2012-05-25 Sriraman Tallam <tmsriram@google.com>
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Class Symbol_table.
531
532 Symbol_table::Symbol_table(unsigned int count,
533 const Version_script_info& version_script)
534 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535 forwarders_(), commons_(), tls_commons_(), small_commons_(),
536 large_commons_(), forced_locals_(), warnings_(),
537 version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539 namepool_.reserve(count);
540 }
541
542 Symbol_table::~Symbol_table()
543 {
544 }
545
546 // The symbol table key equality function. This is called with
547 // Stringpool keys.
548
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551 const Symbol_table_key& k2) const
552 {
553 return k1.first == k2.first && k1.second == k2.second;
554 }
555
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559 return (parameters->options().icf_enabled()
560 && this->icf_->is_section_folded(obj, shndx));
561 }
562
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565
566 void
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569 for (options::String_set::const_iterator p =
570 parameters->options().undefined_begin();
571 p != parameters->options().undefined_end();
572 ++p)
573 {
574 const char* name = p->c_str();
575 Symbol* sym = this->lookup(name);
576 gold_assert(sym != NULL);
577 if (sym->source() == Symbol::FROM_OBJECT
578 && !sym->object()->is_dynamic())
579 {
580 Relobj* obj = static_cast<Relobj*>(sym->object());
581 bool is_ordinary;
582 unsigned int shndx = sym->shndx(&is_ordinary);
583 if (is_ordinary)
584 {
585 gold_assert(this->gc_ != NULL);
586 this->gc_->worklist().push(Section_id(obj, shndx));
587 }
588 }
589 }
590
591 for (options::String_set::const_iterator p =
592 parameters->options().export_dynamic_symbol_begin();
593 p != parameters->options().export_dynamic_symbol_end();
594 ++p)
595 {
596 const char* name = p->c_str();
597 Symbol* sym = this->lookup(name);
598 gold_assert(sym != NULL);
599 if (sym->source() == Symbol::FROM_OBJECT
600 && !sym->object()->is_dynamic())
601 {
602 Relobj* obj = static_cast<Relobj*>(sym->object());
603 bool is_ordinary;
604 unsigned int shndx = sym->shndx(&is_ordinary);
605 if (is_ordinary)
606 {
607 gold_assert(this->gc_ != NULL);
608 this->gc_->worklist().push(Section_id(obj, shndx));
609 }
610 }
611 }
612
613 for (Script_options::referenced_const_iterator p =
614 layout->script_options()->referenced_begin();
615 p != layout->script_options()->referenced_end();
616 ++p)
617 {
618 Symbol* sym = this->lookup(p->c_str());
619 gold_assert(sym != NULL);
620 if (sym->source() == Symbol::FROM_OBJECT
621 && !sym->object()->is_dynamic())
622 {
623 Relobj* obj = static_cast<Relobj*>(sym->object());
624 bool is_ordinary;
625 unsigned int shndx = sym->shndx(&is_ordinary);
626 if (is_ordinary)
627 {
628 gold_assert(this->gc_ != NULL);
629 this->gc_->worklist().push(Section_id(obj, shndx));
630 }
631 }
632 }
633 }
634
635 void
636 Symbol_table::gc_mark_symbol(Symbol* sym)
637 {
638 // Add the object and section to the work list.
639 Relobj* obj = static_cast<Relobj*>(sym->object());
640 bool is_ordinary;
641 unsigned int shndx = sym->shndx(&is_ordinary);
642 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
643 {
644 gold_assert(this->gc_!= NULL);
645 this->gc_->worklist().push(Section_id(obj, shndx));
646 }
647 }
648
649 // When doing garbage collection, keep symbols that have been seen in
650 // dynamic objects.
651 inline void
652 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
653 {
654 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
655 && !sym->object()->is_dynamic())
656 this->gc_mark_symbol(sym);
657 }
658
659 // Make TO a symbol which forwards to FROM.
660
661 void
662 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
663 {
664 gold_assert(from != to);
665 gold_assert(!from->is_forwarder() && !to->is_forwarder());
666 this->forwarders_[from] = to;
667 from->set_forwarder();
668 }
669
670 // Resolve the forwards from FROM, returning the real symbol.
671
672 Symbol*
673 Symbol_table::resolve_forwards(const Symbol* from) const
674 {
675 gold_assert(from->is_forwarder());
676 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
677 this->forwarders_.find(from);
678 gold_assert(p != this->forwarders_.end());
679 return p->second;
680 }
681
682 // Look up a symbol by name.
683
684 Symbol*
685 Symbol_table::lookup(const char* name, const char* version) const
686 {
687 Stringpool::Key name_key;
688 name = this->namepool_.find(name, &name_key);
689 if (name == NULL)
690 return NULL;
691
692 Stringpool::Key version_key = 0;
693 if (version != NULL)
694 {
695 version = this->namepool_.find(version, &version_key);
696 if (version == NULL)
697 return NULL;
698 }
699
700 Symbol_table_key key(name_key, version_key);
701 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
702 if (p == this->table_.end())
703 return NULL;
704 return p->second;
705 }
706
707 // Resolve a Symbol with another Symbol. This is only used in the
708 // unusual case where there are references to both an unversioned
709 // symbol and a symbol with a version, and we then discover that that
710 // version is the default version. Because this is unusual, we do
711 // this the slow way, by converting back to an ELF symbol.
712
713 template<int size, bool big_endian>
714 void
715 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
716 {
717 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
718 elfcpp::Sym_write<size, big_endian> esym(buf);
719 // We don't bother to set the st_name or the st_shndx field.
720 esym.put_st_value(from->value());
721 esym.put_st_size(from->symsize());
722 esym.put_st_info(from->binding(), from->type());
723 esym.put_st_other(from->visibility(), from->nonvis());
724 bool is_ordinary;
725 unsigned int shndx = from->shndx(&is_ordinary);
726 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
727 from->version());
728 if (from->in_reg())
729 to->set_in_reg();
730 if (from->in_dyn())
731 to->set_in_dyn();
732 if (parameters->options().gc_sections())
733 this->gc_mark_dyn_syms(to);
734 }
735
736 // Record that a symbol is forced to be local by a version script or
737 // by visibility.
738
739 void
740 Symbol_table::force_local(Symbol* sym)
741 {
742 if (!sym->is_defined() && !sym->is_common())
743 return;
744 if (sym->is_forced_local())
745 {
746 // We already got this one.
747 return;
748 }
749 sym->set_is_forced_local();
750 this->forced_locals_.push_back(sym);
751 }
752
753 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
754 // is only called for undefined symbols, when at least one --wrap
755 // option was used.
756
757 const char*
758 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
759 {
760 // For some targets, we need to ignore a specific character when
761 // wrapping, and add it back later.
762 char prefix = '\0';
763 if (name[0] == parameters->target().wrap_char())
764 {
765 prefix = name[0];
766 ++name;
767 }
768
769 if (parameters->options().is_wrap(name))
770 {
771 // Turn NAME into __wrap_NAME.
772 std::string s;
773 if (prefix != '\0')
774 s += prefix;
775 s += "__wrap_";
776 s += name;
777
778 // This will give us both the old and new name in NAMEPOOL_, but
779 // that is OK. Only the versions we need will wind up in the
780 // real string table in the output file.
781 return this->namepool_.add(s.c_str(), true, name_key);
782 }
783
784 const char* const real_prefix = "__real_";
785 const size_t real_prefix_length = strlen(real_prefix);
786 if (strncmp(name, real_prefix, real_prefix_length) == 0
787 && parameters->options().is_wrap(name + real_prefix_length))
788 {
789 // Turn __real_NAME into NAME.
790 std::string s;
791 if (prefix != '\0')
792 s += prefix;
793 s += name + real_prefix_length;
794 return this->namepool_.add(s.c_str(), true, name_key);
795 }
796
797 return name;
798 }
799
800 // This is called when we see a symbol NAME/VERSION, and the symbol
801 // already exists in the symbol table, and VERSION is marked as being
802 // the default version. SYM is the NAME/VERSION symbol we just added.
803 // DEFAULT_IS_NEW is true if this is the first time we have seen the
804 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
805
806 template<int size, bool big_endian>
807 void
808 Symbol_table::define_default_version(Sized_symbol<size>* sym,
809 bool default_is_new,
810 Symbol_table_type::iterator pdef)
811 {
812 if (default_is_new)
813 {
814 // This is the first time we have seen NAME/NULL. Make
815 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
816 // version.
817 pdef->second = sym;
818 sym->set_is_default();
819 }
820 else if (pdef->second == sym)
821 {
822 // NAME/NULL already points to NAME/VERSION. Don't mark the
823 // symbol as the default if it is not already the default.
824 }
825 else
826 {
827 // This is the unfortunate case where we already have entries
828 // for both NAME/VERSION and NAME/NULL. We now see a symbol
829 // NAME/VERSION where VERSION is the default version. We have
830 // already resolved this new symbol with the existing
831 // NAME/VERSION symbol.
832
833 // It's possible that NAME/NULL and NAME/VERSION are both
834 // defined in regular objects. This can only happen if one
835 // object file defines foo and another defines foo@@ver. This
836 // is somewhat obscure, but we call it a multiple definition
837 // error.
838
839 // It's possible that NAME/NULL actually has a version, in which
840 // case it won't be the same as VERSION. This happens with
841 // ver_test_7.so in the testsuite for the symbol t2_2. We see
842 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
843 // then see an unadorned t2_2 in an object file and give it
844 // version VER1 from the version script. This looks like a
845 // default definition for VER1, so it looks like we should merge
846 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
847 // not obvious that this is an error, either. So we just punt.
848
849 // If one of the symbols has non-default visibility, and the
850 // other is defined in a shared object, then they are different
851 // symbols.
852
853 // Otherwise, we just resolve the symbols as though they were
854 // the same.
855
856 if (pdef->second->version() != NULL)
857 gold_assert(pdef->second->version() != sym->version());
858 else if (sym->visibility() != elfcpp::STV_DEFAULT
859 && pdef->second->is_from_dynobj())
860 ;
861 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
862 && sym->is_from_dynobj())
863 ;
864 else
865 {
866 const Sized_symbol<size>* symdef;
867 symdef = this->get_sized_symbol<size>(pdef->second);
868 Symbol_table::resolve<size, big_endian>(sym, symdef);
869 this->make_forwarder(pdef->second, sym);
870 pdef->second = sym;
871 sym->set_is_default();
872 }
873 }
874 }
875
876 // Add one symbol from OBJECT to the symbol table. NAME is symbol
877 // name and VERSION is the version; both are canonicalized. DEF is
878 // whether this is the default version. ST_SHNDX is the symbol's
879 // section index; IS_ORDINARY is whether this is a normal section
880 // rather than a special code.
881
882 // If IS_DEFAULT_VERSION is true, then this is the definition of a
883 // default version of a symbol. That means that any lookup of
884 // NAME/NULL and any lookup of NAME/VERSION should always return the
885 // same symbol. This is obvious for references, but in particular we
886 // want to do this for definitions: overriding NAME/NULL should also
887 // override NAME/VERSION. If we don't do that, it would be very hard
888 // to override functions in a shared library which uses versioning.
889
890 // We implement this by simply making both entries in the hash table
891 // point to the same Symbol structure. That is easy enough if this is
892 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
893 // that we have seen both already, in which case they will both have
894 // independent entries in the symbol table. We can't simply change
895 // the symbol table entry, because we have pointers to the entries
896 // attached to the object files. So we mark the entry attached to the
897 // object file as a forwarder, and record it in the forwarders_ map.
898 // Note that entries in the hash table will never be marked as
899 // forwarders.
900 //
901 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
902 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
903 // for a special section code. ST_SHNDX may be modified if the symbol
904 // is defined in a section being discarded.
905
906 template<int size, bool big_endian>
907 Sized_symbol<size>*
908 Symbol_table::add_from_object(Object* object,
909 const char* name,
910 Stringpool::Key name_key,
911 const char* version,
912 Stringpool::Key version_key,
913 bool is_default_version,
914 const elfcpp::Sym<size, big_endian>& sym,
915 unsigned int st_shndx,
916 bool is_ordinary,
917 unsigned int orig_st_shndx)
918 {
919 // Print a message if this symbol is being traced.
