false>* relobj,
3701 const unsigned char* syms,
3702 size_t count,
3703 size_t symndx_offset,
3704 const char* sym_names,
3705 size_t sym_name_size,
3706 Sized_relobj_file<32, false>::Symbols* sympointers,
3707 size_t* defined);
3708 #endif
3709
3710 #ifdef HAVE_TARGET_32_BIG
3711 template
3712 void
3713 Symbol_table::add_from_relobj<32, true>(
3714 Sized_relobj_file<32, true>* relobj,
3715 const unsigned char* syms,
3716 size_t count,
3717 size_t symndx_offset,
3718 const char* sym_names,
3719 size_t sym_name_size,
3720 Sized_relobj_file<32, true>::Symbols* sympointers,
3721 size_t* defined);
3722 #endif
3723
3724 #ifdef HAVE_TARGET_64_LITTLE
3725 template
3726 void
3727 Symbol_table::add_from_relobj<64, false>(
3728 Sized_relobj_file<64, false>* relobj,
3729 const unsigned char* syms,
3730 size_t count,
3731 size_t symndx_offset,
3732 const char* sym_names,
3733 size_t sym_name_size,
3734 Sized_relobj_file<64, false>::Symbols* sympointers,
3735 size_t* defined);
3736 #endif
3737
3738 #ifdef HAVE_TARGET_64_BIG
3739 template
3740 void
3741 Symbol_table::add_from_relobj<64, true>(
3742 Sized_relobj_file<64, true>* relobj,
3743 const unsigned char* syms,
3744 size_t count,
3745 size_t symndx_offset,
3746 const char* sym_names,
3747 size_t sym_name_size,
3748 Sized_relobj_file<64, true>::Symbols* sympointers,
3749 size_t* defined);
3750 #endif
3751
3752 #ifdef HAVE_TARGET_32_LITTLE
3753 template
3754 Symbol*
3755 Symbol_table::add_from_pluginobj<32, false>(
3756 Sized_pluginobj<32, false>* obj,
3757 const char* name,
3758 const char* ver,
3759 elfcpp::Sym<32, false>* sym);
3760 #endif
3761
3762 #ifdef HAVE_TARGET_32_BIG
3763 template
3764 Symbol*
3765 Symbol_table::add_from_pluginobj<32, true>(
3766 Sized_pluginobj<32, true>* obj,
3767 const char* name,
3768 const char* ver,
3769 elfcpp::Sym<32, true>* sym);
3770 #endif
3771
3772 #ifdef HAVE_TARGET_64_LITTLE
3773 template
3774 Symbol*
3775 Symbol_table::add_from_pluginobj<64, false>(
3776 Sized_pluginobj<64, false>* obj,
3777 const char* name,
3778 const char* ver,
3779 elfcpp::Sym<64, false>* sym);
3780 #endif
3781
3782 #ifdef HAVE_TARGET_64_BIG
3783 template
3784 Symbol*
3785 Symbol_table::add_from_pluginobj<64, true>(
3786 Sized_pluginobj<64, true>* obj,
3787 const char* name,
3788 const char* ver,
3789 elfcpp::Sym<64, true>* sym);
3790 #endif
3791
3792 #ifdef HAVE_TARGET_32_LITTLE
3793 template
3794 void
3795 Symbol_table::add_from_dynobj<32, false>(
3796 Sized_dynobj<32, false>* dynobj,
3797 const unsigned char* syms,
3798 size_t count,
3799 const char* sym_names,
3800 size_t sym_name_size,
3801 const unsigned char* versym,
3802 size_t versym_size,
3803 const std::vector<const char*>* version_map,
3804 Sized_relobj_file<32, false>::Symbols* sympointers,
3805 size_t* defined);
3806 #endif
3807
3808 #ifdef HAVE_TARGET_32_BIG
3809 template
3810 void
3811 Symbol_table::add_from_dynobj<32, true>(
3812 Sized_dynobj<32, true>* dynobj,
3813 const unsigned char* syms,
3814 size_t count,
3815 const char* sym_names,
3816 size_t sym_name_size,
3817 const unsigned char* versym,
3818 size_t versym_size,
3819 const std::vector<const char*>* version_map,
3820 Sized_relobj_file<32, true>::Symbols* sympointers,
3821 size_t* defined);
3822 #endif
3823
3824 #ifdef HAVE_TARGET_64_LITTLE
3825 template
3826 void
3827 Symbol_table::add_from_dynobj<64, false>(
3828 Sized_dynobj<64, false>* dynobj,
3829 const unsigned char* syms,
3830 size_t count,
3831 const char* sym_names,
3832 size_t sym_name_size,
3833 const unsigned char* versym,
3834 size_t versym_size,
3835 const std::vector<const char*>* version_map,
3836 Sized_relobj_file<64, false>::Symbols* sympointers,
3837 size_t* defined);
3838 #endif
3839
3840 #ifdef HAVE_TARGET_64_BIG
3841 template
3842 void
3843 Symbol_table::add_from_dynobj<64, true>(
3844 Sized_dynobj<64, true>* dynobj,
3845 const unsigned char* syms,
3846 size_t count,
3847 const char* sym_names,
3848 size_t sym_name_size,
3849 const unsigned char* versym,
3850 size_t versym_size,
3851 const std::vector<const char*>* version_map,
3852 Sized_relobj_file<64, true>::Symbols* sympointers,
