Allow target to set dynsym indexes.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Class Symbol_table.
531
532 Symbol_table::Symbol_table(unsigned int count,
533 const Version_script_info& version_script)
534 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535 forwarders_(), commons_(), tls_commons_(), small_commons_(),
536 large_commons_(), forced_locals_(), warnings_(),
537 version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539 namepool_.reserve(count);
540 }
541
542 Symbol_table::~Symbol_table()
543 {
544 }
545
546 // The symbol table key equality function. This is called with
547 // Stringpool keys.
548
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551 const Symbol_table_key& k2) const
552 {
553 return k1.first == k2.first && k1.second == k2.second;
554 }
555
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559 return (parameters->options().icf_enabled()
560 && this->icf_->is_section_folded(obj, shndx));
561 }
562
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565
566 void
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569 for (options::String_set::const_iterator p =
570 parameters->options().undefined_begin();
571 p != parameters->options().undefined_end();
572 ++p)
573 {
574 const char* name = p->c_str();
575 Symbol* sym = this->lookup(name);
576 gold_assert(sym != NULL);
577 if (sym->source() == Symbol::FROM_OBJECT
578 && !sym->object()->is_dynamic())
579 {
580 this->gc_mark_symbol(sym);
581 }
582 }
583
584 for (options::String_set::const_iterator p =
585 parameters->options().export_dynamic_symbol_begin();
586 p != parameters->options().export_dynamic_symbol_end();
587 ++p)
588 {
589 const char* name = p->c_str();
590 Symbol* sym = this->lookup(name);
591 // It's not an error if a symbol named by --export-dynamic-symbol
592 // is undefined.
593 if (sym != NULL
594 && sym->source() == Symbol::FROM_OBJECT
595 && !sym->object()->is_dynamic())
596 {
597 this->gc_mark_symbol(sym);
598 }
599 }
600
601 for (Script_options::referenced_const_iterator p =
602 layout->script_options()->referenced_begin();
603 p != layout->script_options()->referenced_end();
604 ++p)
605 {
606 Symbol* sym = this->lookup(p->c_str());
607 gold_assert(sym != NULL);
608 if (sym->source() == Symbol::FROM_OBJECT
609 && !sym->object()->is_dynamic())
610 {
611 this->gc_mark_symbol(sym);
612 }
613 }
614 }
615
616 void
617 Symbol_table::gc_mark_symbol(Symbol* sym)
618 {
619 // Add the object and section to the work list.
620 bool is_ordinary;
621 unsigned int shndx = sym->shndx(&is_ordinary);
622 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
623 {
624 gold_assert(this->gc_!= NULL);
625 this->gc_->worklist().push(Section_id(sym->object(), shndx));
626 }
627 parameters->target().gc_mark_symbol(this, sym);
628 }
629
630 // When doing garbage collection, keep symbols that have been seen in
631 // dynamic objects.
632 inline void
633 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
634 {
635 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
636 && !sym->object()->is_dynamic())
637 this->gc_mark_symbol(sym);
638 }
639
640 // Make TO a symbol which forwards to FROM.
641
642 void
643 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
644 {
645 gold_assert(from != to);
646 gold_assert(!from->is_forwarder() && !to->is_forwarder());
647 this->forwarders_[from] = to;
648 from->set_forwarder();
649 }
650
651 // Resolve the forwards from FROM, returning the real symbol.
652
653 Symbol*
654 Symbol_table::resolve_forwards(const Symbol* from) const
655 {
656 gold_assert(from->is_forwarder());
657 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
658 this->forwarders_.find(from);
659 gold_assert(p != this->forwarders_.end());
660 return p->second;
661 }
662
663 // Look up a symbol by name.
664
665 Symbol*
666 Symbol_table::lookup(const char* name, const char* version) const
667 {
668 Stringpool::Key name_key;
669 name = this->namepool_.find(name, &name_key);
670 if (name == NULL)
671 return NULL;
672
673 Stringpool::Key version_key = 0;
674 if (version != NULL)
675 {
676 version = this->namepool_.find(version, &version_key);
677 if (version == NULL)
678 return NULL;
679 }
680
681 Symbol_table_key key(name_key, version_key);
682 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
683 if (p == this->table_.end())
684 return NULL;
685 return p->second;
686 }
687
688 // Resolve a Symbol with another Symbol. This is only used in the
689 // unusual case where there are references to both an unversioned
690 // symbol and a symbol with a version, and we then discover that that
691 // version is the default version. Because this is unusual, we do
692 // this the slow way, by converting back to an ELF symbol.
693
694 template<int size, bool big_endian>
695 void
696 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
697 {
698 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
699 elfcpp::Sym_write<size, big_endian> esym(buf);
700 // We don't bother to set the st_name or the st_shndx field.
701 esym.put_st_value(from->value());
702 esym.put_st_size(from->symsize());
703 esym.put_st_info(from->binding(), from->type());
704 esym.put_st_other(from->visibility(), from->nonvis());
705 bool is_ordinary;
706 unsigned int shndx = from->shndx(&is_ordinary);
707 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
708 from->version());
709 if (from->in_reg())
710 to->set_in_reg();
711 if (from->in_dyn())
712 to->set_in_dyn();
713 if (parameters->options().gc_sections())
714 this->gc_mark_dyn_syms(to);
715 }
716
717 // Record that a symbol is forced to be local by a version script or
718 // by visibility.
719
720 void
721 Symbol_table::force_local(Symbol* sym)
722 {
723 if (!sym->is_defined() && !sym->is_common())
724 return;
725 if (sym->is_forced_local())
726 {
727 // We already got this one.
728 return;
729 }
730 sym->set_is_forced_local();
731 this->forced_locals_.push_back(sym);
732 }
733
734 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
735 // is only called for undefined symbols, when at least one --wrap
736 // option was used.
737
738 const char*
739 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
740 {
741 // For some targets, we need to ignore a specific character when
742 // wrapping, and add it back later.
743 char prefix = '\0';
744 if (name[0] == parameters->target().wrap_char())
745 {
746 prefix = name[0];
747 ++name;
748 }
749
750 if (parameters->options().is_wrap(name))
751 {
752 // Turn NAME into __wrap_NAME.
753 std::string s;
754 if (prefix != '\0')
755 s += prefix;
756 s += "__wrap_";
757 s += name;
758
759 // This will give us both the old and new name in NAMEPOOL_, but
760 // that is OK. Only the versions we need will wind up in the
761 // real string table in the output file.
762 return this->namepool_.add(s.c_str(), true, name_key);
763 }
764
765 const char* const real_prefix = "__real_";
766 const size_t real_prefix_length = strlen(real_prefix);
767 if (strncmp(name, real_prefix, real_prefix_length) == 0
768 && parameters->options().is_wrap(name + real_prefix_length))
769 {
770 // Turn __real_NAME into NAME.
771 std::string s;
772 if (prefix != '\0')
773 s += prefix;
774 s += name + real_prefix_length;
775 return this->namepool_.add(s.c_str(), true, name_key);
776 }
777
778 return name;
779 }
780
781 // This is called when we see a symbol NAME/VERSION, and the symbol
782 // already exists in the symbol table, and VERSION is marked as being
783 // the default version. SYM is the NAME/VERSION symbol we just added.
784 // DEFAULT_IS_NEW is true if this is the first time we have seen the
785 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
786
787 template<int size, bool big_endian>
788 void
789 Symbol_table::define_default_version(Sized_symbol<size>* sym,
790 bool default_is_new,
791 Symbol_table_type::iterator pdef)
792 {
793 if (default_is_new)
794 {
795 // This is the first time we have seen NAME/NULL. Make
796 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
797 // version.
798 pdef->second = sym;
799 sym->set_is_default();
800 }
801 else if (pdef->second == sym)
802 {
803 // NAME/NULL already points to NAME/VERSION. Don't mark the
804 // symbol as the default if it is not already the default.
805 }
806 else
807 {
808 // This is the unfortunate case where we already have entries
809 // for both NAME/VERSION and NAME/NULL. We now see a symbol
810 // NAME/VERSION where VERSION is the default version. We have
811 // already resolved this new symbol with the existing
812 // NAME/VERSION symbol.
813
814 // It's possible that NAME/NULL and NAME/VERSION are both
815 // defined in regular objects. This can only happen if one
816 // object file defines foo and another defines foo@@ver. This
817 // is somewhat obscure, but we call it a multiple definition
818 // error.
819
820 // It's possible that NAME/NULL actually has a version, in which
821 // case it won't be the same as VERSION. This happens with
822 // ver_test_7.so in the testsuite for the symbol t2_2. We see
823 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
824 // then see an unadorned t2_2 in an object file and give it
825 // version VER1 from the version script. This looks like a
826 // default definition for VER1, so it looks like we should merge
827 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
828 // not obvious that this is an error, either. So we just punt.
829
830 // If one of the symbols has non-default visibility, and the
831 // other is defined in a shared object, then they are different
832 // symbols.
833
834 // Otherwise, we just resolve the symbols as though they were
835 // the same.
836
837 if (pdef->second->version() != NULL)
838 gold_assert(pdef->second->version() != sym->version());
839 else if (sym->visibility() != elfcpp::STV_DEFAULT
840 && pdef->second->is_from_dynobj())
841 ;
842 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
843 && sym->is_from_dynobj())
844 ;
845 else
846 {
847 const Sized_symbol<size>* symdef;
848 symdef = this->get_sized_symbol<size>(pdef->second);
849 Symbol_table::resolve<size, big_endian>(sym, symdef);
850 this->make_forwarder(pdef->second, sym);
851 pdef->second = sym;
852 sym->set_is_default();
853 }
854 }
855 }
856
857 // Add one symbol from OBJECT to the symbol table. NAME is symbol
858 // name and VERSION is the version; both are canonicalized. DEF is
859 // whether this is the default version. ST_SHNDX is the symbol's
860 // section index; IS_ORDINARY is whether this is a normal section
861 // rather than a special code.
862
863 // If IS_DEFAULT_VERSION is true, then this is the definition of a
864 // default version of a symbol. That means that any lookup of
865 // NAME/NULL and any lookup of NAME/VERSION should always return the
866 // same symbol. This is obvious for references, but in particular we
867 // want to do this for definitions: overriding NAME/NULL should also
868 // override NAME/VERSION. If we don't do that, it would be very hard
869 // to override functions in a shared library which uses versioning.
870
871 // We implement this by simply making both entries in the hash table
872 // point to the same Symbol structure. That is easy enough if this is
873 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
874 // that we have seen both already, in which case they will both have
875 // independent entries in the symbol table. We can't simply change
876 // the symbol table entry, because we have pointers to the entries
877 // attached to the object files. So we mark the entry attached to the
878 // object file as a forwarder, and record it in the forwarders_ map.
879 // Note that entries in the hash table will never be marked as
880 // forwarders.
881 //
882 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
883 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
884 // for a special section code. ST_SHNDX may be modified if the symbol
885 // is defined in a section being discarded.
886
887 template<int size, bool big_endian>
888 Sized_symbol<size>*
889 Symbol_table::add_from_object(Object* object,
890 const char* name,
891 Stringpool::Key name_key,
892 const char* version,
893 Stringpool::Key version_key,
894 bool is_default_version,
895 const elfcpp::Sym<size, big_endian>& sym,
896 unsigned int st_shndx,
897 bool is_ordinary,
898 unsigned int orig_st_shndx)
899 {
900 // Print a message if this symbol is being traced.
901 if (parameters->options().is_trace_symbol(name))
902 {
903 if (orig_st_shndx == elfcpp::SHN_UNDEF)
904 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
905 else
906 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
907 }
908
909 // For an undefined symbol, we may need to adjust the name using
910 // --wrap.
911 if (orig_st_shndx == elfcpp::SHN_UNDEF
912 && parameters->options().any_wrap())
913 {
914 const char* wrap_name = this->wrap_symbol(name, &name_key);
915 if (wrap_name != name)
916 {
917 // If we see a reference to malloc with version GLIBC_2.0,
918 // and we turn it into a reference to __wrap_malloc, then we
919 // discard the version number. Otherwise the user would be
920 // required to specify the correct version for
921 // __wrap_malloc.
