Allow gold to resolve defined TLS symbols in a PIE link.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime, with the exception of
441 // TLS symbols in a position-independent executable.
442 if ((parameters->options().output_is_position_independent()
443 || parameters->options().relocatable())
444 && !(this->type() == elfcpp::STT_TLS
445 && parameters->options().pie()))
446 return false;
447
448 // If the symbol is not from an object file, and is not undefined,
449 // then it is defined, and known.
450 if (this->source_ != FROM_OBJECT)
451 {
452 if (this->source_ != IS_UNDEFINED)
453 return true;
454 }
455 else
456 {
457 // If the symbol is from a dynamic object, then the final value
458 // is not known.
459 if (this->object()->is_dynamic())
460 return false;
461
462 // If the symbol is not undefined (it is defined or common),
463 // then the final value is known.
464 if (!this->is_undefined())
465 return true;
466 }
467
468 // If the symbol is undefined, then whether the final value is known
469 // depends on whether we are doing a static link. If we are doing a
470 // dynamic link, then the final value could be filled in at runtime.
471 // This could reasonably be the case for a weak undefined symbol.
472 return parameters->doing_static_link();
473 }
474
475 // Return the output section where this symbol is defined.
476
477 Output_section*
478 Symbol::output_section() const
479 {
480 switch (this->source_)
481 {
482 case FROM_OBJECT:
483 {
484 unsigned int shndx = this->u_.from_object.shndx;
485 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
486 {
487 gold_assert(!this->u_.from_object.object->is_dynamic());
488 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
489 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
490 return relobj->output_section(shndx);
491 }
492 return NULL;
493 }
494
495 case IN_OUTPUT_DATA:
496 return this->u_.in_output_data.output_data->output_section();
497
498 case IN_OUTPUT_SEGMENT:
499 case IS_CONSTANT:
500 case IS_UNDEFINED:
501 return NULL;
502
503 default:
504 gold_unreachable();
505 }
506 }
507
508 // Set the symbol's output section. This is used for symbols defined
509 // in scripts. This should only be called after the symbol table has
510 // been finalized.
511
512 void
513 Symbol::set_output_section(Output_section* os)
514 {
515 switch (this->source_)
516 {
517 case FROM_OBJECT:
518 case IN_OUTPUT_DATA:
519 gold_assert(this->output_section() == os);
520 break;
521 case IS_CONSTANT:
522 this->source_ = IN_OUTPUT_DATA;
523 this->u_.in_output_data.output_data = os;
524 this->u_.in_output_data.offset_is_from_end = false;
525 break;
526 case IN_OUTPUT_SEGMENT:
527 case IS_UNDEFINED:
528 default:
529 gold_unreachable();
530 }
531 }
532
533 // Set the symbol's output segment. This is used for pre-defined
534 // symbols whose segments aren't known until after layout is done
535 // (e.g., __ehdr_start).
536
537 void
538 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
539 {
540 gold_assert(this->is_predefined_);
541 this->source_ = IN_OUTPUT_SEGMENT;
542 this->u_.in_output_segment.output_segment = os;
543 this->u_.in_output_segment.offset_base = base;
544 }
545
546 // Set the symbol to undefined. This is used for pre-defined
547 // symbols whose segments aren't known until after layout is done
548 // (e.g., __ehdr_start).
549
550 void
551 Symbol::set_undefined()
552 {
553 this->source_ = IS_UNDEFINED;
554 this->is_predefined_ = false;
555 }
556
557 // Class Symbol_table.
558
559 Symbol_table::Symbol_table(unsigned int count,
560 const Version_script_info& version_script)
561 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
562 forwarders_(), commons_(), tls_commons_(), small_commons_(),
563 large_commons_(), forced_locals_(), warnings_(),
564 version_script_(version_script), gc_(NULL), icf_(NULL)
565 {
566 namepool_.reserve(count);
567 }
568
569 Symbol_table::~Symbol_table()
570 {
571 }
572
573 // The symbol table key equality function. This is called with
574 // Stringpool keys.
575
576 inline bool
577 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
578 const Symbol_table_key& k2) const
579 {
580 return k1.first == k2.first && k1.second == k2.second;
581 }
582
583 bool
584 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
585 {
586 return (parameters->options().icf_enabled()
587 && this->icf_->is_section_folded(obj, shndx));
588 }
589
590 // For symbols that have been listed with a -u or --export-dynamic-symbol
591 // option, add them to the work list to avoid gc'ing them.
592
593 void
594 Symbol_table::gc_mark_undef_symbols(Layout* layout)
595 {
596 for (options::String_set::const_iterator p =
597 parameters->options().undefined_begin();
598 p != parameters->options().undefined_end();
599 ++p)
600 {
601 const char* name = p->c_str();
602 Symbol* sym = this->lookup(name);
603 gold_assert(sym != NULL);
604 if (sym->source() == Symbol::FROM_OBJECT
605 && !sym->object()->is_dynamic())
606 {
607 this->gc_mark_symbol(sym);
608 }
609 }
610
611 for (options::String_set::const_iterator p =
612 parameters->options().export_dynamic_symbol_begin();
613 p != parameters->options().export_dynamic_symbol_end();
614 ++p)
615 {
616 const char* name = p->c_str();
617 Symbol* sym = this->lookup(name);
618 // It's not an error if a symbol named by --export-dynamic-symbol
619 // is undefined.
620 if (sym != NULL
621 && sym->source() == Symbol::FROM_OBJECT
622 && !sym->object()->is_dynamic())
623 {
624 this->gc_mark_symbol(sym);
625 }
626 }
627
628 for (Script_options::referenced_const_iterator p =
629 layout->script_options()->referenced_begin();
630 p != layout->script_options()->referenced_end();
631 ++p)
632 {
633 Symbol* sym = this->lookup(p->c_str());
634 gold_assert(sym != NULL);
635 if (sym->source() == Symbol::FROM_OBJECT
636 && !sym->object()->is_dynamic())
637 {
638 this->gc_mark_symbol(sym);
639 }
640 }
641 }
642
643 void
644 Symbol_table::gc_mark_symbol(Symbol* sym)
645 {
646 // Add the object and section to the work list.
647 bool is_ordinary;
648 unsigned int shndx = sym->shndx(&is_ordinary);
649 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
650 {
651 gold_assert(this->gc_!= NULL);
652 this->gc_->worklist().push(Section_id(sym->object(), shndx));
653 }
654 parameters->target().gc_mark_symbol(this, sym);
655 }
656
657 // When doing garbage collection, keep symbols that have been seen in
658 // dynamic objects.
659 inline void
660 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
661 {
662 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
663 && !sym->object()->is_dynamic())
664 this->gc_mark_symbol(sym);
665 }
666
667 // Make TO a symbol which forwards to FROM.
668
669 void
670 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
671 {
672 gold_assert(from != to);
673 gold_assert(!from->is_forwarder() && !to->is_forwarder());
674 this->forwarders_[from] = to;
675 from->set_forwarder();
676 }
677
678 // Resolve the forwards from FROM, returning the real symbol.
679
680 Symbol*
681 Symbol_table::resolve_forwards(const Symbol* from) const
682 {
683 gold_assert(from->is_forwarder());
684 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
685 this->forwarders_.find(from);
686 gold_assert(p != this->forwarders_.end());
687 return p->second;
688 }
689
690 // Look up a symbol by name.
