* layout.cc (Layout::set_segment_offsets): Don't realign text
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced local in a version script, do not add it.
367 if (this->is_forced_local())
368 return false;
369
370 // If the symbol was forced dynamic in a --dynamic-list file, add it.
371 if (parameters->options().in_dynamic_list(this->name()))
372 return true;
373
374 // If dynamic-list-data was specified, add any STT_OBJECT.
375 if (parameters->options().dynamic_list_data()
376 && !this->is_from_dynobj()
377 && this->type() == elfcpp::STT_OBJECT)
378 return true;
379
380 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382 if ((parameters->options().dynamic_list_cpp_new()
383 || parameters->options().dynamic_list_cpp_typeinfo())
384 && !this->is_from_dynobj())
385 {
386 // TODO(csilvers): We could probably figure out if we're an operator
387 // new/delete or typeinfo without the need to demangle.
388 char* demangled_name = cplus_demangle(this->name(),
389 DMGL_ANSI | DMGL_PARAMS);
390 if (demangled_name == NULL)
391 {
392 // Not a C++ symbol, so it can't satisfy these flags
393 }
394 else if (parameters->options().dynamic_list_cpp_new()
395 && (strprefix(demangled_name, "operator new")
396 || strprefix(demangled_name, "operator delete")))
397 {
398 free(demangled_name);
399 return true;
400 }
401 else if (parameters->options().dynamic_list_cpp_typeinfo()
402 && (strprefix(demangled_name, "typeinfo name for")
403 || strprefix(demangled_name, "typeinfo for")))
404 {
405 free(demangled_name);
406 return true;
407 }
408 else
409 free(demangled_name);
410 }
411
412 // If exporting all symbols or building a shared library,
413 // and the symbol is defined in a regular object and is
414 // externally visible, we need to add it.
415 if ((parameters->options().export_dynamic() || parameters->options().shared())
416 && !this->is_from_dynobj()
417 && !this->is_undefined()
418 && this->is_externally_visible())
419 return true;
420
421 return false;
422 }
423
424 // Return true if the final value of this symbol is known at link
425 // time.
426
427 bool
428 Symbol::final_value_is_known() const
429 {
430 // If we are not generating an executable, then no final values are
431 // known, since they will change at runtime.
432 if (parameters->options().output_is_position_independent()
433 || parameters->options().relocatable())
434 return false;
435
436 // If the symbol is not from an object file, and is not undefined,
437 // then it is defined, and known.
438 if (this->source_ != FROM_OBJECT)
439 {
440 if (this->source_ != IS_UNDEFINED)
441 return true;
442 }
443 else
444 {
445 // If the symbol is from a dynamic object, then the final value
446 // is not known.
447 if (this->object()->is_dynamic())
448 return false;
449
450 // If the symbol is not undefined (it is defined or common),
451 // then the final value is known.
452 if (!this->is_undefined())
453 return true;
454 }
455
456 // If the symbol is undefined, then whether the final value is known
457 // depends on whether we are doing a static link. If we are doing a
458 // dynamic link, then the final value could be filled in at runtime.
459 // This could reasonably be the case for a weak undefined symbol.
460 return parameters->doing_static_link();
461 }
462
463 // Return the output section where this symbol is defined.
464
465 Output_section*
466 Symbol::output_section() const
467 {
468 switch (this->source_)
469 {
470 case FROM_OBJECT:
471 {
472 unsigned int shndx = this->u_.from_object.shndx;
473 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
474 {
475 gold_assert(!this->u_.from_object.object->is_dynamic());
476 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478 return relobj->output_section(shndx);
479 }
480 return NULL;
481 }
482
483 case IN_OUTPUT_DATA:
484 return this->u_.in_output_data.output_data->output_section();
485
486 case IN_OUTPUT_SEGMENT:
487 case IS_CONSTANT:
488 case IS_UNDEFINED:
489 return NULL;
490
491 default:
492 gold_unreachable();
493 }
494 }
495
496 // Set the symbol's output section. This is used for symbols defined
497 // in scripts. This should only be called after the symbol table has
498 // been finalized.
499
500 void
501 Symbol::set_output_section(Output_section* os)
502 {
503 switch (this->source_)
504 {
505 case FROM_OBJECT:
506 case IN_OUTPUT_DATA:
507 gold_assert(this->output_section() == os);
508 break;
509 case IS_CONSTANT:
510 this->source_ = IN_OUTPUT_DATA;
511 this->u_.in_output_data.output_data = os;
512 this->u_.in_output_data.offset_is_from_end = false;
513 break;
514 case IN_OUTPUT_SEGMENT:
515 case IS_UNDEFINED:
516 default:
517 gold_unreachable();
518 }
519 }
520
521 // Class Symbol_table.
522
523 Symbol_table::Symbol_table(unsigned int count,
524 const Version_script_info& version_script)
525 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526 forwarders_(), commons_(), tls_commons_(), small_commons_(),
527 large_commons_(), forced_locals_(), warnings_(),
528 version_script_(version_script), gc_(NULL), icf_(NULL)
529 {
530 namepool_.reserve(count);
531 }
532
533 Symbol_table::~Symbol_table()
534 {
535 }
536
537 // The symbol table key equality function. This is called with
538 // Stringpool keys.
539
540 inline bool
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542 const Symbol_table_key& k2) const
543 {
544 return k1.first == k2.first && k1.second == k2.second;
545 }
546
547 bool
548 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
549 {
550 return (parameters->options().icf_enabled()
551 && this->icf_->is_section_folded(obj, shndx));
552 }
553
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
556
557 void
558 Symbol_table::gc_mark_undef_symbols(Layout* layout)
559 {
560 for (options::String_set::const_iterator p =
561 parameters->options().undefined_begin();
562 p != parameters->options().undefined_end();
563 ++p)
564 {
565 const char* name = p->c_str();
566 Symbol* sym = this->lookup(name);
567 gold_assert(sym != NULL);
568 if (sym->source() == Symbol::FROM_OBJECT
569 && !sym->object()->is_dynamic())
570 {
571 Relobj* obj = static_cast<Relobj*>(sym->object());
572 bool is_ordinary;
573 unsigned int shndx = sym->shndx(&is_ordinary);
574 if (is_ordinary)
575 {
576 gold_assert(this->gc_ != NULL);
577 this->gc_->worklist().push(Section_id(obj, shndx));
578 }
579 }
580 }
581
582 for (Script_options::referenced_const_iterator p =
583 layout->script_options()->referenced_begin();
584 p != layout->script_options()->referenced_end();
585 ++p)
586 {
587 Symbol* sym = this->lookup(p->c_str());
588 gold_assert(sym != NULL);
589 if (sym->source() == Symbol::FROM_OBJECT
590 && !sym->object()->is_dynamic())
591 {
592 Relobj* obj = static_cast<Relobj*>(sym->object());
593 bool is_ordinary;
594 unsigned int shndx = sym->shndx(&is_ordinary);
595 if (is_ordinary)
596 {
597 gold_assert(this->gc_ != NULL);
598 this->gc_->worklist().push(Section_id(obj, shndx));
599 }
600 }
601 }
602 }
603
604 void
605 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
606 {
607 if (!sym->is_from_dynobj()
608 && sym->is_externally_visible())
609 {
610 //Add the object and section to the work list.
611 Relobj* obj = static_cast<Relobj*>(sym->object());
612 bool is_ordinary;
613 unsigned int shndx = sym->shndx(&is_ordinary);
614 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
615 {
616 gold_assert(this->gc_!= NULL);
617 this->gc_->worklist().push(Section_id(obj, shndx));
618 }
619 }
620 }
621
622 // When doing garbage collection, keep symbols that have been seen in
623 // dynamic objects.
624 inline void
625 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
626 {
627 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
628 && !sym->object()->is_dynamic())
629 {
630 Relobj* obj = static_cast<Relobj*>(sym->object());
631 bool is_ordinary;
632 unsigned int shndx = sym->shndx(&is_ordinary);
633 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
634 {
635 gold_assert(this->gc_ != NULL);
636 this->gc_->worklist().push(Section_id(obj, shndx));
637 }
638 }
639 }
640
641 // Make TO a symbol which forwards to FROM.
642
643 void
644 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
645 {
646 gold_assert(from != to);
647 gold_assert(!from->is_forwarder() && !to->is_forwarder());
648 this->forwarders_[from] = to;
649 from->set_forwarder();
650 }
651
652 // Resolve the forwards from FROM, returning the real symbol.
653
654 Symbol*
655 Symbol_table::resolve_forwards(const Symbol* from) const
656 {
657 gold_assert(from->is_forwarder());
658 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
659 this->forwarders_.find(from);
660 gold_assert(p != this->forwarders_.end());
661 return p->second;
662 }
663
664 // Look up a symbol by name.
665
666 Symbol*
667 Symbol_table::lookup(const char* name, const char* version) const
668 {
669 Stringpool::Key name_key;
670 name = this->namepool_.find(name, &name_key);
671 if (name == NULL)
672 return NULL;
673
674 Stringpool::Key version_key = 0;
675 if (version != NULL)
676 {
677 version = this->namepool_.find(version, &version_key);
678 if (version == NULL)
679 return NULL;
680 }
681
682 Symbol_table_key key(name_key, version_key);
683 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
684 if (p == this->table_.end())
685 return NULL;
686 return p->second;
687 }
688
689 // Resolve a Symbol with another Symbol. This is only used in the
690 // unusual case where there are references to both an unversioned
691 // symbol and a symbol with a version, and we then discover that that
692 // version is the default version. Because this is unusual, we do
693 // this the slow way, by converting back to an ELF symbol.
694
695 template<int size, bool big_endian>
696 void
697 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
698 {
699 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
700 elfcpp::Sym_write<size, big_endian> esym(buf);
701 // We don't bother to set the st_name or the st_shndx field.
702 esym.put_st_value(from->value());
703 esym.put_st_size(from->symsize());
704 esym.put_st_info(from->binding(), from->type());
705 esym.put_st_other(from->visibility(), from->nonvis());
706 bool is_ordinary;
707 unsigned int shndx = from->shndx(&is_ordinary);
708 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
709 from->version());
710 if (from->in_reg())
711 to->set_in_reg();
712 if (from->in_dyn())
713 to->set_in_dyn();
714 if (parameters->options().gc_sections())
715 this->gc_mark_dyn_syms(to);
716 }
717
718 // Record that a symbol is forced to be local by a version script or
719 // by visibility.
720
721 void
722 Symbol_table::force_local(Symbol* sym)
723 {
724 if (!sym->is_defined() && !sym->is_common())
725 return;
726 if (sym->is_forced_local())
727 {
728 // We already got this one.
729 return;
730 }
731 sym->set_is_forced_local();
732 this->forced_locals_.push_back(sym);
733 }
734
735 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
736 // is only called for undefined symbols, when at least one --wrap
737 // option was used.
738
739 const char*
740 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
741 {
742 // For some targets, we need to ignore a specific character when
743 // wrapping, and add it back later.
744 char prefix = '\0';
745 if (name[0] == parameters->target().wrap_char())
746 {
747 prefix = name[0];
748 ++name;
749 }
750
751 if (parameters->options().is_wrap(name))
752 {
753 // Turn NAME into __wrap_NAME.
754 std::string s;
755 if (prefix != '\0')
756 s += prefix;
757 s += "__wrap_";
758 s += name;
759
760 // This will give us both the old and new name in NAMEPOOL_, but
761 // that is OK. Only the versions we need will wind up in the
762 // real string table in the output file.
763 return this->namepool_.add(s.c_str(), true, name_key);
764 }
765
766 const char* const real_prefix = "__real_";
767 const size_t real_prefix_length = strlen(real_prefix);
768 if (strncmp(name, real_prefix, real_prefix_length) == 0
769 && parameters->options().is_wrap(name + real_prefix_length))
770 {
771 // Turn __real_NAME into NAME.
772 std::string s;
773 if (prefix != '\0')
774 s += prefix;
775 s += name + real_prefix_length;
776 return this->namepool_.add(s.c_str(), true, name_key);
777 }
778
779 return name;
780 }
781
782 // This is called when we see a symbol NAME/VERSION, and the symbol
783 // already exists in the symbol table, and VERSION is marked as being
784 // the default version. SYM is the NAME/VERSION symbol we just added.
785 // DEFAULT_IS_NEW is true if this is the first time we have seen the
786 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
787
788 template<int size, bool big_endian>
789 void
790 Symbol_table::define_default_version(Sized_symbol<size>* sym,
791 bool default_is_new,
792 Symbol_table_type::iterator pdef)
793 {
794 if (default_is_new)
795 {
796 // This is the first time we have seen NAME/NULL. Make
797 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
798 // version.