922 version = NULL;
923 version_key = 0;
924 name = wrap_name;
925 }
926 }
927
928 Symbol* const snull = NULL;
929 std::pair<typename Symbol_table_type::iterator, bool> ins =
930 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
931 snull));
932
933 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
934 std::make_pair(this->table_.end(), false);
935 if (is_default_version)
936 {
937 const Stringpool::Key vnull_key = 0;
938 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
939 vnull_key),
940 snull));
941 }
942
943 // ins.first: an iterator, which is a pointer to a pair.
944 // ins.first->first: the key (a pair of name and version).
945 // ins.first->second: the value (Symbol*).
946 // ins.second: true if new entry was inserted, false if not.
947
948 Sized_symbol<size>* ret;
949 bool was_undefined;
950 bool was_common;
951 if (!ins.second)
952 {
953 // We already have an entry for NAME/VERSION.
954 ret = this->get_sized_symbol<size>(ins.first->second);
955 gold_assert(ret != NULL);
956
957 was_undefined = ret->is_undefined();
958 was_common = ret->is_common();
959
960 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
961 version);
962 if (parameters->options().gc_sections())
963 this->gc_mark_dyn_syms(ret);
964
965 if (is_default_version)
966 this->define_default_version<size, big_endian>(ret, insdefault.second,
967 insdefault.first);
968 }
969 else
970 {
971 // This is the first time we have seen NAME/VERSION.
972 gold_assert(ins.first->second == NULL);
973
974 if (is_default_version && !insdefault.second)
975 {
976 // We already have an entry for NAME/NULL. If we override
977 // it, then change it to NAME/VERSION.
978 ret = this->get_sized_symbol<size>(insdefault.first->second);
979
980 was_undefined = ret->is_undefined();
981 was_common = ret->is_common();
982
983 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
984 version);
985 if (parameters->options().gc_sections())
986 this->gc_mark_dyn_syms(ret);
987 ins.first->second = ret;
988 }
989 else
990 {
991 was_undefined = false;
992 was_common = false;
993
994 Sized_target<size, big_endian>* target =
995 parameters->sized_target<size, big_endian>();
996 if (!target->has_make_symbol())
997 ret = new Sized_symbol<size>();
998 else
999 {
1000 ret = target->make_symbol();
1001 if (ret == NULL)
1002 {
1003 // This means that we don't want a symbol table
1004 // entry after all.
1005 if (!is_default_version)
1006 this->table_.erase(ins.first);
1007 else
1008 {
1009 this->table_.erase(insdefault.first);
1010 // Inserting INSDEFAULT invalidated INS.
1011 this->table_.erase(std::make_pair(name_key,
1012 version_key));
1013 }
1014 return NULL;
1015 }
1016 }
1017
1018 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1019
1020 ins.first->second = ret;
1021 if (is_default_version)
1022 {
1023 // This is the first time we have seen NAME/NULL. Point
1024 // it at the new entry for NAME/VERSION.
1025 gold_assert(insdefault.second);
1026 insdefault.first->second = ret;
1027 }
1028 }
1029
1030 if (is_default_version)
1031 ret->set_is_default();
1032 }
1033
1034 // Record every time we see a new undefined symbol, to speed up
1035 // archive groups.
1036 if (!was_undefined && ret->is_undefined())
1037 {
1038 ++this->saw_undefined_;
1039 if (parameters->options().has_plugins())
1040 parameters->options().plugins()->new_undefined_symbol(ret);
1041 }
1042
1043 // Keep track of common symbols, to speed up common symbol
1044 // allocation.
1045 if (!was_common && ret->is_common())
1046 {
1047 if (ret->type() == elfcpp::STT_TLS)
1048 this->tls_commons_.push_back(ret);
1049 else if (!is_ordinary
1050 && st_shndx == parameters->target().small_common_shndx())
1051 this->small_commons_.push_back(ret);
1052 else if (!is_ordinary
1053 && st_shndx == parameters->target().large_common_shndx())
1054 this->large_commons_.push_back(ret);
1055 else
1056 this->commons_.push_back(ret);
1057 }
1058
1059 // If we're not doing a relocatable link, then any symbol with
1060 // hidden or internal visibility is local.
1061 if ((ret->visibility() == elfcpp::STV_HIDDEN
1062 || ret->visibility() == elfcpp::STV_INTERNAL)
1063 && (ret->binding() == elfcpp::STB_GLOBAL
1064 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1065 || ret->binding() == elfcpp::STB_WEAK)
1066 && !parameters->options().relocatable())
1067 this->force_local(ret);
1068
1069 return ret;
1070 }
1071
1072 // Add all the symbols in a relocatable object to the hash table.
1073
1074 template<int size, bool big_endian>
1075 void
1076 Symbol_table::add_from_relobj(
1077 Sized_relobj_file<size, big_endian>* relobj,
1078 const unsigned char* syms,
1079 size_t count,
1080 size_t symndx_offset,
1081 const char* sym_names,
1082 size_t sym_name_size,
1083 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1084 size_t* defined)
1085 {
1086 *defined = 0;
1087
1088 gold_assert(size == parameters->target().get_size());
1089
1090 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1091
1092 const bool just_symbols = relobj->just_symbols();
1093
1094 const unsigned char* p = syms;
1095 for (size_t i = 0; i < count; ++i, p += sym_size)
1096 {
1097 (*sympointers)[i] = NULL;
1098
1099 elfcpp::Sym<size, big_endian> sym(p);
1100
1101 unsigned int st_name = sym.get_st_name();
1102 if (st_name >= sym_name_size)
1103 {
1104 relobj->error(_("bad global symbol name offset %u at %zu"),
1105 st_name, i);
1106 continue;
1107 }
1108
1109 const char* name = sym_names + st_name;
1110
1111 bool is_ordinary;
1112 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1113 sym.get_st_shndx(),
1114 &is_ordinary);
1115 unsigned int orig_st_shndx = st_shndx;
1116 if (!is_ordinary)
1117 orig_st_shndx = elfcpp::SHN_UNDEF;
1118
1119 if (st_shndx != elfcpp::SHN_UNDEF)
1120 ++*defined;
1121
1122 // A symbol defined in a section which we are not including must
1123 // be treated as an undefined symbol.
1124 bool is_defined_in_discarded_section = false;
1125 if (st_shndx != elfcpp::SHN_UNDEF
1126 && is_ordinary
1127 && !relobj->is_section_included(st_shndx)
1128 && !this->is_section_folded(relobj, st_shndx))
1129 {
1130 st_shndx = elfcpp::SHN_UNDEF;
1131 is_defined_in_discarded_section = true;
1132 }
1133
1134 // In an object file, an '@' in the name separates the symbol
1135 // name from the version name. If there are two '@' characters,
1136 // this is the default version.
1137 const char* ver = strchr(name, '@');
1138 Stringpool::Key ver_key = 0;
1139 int namelen = 0;
1140 // IS_DEFAULT_VERSION: is the version default?
1141 // IS_FORCED_LOCAL: is the symbol forced local?
1142 bool is_default_version = false;
1143 bool is_forced_local = false;
1144
1145 // FIXME: For incremental links, we don't store version information,
1146 // so we need to ignore version symbols for now.
1147 if (parameters->incremental_update() && ver != NULL)
1148 {
1149 namelen = ver - name;
1150 ver = NULL;
1151 }
1152
1153 if (ver != NULL)
1154 {
1155 // The symbol name is of the form foo@VERSION or foo@@VERSION
1156 namelen = ver - name;
1157 ++ver;
1158 if (*ver == '@')
1159 {
1160 is_default_version = true;
1161 ++ver;
1162 }
1163 ver = this->namepool_.add(ver, true, &ver_key);
1164 }
1165 // We don't want to assign a version to an undefined symbol,
1166 // even if it is listed in the version script. FIXME: What
1167 // about a common symbol?
1168 else
1169 {
1170 namelen = strlen(name);
1171 if (!this->version_script_.empty()
1172 && st_shndx != elfcpp::SHN_UNDEF)
1173 {
1174 // The symbol name did not have a version, but the
1175 // version script may assign a version anyway.
1176 std::string version;
1177 bool is_global;
1178 if (this->version_script_.get_symbol_version(name, &version,
1179 &is_global))
1180 {
1181 if (!is_global)
1182 is_forced_local = true;
1183 else if (!version.empty())
1184 {
1185 ver = this->namepool_.add_with_length(version.c_str(),
1186 version.length(),
1187 true,
1188 &ver_key);
1189 is_default_version = true;
1190 }
1191 }
1192 }
1193 }
1194
1195 elfcpp::Sym<size, big_endian>* psym = &sym;
1196 unsigned char symbuf[sym_size];
1197 elfcpp::Sym<size, big_endian> sym2(symbuf);
1198 if (just_symbols)
1199 {
1200 memcpy(symbuf, p, sym_size);
1201 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1202 if (orig_st_shndx != elfcpp::SHN_UNDEF
1203 && is_ordinary
1204 && relobj->e_type() == elfcpp::ET_REL)
1205 {
1206 // Symbol values in relocatable object files are section
1207 // relative. This is normally what we want, but since here
1208 // we are converting the symbol to absolute we need to add
1209 // the section address. The section address in an object
1210 // file is normally zero, but people can use a linker
1211 // script to change it.
1212 sw.put_st_value(sym.get_st_value()
1213 + relobj->section_address(orig_st_shndx));
1214 }
1215 st_shndx = elfcpp::SHN_ABS;
1216 is_ordinary = false;
1217 psym = &sym2;
1218 }
1219
1220 // Fix up visibility if object has no-export set.
1221 if (relobj->no_export()
1222 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1223 {
1224 // We may have copied symbol already above.
1225 if (psym != &sym2)
1226 {
1227 memcpy(symbuf, p, sym_size);
1228 psym = &sym2;
1229 }
1230
1231 elfcpp::STV visibility = sym2.get_st_visibility();
1232 if (visibility == elfcpp::STV_DEFAULT
1233 || visibility == elfcpp::STV_PROTECTED)
1234 {
1235 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1236 unsigned char nonvis = sym2.get_st_nonvis();
1237 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1238 }
1239 }
1240
1241 Stringpool::Key name_key;
1242 name = this->namepool_.add_with_length(name, namelen, true,
1243 &name_key);
1244
1245 Sized_symbol<size>* res;
1246 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1247 is_default_version, *psym, st_shndx,
1248 is_ordinary, orig_st_shndx);
1249
1250 if (is_forced_local)
1251 this->force_local(res);
1252
1253 // Do not treat this symbol as garbage if this symbol will be
1254 // exported to the dynamic symbol table. This is true when
1255 // building a shared library or using --export-dynamic and
1256 // the symbol is externally visible.
1257 if (parameters->options().gc_sections()
1258 && res->is_externally_visible()
1259 && !res->is_from_dynobj()
1260 && (parameters->options().shared()
1261 || parameters->options().export_dynamic()
1262 || parameters->options().in_dynamic_list(res->name())))
1263 this->gc_mark_symbol(res);
1264
1265 if (is_defined_in_discarded_section)
1266 res->set_is_defined_in_discarded_section();
1267
1268 (*sympointers)[i] = res;
1269 }
1270 }
1271
1272 // Add a symbol from a plugin-claimed file.
1273
1274 template<int size, bool big_endian>
1275 Symbol*
1276 Symbol_table::add_from_pluginobj(
1277 Sized_pluginobj<size, big_endian>* obj,
1278 const char* name,
1279 const char* ver,
1280 elfcpp::Sym<size, big_endian>* sym)
1281 {
1282 unsigned int st_shndx = sym->get_st_shndx();
1283 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1284
1285 Stringpool::Key ver_key = 0;
1286 bool is_default_version = false;
1287 bool is_forced_local = false;
1288
1289 if (ver != NULL)
1290 {
1291 ver = this->namepool_.add(ver, true, &ver_key);
1292 }
1293 // We don't want to assign a version to an undefined symbol,
1294 // even if it is listed in the version script. FIXME: What
1295 // about a common symbol?
1296 else
1297 {
1298 if (!this->version_script_.empty()
1299 && st_shndx != elfcpp::SHN_UNDEF)
1300 {
1301 // The symbol name did not have a version, but the
1302 // version script may assign a version anyway.