691
692 Symbol*
693 Symbol_table::lookup(const char* name, const char* version) const
694 {
695 Stringpool::Key name_key;
696 name = this->namepool_.find(name, &name_key);
697 if (name == NULL)
698 return NULL;
699
700 Stringpool::Key version_key = 0;
701 if (version != NULL)
702 {
703 version = this->namepool_.find(version, &version_key);
704 if (version == NULL)
705 return NULL;
706 }
707
708 Symbol_table_key key(name_key, version_key);
709 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
710 if (p == this->table_.end())
711 return NULL;
712 return p->second;
713 }
714
715 // Resolve a Symbol with another Symbol. This is only used in the
716 // unusual case where there are references to both an unversioned
717 // symbol and a symbol with a version, and we then discover that that
718 // version is the default version. Because this is unusual, we do
719 // this the slow way, by converting back to an ELF symbol.
720
721 template<int size, bool big_endian>
722 void
723 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
724 {
725 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
726 elfcpp::Sym_write<size, big_endian> esym(buf);
727 // We don't bother to set the st_name or the st_shndx field.
728 esym.put_st_value(from->value());
729 esym.put_st_size(from->symsize());
730 esym.put_st_info(from->binding(), from->type());
731 esym.put_st_other(from->visibility(), from->nonvis());
732 bool is_ordinary;
733 unsigned int shndx = from->shndx(&is_ordinary);
734 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
735 from->version());
736 if (from->in_reg())
737 to->set_in_reg();
738 if (from->in_dyn())
739 to->set_in_dyn();
740 if (parameters->options().gc_sections())
741 this->gc_mark_dyn_syms(to);
742 }
743
744 // Record that a symbol is forced to be local by a version script or
745 // by visibility.
746
747 void
748 Symbol_table::force_local(Symbol* sym)
749 {
750 if (!sym->is_defined() && !sym->is_common())
751 return;
752 if (sym->is_forced_local())
753 {
754 // We already got this one.
755 return;
756 }
757 sym->set_is_forced_local();
758 this->forced_locals_.push_back(sym);
759 }
760
761 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
762 // is only called for undefined symbols, when at least one --wrap
763 // option was used.
764
765 const char*
766 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
767 {
768 // For some targets, we need to ignore a specific character when
769 // wrapping, and add it back later.
770 char prefix = '\0';
771 if (name[0] == parameters->target().wrap_char())
772 {
773 prefix = name[0];
774 ++name;
775 }
776
777 if (parameters->options().is_wrap(name))
778 {
779 // Turn NAME into __wrap_NAME.
780 std::string s;
781 if (prefix != '\0')
782 s += prefix;
783 s += "__wrap_";
784 s += name;
785
786 // This will give us both the old and new name in NAMEPOOL_, but
787 // that is OK. Only the versions we need will wind up in the
788 // real string table in the output file.
789 return this->namepool_.add(s.c_str(), true, name_key);
790 }
791
792 const char* const real_prefix = "__real_";
793 const size_t real_prefix_length = strlen(real_prefix);
794 if (strncmp(name, real_prefix, real_prefix_length) == 0
795 && parameters->options().is_wrap(name + real_prefix_length))
796 {
797 // Turn __real_NAME into NAME.
798 std::string s;
799 if (prefix != '\0')
800 s += prefix;
801 s += name + real_prefix_length;
802 return this->namepool_.add(s.c_str(), true, name_key);
803 }
804
805 return name;
806 }
807
808 // This is called when we see a symbol NAME/VERSION, and the symbol
809 // already exists in the symbol table, and VERSION is marked as being
810 // the default version. SYM is the NAME/VERSION symbol we just added.
811 // DEFAULT_IS_NEW is true if this is the first time we have seen the
812 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
813
814 template<int size, bool big_endian>
815 void
816 Symbol_table::define_default_version(Sized_symbol<size>* sym,
817 bool default_is_new,
818 Symbol_table_type::iterator pdef)
819 {
820 if (default_is_new)
821 {
822 // This is the first time we have seen NAME/NULL. Make
823 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
824 // version.
825 pdef->second = sym;
826 sym->set_is_default();
827 }
828 else if (pdef->second == sym)
829 {
830 // NAME/NULL already points to NAME/VERSION. Don't mark the
831 // symbol as the default if it is not already the default.
832 }
833 else
834 {
835 // This is the unfortunate case where we already have entries
836 // for both NAME/VERSION and NAME/NULL. We now see a symbol
837 // NAME/VERSION where VERSION is the default version. We have
838 // already resolved this new symbol with the existing
839 // NAME/VERSION symbol.
840
841 // It's possible that NAME/NULL and NAME/VERSION are both
842 // defined in regular objects. This can only happen if one
843 // object file defines foo and another defines foo@@ver. This
844 // is somewhat obscure, but we call it a multiple definition
845 // error.
846
847 // It's possible that NAME/NULL actually has a version, in which
848 // case it won't be the same as VERSION. This happens with
849 // ver_test_7.so in the testsuite for the symbol t2_2. We see
850 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
851 // then see an unadorned t2_2 in an object file and give it
852 // version VER1 from the version script. This looks like a
853 // default definition for VER1, so it looks like we should merge
854 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
855 // not obvious that this is an error, either. So we just punt.
856
857 // If one of the symbols has non-default visibility, and the
858 // other is defined in a shared object, then they are different
859 // symbols.
860
861 // Otherwise, we just resolve the symbols as though they were
862 // the same.
863
864 if (pdef->second->version() != NULL)
865 gold_assert(pdef->second->version() != sym->version());
866 else if (sym->visibility() != elfcpp::STV_DEFAULT
867 && pdef->second->is_from_dynobj())
868 ;
869 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
870 && sym->is_from_dynobj())
871 ;
872 else
873 {
874 const Sized_symbol<size>* symdef;
875 symdef = this->get_sized_symbol<size>(pdef->second);
876 Symbol_table::resolve<size, big_endian>(sym, symdef);
877 this->make_forwarder(pdef->second, sym);
878 pdef->second = sym;
879 sym->set_is_default();
880 }
881 }
882 }
883
884 // Add one symbol from OBJECT to the symbol table. NAME is symbol
885 // name and VERSION is the version; both are canonicalized. DEF is
886 // whether this is the default version. ST_SHNDX is the symbol's
887 // section index; IS_ORDINARY is whether this is a normal section
888 // rather than a special code.
889
890 // If IS_DEFAULT_VERSION is true, then this is the definition of a
891 // default version of a symbol. That means that any lookup of
892 // NAME/NULL and any lookup of NAME/VERSION should always return the
893 // same symbol. This is obvious for references, but in particular we
894 // want to do this for definitions: overriding NAME/NULL should also
895 // override NAME/VERSION. If we don't do that, it would be very hard
896 // to override functions in a shared library which uses versioning.
897
898 // We implement this by simply making both entries in the hash table
899 // point to the same Symbol structure. That is easy enough if this is
900 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
901 // that we have seen both already, in which case they will both have
902 // independent entries in the symbol table. We can't simply change
903 // the symbol table entry, because we have pointers to the entries
904 // attached to the object files. So we mark the entry attached to the
905 // object file as a forwarder, and record it in the forwarders_ map.
906 // Note that entries in the hash table will never be marked as
907 // forwarders.
908 //
909 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
910 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
911 // for a special section code. ST_SHNDX may be modified if the symbol
912 // is defined in a section being discarded.