799 pdef->second = sym;
800 sym->set_is_default();
801 }
802 else if (pdef->second == sym)
803 {
804 // NAME/NULL already points to NAME/VERSION. Don't mark the
805 // symbol as the default if it is not already the default.
806 }
807 else
808 {
809 // This is the unfortunate case where we already have entries
810 // for both NAME/VERSION and NAME/NULL. We now see a symbol
811 // NAME/VERSION where VERSION is the default version. We have
812 // already resolved this new symbol with the existing
813 // NAME/VERSION symbol.
814
815 // It's possible that NAME/NULL and NAME/VERSION are both
816 // defined in regular objects. This can only happen if one
817 // object file defines foo and another defines foo@@ver. This
818 // is somewhat obscure, but we call it a multiple definition
819 // error.
820
821 // It's possible that NAME/NULL actually has a version, in which
822 // case it won't be the same as VERSION. This happens with
823 // ver_test_7.so in the testsuite for the symbol t2_2. We see
824 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
825 // then see an unadorned t2_2 in an object file and give it
826 // version VER1 from the version script. This looks like a
827 // default definition for VER1, so it looks like we should merge
828 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
829 // not obvious that this is an error, either. So we just punt.
830
831 // If one of the symbols has non-default visibility, and the
832 // other is defined in a shared object, then they are different
833 // symbols.
834
835 // Otherwise, we just resolve the symbols as though they were
836 // the same.
837
838 if (pdef->second->version() != NULL)
839 gold_assert(pdef->second->version() != sym->version());
840 else if (sym->visibility() != elfcpp::STV_DEFAULT
841 && pdef->second->is_from_dynobj())
842 ;
843 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
844 && sym->is_from_dynobj())
845 ;
846 else
847 {
848 const Sized_symbol<size>* symdef;
849 symdef = this->get_sized_symbol<size>(pdef->second);
850 Symbol_table::resolve<size, big_endian>(sym, symdef);
851 this->make_forwarder(pdef->second, sym);
852 pdef->second = sym;
853 sym->set_is_default();
854 }
855 }
856 }
857
858 // Add one symbol from OBJECT to the symbol table. NAME is symbol
859 // name and VERSION is the version; both are canonicalized. DEF is
860 // whether this is the default version. ST_SHNDX is the symbol's
861 // section index; IS_ORDINARY is whether this is a normal section
862 // rather than a special code.
863
864 // If IS_DEFAULT_VERSION is true, then this is the definition of a
865 // default version of a symbol. That means that any lookup of
866 // NAME/NULL and any lookup of NAME/VERSION should always return the
867 // same symbol. This is obvious for references, but in particular we
868 // want to do this for definitions: overriding NAME/NULL should also
869 // override NAME/VERSION. If we don't do that, it would be very hard
870 // to override functions in a shared library which uses versioning.
871
872 // We implement this by simply making both entries in the hash table
873 // point to the same Symbol structure. That is easy enough if this is
874 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
875 // that we have seen both already, in which case they will both have
876 // independent entries in the symbol table. We can't simply change
877 // the symbol table entry, because we have pointers to the entries
878 // attached to the object files. So we mark the entry attached to the
879 // object file as a forwarder, and record it in the forwarders_ map.
880 // Note that entries in the hash table will never be marked as
881 // forwarders.
882 //
883 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885 // for a special section code. ST_SHNDX may be modified if the symbol
886 // is defined in a section being discarded.
887
888 template<int size, bool big_endian>
889 Sized_symbol<size>*
890 Symbol_table::add_from_object(Object* object,
891 const char* name,
892 Stringpool::Key name_key,
893 const char* version,
894 Stringpool::Key version_key,
895 bool is_default_version,
896 const elfcpp::Sym<size, big_endian>& sym,
897 unsigned int st_shndx,
898 bool is_ordinary,
899 unsigned int orig_st_shndx)
900 {
901 // Print a message if this symbol is being traced.
902 if (parameters->options().is_trace_symbol(name))
903 {
904 if (orig_st_shndx == elfcpp::SHN_UNDEF)
905 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
906 else
907 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
908 }
909
910 // For an undefined symbol, we may need to adjust the name using
911 // --wrap.
912 if (orig_st_shndx == elfcpp::SHN_UNDEF
913 && parameters->options().any_wrap())
914 {
915 const char* wrap_name = this->wrap_symbol(name, &name_key);
916 if (wrap_name != name)
917 {
918 // If we see a reference to malloc with version GLIBC_2.0,
919 // and we turn it into a reference to __wrap_malloc, then we
920 // discard the version number. Otherwise the user would be
921 // required to specify the correct version for
922 // __wrap_malloc.
923 version = NULL;
924 version_key = 0;
925 name = wrap_name;
926 }
927 }
928
929 Symbol* const snull = NULL;
930 std::pair<typename Symbol_table_type::iterator, bool> ins =
931 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
932 snull));
933
934 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
935 std::make_pair(this->table_.end(), false);
936 if (is_default_version)
937 {
938 const Stringpool::Key vnull_key = 0;
939 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
940 vnull_key),
941 snull));
942 }
943
944 // ins.first: an iterator, which is a pointer to a pair.
945 // ins.first->first: the key (a pair of name and version).
946 // ins.first->second: the value (Symbol*).
947 // ins.second: true if new entry was inserted, false if not.
948
949 Sized_symbol<size>* ret;
950 bool was_undefined;
951 bool was_common;
952 if (!ins.second)
953 {
954 // We already have an entry for NAME/VERSION.
955 ret = this->get_sized_symbol<size>(ins.first->second);
956 gold_assert(ret != NULL);
957
958 was_undefined = ret->is_undefined();
959 was_common = ret->is_common();
960
961 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
962 version);
963 if (parameters->options().gc_sections())
964 this->gc_mark_dyn_syms(ret);
965
966 if (is_default_version)
967 this->define_default_version<size, big_endian>(ret, insdefault.second,
968 insdefault.first);
969 }
970 else
971 {
972 // This is the first time we have seen NAME/VERSION.
973 gold_assert(ins.first->second == NULL);
974
975 if (is_default_version && !insdefault.second)
976 {
977 // We already have an entry for NAME/NULL. If we override
978 // it, then change it to NAME/VERSION.
979 ret = this->get_sized_symbol<size>(insdefault.first->second);
980
981 was_undefined = ret->is_undefined();
982 was_common = ret->is_common();
983
984 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
985 version);
986 if (parameters->options().gc_sections())
987 this->gc_mark_dyn_syms(ret);
988 ins.first->second = ret;
989 }
990 else
991 {
992 was_undefined = false;
993 was_common = false;
994
995 Sized_target<size, big_endian>* target =
996 parameters->sized_target<size, big_endian>();
997 if (!target->has_make_symbol())
998 ret = new Sized_symbol<size>();
999 else
1000 {
1001 ret = target->make_symbol();
1002 if (ret == NULL)
1003 {
1004 // This means that we don't want a symbol table
1005 // entry after all.
1006 if (!is_default_version)
1007 this->table_.erase(ins.first);
1008 else
1009 {
1010 this->table_.erase(insdefault.first);
1011 // Inserting INSDEFAULT invalidated INS.
1012 this->table_.erase(std::make_pair(name_key,
1013 version_key));
1014 }
1015 return NULL;
1016 }
1017 }
1018
1019 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1020
1021 ins.first->second = ret;
1022 if (is_default_version)
1023 {
1024 // This is the first time we have seen NAME/NULL. Point
1025 // it at the new entry for NAME/VERSION.
1026 gold_assert(insdefault.second);
1027 insdefault.first->second = ret;
1028 }
1029 }
1030
1031 if (is_default_version)
1032 ret->set_is_default();
1033 }
1034
1035 // Record every time we see a new undefined symbol, to speed up
1036 // archive groups.
1037 if (!was_undefined && ret->is_undefined())
1038 {
1039 ++this->saw_undefined_;
1040 if (parameters->options().has_plugins())
1041 parameters->options().plugins()->new_undefined_symbol(ret);
1042 }
1043
1044 // Keep track of common symbols, to speed up common symbol
1045 // allocation.
1046 if (!was_common && ret->is_common())
1047 {
1048 if (ret->type() == elfcpp::STT_TLS)
1049 this->tls_commons_.push_back(ret);
1050 else if (!is_ordinary
1051 && st_shndx == parameters->target().small_common_shndx())
1052 this->small_commons_.push_back(ret);
1053 else if (!is_ordinary
1054 && st_shndx == parameters->target().large_common_shndx())
1055 this->large_commons_.push_back(ret);
1056 else
1057 this->commons_.push_back(ret);
1058 }
1059
1060 // If we're not doing a relocatable link, then any symbol with
1061 // hidden or internal visibility is local.
1062 if ((ret->visibility() == elfcpp::STV_HIDDEN
1063 || ret->visibility() == elfcpp::STV_INTERNAL)
1064 && (ret->binding() == elfcpp::STB_GLOBAL
1065 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1066 || ret->binding() == elfcpp::STB_WEAK)
1067 && !parameters->options().relocatable())
1068 this->force_local(ret);
1069
1070 return ret;
1071 }
1072
1073 // Add all the symbols in a relocatable object to the hash table.
1074
1075 template<int size, bool big_endian>
1076 void
1077 Symbol_table::add_from_relobj(
1078 Sized_relobj_file<size, big_endian>* relobj,
1079 const unsigned char* syms,
1080 size_t count,
1081 size_t symndx_offset,
1082 const char* sym_names,
1083 size_t sym_name_size,
1084 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1085 size_t* defined)
1086 {
1087 *defined = 0;
1088
1089 gold_assert(size == parameters->target().get_size());
1090
1091 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1092
1093 const bool just_symbols = relobj->just_symbols();
1094
1095 const unsigned char* p = syms;
1096 for (size_t i = 0; i < count; ++i, p += sym_size)
1097 {
1098 (*sympointers)[i] = NULL;
1099
1100 elfcpp::Sym<size, big_endian> sym(p);
1101
1102 unsigned int st_name = sym.get_st_name();
1103 if (st_name >= sym_name_size)
1104 {
1105 relobj->error(_("bad global symbol name offset %u at %zu"),
1106 st_name, i);
1107 continue;
1108 }
1109
1110 const char* name = sym_names + st_name;
1111
1112 bool is_ordinary;
1113 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1114 sym.get_st_shndx(),
1115 &is_ordinary);
1116 unsigned int orig_st_shndx = st_shndx;
1117 if (!is_ordinary)
1118 orig_st_shndx = elfcpp::SHN_UNDEF;
1119
1120 if (st_shndx != elfcpp::SHN_UNDEF)
1121 ++*defined;
1122
1123 // A symbol defined in a section which we are not including must
1124 // be treated as an undefined symbol.
1125 bool is_defined_in_discarded_section = false;
1126 if (st_shndx != elfcpp::SHN_UNDEF
1127 && is_ordinary
1128 && !relobj->is_section_included(st_shndx)
1129 && !this->is_section_folded(relobj, st_shndx))
1130 {
1131 st_shndx = elfcpp::SHN_UNDEF;
1132 is_defined_in_discarded_section = true;
1133 }
1134
1135 // In an object file, an '@' in the name separates the symbol
1136 // name from the version name. If there are two '@' characters,
1137 // this is the default version.
1138 const char* ver = strchr(name, '@');
1139 Stringpool::Key ver_key = 0;
1140 int namelen = 0;
1141 // IS_DEFAULT_VERSION: is the version default?
1142 // IS_FORCED_LOCAL: is the symbol forced local?
1143 bool is_default_version = false;
1144 bool is_forced_local = false;
1145
1146 if (ver != NULL)
1147 {
1148 // The symbol name is of the form foo@VERSION or foo@@VERSION
1149 namelen = ver - name;
1150 ++ver;
1151 if (*ver == '@')
1152 {
1153 is_default_version = true;
1154 ++ver;
1155 }
1156 ver = this->namepool_.add(ver, true, &ver_key);
1157 }
1158 // We don't want to assign a version to an undefined symbol,
1159 // even if it is listed in the version script. FIXME: What
1160 // about a common symbol?
1161 else
1162 {
1163 namelen = strlen(name);
1164 if (!this->version_script_.empty()
1165 && st_shndx != elfcpp::SHN_UNDEF)
1166 {
1167 // The symbol name did not have a version, but the
1168 // version script may assign a version anyway.