920 if (parameters->options().is_trace_symbol(name))
921 {
922 if (orig_st_shndx == elfcpp::SHN_UNDEF)
923 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
924 else
925 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
926 }
927
928 // For an undefined symbol, we may need to adjust the name using
929 // --wrap.
930 if (orig_st_shndx == elfcpp::SHN_UNDEF
931 && parameters->options().any_wrap())
932 {
933 const char* wrap_name = this->wrap_symbol(name, &name_key);
934 if (wrap_name != name)
935 {
936 // If we see a reference to malloc with version GLIBC_2.0,
937 // and we turn it into a reference to __wrap_malloc, then we
938 // discard the version number. Otherwise the user would be
939 // required to specify the correct version for
940 // __wrap_malloc.
941 version = NULL;
942 version_key = 0;
943 name = wrap_name;
944 }
945 }
946
947 Symbol* const snull = NULL;
948 std::pair<typename Symbol_table_type::iterator, bool> ins =
949 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
950 snull));
951
952 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
953 std::make_pair(this->table_.end(), false);
954 if (is_default_version)
955 {
956 const Stringpool::Key vnull_key = 0;
957 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
958 vnull_key),
959 snull));
960 }
961
962 // ins.first: an iterator, which is a pointer to a pair.
963 // ins.first->first: the key (a pair of name and version).
964 // ins.first->second: the value (Symbol*).
965 // ins.second: true if new entry was inserted, false if not.
966
967 Sized_symbol<size>* ret;
968 bool was_undefined;
969 bool was_common;
970 if (!ins.second)
971 {
972 // We already have an entry for NAME/VERSION.
973 ret = this->get_sized_symbol<size>(ins.first->second);
974 gold_assert(ret != NULL);
975
976 was_undefined = ret->is_undefined();
977 was_common = ret->is_common();
978
979 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
980 version);
981 if (parameters->options().gc_sections())
982 this->gc_mark_dyn_syms(ret);
983
984 if (is_default_version)
985 this->define_default_version<size, big_endian>(ret, insdefault.second,
986 insdefault.first);
987 }
988 else
989 {
990 // This is the first time we have seen NAME/VERSION.
991 gold_assert(ins.first->second == NULL);
992
993 if (is_default_version && !insdefault.second)
994 {
995 // We already have an entry for NAME/NULL. If we override
996 // it, then change it to NAME/VERSION.
997 ret = this->get_sized_symbol<size>(insdefault.first->second);
998
999 was_undefined = ret->is_undefined();
1000 was_common = ret->is_common();
1001
1002 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1003 version);
1004 if (parameters->options().gc_sections())
1005 this->gc_mark_dyn_syms(ret);
1006 ins.first->second = ret;
1007 }
1008 else
1009 {
1010 was_undefined = false;
1011 was_common = false;
1012
1013 Sized_target<size, big_endian>* target =
1014 parameters->sized_target<size, big_endian>();
1015 if (!target->has_make_symbol())
1016 ret = new Sized_symbol<size>();
1017 else
1018 {
1019 ret = target->make_symbol();
1020 if (ret == NULL)
1021 {
1022 // This means that we don't want a symbol table
1023 // entry after all.
1024 if (!is_default_version)
1025 this->table_.erase(ins.first);
1026 else
1027 {
1028 this->table_.erase(insdefault.first);
1029 // Inserting INSDEFAULT invalidated INS.
1030 this->table_.erase(std::make_pair(name_key,
1031 version_key));
1032 }
1033 return NULL;
1034 }
1035 }
1036
1037 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1038
1039 ins.first->second = ret;
1040 if (is_default_version)
1041 {
1042 // This is the first time we have seen NAME/NULL. Point
1043 // it at the new entry for NAME/VERSION.
1044 gold_assert(insdefault.second);
1045 insdefault.first->second = ret;
1046 }
1047 }
1048
1049 if (is_default_version)
1050 ret->set_is_default();
1051 }
1052
1053 // Record every time we see a new undefined symbol, to speed up
1054 // archive groups.
1055 if (!was_undefined && ret->is_undefined())
1056 {
1057 ++this->saw_undefined_;
1058 if (parameters->options().has_plugins())
1059 parameters->options().plugins()->new_undefined_symbol(ret);
1060 }
1061
1062 // Keep track of common symbols, to speed up common symbol
1063 // allocation.
1064 if (!was_common && ret->is_common())
1065 {
1066 if (ret->type() == elfcpp::STT_TLS)
1067 this->tls_commons_.push_back(ret);
1068 else if (!is_ordinary
1069 && st_shndx == parameters->target().small_common_shndx())
1070 this->small_commons_.push_back(ret);
1071 else if (!is_ordinary
1072 && st_shndx == parameters->target().large_common_shndx())
1073 this->large_commons_.push_back(ret);
1074 else
1075 this->commons_.push_back(ret);
1076 }
1077
1078 // If we're not doing a relocatable link, then any symbol with
1079 // hidden or internal visibility is local.
1080 if ((ret->visibility() == elfcpp::STV_HIDDEN
1081 || ret->visibility() == elfcpp::STV_INTERNAL)
1082 && (ret->binding() == elfcpp::STB_GLOBAL
1083 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1084 || ret->binding() == elfcpp::STB_WEAK)
1085 && !parameters->options().relocatable())
1086 this->force_local(ret);
1087
1088 return ret;
1089 }
1090
1091 // Add all the symbols in a relocatable object to the hash table.
1092
1093 template<int size, bool big_endian>
1094 void
1095 Symbol_table::add_from_relobj(
1096 Sized_relobj_file<size, big_endian>* relobj,
1097 const unsigned char* syms,
1098 size_t count,
1099 size_t symndx_offset,
1100 const char* sym_names,
1101 size_t sym_name_size,
1102 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1103 size_t* defined)
1104 {
1105 *defined = 0;
1106
1107 gold_assert(size == parameters->target().get_size());
1108
1109 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1110
1111 const bool just_symbols = relobj->just_symbols();
1112
1113 const unsigned char* p = syms;
1114 for (size_t i = 0; i < count; ++i, p += sym_size)
1115 {
1116 (*sympointers)[i] = NULL;
1117
1118 elfcpp::Sym<size, big_endian> sym(p);
1119
1120 unsigned int st_name = sym.get_st_name();
1121 if (st_name >= sym_name_size)
1122 {
1123 relobj->error(_("bad global symbol name offset %u at %zu"),
1124 st_name, i);
1125 continue;
1126 }
1127
1128 const char* name = sym_names + st_name;
1129
1130 bool is_ordinary;
1131 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1132 sym.get_st_shndx(),
1133 &is_ordinary);
1134 unsigned int orig_st_shndx = st_shndx;
1135 if (!is_ordinary)
1136 orig_st_shndx = elfcpp::SHN_UNDEF;
1137
1138 if (st_shndx != elfcpp::SHN_UNDEF)
1139 ++*defined;
1140
1141 // A symbol defined in a section which we are not including must
1142 // be treated as an undefined symbol.
1143 bool is_defined_in_discarded_section = false;
1144 if (st_shndx != elfcpp::SHN_UNDEF
1145 && is_ordinary
1146 && !relobj->is_section_included(st_shndx)
1147 && !this->is_section_folded(relobj, st_shndx))
1148 {
1149 st_shndx = elfcpp::SHN_UNDEF;
1150 is_defined_in_discarded_section = true;
1151 }
1152
1153 // In an object file, an '@' in the name separates the symbol
1154 // name from the version name. If there are two '@' characters,
1155 // this is the default version.
1156 const char* ver = strchr(name, '@');
1157 Stringpool::Key ver_key = 0;
1158 int namelen = 0;
1159 // IS_DEFAULT_VERSION: is the version default?
1160 // IS_FORCED_LOCAL: is the symbol forced local?
1161 bool is_default_version = false;
1162 bool is_forced_local = false;
1163
1164 // FIXME: For incremental links, we don't store version information,
1165 // so we need to ignore version symbols for now.
1166 if (parameters->incremental_update() && ver != NULL)
1167 {
1168 namelen = ver - name;
1169 ver = NULL;
1170 }
1171
1172 if (ver != NULL)
1173 {
1174 // The symbol name is of the form foo@VERSION or foo@@VERSION
1175 namelen = ver - name;
1176 ++ver;
1177 if (*ver == '@')
1178 {
1179 is_default_version = true;
1180 ++ver;
1181 }
1182 ver = this->namepool_.add(ver, true, &ver_key);
1183 }
1184 // We don't want to assign a version to an undefined symbol,
1185 // even if it is listed in the version script. FIXME: What
1186 // about a common symbol?
1187 else
1188 {
1189 namelen = strlen(name);
1190 if (!this->version_script_.empty()
1191 && st_shndx != elfcpp::SHN_UNDEF)
1192 {
1193 // The symbol name did not have a version, but the
1194 // version script may assign a version anyway.
1195 std::string version;
1196 bool is_global;
1197 if (this->version_script_.get_symbol_version(name, &version,
1198 &is_global))
1199 {
1200 if (!is_global)
1201 is_forced_local = true;
1202 else if (!version.empty())
1203 {
1204 ver = this->namepool_.add_with_length(version.c_str(),
1205 version.length(),
1206 true,
1207 &ver_key);
1208 is_default_version = true;
1209 }
1210 }
1211 }
1212 }
1213
1214 elfcpp::Sym<size, big_endian>* psym = &sym;
1215 unsigned char symbuf[sym_size];
1216 elfcpp::Sym<size, big_endian> sym2(symbuf);
1217 if (just_symbols)
1218 {
1219 memcpy(symbuf, p, sym_size);
1220 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1221 if (orig_st_shndx != elfcpp::SHN_UNDEF
1222 && is_ordinary
1223 && relobj->e_type() == elfcpp::ET_REL)
1224 {
1225 // Symbol values in relocatable object files are section
1226 // relative. This is normally what we want, but since here
1227 // we are converting the symbol to absolute we need to add
1228 // the section address. The section address in an object
1229 // file is normally zero, but people can use a linker
1230 // script to change it.
1231 sw.put_st_value(sym.get_st_value()
1232 + relobj->section_address(orig_st_shndx));
1233 }
1234 st_shndx = elfcpp::SHN_ABS;
1235 is_ordinary = false;
1236 psym = &sym2;
1237 }
1238
1239 // Fix up visibility if object has no-export set.
1240 if (relobj->no_export()
1241 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1242 {
1243 // We may have copied symbol already above.
1244 if (psym != &sym2)
1245 {
1246 memcpy(symbuf, p, sym_size);
1247 psym = &sym2;
1248 }
1249
1250 elfcpp::STV visibility = sym2.get_st_visibility();
1251 if (visibility == elfcpp::STV_DEFAULT
1252 || visibility == elfcpp::STV_PROTECTED)
1253 {
1254 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1255 unsigned char nonvis = sym2.get_st_nonvis();
1256 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1257 }
1258 }
1259
1260 Stringpool::Key name_key;
1261 name = this->namepool_.add_with_length(name, namelen, true,
1262 &name_key);
1263
1264 Sized_symbol<size>* res;
1265 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1266 is_default_version, *psym, st_shndx,
1267 is_ordinary, orig_st_shndx);
1268
1269 if (is_forced_local)
1270 this->force_local(res);
1271
1272 // Do not treat this symbol as garbage if this symbol will be
1273 // exported to the dynamic symbol table. This is true when
1274 // building a shared library or using --export-dynamic and
1275 // the symbol is externally visible.
1276 if (parameters->options().gc_sections()
1277 && res->is_externally_visible()
1278 && !res->is_from_dynobj()
1279 && (parameters->options().shared()
1280 || parameters->options().export_dynamic()))
1281 this->gc_mark_symbol(res);
1282
1283 if (is_defined_in_discarded_section)
1284 res->set_is_defined_in_discarded_section();
1285
1286 (*sympointers)[i] = res;
1287 }
1288 }
1289
1290 // Add a symbol from a plugin-claimed file.