913
914 template<int size, bool big_endian>
915 Sized_symbol<size>*
916 Symbol_table::add_from_object(Object* object,
917 const char* name,
918 Stringpool::Key name_key,
919 const char* version,
920 Stringpool::Key version_key,
921 bool is_default_version,
922 const elfcpp::Sym<size, big_endian>& sym,
923 unsigned int st_shndx,
924 bool is_ordinary,
925 unsigned int orig_st_shndx)
926 {
927 // Print a message if this symbol is being traced.
928 if (parameters->options().is_trace_symbol(name))
929 {
930 if (orig_st_shndx == elfcpp::SHN_UNDEF)
931 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
932 else
933 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
934 }
935
936 // For an undefined symbol, we may need to adjust the name using
937 // --wrap.
938 if (orig_st_shndx == elfcpp::SHN_UNDEF
939 && parameters->options().any_wrap())
940 {
941 const char* wrap_name = this->wrap_symbol(name, &name_key);
942 if (wrap_name != name)
943 {
944 // If we see a reference to malloc with version GLIBC_2.0,
945 // and we turn it into a reference to __wrap_malloc, then we
946 // discard the version number. Otherwise the user would be
947 // required to specify the correct version for
948 // __wrap_malloc.
949 version = NULL;
950 version_key = 0;
951 name = wrap_name;
952 }
953 }
954
955 Symbol* const snull = NULL;
956 std::pair<typename Symbol_table_type::iterator, bool> ins =
957 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
958 snull));
959
960 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
961 std::make_pair(this->table_.end(), false);
962 if (is_default_version)
963 {
964 const Stringpool::Key vnull_key = 0;
965 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
966 vnull_key),
967 snull));
968 }
969
970 // ins.first: an iterator, which is a pointer to a pair.
971 // ins.first->first: the key (a pair of name and version).
972 // ins.first->second: the value (Symbol*).
973 // ins.second: true if new entry was inserted, false if not.
974
975 Sized_symbol<size>* ret;
976 bool was_undefined;
977 bool was_common;
978 if (!ins.second)
979 {
980 // We already have an entry for NAME/VERSION.
981 ret = this->get_sized_symbol<size>(ins.first->second);
982 gold_assert(ret != NULL);
983
984 was_undefined = ret->is_undefined();
985 // Commons from plugins are just placeholders.
986 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
987
988 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
989 version);
990 if (parameters->options().gc_sections())
991 this->gc_mark_dyn_syms(ret);
992
993 if (is_default_version)
994 this->define_default_version<size, big_endian>(ret, insdefault.second,
995 insdefault.first);
996 }
997 else
998 {
999 // This is the first time we have seen NAME/VERSION.
1000 gold_assert(ins.first->second == NULL);
1001
1002 if (is_default_version && !insdefault.second)
1003 {
1004 // We already have an entry for NAME/NULL. If we override
1005 // it, then change it to NAME/VERSION.
1006 ret = this->get_sized_symbol<size>(insdefault.first->second);
1007
1008 was_undefined = ret->is_undefined();
1009 // Commons from plugins are just placeholders.
1010 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1011
1012 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1013 version);
1014 if (parameters->options().gc_sections())
1015 this->gc_mark_dyn_syms(ret);
1016 ins.first->second = ret;
1017 }
1018 else
1019 {
1020 was_undefined = false;
1021 was_common = false;
1022
1023 Sized_target<size, big_endian>* target =
1024 parameters->sized_target<size, big_endian>();
1025 if (!target->has_make_symbol())
1026 ret = new Sized_symbol<size>();
1027 else
1028 {
1029 ret = target->make_symbol();
1030 if (ret == NULL)
1031 {
1032 // This means that we don't want a symbol table
1033 // entry after all.
1034 if (!is_default_version)
1035 this->table_.erase(ins.first);
1036 else
1037 {
1038 this->table_.erase(insdefault.first);
1039 // Inserting INSDEFAULT invalidated INS.
1040 this->table_.erase(std::make_pair(name_key,
1041 version_key));
1042 }
1043 return NULL;
1044 }
1045 }
1046
1047 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1048
1049 ins.first->second = ret;
1050 if (is_default_version)
1051 {
1052 // This is the first time we have seen NAME/NULL. Point
1053 // it at the new entry for NAME/VERSION.
1054 gold_assert(insdefault.second);
1055 insdefault.first->second = ret;
1056 }
1057 }
1058
1059 if (is_default_version)
1060 ret->set_is_default();
1061 }
1062
1063 // Record every time we see a new undefined symbol, to speed up
1064 // archive groups.
1065 if (!was_undefined && ret->is_undefined())
1066 {
1067 ++this->saw_undefined_;
1068 if (parameters->options().has_plugins())
1069 parameters->options().plugins()->new_undefined_symbol(ret);
1070 }
1071
1072 // Keep track of common symbols, to speed up common symbol
1073 // allocation. Don't record commons from plugin objects;
1074 // we need to wait until we see the real symbol in the
1075 // replacement file.
1076 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1077 {
1078 if (ret->type() == elfcpp::STT_TLS)
1079 this->tls_commons_.push_back(ret);
1080 else if (!is_ordinary
1081 && st_shndx == parameters->target().small_common_shndx())
1082 this->small_commons_.push_back(ret);
1083 else if (!is_ordinary
1084 && st_shndx == parameters->target().large_common_shndx())
1085 this->large_commons_.push_back(ret);
1086 else
1087 this->commons_.push_back(ret);
1088 }
1089
1090 // If we're not doing a relocatable link, then any symbol with
1091 // hidden or internal visibility is local.
1092 if ((ret->visibility() == elfcpp::STV_HIDDEN
1093 || ret->visibility() == elfcpp::STV_INTERNAL)
1094 && (ret->binding() == elfcpp::STB_GLOBAL
1095 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1096 || ret->binding() == elfcpp::STB_WEAK)
1097 && !parameters->options().relocatable())
1098 this->force_local(ret);
1099
1100 return ret;
1101 }
1102
1103 // Add all the symbols in a relocatable object to the hash table.
1104
1105 template<int size, bool big_endian>
1106 void
1107 Symbol_table::add_from_relobj(
1108 Sized_relobj_file<size, big_endian>* relobj,
1109 const unsigned char* syms,
1110 size_t count,
1111 size_t symndx_offset,
1112 const char* sym_names,
1113 size_t sym_name_size,
1114 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1115 size_t* defined)
1116 {
1117 *defined = 0;
1118
1119 gold_assert(size == parameters->target().get_size());
1120
1121 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1122
1123 const bool just_symbols = relobj->just_symbols();
1124
1125 const unsigned char* p = syms;
1126 for (size_t i = 0; i < count; ++i, p += sym_size)
1127 {
1128 (*sympointers)[i] = NULL;
1129
1130 elfcpp::Sym<size, big_endian> sym(p);
1131
1132 unsigned int st_name = sym.get_st_name();
1133 if (st_name >= sym_name_size)
1134 {
1135 relobj->error(_("bad global symbol name offset %u at %zu"),
1136 st_name, i);
1137 continue;
1138 }
1139
1140 const char* name = sym_names + st_name;
1141
1142 if (strcmp (name, "__gnu_lto_slim") == 0)
1143 gold_info(_("%s: plugin needed to handle lto object"),
1144 relobj->name().c_str());
1145
1146 bool is_ordinary;
1147 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1148 sym.get_st_shndx(),
1149 &is_ordinary);
1150 unsigned int orig_st_shndx = st_shndx;
1151 if (!is_ordinary)
1152 orig_st_shndx = elfcpp::SHN_UNDEF;
1153
1154 if (st_shndx != elfcpp::SHN_UNDEF)
1155 ++*defined;
1156
1157 // A symbol defined in a section which we are not including must
1158 // be treated as an undefined symbol.