1303 std::string version;
1304 bool is_global;
1305 if (this->version_script_.get_symbol_version(name, &version,
1306 &is_global))
1307 {
1308 if (!is_global)
1309 is_forced_local = true;
1310 else if (!version.empty())
1311 {
1312 ver = this->namepool_.add_with_length(version.c_str(),
1313 version.length(),
1314 true,
1315 &ver_key);
1316 is_default_version = true;
1317 }
1318 }
1319 }
1320 }
1321
1322 Stringpool::Key name_key;
1323 name = this->namepool_.add(name, true, &name_key);
1324
1325 Sized_symbol<size>* res;
1326 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1327 is_default_version, *sym, st_shndx,
1328 is_ordinary, st_shndx);
1329
1330 if (is_forced_local)
1331 this->force_local(res);
1332
1333 return res;
1334 }
1335
1336 // Add all the symbols in a dynamic object to the hash table.
1337
1338 template<int size, bool big_endian>
1339 void
1340 Symbol_table::add_from_dynobj(
1341 Sized_dynobj<size, big_endian>* dynobj,
1342 const unsigned char* syms,
1343 size_t count,
1344 const char* sym_names,
1345 size_t sym_name_size,
1346 const unsigned char* versym,
1347 size_t versym_size,
1348 const std::vector<const char*>* version_map,
1349 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1350 size_t* defined)
1351 {
1352 *defined = 0;
1353
1354 gold_assert(size == parameters->target().get_size());
1355
1356 if (dynobj->just_symbols())
1357 {
1358 gold_error(_("--just-symbols does not make sense with a shared object"));
1359 return;
1360 }
1361
1362 // FIXME: For incremental links, we don't store version information,
1363 // so we need to ignore version symbols for now.
1364 if (parameters->incremental_update())
1365 versym = NULL;
1366
1367 if (versym != NULL && versym_size / 2 < count)
1368 {
1369 dynobj->error(_("too few symbol versions"));
1370 return;
1371 }
1372
1373 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1374
1375 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1376 // weak aliases. This is necessary because if the dynamic object
1377 // provides the same variable under two names, one of which is a
1378 // weak definition, and the regular object refers to the weak
1379 // definition, we have to put both the weak definition and the
1380 // strong definition into the dynamic symbol table. Given a weak
1381 // definition, the only way that we can find the corresponding
1382 // strong definition, if any, is to search the symbol table.
1383 std::vector<Sized_symbol<size>*> object_symbols;
1384
1385 const unsigned char* p = syms;
1386 const unsigned char* vs = versym;
1387 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1388 {
1389 elfcpp::Sym<size, big_endian> sym(p);
1390
1391 if (sympointers != NULL)
1392 (*sympointers)[i] = NULL;
1393
1394 // Ignore symbols with local binding or that have
1395 // internal or hidden visibility.
1396 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1397 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1398 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1399 continue;
1400
1401 // A protected symbol in a shared library must be treated as a
1402 // normal symbol when viewed from outside the shared library.
1403 // Implement this by overriding the visibility here.
1404 elfcpp::Sym<size, big_endian>* psym = &sym;
1405 unsigned char symbuf[sym_size];
1406 elfcpp::Sym<size, big_endian> sym2(symbuf);
1407 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1408 {
1409 memcpy(symbuf, p, sym_size);
1410 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1411 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1412 psym = &sym2;
1413 }
1414
1415 unsigned int st_name = psym->get_st_name();
1416 if (st_name >= sym_name_size)
1417 {
1418 dynobj->error(_("bad symbol name offset %u at %zu"),
1419 st_name, i);
1420 continue;
1421 }
1422
1423 const char* name = sym_names + st_name;
1424
1425 bool is_ordinary;
1426 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1427 &is_ordinary);
1428
1429 if (st_shndx != elfcpp::SHN_UNDEF)
1430 ++*defined;
1431
1432 Sized_symbol<size>* res;
1433
1434 if (versym == NULL)
1435 {
1436 Stringpool::Key name_key;
1437 name = this->namepool_.add(name, true, &name_key);
1438 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1439 false, *psym, st_shndx, is_ordinary,
1440 st_shndx);
1441 }
1442 else
1443 {
1444 // Read the version information.
1445
1446 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1447
1448 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1449 v &= elfcpp::VERSYM_VERSION;
1450
1451 // The Sun documentation says that V can be VER_NDX_LOCAL,
1452 // or VER_NDX_GLOBAL, or a version index. The meaning of
1453 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1454 // The old GNU linker will happily generate VER_NDX_LOCAL
1455 // for an undefined symbol. I don't know what the Sun
1456 // linker will generate.
1457
1458 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1459 && st_shndx != elfcpp::SHN_UNDEF)
1460 {
1461 // This symbol should not be visible outside the object.
1462 continue;
1463 }
1464
1465 // At this point we are definitely going to add this symbol.
1466 Stringpool::Key name_key;
1467 name = this->namepool_.add(name, true, &name_key);
1468
1469 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1470 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1471 {
1472 // This symbol does not have a version.
1473 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1474 false, *psym, st_shndx, is_ordinary,
1475 st_shndx);
1476 }
1477 else
1478 {
1479 if (v >= version_map->size())
1480 {
1481 dynobj->error(_("versym for symbol %zu out of range: %u"),
1482 i, v);
1483 continue;
1484 }
1485
1486 const char* version = (*version_map)[v];
1487 if (version == NULL)
1488 {
1489 dynobj->error(_("versym for symbol %zu has no name: %u"),
1490 i, v);
1491 continue;
1492 }
1493
1494 Stringpool::Key version_key;
1495 version = this->namepool_.add(version, true, &version_key);
1496
1497 // If this is an absolute symbol, and the version name
1498 // and symbol name are the same, then this is the
1499 // version definition symbol. These symbols exist to
1500 // support using -u to pull in particular versions. We
1501 // do not want to record a version for them.
1502 if (st_shndx == elfcpp::SHN_ABS
1503 && !is_ordinary
1504 && name_key == version_key)
1505 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1506 false, *psym, st_shndx, is_ordinary,
1507 st_shndx);
1508 else
1509 {
1510 const bool is_default_version =
1511 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1512 res = this->add_from_object(dynobj, name, name_key, version,
1513 version_key, is_default_version,
1514 *psym, st_shndx,
1515 is_ordinary, st_shndx);
1516 }
1517 }
1518 }
1519
1520 // Note that it is possible that RES was overridden by an
1521 // earlier object, in which case it can't be aliased here.
1522 if (st_shndx != elfcpp::SHN_UNDEF
1523 && is_ordinary
1524 && psym->get_st_type() == elfcpp::STT_OBJECT
1525 && res->source() == Symbol::FROM_OBJECT
1526 && res->object() == dynobj)
1527 object_symbols.push_back(res);
1528
1529 if (sympointers != NULL)
1530 (*sympointers)[i] = res;
1531 }
1532
1533 this->record_weak_aliases(&object_symbols);
1534 }
1535
1536 // Add a symbol from a incremental object file.
1537
1538 template<int size, bool big_endian>
1539 Sized_symbol<size>*
1540 Symbol_table::add_from_incrobj(
1541 Object* obj,
1542 const char* name,
1543 const char* ver,
1544 elfcpp::Sym<size, big_endian>* sym)
1545 {
1546 unsigned int st_shndx = sym->get_st_shndx();
1547 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1548
1549 Stringpool::Key ver_key = 0;
1550 bool is_default_version = false;
1551 bool is_forced_local = false;
1552
1553 Stringpool::Key name_key;
1554 name = this->namepool_.add(name, true, &name_key);
1555
1556 Sized_symbol<size>* res;
1557 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1558 is_default_version, *sym, st_shndx,
1559 is_ordinary, st_shndx);
1560
1561 if (is_forced_local)
1562 this->force_local(res);
1563
1564 return res;
1565 }
1566
1567 // This is used to sort weak aliases. We sort them first by section
1568 // index, then by offset, then by weak ahead of strong.
1569
1570 template<int size>
1571 class Weak_alias_sorter
1572 {
1573 public:
1574 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1575 };
1576
1577 template<int size>
1578 bool
1579 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1580 const Sized_symbol<size>* s2) const
1581 {
1582 bool is_ordinary;
1583 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1584 gold_assert(is_ordinary);
1585 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1586 gold_assert(is_ordinary);
1587 if (s1_shndx != s2_shndx)
1588 return s1_shndx < s2_shndx;
1589
1590 if (s1->value() != s2->value())
1591 return s1->value() < s2->value();
1592 if (s1->binding() != s2->binding())
1593 {
1594 if (s1->binding() == elfcpp::STB_WEAK)
1595 return true;
1596 if (s2->binding() == elfcpp::STB_WEAK)
1597 return false;
1598 }
1599 return std::string(s1->name()) < std::string(s2->name());
1600 }
1601
1602 // SYMBOLS is a list of object symbols from a dynamic object. Look
1603 // for any weak aliases, and record them so that if we add the weak
1604 // alias to the dynamic symbol table, we also add the corresponding
1605 // strong symbol.
1606
1607 template<int size>
1608 void
1609 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1610 {
1611 // Sort the vector by section index, then by offset, then by weak
1612 // ahead of strong.
1613 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1614
1615 // Walk through the vector. For each weak definition, record
1616 // aliases.
1617 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1618 symbols->begin();
1619 p != symbols->end();
1620 ++p)
1621 {
1622 if ((*p)->binding() != elfcpp::STB_WEAK)
1623 continue;
1624
1625 // Build a circular list of weak aliases. Each symbol points to
1626 // the next one in the circular list.
1627
1628 Sized_symbol<size>* from_sym = *p;
1629 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1630 for (q = p + 1; q != symbols->end(); ++q)
1631 {
1632 bool dummy;
1633 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1634 || (*q)->value() != from_sym->value())
1635 break;
1636
1637 this->weak_aliases_[from_sym] = *q;
1638 from_sym->set_has_alias();
1639 from_sym = *q;
1640 }
1641
1642 if (from_sym != *p)
1643 {
1644 this->weak_aliases_[from_sym] = *p;
1645 from_sym->set_has_alias();
1646 }
1647
1648 p = q - 1;
1649 }
1650 }
1651
1652 // Create and return a specially defined symbol. If ONLY_IF_REF is
1653 // true, then only create the symbol if there is a reference to it.
1654 // If this does not return NULL, it sets *POLDSYM to the existing
1655 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1656 // resolve the newly created symbol to the old one. This
1657 // canonicalizes *PNAME and *PVERSION.
1658
1659 template<int size, bool big_endian>
1660 Sized_symbol<size>*
1661 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1662 bool only_if_ref,
1663 Sized_symbol<size>** poldsym,
1664 bool* resolve_oldsym)
1665 {
1666 *resolve_oldsym = false;
1667 *poldsym = NULL;
1668
1669 // If the caller didn't give us a version, see if we get one from
1670 // the version script.
1671 std::string v;
1672 bool is_default_version = false;
1673 if (*pversion == NULL)
1674 {
1675 bool is_global;
1676 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1677 {
1678 if (is_global && !v.empty())
1679 {
1680 *pversion = v.c_str();
1681 // If we get the version from a version script, then we
1682 // are also the default version.
1683 is_default_version = true;
1684 }
1685 }
1686 }
1687
1688 Symbol* oldsym;
1689 Sized_symbol<size>* sym;
1690
1691 bool add_to_table = false;
1692 typename Symbol_table_type::iterator add_loc = this->table_.end();
1693 bool add_def_to_table = false;
1694 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1695
1696 if (only_if_ref)
1697 {
1698 oldsym = this->lookup(*pname, *pversion);
1699 if (oldsym == NULL && is_default_version)
1700 oldsym = this->lookup(*pname, NULL);
1701 if (oldsym == NULL || !oldsym->is_undefined())
1702 return NULL;
1703
1704 *pname = oldsym->name();
1705 if (is_default_version)
1706 *pversion = this->namepool_.add(*pversion, true, NULL);
1707 else
1708 *pversion = oldsym->version();
1709 }
1710 else
1711 {
1712 // Canonicalize NAME and VERSION.