1291
1292 template<int size, bool big_endian>
1293 Symbol*
1294 Symbol_table::add_from_pluginobj(
1295 Sized_pluginobj<size, big_endian>* obj,
1296 const char* name,
1297 const char* ver,
1298 elfcpp::Sym<size, big_endian>* sym)
1299 {
1300 unsigned int st_shndx = sym->get_st_shndx();
1301 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1302
1303 Stringpool::Key ver_key = 0;
1304 bool is_default_version = false;
1305 bool is_forced_local = false;
1306
1307 if (ver != NULL)
1308 {
1309 ver = this->namepool_.add(ver, true, &ver_key);
1310 }
1311 // We don't want to assign a version to an undefined symbol,
1312 // even if it is listed in the version script. FIXME: What
1313 // about a common symbol?
1314 else
1315 {
1316 if (!this->version_script_.empty()
1317 && st_shndx != elfcpp::SHN_UNDEF)
1318 {
1319 // The symbol name did not have a version, but the
1320 // version script may assign a version anyway.
1321 std::string version;
1322 bool is_global;
1323 if (this->version_script_.get_symbol_version(name, &version,
1324 &is_global))
1325 {
1326 if (!is_global)
1327 is_forced_local = true;
1328 else if (!version.empty())
1329 {
1330 ver = this->namepool_.add_with_length(version.c_str(),
1331 version.length(),
1332 true,
1333 &ver_key);
1334 is_default_version = true;
1335 }
1336 }
1337 }
1338 }
1339
1340 Stringpool::Key name_key;
1341 name = this->namepool_.add(name, true, &name_key);
1342
1343 Sized_symbol<size>* res;
1344 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1345 is_default_version, *sym, st_shndx,
1346 is_ordinary, st_shndx);
1347
1348 if (is_forced_local)
1349 this->force_local(res);
1350
1351 return res;
1352 }
1353
1354 // Add all the symbols in a dynamic object to the hash table.
1355
1356 template<int size, bool big_endian>
1357 void
1358 Symbol_table::add_from_dynobj(
1359 Sized_dynobj<size, big_endian>* dynobj,
1360 const unsigned char* syms,
1361 size_t count,
1362 const char* sym_names,
1363 size_t sym_name_size,
1364 const unsigned char* versym,
1365 size_t versym_size,
1366 const std::vector<const char*>* version_map,
1367 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1368 size_t* defined)
1369 {
1370 *defined = 0;
1371
1372 gold_assert(size == parameters->target().get_size());
1373
1374 if (dynobj->just_symbols())
1375 {
1376 gold_error(_("--just-symbols does not make sense with a shared object"));
1377 return;
1378 }
1379
1380 // FIXME: For incremental links, we don't store version information,
1381 // so we need to ignore version symbols for now.
1382 if (parameters->incremental_update())
1383 versym = NULL;
1384
1385 if (versym != NULL && versym_size / 2 < count)
1386 {
1387 dynobj->error(_("too few symbol versions"));
1388 return;
1389 }
1390
1391 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1392
1393 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1394 // weak aliases. This is necessary because if the dynamic object
1395 // provides the same variable under two names, one of which is a
1396 // weak definition, and the regular object refers to the weak
1397 // definition, we have to put both the weak definition and the
1398 // strong definition into the dynamic symbol table. Given a weak
1399 // definition, the only way that we can find the corresponding
1400 // strong definition, if any, is to search the symbol table.
1401 std::vector<Sized_symbol<size>*> object_symbols;
1402
1403 const unsigned char* p = syms;
1404 const unsigned char* vs = versym;
1405 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1406 {
1407 elfcpp::Sym<size, big_endian> sym(p);
1408
1409 if (sympointers != NULL)
1410 (*sympointers)[i] = NULL;
1411
1412 // Ignore symbols with local binding or that have
1413 // internal or hidden visibility.
1414 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1415 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1416 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1417 continue;
1418
1419 // A protected symbol in a shared library must be treated as a
1420 // normal symbol when viewed from outside the shared library.
1421 // Implement this by overriding the visibility here.
1422 elfcpp::Sym<size, big_endian>* psym = &sym;
1423 unsigned char symbuf[sym_size];
1424 elfcpp::Sym<size, big_endian> sym2(symbuf);
1425 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1426 {
1427 memcpy(symbuf, p, sym_size);
1428 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1429 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1430 psym = &sym2;
1431 }
1432
1433 unsigned int st_name = psym->get_st_name();
1434 if (st_name >= sym_name_size)
1435 {
1436 dynobj->error(_("bad symbol name offset %u at %zu"),
1437 st_name, i);
1438 continue;
1439 }
1440
1441 const char* name = sym_names + st_name;
1442
1443 bool is_ordinary;
1444 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1445 &is_ordinary);
1446
1447 if (st_shndx != elfcpp::SHN_UNDEF)
1448 ++*defined;
1449
1450 Sized_symbol<size>* res;
1451
1452 if (versym == NULL)
1453 {
1454 Stringpool::Key name_key;
1455 name = this->namepool_.add(name, true, &name_key);
1456 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1457 false, *psym, st_shndx, is_ordinary,
1458 st_shndx);
1459 }
1460 else
1461 {
1462 // Read the version information.
1463
1464 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1465
1466 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1467 v &= elfcpp::VERSYM_VERSION;
1468
1469 // The Sun documentation says that V can be VER_NDX_LOCAL,
1470 // or VER_NDX_GLOBAL, or a version index. The meaning of
1471 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1472 // The old GNU linker will happily generate VER_NDX_LOCAL
1473 // for an undefined symbol. I don't know what the Sun
1474 // linker will generate.
1475
1476 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1477 && st_shndx != elfcpp::SHN_UNDEF)
1478 {
1479 // This symbol should not be visible outside the object.
1480 continue;
1481 }
1482
1483 // At this point we are definitely going to add this symbol.
1484 Stringpool::Key name_key;
1485 name = this->namepool_.add(name, true, &name_key);
1486
1487 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1488 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1489 {
1490 // This symbol does not have a version.
1491 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1492 false, *psym, st_shndx, is_ordinary,
1493 st_shndx);
1494 }
1495 else
1496 {
1497 if (v >= version_map->size())
1498 {
1499 dynobj->error(_("versym for symbol %zu out of range: %u"),
1500 i, v);
1501 continue;
1502 }
1503
1504 const char* version = (*version_map)[v];
1505 if (version == NULL)
1506 {
1507 dynobj->error(_("versym for symbol %zu has no name: %u"),
1508 i, v);
1509 continue;
1510 }
1511
1512 Stringpool::Key version_key;
1513 version = this->namepool_.add(version, true, &version_key);
1514
1515 // If this is an absolute symbol, and the version name
1516 // and symbol name are the same, then this is the
1517 // version definition symbol. These symbols exist to
1518 // support using -u to pull in particular versions. We
1519 // do not want to record a version for them.
1520 if (st_shndx == elfcpp::SHN_ABS
1521 && !is_ordinary
1522 && name_key == version_key)
1523 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1524 false, *psym, st_shndx, is_ordinary,
1525 st_shndx);
1526 else
1527 {
1528 const bool is_default_version =
1529 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1530 res = this->add_from_object(dynobj, name, name_key, version,
1531 version_key, is_default_version,
1532 *psym, st_shndx,
1533 is_ordinary, st_shndx);
1534 }
1535 }
1536 }
1537
1538 // Note that it is possible that RES was overridden by an
1539 // earlier object, in which case it can't be aliased here.
1540 if (st_shndx != elfcpp::SHN_UNDEF
1541 && is_ordinary
1542 && psym->get_st_type() == elfcpp::STT_OBJECT
1543 && res->source() == Symbol::FROM_OBJECT
1544 && res->object() == dynobj)
1545 object_symbols.push_back(res);
1546
1547 if (sympointers != NULL)
1548 (*sympointers)[i] = res;
1549 }
1550
1551 this->record_weak_aliases(&object_symbols);
1552 }
1553
1554 // Add a symbol from a incremental object file.
1555
1556 template<int size, bool big_endian>
1557 Sized_symbol<size>*
1558 Symbol_table::add_from_incrobj(
1559 Object* obj,
1560 const char* name,
1561 const char* ver,
1562 elfcpp::Sym<size, big_endian>* sym)
1563 {
1564 unsigned int st_shndx = sym->get_st_shndx();
1565 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1566
1567 Stringpool::Key ver_key = 0;
1568 bool is_default_version = false;
1569 bool is_forced_local = false;
1570
1571 Stringpool::Key name_key;
1572 name = this->namepool_.add(name, true, &name_key);
1573
1574 Sized_symbol<size>* res;
1575 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1576 is_default_version, *sym, st_shndx,
1577 is_ordinary, st_shndx);
1578
1579 if (is_forced_local)
1580 this->force_local(res);
1581
1582 return res;
1583 }
1584
1585 // This is used to sort weak aliases. We sort them first by section
1586 // index, then by offset, then by weak ahead of strong.
1587
1588 template<int size>
1589 class Weak_alias_sorter
1590 {
1591 public:
1592 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1593 };
1594
1595 template<int size>
1596 bool
1597 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1598 const Sized_symbol<size>* s2) const
1599 {
1600 bool is_ordinary;
1601 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1602 gold_assert(is_ordinary);
1603 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1604 gold_assert(is_ordinary);
1605 if (s1_shndx != s2_shndx)
1606 return s1_shndx < s2_shndx;
1607
1608 if (s1->value() != s2->value())
1609 return s1->value() < s2->value();
1610 if (s1->binding() != s2->binding())
1611 {
1612 if (s1->binding() == elfcpp::STB_WEAK)
1613 return true;
1614 if (s2->binding() == elfcpp::STB_WEAK)
1615 return false;
1616 }
1617 return std::string(s1->name()) < std::string(s2->name());
1618 }
1619
1620 // SYMBOLS is a list of object symbols from a dynamic object. Look
1621 // for any weak aliases, and record them so that if we add the weak
1622 // alias to the dynamic symbol table, we also add the corresponding
1623 // strong symbol.
1624
1625 template<int size>
1626 void
1627 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1628 {
1629 // Sort the vector by section index, then by offset, then by weak
1630 // ahead of strong.
1631 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1632
1633 // Walk through the vector. For each weak definition, record
1634 // aliases.
1635 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1636 symbols->begin();
1637 p != symbols->end();
1638 ++p)
1639 {
1640 if ((*p)->binding() != elfcpp::STB_WEAK)
1641 continue;
1642
1643 // Build a circular list of weak aliases. Each symbol points to
1644 // the next one in the circular list.
1645
1646 Sized_symbol<size>* from_sym = *p;
1647 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1648 for (q = p + 1; q != symbols->end(); ++q)
1649 {
1650 bool dummy;
1651 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1652 || (*q)->value() != from_sym->value())
1653 break;
1654
1655 this->weak_aliases_[from_sym] = *q;
1656 from_sym->set_has_alias();
1657 from_sym = *q;
1658 }
1659
1660 if (from_sym != *p)
1661 {
1662 this->weak_aliases_[from_sym] = *p;
1663 from_sym->set_has_alias();
1664 }
1665
1666 p = q - 1;
1667 }
1668 }
1669
1670 // Create and return a specially defined symbol. If ONLY_IF_REF is
1671 // true, then only create the symbol if there is a reference to it.
1672 // If this does not return NULL, it sets *POLDSYM to the existing
1673 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1674 // resolve the newly created symbol to the old one. This
1675 // canonicalizes *PNAME and *PVERSION.
1676
1677 template<int size, bool big_endian>
1678 Sized_symbol<size>*
1679 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1680 bool only_if_ref,
1681 Sized_symbol<size>** poldsym,
1682 bool* resolve_oldsym)
1683 {
1684 *resolve_oldsym = false;
1685 *poldsym = NULL;
1686
1687 // If the caller didn't give us a version, see if we get one from
1688 // the version script.
1689 std::string v;
1690 bool is_default_version = false;
1691 if (*pversion == NULL)
1692 {
1693 bool is_global;
1694 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1695 {
1696 if (is_global && !v.empty())
1697 {
1698 *pversion = v.c_str();
1699 // If we get the version from a version script, then we
1700 // are also the default version.