1159 bool is_defined_in_discarded_section = false;
1160 if (st_shndx != elfcpp::SHN_UNDEF
1161 && is_ordinary
1162 && !relobj->is_section_included(st_shndx)
1163 && !this->is_section_folded(relobj, st_shndx))
1164 {
1165 st_shndx = elfcpp::SHN_UNDEF;
1166 is_defined_in_discarded_section = true;
1167 }
1168
1169 // In an object file, an '@' in the name separates the symbol
1170 // name from the version name. If there are two '@' characters,
1171 // this is the default version.
1172 const char* ver = strchr(name, '@');
1173 Stringpool::Key ver_key = 0;
1174 int namelen = 0;
1175 // IS_DEFAULT_VERSION: is the version default?
1176 // IS_FORCED_LOCAL: is the symbol forced local?
1177 bool is_default_version = false;
1178 bool is_forced_local = false;
1179
1180 // FIXME: For incremental links, we don't store version information,
1181 // so we need to ignore version symbols for now.
1182 if (parameters->incremental_update() && ver != NULL)
1183 {
1184 namelen = ver - name;
1185 ver = NULL;
1186 }
1187
1188 if (ver != NULL)
1189 {
1190 // The symbol name is of the form foo@VERSION or foo@@VERSION
1191 namelen = ver - name;
1192 ++ver;
1193 if (*ver == '@')
1194 {
1195 is_default_version = true;
1196 ++ver;
1197 }
1198 ver = this->namepool_.add(ver, true, &ver_key);
1199 }
1200 // We don't want to assign a version to an undefined symbol,
1201 // even if it is listed in the version script. FIXME: What
1202 // about a common symbol?
1203 else
1204 {
1205 namelen = strlen(name);
1206 if (!this->version_script_.empty()
1207 && st_shndx != elfcpp::SHN_UNDEF)
1208 {
1209 // The symbol name did not have a version, but the
1210 // version script may assign a version anyway.
1211 std::string version;
1212 bool is_global;
1213 if (this->version_script_.get_symbol_version(name, &version,
1214 &is_global))
1215 {
1216 if (!is_global)
1217 is_forced_local = true;
1218 else if (!version.empty())
1219 {
1220 ver = this->namepool_.add_with_length(version.c_str(),
1221 version.length(),
1222 true,
1223 &ver_key);
1224 is_default_version = true;
1225 }
1226 }
1227 }
1228 }
1229
1230 elfcpp::Sym<size, big_endian>* psym = &sym;
1231 unsigned char symbuf[sym_size];
1232 elfcpp::Sym<size, big_endian> sym2(symbuf);
1233 if (just_symbols)
1234 {
1235 memcpy(symbuf, p, sym_size);
1236 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1237 if (orig_st_shndx != elfcpp::SHN_UNDEF
1238 && is_ordinary
1239 && relobj->e_type() == elfcpp::ET_REL)
1240 {
1241 // Symbol values in relocatable object files are section
1242 // relative. This is normally what we want, but since here
1243 // we are converting the symbol to absolute we need to add
1244 // the section address. The section address in an object
1245 // file is normally zero, but people can use a linker
1246 // script to change it.
1247 sw.put_st_value(sym.get_st_value()
1248 + relobj->section_address(orig_st_shndx));
1249 }
1250 st_shndx = elfcpp::SHN_ABS;
1251 is_ordinary = false;
1252 psym = &sym2;
1253 }
1254
1255 // Fix up visibility if object has no-export set.
1256 if (relobj->no_export()
1257 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1258 {
1259 // We may have copied symbol already above.
1260 if (psym != &sym2)
1261 {
1262 memcpy(symbuf, p, sym_size);
1263 psym = &sym2;
1264 }
1265
1266 elfcpp::STV visibility = sym2.get_st_visibility();
1267 if (visibility == elfcpp::STV_DEFAULT
1268 || visibility == elfcpp::STV_PROTECTED)
1269 {
1270 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1271 unsigned char nonvis = sym2.get_st_nonvis();
1272 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1273 }
1274 }
1275
1276 Stringpool::Key name_key;
1277 name = this->namepool_.add_with_length(name, namelen, true,
1278 &name_key);
1279
1280 Sized_symbol<size>* res;
1281 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1282 is_default_version, *psym, st_shndx,
1283 is_ordinary, orig_st_shndx);
1284
1285 if (is_forced_local)
1286 this->force_local(res);
1287
1288 // Do not treat this symbol as garbage if this symbol will be
1289 // exported to the dynamic symbol table. This is true when
1290 // building a shared library or using --export-dynamic and
1291 // the symbol is externally visible.
1292 if (parameters->options().gc_sections()
1293 && res->is_externally_visible()
1294 && !res->is_from_dynobj()
1295 && (parameters->options().shared()
1296 || parameters->options().export_dynamic()
1297 || parameters->options().in_dynamic_list(res->name())))
1298 this->gc_mark_symbol(res);
1299
1300 if (is_defined_in_discarded_section)
1301 res->set_is_defined_in_discarded_section();
1302
1303 (*sympointers)[i] = res;
1304 }
1305 }
1306
1307 // Add a symbol from a plugin-claimed file.
1308
1309 template<int size, bool big_endian>
1310 Symbol*
1311 Symbol_table::add_from_pluginobj(
1312 Sized_pluginobj<size, big_endian>* obj,
1313 const char* name,
1314 const char* ver,
1315 elfcpp::Sym<size, big_endian>* sym)
1316 {
1317 unsigned int st_shndx = sym->get_st_shndx();
1318 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1319
1320 Stringpool::Key ver_key = 0;
1321 bool is_default_version = false;
1322 bool is_forced_local = false;
1323
1324 if (ver != NULL)
1325 {
1326 ver = this->namepool_.add(ver, true, &ver_key);
1327 }
1328 // We don't want to assign a version to an undefined symbol,
1329 // even if it is listed in the version script. FIXME: What
1330 // about a common symbol?
1331 else
1332 {
1333 if (!this->version_script_.empty()
1334 && st_shndx != elfcpp::SHN_UNDEF)
1335 {
1336 // The symbol name did not have a version, but the
1337 // version script may assign a version anyway.
1338 std::string version;
1339 bool is_global;
1340 if (this->version_script_.get_symbol_version(name, &version,
1341 &is_global))
1342 {
1343 if (!is_global)
1344 is_forced_local = true;
1345 else if (!version.empty())
1346 {
1347 ver = this->namepool_.add_with_length(version.c_str(),
1348 version.length(),
1349 true,
1350 &ver_key);
1351 is_default_version = true;
1352 }
1353 }
1354 }
1355 }
1356
1357 Stringpool::Key name_key;
1358 name = this->namepool_.add(name, true, &name_key);
1359
1360 Sized_symbol<size>* res;
1361 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1362 is_default_version, *sym, st_shndx,
1363 is_ordinary, st_shndx);
1364
1365 if (is_forced_local)
1366 this->force_local(res);
1367
1368 return res;
1369 }
1370
1371 // Add all the symbols in a dynamic object to the hash table.