1713 Stringpool::Key name_key;
1714 *pname = this->namepool_.add(*pname, true, &name_key);
1715
1716 Stringpool::Key version_key = 0;
1717 if (*pversion != NULL)
1718 *pversion = this->namepool_.add(*pversion, true, &version_key);
1719
1720 Symbol* const snull = NULL;
1721 std::pair<typename Symbol_table_type::iterator, bool> ins =
1722 this->table_.insert(std::make_pair(std::make_pair(name_key,
1723 version_key),
1724 snull));
1725
1726 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1727 std::make_pair(this->table_.end(), false);
1728 if (is_default_version)
1729 {
1730 const Stringpool::Key vnull = 0;
1731 insdefault =
1732 this->table_.insert(std::make_pair(std::make_pair(name_key,
1733 vnull),
1734 snull));
1735 }
1736
1737 if (!ins.second)
1738 {
1739 // We already have a symbol table entry for NAME/VERSION.
1740 oldsym = ins.first->second;
1741 gold_assert(oldsym != NULL);
1742
1743 if (is_default_version)
1744 {
1745 Sized_symbol<size>* soldsym =
1746 this->get_sized_symbol<size>(oldsym);
1747 this->define_default_version<size, big_endian>(soldsym,
1748 insdefault.second,
1749 insdefault.first);
1750 }
1751 }
1752 else
1753 {
1754 // We haven't seen this symbol before.
1755 gold_assert(ins.first->second == NULL);
1756
1757 add_to_table = true;
1758 add_loc = ins.first;
1759
1760 if (is_default_version && !insdefault.second)
1761 {
1762 // We are adding NAME/VERSION, and it is the default
1763 // version. We already have an entry for NAME/NULL.
1764 oldsym = insdefault.first->second;
1765 *resolve_oldsym = true;
1766 }
1767 else
1768 {
1769 oldsym = NULL;
1770
1771 if (is_default_version)
1772 {
1773 add_def_to_table = true;
1774 add_def_loc = insdefault.first;
1775 }
1776 }
1777 }
1778 }
1779
1780 const Target& target = parameters->target();
1781 if (!target.has_make_symbol())
1782 sym = new Sized_symbol<size>();
1783 else
1784 {
1785 Sized_target<size, big_endian>* sized_target =
1786 parameters->sized_target<size, big_endian>();
1787 sym = sized_target->make_symbol();
1788 if (sym == NULL)
1789 return NULL;
1790 }
1791
1792 if (add_to_table)
1793 add_loc->second = sym;
1794 else
1795 gold_assert(oldsym != NULL);
1796
1797 if (add_def_to_table)
1798 add_def_loc->second = sym;
1799
1800 *poldsym = this->get_sized_symbol<size>(oldsym);
1801
1802 return sym;
1803 }
1804
1805 // Define a symbol based on an Output_data.
1806
1807 Symbol*
1808 Symbol_table::define_in_output_data(const char* name,
1809 const char* version,
1810 Defined defined,
1811 Output_data* od,
1812 uint64_t value,
1813 uint64_t symsize,
1814 elfcpp::STT type,
1815 elfcpp::STB binding,
1816 elfcpp::STV visibility,
1817 unsigned char nonvis,
1818 bool offset_is_from_end,
1819 bool only_if_ref)
1820 {
1821 if (parameters->target().get_size() == 32)
1822 {
1823 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1824 return this->do_define_in_output_data<32>(name, version, defined, od,
1825 value, symsize, type, binding,
1826 visibility, nonvis,
1827 offset_is_from_end,
1828 only_if_ref);
1829 #else
1830 gold_unreachable();
1831 #endif
1832 }
1833 else if (parameters->target().get_size() == 64)
1834 {
1835 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1836 return this->do_define_in_output_data<64>(name, version, defined, od,
1837 value, symsize, type, binding,
1838 visibility, nonvis,
1839 offset_is_from_end,
1840 only_if_ref);
1841 #else
1842 gold_unreachable();
1843 #endif
1844 }
1845 else
1846 gold_unreachable();
1847 }
1848
1849 // Define a symbol in an Output_data, sized version.
1850
1851 template<int size>
1852 Sized_symbol<size>*
1853 Symbol_table::do_define_in_output_data(
1854 const char* name,
1855 const char* version,
1856 Defined defined,
1857 Output_data* od,
1858 typename elfcpp::Elf_types<size>::Elf_Addr value,
1859 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1860 elfcpp::STT type,
1861 elfcpp::STB binding,
1862 elfcpp::STV visibility,
1863 unsigned char nonvis,
1864 bool offset_is_from_end,
1865 bool only_if_ref)
1866 {
1867 Sized_symbol<size>* sym;
1868 Sized_symbol<size>* oldsym;
1869 bool resolve_oldsym;
1870
1871 if (parameters->target().is_big_endian())
1872 {
1873 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1874 sym = this->define_special_symbol<size, true>(&name, &version,
1875 only_if_ref, &oldsym,
1876 &resolve_oldsym);
1877 #else
1878 gold_unreachable();
1879 #endif
1880 }
1881 else
1882 {
1883 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1884 sym = this->define_special_symbol<size, false>(&name, &version,
1885 only_if_ref, &oldsym,
1886 &resolve_oldsym);
1887 #else
1888 gold_unreachable();
1889 #endif
1890 }
1891
1892 if (sym == NULL)
1893 return NULL;
1894
1895 sym->init_output_data(name, version, od, value, symsize, type, binding,
1896 visibility, nonvis, offset_is_from_end,
1897 defined == PREDEFINED);
1898
1899 if (oldsym == NULL)
1900 {
1901 if (binding == elfcpp::STB_LOCAL
1902 || this->version_script_.symbol_is_local(name))
1903 this->force_local(sym);
1904 else if (version != NULL)
1905 sym->set_is_default();
1906 return sym;
1907 }
1908
1909 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1910 this->override_with_special(oldsym, sym);
1911
1912 if (resolve_oldsym)
1913 return sym;
1914 else
1915 {
1916 delete sym;
1917 return oldsym;
1918 }
1919 }
1920
1921 // Define a symbol based on an Output_segment.
1922
1923 Symbol*
1924 Symbol_table::define_in_output_segment(const char* name,
1925 const char* version,
1926 Defined defined,
1927 Output_segment* os,
1928 uint64_t value,
1929 uint64_t symsize,
1930 elfcpp::STT type,
1931 elfcpp::STB binding,
1932 elfcpp::STV visibility,
1933 unsigned char nonvis,
1934 Symbol::Segment_offset_base offset_base,
1935 bool only_if_ref)
1936 {
1937 if (parameters->target().get_size() == 32)
1938 {
1939 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1940 return this->do_define_in_output_segment<32>(name, version, defined, os,
1941 value, symsize, type,
1942 binding, visibility, nonvis,
1943 offset_base, only_if_ref);
1944 #else
1945 gold_unreachable();
1946 #endif
1947 }
1948 else if (parameters->target().get_size() == 64)
1949 {
1950 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1951 return this->do_define_in_output_segment<64>(name, version, defined, os,
1952 value, symsize, type,
1953 binding, visibility, nonvis,
1954 offset_base, only_if_ref);
1955 #else
1956 gold_unreachable();
1957 #endif
1958 }
1959 else
1960 gold_unreachable();
1961 }
1962
1963 // Define a symbol in an Output_segment, sized version.
1964
1965 template<int size>
1966 Sized_symbol<size>*
1967 Symbol_table::do_define_in_output_segment(
1968 const char* name,
1969 const char* version,
1970 Defined defined,
1971 Output_segment* os,
1972 typename elfcpp::Elf_types<size>::Elf_Addr value,
1973 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1974 elfcpp::STT type,
1975 elfcpp::STB binding,
1976 elfcpp::STV visibility,
1977 unsigned char nonvis,
1978 Symbol::Segment_offset_base offset_base,
1979 bool only_if_ref)
1980 {
1981 Sized_symbol<size>* sym;
1982 Sized_symbol<size>* oldsym;
1983 bool resolve_oldsym;
1984
1985 if (parameters->target().is_big_endian())
1986 {
1987 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1988 sym = this->define_special_symbol<size, true>(&name, &version,
1989 only_if_ref, &oldsym,
1990 &resolve_oldsym);
1991 #else
1992 gold_unreachable();
1993 #endif
1994 }
1995 else
1996 {
1997 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1998 sym = this->define_special_symbol<size, false>(&name, &version,
1999 only_if_ref, &oldsym,
2000 &resolve_oldsym);
2001 #else
2002 gold_unreachable();
2003 #endif
2004 }
2005
2006 if (sym == NULL)
2007 return NULL;
2008
2009 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2010 visibility, nonvis, offset_base,
2011 defined == PREDEFINED);
2012
2013 if (oldsym == NULL)
2014 {
2015 if (binding == elfcpp::STB_LOCAL
2016 || this->version_script_.symbol_is_local(name))
2017 this->force_local(sym);
2018 else if (version != NULL)
2019 sym->set_is_default();
2020 return sym;
2021 }
2022
2023 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2024 this->override_with_special(oldsym, sym);
2025
2026 if (resolve_oldsym)
2027 return sym;
2028 else
2029 {
2030 delete sym;
2031 return oldsym;
2032 }
2033 }
2034
2035 // Define a special symbol with a constant value. It is a multiple
2036 // definition error if this symbol is already defined.
2037
2038 Symbol*
2039 Symbol_table::define_as_constant(const char* name,
2040 const char* version,
2041 Defined defined,
2042 uint64_t value,
2043 uint64_t symsize,
2044 elfcpp::STT type,
2045 elfcpp::STB binding,
2046 elfcpp::STV visibility,
2047 unsigned char nonvis,
2048 bool only_if_ref,
2049 bool force_override)
2050 {
2051 if (parameters->target().get_size() == 32)
2052 {
2053 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2054 return this->do_define_as_constant<32>(name, version, defined, value,
2055 symsize, type, binding,
2056 visibility, nonvis, only_if_ref,
2057 force_override);
2058 #else
2059 gold_unreachable();
2060 #endif
2061 }
2062 else if (parameters->target().get_size() == 64)
2063 {
2064 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2065 return this->do_define_as_constant<64>(name, version, defined, value,
2066 symsize, type, binding,
2067 visibility, nonvis, only_if_ref,
2068 force_override);
2069 #else
2070 gold_unreachable();
2071 #endif
2072 }
2073 else
2074 gold_unreachable();
2075 }
2076
2077 // Define a symbol as a constant, sized version.
2078
2079 template<int size>
2080 Sized_symbol<size>*
2081 Symbol_table::do_define_as_constant(
2082 const char* name,
2083 const char* version,
2084 Defined defined,
2085 typename elfcpp::Elf_types<size>::Elf_Addr value,
2086 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2087 elfcpp::STT type,
2088 elfcpp::STB binding,
2089 elfcpp::STV visibility,
2090 unsigned char nonvis,
2091 bool only_if_ref,
2092 bool force_override)
2093 {
2094 Sized_symbol<size>* sym;
2095 Sized_symbol<size>* oldsym;
2096 bool resolve_oldsym;
2097
2098 if (parameters->target().is_big_endian())
2099 {
2100 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2101 sym = this->define_special_symbol<size, true>(&name, &version,
2102 only_if_ref, &oldsym,
2103 &resolve_oldsym);
2104 #else
2105 gold_unreachable();
2106 #endif
2107 }
2108 else
2109 {
2110 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2111 sym = this->define_special_symbol<size, false>(&name, &version,
2112 only_if_ref, &oldsym,
2113 &resolve_oldsym);
2114 #else
2115 gold_unreachable();
2116 #endif
2117 }
2118
2119 if (sym == NULL)
2120 return NULL;
2121
2122 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2123 nonvis, defined == PREDEFINED);
2124
2125 if (oldsym == NULL)
2126 {
2127 // Version symbols are absolute symbols with name == version.
2128 // We don't want to force them to be local.
2129 if ((version == NULL
2130 || name != version
2131 || value != 0)
2132 && (binding == elfcpp::STB_LOCAL
2133 || this->version_script_.symbol_is_local(name)))
2134 this->force_local(sym);
2135 else if (version != NULL
2136 && (name != version || value != 0))
2137 sym->set_is_default();
2138 return sym;
2139 }
2140
2141 if (force_override
2142 || Symbol_table::should_override_with_special(oldsym, type, defined))
2143 this->override_with_special(oldsym, sym);
2144
2145 if (resolve_oldsym)
2146 return sym;
2147 else
2148 {
2149 delete sym;
2150 return oldsym;
2151 }
2152 }
2153
2154 // Define a set of symbols in output sections.