1701 is_default_version = true;
1702 }
1703 }
1704 }
1705
1706 Symbol* oldsym;
1707 Sized_symbol<size>* sym;
1708
1709 bool add_to_table = false;
1710 typename Symbol_table_type::iterator add_loc = this->table_.end();
1711 bool add_def_to_table = false;
1712 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1713
1714 if (only_if_ref)
1715 {
1716 oldsym = this->lookup(*pname, *pversion);
1717 if (oldsym == NULL && is_default_version)
1718 oldsym = this->lookup(*pname, NULL);
1719 if (oldsym == NULL || !oldsym->is_undefined())
1720 return NULL;
1721
1722 *pname = oldsym->name();
1723 if (is_default_version)
1724 *pversion = this->namepool_.add(*pversion, true, NULL);
1725 else
1726 *pversion = oldsym->version();
1727 }
1728 else
1729 {
1730 // Canonicalize NAME and VERSION.
1731 Stringpool::Key name_key;
1732 *pname = this->namepool_.add(*pname, true, &name_key);
1733
1734 Stringpool::Key version_key = 0;
1735 if (*pversion != NULL)
1736 *pversion = this->namepool_.add(*pversion, true, &version_key);
1737
1738 Symbol* const snull = NULL;
1739 std::pair<typename Symbol_table_type::iterator, bool> ins =
1740 this->table_.insert(std::make_pair(std::make_pair(name_key,
1741 version_key),
1742 snull));
1743
1744 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1745 std::make_pair(this->table_.end(), false);
1746 if (is_default_version)
1747 {
1748 const Stringpool::Key vnull = 0;
1749 insdefault =
1750 this->table_.insert(std::make_pair(std::make_pair(name_key,
1751 vnull),
1752 snull));
1753 }
1754
1755 if (!ins.second)
1756 {
1757 // We already have a symbol table entry for NAME/VERSION.
1758 oldsym = ins.first->second;
1759 gold_assert(oldsym != NULL);
1760
1761 if (is_default_version)
1762 {
1763 Sized_symbol<size>* soldsym =
1764 this->get_sized_symbol<size>(oldsym);
1765 this->define_default_version<size, big_endian>(soldsym,
1766 insdefault.second,
1767 insdefault.first);
1768 }
1769 }
1770 else
1771 {
1772 // We haven't seen this symbol before.
1773 gold_assert(ins.first->second == NULL);
1774
1775 add_to_table = true;
1776 add_loc = ins.first;
1777
1778 if (is_default_version && !insdefault.second)
1779 {
1780 // We are adding NAME/VERSION, and it is the default
1781 // version. We already have an entry for NAME/NULL.
1782 oldsym = insdefault.first->second;
1783 *resolve_oldsym = true;
1784 }
1785 else
1786 {
1787 oldsym = NULL;
1788
1789 if (is_default_version)
1790 {
1791 add_def_to_table = true;
1792 add_def_loc = insdefault.first;
1793 }
1794 }
1795 }
1796 }
1797
1798 const Target& target = parameters->target();
1799 if (!target.has_make_symbol())
1800 sym = new Sized_symbol<size>();
1801 else
1802 {
1803 Sized_target<size, big_endian>* sized_target =
1804 parameters->sized_target<size, big_endian>();
1805 sym = sized_target->make_symbol();
1806 if (sym == NULL)
1807 return NULL;
1808 }
1809
1810 if (add_to_table)
1811 add_loc->second = sym;
1812 else
1813 gold_assert(oldsym != NULL);
1814
1815 if (add_def_to_table)
1816 add_def_loc->second = sym;
1817
1818 *poldsym = this->get_sized_symbol<size>(oldsym);
1819
1820 return sym;
1821 }
1822
1823 // Define a symbol based on an Output_data.
1824
1825 Symbol*
1826 Symbol_table::define_in_output_data(const char* name,
1827 const char* version,
1828 Defined defined,
1829 Output_data* od,
1830 uint64_t value,
1831 uint64_t symsize,
1832 elfcpp::STT type,
1833 elfcpp::STB binding,
1834 elfcpp::STV visibility,
1835 unsigned char nonvis,
1836 bool offset_is_from_end,
1837 bool only_if_ref)
1838 {
1839 if (parameters->target().get_size() == 32)
1840 {
1841 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1842 return this->do_define_in_output_data<32>(name, version, defined, od,
1843 value, symsize, type, binding,
1844 visibility, nonvis,
1845 offset_is_from_end,
1846 only_if_ref);
1847 #else
1848 gold_unreachable();
1849 #endif
1850 }
1851 else if (parameters->target().get_size() == 64)
1852 {
1853 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1854 return this->do_define_in_output_data<64>(name, version, defined, od,
1855 value, symsize, type, binding,
1856 visibility, nonvis,
1857 offset_is_from_end,
1858 only_if_ref);
1859 #else
1860 gold_unreachable();
1861 #endif
1862 }
1863 else
1864 gold_unreachable();
1865 }
1866
1867 // Define a symbol in an Output_data, sized version.
1868
1869 template<int size>
1870 Sized_symbol<size>*
1871 Symbol_table::do_define_in_output_data(
1872 const char* name,
1873 const char* version,
1874 Defined defined,
1875 Output_data* od,
1876 typename elfcpp::Elf_types<size>::Elf_Addr value,
1877 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1878 elfcpp::STT type,
1879 elfcpp::STB binding,
1880 elfcpp::STV visibility,
1881 unsigned char nonvis,
1882 bool offset_is_from_end,
1883 bool only_if_ref)
1884 {
1885 Sized_symbol<size>* sym;
1886 Sized_symbol<size>* oldsym;
1887 bool resolve_oldsym;
1888
1889 if (parameters->target().is_big_endian())
1890 {
1891 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1892 sym = this->define_special_symbol<size, true>(&name, &version,
1893 only_if_ref, &oldsym,
1894 &resolve_oldsym);
1895 #else
1896 gold_unreachable();
1897 #endif
1898 }
1899 else
1900 {
1901 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1902 sym = this->define_special_symbol<size, false>(&name, &version,
1903 only_if_ref, &oldsym,
1904 &resolve_oldsym);
1905 #else
1906 gold_unreachable();
1907 #endif
1908 }
1909
1910 if (sym == NULL)
1911 return NULL;
1912
1913 sym->init_output_data(name, version, od, value, symsize, type, binding,
1914 visibility, nonvis, offset_is_from_end,
1915 defined == PREDEFINED);
1916
1917 if (oldsym == NULL)
1918 {
1919 if (binding == elfcpp::STB_LOCAL
1920 || this->version_script_.symbol_is_local(name))
1921 this->force_local(sym);
1922 else if (version != NULL)
1923 sym->set_is_default();
1924 return sym;
1925 }
1926
1927 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1928 this->override_with_special(oldsym, sym);
1929
1930 if (resolve_oldsym)
1931 return sym;
1932 else
1933 {
1934 delete sym;
1935 return oldsym;
1936 }
1937 }
1938
1939 // Define a symbol based on an Output_segment.
1940
1941 Symbol*
1942 Symbol_table::define_in_output_segment(const char* name,
1943 const char* version,
1944 Defined defined,
1945 Output_segment* os,
1946 uint64_t value,
1947 uint64_t symsize,
1948 elfcpp::STT type,
1949 elfcpp::STB binding,
1950 elfcpp::STV visibility,
1951 unsigned char nonvis,
1952 Symbol::Segment_offset_base offset_base,
1953 bool only_if_ref)
1954 {
1955 if (parameters->target().get_size() == 32)
1956 {
1957 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1958 return this->do_define_in_output_segment<32>(name, version, defined, os,
1959 value, symsize, type,
1960 binding, visibility, nonvis,
1961 offset_base, only_if_ref);
1962 #else
1963 gold_unreachable();
1964 #endif
1965 }
1966 else if (parameters->target().get_size() == 64)
1967 {
1968 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1969 return this->do_define_in_output_segment<64>(name, version, defined, os,
1970 value, symsize, type,
1971 binding, visibility, nonvis,
1972 offset_base, only_if_ref);
1973 #else
1974 gold_unreachable();
1975 #endif
1976 }
1977 else
1978 gold_unreachable();
1979 }
1980
1981 // Define a symbol in an Output_segment, sized version.
1982
1983 template<int size>
1984 Sized_symbol<size>*
1985 Symbol_table::do_define_in_output_segment(
1986 const char* name,
1987 const char* version,
1988 Defined defined,
1989 Output_segment* os,
1990 typename elfcpp::Elf_types<size>::Elf_Addr value,
1991 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1992 elfcpp::STT type,
1993 elfcpp::STB binding,
1994 elfcpp::STV visibility,
1995 unsigned char nonvis,
1996 Symbol::Segment_offset_base offset_base,
1997 bool only_if_ref)
1998 {
1999 Sized_symbol<size>* sym;
2000 Sized_symbol<size>* oldsym;
2001 bool resolve_oldsym;
2002
2003 if (parameters->target().is_big_endian())
2004 {
2005 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2006 sym = this->define_special_symbol<size, true>(&name, &version,
2007 only_if_ref, &oldsym,
2008 &resolve_oldsym);
2009 #else
2010 gold_unreachable();
2011 #endif
2012 }
2013 else
2014 {
2015 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2016 sym = this->define_special_symbol<size, false>(&name, &version,
2017 only_if_ref, &oldsym,
2018 &resolve_oldsym);
2019 #else
2020 gold_unreachable();
2021 #endif
2022 }
2023
2024 if (sym == NULL)
2025 return NULL;
2026
2027 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2028 visibility, nonvis, offset_base,
2029 defined == PREDEFINED);
2030
2031 if (oldsym == NULL)
2032 {
2033 if (binding == elfcpp::STB_LOCAL
2034 || this->version_script_.symbol_is_local(name))
2035 this->force_local(sym);
2036 else if (version != NULL)
2037 sym->set_is_default();
2038 return sym;
2039 }
2040
2041 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2042 this->override_with_special(oldsym, sym);
2043
2044 if (resolve_oldsym)
2045 return sym;
2046 else
2047 {
2048 delete sym;
2049 return oldsym;
2050 }
2051 }
2052
2053 // Define a special symbol with a constant value. It is a multiple
2054 // definition error if this symbol is already defined.
2055
2056 Symbol*
2057 Symbol_table::define_as_constant(const char* name,
2058 const char* version,
2059 Defined defined,
2060 uint64_t value,
2061 uint64_t symsize,
2062 elfcpp::STT type,
2063 elfcpp::STB binding,
2064 elfcpp::STV visibility,
2065 unsigned char nonvis,
2066 bool only_if_ref,
2067 bool force_override)
2068 {
2069 if (parameters->target().get_size() == 32)
2070 {
2071 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2072 return this->do_define_as_constant<32>(name, version, defined, value,
2073 symsize, type, binding,
2074 visibility, nonvis, only_if_ref,
2075 force_override);
2076 #else
2077 gold_unreachable();
2078 #endif
2079 }
2080 else if (parameters->target().get_size() == 64)
2081 {
2082 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2083 return this->do_define_as_constant<64>(name, version, defined, value,
2084 symsize, type, binding,
2085 visibility, nonvis, only_if_ref,
2086 force_override);
2087 #else
2088 gold_unreachable();
2089 #endif
2090 }
2091 else
2092 gold_unreachable();
2093 }
2094
2095 // Define a symbol as a constant, sized version.
2096
2097 template<int size>
2098 Sized_symbol<size>*
2099 Symbol_table::do_define_as_constant(
2100 const char* name,
2101 const char* version,
2102 Defined defined,
2103 typename elfcpp::Elf_types<size>::Elf_Addr value,
2104 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2105 elfcpp::STT type,
2106 elfcpp::STB binding,
2107 elfcpp::STV visibility,
2108 unsigned char nonvis,
2109 bool only_if_ref,
2110 bool force_override)
2111 {
2112 Sized_symbol<size>* sym;
2113 Sized_symbol<size>* oldsym;
2114 bool resolve_oldsym;
2115
2116 if (parameters->target().is_big_endian())
2117 {
2118 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2119 sym = this->define_special_symbol<size, true>(&name, &version,
2120 only_if_ref, &oldsym,
2121 &resolve_oldsym);
2122 #else
2123 gold_unreachable();
2124 #endif
2125 }
2126 else
2127 {
2128 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2129 sym = this->define_special_symbol<size, false>(&name, &version,
2130 only_if_ref, &oldsym,
2131 &resolve_oldsym);
2132 #else
2133 gold_unreachable();
2134 #endif
2135 }
2136
2137 if (sym == NULL)
2138 return NULL;
2139
2140 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2141 nonvis, defined == PREDEFINED);
2142
2143 if (oldsym == NULL)
2144 {
2145 // Version symbols are absolute symbols with name == version.