1169 std::string version;
1170 bool is_global;
1171 if (this->version_script_.get_symbol_version(name, &version,
1172 &is_global))
1173 {
1174 if (!is_global)
1175 is_forced_local = true;
1176 else if (!version.empty())
1177 {
1178 ver = this->namepool_.add_with_length(version.c_str(),
1179 version.length(),
1180 true,
1181 &ver_key);
1182 is_default_version = true;
1183 }
1184 }
1185 }
1186 }
1187
1188 elfcpp::Sym<size, big_endian>* psym = &sym;
1189 unsigned char symbuf[sym_size];
1190 elfcpp::Sym<size, big_endian> sym2(symbuf);
1191 if (just_symbols)
1192 {
1193 memcpy(symbuf, p, sym_size);
1194 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1195 if (orig_st_shndx != elfcpp::SHN_UNDEF
1196 && is_ordinary
1197 && relobj->e_type() == elfcpp::ET_REL)
1198 {
1199 // Symbol values in relocatable object files are section
1200 // relative. This is normally what we want, but since here
1201 // we are converting the symbol to absolute we need to add
1202 // the section address. The section address in an object
1203 // file is normally zero, but people can use a linker
1204 // script to change it.
1205 sw.put_st_value(sym.get_st_value()
1206 + relobj->section_address(orig_st_shndx));
1207 }
1208 st_shndx = elfcpp::SHN_ABS;
1209 is_ordinary = false;
1210 psym = &sym2;
1211 }
1212
1213 // Fix up visibility if object has no-export set.
1214 if (relobj->no_export()
1215 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1216 {
1217 // We may have copied symbol already above.
1218 if (psym != &sym2)
1219 {
1220 memcpy(symbuf, p, sym_size);
1221 psym = &sym2;
1222 }
1223
1224 elfcpp::STV visibility = sym2.get_st_visibility();
1225 if (visibility == elfcpp::STV_DEFAULT
1226 || visibility == elfcpp::STV_PROTECTED)
1227 {
1228 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1229 unsigned char nonvis = sym2.get_st_nonvis();
1230 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1231 }
1232 }
1233
1234 Stringpool::Key name_key;
1235 name = this->namepool_.add_with_length(name, namelen, true,
1236 &name_key);
1237
1238 Sized_symbol<size>* res;
1239 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1240 is_default_version, *psym, st_shndx,
1241 is_ordinary, orig_st_shndx);
1242
1243 if (is_forced_local)
1244 this->force_local(res);
1245
1246 // If building a shared library using garbage collection, do not
1247 // treat externally visible symbols as garbage.
1248 if (parameters->options().gc_sections()
1249 && parameters->options().shared())
1250 this->gc_mark_symbol_for_shlib(res);
1251
1252 if (is_defined_in_discarded_section)
1253 res->set_is_defined_in_discarded_section();
1254
1255 (*sympointers)[i] = res;
1256 }
1257 }
1258
1259 // Add a symbol from a plugin-claimed file.
1260
1261 template<int size, bool big_endian>
1262 Symbol*
1263 Symbol_table::add_from_pluginobj(
1264 Sized_pluginobj<size, big_endian>* obj,
1265 const char* name,
1266 const char* ver,
1267 elfcpp::Sym<size, big_endian>* sym)
1268 {
1269 unsigned int st_shndx = sym->get_st_shndx();
1270 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1271
1272 Stringpool::Key ver_key = 0;
1273 bool is_default_version = false;
1274 bool is_forced_local = false;
1275
1276 if (ver != NULL)
1277 {
1278 ver = this->namepool_.add(ver, true, &ver_key);
1279 }
1280 // We don't want to assign a version to an undefined symbol,
1281 // even if it is listed in the version script. FIXME: What
1282 // about a common symbol?
1283 else
1284 {
1285 if (!this->version_script_.empty()
1286 && st_shndx != elfcpp::SHN_UNDEF)
1287 {
1288 // The symbol name did not have a version, but the
1289 // version script may assign a version anyway.
1290 std::string version;
1291 bool is_global;
1292 if (this->version_script_.get_symbol_version(name, &version,
1293 &is_global))
1294 {
1295 if (!is_global)
1296 is_forced_local = true;
1297 else if (!version.empty())
1298 {
1299 ver = this->namepool_.add_with_length(version.c_str(),
1300 version.length(),
1301 true,
1302 &ver_key);
1303 is_default_version = true;
1304 }
1305 }
1306 }
1307 }
1308
1309 Stringpool::Key name_key;
1310 name = this->namepool_.add(name, true, &name_key);
1311
1312 Sized_symbol<size>* res;
1313 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1314 is_default_version, *sym, st_shndx,
1315 is_ordinary, st_shndx);
1316
1317 if (is_forced_local)
1318 this->force_local(res);
1319
1320 return res;
1321 }
1322
1323 // Add all the symbols in a dynamic object to the hash table.
1324
1325 template<int size, bool big_endian>
1326 void
1327 Symbol_table::add_from_dynobj(
1328 Sized_dynobj<size, big_endian>* dynobj,
1329 const unsigned char* syms,
1330 size_t count,
1331 const char* sym_names,
1332 size_t sym_name_size,
1333 const unsigned char* versym,
1334 size_t versym_size,
1335 const std::vector<const char*>* version_map,
1336 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1337 size_t* defined)
1338 {
1339 *defined = 0;
1340
1341 gold_assert(size == parameters->target().get_size());
1342
1343 if (dynobj->just_symbols())
1344 {
1345 gold_error(_("--just-symbols does not make sense with a shared object"));
1346 return;
1347 }
1348
1349 if (versym != NULL && versym_size / 2 < count)
1350 {
1351 dynobj->error(_("too few symbol versions"));
1352 return;
1353 }
1354
1355 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1356
1357 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1358 // weak aliases. This is necessary because if the dynamic object
1359 // provides the same variable under two names, one of which is a
1360 // weak definition, and the regular object refers to the weak
1361 // definition, we have to put both the weak definition and the
1362 // strong definition into the dynamic symbol table. Given a weak
1363 // definition, the only way that we can find the corresponding
1364 // strong definition, if any, is to search the symbol table.
1365 std::vector<Sized_symbol<size>*> object_symbols;
1366
1367 const unsigned char* p = syms;
1368 const unsigned char* vs = versym;
1369 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1370 {
1371 elfcpp::Sym<size, big_endian> sym(p);
1372
1373 if (sympointers != NULL)
1374 (*sympointers)[i] = NULL;
1375
1376 // Ignore symbols with local binding or that have
1377 // internal or hidden visibility.
1378 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1379 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1380 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1381 continue;
1382
1383 // A protected symbol in a shared library must be treated as a
1384 // normal symbol when viewed from outside the shared library.
1385 // Implement this by overriding the visibility here.
1386 elfcpp::Sym<size, big_endian>* psym = &sym;
1387 unsigned char symbuf[sym_size];
1388 elfcpp::Sym<size, big_endian> sym2(symbuf);
1389 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1390 {
1391 memcpy(symbuf, p, sym_size);
1392 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1393 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1394 psym = &sym2;
1395 }
1396
1397 unsigned int st_name = psym->get_st_name();
1398 if (st_name >= sym_name_size)
1399 {
1400 dynobj->error(_("bad symbol name offset %u at %zu"),
1401 st_name, i);
1402 continue;
1403 }
1404
1405 const char* name = sym_names + st_name;
1406
1407 bool is_ordinary;
1408 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1409 &is_ordinary);
1410
1411 if (st_shndx != elfcpp::SHN_UNDEF)
1412 ++*defined;
1413
1414 Sized_symbol<size>* res;
1415
1416 if (versym == NULL)
1417 {
1418 Stringpool::Key name_key;
1419 name = this->namepool_.add(name, true, &name_key);
1420 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1421 false, *psym, st_shndx, is_ordinary,
1422 st_shndx);
1423 }
1424 else
1425 {
1426 // Read the version information.
1427
1428 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1429
1430 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1431 v &= elfcpp::VERSYM_VERSION;
1432
1433 // The Sun documentation says that V can be VER_NDX_LOCAL,
1434 // or VER_NDX_GLOBAL, or a version index. The meaning of
1435 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1436 // The old GNU linker will happily generate VER_NDX_LOCAL
1437 // for an undefined symbol. I don't know what the Sun
1438 // linker will generate.
1439
1440 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1441 && st_shndx != elfcpp::SHN_UNDEF)
1442 {
1443 // This symbol should not be visible outside the object.
1444 continue;
1445 }
1446
1447 // At this point we are definitely going to add this symbol.
1448 Stringpool::Key name_key;
1449 name = this->namepool_.add(name, true, &name_key);
1450
1451 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1452 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1453 {
1454 // This symbol does not have a version.
1455 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1456 false, *psym, st_shndx, is_ordinary,
1457 st_shndx);
1458 }
1459 else
1460 {
1461 if (v >= version_map->size())
1462 {
1463 dynobj->error(_("versym for symbol %zu out of range: %u"),
1464 i, v);
1465 continue;
1466 }
1467
1468 const char* version = (*version_map)[v];
1469 if (version == NULL)
1470 {
1471 dynobj->error(_("versym for symbol %zu has no name: %u"),
1472 i, v);
1473 continue;
1474 }
1475
1476 Stringpool::Key version_key;
1477 version = this->namepool_.add(version, true, &version_key);
1478
1479 // If this is an absolute symbol, and the version name
1480 // and symbol name are the same, then this is the
1481 // version definition symbol. These symbols exist to
1482 // support using -u to pull in particular versions. We
1483 // do not want to record a version for them.
1484 if (st_shndx == elfcpp::SHN_ABS
1485 && !is_ordinary
1486 && name_key == version_key)
1487 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1488 false, *psym, st_shndx, is_ordinary,
1489 st_shndx);
1490 else
1491 {
1492 const bool is_default_version =
1493 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1494 res = this->add_from_object(dynobj, name, name_key, version,
1495 version_key, is_default_version,
1496 *psym, st_shndx,
1497 is_ordinary, st_shndx);
1498 }
1499 }
1500 }
1501
1502 // Note that it is possible that RES was overridden by an
1503 // earlier object, in which case it can't be aliased here.
1504 if (st_shndx != elfcpp::SHN_UNDEF
1505 && is_ordinary
1506 && psym->get_st_type() == elfcpp::STT_OBJECT
1507 && res->source() == Symbol::FROM_OBJECT
1508 && res->object() == dynobj)
1509 object_symbols.push_back(res);
1510
1511 if (sympointers != NULL)
1512 (*sympointers)[i] = res;
1513 }
1514
1515 this->record_weak_aliases(&object_symbols);
1516 }
1517
1518 // Add a symbol from a incremental object file.
1519
1520 template<int size, bool big_endian>
1521 Sized_symbol<size>*
1522 Symbol_table::add_from_incrobj(
1523 Object* obj,
1524 const char* name,
1525 const char* ver,
1526 elfcpp::Sym<size, big_endian>* sym)
1527 {
1528 unsigned int st_shndx = sym->get_st_shndx();
1529 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1530
1531 Stringpool::Key ver_key = 0;
1532 bool is_default_version = false;
1533 bool is_forced_local = false;
1534
1535 Stringpool::Key name_key;
1536 name = this->namepool_.add(name, true, &name_key);
1537
1538 Sized_symbol<size>* res;
1539 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1540 is_default_version, *sym, st_shndx,
1541 is_ordinary, st_shndx);
1542
1543 if (is_forced_local)
1544 this->force_local(res);
1545
1546 return res;
1547 }
1548
1549 // This is used to sort weak aliases. We sort them first by section
1550 // index, then by offset, then by weak ahead of strong.
1551
1552 template<int size>
1553 class Weak_alias_sorter
1554 {
1555 public:
1556 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1557 };
1558
1559 template<int size>
1560 bool
1561 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1562 const Sized_symbol<size>* s2) const
1563 {
1564 bool is_ordinary;
1565 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1566 gold_assert(is_ordinary);
1567 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1568 gold_assert(is_ordinary);
1569 if (s1_shndx != s2_shndx)
1570 return s1_shndx < s2_shndx;
1571
1572 if (s1->value() != s2->value())
1573 return s1->value() < s2->value();
1574 if (s1->binding() != s2->binding())
1575 {
1576 if (s1->binding() == elfcpp::STB_WEAK)
1577 return true;
1578 if (s2->binding() == elfcpp::STB_WEAK)
1579 return false;
1580 }
1581 return std::string(s1->name()) < std::string(s2->name());
1582 }
1583
1584 // SYMBOLS is a list of object symbols from a dynamic object. Look
1585 // for any weak aliases, and record them so that if we add the weak
1586 // alias to the dynamic symbol table, we also add the corresponding
1587 // strong symbol.