2155
2156 void
2157 Symbol_table::define_symbols(const Layout* layout, int count,
2158 const Define_symbol_in_section* p,
2159 bool only_if_ref)
2160 {
2161 for (int i = 0; i < count; ++i, ++p)
2162 {
2163 Output_section* os = layout->find_output_section(p->output_section);
2164 if (os != NULL)
2165 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2166 p->size, p->type, p->binding,
2167 p->visibility, p->nonvis,
2168 p->offset_is_from_end,
2169 only_if_ref || p->only_if_ref);
2170 else
2171 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2172 p->type, p->binding, p->visibility, p->nonvis,
2173 only_if_ref || p->only_if_ref,
2174 false);
2175 }
2176 }
2177
2178 // Define a set of symbols in output segments.
2179
2180 void
2181 Symbol_table::define_symbols(const Layout* layout, int count,
2182 const Define_symbol_in_segment* p,
2183 bool only_if_ref)
2184 {
2185 for (int i = 0; i < count; ++i, ++p)
2186 {
2187 Output_segment* os = layout->find_output_segment(p->segment_type,
2188 p->segment_flags_set,
2189 p->segment_flags_clear);
2190 if (os != NULL)
2191 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2192 p->size, p->type, p->binding,
2193 p->visibility, p->nonvis,
2194 p->offset_base,
2195 only_if_ref || p->only_if_ref);
2196 else
2197 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2198 p->type, p->binding, p->visibility, p->nonvis,
2199 only_if_ref || p->only_if_ref,
2200 false);
2201 }
2202 }
2203
2204 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2205 // symbol should be defined--typically a .dyn.bss section. VALUE is
2206 // the offset within POSD.
2207
2208 template<int size>
2209 void
2210 Symbol_table::define_with_copy_reloc(
2211 Sized_symbol<size>* csym,
2212 Output_data* posd,
2213 typename elfcpp::Elf_types<size>::Elf_Addr value)
2214 {
2215 gold_assert(csym->is_from_dynobj());
2216 gold_assert(!csym->is_copied_from_dynobj());
2217 Object* object = csym->object();
2218 gold_assert(object->is_dynamic());
2219 Dynobj* dynobj = static_cast<Dynobj*>(object);
2220
2221 // Our copied variable has to override any variable in a shared
2222 // library.
2223 elfcpp::STB binding = csym->binding();
2224 if (binding == elfcpp::STB_WEAK)
2225 binding = elfcpp::STB_GLOBAL;
2226
2227 this->define_in_output_data(csym->name(), csym->version(), COPY,
2228 posd, value, csym->symsize(),
2229 csym->type(), binding,
2230 csym->visibility(), csym->nonvis(),
2231 false, false);
2232
2233 csym->set_is_copied_from_dynobj();
2234 csym->set_needs_dynsym_entry();
2235
2236 this->copied_symbol_dynobjs_[csym] = dynobj;
2237
2238 // We have now defined all aliases, but we have not entered them all
2239 // in the copied_symbol_dynobjs_ map.
2240 if (csym->has_alias())
2241 {
2242 Symbol* sym = csym;
2243 while (true)
2244 {
2245 sym = this->weak_aliases_[sym];
2246 if (sym == csym)
2247 break;
2248 gold_assert(sym->output_data() == posd);
2249
2250 sym->set_is_copied_from_dynobj();
2251 this->copied_symbol_dynobjs_[sym] = dynobj;
2252 }
2253 }
2254 }
2255
2256 // SYM is defined using a COPY reloc. Return the dynamic object where
2257 // the original definition was found.
2258
2259 Dynobj*
2260 Symbol_table::get_copy_source(const Symbol* sym) const
2261 {
2262 gold_assert(sym->is_copied_from_dynobj());
2263 Copied_symbol_dynobjs::const_iterator p =
2264 this->copied_symbol_dynobjs_.find(sym);
2265 gold_assert(p != this->copied_symbol_dynobjs_.end());
2266 return p->second;
2267 }
2268
2269 // Add any undefined symbols named on the command line.
2270
2271 void
2272 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2273 {
2274 if (parameters->options().any_undefined()
2275 || layout->script_options()->any_unreferenced())
2276 {
2277 if (parameters->target().get_size() == 32)
2278 {
2279 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2280 this->do_add_undefined_symbols_from_command_line<32>(layout);
2281 #else
2282 gold_unreachable();
2283 #endif
2284 }
2285 else if (parameters->target().get_size() == 64)
2286 {
2287 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2288 this->do_add_undefined_symbols_from_command_line<64>(layout);
2289 #else
2290 gold_unreachable();
2291 #endif
2292 }
2293 else
2294 gold_unreachable();
2295 }
2296 }
2297
2298 template<int size>
2299 void
2300 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2301 {
2302 for (options::String_set::const_iterator p =
2303 parameters->options().undefined_begin();
2304 p != parameters->options().undefined_end();
2305 ++p)
2306 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2307
2308 for (options::String_set::const_iterator p =
2309 parameters->options().export_dynamic_symbol_begin();
2310 p != parameters->options().export_dynamic_symbol_end();
2311 ++p)
2312 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2313
2314 for (Script_options::referenced_const_iterator p =
2315 layout->script_options()->referenced_begin();
2316 p != layout->script_options()->referenced_end();
2317 ++p)
2318 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2319 }
2320
2321 template<int size>
2322 void
2323 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2324 {
2325 if (this->lookup(name) != NULL)
2326 return;
2327
2328 const char* version = NULL;
2329
2330 Sized_symbol<size>* sym;
2331 Sized_symbol<size>* oldsym;
2332 bool resolve_oldsym;
2333 if (parameters->target().is_big_endian())
2334 {
2335 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2336 sym = this->define_special_symbol<size, true>(&name, &version,
2337 false, &oldsym,
2338 &resolve_oldsym);
2339 #else
2340 gold_unreachable();
2341 #endif
2342 }
2343 else
2344 {
2345 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2346 sym = this->define_special_symbol<size, false>(&name, &version,
2347 false, &oldsym,
2348 &resolve_oldsym);
2349 #else
2350 gold_unreachable();
2351 #endif
2352 }
2353
2354 gold_assert(oldsym == NULL);
2355
2356 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2357 elfcpp::STV_DEFAULT, 0);
2358 ++this->saw_undefined_;
2359 }
2360
2361 // Set the dynamic symbol indexes. INDEX is the index of the first
2362 // global dynamic symbol. Pointers to the symbols are stored into the
2363 // vector SYMS. The names are added to DYNPOOL. This returns an
2364 // updated dynamic symbol index.
2365
2366 unsigned int
2367 Symbol_table::set_dynsym_indexes(unsigned int index,
2368 std::vector<Symbol*>* syms,
2369 Stringpool* dynpool,
2370 Versions* versions)
2371 {
2372 std::vector<Symbol*> as_needed_sym;
2373
2374 // Allow a target to set dynsym indexes.
2375 if (parameters->target().has_custom_set_dynsym_indexes())
2376 {
2377 std::vector<Symbol*> dyn_symbols;
2378 for (Symbol_table_type::iterator p = this->table_.begin();
2379 p != this->table_.end();
2380 ++p)
2381 {
2382 Symbol* sym = p->second;
2383 if (!sym->should_add_dynsym_entry(this))
2384 sym->set_dynsym_index(-1U);
2385 else
2386 dyn_symbols.push_back(sym);
2387 }
2388
2389 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2390 dynpool, versions, this);
2391 }
2392
2393 for (Symbol_table_type::iterator p = this->table_.begin();
2394 p != this->table_.end();
2395 ++p)
2396 {
2397 Symbol* sym = p->second;
2398
2399 // Note that SYM may already have a dynamic symbol index, since
2400 // some symbols appear more than once in the symbol table, with
2401 // and without a version.
2402
2403 if (!sym->should_add_dynsym_entry(this))
2404 sym->set_dynsym_index(-1U);
2405 else if (!sym->has_dynsym_index())
2406 {
2407 sym->set_dynsym_index(index);
2408 ++index;
2409 syms->push_back(sym);
2410 dynpool->add(sym->name(), false, NULL);
2411
2412 // If the symbol is defined in a dynamic object and is
2413 // referenced strongly in a regular object, then mark the
2414 // dynamic object as needed. This is used to implement
2415 // --as-needed.
2416 if (sym->is_from_dynobj()
2417 && sym->in_reg()
2418 && !sym->is_undef_binding_weak())
2419 sym->object()->set_is_needed();
2420
2421 // Record any version information, except those from
2422 // as-needed libraries not seen to be needed. Note that the
2423 // is_needed state for such libraries can change in this loop.
2424 if (sym->version() != NULL)
2425 {
2426 if (!sym->is_from_dynobj()
2427 || !sym->object()->as_needed()
2428 || sym->object()->is_needed())
2429 versions->record_version(this, dynpool, sym);
2430 else
2431 as_needed_sym.push_back(sym);
2432 }
2433 }
2434 }
2435
2436 // Process version information for symbols from as-needed libraries.
2437 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2438 p != as_needed_sym.end();
2439 ++p)
2440 {
2441 Symbol* sym = *p;
2442
2443 if (sym->object()->is_needed())
2444 versions->record_version(this, dynpool, sym);
2445 else
2446 sym->clear_version();
2447 }
2448
2449 // Finish up the versions. In some cases this may add new dynamic
2450 // symbols.
2451 index = versions->finalize(this, index, syms);
2452
2453 return index;
2454 }
2455
2456 // Set the final values for all the symbols. The index of the first
2457 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2458 // file offset OFF. Add their names to POOL. Return the new file
2459 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2460
2461 off_t
2462 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2463 size_t dyncount, Stringpool* pool,
2464 unsigned int* plocal_symcount)
2465 {
2466 off_t ret;
2467
2468 gold_assert(*plocal_symcount != 0);
2469 this->first_global_index_ = *plocal_symcount;
2470
2471 this->dynamic_offset_ = dynoff;
2472 this->first_dynamic_global_index_ = dyn_global_index;
2473 this->dynamic_count_ = dyncount;
2474
2475 if (parameters->target().get_size() == 32)
2476 {
2477 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2478 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2479 #else
2480 gold_unreachable();
2481 #endif
2482 }
2483 else if (parameters->target().get_size() == 64)
2484 {
2485 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2486 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2487 #else
2488 gold_unreachable();
2489 #endif
2490 }
2491 else
2492 gold_unreachable();
2493
2494 // Now that we have the final symbol table, we can reliably note
2495 // which symbols should get warnings.
2496 this->warnings_.note_warnings(this);
2497
2498 return ret;
2499 }
2500
2501 // SYM is going into the symbol table at *PINDEX. Add the name to
2502 // POOL, update *PINDEX and *POFF.
2503
2504 template<int size>
2505 void
2506 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2507 unsigned int* pindex, off_t* poff)
2508 {
2509 sym->set_symtab_index(*pindex);
2510 if (sym->version() == NULL || !parameters->options().relocatable())
2511 pool->add(sym->name(), false, NULL);
2512 else
2513 pool->add(sym->versioned_name(), true, NULL);
2514 ++*pindex;
2515 *poff += elfcpp::Elf_sizes<size>::sym_size;
2516 }
2517
2518 // Set the final value for all the symbols. This is called after
2519 // Layout::finalize, so all the output sections have their final
2520 // address.
2521
2522 template<int size>
2523 off_t
2524 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2525 unsigned int* plocal_symcount)
2526 {
2527 off = align_address(off, size >> 3);
2528 this->offset_ = off;
2529
2530 unsigned int index = *plocal_symcount;
2531 const unsigned int orig_index = index;
2532
2533 // First do all the symbols which have been forced to be local, as
2534 // they must appear before all global symbols.
2535 for (Forced_locals::iterator p = this->forced_locals_.begin();
2536 p != this->forced_locals_.end();
2537 ++p)
2538 {
2539 Symbol* sym = *p;
2540 gold_assert(sym->is_forced_local());
2541 if (this->sized_finalize_symbol<size>(sym))
2542 {
2543 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2544 ++*plocal_symcount;
2545 }
2546 }
2547
2548 // Now do all the remaining symbols.