2146 // We don't want to force them to be local.
2147 if ((version == NULL
2148 || name != version
2149 || value != 0)
2150 && (binding == elfcpp::STB_LOCAL
2151 || this->version_script_.symbol_is_local(name)))
2152 this->force_local(sym);
2153 else if (version != NULL
2154 && (name != version || value != 0))
2155 sym->set_is_default();
2156 return sym;
2157 }
2158
2159 if (force_override
2160 || Symbol_table::should_override_with_special(oldsym, type, defined))
2161 this->override_with_special(oldsym, sym);
2162
2163 if (resolve_oldsym)
2164 return sym;
2165 else
2166 {
2167 delete sym;
2168 return oldsym;
2169 }
2170 }
2171
2172 // Define a set of symbols in output sections.
2173
2174 void
2175 Symbol_table::define_symbols(const Layout* layout, int count,
2176 const Define_symbol_in_section* p,
2177 bool only_if_ref)
2178 {
2179 for (int i = 0; i < count; ++i, ++p)
2180 {
2181 Output_section* os = layout->find_output_section(p->output_section);
2182 if (os != NULL)
2183 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2184 p->size, p->type, p->binding,
2185 p->visibility, p->nonvis,
2186 p->offset_is_from_end,
2187 only_if_ref || p->only_if_ref);
2188 else
2189 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2190 p->type, p->binding, p->visibility, p->nonvis,
2191 only_if_ref || p->only_if_ref,
2192 false);
2193 }
2194 }
2195
2196 // Define a set of symbols in output segments.
2197
2198 void
2199 Symbol_table::define_symbols(const Layout* layout, int count,
2200 const Define_symbol_in_segment* p,
2201 bool only_if_ref)
2202 {
2203 for (int i = 0; i < count; ++i, ++p)
2204 {
2205 Output_segment* os = layout->find_output_segment(p->segment_type,
2206 p->segment_flags_set,
2207 p->segment_flags_clear);
2208 if (os != NULL)
2209 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2210 p->size, p->type, p->binding,
2211 p->visibility, p->nonvis,
2212 p->offset_base,
2213 only_if_ref || p->only_if_ref);
2214 else
2215 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2216 p->type, p->binding, p->visibility, p->nonvis,
2217 only_if_ref || p->only_if_ref,
2218 false);
2219 }
2220 }
2221
2222 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2223 // symbol should be defined--typically a .dyn.bss section. VALUE is
2224 // the offset within POSD.
2225
2226 template<int size>
2227 void
2228 Symbol_table::define_with_copy_reloc(
2229 Sized_symbol<size>* csym,
2230 Output_data* posd,
2231 typename elfcpp::Elf_types<size>::Elf_Addr value)
2232 {
2233 gold_assert(csym->is_from_dynobj());
2234 gold_assert(!csym->is_copied_from_dynobj());
2235 Object* object = csym->object();
2236 gold_assert(object->is_dynamic());
2237 Dynobj* dynobj = static_cast<Dynobj*>(object);
2238
2239 // Our copied variable has to override any variable in a shared
2240 // library.
2241 elfcpp::STB binding = csym->binding();
2242 if (binding == elfcpp::STB_WEAK)
2243 binding = elfcpp::STB_GLOBAL;
2244
2245 this->define_in_output_data(csym->name(), csym->version(), COPY,
2246 posd, value, csym->symsize(),
2247 csym->type(), binding,
2248 csym->visibility(), csym->nonvis(),
2249 false, false);
2250
2251 csym->set_is_copied_from_dynobj();
2252 csym->set_needs_dynsym_entry();
2253
2254 this->copied_symbol_dynobjs_[csym] = dynobj;
2255
2256 // We have now defined all aliases, but we have not entered them all
2257 // in the copied_symbol_dynobjs_ map.
2258 if (csym->has_alias())
2259 {
2260 Symbol* sym = csym;
2261 while (true)
2262 {
2263 sym = this->weak_aliases_[sym];
2264 if (sym == csym)
2265 break;
2266 gold_assert(sym->output_data() == posd);
2267
2268 sym->set_is_copied_from_dynobj();
2269 this->copied_symbol_dynobjs_[sym] = dynobj;
2270 }
2271 }
2272 }
2273
2274 // SYM is defined using a COPY reloc. Return the dynamic object where
2275 // the original definition was found.
2276
2277 Dynobj*
2278 Symbol_table::get_copy_source(const Symbol* sym) const
2279 {
2280 gold_assert(sym->is_copied_from_dynobj());
2281 Copied_symbol_dynobjs::const_iterator p =
2282 this->copied_symbol_dynobjs_.find(sym);
2283 gold_assert(p != this->copied_symbol_dynobjs_.end());
2284 return p->second;
2285 }
2286
2287 // Add any undefined symbols named on the command line.
2288
2289 void
2290 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2291 {
2292 if (parameters->options().any_undefined()
2293 || layout->script_options()->any_unreferenced())
2294 {
2295 if (parameters->target().get_size() == 32)
2296 {
2297 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2298 this->do_add_undefined_symbols_from_command_line<32>(layout);
2299 #else
2300 gold_unreachable();
2301 #endif
2302 }
2303 else if (parameters->target().get_size() == 64)
2304 {
2305 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2306 this->do_add_undefined_symbols_from_command_line<64>(layout);
2307 #else
2308 gold_unreachable();
2309 #endif
2310 }
2311 else
2312 gold_unreachable();
2313 }
2314 }
2315
2316 template<int size>
2317 void
2318 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2319 {
2320 for (options::String_set::const_iterator p =
2321 parameters->options().undefined_begin();
2322 p != parameters->options().undefined_end();
2323 ++p)
2324 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2325
2326 for (options::String_set::const_iterator p =
2327 parameters->options().export_dynamic_symbol_begin();
2328 p != parameters->options().export_dynamic_symbol_end();
2329 ++p)
2330 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2331
2332 for (Script_options::referenced_const_iterator p =
2333 layout->script_options()->referenced_begin();
2334 p != layout->script_options()->referenced_end();
2335 ++p)
2336 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2337 }
2338
2339 template<int size>
2340 void
2341 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2342 {
2343 if (this->lookup(name) != NULL)
2344 return;
2345
2346 const char* version = NULL;
2347
2348 Sized_symbol<size>* sym;
2349 Sized_symbol<size>* oldsym;
2350 bool resolve_oldsym;
2351 if (parameters->target().is_big_endian())
2352 {
2353 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2354 sym = this->define_special_symbol<size, true>(&name, &version,
2355 false, &oldsym,
2356 &resolve_oldsym);
2357 #else
2358 gold_unreachable();
2359 #endif
2360 }
2361 else
2362 {
2363 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2364 sym = this->define_special_symbol<size, false>(&name, &version,
2365 false, &oldsym,
2366 &resolve_oldsym);
2367 #else
2368 gold_unreachable();
2369 #endif
2370 }
2371
2372 gold_assert(oldsym == NULL);
2373
2374 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2375 elfcpp::STV_DEFAULT, 0);
2376 ++this->saw_undefined_;
2377 }
2378
2379 // Set the dynamic symbol indexes. INDEX is the index of the first
2380 // global dynamic symbol. Pointers to the symbols are stored into the
2381 // vector SYMS. The names are added to DYNPOOL. This returns an
2382 // updated dynamic symbol index.
2383
2384 unsigned int
2385 Symbol_table::set_dynsym_indexes(unsigned int index,
2386 std::vector<Symbol*>* syms,
2387 Stringpool* dynpool,
2388 Versions* versions)
2389 {
2390 for (Symbol_table_type::iterator p = this->table_.begin();
2391 p != this->table_.end();
2392 ++p)
2393 {
2394 Symbol* sym = p->second;
2395
2396 // Note that SYM may already have a dynamic symbol index, since
2397 // some symbols appear more than once in the symbol table, with
2398 // and without a version.
2399
2400 if (!sym->should_add_dynsym_entry(this))
2401 sym->set_dynsym_index(-1U);
2402 else if (!sym->has_dynsym_index())
2403 {
2404 sym->set_dynsym_index(index);
2405 ++index;
2406 syms->push_back(sym);
2407 dynpool->add(sym->name(), false, NULL);
2408
2409 // Record any version information.
2410 if (sym->version() != NULL)
2411 versions->record_version(this, dynpool, sym);
2412
2413 // If the symbol is defined in a dynamic object and is
2414 // referenced in a regular object, then mark the dynamic
2415 // object as needed. This is used to implement --as-needed.
2416 if (sym->is_from_dynobj() && sym->in_reg())
2417 sym->object()->set_is_needed();
2418 }
2419 }
2420
2421 // Finish up the versions. In some cases this may add new dynamic
2422 // symbols.
2423 index = versions->finalize(this, index, syms);
2424
2425 return index;
2426 }
2427
2428 // Set the final values for all the symbols. The index of the first
2429 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2430 // file offset OFF. Add their names to POOL. Return the new file
2431 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2432
2433 off_t
2434 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2435 size_t dyncount, Stringpool* pool,
2436 unsigned int* plocal_symcount)
2437 {
2438 off_t ret;
2439
2440 gold_assert(*plocal_symcount != 0);
2441 this->first_global_index_ = *plocal_symcount;
2442
2443 this->dynamic_offset_ = dynoff;
2444 this->first_dynamic_global_index_ = dyn_global_index;
2445 this->dynamic_count_ = dyncount;
2446
2447 if (parameters->target().get_size() == 32)
2448 {
2449 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2450 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2451 #else
2452 gold_unreachable();
2453 #endif
2454 }
2455 else if (parameters->target().get_size() == 64)
2456 {
2457 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2458 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2459 #else
2460 gold_unreachable();
2461 #endif
2462 }
2463 else
2464 gold_unreachable();
2465
2466 // Now that we have the final symbol table, we can reliably note
2467 // which symbols should get warnings.
2468 this->warnings_.note_warnings(this);
2469
2470 return ret;
2471 }
2472
2473 // SYM is going into the symbol table at *PINDEX. Add the name to
2474 // POOL, update *PINDEX and *POFF.
2475
2476 template<int size>
2477 void
2478 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2479 unsigned int* pindex, off_t* poff)
2480 {
2481 sym->set_symtab_index(*pindex);
2482 if (sym->version() == NULL || !parameters->options().relocatable())
2483 pool->add(sym->name(), false, NULL);
2484 else
2485 pool->add(sym->versioned_name(), true, NULL);
2486 ++*pindex;
2487 *poff += elfcpp::Elf_sizes<size>::sym_size;
2488 }
2489
2490 // Set the final value for all the symbols. This is called after
2491 // Layout::finalize, so all the output sections have their final
2492 // address.
2493
2494 template<int size>
2495 off_t
2496 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2497 unsigned int* plocal_symcount)
2498 {
2499 off = align_address(off, size >> 3);
2500 this->offset_ = off;
2501
2502 unsigned int index = *plocal_symcount;
2503 const unsigned int orig_index = index;
2504
2505 // First do all the symbols which have been forced to be local, as
2506 // they must appear before all global symbols.
2507 for (Forced_locals::iterator p = this->forced_locals_.begin();
2508 p != this->forced_locals_.end();
2509 ++p)
2510 {
2511 Symbol* sym = *p;
2512 gold_assert(sym->is_forced_local());
2513 if (this->sized_finalize_symbol<size>(sym))
2514 {
2515 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2516 ++*plocal_symcount;
2517 }
2518 }
2519
2520 // Now do all the remaining symbols.