1588
1589 template<int size>
1590 void
1591 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1592 {
1593 // Sort the vector by section index, then by offset, then by weak
1594 // ahead of strong.
1595 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1596
1597 // Walk through the vector. For each weak definition, record
1598 // aliases.
1599 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1600 symbols->begin();
1601 p != symbols->end();
1602 ++p)
1603 {
1604 if ((*p)->binding() != elfcpp::STB_WEAK)
1605 continue;
1606
1607 // Build a circular list of weak aliases. Each symbol points to
1608 // the next one in the circular list.
1609
1610 Sized_symbol<size>* from_sym = *p;
1611 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1612 for (q = p + 1; q != symbols->end(); ++q)
1613 {
1614 bool dummy;
1615 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1616 || (*q)->value() != from_sym->value())
1617 break;
1618
1619 this->weak_aliases_[from_sym] = *q;
1620 from_sym->set_has_alias();
1621 from_sym = *q;
1622 }
1623
1624 if (from_sym != *p)
1625 {
1626 this->weak_aliases_[from_sym] = *p;
1627 from_sym->set_has_alias();
1628 }
1629
1630 p = q - 1;
1631 }
1632 }
1633
1634 // Create and return a specially defined symbol. If ONLY_IF_REF is
1635 // true, then only create the symbol if there is a reference to it.
1636 // If this does not return NULL, it sets *POLDSYM to the existing
1637 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1638 // resolve the newly created symbol to the old one. This
1639 // canonicalizes *PNAME and *PVERSION.
1640
1641 template<int size, bool big_endian>
1642 Sized_symbol<size>*
1643 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1644 bool only_if_ref,
1645 Sized_symbol<size>** poldsym,
1646 bool* resolve_oldsym)
1647 {
1648 *resolve_oldsym = false;
1649
1650 // If the caller didn't give us a version, see if we get one from
1651 // the version script.
1652 std::string v;
1653 bool is_default_version = false;
1654 if (*pversion == NULL)
1655 {
1656 bool is_global;
1657 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1658 {
1659 if (is_global && !v.empty())
1660 {
1661 *pversion = v.c_str();
1662 // If we get the version from a version script, then we
1663 // are also the default version.
1664 is_default_version = true;
1665 }
1666 }
1667 }
1668
1669 Symbol* oldsym;
1670 Sized_symbol<size>* sym;
1671
1672 bool add_to_table = false;
1673 typename Symbol_table_type::iterator add_loc = this->table_.end();
1674 bool add_def_to_table = false;
1675 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1676
1677 if (only_if_ref)
1678 {
1679 oldsym = this->lookup(*pname, *pversion);
1680 if (oldsym == NULL && is_default_version)
1681 oldsym = this->lookup(*pname, NULL);
1682 if (oldsym == NULL || !oldsym->is_undefined())
1683 return NULL;
1684
1685 *pname = oldsym->name();
1686 if (!is_default_version)
1687 *pversion = oldsym->version();
1688 }
1689 else
1690 {
1691 // Canonicalize NAME and VERSION.
1692 Stringpool::Key name_key;
1693 *pname = this->namepool_.add(*pname, true, &name_key);
1694
1695 Stringpool::Key version_key = 0;
1696 if (*pversion != NULL)
1697 *pversion = this->namepool_.add(*pversion, true, &version_key);
1698
1699 Symbol* const snull = NULL;
1700 std::pair<typename Symbol_table_type::iterator, bool> ins =
1701 this->table_.insert(std::make_pair(std::make_pair(name_key,
1702 version_key),
1703 snull));
1704
1705 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1706 std::make_pair(this->table_.end(), false);
1707 if (is_default_version)
1708 {
1709 const Stringpool::Key vnull = 0;
1710 insdefault =
1711 this->table_.insert(std::make_pair(std::make_pair(name_key,
1712 vnull),
1713 snull));
1714 }
1715
1716 if (!ins.second)
1717 {
1718 // We already have a symbol table entry for NAME/VERSION.
1719 oldsym = ins.first->second;
1720 gold_assert(oldsym != NULL);
1721
1722 if (is_default_version)
1723 {
1724 Sized_symbol<size>* soldsym =
1725 this->get_sized_symbol<size>(oldsym);
1726 this->define_default_version<size, big_endian>(soldsym,
1727 insdefault.second,
1728 insdefault.first);
1729 }
1730 }
1731 else
1732 {
1733 // We haven't seen this symbol before.
1734 gold_assert(ins.first->second == NULL);
1735
1736 add_to_table = true;
1737 add_loc = ins.first;
1738
1739 if (is_default_version && !insdefault.second)
1740 {
1741 // We are adding NAME/VERSION, and it is the default
1742 // version. We already have an entry for NAME/NULL.
1743 oldsym = insdefault.first->second;
1744 *resolve_oldsym = true;
1745 }
1746 else
1747 {
1748 oldsym = NULL;
1749
1750 if (is_default_version)
1751 {
1752 add_def_to_table = true;
1753 add_def_loc = insdefault.first;
1754 }
1755 }
1756 }
1757 }
1758
1759 const Target& target = parameters->target();
1760 if (!target.has_make_symbol())
1761 sym = new Sized_symbol<size>();
1762 else
1763 {
1764 Sized_target<size, big_endian>* sized_target =
1765 parameters->sized_target<size, big_endian>();
1766 sym = sized_target->make_symbol();
1767 if (sym == NULL)
1768 return NULL;
1769 }
1770
1771 if (add_to_table)
1772 add_loc->second = sym;
1773 else
1774 gold_assert(oldsym != NULL);
1775
1776 if (add_def_to_table)
1777 add_def_loc->second = sym;
1778
1779 *poldsym = this->get_sized_symbol<size>(oldsym);
1780
1781 return sym;
1782 }
1783
1784 // Define a symbol based on an Output_data.
1785
1786 Symbol*
1787 Symbol_table::define_in_output_data(const char* name,
1788 const char* version,
1789 Defined defined,
1790 Output_data* od,
1791 uint64_t value,
1792 uint64_t symsize,
1793 elfcpp::STT type,
1794 elfcpp::STB binding,
1795 elfcpp::STV visibility,
1796 unsigned char nonvis,
1797 bool offset_is_from_end,
1798 bool only_if_ref)
1799 {
1800 if (parameters->target().get_size() == 32)
1801 {
1802 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1803 return this->do_define_in_output_data<32>(name, version, defined, od,
1804 value, symsize, type, binding,
1805 visibility, nonvis,
1806 offset_is_from_end,
1807 only_if_ref);
1808 #else
1809 gold_unreachable();
1810 #endif
1811 }
1812 else if (parameters->target().get_size() == 64)
1813 {
1814 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1815 return this->do_define_in_output_data<64>(name, version, defined, od,
1816 value, symsize, type, binding,
1817 visibility, nonvis,
1818 offset_is_from_end,
1819 only_if_ref);
1820 #else
1821 gold_unreachable();
1822 #endif
1823 }
1824 else
1825 gold_unreachable();
1826 }
1827
1828 // Define a symbol in an Output_data, sized version.
1829
1830 template<int size>
1831 Sized_symbol<size>*
1832 Symbol_table::do_define_in_output_data(
1833 const char* name,
1834 const char* version,
1835 Defined defined,
1836 Output_data* od,
1837 typename elfcpp::Elf_types<size>::Elf_Addr value,
1838 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1839 elfcpp::STT type,
1840 elfcpp::STB binding,
1841 elfcpp::STV visibility,
1842 unsigned char nonvis,
1843 bool offset_is_from_end,
1844 bool only_if_ref)
1845 {
1846 Sized_symbol<size>* sym;
1847 Sized_symbol<size>* oldsym;
1848 bool resolve_oldsym;
1849
1850 if (parameters->target().is_big_endian())
1851 {
1852 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1853 sym = this->define_special_symbol<size, true>(&name, &version,
1854 only_if_ref, &oldsym,
1855 &resolve_oldsym);
1856 #else
1857 gold_unreachable();
1858 #endif
1859 }
1860 else
1861 {
1862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1863 sym = this->define_special_symbol<size, false>(&name, &version,
1864 only_if_ref, &oldsym,
1865 &resolve_oldsym);
1866 #else
1867 gold_unreachable();
1868 #endif
1869 }
1870
1871 if (sym == NULL)
1872 return NULL;
1873
1874 sym->init_output_data(name, version, od, value, symsize, type, binding,
1875 visibility, nonvis, offset_is_from_end,
1876 defined == PREDEFINED);
1877
1878 if (oldsym == NULL)
1879 {
1880 if (binding == elfcpp::STB_LOCAL
1881 || this->version_script_.symbol_is_local(name))
1882 this->force_local(sym);
1883 else if (version != NULL)
1884 sym->set_is_default();
1885 return sym;
1886 }
1887
1888 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1889 this->override_with_special(oldsym, sym);
1890
1891 if (resolve_oldsym)
1892 return sym;
1893 else
1894 {
1895 delete sym;
1896 return oldsym;
1897 }
1898 }
1899
1900 // Define a symbol based on an Output_segment.
1901
1902 Symbol*
1903 Symbol_table::define_in_output_segment(const char* name,
1904 const char* version,
1905 Defined defined,
1906 Output_segment* os,
1907 uint64_t value,
1908 uint64_t symsize,
1909 elfcpp::STT type,
1910 elfcpp::STB binding,
1911 elfcpp::STV visibility,
1912 unsigned char nonvis,
1913 Symbol::Segment_offset_base offset_base,
1914 bool only_if_ref)
1915 {
1916 if (parameters->target().get_size() == 32)
1917 {
1918 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1919 return this->do_define_in_output_segment<32>(name, version, defined, os,
1920 value, symsize, type,
1921 binding, visibility, nonvis,
1922 offset_base, only_if_ref);
1923 #else
1924 gold_unreachable();
1925 #endif
1926 }
1927 else if (parameters->target().get_size() == 64)
1928 {
1929 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1930 return this->do_define_in_output_segment<64>(name, version, defined, os,
1931 value, symsize, type,
1932 binding, visibility, nonvis,
1933 offset_base, only_if_ref);
1934 #else
1935 gold_unreachable();
1936 #endif
1937 }
1938 else
1939 gold_unreachable();
1940 }
1941
1942 // Define a symbol in an Output_segment, sized version.
1943
1944 template<int size>
1945 Sized_symbol<size>*
1946 Symbol_table::do_define_in_output_segment(
1947 const char* name,
1948 const char* version,
1949 Defined defined,
1950 Output_segment* os,
1951 typename elfcpp::Elf_types<size>::Elf_Addr value,
1952 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1953 elfcpp::STT type,
1954 elfcpp::STB binding,
1955 elfcpp::STV visibility,
1956 unsigned char nonvis,
1957 Symbol::Segment_offset_base offset_base,
1958 bool only_if_ref)
1959 {
1960 Sized_symbol<size>* sym;
1961 Sized_symbol<size>* oldsym;
1962 bool resolve_oldsym;
1963
1964 if (parameters->target().is_big_endian())
1965 {
1966 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1967 sym = this->define_special_symbol<size, true>(&name, &version,
1968 only_if_ref, &oldsym,
1969 &resolve_oldsym);
1970 #else
1971 gold_unreachable();
1972 #endif
1973 }
1974 else
1975 {
1976 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1977 sym = this->define_special_symbol<size, false>(&name, &version,
1978 only_if_ref, &oldsym,
1979 &resolve_oldsym);
1980 #else
1981 gold_unreachable();
1982 #endif
1983 }
1984
1985 if (sym == NULL)
1986 return NULL;
1987
1988 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1989 visibility, nonvis, offset_base,
1990 defined == PREDEFINED);
1991
1992 if (oldsym == NULL)
1993 {
1994 if (binding == elfcpp::STB_LOCAL
1995 || this->version_script_.symbol_is_local(name))
1996 this->force_local(sym);
1997 else if (version != NULL)
1998 sym->set_is_default();
1999 return sym;
2000 }
2001
2002 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2003 this->override_with_special(oldsym, sym);
2004
2005 if (resolve_oldsym)
2006 return sym;
2007 else
2008 {
2009 delete sym;
2010 return oldsym;
2011 }
2012 }
2013
2014 // Define a special symbol with a constant value. It is a multiple
2015 // definition error if this symbol is already defined.