2549 for (Symbol_table_type::iterator p = this->table_.begin();
2550 p != this->table_.end();
2551 ++p)
2552 {
2553 Symbol* sym = p->second;
2554 if (this->sized_finalize_symbol<size>(sym))
2555 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2556 }
2557
2558 this->output_count_ = index - orig_index;
2559
2560 return off;
2561 }
2562
2563 // Compute the final value of SYM and store status in location PSTATUS.
2564 // During relaxation, this may be called multiple times for a symbol to
2565 // compute its would-be final value in each relaxation pass.
2566
2567 template<int size>
2568 typename Sized_symbol<size>::Value_type
2569 Symbol_table::compute_final_value(
2570 const Sized_symbol<size>* sym,
2571 Compute_final_value_status* pstatus) const
2572 {
2573 typedef typename Sized_symbol<size>::Value_type Value_type;
2574 Value_type value;
2575
2576 switch (sym->source())
2577 {
2578 case Symbol::FROM_OBJECT:
2579 {
2580 bool is_ordinary;
2581 unsigned int shndx = sym->shndx(&is_ordinary);
2582
2583 if (!is_ordinary
2584 && shndx != elfcpp::SHN_ABS
2585 && !Symbol::is_common_shndx(shndx))
2586 {
2587 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2588 return 0;
2589 }
2590
2591 Object* symobj = sym->object();
2592 if (symobj->is_dynamic())
2593 {
2594 value = 0;
2595 shndx = elfcpp::SHN_UNDEF;
2596 }
2597 else if (symobj->pluginobj() != NULL)
2598 {
2599 value = 0;
2600 shndx = elfcpp::SHN_UNDEF;
2601 }
2602 else if (shndx == elfcpp::SHN_UNDEF)
2603 value = 0;
2604 else if (!is_ordinary
2605 && (shndx == elfcpp::SHN_ABS
2606 || Symbol::is_common_shndx(shndx)))
2607 value = sym->value();
2608 else
2609 {
2610 Relobj* relobj = static_cast<Relobj*>(symobj);
2611 Output_section* os = relobj->output_section(shndx);
2612
2613 if (this->is_section_folded(relobj, shndx))
2614 {
2615 gold_assert(os == NULL);
2616 // Get the os of the section it is folded onto.
2617 Section_id folded = this->icf_->get_folded_section(relobj,
2618 shndx);
2619 gold_assert(folded.first != NULL);
2620 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2621 unsigned folded_shndx = folded.second;
2622
2623 os = folded_obj->output_section(folded_shndx);
2624 gold_assert(os != NULL);
2625
2626 // Replace (relobj, shndx) with canonical ICF input section.
2627 shndx = folded_shndx;
2628 relobj = folded_obj;
2629 }
2630
2631 uint64_t secoff64 = relobj->output_section_offset(shndx);
2632 if (os == NULL)
2633 {
2634 bool static_or_reloc = (parameters->doing_static_link() ||
2635 parameters->options().relocatable());
2636 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2637
2638 *pstatus = CFVS_NO_OUTPUT_SECTION;
2639 return 0;
2640 }
2641
2642 if (secoff64 == -1ULL)
2643 {
2644 // The section needs special handling (e.g., a merge section).
2645
2646 value = os->output_address(relobj, shndx, sym->value());
2647 }
2648 else
2649 {
2650 Value_type secoff =
2651 convert_types<Value_type, uint64_t>(secoff64);
2652 if (sym->type() == elfcpp::STT_TLS)
2653 value = sym->value() + os->tls_offset() + secoff;
2654 else
2655 value = sym->value() + os->address() + secoff;
2656 }
2657 }
2658 }
2659 break;
2660
2661 case Symbol::IN_OUTPUT_DATA:
2662 {
2663 Output_data* od = sym->output_data();
2664 value = sym->value();
2665 if (sym->type() != elfcpp::STT_TLS)
2666 value += od->address();
2667 else
2668 {
2669 Output_section* os = od->output_section();
2670 gold_assert(os != NULL);
2671 value += os->tls_offset() + (od->address() - os->address());
2672 }
2673 if (sym->offset_is_from_end())
2674 value += od->data_size();
2675 }
2676 break;
2677
2678 case Symbol::IN_OUTPUT_SEGMENT:
2679 {
2680 Output_segment* os = sym->output_segment();
2681 value = sym->value();
2682 if (sym->type() != elfcpp::STT_TLS)
2683 value += os->vaddr();
2684 switch (sym->offset_base())
2685 {
2686 case Symbol::SEGMENT_START:
2687 break;
2688 case Symbol::SEGMENT_END:
2689 value += os->memsz();
2690 break;
2691 case Symbol::SEGMENT_BSS:
2692 value += os->filesz();
2693 break;
2694 default:
2695 gold_unreachable();
2696 }
2697 }
2698 break;
2699
2700 case Symbol::IS_CONSTANT:
2701 value = sym->value();
2702 break;
2703
2704 case Symbol::IS_UNDEFINED:
2705 value = 0;
2706 break;
2707
2708 default:
2709 gold_unreachable();
2710 }
2711
2712 *pstatus = CFVS_OK;
2713 return value;
2714 }
2715
2716 // Finalize the symbol SYM. This returns true if the symbol should be
2717 // added to the symbol table, false otherwise.
2718
2719 template<int size>
2720 bool
2721 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2722 {
2723 typedef typename Sized_symbol<size>::Value_type Value_type;
2724
2725 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2726
2727 // The default version of a symbol may appear twice in the symbol
2728 // table. We only need to finalize it once.
2729 if (sym->has_symtab_index())
2730 return false;
2731
2732 if (!sym->in_reg())
2733 {
2734 gold_assert(!sym->has_symtab_index());
2735 sym->set_symtab_index(-1U);
2736 gold_assert(sym->dynsym_index() == -1U);
2737 return false;
2738 }
2739
2740 // If the symbol is only present on plugin files, the plugin decided we
2741 // don't need it.
2742 if (!sym->in_real_elf())
2743 {
2744 gold_assert(!sym->has_symtab_index());
2745 sym->set_symtab_index(-1U);
2746 return false;
2747 }
2748
2749 // Compute final symbol value.
2750 Compute_final_value_status status;
2751 Value_type value = this->compute_final_value(sym, &status);
2752
2753 switch (status)
2754 {
2755 case CFVS_OK:
2756 break;
2757 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2758 {
2759 bool is_ordinary;
2760 unsigned int shndx = sym->shndx(&is_ordinary);
2761 gold_error(_("%s: unsupported symbol section 0x%x"),
2762 sym->demangled_name().c_str(), shndx);
2763 }
2764 break;
2765 case CFVS_NO_OUTPUT_SECTION:
2766 sym->set_symtab_index(-1U);
2767 return false;
2768 default:
2769 gold_unreachable();
2770 }
2771
2772 sym->set_value(value);
2773
2774 if (parameters->options().strip_all()
2775 || !parameters->options().should_retain_symbol(sym->name()))
2776 {
2777 sym->set_symtab_index(-1U);
2778 return false;
2779 }
2780
2781 return true;
2782 }
2783
2784 // Write out the global symbols.
2785
2786 void
2787 Symbol_table::write_globals(const Stringpool* sympool,
2788 const Stringpool* dynpool,
2789 Output_symtab_xindex* symtab_xindex,
2790 Output_symtab_xindex* dynsym_xindex,
2791 Output_file* of) const
2792 {
2793 switch (parameters->size_and_endianness())
2794 {
2795 #ifdef HAVE_TARGET_32_LITTLE
2796 case Parameters::TARGET_32_LITTLE:
2797 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2798 dynsym_xindex, of);
2799 break;
2800 #endif
2801 #ifdef HAVE_TARGET_32_BIG
2802 case Parameters::TARGET_32_BIG:
2803 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2804 dynsym_xindex, of);
2805 break;
2806 #endif
2807 #ifdef HAVE_TARGET_64_LITTLE
2808 case Parameters::TARGET_64_LITTLE:
2809 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2810 dynsym_xindex, of);
2811 break;
2812 #endif
2813 #ifdef HAVE_TARGET_64_BIG
2814 case Parameters::TARGET_64_BIG:
2815 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2816 dynsym_xindex, of);
2817 break;
2818 #endif
2819 default:
2820 gold_unreachable();
2821 }
2822 }
2823
2824 // Write out the global symbols.
2825
2826 template<int size, bool big_endian>
2827 void
2828 Symbol_table::sized_write_globals(const Stringpool* sympool,
2829 const Stringpool* dynpool,
2830 Output_symtab_xindex* symtab_xindex,
2831 Output_symtab_xindex* dynsym_xindex,
2832 Output_file* of) const
2833 {
2834 const Target& target = parameters->target();
2835
2836 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2837
2838 const unsigned int output_count = this->output_count_;
2839 const section_size_type oview_size = output_count * sym_size;
2840 const unsigned int first_global_index = this->first_global_index_;
2841 unsigned char* psyms;
2842 if (this->offset_ == 0 || output_count == 0)
2843 psyms = NULL;
2844 else
2845 psyms = of->get_output_view(this->offset_, oview_size);
2846
2847 const unsigned int dynamic_count = this->dynamic_count_;
2848 const section_size_type dynamic_size = dynamic_count * sym_size;
2849 const unsigned int first_dynamic_global_index =
2850 this->first_dynamic_global_index_;
2851 unsigned char* dynamic_view;
2852 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2853 dynamic_view = NULL;
2854 else
2855 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2856
2857 for (Symbol_table_type::const_iterator p = this->table_.begin();
2858 p != this->table_.end();
2859 ++p)
2860 {
2861 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2862
2863 // Possibly warn about unresolved symbols in shared libraries.
2864 this->warn_about_undefined_dynobj_symbol(sym);
2865
2866 unsigned int sym_index = sym->symtab_index();
2867 unsigned int dynsym_index;
2868 if (dynamic_view == NULL)
2869 dynsym_index = -1U;
2870 else
2871 dynsym_index = sym->dynsym_index();
2872
2873 if (sym_index == -1U && dynsym_index == -1U)
2874 {
2875 // This symbol is not included in the output file.
2876 continue;
2877 }
2878
2879 unsigned int shndx;
2880 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2881 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2882 elfcpp::STB binding = sym->binding();
2883
2884 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2885 if (binding == elfcpp::STB_GNU_UNIQUE
2886 && !parameters->options().gnu_unique())
2887 binding = elfcpp::STB_GLOBAL;
2888
2889 switch (sym->source())
2890 {
2891 case Symbol::FROM_OBJECT:
2892 {
2893 bool is_ordinary;
2894 unsigned int in_shndx = sym->shndx(&is_ordinary);
2895
2896 if (!is_ordinary
2897 && in_shndx != elfcpp::SHN_ABS
2898 && !Symbol::is_common_shndx(in_shndx))
2899 {
2900 gold_error(_("%s: unsupported symbol section 0x%x"),
2901 sym->demangled_name().c_str(), in_shndx);
2902 shndx = in_shndx;
2903 }
2904 else
2905 {
2906 Object* symobj = sym->object();
2907 if (symobj->is_dynamic())
2908 {
2909 if (sym->needs_dynsym_value())
2910 dynsym_value = target.dynsym_value(sym);
2911 shndx = elfcpp::SHN_UNDEF;
2912 if (sym->is_undef_binding_weak())
2913 binding = elfcpp::STB_WEAK;
2914 else
2915 binding = elfcpp::STB_GLOBAL;
2916 }
2917 else if (symobj->pluginobj() != NULL)
2918 shndx = elfcpp::SHN_UNDEF;
2919 else if (in_shndx == elfcpp::SHN_UNDEF
2920 || (!is_ordinary
2921 && (in_shndx == elfcpp::SHN_ABS
2922 || Symbol::is_common_shndx(in_shndx))))
2923 shndx = in_shndx;
2924 else
2925 {
2926 Relobj* relobj = static_cast<Relobj*>(symobj);
2927 Output_section* os = relobj->output_section(in_shndx);
2928 if (this->is_section_folded(relobj, in_shndx))
2929 {
2930 // This global symbol must be written out even though
2931 // it is folded.
2932 // Get the os of the section it is folded onto.