1372
1373 template<int size, bool big_endian>
1374 void
1375 Symbol_table::add_from_dynobj(
1376 Sized_dynobj<size, big_endian>* dynobj,
1377 const unsigned char* syms,
1378 size_t count,
1379 const char* sym_names,
1380 size_t sym_name_size,
1381 const unsigned char* versym,
1382 size_t versym_size,
1383 const std::vector<const char*>* version_map,
1384 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1385 size_t* defined)
1386 {
1387 *defined = 0;
1388
1389 gold_assert(size == parameters->target().get_size());
1390
1391 if (dynobj->just_symbols())
1392 {
1393 gold_error(_("--just-symbols does not make sense with a shared object"));
1394 return;
1395 }
1396
1397 // FIXME: For incremental links, we don't store version information,
1398 // so we need to ignore version symbols for now.
1399 if (parameters->incremental_update())
1400 versym = NULL;
1401
1402 if (versym != NULL && versym_size / 2 < count)
1403 {
1404 dynobj->error(_("too few symbol versions"));
1405 return;
1406 }
1407
1408 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1409
1410 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1411 // weak aliases. This is necessary because if the dynamic object
1412 // provides the same variable under two names, one of which is a
1413 // weak definition, and the regular object refers to the weak
1414 // definition, we have to put both the weak definition and the
1415 // strong definition into the dynamic symbol table. Given a weak
1416 // definition, the only way that we can find the corresponding
1417 // strong definition, if any, is to search the symbol table.
1418 std::vector<Sized_symbol<size>*> object_symbols;
1419
1420 const unsigned char* p = syms;
1421 const unsigned char* vs = versym;
1422 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1423 {
1424 elfcpp::Sym<size, big_endian> sym(p);
1425
1426 if (sympointers != NULL)
1427 (*sympointers)[i] = NULL;
1428
1429 // Ignore symbols with local binding or that have
1430 // internal or hidden visibility.
1431 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1432 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1433 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1434 continue;
1435
1436 // A protected symbol in a shared library must be treated as a
1437 // normal symbol when viewed from outside the shared library.
1438 // Implement this by overriding the visibility here.
1439 elfcpp::Sym<size, big_endian>* psym = &sym;
1440 unsigned char symbuf[sym_size];
1441 elfcpp::Sym<size, big_endian> sym2(symbuf);
1442 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1443 {
1444 memcpy(symbuf, p, sym_size);
1445 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1446 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1447 psym = &sym2;
1448 }
1449
1450 unsigned int st_name = psym->get_st_name();
1451 if (st_name >= sym_name_size)
1452 {
1453 dynobj->error(_("bad symbol name offset %u at %zu"),
1454 st_name, i);
1455 continue;
1456 }
1457
1458 const char* name = sym_names + st_name;
1459
1460 bool is_ordinary;
1461 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1462 &is_ordinary);
1463
1464 if (st_shndx != elfcpp::SHN_UNDEF)
1465 ++*defined;
1466
1467 Sized_symbol<size>* res;
1468
1469 if (versym == NULL)
1470 {
1471 Stringpool::Key name_key;
1472 name = this->namepool_.add(name, true, &name_key);
1473 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1474 false, *psym, st_shndx, is_ordinary,
1475 st_shndx);
1476 }
1477 else
1478 {
1479 // Read the version information.
1480
1481 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1482
1483 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1484 v &= elfcpp::VERSYM_VERSION;
1485
1486 // The Sun documentation says that V can be VER_NDX_LOCAL,
1487 // or VER_NDX_GLOBAL, or a version index. The meaning of
1488 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1489 // The old GNU linker will happily generate VER_NDX_LOCAL
1490 // for an undefined symbol. I don't know what the Sun
1491 // linker will generate.
1492
1493 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1494 && st_shndx != elfcpp::SHN_UNDEF)
1495 {
1496 // This symbol should not be visible outside the object.
1497 continue;
1498 }
1499
1500 // At this point we are definitely going to add this symbol.
1501 Stringpool::Key name_key;
1502 name = this->namepool_.add(name, true, &name_key);
1503
1504 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1505 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1506 {
1507 // This symbol does not have a version.
1508 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1509 false, *psym, st_shndx, is_ordinary,
1510 st_shndx);
1511 }
1512 else
1513 {
1514 if (v >= version_map->size())
1515 {
1516 dynobj->error(_("versym for symbol %zu out of range: %u"),
1517 i, v);
1518 continue;
1519 }
1520
1521 const char* version = (*version_map)[v];
1522 if (version == NULL)
1523 {
1524 dynobj->error(_("versym for symbol %zu has no name: %u"),
1525 i, v);
1526 continue;
1527 }
1528
1529 Stringpool::Key version_key;
1530 version = this->namepool_.add(version, true, &version_key);
1531
1532 // If this is an absolute symbol, and the version name
1533 // and symbol name are the same, then this is the
1534 // version definition symbol. These symbols exist to
1535 // support using -u to pull in particular versions. We
1536 // do not want to record a version for them.
1537 if (st_shndx == elfcpp::SHN_ABS
1538 && !is_ordinary
1539 && name_key == version_key)
1540 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1541 false, *psym, st_shndx, is_ordinary,
1542 st_shndx);
1543 else
1544 {
1545 const bool is_default_version =
1546 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1547 res = this->add_from_object(dynobj, name, name_key, version,
1548 version_key, is_default_version,
1549 *psym, st_shndx,
1550 is_ordinary, st_shndx);
1551 }
1552 }
1553 }
1554
1555 // Note that it is possible that RES was overridden by an
1556 // earlier object, in which case it can't be aliased here.
1557 if (st_shndx != elfcpp::SHN_UNDEF
1558 && is_ordinary
1559 && psym->get_st_type() == elfcpp::STT_OBJECT
1560 && res->source() == Symbol::FROM_OBJECT
1561 && res->object() == dynobj)
1562 object_symbols.push_back(res);
1563
1564 if (sympointers != NULL)
1565 (*sympointers)[i] = res;
1566 }
1567
1568 this->record_weak_aliases(&object_symbols);
1569 }
1570
1571 // Add a symbol from a incremental object file.
1572
1573 template<int size, bool big_endian>
1574 Sized_symbol<size>*
1575 Symbol_table::add_from_incrobj(
1576 Object* obj,
1577 const char* name,
1578 const char* ver,
1579 elfcpp::Sym<size, big_endian>* sym)
1580 {
1581 unsigned int st_shndx = sym->get_st_shndx();
1582 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1583
1584 Stringpool::Key ver_key = 0;
1585 bool is_default_version = false;
1586 bool is_forced_local = false;
1587
1588 Stringpool::Key name_key;
1589 name = this->namepool_.add(name, true, &name_key);
1590
1591 Sized_symbol<size>* res;
1592 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1593 is_default_version, *sym, st_shndx,
1594 is_ordinary, st_shndx);
1595
1596 if (is_forced_local)
1597 this->force_local(res);
1598
1599 return res;
1600 }
1601
1602 // This is used to sort weak aliases. We sort them first by section
1603 // index, then by offset, then by weak ahead of strong.
1604
1605 template<int size>
1606 class Weak_alias_sorter
1607 {
1608 public:
1609 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1610 };
1611
1612 template<int size>
1613 bool
1614 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1615 const Sized_symbol<size>* s2) const
1616 {
1617 bool is_ordinary;
1618 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1619 gold_assert(is_ordinary);
1620 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1621 gold_assert(is_ordinary);
1622 if (s1_shndx != s2_shndx)
1623 return s1_shndx < s2_shndx;
1624
1625 if (s1->value() != s2->value())
1626 return s1->value() < s2->value();
1627 if (s1->binding() != s2->binding())
1628 {
1629 if (s1->binding() == elfcpp::STB_WEAK)
1630 return true;
1631 if (s2->binding() == elfcpp::STB_WEAK)
1632 return false;
1633 }
1634 return std::string(s1->name()) < std::string(s2->name());
1635 }
1636
1637 // SYMBOLS is a list of object symbols from a dynamic object. Look
1638 // for any weak aliases, and record them so that if we add the weak
1639 // alias to the dynamic symbol table, we also add the corresponding
1640 // strong symbol.