2016
2017 Symbol*
2018 Symbol_table::define_as_constant(const char* name,
2019 const char* version,
2020 Defined defined,
2021 uint64_t value,
2022 uint64_t symsize,
2023 elfcpp::STT type,
2024 elfcpp::STB binding,
2025 elfcpp::STV visibility,
2026 unsigned char nonvis,
2027 bool only_if_ref,
2028 bool force_override)
2029 {
2030 if (parameters->target().get_size() == 32)
2031 {
2032 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2033 return this->do_define_as_constant<32>(name, version, defined, value,
2034 symsize, type, binding,
2035 visibility, nonvis, only_if_ref,
2036 force_override);
2037 #else
2038 gold_unreachable();
2039 #endif
2040 }
2041 else if (parameters->target().get_size() == 64)
2042 {
2043 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2044 return this->do_define_as_constant<64>(name, version, defined, value,
2045 symsize, type, binding,
2046 visibility, nonvis, only_if_ref,
2047 force_override);
2048 #else
2049 gold_unreachable();
2050 #endif
2051 }
2052 else
2053 gold_unreachable();
2054 }
2055
2056 // Define a symbol as a constant, sized version.
2057
2058 template<int size>
2059 Sized_symbol<size>*
2060 Symbol_table::do_define_as_constant(
2061 const char* name,
2062 const char* version,
2063 Defined defined,
2064 typename elfcpp::Elf_types<size>::Elf_Addr value,
2065 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2066 elfcpp::STT type,
2067 elfcpp::STB binding,
2068 elfcpp::STV visibility,
2069 unsigned char nonvis,
2070 bool only_if_ref,
2071 bool force_override)
2072 {
2073 Sized_symbol<size>* sym;
2074 Sized_symbol<size>* oldsym;
2075 bool resolve_oldsym;
2076
2077 if (parameters->target().is_big_endian())
2078 {
2079 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2080 sym = this->define_special_symbol<size, true>(&name, &version,
2081 only_if_ref, &oldsym,
2082 &resolve_oldsym);
2083 #else
2084 gold_unreachable();
2085 #endif
2086 }
2087 else
2088 {
2089 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2090 sym = this->define_special_symbol<size, false>(&name, &version,
2091 only_if_ref, &oldsym,
2092 &resolve_oldsym);
2093 #else
2094 gold_unreachable();
2095 #endif
2096 }
2097
2098 if (sym == NULL)
2099 return NULL;
2100
2101 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2102 nonvis, defined == PREDEFINED);
2103
2104 if (oldsym == NULL)
2105 {
2106 // Version symbols are absolute symbols with name == version.
2107 // We don't want to force them to be local.
2108 if ((version == NULL
2109 || name != version
2110 || value != 0)
2111 && (binding == elfcpp::STB_LOCAL
2112 || this->version_script_.symbol_is_local(name)))
2113 this->force_local(sym);
2114 else if (version != NULL
2115 && (name != version || value != 0))
2116 sym->set_is_default();
2117 return sym;
2118 }
2119
2120 if (force_override
2121 || Symbol_table::should_override_with_special(oldsym, type, defined))
2122 this->override_with_special(oldsym, sym);
2123
2124 if (resolve_oldsym)
2125 return sym;
2126 else
2127 {
2128 delete sym;
2129 return oldsym;
2130 }
2131 }
2132
2133 // Define a set of symbols in output sections.
2134
2135 void
2136 Symbol_table::define_symbols(const Layout* layout, int count,
2137 const Define_symbol_in_section* p,
2138 bool only_if_ref)
2139 {
2140 for (int i = 0; i < count; ++i, ++p)
2141 {
2142 Output_section* os = layout->find_output_section(p->output_section);
2143 if (os != NULL)
2144 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2145 p->size, p->type, p->binding,
2146 p->visibility, p->nonvis,
2147 p->offset_is_from_end,
2148 only_if_ref || p->only_if_ref);
2149 else
2150 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2151 p->type, p->binding, p->visibility, p->nonvis,
2152 only_if_ref || p->only_if_ref,
2153 false);
2154 }
2155 }
2156
2157 // Define a set of symbols in output segments.
2158
2159 void
2160 Symbol_table::define_symbols(const Layout* layout, int count,
2161 const Define_symbol_in_segment* p,
2162 bool only_if_ref)
2163 {
2164 for (int i = 0; i < count; ++i, ++p)
2165 {
2166 Output_segment* os = layout->find_output_segment(p->segment_type,
2167 p->segment_flags_set,
2168 p->segment_flags_clear);
2169 if (os != NULL)
2170 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2171 p->size, p->type, p->binding,
2172 p->visibility, p->nonvis,
2173 p->offset_base,
2174 only_if_ref || p->only_if_ref);
2175 else
2176 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2177 p->type, p->binding, p->visibility, p->nonvis,
2178 only_if_ref || p->only_if_ref,
2179 false);
2180 }
2181 }
2182
2183 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2184 // symbol should be defined--typically a .dyn.bss section. VALUE is
2185 // the offset within POSD.
2186
2187 template<int size>
2188 void
2189 Symbol_table::define_with_copy_reloc(
2190 Sized_symbol<size>* csym,
2191 Output_data* posd,
2192 typename elfcpp::Elf_types<size>::Elf_Addr value)
2193 {
2194 gold_assert(csym->is_from_dynobj());
2195 gold_assert(!csym->is_copied_from_dynobj());
2196 Object* object = csym->object();
2197 gold_assert(object->is_dynamic());
2198 Dynobj* dynobj = static_cast<Dynobj*>(object);
2199
2200 // Our copied variable has to override any variable in a shared
2201 // library.
2202 elfcpp::STB binding = csym->binding();
2203 if (binding == elfcpp::STB_WEAK)
2204 binding = elfcpp::STB_GLOBAL;
2205
2206 this->define_in_output_data(csym->name(), csym->version(), COPY,
2207 posd, value, csym->symsize(),
2208 csym->type(), binding,
2209 csym->visibility(), csym->nonvis(),
2210 false, false);
2211
2212 csym->set_is_copied_from_dynobj();
2213 csym->set_needs_dynsym_entry();
2214
2215 this->copied_symbol_dynobjs_[csym] = dynobj;
2216
2217 // We have now defined all aliases, but we have not entered them all
2218 // in the copied_symbol_dynobjs_ map.
2219 if (csym->has_alias())
2220 {
2221 Symbol* sym = csym;
2222 while (true)
2223 {
2224 sym = this->weak_aliases_[sym];
2225 if (sym == csym)
2226 break;
2227 gold_assert(sym->output_data() == posd);
2228
2229 sym->set_is_copied_from_dynobj();
2230 this->copied_symbol_dynobjs_[sym] = dynobj;
2231 }
2232 }
2233 }
2234
2235 // SYM is defined using a COPY reloc. Return the dynamic object where
2236 // the original definition was found.
2237
2238 Dynobj*
2239 Symbol_table::get_copy_source(const Symbol* sym) const
2240 {
2241 gold_assert(sym->is_copied_from_dynobj());
2242 Copied_symbol_dynobjs::const_iterator p =
2243 this->copied_symbol_dynobjs_.find(sym);
2244 gold_assert(p != this->copied_symbol_dynobjs_.end());
2245 return p->second;
2246 }
2247
2248 // Add any undefined symbols named on the command line.
2249
2250 void
2251 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2252 {
2253 if (parameters->options().any_undefined()
2254 || layout->script_options()->any_unreferenced())
2255 {
2256 if (parameters->target().get_size() == 32)
2257 {
2258 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2259 this->do_add_undefined_symbols_from_command_line<32>(layout);
2260 #else
2261 gold_unreachable();
2262 #endif
2263 }
2264 else if (parameters->target().get_size() == 64)
2265 {
2266 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2267 this->do_add_undefined_symbols_from_command_line<64>(layout);
2268 #else
2269 gold_unreachable();
2270 #endif
2271 }
2272 else
2273 gold_unreachable();
2274 }
2275 }
2276
2277 template<int size>
2278 void
2279 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2280 {
2281 for (options::String_set::const_iterator p =
2282 parameters->options().undefined_begin();
2283 p != parameters->options().undefined_end();
2284 ++p)
2285 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2286
2287 for (Script_options::referenced_const_iterator p =
2288 layout->script_options()->referenced_begin();
2289 p != layout->script_options()->referenced_end();
2290 ++p)
2291 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2292 }
2293
2294 template<int size>
2295 void
2296 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2297 {
2298 if (this->lookup(name) != NULL)
2299 return;
2300
2301 const char* version = NULL;
2302
2303 Sized_symbol<size>* sym;
2304 Sized_symbol<size>* oldsym;
2305 bool resolve_oldsym;
2306 if (parameters->target().is_big_endian())
2307 {
2308 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2309 sym = this->define_special_symbol<size, true>(&name, &version,
2310 false, &oldsym,
2311 &resolve_oldsym);
2312 #else
2313 gold_unreachable();
2314 #endif
2315 }
2316 else
2317 {
2318 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2319 sym = this->define_special_symbol<size, false>(&name, &version,
2320 false, &oldsym,
2321 &resolve_oldsym);
2322 #else
2323 gold_unreachable();
2324 #endif
2325 }
2326
2327 gold_assert(oldsym == NULL);
2328
2329 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2330 elfcpp::STV_DEFAULT, 0);
2331 ++this->saw_undefined_;
2332 }
2333
2334 // Set the dynamic symbol indexes. INDEX is the index of the first
2335 // global dynamic symbol. Pointers to the symbols are stored into the
2336 // vector SYMS. The names are added to DYNPOOL. This returns an
2337 // updated dynamic symbol index.
2338
2339 unsigned int
2340 Symbol_table::set_dynsym_indexes(unsigned int index,
2341 std::vector<Symbol*>* syms,
2342 Stringpool* dynpool,
2343 Versions* versions)
2344 {
2345 for (Symbol_table_type::iterator p = this->table_.begin();
2346 p != this->table_.end();
2347 ++p)
2348 {
2349 Symbol* sym = p->second;
2350
2351 // Note that SYM may already have a dynamic symbol index, since
2352 // some symbols appear more than once in the symbol table, with
2353 // and without a version.
2354
2355 if (!sym->should_add_dynsym_entry(this))
2356 sym->set_dynsym_index(-1U);
2357 else if (!sym->has_dynsym_index())
2358 {
2359 sym->set_dynsym_index(index);
2360 ++index;
2361 syms->push_back(sym);
2362 dynpool->add(sym->name(), false, NULL);
2363
2364 // Record any version information.
2365 if (sym->version() != NULL)
2366 versions->record_version(this, dynpool, sym);
2367
2368 // If the symbol is defined in a dynamic object and is
2369 // referenced in a regular object, then mark the dynamic
2370 // object as needed. This is used to implement --as-needed.
2371 if (sym->is_from_dynobj() && sym->in_reg())
2372 sym->object()->set_is_needed();
2373 }
2374 }
2375
2376 // Finish up the versions. In some cases this may add new dynamic
2377 // symbols.
2378 index = versions->finalize(this, index, syms);
2379
2380 return index;
2381 }
2382
2383 // Set the final values for all the symbols. The index of the first
2384 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2385 // file offset OFF. Add their names to POOL. Return the new file
2386 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2387
2388 off_t
2389 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2390 size_t dyncount, Stringpool* pool,
2391 unsigned int* plocal_symcount)
2392 {
2393 off_t ret;
2394
2395 gold_assert(*plocal_symcount != 0);
2396 this->first_global_index_ = *plocal_symcount;
2397
2398 this->dynamic_offset_ = dynoff;
2399 this->first_dynamic_global_index_ = dyn_global_index;
2400 this->dynamic_count_ = dyncount;
2401
2402 if (parameters->target().get_size() == 32)
2403 {
2404 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2405 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2406 #else
2407 gold_unreachable();
2408 #endif
2409 }
2410 else if (parameters->target().get_size() == 64)
2411 {
2412 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2413 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2414 #else
2415 gold_unreachable();
2416 #endif
2417 }
2418 else
2419 gold_unreachable();
2420
2421 // Now that we have the final symbol table, we can reliably note
2422 // which symbols should get warnings.
2423 this->warnings_.note_warnings(this);
2424
2425 return ret;
2426 }
2427
2428 // SYM is going into the symbol table at *PINDEX. Add the name to
2429 // POOL, update *PINDEX and *POFF.