2521 for (Symbol_table_type::iterator p = this->table_.begin();
2522 p != this->table_.end();
2523 ++p)
2524 {
2525 Symbol* sym = p->second;
2526 if (this->sized_finalize_symbol<size>(sym))
2527 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2528 }
2529
2530 this->output_count_ = index - orig_index;
2531
2532 return off;
2533 }
2534
2535 // Compute the final value of SYM and store status in location PSTATUS.
2536 // During relaxation, this may be called multiple times for a symbol to
2537 // compute its would-be final value in each relaxation pass.
2538
2539 template<int size>
2540 typename Sized_symbol<size>::Value_type
2541 Symbol_table::compute_final_value(
2542 const Sized_symbol<size>* sym,
2543 Compute_final_value_status* pstatus) const
2544 {
2545 typedef typename Sized_symbol<size>::Value_type Value_type;
2546 Value_type value;
2547
2548 switch (sym->source())
2549 {
2550 case Symbol::FROM_OBJECT:
2551 {
2552 bool is_ordinary;
2553 unsigned int shndx = sym->shndx(&is_ordinary);
2554
2555 if (!is_ordinary
2556 && shndx != elfcpp::SHN_ABS
2557 && !Symbol::is_common_shndx(shndx))
2558 {
2559 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2560 return 0;
2561 }
2562
2563 Object* symobj = sym->object();
2564 if (symobj->is_dynamic())
2565 {
2566 value = 0;
2567 shndx = elfcpp::SHN_UNDEF;
2568 }
2569 else if (symobj->pluginobj() != NULL)
2570 {
2571 value = 0;
2572 shndx = elfcpp::SHN_UNDEF;
2573 }
2574 else if (shndx == elfcpp::SHN_UNDEF)
2575 value = 0;
2576 else if (!is_ordinary
2577 && (shndx == elfcpp::SHN_ABS
2578 || Symbol::is_common_shndx(shndx)))
2579 value = sym->value();
2580 else
2581 {
2582 Relobj* relobj = static_cast<Relobj*>(symobj);
2583 Output_section* os = relobj->output_section(shndx);
2584
2585 if (this->is_section_folded(relobj, shndx))
2586 {
2587 gold_assert(os == NULL);
2588 // Get the os of the section it is folded onto.
2589 Section_id folded = this->icf_->get_folded_section(relobj,
2590 shndx);
2591 gold_assert(folded.first != NULL);
2592 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2593 unsigned folded_shndx = folded.second;
2594
2595 os = folded_obj->output_section(folded_shndx);
2596 gold_assert(os != NULL);
2597
2598 // Replace (relobj, shndx) with canonical ICF input section.
2599 shndx = folded_shndx;
2600 relobj = folded_obj;
2601 }
2602
2603 uint64_t secoff64 = relobj->output_section_offset(shndx);
2604 if (os == NULL)
2605 {
2606 bool static_or_reloc = (parameters->doing_static_link() ||
2607 parameters->options().relocatable());
2608 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2609
2610 *pstatus = CFVS_NO_OUTPUT_SECTION;
2611 return 0;
2612 }
2613
2614 if (secoff64 == -1ULL)
2615 {
2616 // The section needs special handling (e.g., a merge section).
2617
2618 value = os->output_address(relobj, shndx, sym->value());
2619 }
2620 else
2621 {
2622 Value_type secoff =
2623 convert_types<Value_type, uint64_t>(secoff64);
2624 if (sym->type() == elfcpp::STT_TLS)
2625 value = sym->value() + os->tls_offset() + secoff;
2626 else
2627 value = sym->value() + os->address() + secoff;
2628 }
2629 }
2630 }
2631 break;
2632
2633 case Symbol::IN_OUTPUT_DATA:
2634 {
2635 Output_data* od = sym->output_data();
2636 value = sym->value();
2637 if (sym->type() != elfcpp::STT_TLS)
2638 value += od->address();
2639 else
2640 {
2641 Output_section* os = od->output_section();
2642 gold_assert(os != NULL);
2643 value += os->tls_offset() + (od->address() - os->address());
2644 }
2645 if (sym->offset_is_from_end())
2646 value += od->data_size();
2647 }
2648 break;
2649
2650 case Symbol::IN_OUTPUT_SEGMENT:
2651 {
2652 Output_segment* os = sym->output_segment();
2653 value = sym->value();
2654 if (sym->type() != elfcpp::STT_TLS)
2655 value += os->vaddr();
2656 switch (sym->offset_base())
2657 {
2658 case Symbol::SEGMENT_START:
2659 break;
2660 case Symbol::SEGMENT_END:
2661 value += os->memsz();
2662 break;
2663 case Symbol::SEGMENT_BSS:
2664 value += os->filesz();
2665 break;
2666 default:
2667 gold_unreachable();
2668 }
2669 }
2670 break;
2671
2672 case Symbol::IS_CONSTANT:
2673 value = sym->value();
2674 break;
2675
2676 case Symbol::IS_UNDEFINED:
2677 value = 0;
2678 break;
2679
2680 default:
2681 gold_unreachable();
2682 }
2683
2684 *pstatus = CFVS_OK;
2685 return value;
2686 }
2687
2688 // Finalize the symbol SYM. This returns true if the symbol should be
2689 // added to the symbol table, false otherwise.
2690
2691 template<int size>
2692 bool
2693 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2694 {
2695 typedef typename Sized_symbol<size>::Value_type Value_type;
2696
2697 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2698
2699 // The default version of a symbol may appear twice in the symbol
2700 // table. We only need to finalize it once.
2701 if (sym->has_symtab_index())
2702 return false;
2703
2704 if (!sym->in_reg())
2705 {
2706 gold_assert(!sym->has_symtab_index());
2707 sym->set_symtab_index(-1U);
2708 gold_assert(sym->dynsym_index() == -1U);
2709 return false;
2710 }
2711
2712 // If the symbol is only present on plugin files, the plugin decided we
2713 // don't need it.
2714 if (!sym->in_real_elf())
2715 {
2716 gold_assert(!sym->has_symtab_index());
2717 sym->set_symtab_index(-1U);
2718 return false;
2719 }
2720
2721 // Compute final symbol value.
2722 Compute_final_value_status status;
2723 Value_type value = this->compute_final_value(sym, &status);
2724
2725 switch (status)
2726 {
2727 case CFVS_OK:
2728 break;
2729 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2730 {
2731 bool is_ordinary;
2732 unsigned int shndx = sym->shndx(&is_ordinary);
2733 gold_error(_("%s: unsupported symbol section 0x%x"),
2734 sym->demangled_name().c_str(), shndx);
2735 }
2736 break;
2737 case CFVS_NO_OUTPUT_SECTION:
2738 sym->set_symtab_index(-1U);
2739 return false;
2740 default:
2741 gold_unreachable();
2742 }
2743
2744 sym->set_value(value);
2745
2746 if (parameters->options().strip_all()
2747 || !parameters->options().should_retain_symbol(sym->name()))
2748 {
2749 sym->set_symtab_index(-1U);
2750 return false;
2751 }
2752
2753 return true;
2754 }
2755
2756 // Write out the global symbols.
2757
2758 void
2759 Symbol_table::write_globals(const Stringpool* sympool,
2760 const Stringpool* dynpool,
2761 Output_symtab_xindex* symtab_xindex,
2762 Output_symtab_xindex* dynsym_xindex,
2763 Output_file* of) const
2764 {
2765 switch (parameters->size_and_endianness())
2766 {
2767 #ifdef HAVE_TARGET_32_LITTLE
2768 case Parameters::TARGET_32_LITTLE:
2769 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2770 dynsym_xindex, of);
2771 break;
2772 #endif
2773 #ifdef HAVE_TARGET_32_BIG
2774 case Parameters::TARGET_32_BIG:
2775 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2776 dynsym_xindex, of);
2777 break;
2778 #endif
2779 #ifdef HAVE_TARGET_64_LITTLE
2780 case Parameters::TARGET_64_LITTLE:
2781 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2782 dynsym_xindex, of);
2783 break;
2784 #endif
2785 #ifdef HAVE_TARGET_64_BIG
2786 case Parameters::TARGET_64_BIG:
2787 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2788 dynsym_xindex, of);
2789 break;
2790 #endif
2791 default:
2792 gold_unreachable();
2793 }
2794 }
2795
2796 // Write out the global symbols.
2797
2798 template<int size, bool big_endian>
2799 void
2800 Symbol_table::sized_write_globals(const Stringpool* sympool,
2801 const Stringpool* dynpool,
2802 Output_symtab_xindex* symtab_xindex,
2803 Output_symtab_xindex* dynsym_xindex,
2804 Output_file* of) const
2805 {
2806 const Target& target = parameters->target();
2807
2808 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2809
2810 const unsigned int output_count = this->output_count_;
2811 const section_size_type oview_size = output_count * sym_size;
2812 const unsigned int first_global_index = this->first_global_index_;
2813 unsigned char* psyms;
2814 if (this->offset_ == 0 || output_count == 0)
2815 psyms = NULL;
2816 else
2817 psyms = of->get_output_view(this->offset_, oview_size);
2818
2819 const unsigned int dynamic_count = this->dynamic_count_;
2820 const section_size_type dynamic_size = dynamic_count * sym_size;
2821 const unsigned int first_dynamic_global_index =
2822 this->first_dynamic_global_index_;
2823 unsigned char* dynamic_view;
2824 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2825 dynamic_view = NULL;
2826 else
2827 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2828
2829 for (Symbol_table_type::const_iterator p = this->table_.begin();
2830 p != this->table_.end();
2831 ++p)
2832 {
2833 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2834
2835 // Possibly warn about unresolved symbols in shared libraries.
2836 this->warn_about_undefined_dynobj_symbol(sym);
2837
2838 unsigned int sym_index = sym->symtab_index();
2839 unsigned int dynsym_index;
2840 if (dynamic_view == NULL)
2841 dynsym_index = -1U;
2842 else
2843 dynsym_index = sym->dynsym_index();
2844
2845 if (sym_index == -1U && dynsym_index == -1U)
2846 {
2847 // This symbol is not included in the output file.
2848 continue;
2849 }
2850
2851 unsigned int shndx;
2852 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2853 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2854 elfcpp::STB binding = sym->binding();
2855
2856 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2857 if (binding == elfcpp::STB_GNU_UNIQUE
2858 && !parameters->options().gnu_unique())
2859 binding = elfcpp::STB_GLOBAL;
2860
2861 switch (sym->source())
2862 {
2863 case Symbol::FROM_OBJECT:
2864 {
2865 bool is_ordinary;
2866 unsigned int in_shndx = sym->shndx(&is_ordinary);
2867
2868 if (!is_ordinary
2869 && in_shndx != elfcpp::SHN_ABS
2870 && !Symbol::is_common_shndx(in_shndx))
2871 {
2872 gold_error(_("%s: unsupported symbol section 0x%x"),
2873 sym->demangled_name().c_str(), in_shndx);
2874 shndx = in_shndx;
2875 }
2876 else
2877 {
2878 Object* symobj = sym->object();
2879 if (symobj->is_dynamic())
2880 {
2881 if (sym->needs_dynsym_value())
2882 dynsym_value = target.dynsym_value(sym);
2883 shndx = elfcpp::SHN_UNDEF;
2884 if (sym->is_undef_binding_weak())
2885 binding = elfcpp::STB_WEAK;
2886 else
2887 binding = elfcpp::STB_GLOBAL;
2888 }
2889 else if (symobj->pluginobj() != NULL)
2890 shndx = elfcpp::SHN_UNDEF;
2891 else if (in_shndx == elfcpp::SHN_UNDEF
2892 || (!is_ordinary
2893 && (in_shndx == elfcpp::SHN_ABS
2894 || Symbol::is_common_shndx(in_shndx))))
2895 shndx = in_shndx;
2896 else
2897 {
2898 Relobj* relobj = static_cast<Relobj*>(symobj);
2899 Output_section* os = relobj->output_section(in_shndx);
2900 if (this->is_section_folded(relobj, in_shndx))
2901 {
2902 // This global symbol must be written out even though
2903 // it is folded.
2904 // Get the os of the section it is folded onto.