1641
1642 template<int size>
1643 void
1644 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1645 {
1646 // Sort the vector by section index, then by offset, then by weak
1647 // ahead of strong.
1648 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1649
1650 // Walk through the vector. For each weak definition, record
1651 // aliases.
1652 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1653 symbols->begin();
1654 p != symbols->end();
1655 ++p)
1656 {
1657 if ((*p)->binding() != elfcpp::STB_WEAK)
1658 continue;
1659
1660 // Build a circular list of weak aliases. Each symbol points to
1661 // the next one in the circular list.
1662
1663 Sized_symbol<size>* from_sym = *p;
1664 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1665 for (q = p + 1; q != symbols->end(); ++q)
1666 {
1667 bool dummy;
1668 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1669 || (*q)->value() != from_sym->value())
1670 break;
1671
1672 this->weak_aliases_[from_sym] = *q;
1673 from_sym->set_has_alias();
1674 from_sym = *q;
1675 }
1676
1677 if (from_sym != *p)
1678 {
1679 this->weak_aliases_[from_sym] = *p;
1680 from_sym->set_has_alias();
1681 }
1682
1683 p = q - 1;
1684 }
1685 }
1686
1687 // Create and return a specially defined symbol. If ONLY_IF_REF is
1688 // true, then only create the symbol if there is a reference to it.
1689 // If this does not return NULL, it sets *POLDSYM to the existing
1690 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1691 // resolve the newly created symbol to the old one. This
1692 // canonicalizes *PNAME and *PVERSION.
1693
1694 template<int size, bool big_endian>
1695 Sized_symbol<size>*
1696 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1697 bool only_if_ref,
1698 Sized_symbol<size>** poldsym,
1699 bool* resolve_oldsym)
1700 {
1701 *resolve_oldsym = false;
1702 *poldsym = NULL;
1703
1704 // If the caller didn't give us a version, see if we get one from
1705 // the version script.
1706 std::string v;
1707 bool is_default_version = false;
1708 if (*pversion == NULL)
1709 {
1710 bool is_global;
1711 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1712 {
1713 if (is_global && !v.empty())
1714 {
1715 *pversion = v.c_str();
1716 // If we get the version from a version script, then we
1717 // are also the default version.
1718 is_default_version = true;
1719 }
1720 }
1721 }
1722
1723 Symbol* oldsym;
1724 Sized_symbol<size>* sym;
1725
1726 bool add_to_table = false;
1727 typename Symbol_table_type::iterator add_loc = this->table_.end();
1728 bool add_def_to_table = false;
1729 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1730
1731 if (only_if_ref)
1732 {
1733 oldsym = this->lookup(*pname, *pversion);
1734 if (oldsym == NULL && is_default_version)
1735 oldsym = this->lookup(*pname, NULL);
1736 if (oldsym == NULL || !oldsym->is_undefined())
1737 return NULL;
1738
1739 *pname = oldsym->name();
1740 if (is_default_version)
1741 *pversion = this->namepool_.add(*pversion, true, NULL);
1742 else
1743 *pversion = oldsym->version();
1744 }
1745 else
1746 {
1747 // Canonicalize NAME and VERSION.
1748 Stringpool::Key name_key;
1749 *pname = this->namepool_.add(*pname, true, &name_key);
1750
1751 Stringpool::Key version_key = 0;
1752 if (*pversion != NULL)
1753 *pversion = this->namepool_.add(*pversion, true, &version_key);
1754
1755 Symbol* const snull = NULL;
1756 std::pair<typename Symbol_table_type::iterator, bool> ins =
1757 this->table_.insert(std::make_pair(std::make_pair(name_key,
1758 version_key),
1759 snull));
1760
1761 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1762 std::make_pair(this->table_.end(), false);
1763 if (is_default_version)
1764 {
1765 const Stringpool::Key vnull = 0;
1766 insdefault =
1767 this->table_.insert(std::make_pair(std::make_pair(name_key,
1768 vnull),
1769 snull));
1770 }
1771
1772 if (!ins.second)
1773 {
1774 // We already have a symbol table entry for NAME/VERSION.
1775 oldsym = ins.first->second;
1776 gold_assert(oldsym != NULL);
1777
1778 if (is_default_version)
1779 {
1780 Sized_symbol<size>* soldsym =
1781 this->get_sized_symbol<size>(oldsym);
1782 this->define_default_version<size, big_endian>(soldsym,
1783 insdefault.second,
1784 insdefault.first);
1785 }
1786 }
1787 else
1788 {
1789 // We haven't seen this symbol before.
1790 gold_assert(ins.first->second == NULL);
1791
1792 add_to_table = true;
1793 add_loc = ins.first;
1794
1795 if (is_default_version && !insdefault.second)
1796 {
1797 // We are adding NAME/VERSION, and it is the default
1798 // version. We already have an entry for NAME/NULL.
1799 oldsym = insdefault.first->second;
1800 *resolve_oldsym = true;
1801 }
1802 else
1803 {
1804 oldsym = NULL;
1805
1806 if (is_default_version)
1807 {
1808 add_def_to_table = true;
1809 add_def_loc = insdefault.first;
1810 }
1811 }
1812 }
1813 }
1814
1815 const Target& target = parameters->target();
1816 if (!target.has_make_symbol())
1817 sym = new Sized_symbol<size>();
1818 else
1819 {
1820 Sized_target<size, big_endian>* sized_target =
1821 parameters->sized_target<size, big_endian>();
1822 sym = sized_target->make_symbol();
1823 if (sym == NULL)
1824 return NULL;
1825 }
1826
1827 if (add_to_table)
1828 add_loc->second = sym;
1829 else
1830 gold_assert(oldsym != NULL);
1831
1832 if (add_def_to_table)
1833 add_def_loc->second = sym;
1834
1835 *poldsym = this->get_sized_symbol<size>(oldsym);
1836
1837 return sym;
1838 }
1839
1840 // Define a symbol based on an Output_data.
1841
1842 Symbol*
1843 Symbol_table::define_in_output_data(const char* name,
1844 const char* version,
1845 Defined defined,
1846 Output_data* od,
1847 uint64_t value,
1848 uint64_t symsize,
1849 elfcpp::STT type,
1850 elfcpp::STB binding,
1851 elfcpp::STV visibility,
1852 unsigned char nonvis,
1853 bool offset_is_from_end,
1854 bool only_if_ref)
1855 {
1856 if (parameters->target().get_size() == 32)
1857 {
1858 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1859 return this->do_define_in_output_data<32>(name, version, defined, od,
1860 value, symsize, type, binding,
1861 visibility, nonvis,
1862 offset_is_from_end,
1863 only_if_ref);
1864 #else
1865 gold_unreachable();
1866 #endif
1867 }
1868 else if (parameters->target().get_size() == 64)
1869 {
1870 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1871 return this->do_define_in_output_data<64>(name, version, defined, od,
1872 value, symsize, type, binding,
1873 visibility, nonvis,
1874 offset_is_from_end,
1875 only_if_ref);
1876 #else
1877 gold_unreachable();
1878 #endif
1879 }
1880 else
1881 gold_unreachable();
1882 }
1883
1884 // Define a symbol in an Output_data, sized version.