2430
2431 template<int size>
2432 void
2433 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2434 unsigned int* pindex, off_t* poff)
2435 {
2436 sym->set_symtab_index(*pindex);
2437 if (sym->version() == NULL || !parameters->options().relocatable())
2438 pool->add(sym->name(), false, NULL);
2439 else
2440 pool->add(sym->versioned_name(), true, NULL);
2441 ++*pindex;
2442 *poff += elfcpp::Elf_sizes<size>::sym_size;
2443 }
2444
2445 // Set the final value for all the symbols. This is called after
2446 // Layout::finalize, so all the output sections have their final
2447 // address.
2448
2449 template<int size>
2450 off_t
2451 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2452 unsigned int* plocal_symcount)
2453 {
2454 off = align_address(off, size >> 3);
2455 this->offset_ = off;
2456
2457 unsigned int index = *plocal_symcount;
2458 const unsigned int orig_index = index;
2459
2460 // First do all the symbols which have been forced to be local, as
2461 // they must appear before all global symbols.
2462 for (Forced_locals::iterator p = this->forced_locals_.begin();
2463 p != this->forced_locals_.end();
2464 ++p)
2465 {
2466 Symbol* sym = *p;
2467 gold_assert(sym->is_forced_local());
2468 if (this->sized_finalize_symbol<size>(sym))
2469 {
2470 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2471 ++*plocal_symcount;
2472 }
2473 }
2474
2475 // Now do all the remaining symbols.
2476 for (Symbol_table_type::iterator p = this->table_.begin();
2477 p != this->table_.end();
2478 ++p)
2479 {
2480 Symbol* sym = p->second;
2481 if (this->sized_finalize_symbol<size>(sym))
2482 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2483 }
2484
2485 this->output_count_ = index - orig_index;
2486
2487 return off;
2488 }
2489
2490 // Compute the final value of SYM and store status in location PSTATUS.
2491 // During relaxation, this may be called multiple times for a symbol to
2492 // compute its would-be final value in each relaxation pass.
2493
2494 template<int size>
2495 typename Sized_symbol<size>::Value_type
2496 Symbol_table::compute_final_value(
2497 const Sized_symbol<size>* sym,
2498 Compute_final_value_status* pstatus) const
2499 {
2500 typedef typename Sized_symbol<size>::Value_type Value_type;
2501 Value_type value;
2502
2503 switch (sym->source())
2504 {
2505 case Symbol::FROM_OBJECT:
2506 {
2507 bool is_ordinary;
2508 unsigned int shndx = sym->shndx(&is_ordinary);
2509
2510 if (!is_ordinary
2511 && shndx != elfcpp::SHN_ABS
2512 && !Symbol::is_common_shndx(shndx))
2513 {
2514 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2515 return 0;
2516 }
2517
2518 Object* symobj = sym->object();
2519 if (symobj->is_dynamic())
2520 {
2521 value = 0;
2522 shndx = elfcpp::SHN_UNDEF;
2523 }
2524 else if (symobj->pluginobj() != NULL)
2525 {
2526 value = 0;
2527 shndx = elfcpp::SHN_UNDEF;
2528 }
2529 else if (shndx == elfcpp::SHN_UNDEF)
2530 value = 0;
2531 else if (!is_ordinary
2532 && (shndx == elfcpp::SHN_ABS
2533 || Symbol::is_common_shndx(shndx)))
2534 value = sym->value();
2535 else
2536 {
2537 Relobj* relobj = static_cast<Relobj*>(symobj);
2538 Output_section* os = relobj->output_section(shndx);
2539
2540 if (this->is_section_folded(relobj, shndx))
2541 {
2542 gold_assert(os == NULL);
2543 // Get the os of the section it is folded onto.
2544 Section_id folded = this->icf_->get_folded_section(relobj,
2545 shndx);
2546 gold_assert(folded.first != NULL);
2547 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2548 unsigned folded_shndx = folded.second;
2549
2550 os = folded_obj->output_section(folded_shndx);
2551 gold_assert(os != NULL);
2552
2553 // Replace (relobj, shndx) with canonical ICF input section.
2554 shndx = folded_shndx;
2555 relobj = folded_obj;
2556 }
2557
2558 uint64_t secoff64 = relobj->output_section_offset(shndx);
2559 if (os == NULL)
2560 {
2561 bool static_or_reloc = (parameters->doing_static_link() ||
2562 parameters->options().relocatable());
2563 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2564
2565 *pstatus = CFVS_NO_OUTPUT_SECTION;
2566 return 0;
2567 }
2568
2569 if (secoff64 == -1ULL)
2570 {
2571 // The section needs special handling (e.g., a merge section).
2572
2573 value = os->output_address(relobj, shndx, sym->value());
2574 }
2575 else
2576 {
2577 Value_type secoff =
2578 convert_types<Value_type, uint64_t>(secoff64);
2579 if (sym->type() == elfcpp::STT_TLS)
2580 value = sym->value() + os->tls_offset() + secoff;
2581 else
2582 value = sym->value() + os->address() + secoff;
2583 }
2584 }
2585 }
2586 break;
2587
2588 case Symbol::IN_OUTPUT_DATA:
2589 {
2590 Output_data* od = sym->output_data();
2591 value = sym->value();
2592 if (sym->type() != elfcpp::STT_TLS)
2593 value += od->address();
2594 else
2595 {
2596 Output_section* os = od->output_section();
2597 gold_assert(os != NULL);
2598 value += os->tls_offset() + (od->address() - os->address());
2599 }
2600 if (sym->offset_is_from_end())
2601 value += od->data_size();
2602 }
2603 break;
2604
2605 case Symbol::IN_OUTPUT_SEGMENT:
2606 {
2607 Output_segment* os = sym->output_segment();
2608 value = sym->value();
2609 if (sym->type() != elfcpp::STT_TLS)
2610 value += os->vaddr();
2611 switch (sym->offset_base())
2612 {
2613 case Symbol::SEGMENT_START:
2614 break;
2615 case Symbol::SEGMENT_END:
2616 value += os->memsz();
2617 break;
2618 case Symbol::SEGMENT_BSS:
2619 value += os->filesz();
2620 break;
2621 default:
2622 gold_unreachable();
2623 }
2624 }
2625 break;
2626
2627 case Symbol::IS_CONSTANT:
2628 value = sym->value();
2629 break;
2630
2631 case Symbol::IS_UNDEFINED:
2632 value = 0;
2633 break;
2634
2635 default:
2636 gold_unreachable();
2637 }
2638
2639 *pstatus = CFVS_OK;
2640 return value;
2641 }
2642
2643 // Finalize the symbol SYM. This returns true if the symbol should be
2644 // added to the symbol table, false otherwise.
2645
2646 template<int size>
2647 bool
2648 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2649 {
2650 typedef typename Sized_symbol<size>::Value_type Value_type;
2651
2652 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2653
2654 // The default version of a symbol may appear twice in the symbol
2655 // table. We only need to finalize it once.
2656 if (sym->has_symtab_index())
2657 return false;
2658
2659 if (!sym->in_reg())
2660 {
2661 gold_assert(!sym->has_symtab_index());
2662 sym->set_symtab_index(-1U);
2663 gold_assert(sym->dynsym_index() == -1U);
2664 return false;
2665 }
2666
2667 // If the symbol is only present on plugin files, the plugin decided we
2668 // don't need it.
2669 if (!sym->in_real_elf())
2670 {
2671 gold_assert(!sym->has_symtab_index());
2672 sym->set_symtab_index(-1U);
2673 return false;
2674 }
2675
2676 // Compute final symbol value.
2677 Compute_final_value_status status;
2678 Value_type value = this->compute_final_value(sym, &status);
2679
2680 switch (status)
2681 {
2682 case CFVS_OK:
2683 break;
2684 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2685 {
2686 bool is_ordinary;
2687 unsigned int shndx = sym->shndx(&is_ordinary);
2688 gold_error(_("%s: unsupported symbol section 0x%x"),
2689 sym->demangled_name().c_str(), shndx);
2690 }
2691 break;
2692 case CFVS_NO_OUTPUT_SECTION:
2693 sym->set_symtab_index(-1U);
2694 return false;
2695 default:
2696 gold_unreachable();
2697 }
2698
2699 sym->set_value(value);
2700
2701 if (parameters->options().strip_all()
2702 || !parameters->options().should_retain_symbol(sym->name()))
2703 {
2704 sym->set_symtab_index(-1U);
2705 return false;
2706 }
2707
2708 return true;
2709 }
2710
2711 // Write out the global symbols.
2712
2713 void
2714 Symbol_table::write_globals(const Stringpool* sympool,
2715 const Stringpool* dynpool,
2716 Output_symtab_xindex* symtab_xindex,
2717 Output_symtab_xindex* dynsym_xindex,
2718 Output_file* of) const
2719 {
2720 switch (parameters->size_and_endianness())
2721 {
2722 #ifdef HAVE_TARGET_32_LITTLE
2723 case Parameters::TARGET_32_LITTLE:
2724 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2725 dynsym_xindex, of);
2726 break;
2727 #endif
2728 #ifdef HAVE_TARGET_32_BIG
2729 case Parameters::TARGET_32_BIG:
2730 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2731 dynsym_xindex, of);
2732 break;
2733 #endif
2734 #ifdef HAVE_TARGET_64_LITTLE
2735 case Parameters::TARGET_64_LITTLE:
2736 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2737 dynsym_xindex, of);
2738 break;
2739 #endif
2740 #ifdef HAVE_TARGET_64_BIG
2741 case Parameters::TARGET_64_BIG:
2742 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2743 dynsym_xindex, of);
2744 break;
2745 #endif
2746 default:
2747 gold_unreachable();
2748 }
2749 }
2750
2751 // Write out the global symbols.
2752
2753 template<int size, bool big_endian>
2754 void
2755 Symbol_table::sized_write_globals(const Stringpool* sympool,
2756 const Stringpool* dynpool,
2757 Output_symtab_xindex* symtab_xindex,
2758 Output_symtab_xindex* dynsym_xindex,
2759 Output_file* of) const
2760 {
2761 const Target& target = parameters->target();
2762
2763 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2764
2765 const unsigned int output_count = this->output_count_;
2766 const section_size_type oview_size = output_count * sym_size;
2767 const unsigned int first_global_index = this->first_global_index_;
2768 unsigned char* psyms;
2769 if (this->offset_ == 0 || output_count == 0)
2770 psyms = NULL;
2771 else
2772 psyms = of->get_output_view(this->offset_, oview_size);
2773
2774 const unsigned int dynamic_count = this->dynamic_count_;
2775 const section_size_type dynamic_size = dynamic_count * sym_size;
2776 const unsigned int first_dynamic_global_index =
2777 this->first_dynamic_global_index_;
2778 unsigned char* dynamic_view;
2779 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2780 dynamic_view = NULL;
2781 else
2782 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2783
2784 for (Symbol_table_type::const_iterator p = this->table_.begin();
2785 p != this->table_.end();
2786 ++p)
2787 {
2788 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2789
2790 // Possibly warn about unresolved symbols in shared libraries.
2791 this->warn_about_undefined_dynobj_symbol(sym);
2792
2793 unsigned int sym_index = sym->symtab_index();
2794 unsigned int dynsym_index;
2795 if (dynamic_view == NULL)
2796 dynsym_index = -1U;
2797 else
2798 dynsym_index = sym->dynsym_index();
2799
2800 if (sym_index == -1U && dynsym_index == -1U)
2801 {
2802 // This symbol is not included in the output file.
2803 continue;
2804 }
2805
2806 unsigned int shndx;
2807 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2808 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2809 elfcpp::STB binding = sym->binding();
2810 switch (sym->source())
2811 {
2812 case Symbol::FROM_OBJECT:
2813 {
2814 bool is_ordinary;
2815 unsigned int in_shndx = sym->shndx(&is_ordinary);
2816
2817 if (!is_ordinary
2818 && in_shndx != elfcpp::SHN_ABS
2819 && !Symbol::is_common_shndx(in_shndx))
2820 {
2821 gold_error(_("%s: unsupported symbol section 0x%x"),
2822 sym->demangled_name().c_str(), in_shndx);
2823 shndx = in_shndx;
2824 }
2825 else
2826 {
2827 Object* symobj = sym->object();
2828 if (symobj->is_dynamic())
2829 {
2830 if (sym->needs_dynsym_value())
2831 dynsym_value = target.dynsym_value(sym);
2832 shndx = elfcpp::SHN_UNDEF;
2833 if (sym->is_undef_binding_weak())
2834 binding = elfcpp::STB_WEAK;
2835 else
2836 binding = elfcpp::STB_GLOBAL;
2837 }
2838 else if (symobj->pluginobj() != NULL)
2839 shndx = elfcpp::SHN_UNDEF;
2840 else if (in_shndx == elfcpp::SHN_UNDEF
2841 || (!is_ordinary
2842 && (in_shndx == elfcpp::SHN_ABS
2843 || Symbol::is_common_shndx(in_shndx))))
2844 shndx = in_shndx;
2845 else
2846 {
2847 Relobj* relobj = static_cast<Relobj*>(symobj);
2848 Output_section* os = relobj->output_section(in_shndx);
2849 if (this->is_section_folded(relobj, in_shndx))
2850 {
2851 // This global symbol must be written out even though
2852 // it is folded.