2905 Section_id folded =
2906 this->icf_->get_folded_section(relobj, in_shndx);
2907 gold_assert(folded.first !=NULL);
2908 Relobj* folded_obj =
2909 reinterpret_cast<Relobj*>(folded.first);
2910 os = folded_obj->output_section(folded.second);
2911 gold_assert(os != NULL);
2912 }
2913 gold_assert(os != NULL);
2914 shndx = os->out_shndx();
2915
2916 if (shndx >= elfcpp::SHN_LORESERVE)
2917 {
2918 if (sym_index != -1U)
2919 symtab_xindex->add(sym_index, shndx);
2920 if (dynsym_index != -1U)
2921 dynsym_xindex->add(dynsym_index, shndx);
2922 shndx = elfcpp::SHN_XINDEX;
2923 }
2924
2925 // In object files symbol values are section
2926 // relative.
2927 if (parameters->options().relocatable())
2928 sym_value -= os->address();
2929 }
2930 }
2931 }
2932 break;
2933
2934 case Symbol::IN_OUTPUT_DATA:
2935 shndx = sym->output_data()->out_shndx();
2936 if (shndx >= elfcpp::SHN_LORESERVE)
2937 {
2938 if (sym_index != -1U)
2939 symtab_xindex->add(sym_index, shndx);
2940 if (dynsym_index != -1U)
2941 dynsym_xindex->add(dynsym_index, shndx);
2942 shndx = elfcpp::SHN_XINDEX;
2943 }
2944 break;
2945
2946 case Symbol::IN_OUTPUT_SEGMENT:
2947 shndx = elfcpp::SHN_ABS;
2948 break;
2949
2950 case Symbol::IS_CONSTANT:
2951 shndx = elfcpp::SHN_ABS;
2952 break;
2953
2954 case Symbol::IS_UNDEFINED:
2955 shndx = elfcpp::SHN_UNDEF;
2956 break;
2957
2958 default:
2959 gold_unreachable();
2960 }
2961
2962 if (sym_index != -1U)
2963 {
2964 sym_index -= first_global_index;
2965 gold_assert(sym_index < output_count);
2966 unsigned char* ps = psyms + (sym_index * sym_size);
2967 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2968 binding, sympool, ps);
2969 }
2970
2971 if (dynsym_index != -1U)
2972 {
2973 dynsym_index -= first_dynamic_global_index;
2974 gold_assert(dynsym_index < dynamic_count);
2975 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2976 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2977 binding, dynpool, pd);
2978 }
2979 }
2980
2981 of->write_output_view(this->offset_, oview_size, psyms);
2982 if (dynamic_view != NULL)
2983 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2984 }
2985
2986 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2987 // strtab holding the name.
2988
2989 template<int size, bool big_endian>
2990 void
2991 Symbol_table::sized_write_symbol(
2992 Sized_symbol<size>* sym,
2993 typename elfcpp::Elf_types<size>::Elf_Addr value,
2994 unsigned int shndx,
2995 elfcpp::STB binding,
2996 const Stringpool* pool,
2997 unsigned char* p) const
2998 {
2999 elfcpp::Sym_write<size, big_endian> osym(p);
3000 if (sym->version() == NULL || !parameters->options().relocatable())
3001 osym.put_st_name(pool->get_offset(sym->name()));
3002 else
3003 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3004 osym.put_st_value(value);
3005 // Use a symbol size of zero for undefined symbols from shared libraries.
3006 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3007 osym.put_st_size(0);
3008 else
3009 osym.put_st_size(sym->symsize());
3010 elfcpp::STT type = sym->type();
3011 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3012 if (type == elfcpp::STT_GNU_IFUNC
3013 && sym->is_from_dynobj())
3014 type = elfcpp::STT_FUNC;
3015 // A version script may have overridden the default binding.
3016 if (sym->is_forced_local())
3017 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3018 else
3019 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3020 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3021 osym.put_st_shndx(shndx);
3022 }
3023
3024 // Check for unresolved symbols in shared libraries. This is
3025 // controlled by the --allow-shlib-undefined option.
3026
3027 // We only warn about libraries for which we have seen all the
3028 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3029 // which were not seen in this link. If we didn't see a DT_NEEDED
3030 // entry, we aren't going to be able to reliably report whether the
3031 // symbol is undefined.
3032
3033 // We also don't warn about libraries found in a system library
3034 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3035 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3036 // can have undefined references satisfied by ld-linux.so.
3037
3038 inline void
3039 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3040 {
3041 bool dummy;
3042 if (sym->source() == Symbol::FROM_OBJECT
3043 && sym->object()->is_dynamic()
3044 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3045 && sym->binding() != elfcpp::STB_WEAK
3046 && !parameters->options().allow_shlib_undefined()
3047 && !parameters->target().is_defined_by_abi(sym)
3048 && !sym->object()->is_in_system_directory())
3049 {
3050 // A very ugly cast.
3051 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3052 if (!dynobj->has_unknown_needed_entries())
3053 gold_undefined_symbol(sym);
3054 }
3055 }
3056
3057 // Write out a section symbol. Return the update offset.
3058
3059 void
3060 Symbol_table::write_section_symbol(const Output_section* os,
3061 Output_symtab_xindex* symtab_xindex,
3062 Output_file* of,
3063 off_t offset) const
3064 {
3065 switch (parameters->size_and_endianness())
3066 {
3067 #ifdef HAVE_TARGET_32_LITTLE
3068 case Parameters::TARGET_32_LITTLE:
3069 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3070 offset);
3071 break;
3072 #endif
3073 #ifdef HAVE_TARGET_32_BIG
3074 case Parameters::TARGET_32_BIG:
3075 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3076 offset);
3077 break;
3078 #endif
3079 #ifdef HAVE_TARGET_64_LITTLE
3080 case Parameters::TARGET_64_LITTLE:
3081 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3082 offset);
3083 break;
3084 #endif
3085 #ifdef HAVE_TARGET_64_BIG
3086 case Parameters::TARGET_64_BIG:
3087 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3088 offset);
3089 break;
3090 #endif
3091 default:
3092 gold_unreachable();
3093 }
3094 }
3095
3096 // Write out a section symbol, specialized for size and endianness.
3097
3098 template<int size, bool big_endian>
3099 void
3100 Symbol_table::sized_write_section_symbol(const Output_section* os,
3101 Output_symtab_xindex* symtab_xindex,
3102 Output_file* of,
3103 off_t offset) const
3104 {
3105 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3106
3107 unsigned char* pov = of->get_output_view(offset, sym_size);
3108
3109 elfcpp::Sym_write<size, big_endian> osym(pov);
3110 osym.put_st_name(0);
3111 if (parameters->options().relocatable())
3112 osym.put_st_value(0);
3113 else
3114 osym.put_st_value(os->address());
3115 osym.put_st_size(0);
3116 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3117 elfcpp::STT_SECTION));
3118 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3119
3120 unsigned int shndx = os->out_shndx();
3121 if (shndx >= elfcpp::SHN_LORESERVE)
3122 {
3123 symtab_xindex->add(os->symtab_index(), shndx);
3124 shndx = elfcpp::SHN_XINDEX;
3125 }
3126 osym.put_st_shndx(shndx);
3127
3128 of->write_output_view(offset, sym_size, pov);
3129 }
3130
3131 // Print statistical information to stderr. This is used for --stats.
3132
3133 void
3134 Symbol_table::print_stats() const
3135 {
3136 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3137 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3138 program_name, this->table_.size(), this->table_.bucket_count());
3139 #else
3140 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3141 program_name, this->table_.size());
3142 #endif
3143 this->namepool_.print_stats("symbol table stringpool");
3144 }
3145
3146 // We check for ODR violations by looking for symbols with the same
3147 // name for which the debugging information reports that they were
3148 // defined in disjoint source locations. When comparing the source
3149 // location, we consider instances with the same base filename to be
3150 // the same. This is because different object files/shared libraries
3151 // can include the same header file using different paths, and
3152 // different optimization settings can make the line number appear to
3153 // be a couple lines off, and we don't want to report an ODR violation
3154 // in those cases.
3155
3156 // This struct is used to compare line information, as returned by
3157 // Dwarf_line_info::one_addr2line. It implements a < comparison
3158 // operator used with std::sort.
3159
3160 struct Odr_violation_compare
3161 {
3162 bool
3163 operator()(const std::string& s1, const std::string& s2) const
3164 {
3165 // Inputs should be of the form "dirname/filename:linenum" where
3166 // "dirname/" is optional. We want to compare just the filename:linenum.
3167
3168 // Find the last '/' in each string.
3169 std::string::size_type s1begin = s1.rfind('/');
3170 std::string::size_type s2begin = s2.rfind('/');
3171 // If there was no '/' in a string, start at the beginning.
3172 if (s1begin == std::string::npos)
3173 s1begin = 0;
3174 if (s2begin == std::string::npos)
3175 s2begin = 0;
3176 return s1.compare(s1begin, std::string::npos,
3177 s2, s2begin, std::string::npos) < 0;
3178 }
3179 };
3180
3181 // Returns all of the lines attached to LOC, not just the one the
3182 // instruction actually came from.
3183 std::vector<std::string>
3184 Symbol_table::linenos_from_loc(const Task* task,
3185 const Symbol_location& loc)
3186 {
3187 // We need to lock the object in order to read it. This
3188 // means that we have to run in a singleton Task. If we
3189 // want to run this in a general Task for better
3190 // performance, we will need one Task for object, plus
3191 // appropriate locking to ensure that we don't conflict with
3192 // other uses of the object. Also note, one_addr2line is not
3193 // currently thread-safe.
3194 Task_lock_obj<Object> tl(task, loc.object);
3195
3196 std::vector<std::string> result;
3197 // 16 is the size of the object-cache that one_addr2line should use.
3198 std::string canonical_result = Dwarf_line_info::one_addr2line(
3199 loc.object, loc.shndx, loc.offset, 16, &result);
3200 if (!canonical_result.empty())
3201 result.push_back(canonical_result);
3202 return result;
3203 }
3204
3205 // OutputIterator that records if it was ever assigned to. This
3206 // allows it to be used with std::set_intersection() to check for
3207 // intersection rather than computing the intersection.
3208 struct Check_intersection
3209 {
3210 Check_intersection()
3211 : value_(false)
3212 {}
3213
3214 bool had_intersection() const
3215 { return this->value_; }
3216
3217 Check_intersection& operator++()
3218 { return *this; }
3219
3220 Check_intersection& operator*()
3221 { return *this; }
3222
3223 template<typename T>
3224 Check_intersection& operator=(const T&)
3225 {
3226 this->value_ = true;
3227 return *this;
3228 }
3229
3230 private:
3231 bool value_;
3232 };
3233
3234 // Check candidate_odr_violations_ to find symbols with the same name
3235 // but apparently different definitions (different source-file/line-no
3236 // for each line assigned to the first instruction).
3237
3238 void
3239 Symbol_table::detect_odr_violations(const Task* task,
3240 const char* output_file_name) const
3241 {
3242 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3243 it != candidate_odr_violations_.end();
3244 ++it)
3245 {
3246 const char* const symbol_name = it->first;
3247
3248 std::string first_object_name;
3249 std::vector<std::string> first_object_linenos;
3250
3251 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3252 locs = it->second.begin();
3253 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3254 locs_end = it->second.end();
3255 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3256 {
3257 // Save the line numbers from the first definition to
3258 // compare to the other definitions. Ideally, we'd compare
3259 // every definition to every other, but we don't want to
3260 // take O(N^2) time to do this. This shortcut may cause
3261 // false negatives that appear or disappear depending on the
3262 // link order, but it won't cause false positives.
3263 first_object_name = locs->object->name();
3264 first_object_linenos = this->linenos_from_loc(task, *locs);
3265 }
3266
3267 // Sort by Odr_violation_compare to make std::set_intersection work.
3268 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3269 Odr_violation_compare());
3270
3271 for (; locs != locs_end; ++locs)
3272 {
3273 std::vector<std::string> linenos =
3274 this->linenos_from_loc(task, *locs);
3275 // linenos will be empty if we couldn't parse the debug info.