2933 Section_id folded =
2934 this->icf_->get_folded_section(relobj, in_shndx);
2935 gold_assert(folded.first !=NULL);
2936 Relobj* folded_obj =
2937 reinterpret_cast<Relobj*>(folded.first);
2938 os = folded_obj->output_section(folded.second);
2939 gold_assert(os != NULL);
2940 }
2941 gold_assert(os != NULL);
2942 shndx = os->out_shndx();
2943
2944 if (shndx >= elfcpp::SHN_LORESERVE)
2945 {
2946 if (sym_index != -1U)
2947 symtab_xindex->add(sym_index, shndx);
2948 if (dynsym_index != -1U)
2949 dynsym_xindex->add(dynsym_index, shndx);
2950 shndx = elfcpp::SHN_XINDEX;
2951 }
2952
2953 // In object files symbol values are section
2954 // relative.
2955 if (parameters->options().relocatable())
2956 sym_value -= os->address();
2957 }
2958 }
2959 }
2960 break;
2961
2962 case Symbol::IN_OUTPUT_DATA:
2963 {
2964 Output_data* od = sym->output_data();
2965
2966 shndx = od->out_shndx();
2967 if (shndx >= elfcpp::SHN_LORESERVE)
2968 {
2969 if (sym_index != -1U)
2970 symtab_xindex->add(sym_index, shndx);
2971 if (dynsym_index != -1U)
2972 dynsym_xindex->add(dynsym_index, shndx);
2973 shndx = elfcpp::SHN_XINDEX;
2974 }
2975
2976 // In object files symbol values are section
2977 // relative.
2978 if (parameters->options().relocatable())
2979 sym_value -= od->address();
2980 }
2981 break;
2982
2983 case Symbol::IN_OUTPUT_SEGMENT:
2984 shndx = elfcpp::SHN_ABS;
2985 break;
2986
2987 case Symbol::IS_CONSTANT:
2988 shndx = elfcpp::SHN_ABS;
2989 break;
2990
2991 case Symbol::IS_UNDEFINED:
2992 shndx = elfcpp::SHN_UNDEF;
2993 break;
2994
2995 default:
2996 gold_unreachable();
2997 }
2998
2999 if (sym_index != -1U)
3000 {
3001 sym_index -= first_global_index;
3002 gold_assert(sym_index < output_count);
3003 unsigned char* ps = psyms + (sym_index * sym_size);
3004 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3005 binding, sympool, ps);
3006 }
3007
3008 if (dynsym_index != -1U)
3009 {
3010 dynsym_index -= first_dynamic_global_index;
3011 gold_assert(dynsym_index < dynamic_count);
3012 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3013 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3014 binding, dynpool, pd);
3015 }
3016 }
3017
3018 of->write_output_view(this->offset_, oview_size, psyms);
3019 if (dynamic_view != NULL)
3020 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3021 }
3022
3023 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3024 // strtab holding the name.
3025
3026 template<int size, bool big_endian>
3027 void
3028 Symbol_table::sized_write_symbol(
3029 Sized_symbol<size>* sym,
3030 typename elfcpp::Elf_types<size>::Elf_Addr value,
3031 unsigned int shndx,
3032 elfcpp::STB binding,
3033 const Stringpool* pool,
3034 unsigned char* p) const
3035 {
3036 elfcpp::Sym_write<size, big_endian> osym(p);
3037 if (sym->version() == NULL || !parameters->options().relocatable())
3038 osym.put_st_name(pool->get_offset(sym->name()));
3039 else
3040 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3041 osym.put_st_value(value);
3042 // Use a symbol size of zero for undefined symbols from shared libraries.
3043 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3044 osym.put_st_size(0);
3045 else
3046 osym.put_st_size(sym->symsize());
3047 elfcpp::STT type = sym->type();
3048 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3049 if (type == elfcpp::STT_GNU_IFUNC
3050 && sym->is_from_dynobj())
3051 type = elfcpp::STT_FUNC;
3052 // A version script may have overridden the default binding.
3053 if (sym->is_forced_local())
3054 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3055 else
3056 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3057 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3058 osym.put_st_shndx(shndx);
3059 }
3060
3061 // Check for unresolved symbols in shared libraries. This is
3062 // controlled by the --allow-shlib-undefined option.
3063
3064 // We only warn about libraries for which we have seen all the
3065 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3066 // which were not seen in this link. If we didn't see a DT_NEEDED
3067 // entry, we aren't going to be able to reliably report whether the
3068 // symbol is undefined.
3069
3070 // We also don't warn about libraries found in a system library
3071 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3072 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3073 // can have undefined references satisfied by ld-linux.so.
3074
3075 inline void
3076 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3077 {
3078 bool dummy;
3079 if (sym->source() == Symbol::FROM_OBJECT
3080 && sym->object()->is_dynamic()
3081 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3082 && sym->binding() != elfcpp::STB_WEAK
3083 && !parameters->options().allow_shlib_undefined()
3084 && !parameters->target().is_defined_by_abi(sym)
3085 && !sym->object()->is_in_system_directory())
3086 {
3087 // A very ugly cast.
3088 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3089 if (!dynobj->has_unknown_needed_entries())
3090 gold_undefined_symbol(sym);
3091 }
3092 }
3093
3094 // Write out a section symbol. Return the update offset.
3095
3096 void
3097 Symbol_table::write_section_symbol(const Output_section* os,
3098 Output_symtab_xindex* symtab_xindex,
3099 Output_file* of,
3100 off_t offset) const
3101 {
3102 switch (parameters->size_and_endianness())
3103 {
3104 #ifdef HAVE_TARGET_32_LITTLE
3105 case Parameters::TARGET_32_LITTLE:
3106 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3107 offset);
3108 break;
3109 #endif
3110 #ifdef HAVE_TARGET_32_BIG
3111 case Parameters::TARGET_32_BIG:
3112 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3113 offset);
3114 break;
3115 #endif
3116 #ifdef HAVE_TARGET_64_LITTLE
3117 case Parameters::TARGET_64_LITTLE:
3118 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3119 offset);
3120 break;
3121 #endif
3122 #ifdef HAVE_TARGET_64_BIG
3123 case Parameters::TARGET_64_BIG:
3124 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3125 offset);
3126 break;
3127 #endif
3128 default:
3129 gold_unreachable();
3130 }
3131 }
3132
3133 // Write out a section symbol, specialized for size and endianness.
3134
3135 template<int size, bool big_endian>
3136 void
3137 Symbol_table::sized_write_section_symbol(const Output_section* os,
3138 Output_symtab_xindex* symtab_xindex,
3139 Output_file* of,
3140 off_t offset) const
3141 {
3142 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3143
3144 unsigned char* pov = of->get_output_view(offset, sym_size);
3145
3146 elfcpp::Sym_write<size, big_endian> osym(pov);
3147 osym.put_st_name(0);
3148 if (parameters->options().relocatable())
3149 osym.put_st_value(0);
3150 else
3151 osym.put_st_value(os->address());
3152 osym.put_st_size(0);
3153 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3154 elfcpp::STT_SECTION));
3155 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3156
3157 unsigned int shndx = os->out_shndx();
3158 if (shndx >= elfcpp::SHN_LORESERVE)
3159 {
3160 symtab_xindex->add(os->symtab_index(), shndx);
3161 shndx = elfcpp::SHN_XINDEX;
3162 }
3163 osym.put_st_shndx(shndx);
3164
3165 of->write_output_view(offset, sym_size, pov);
3166 }
3167
3168 // Print statistical information to stderr. This is used for --stats.
3169
3170 void
3171 Symbol_table::print_stats() const
3172 {
3173 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3174 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3175 program_name, this->table_.size(), this->table_.bucket_count());
3176 #else
3177 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3178 program_name, this->table_.size());
3179 #endif
3180 this->namepool_.print_stats("symbol table stringpool");
3181 }
3182
3183 // We check for ODR violations by looking for symbols with the same
3184 // name for which the debugging information reports that they were
3185 // defined in disjoint source locations. When comparing the source
3186 // location, we consider instances with the same base filename to be
3187 // the same. This is because different object files/shared libraries
3188 // can include the same header file using different paths, and
3189 // different optimization settings can make the line number appear to
3190 // be a couple lines off, and we don't want to report an ODR violation
3191 // in those cases.
3192
3193 // This struct is used to compare line information, as returned by
3194 // Dwarf_line_info::one_addr2line. It implements a < comparison
3195 // operator used with std::sort.
3196
3197 struct Odr_violation_compare
3198 {
3199 bool
3200 operator()(const std::string& s1, const std::string& s2) const
3201 {
3202 // Inputs should be of the form "dirname/filename:linenum" where
3203 // "dirname/" is optional. We want to compare just the filename:linenum.
3204
3205 // Find the last '/' in each string.
3206 std::string::size_type s1begin = s1.rfind('/');
3207 std::string::size_type s2begin = s2.rfind('/');
3208 // If there was no '/' in a string, start at the beginning.
3209 if (s1begin == std::string::npos)
3210 s1begin = 0;
3211 if (s2begin == std::string::npos)
3212 s2begin = 0;
3213 return s1.compare(s1begin, std::string::npos,
3214 s2, s2begin, std::string::npos) < 0;
3215 }
3216 };
3217
3218 // Returns all of the lines attached to LOC, not just the one the
3219 // instruction actually came from.
3220 std::vector<std::string>
3221 Symbol_table::linenos_from_loc(const Task* task,
3222 const Symbol_location& loc)
3223 {
3224 // We need to lock the object in order to read it. This
3225 // means that we have to run in a singleton Task. If we
3226 // want to run this in a general Task for better
3227 // performance, we will need one Task for object, plus
3228 // appropriate locking to ensure that we don't conflict with
3229 // other uses of the object. Also note, one_addr2line is not
3230 // currently thread-safe.
3231 Task_lock_obj<Object> tl(task, loc.object);
3232
3233 std::vector<std::string> result;
3234 Symbol_location code_loc = loc;
3235 parameters->target().function_location(&code_loc);
3236 // 16 is the size of the object-cache that one_addr2line should use.
3237 std::string canonical_result = Dwarf_line_info::one_addr2line(
3238 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3239 if (!canonical_result.empty())
3240 result.push_back(canonical_result);
3241 return result;
3242 }
3243
3244 // OutputIterator that records if it was ever assigned to. This
3245 // allows it to be used with std::set_intersection() to check for
3246 // intersection rather than computing the intersection.
3247 struct Check_intersection
3248 {
3249 Check_intersection()
3250 : value_(false)
3251 {}
3252
3253 bool had_intersection() const
3254 { return this->value_; }
3255
3256 Check_intersection& operator++()
3257 { return *this; }
3258
3259 Check_intersection& operator*()
3260 { return *this; }
3261
3262 template<typename T>
3263 Check_intersection& operator=(const T&)
3264 {
3265 this->value_ = true;
3266 return *this;
3267 }
3268
3269 private:
3270 bool value_;
3271 };
3272
3273 // Check candidate_odr_violations_ to find symbols with the same name
3274 // but apparently different definitions (different source-file/line-no
3275 // for each line assigned to the first instruction).
3276
3277 void
3278 Symbol_table::detect_odr_violations(const Task* task,
3279 const char* output_file_name) const
3280 {
3281 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3282 it != candidate_odr_violations_.end();
3283 ++it)
3284 {
3285 const char* const symbol_name = it->first;
3286
3287 std::string first_object_name;
3288 std::vector<std::string> first_object_linenos;
3289
3290 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3291 locs = it->second.begin();
3292 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3293 locs_end = it->second.end();
3294 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3295 {
3296 // Save the line numbers from the first definition to
3297 // compare to the other definitions. Ideally, we'd compare
3298 // every definition to every other, but we don't want to
3299 // take O(N^2) time to do this. This shortcut may cause
3300 // false negatives that appear or disappear depending on the
3301 // link order, but it won't cause false positives.
3302 first_object_name = locs->object->name();
3303 first_object_linenos = this->linenos_from_loc(task, *locs);
3304 }
3305
3306 // Sort by Odr_violation_compare to make std::set_intersection work.
3307 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3308 Odr_violation_compare());
3309
3310 for (; locs != locs_end; ++locs)
3311 {
3312 std::vector<std::string> linenos =
3313 this->linenos_from_loc(task, *locs);
3314 // linenos will be empty if we couldn't parse the debug info.