2853 // Get the os of the section it is folded onto.
2854 Section_id folded =
2855 this->icf_->get_folded_section(relobj, in_shndx);
2856 gold_assert(folded.first !=NULL);
2857 Relobj* folded_obj =
2858 reinterpret_cast<Relobj*>(folded.first);
2859 os = folded_obj->output_section(folded.second);
2860 gold_assert(os != NULL);
2861 }
2862 gold_assert(os != NULL);
2863 shndx = os->out_shndx();
2864
2865 if (shndx >= elfcpp::SHN_LORESERVE)
2866 {
2867 if (sym_index != -1U)
2868 symtab_xindex->add(sym_index, shndx);
2869 if (dynsym_index != -1U)
2870 dynsym_xindex->add(dynsym_index, shndx);
2871 shndx = elfcpp::SHN_XINDEX;
2872 }
2873
2874 // In object files symbol values are section
2875 // relative.
2876 if (parameters->options().relocatable())
2877 sym_value -= os->address();
2878 }
2879 }
2880 }
2881 break;
2882
2883 case Symbol::IN_OUTPUT_DATA:
2884 shndx = sym->output_data()->out_shndx();
2885 if (shndx >= elfcpp::SHN_LORESERVE)
2886 {
2887 if (sym_index != -1U)
2888 symtab_xindex->add(sym_index, shndx);
2889 if (dynsym_index != -1U)
2890 dynsym_xindex->add(dynsym_index, shndx);
2891 shndx = elfcpp::SHN_XINDEX;
2892 }
2893 break;
2894
2895 case Symbol::IN_OUTPUT_SEGMENT:
2896 shndx = elfcpp::SHN_ABS;
2897 break;
2898
2899 case Symbol::IS_CONSTANT:
2900 shndx = elfcpp::SHN_ABS;
2901 break;
2902
2903 case Symbol::IS_UNDEFINED:
2904 shndx = elfcpp::SHN_UNDEF;
2905 break;
2906
2907 default:
2908 gold_unreachable();
2909 }
2910
2911 if (sym_index != -1U)
2912 {
2913 sym_index -= first_global_index;
2914 gold_assert(sym_index < output_count);
2915 unsigned char* ps = psyms + (sym_index * sym_size);
2916 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2917 binding, sympool, ps);
2918 }
2919
2920 if (dynsym_index != -1U)
2921 {
2922 dynsym_index -= first_dynamic_global_index;
2923 gold_assert(dynsym_index < dynamic_count);
2924 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2925 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2926 binding, dynpool, pd);
2927 }
2928 }
2929
2930 of->write_output_view(this->offset_, oview_size, psyms);
2931 if (dynamic_view != NULL)
2932 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2933 }
2934
2935 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2936 // strtab holding the name.
2937
2938 template<int size, bool big_endian>
2939 void
2940 Symbol_table::sized_write_symbol(
2941 Sized_symbol<size>* sym,
2942 typename elfcpp::Elf_types<size>::Elf_Addr value,
2943 unsigned int shndx,
2944 elfcpp::STB binding,
2945 const Stringpool* pool,
2946 unsigned char* p) const
2947 {
2948 elfcpp::Sym_write<size, big_endian> osym(p);
2949 if (sym->version() == NULL || !parameters->options().relocatable())
2950 osym.put_st_name(pool->get_offset(sym->name()));
2951 else
2952 osym.put_st_name(pool->get_offset(sym->versioned_name()));
2953 osym.put_st_value(value);
2954 // Use a symbol size of zero for undefined symbols from shared libraries.
2955 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2956 osym.put_st_size(0);
2957 else
2958 osym.put_st_size(sym->symsize());
2959 elfcpp::STT type = sym->type();
2960 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2961 if (type == elfcpp::STT_GNU_IFUNC
2962 && sym->is_from_dynobj())
2963 type = elfcpp::STT_FUNC;
2964 // A version script may have overridden the default binding.
2965 if (sym->is_forced_local())
2966 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2967 else
2968 osym.put_st_info(elfcpp::elf_st_info(binding, type));
2969 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2970 osym.put_st_shndx(shndx);
2971 }
2972
2973 // Check for unresolved symbols in shared libraries. This is
2974 // controlled by the --allow-shlib-undefined option.
2975
2976 // We only warn about libraries for which we have seen all the
2977 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2978 // which were not seen in this link. If we didn't see a DT_NEEDED
2979 // entry, we aren't going to be able to reliably report whether the
2980 // symbol is undefined.
2981
2982 // We also don't warn about libraries found in a system library
2983 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2984 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2985 // can have undefined references satisfied by ld-linux.so.
2986
2987 inline void
2988 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2989 {
2990 bool dummy;
2991 if (sym->source() == Symbol::FROM_OBJECT
2992 && sym->object()->is_dynamic()
2993 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2994 && sym->binding() != elfcpp::STB_WEAK
2995 && !parameters->options().allow_shlib_undefined()
2996 && !parameters->target().is_defined_by_abi(sym)
2997 && !sym->object()->is_in_system_directory())
2998 {
2999 // A very ugly cast.
3000 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3001 if (!dynobj->has_unknown_needed_entries())
3002 gold_undefined_symbol(sym);
3003 }
3004 }
3005
3006 // Write out a section symbol. Return the update offset.
3007
3008 void
3009 Symbol_table::write_section_symbol(const Output_section* os,
3010 Output_symtab_xindex* symtab_xindex,
3011 Output_file* of,
3012 off_t offset) const
3013 {
3014 switch (parameters->size_and_endianness())
3015 {
3016 #ifdef HAVE_TARGET_32_LITTLE
3017 case Parameters::TARGET_32_LITTLE:
3018 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3019 offset);
3020 break;
3021 #endif
3022 #ifdef HAVE_TARGET_32_BIG
3023 case Parameters::TARGET_32_BIG:
3024 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3025 offset);
3026 break;
3027 #endif
3028 #ifdef HAVE_TARGET_64_LITTLE
3029 case Parameters::TARGET_64_LITTLE:
3030 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3031 offset);
3032 break;
3033 #endif
3034 #ifdef HAVE_TARGET_64_BIG
3035 case Parameters::TARGET_64_BIG:
3036 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3037 offset);
3038 break;
3039 #endif
3040 default:
3041 gold_unreachable();
3042 }
3043 }
3044
3045 // Write out a section symbol, specialized for size and endianness.
3046
3047 template<int size, bool big_endian>
3048 void
3049 Symbol_table::sized_write_section_symbol(const Output_section* os,
3050 Output_symtab_xindex* symtab_xindex,
3051 Output_file* of,
3052 off_t offset) const
3053 {
3054 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3055
3056 unsigned char* pov = of->get_output_view(offset, sym_size);
3057
3058 elfcpp::Sym_write<size, big_endian> osym(pov);
3059 osym.put_st_name(0);
3060 if (parameters->options().relocatable())
3061 osym.put_st_value(0);
3062 else
3063 osym.put_st_value(os->address());
3064 osym.put_st_size(0);
3065 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3066 elfcpp::STT_SECTION));
3067 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3068
3069 unsigned int shndx = os->out_shndx();
3070 if (shndx >= elfcpp::SHN_LORESERVE)
3071 {
3072 symtab_xindex->add(os->symtab_index(), shndx);
3073 shndx = elfcpp::SHN_XINDEX;
3074 }
3075 osym.put_st_shndx(shndx);
3076
3077 of->write_output_view(offset, sym_size, pov);
3078 }
3079
3080 // Print statistical information to stderr. This is used for --stats.
3081
3082 void
3083 Symbol_table::print_stats() const
3084 {
3085 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3086 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3087 program_name, this->table_.size(), this->table_.bucket_count());
3088 #else
3089 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3090 program_name, this->table_.size());
3091 #endif
3092 this->namepool_.print_stats("symbol table stringpool");
3093 }
3094
3095 // We check for ODR violations by looking for symbols with the same
3096 // name for which the debugging information reports that they were
3097 // defined in disjoint source locations. When comparing the source
3098 // location, we consider instances with the same base filename to be
3099 // the same. This is because different object files/shared libraries
3100 // can include the same header file using different paths, and
3101 // different optimization settings can make the line number appear to
3102 // be a couple lines off, and we don't want to report an ODR violation
3103 // in those cases.
3104
3105 // This struct is used to compare line information, as returned by
3106 // Dwarf_line_info::one_addr2line. It implements a < comparison
3107 // operator used with std::sort.
3108
3109 struct Odr_violation_compare
3110 {
3111 bool
3112 operator()(const std::string& s1, const std::string& s2) const
3113 {
3114 // Inputs should be of the form "dirname/filename:linenum" where
3115 // "dirname/" is optional. We want to compare just the filename:linenum.
3116
3117 // Find the last '/' in each string.
3118 std::string::size_type s1begin = s1.rfind('/');
3119 std::string::size_type s2begin = s2.rfind('/');
3120 // If there was no '/' in a string, start at the beginning.
3121 if (s1begin == std::string::npos)
3122 s1begin = 0;
3123 if (s2begin == std::string::npos)
3124 s2begin = 0;
3125 return s1.compare(s1begin, std::string::npos,
3126 s2, s2begin, std::string::npos) < 0;
3127 }
3128 };
3129
3130 // Returns all of the lines attached to LOC, not just the one the
3131 // instruction actually came from.
3132 std::vector<std::string>
3133 Symbol_table::linenos_from_loc(const Task* task,
3134 const Symbol_location& loc)
3135 {
3136 // We need to lock the object in order to read it. This
3137 // means that we have to run in a singleton Task. If we
3138 // want to run this in a general Task for better
3139 // performance, we will need one Task for object, plus
3140 // appropriate locking to ensure that we don't conflict with
3141 // other uses of the object. Also note, one_addr2line is not
3142 // currently thread-safe.
3143 Task_lock_obj<Object> tl(task, loc.object);
3144
3145 std::vector<std::string> result;
3146 // 16 is the size of the object-cache that one_addr2line should use.
3147 std::string canonical_result = Dwarf_line_info::one_addr2line(
3148 loc.object, loc.shndx, loc.offset, 16, &result);
3149 if (!canonical_result.empty())
3150 result.push_back(canonical_result);
3151 return result;
3152 }
3153
3154 // OutputIterator that records if it was ever assigned to. This
3155 // allows it to be used with std::set_intersection() to check for
3156 // intersection rather than computing the intersection.
3157 struct Check_intersection
3158 {
3159 Check_intersection()
3160 : value_(false)
3161 {}
3162
3163 bool had_intersection() const
3164 { return this->value_; }
3165
3166 Check_intersection& operator++()
3167 { return *this; }
3168
3169 Check_intersection& operator*()
3170 { return *this; }
3171
3172 template<typename T>
3173 Check_intersection& operator=(const T&)
3174 {
3175 this->value_ = true;
3176 return *this;
3177 }
3178
3179 private:
3180 bool value_;
3181 };
3182
3183 // Check candidate_odr_violations_ to find symbols with the same name
3184 // but apparently different definitions (different source-file/line-no
3185 // for each line assigned to the first instruction).
3186
3187 void
3188 Symbol_table::detect_odr_violations(const Task* task,
3189 const char* output_file_name) const
3190 {
3191 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3192 it != candidate_odr_violations_.end();
3193 ++it)
3194 {
3195 const char* const symbol_name = it->first;
3196
3197 std::string first_object_name;
3198 std::vector<std::string> first_object_linenos;
3199
3200 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3201 locs = it->second.begin();
3202 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3203 locs_end = it->second.end();
3204 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3205 {
3206 // Save the line numbers from the first definition to
3207 // compare to the other definitions. Ideally, we'd compare
3208 // every definition to every other, but we don't want to
3209 // take O(N^2) time to do this. This shortcut may cause
3210 // false negatives that appear or disappear depending on the
3211 // link order, but it won't cause false positives.