1885
1886 template<int size>
1887 Sized_symbol<size>*
1888 Symbol_table::do_define_in_output_data(
1889 const char* name,
1890 const char* version,
1891 Defined defined,
1892 Output_data* od,
1893 typename elfcpp::Elf_types<size>::Elf_Addr value,
1894 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1895 elfcpp::STT type,
1896 elfcpp::STB binding,
1897 elfcpp::STV visibility,
1898 unsigned char nonvis,
1899 bool offset_is_from_end,
1900 bool only_if_ref)
1901 {
1902 Sized_symbol<size>* sym;
1903 Sized_symbol<size>* oldsym;
1904 bool resolve_oldsym;
1905
1906 if (parameters->target().is_big_endian())
1907 {
1908 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1909 sym = this->define_special_symbol<size, true>(&name, &version,
1910 only_if_ref, &oldsym,
1911 &resolve_oldsym);
1912 #else
1913 gold_unreachable();
1914 #endif
1915 }
1916 else
1917 {
1918 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1919 sym = this->define_special_symbol<size, false>(&name, &version,
1920 only_if_ref, &oldsym,
1921 &resolve_oldsym);
1922 #else
1923 gold_unreachable();
1924 #endif
1925 }
1926
1927 if (sym == NULL)
1928 return NULL;
1929
1930 sym->init_output_data(name, version, od, value, symsize, type, binding,
1931 visibility, nonvis, offset_is_from_end,
1932 defined == PREDEFINED);
1933
1934 if (oldsym == NULL)
1935 {
1936 if (binding == elfcpp::STB_LOCAL
1937 || this->version_script_.symbol_is_local(name))
1938 this->force_local(sym);
1939 else if (version != NULL)
1940 sym->set_is_default();
1941 return sym;
1942 }
1943
1944 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1945 this->override_with_special(oldsym, sym);
1946
1947 if (resolve_oldsym)
1948 return sym;
1949 else
1950 {
1951 delete sym;
1952 return oldsym;
1953 }
1954 }
1955
1956 // Define a symbol based on an Output_segment.
1957
1958 Symbol*
1959 Symbol_table::define_in_output_segment(const char* name,
1960 const char* version,
1961 Defined defined,
1962 Output_segment* os,
1963 uint64_t value,
1964 uint64_t symsize,
1965 elfcpp::STT type,
1966 elfcpp::STB binding,
1967 elfcpp::STV visibility,
1968 unsigned char nonvis,
1969 Symbol::Segment_offset_base offset_base,
1970 bool only_if_ref)
1971 {
1972 if (parameters->target().get_size() == 32)
1973 {
1974 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1975 return this->do_define_in_output_segment<32>(name, version, defined, os,
1976 value, symsize, type,
1977 binding, visibility, nonvis,
1978 offset_base, only_if_ref);
1979 #else
1980 gold_unreachable();
1981 #endif
1982 }
1983 else if (parameters->target().get_size() == 64)
1984 {
1985 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1986 return this->do_define_in_output_segment<64>(name, version, defined, os,
1987 value, symsize, type,
1988 binding, visibility, nonvis,
1989 offset_base, only_if_ref);
1990 #else
1991 gold_unreachable();
1992 #endif
1993 }
1994 else
1995 gold_unreachable();
1996 }
1997
1998 // Define a symbol in an Output_segment, sized version.
1999
2000 template<int size>
2001 Sized_symbol<size>*
2002 Symbol_table::do_define_in_output_segment(
2003 const char* name,
2004 const char* version,
2005 Defined defined,
2006 Output_segment* os,
2007 typename elfcpp::Elf_types<size>::Elf_Addr value,
2008 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2009 elfcpp::STT type,
2010 elfcpp::STB binding,
2011 elfcpp::STV visibility,
2012 unsigned char nonvis,
2013 Symbol::Segment_offset_base offset_base,
2014 bool only_if_ref)
2015 {
2016 Sized_symbol<size>* sym;
2017 Sized_symbol<size>* oldsym;
2018 bool resolve_oldsym;
2019
2020 if (parameters->target().is_big_endian())
2021 {
2022 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2023 sym = this->define_special_symbol<size, true>(&name, &version,
2024 only_if_ref, &oldsym,
2025 &resolve_oldsym);
2026 #else
2027 gold_unreachable();
2028 #endif
2029 }
2030 else
2031 {
2032 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2033 sym = this->define_special_symbol<size, false>(&name, &version,
2034 only_if_ref, &oldsym,
2035 &resolve_oldsym);
2036 #else
2037 gold_unreachable();
2038 #endif
2039 }
2040
2041 if (sym == NULL)
2042 return NULL;
2043
2044 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2045 visibility, nonvis, offset_base,
2046 defined == PREDEFINED);
2047
2048 if (oldsym == NULL)
2049 {
2050 if (binding == elfcpp::STB_LOCAL
2051 || this->version_script_.symbol_is_local(name))
2052 this->force_local(sym);
2053 else if (version != NULL)
2054 sym->set_is_default();
2055 return sym;
2056 }
2057
2058 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2059 this->override_with_special(oldsym, sym);
2060
2061 if (resolve_oldsym)
2062 return sym;
2063 else
2064 {
2065 delete sym;
2066 return oldsym;
2067 }
2068 }
2069
2070 // Define a special symbol with a constant value. It is a multiple
2071 // definition error if this symbol is already defined.
2072
2073 Symbol*
2074 Symbol_table::define_as_constant(const char* name,
2075 const char* version,
2076 Defined defined,
2077 uint64_t value,
2078 uint64_t symsize,
2079 elfcpp::STT type,
2080 elfcpp::STB binding,
2081 elfcpp::STV visibility,
2082 unsigned char nonvis,
2083 bool only_if_ref,
2084 bool force_override)
2085 {
2086 if (parameters->target().get_size() == 32)
2087 {
2088 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2089 return this->do_define_as_constant<32>(name, version, defined, value,
2090 symsize, type, binding,
2091 visibility, nonvis, only_if_ref,
2092 force_override);
2093 #else
2094 gold_unreachable();
2095 #endif
2096 }
2097 else if (parameters->target().get_size() == 64)
2098 {
2099 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2100 return this->do_define_as_constant<64>(name, version, defined, value,
2101 symsize, type, binding,
2102 visibility, nonvis, only_if_ref,
2103 force_override);
2104 #else
2105 gold_unreachable();
2106 #endif
2107 }
2108 else
2109 gold_unreachable();
2110 }
2111
2112 // Define a symbol as a constant, sized version.
2113
2114 template<int size>
2115 Sized_symbol<size>*
2116 Symbol_table::do_define_as_constant(
2117 const char* name,
2118 const char* version,
2119 Defined defined,
2120 typename elfcpp::Elf_types<size>::Elf_Addr value,
2121 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2122 elfcpp::STT type,
2123 elfcpp::STB binding,
2124 elfcpp::STV visibility,
2125 unsigned char nonvis,
2126 bool only_if_ref,
2127 bool force_override)
2128 {
2129 Sized_symbol<size>* sym;
2130 Sized_symbol<size>* oldsym;
2131 bool resolve_oldsym;
2132
2133 if (parameters->target().is_big_endian())
2134 {
2135 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2136 sym = this->define_special_symbol<size, true>(&name, &version,
2137 only_if_ref, &oldsym,
2138 &resolve_oldsym);
2139 #else
2140 gold_unreachable();
2141 #endif
2142 }
2143 else
2144 {
2145 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2146 sym = this->define_special_symbol<size, false>(&name, &version,
2147 only_if_ref, &oldsym,
2148 &resolve_oldsym);
2149 #else
2150 gold_unreachable();
2151 #endif
2152 }
2153
2154 if (sym == NULL)
2155 return NULL;
2156
2157 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2158 nonvis, defined == PREDEFINED);
2159
2160 if (oldsym == NULL)
2161 {
2162 // Version symbols are absolute symbols with name == version.