3315 if (linenos.empty())
3316 continue;
3317 // Sort by Odr_violation_compare to make std::set_intersection work.
3318 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3319
3320 Check_intersection intersection_result =
3321 std::set_intersection(first_object_linenos.begin(),
3322 first_object_linenos.end(),
3323 linenos.begin(),
3324 linenos.end(),
3325 Check_intersection(),
3326 Odr_violation_compare());
3327 if (!intersection_result.had_intersection())
3328 {
3329 gold_warning(_("while linking %s: symbol '%s' defined in "
3330 "multiple places (possible ODR violation):"),
3331 output_file_name, demangle(symbol_name).c_str());
3332 // This only prints one location from each definition,
3333 // which may not be the location we expect to intersect
3334 // with another definition. We could print the whole
3335 // set of locations, but that seems too verbose.
3336 gold_assert(!first_object_linenos.empty());
3337 gold_assert(!linenos.empty());
3338 fprintf(stderr, _(" %s from %s\n"),
3339 first_object_linenos[0].c_str(),
3340 first_object_name.c_str());
3341 fprintf(stderr, _(" %s from %s\n"),
3342 linenos[0].c_str(),
3343 locs->object->name().c_str());
3344 // Only print one broken pair, to avoid needing to
3345 // compare against a list of the disjoint definition
3346 // locations we've found so far. (If we kept comparing
3347 // against just the first one, we'd get a lot of
3348 // redundant complaints about the second definition
3349 // location.)
3350 break;
3351 }
3352 }
3353 }
3354 // We only call one_addr2line() in this function, so we can clear its cache.
3355 Dwarf_line_info::clear_addr2line_cache();
3356 }
3357
3358 // Warnings functions.
3359
3360 // Add a new warning.
3361
3362 void
3363 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3364 const std::string& warning)
3365 {
3366 name = symtab->canonicalize_name(name);
3367 this->warnings_[name].set(obj, warning);
3368 }
3369
3370 // Look through the warnings and mark the symbols for which we should
3371 // warn. This is called during Layout::finalize when we know the
3372 // sources for all the symbols.
3373
3374 void
3375 Warnings::note_warnings(Symbol_table* symtab)
3376 {
3377 for (Warning_table::iterator p = this->warnings_.begin();
3378 p != this->warnings_.end();
3379 ++p)
3380 {
3381 Symbol* sym = symtab->lookup(p->first, NULL);
3382 if (sym != NULL
3383 && sym->source() == Symbol::FROM_OBJECT
3384 && sym->object() == p->second.object)
3385 sym->set_has_warning();
3386 }
3387 }
3388
3389 // Issue a warning. This is called when we see a relocation against a
3390 // symbol for which has a warning.
3391
3392 template<int size, bool big_endian>
3393 void
3394 Warnings::issue_warning(const Symbol* sym,
3395 const Relocate_info<size, big_endian>* relinfo,
3396 size_t relnum, off_t reloffset) const
3397 {
3398 gold_assert(sym->has_warning());
3399
3400 // We don't want to issue a warning for a relocation against the
3401 // symbol in the same object file in which the symbol is defined.
3402 if (sym->object() == relinfo->object)
3403 return;
3404
3405 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3406 gold_assert(p != this->warnings_.end());
3407 gold_warning_at_location(relinfo, relnum, reloffset,
3408 "%s", p->second.text.c_str());
3409 }
3410
3411 // Instantiate the templates we need. We could use the configure
3412 // script to restrict this to only the ones needed for implemented
3413 // targets.
3414
3415 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3416 template
3417 void
3418 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3419 #endif
3420
3421 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3422 template
3423 void
3424 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3425 #endif
3426
3427 #ifdef HAVE_TARGET_32_LITTLE
3428 template
3429 void
3430 Symbol_table::add_from_relobj<32, false>(
3431 Sized_relobj_file<32, false>* relobj,
3432 const unsigned char* syms,
3433 size_t count,
3434 size_t symndx_offset,
3435 const char* sym_names,
3436 size_t sym_name_size,
3437 Sized_relobj_file<32, false>::Symbols* sympointers,
3438 size_t* defined);
3439 #endif
3440
3441 #ifdef HAVE_TARGET_32_BIG
3442 template
3443 void
3444 Symbol_table::add_from_relobj<32, true>(
3445 Sized_relobj_file<32, true>* relobj,
3446 const unsigned char* syms,
3447 size_t count,
3448 size_t symndx_offset,
3449 const char* sym_names,
3450 size_t sym_name_size,
3451 Sized_relobj_file<32, true>::Symbols* sympointers,
3452 size_t* defined);
3453 #endif
3454
3455 #ifdef HAVE_TARGET_64_LITTLE
3456 template
3457 void
3458 Symbol_table::add_from_relobj<64, false>(
3459 Sized_relobj_file<64, false>* relobj,
3460 const unsigned char* syms,
3461 size_t count,
3462 size_t symndx_offset,
3463 const char* sym_names,
3464 size_t sym_name_size,
3465 Sized_relobj_file<64, false>::Symbols* sympointers,
3466 size_t* defined);
3467 #endif
3468
3469 #ifdef HAVE_TARGET_64_BIG
3470 template
3471 void
3472 Symbol_table::add_from_relobj<64, true>(
3473 Sized_relobj_file<64, true>* relobj,
3474 const unsigned char* syms,
3475 size_t count,
3476 size_t symndx_offset,
3477 const char* sym_names,
3478 size_t sym_name_size,
3479 Sized_relobj_file<64, true>::Symbols* sympointers,
3480 size_t* defined);
3481 #endif
3482
3483 #ifdef HAVE_TARGET_32_LITTLE
3484 template
3485 Symbol*
3486 Symbol_table::add_from_pluginobj<32, false>(
3487 Sized_pluginobj<32, false>* obj,
3488 const char* name,
3489 const char* ver,
3490 elfcpp::Sym<32, false>* sym);
3491 #endif
3492
3493 #ifdef HAVE_TARGET_32_BIG
3494 template
3495 Symbol*
3496 Symbol_table::add_from_pluginobj<32, true>(
3497 Sized_pluginobj<32, true>* obj,
3498 const char* name,
3499 const char* ver,
3500 elfcpp::Sym<32, true>* sym);
3501 #endif
3502
3503 #ifdef HAVE_TARGET_64_LITTLE
3504 template
3505 Symbol*
3506 Symbol_table::add_from_pluginobj<64, false>(
3507 Sized_pluginobj<64, false>* obj,
3508 const char* name,
3509 const char* ver,
3510 elfcpp::Sym<64, false>* sym);
3511 #endif
3512
3513 #ifdef HAVE_TARGET_64_BIG
3514 template
3515 Symbol*
3516 Symbol_table::add_from_pluginobj<64, true>(
3517 Sized_pluginobj<64, true>* obj,
3518 const char* name,
3519 const char* ver,
3520 elfcpp::Sym<64, true>* sym);
3521 #endif
3522
3523 #ifdef HAVE_TARGET_32_LITTLE
3524 template
3525 void
3526 Symbol_table::add_from_dynobj<32, false>(
3527 Sized_dynobj<32, false>* dynobj,
3528 const unsigned char* syms,
3529 size_t count,
3530 const char* sym_names,
3531 size_t sym_name_size,
3532 const unsigned char* versym,
3533 size_t versym_size,
3534 const std::vector<const char*>* version_map,
3535 Sized_relobj_file<32, false>::Symbols* sympointers,
3536 size_t* defined);
3537 #endif
3538
3539 #ifdef HAVE_TARGET_32_BIG
3540 template
3541 void
3542 Symbol_table::add_from_dynobj<32, true>(
3543 Sized_dynobj<32, true>* dynobj,
3544 const unsigned char* syms,
3545 size_t count,
3546 const char* sym_names,
3547 size_t sym_name_size,
3548 const unsigned char* versym,
3549 size_t versym_size,
3550 const std::vector<const char*>* version_map,
3551 Sized_relobj_file<32, true>::Symbols* sympointers,
3552 size_t* defined);
3553 #endif
3554
3555 #ifdef HAVE_TARGET_64_LITTLE
3556 template
3557 void
3558 Symbol_table::add_from_dynobj<64, false>(
3559 Sized_dynobj<64, false>* dynobj,
3560 const unsigned char* syms,
3561 size_t count,
3562 const char* sym_names,
3563 size_t sym_name_size,
3564 const unsigned char* versym,
3565 size_t versym_size,
3566 const std::vector<const char*>* version_map,
3567 Sized_relobj_file<64, false>::Symbols* sympointers,
3568 size_t* defined);
3569 #endif
3570
3571 #ifdef HAVE_TARGET_64_BIG
3572 template
3573 void
3574 Symbol_table::add_from_dynobj<64, true>(
3575 Sized_dynobj<64, true>* dynobj,
3576 const unsigned char* syms,
3577 size_t count,
3578 const char* sym_names,
3579 size_t sym_name_size,
3580 const unsigned char* versym,
3581 size_t versym_size,
3582 const std::vector<const char*>* version_map,
3583 Sized_relobj_file<64, true>::Symbols* sympointers,
3584 size_t* defined);
3585 #endif
3586
3587 #ifdef HAVE_TARGET_32_LITTLE
3588 template
3589 Sized_symbol<32>*
3590 Symbol_table::add_from_incrobj(
3591 Object* obj,
3592 const char* name,
3593 const char* ver,
3594 elfcpp::Sym<32, false>* sym);
3595 #endif
3596
3597 #ifdef HAVE_TARGET_32_BIG
3598 template
3599 Sized_symbol<32>*
3600 Symbol_table::add_from_incrobj(
3601 Object* obj,
3602 const char* name,
3603 const char* ver,
3604 elfcpp::Sym<32, true>* sym);
3605 #endif
3606
3607 #ifdef HAVE_TARGET_64_LITTLE
3608 template
3609 Sized_symbol<64>*
3610 Symbol_table::add_from_incrobj(
3611 Object* obj,
3612 const char* name,
3613 const char* ver,
3614 elfcpp::Sym<64, false>* sym);
3615 #endif
3616
3617 #ifdef HAVE_TARGET_64_BIG
3618 template
3619 Sized_symbol<64>*
3620 Symbol_table::add_from_incrobj(
3621 Object* obj,
3622 const char* name,
3623 const char* ver,
3624 elfcpp::Sym<64, true>* sym);
3625 #endif
3626
3627 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3628 template
3629 void
3630 Symbol_table::define_with_copy_reloc<32>(
3631 Sized_symbol<32>* sym,
3632 Output_data* posd,
3633 elfcpp::Elf_types<32>::Elf_Addr value);
3634 #endif
3635
3636 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3637 template
3638 void
3639 Symbol_table::define_with_copy_reloc<64>(
3640 Sized_symbol<64>* sym,
3641 Output_data* posd,
3642 elfcpp::Elf_types<64>::Elf_Addr value);
3643 #endif
3644
3645 #ifdef HAVE_TARGET_32_LITTLE
3646 template
3647 void
3648 Warnings::issue_warning<32, false>(const Symbol* sym,
3649 const Relocate_info<32, false>* relinfo,
3650 size_t relnum, off_t reloffset) const;
3651 #endif
3652
3653 #ifdef HAVE_TARGET_32_BIG
3654 template
3655 void
3656 Warnings::issue_warning<32, true>(const Symbol* sym,
3657 const Relocate_info<32, true>* relinfo,
3658 size_t relnum, off_t reloffset) const;
3659 #endif
3660
3661 #ifdef HAVE_TARGET_64_LITTLE
3662 template
3663 void
3664 Warnings::issue_warning<64, false>(const Symbol* sym,
3665 const Relocate_info<64, false>* relinfo,
3666 size_t relnum, off_t reloffset) const;
3667 #endif
3668
3669 #ifdef HAVE_TARGET_64_BIG
3670 template
3671 void
3672 Warnings::issue_warning<64, true>(const Symbol* sym,
3673 const Relocate_info<64, true>* relinfo,
3674 size_t relnum, off_t reloffset) const;
3675 #endif
3676
3677 } // End namespace gold.
This page took 0.107267 seconds and 5 git commands to generate.