3212 first_object_name = locs->object->name();
3213 first_object_linenos = this->linenos_from_loc(task, *locs);
3214 }
3215
3216 // Sort by Odr_violation_compare to make std::set_intersection work.
3217 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3218 Odr_violation_compare());
3219
3220 for (; locs != locs_end; ++locs)
3221 {
3222 std::vector<std::string> linenos =
3223 this->linenos_from_loc(task, *locs);
3224 // linenos will be empty if we couldn't parse the debug info.
3225 if (linenos.empty())
3226 continue;
3227 // Sort by Odr_violation_compare to make std::set_intersection work.
3228 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3229
3230 Check_intersection intersection_result =
3231 std::set_intersection(first_object_linenos.begin(),
3232 first_object_linenos.end(),
3233 linenos.begin(),
3234 linenos.end(),
3235 Check_intersection(),
3236 Odr_violation_compare());
3237 if (!intersection_result.had_intersection())
3238 {
3239 gold_warning(_("while linking %s: symbol '%s' defined in "
3240 "multiple places (possible ODR violation):"),
3241 output_file_name, demangle(symbol_name).c_str());
3242 // This only prints one location from each definition,
3243 // which may not be the location we expect to intersect
3244 // with another definition. We could print the whole
3245 // set of locations, but that seems too verbose.
3246 gold_assert(!first_object_linenos.empty());
3247 gold_assert(!linenos.empty());
3248 fprintf(stderr, _(" %s from %s\n"),
3249 first_object_linenos[0].c_str(),
3250 first_object_name.c_str());
3251 fprintf(stderr, _(" %s from %s\n"),
3252 linenos[0].c_str(),
3253 locs->object->name().c_str());
3254 // Only print one broken pair, to avoid needing to
3255 // compare against a list of the disjoint definition
3256 // locations we've found so far. (If we kept comparing
3257 // against just the first one, we'd get a lot of
3258 // redundant complaints about the second definition
3259 // location.)
3260 break;
3261 }
3262 }
3263 }
3264 // We only call one_addr2line() in this function, so we can clear its cache.
3265 Dwarf_line_info::clear_addr2line_cache();
3266 }
3267
3268 // Warnings functions.
3269
3270 // Add a new warning.
3271
3272 void
3273 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3274 const std::string& warning)
3275 {
3276 name = symtab->canonicalize_name(name);
3277 this->warnings_[name].set(obj, warning);
3278 }
3279
3280 // Look through the warnings and mark the symbols for which we should
3281 // warn. This is called during Layout::finalize when we know the
3282 // sources for all the symbols.
3283
3284 void
3285 Warnings::note_warnings(Symbol_table* symtab)
3286 {
3287 for (Warning_table::iterator p = this->warnings_.begin();
3288 p != this->warnings_.end();
3289 ++p)
3290 {
3291 Symbol* sym = symtab->lookup(p->first, NULL);
3292 if (sym != NULL
3293 && sym->source() == Symbol::FROM_OBJECT
3294 && sym->object() == p->second.object)
3295 sym->set_has_warning();
3296 }
3297 }
3298
3299 // Issue a warning. This is called when we see a relocation against a
3300 // symbol for which has a warning.
3301
3302 template<int size, bool big_endian>
3303 void
3304 Warnings::issue_warning(const Symbol* sym,
3305 const Relocate_info<size, big_endian>* relinfo,
3306 size_t relnum, off_t reloffset) const
3307 {
3308 gold_assert(sym->has_warning());
3309
3310 // We don't want to issue a warning for a relocation against the
3311 // symbol in the same object file in which the symbol is defined.
3312 if (sym->object() == relinfo->object)
3313 return;
3314
3315 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3316 gold_assert(p != this->warnings_.end());
3317 gold_warning_at_location(relinfo, relnum, reloffset,
3318 "%s", p->second.text.c_str());
3319 }
3320
3321 // Instantiate the templates we need. We could use the configure
3322 // script to restrict this to only the ones needed for implemented
3323 // targets.
3324
3325 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3326 template
3327 void
3328 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3329 #endif
3330
3331 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3332 template
3333 void
3334 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3335 #endif
3336
3337 #ifdef HAVE_TARGET_32_LITTLE
3338 template
3339 void
3340 Symbol_table::add_from_relobj<32, false>(
3341 Sized_relobj_file<32, false>* relobj,
3342 const unsigned char* syms,
3343 size_t count,
3344 size_t symndx_offset,
3345 const char* sym_names,
3346 size_t sym_name_size,
3347 Sized_relobj_file<32, false>::Symbols* sympointers,
3348 size_t* defined);
3349 #endif
3350
3351 #ifdef HAVE_TARGET_32_BIG
3352 template
3353 void
3354 Symbol_table::add_from_relobj<32, true>(
3355 Sized_relobj_file<32, true>* relobj,
3356 const unsigned char* syms,
3357 size_t count,
3358 size_t symndx_offset,
3359 const char* sym_names,
3360 size_t sym_name_size,
3361 Sized_relobj_file<32, true>::Symbols* sympointers,
3362 size_t* defined);
3363 #endif
3364
3365 #ifdef HAVE_TARGET_64_LITTLE
3366 template
3367 void
3368 Symbol_table::add_from_relobj<64, false>(
3369 Sized_relobj_file<64, false>* relobj,
3370 const unsigned char* syms,
3371 size_t count,
3372 size_t symndx_offset,
3373 const char* sym_names,
3374 size_t sym_name_size,
3375 Sized_relobj_file<64, false>::Symbols* sympointers,
3376 size_t* defined);
3377 #endif
3378
3379 #ifdef HAVE_TARGET_64_BIG
3380 template
3381 void
3382 Symbol_table::add_from_relobj<64, true>(
3383 Sized_relobj_file<64, true>* relobj,
3384 const unsigned char* syms,
3385 size_t count,
3386 size_t symndx_offset,
3387 const char* sym_names,
3388 size_t sym_name_size,
3389 Sized_relobj_file<64, true>::Symbols* sympointers,
3390 size_t* defined);
3391 #endif
3392
3393 #ifdef HAVE_TARGET_32_LITTLE
3394 template
3395 Symbol*
3396 Symbol_table::add_from_pluginobj<32, false>(
3397 Sized_pluginobj<32, false>* obj,
3398 const char* name,
3399 const char* ver,
3400 elfcpp::Sym<32, false>* sym);
3401 #endif
3402
3403 #ifdef HAVE_TARGET_32_BIG
3404 template
3405 Symbol*
3406 Symbol_table::add_from_pluginobj<32, true>(
3407 Sized_pluginobj<32, true>* obj,
3408 const char* name,
3409 const char* ver,
3410 elfcpp::Sym<32, true>* sym);
3411 #endif
3412
3413 #ifdef HAVE_TARGET_64_LITTLE
3414 template
3415 Symbol*
3416 Symbol_table::add_from_pluginobj<64, false>(
3417 Sized_pluginobj<64, false>* obj,
3418 const char* name,
3419 const char* ver,
3420 elfcpp::Sym<64, false>* sym);
3421 #endif
3422
3423 #ifdef HAVE_TARGET_64_BIG
3424 template
3425 Symbol*
3426 Symbol_table::add_from_pluginobj<64, true>(
3427 Sized_pluginobj<64, true>* obj,
3428 const char* name,
3429 const char* ver,
3430 elfcpp::Sym<64, true>* sym);
3431 #endif
3432
3433 #ifdef HAVE_TARGET_32_LITTLE
3434 template
3435 void
3436 Symbol_table::add_from_dynobj<32, false>(
3437 Sized_dynobj<32, false>* dynobj,
3438 const unsigned char* syms,
3439 size_t count,
3440 const char* sym_names,
3441 size_t sym_name_size,
3442 const unsigned char* versym,
3443 size_t versym_size,
3444 const std::vector<const char*>* version_map,
3445 Sized_relobj_file<32, false>::Symbols* sympointers,
3446 size_t* defined);
3447 #endif
3448
3449 #ifdef HAVE_TARGET_32_BIG
3450 template
3451 void
3452 Symbol_table::add_from_dynobj<32, true>(
3453 Sized_dynobj<32, true>* dynobj,
3454 const unsigned char* syms,
3455 size_t count,
3456 const char* sym_names,
3457 size_t sym_name_size,
3458 const unsigned char* versym,
3459 size_t versym_size,
3460 const std::vector<const char*>* version_map,
3461 Sized_relobj_file<32, true>::Symbols* sympointers,
3462 size_t* defined);
3463 #endif
3464
3465 #ifdef HAVE_TARGET_64_LITTLE
3466 template
3467 void
3468 Symbol_table::add_from_dynobj<64, false>(
3469 Sized_dynobj<64, false>* dynobj,
3470 const unsigned char* syms,
3471 size_t count,
3472 const char* sym_names,
3473 size_t sym_name_size,
3474 const unsigned char* versym,
3475 size_t versym_size,
3476 const std::vector<const char*>* version_map,
3477 Sized_relobj_file<64, false>::Symbols* sympointers,
3478 size_t* defined);
3479 #endif
3480
3481 #ifdef HAVE_TARGET_64_BIG
3482 template
3483 void
3484 Symbol_table::add_from_dynobj<64, true>(
3485 Sized_dynobj<64, true>* dynobj,
3486 const unsigned char* syms,
3487 size_t count,
3488 const char* sym_names,
3489 size_t sym_name_size,
3490 const unsigned char* versym,
3491 size_t versym_size,
3492 const std::vector<const char*>* version_map,
3493 Sized_relobj_file<64, true>::Symbols* sympointers,
3494 size_t* defined);
3495 #endif
3496
3497 #ifdef HAVE_TARGET_32_LITTLE
3498 template
3499 Sized_symbol<32>*
3500 Symbol_table::add_from_incrobj(
3501 Object* obj,
3502 const char* name,
3503 const char* ver,
3504 elfcpp::Sym<32, false>* sym);
3505 #endif
3506
3507 #ifdef HAVE_TARGET_32_BIG
3508 template
3509 Sized_symbol<32>*
3510 Symbol_table::add_from_incrobj(
3511 Object* obj,
3512 const char* name,
3513 const char* ver,
3514 elfcpp::Sym<32, true>* sym);
3515 #endif
3516
3517 #ifdef HAVE_TARGET_64_LITTLE
3518 template
3519 Sized_symbol<64>*
3520 Symbol_table::add_from_incrobj(
3521 Object* obj,
3522 const char* name,
3523 const char* ver,
3524 elfcpp::Sym<64, false>* sym);
3525 #endif
3526
3527 #ifdef HAVE_TARGET_64_BIG
3528 template
3529 Sized_symbol<64>*
3530 Symbol_table::add_from_incrobj(
3531 Object* obj,
3532 const char* name,
3533 const char* ver,
3534 elfcpp::Sym<64, true>* sym);
3535 #endif
3536
3537 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3538 template
3539 void
3540 Symbol_table::define_with_copy_reloc<32>(
3541 Sized_symbol<32>* sym,
3542 Output_data* posd,
3543 elfcpp::Elf_types<32>::Elf_Addr value);
3544 #endif
3545
3546 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3547 template
3548 void
3549 Symbol_table::define_with_copy_reloc<64>(
3550 Sized_symbol<64>* sym,
3551 Output_data* posd,
3552 elfcpp::Elf_types<64>::Elf_Addr value);
3553 #endif
3554
3555 #ifdef HAVE_TARGET_32_LITTLE
3556 template
3557 void
3558 Warnings::issue_warning<32, false>(const Symbol* sym,
3559 const Relocate_info<32, false>* relinfo,
3560 size_t relnum, off_t reloffset) const;
3561 #endif
3562
3563 #ifdef HAVE_TARGET_32_BIG
3564 template
3565 void
3566 Warnings::issue_warning<32, true>(const Symbol* sym,
3567 const Relocate_info<32, true>* relinfo,
3568 size_t relnum, off_t reloffset) const;
3569 #endif
3570
3571 #ifdef HAVE_TARGET_64_LITTLE
3572 template
3573 void
3574 Warnings::issue_warning<64, false>(const Symbol* sym,
3575 const Relocate_info<64, false>* relinfo,
3576 size_t relnum, off_t reloffset) const;
3577 #endif
3578
3579 #ifdef HAVE_TARGET_64_BIG
3580 template
3581 void
3582 Warnings::issue_warning<64, true>(const Symbol* sym,
3583 const Relocate_info<64, true>* relinfo,
3584 size_t relnum, off_t reloffset) const;
3585 #endif
3586
3587 } // End namespace gold.
This page took 0.140676 seconds and 5 git commands to generate.