3276 if (linenos.empty())
3277 continue;
3278 // Sort by Odr_violation_compare to make std::set_intersection work.
3279 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3280
3281 Check_intersection intersection_result =
3282 std::set_intersection(first_object_linenos.begin(),
3283 first_object_linenos.end(),
3284 linenos.begin(),
3285 linenos.end(),
3286 Check_intersection(),
3287 Odr_violation_compare());
3288 if (!intersection_result.had_intersection())
3289 {
3290 gold_warning(_("while linking %s: symbol '%s' defined in "
3291 "multiple places (possible ODR violation):"),
3292 output_file_name, demangle(symbol_name).c_str());
3293 // This only prints one location from each definition,
3294 // which may not be the location we expect to intersect
3295 // with another definition. We could print the whole
3296 // set of locations, but that seems too verbose.
3297 gold_assert(!first_object_linenos.empty());
3298 gold_assert(!linenos.empty());
3299 fprintf(stderr, _(" %s from %s\n"),
3300 first_object_linenos[0].c_str(),
3301 first_object_name.c_str());
3302 fprintf(stderr, _(" %s from %s\n"),
3303 linenos[0].c_str(),
3304 locs->object->name().c_str());
3305 // Only print one broken pair, to avoid needing to
3306 // compare against a list of the disjoint definition
3307 // locations we've found so far. (If we kept comparing
3308 // against just the first one, we'd get a lot of
3309 // redundant complaints about the second definition
3310 // location.)
3311 break;
3312 }
3313 }
3314 }
3315 // We only call one_addr2line() in this function, so we can clear its cache.
3316 Dwarf_line_info::clear_addr2line_cache();
3317 }
3318
3319 // Warnings functions.
3320
3321 // Add a new warning.
3322
3323 void
3324 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3325 const std::string& warning)
3326 {
3327 name = symtab->canonicalize_name(name);
3328 this->warnings_[name].set(obj, warning);
3329 }
3330
3331 // Look through the warnings and mark the symbols for which we should
3332 // warn. This is called during Layout::finalize when we know the
3333 // sources for all the symbols.
3334
3335 void
3336 Warnings::note_warnings(Symbol_table* symtab)
3337 {
3338 for (Warning_table::iterator p = this->warnings_.begin();
3339 p != this->warnings_.end();
3340 ++p)
3341 {
3342 Symbol* sym = symtab->lookup(p->first, NULL);
3343 if (sym != NULL
3344 && sym->source() == Symbol::FROM_OBJECT
3345 && sym->object() == p->second.object)
3346 sym->set_has_warning();
3347 }
3348 }
3349
3350 // Issue a warning. This is called when we see a relocation against a
3351 // symbol for which has a warning.
3352
3353 template<int size, bool big_endian>
3354 void
3355 Warnings::issue_warning(const Symbol* sym,
3356 const Relocate_info<size, big_endian>* relinfo,
3357 size_t relnum, off_t reloffset) const
3358 {
3359 gold_assert(sym->has_warning());
3360
3361 // We don't want to issue a warning for a relocation against the
3362 // symbol in the same object file in which the symbol is defined.
3363 if (sym->object() == relinfo->object)
3364 return;
3365
3366 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3367 gold_assert(p != this->warnings_.end());
3368 gold_warning_at_location(relinfo, relnum, reloffset,
3369 "%s", p->second.text.c_str());
3370 }
3371
3372 // Instantiate the templates we need. We could use the configure
3373 // script to restrict this to only the ones needed for implemented
3374 // targets.
3375
3376 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3377 template
3378 void
3379 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3380 #endif
3381
3382 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3383 template
3384 void
3385 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3386 #endif
3387
3388 #ifdef HAVE_TARGET_32_LITTLE
3389 template
3390 void
3391 Symbol_table::add_from_relobj<32, false>(
3392 Sized_relobj_file<32, false>* relobj,
3393 const unsigned char* syms,
3394 size_t count,
3395 size_t symndx_offset,
3396 const char* sym_names,
3397 size_t sym_name_size,
3398 Sized_relobj_file<32, false>::Symbols* sympointers,
3399 size_t* defined);
3400 #endif
3401
3402 #ifdef HAVE_TARGET_32_BIG
3403 template
3404 void
3405 Symbol_table::add_from_relobj<32, true>(
3406 Sized_relobj_file<32, true>* relobj,
3407 const unsigned char* syms,
3408 size_t count,
3409 size_t symndx_offset,
3410 const char* sym_names,
3411 size_t sym_name_size,
3412 Sized_relobj_file<32, true>::Symbols* sympointers,
3413 size_t* defined);
3414 #endif
3415
3416 #ifdef HAVE_TARGET_64_LITTLE
3417 template
3418 void
3419 Symbol_table::add_from_relobj<64, false>(
3420 Sized_relobj_file<64, false>* relobj,
3421 const unsigned char* syms,
3422 size_t count,
3423 size_t symndx_offset,
3424 const char* sym_names,
3425 size_t sym_name_size,
3426 Sized_relobj_file<64, false>::Symbols* sympointers,
3427 size_t* defined);
3428 #endif
3429
3430 #ifdef HAVE_TARGET_64_BIG
3431 template
3432 void
3433 Symbol_table::add_from_relobj<64, true>(
3434 Sized_relobj_file<64, true>* relobj,
3435 const unsigned char* syms,
3436 size_t count,
3437 size_t symndx_offset,
3438 const char* sym_names,
3439 size_t sym_name_size,
3440 Sized_relobj_file<64, true>::Symbols* sympointers,
3441 size_t* defined);
3442 #endif
3443
3444 #ifdef HAVE_TARGET_32_LITTLE
3445 template
3446 Symbol*
3447 Symbol_table::add_from_pluginobj<32, false>(
3448 Sized_pluginobj<32, false>* obj,
3449 const char* name,
3450 const char* ver,
3451 elfcpp::Sym<32, false>* sym);
3452 #endif
3453
3454 #ifdef HAVE_TARGET_32_BIG
3455 template
3456 Symbol*
3457 Symbol_table::add_from_pluginobj<32, true>(
3458 Sized_pluginobj<32, true>* obj,
3459 const char* name,
3460 const char* ver,
3461 elfcpp::Sym<32, true>* sym);
3462 #endif
3463
3464 #ifdef HAVE_TARGET_64_LITTLE
3465 template
3466 Symbol*
3467 Symbol_table::add_from_pluginobj<64, false>(
3468 Sized_pluginobj<64, false>* obj,
3469 const char* name,
3470 const char* ver,
3471 elfcpp::Sym<64, false>* sym);
3472 #endif
3473
3474 #ifdef HAVE_TARGET_64_BIG
3475 template
3476 Symbol*
3477 Symbol_table::add_from_pluginobj<64, true>(
3478 Sized_pluginobj<64, true>* obj,
3479 const char* name,
3480 const char* ver,
3481 elfcpp::Sym<64, true>* sym);
3482 #endif
3483
3484 #ifdef HAVE_TARGET_32_LITTLE
3485 template
3486 void
3487 Symbol_table::add_from_dynobj<32, false>(
3488 Sized_dynobj<32, false>* dynobj,
3489 const unsigned char* syms,
3490 size_t count,
3491 const char* sym_names,
3492 size_t sym_name_size,
3493 const unsigned char* versym,
3494 size_t versym_size,
3495 const std::vector<const char*>* version_map,
3496 Sized_relobj_file<32, false>::Symbols* sympointers,
3497 size_t* defined);
3498 #endif
3499
3500 #ifdef HAVE_TARGET_32_BIG
3501 template
3502 void
3503 Symbol_table::add_from_dynobj<32, true>(
3504 Sized_dynobj<32, true>* dynobj,
3505 const unsigned char* syms,
3506 size_t count,
3507 const char* sym_names,
3508 size_t sym_name_size,
3509 const unsigned char* versym,
3510 size_t versym_size,
3511 const std::vector<const char*>* version_map,
3512 Sized_relobj_file<32, true>::Symbols* sympointers,
3513 size_t* defined);
3514 #endif
3515
3516 #ifdef HAVE_TARGET_64_LITTLE
3517 template
3518 void
3519 Symbol_table::add_from_dynobj<64, false>(
3520 Sized_dynobj<64, false>* dynobj,
3521 const unsigned char* syms,
3522 size_t count,
3523 const char* sym_names,
3524 size_t sym_name_size,
3525 const unsigned char* versym,
3526 size_t versym_size,
3527 const std::vector<const char*>* version_map,
3528 Sized_relobj_file<64, false>::Symbols* sympointers,
3529 size_t* defined);
3530 #endif
3531
3532 #ifdef HAVE_TARGET_64_BIG
3533 template
3534 void
3535 Symbol_table::add_from_dynobj<64, true>(
3536 Sized_dynobj<64, true>* dynobj,
3537 const unsigned char* syms,
3538 size_t count,
3539 const char* sym_names,
3540 size_t sym_name_size,
3541 const unsigned char* versym,
3542 size_t versym_size,
3543 const std::vector<const char*>* version_map,
3544 Sized_relobj_file<64, true>::Symbols* sympointers,
3545 size_t* defined);
3546 #endif
3547
3548 #ifdef HAVE_TARGET_32_LITTLE
3549 template
3550 Sized_symbol<32>*
3551 Symbol_table::add_from_incrobj(
3552 Object* obj,
3553 const char* name,
3554 const char* ver,
3555 elfcpp::Sym<32, false>* sym);
3556 #endif
3557
3558 #ifdef HAVE_TARGET_32_BIG
3559 template
3560 Sized_symbol<32>*
3561 Symbol_table::add_from_incrobj(
3562 Object* obj,
3563 const char* name,
3564 const char* ver,
3565 elfcpp::Sym<32, true>* sym);
3566 #endif
3567
3568 #ifdef HAVE_TARGET_64_LITTLE
3569 template
3570 Sized_symbol<64>*
3571 Symbol_table::add_from_incrobj(
3572 Object* obj,
3573 const char* name,
3574 const char* ver,
3575 elfcpp::Sym<64, false>* sym);
3576 #endif
3577
3578 #ifdef HAVE_TARGET_64_BIG
3579 template
3580 Sized_symbol<64>*
3581 Symbol_table::add_from_incrobj(
3582 Object* obj,
3583 const char* name,
3584 const char* ver,
3585 elfcpp::Sym<64, true>* sym);
3586 #endif
3587
3588 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3589 template
3590 void
3591 Symbol_table::define_with_copy_reloc<32>(
3592 Sized_symbol<32>* sym,
3593 Output_data* posd,
3594 elfcpp::Elf_types<32>::Elf_Addr value);
3595 #endif
3596
3597 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3598 template
3599 void
3600 Symbol_table::define_with_copy_reloc<64>(
3601 Sized_symbol<64>* sym,
3602 Output_data* posd,
3603 elfcpp::Elf_types<64>::Elf_Addr value);
3604 #endif
3605
3606 #ifdef HAVE_TARGET_32_LITTLE
3607 template
3608 void
3609 Warnings::issue_warning<32, false>(const Symbol* sym,
3610 const Relocate_info<32, false>* relinfo,
3611 size_t relnum, off_t reloffset) const;
3612 #endif
3613
3614 #ifdef HAVE_TARGET_32_BIG
3615 template
3616 void
3617 Warnings::issue_warning<32, true>(const Symbol* sym,
3618 const Relocate_info<32, true>* relinfo,
3619 size_t relnum, off_t reloffset) const;
3620 #endif
3621
3622 #ifdef HAVE_TARGET_64_LITTLE
3623 template
3624 void
3625 Warnings::issue_warning<64, false>(const Symbol* sym,
3626 const Relocate_info<64, false>* relinfo,
3627 size_t relnum, off_t reloffset) const;
3628 #endif
3629
3630 #ifdef HAVE_TARGET_64_BIG
3631 template
3632 void
3633 Warnings::issue_warning<64, true>(const Symbol* sym,
3634 const Relocate_info<64, true>* relinfo,
3635 size_t relnum, off_t reloffset) const;
3636 #endif
3637
3638 } // End namespace gold.
This page took 0.134747 seconds and 5 git commands to generate.