3853 size_t* defined);
3854 #endif
3855
3856 #ifdef HAVE_TARGET_32_LITTLE
3857 template
3858 Sized_symbol<32>*
3859 Symbol_table::add_from_incrobj(
3860 Object* obj,
3861 const char* name,
3862 const char* ver,
3863 elfcpp::Sym<32, false>* sym);
3864 #endif
3865
3866 #ifdef HAVE_TARGET_32_BIG
3867 template
3868 Sized_symbol<32>*
3869 Symbol_table::add_from_incrobj(
3870 Object* obj,
3871 const char* name,
3872 const char* ver,
3873 elfcpp::Sym<32, true>* sym);
3874 #endif
3875
3876 #ifdef HAVE_TARGET_64_LITTLE
3877 template
3878 Sized_symbol<64>*
3879 Symbol_table::add_from_incrobj(
3880 Object* obj,
3881 const char* name,
3882 const char* ver,
3883 elfcpp::Sym<64, false>* sym);
3884 #endif
3885
3886 #ifdef HAVE_TARGET_64_BIG
3887 template
3888 Sized_symbol<64>*
3889 Symbol_table::add_from_incrobj(
3890 Object* obj,
3891 const char* name,
3892 const char* ver,
3893 elfcpp::Sym<64, true>* sym);
3894 #endif
3895
3896 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3897 template
3898 void
3899 Symbol_table::define_with_copy_reloc<32>(
3900 Sized_symbol<32>* sym,
3901 Output_data* posd,
3902 elfcpp::Elf_types<32>::Elf_Addr value);
3903 #endif
3904
3905 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3906 template
3907 void
3908 Symbol_table::define_with_copy_reloc<64>(
3909 Sized_symbol<64>* sym,
3910 Output_data* posd,
3911 elfcpp::Elf_types<64>::Elf_Addr value);
3912 #endif
3913
3914 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3915 template
3916 void
3917 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3918 Output_data* od, Value_type value,
3919 Size_type symsize, elfcpp::STT type,
3920 elfcpp::STB binding,
3921 elfcpp::STV visibility,
3922 unsigned char nonvis,
3923 bool offset_is_from_end,
3924 bool is_predefined);
3925
3926 template
3927 void
3928 Sized_symbol<32>::init_constant(const char* name, const char* version,
3929 Value_type value, Size_type symsize,
3930 elfcpp::STT type, elfcpp::STB binding,
3931 elfcpp::STV visibility, unsigned char nonvis,
3932 bool is_predefined);
3933
3934 template
3935 void
3936 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3937 Value_type value, elfcpp::STT type,
3938 elfcpp::STB binding, elfcpp::STV visibility,
3939 unsigned char nonvis);
3940 #endif
3941
3942 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3943 template
3944 void
3945 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3946 Output_data* od, Value_type value,
3947 Size_type symsize, elfcpp::STT type,
3948 elfcpp::STB binding,
3949 elfcpp::STV visibility,
3950 unsigned char nonvis,
3951 bool offset_is_from_end,
3952 bool is_predefined);
3953
3954 template
3955 void
3956 Sized_symbol<64>::init_constant(const char* name, const char* version,
3957 Value_type value, Size_type symsize,
3958 elfcpp::STT type, elfcpp::STB binding,
3959 elfcpp::STV visibility, unsigned char nonvis,
3960 bool is_predefined);
3961
3962 template
3963 void
3964 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3965 Value_type value, elfcpp::STT type,
3966 elfcpp::STB binding, elfcpp::STV visibility,
3967 unsigned char nonvis);
3968 #endif
3969
3970 #ifdef HAVE_TARGET_32_LITTLE
3971 template
3972 void
3973 Warnings::issue_warning<32, false>(const Symbol* sym,
3974 const Relocate_info<32, false>* relinfo,
3975 size_t relnum, off_t reloffset) const;
3976 #endif
3977
3978 #ifdef HAVE_TARGET_32_BIG
3979 template
3980 void
3981 Warnings::issue_warning<32, true>(const Symbol* sym,
3982 const Relocate_info<32, true>* relinfo,
3983 size_t relnum, off_t reloffset) const;
3984 #endif
3985
3986 #ifdef HAVE_TARGET_64_LITTLE
3987 template
3988 void
3989 Warnings::issue_warning<64, false>(const Symbol* sym,
3990 const Relocate_info<64, false>* relinfo,
3991 size_t relnum, off_t reloffset) const;
3992 #endif
3993
3994 #ifdef HAVE_TARGET_64_BIG
3995 template
3996 void
3997 Warnings::issue_warning<64, true>(const Symbol* sym,
3998 const Relocate_info<64, true>* relinfo,
3999 size_t relnum, off_t reloffset) const;
4000 #endif
4001
4002 } // End namespace gold.
This page took 0.11947 seconds and 5 git commands to generate.