2163 // We don't want to force them to be local.
2164 if ((version == NULL
2165 || name != version
2166 || value != 0)
2167 && (binding == elfcpp::STB_LOCAL
2168 || this->version_script_.symbol_is_local(name)))
2169 this->force_local(sym);
2170 else if (version != NULL
2171 && (name != version || value != 0))
2172 sym->set_is_default();
2173 return sym;
2174 }
2175
2176 if (force_override
2177 || Symbol_table::should_override_with_special(oldsym, type, defined))
2178 this->override_with_special(oldsym, sym);
2179
2180 if (resolve_oldsym)
2181 return sym;
2182 else
2183 {
2184 delete sym;
2185 return oldsym;
2186 }
2187 }
2188
2189 // Define a set of symbols in output sections.
2190
2191 void
2192 Symbol_table::define_symbols(const Layout* layout, int count,
2193 const Define_symbol_in_section* p,
2194 bool only_if_ref)
2195 {
2196 for (int i = 0; i < count; ++i, ++p)
2197 {
2198 Output_section* os = layout->find_output_section(p->output_section);
2199 if (os != NULL)
2200 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2201 p->size, p->type, p->binding,
2202 p->visibility, p->nonvis,
2203 p->offset_is_from_end,
2204 only_if_ref || p->only_if_ref);
2205 else
2206 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2207 p->type, p->binding, p->visibility, p->nonvis,
2208 only_if_ref || p->only_if_ref,
2209 false);
2210 }
2211 }
2212
2213 // Define a set of symbols in output segments.
2214
2215 void
2216 Symbol_table::define_symbols(const Layout* layout, int count,
2217 const Define_symbol_in_segment* p,
2218 bool only_if_ref)
2219 {
2220 for (int i = 0; i < count; ++i, ++p)
2221 {
2222 Output_segment* os = layout->find_output_segment(p->segment_type,
2223 p->segment_flags_set,
2224 p->segment_flags_clear);
2225 if (os != NULL)
2226 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2227 p->size, p->type, p->binding,
2228 p->visibility, p->nonvis,
2229 p->offset_base,
2230 only_if_ref || p->only_if_ref);
2231 else
2232 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2233 p->type, p->binding, p->visibility, p->nonvis,
2234 only_if_ref || p->only_if_ref,
2235 false);
2236 }
2237 }
2238
2239 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2240 // symbol should be defined--typically a .dyn.bss section. VALUE is
2241 // the offset within POSD.
2242
2243 template<int size>
2244 void
2245 Symbol_table::define_with_copy_reloc(
2246 Sized_symbol<size>* csym,
2247 Output_data* posd,
2248 typename elfcpp::Elf_types<size>::Elf_Addr value)
2249 {
2250 gold_assert(csym->is_from_dynobj());
2251 gold_assert(!csym->is_copied_from_dynobj());
2252 Object* object = csym->object();
2253 gold_assert(object->is_dynamic());
2254 Dynobj* dynobj = static_cast<Dynobj*>(object);
2255
2256 // Our copied variable has to override any variable in a shared
2257 // library.
2258 elfcpp::STB binding = csym->binding();
2259 if (binding == elfcpp::STB_WEAK)
2260 binding = elfcpp::STB_GLOBAL;
2261
2262 this->define_in_output_data(csym->name(), csym->version(), COPY,
2263 posd, value, csym->symsize(),
2264 csym->type(), binding,
2265 csym->visibility(), csym->nonvis(),
2266 false, false);
2267
2268 csym->set_is_copied_from_dynobj();
2269 csym->set_needs_dynsym_entry();
2270
2271 this->copied_symbol_dynobjs_[csym] = dynobj;
2272
2273 // We have now defined all aliases, but we have not entered them all
2274 // in the copied_symbol_dynobjs_ map.
2275 if (csym->has_alias())
2276 {
2277 Symbol* sym = csym;
2278 while (true)
2279 {
2280 sym = this->weak_aliases_[sym];
2281 if (sym == csym)
2282 break;
2283 gold_assert(sym->output_data() == posd);
2284
2285 sym->set_is_copied_from_dynobj();
2286 this->copied_symbol_dynobjs_[sym] = dynobj;
2287 }
2288 }
2289 }
2290
2291 // SYM is defined using a COPY reloc. Return the dynamic object where
2292 // the original definition was found.
2293
2294 Dynobj*
2295 Symbol_table::get_copy_source(const Symbol* sym) const
2296 {
2297 gold_assert(sym->is_copied_from_dynobj());
2298 Copied_symbol_dynobjs::const_iterator p =
2299 this->copied_symbol_dynobjs_.find(sym);
2300 gold_assert(p != this->copied_symbol_dynobjs_.end());
2301 return p->second;
2302 }
2303
2304 // Add any undefined symbols named on the command line.
2305
2306 void
2307 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2308 {
2309 if (parameters->options().any_undefined()
2310 || layout->script_options()->any_unreferenced())
2311 {
2312 if (parameters->target().get_size() == 32)
2313 {
2314 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2315 this->do_add_undefined_symbols_from_command_line<32>(layout);
2316 #else
2317 gold_unreachable();
2318 #endif
2319 }
2320 else if (parameters->target().get_size() == 64)
2321 {
2322 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2323 this->do_add_undefined_symbols_from_command_line<64>(layout);
2324 #else
2325 gold_unreachable();
2326 #endif
2327 }
2328 else
2329 gold_unreachable();
2330 }
2331 }
2332
2333 template<int size>
2334 void
2335 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2336 {
2337 for (options::String_set::const_iterator p =
2338 parameters->options().undefined_begin();
2339 p != parameters->options().undefined_end();
2340 ++p)
2341 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2342
2343 for (options::String_set::const_iterator p =
2344 parameters->options().export_dynamic_symbol_begin();
2345 p != parameters->options().export_dynamic_symbol_end();
2346 ++p)
2347 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2348
2349 for (Script_options::referenced_const_iterator p =
2350 layout->script_options()->referenced_begin();
2351 p != layout->script_options()->referenced_end();
2352 ++p)
2353 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2354 }
2355
2356 template<int size>
2357 void
2358 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2359 {
2360 if (this->lookup(name) != NULL)
2361 return;
2362
2363 const char* version = NULL;
2364
2365 Sized_symbol<size>* sym;
2366 Sized_symbol<size>* oldsym;
2367 bool resolve_oldsym;
2368 if (parameters->target().is_big_endian())
2369 {
2370 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2371 sym = this->define_special_symbol<size, true>(&name, &version,
2372 false, &oldsym,
2373 &resolve_oldsym);
2374 #else
2375 gold_unreachable();
2376 #endif
2377 }
2378 else
2379 {
2380 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2381 sym = this->define_special_symbol<size, false>(&name, &version,
2382 false, &oldsym,
2383 &resolve_oldsym);
2384 #else
2385 gold_unreachable();
2386 #endif
2387 }
2388
2389 gold_assert(oldsym == NULL);
2390
2391 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2392 elfcpp::STV_DEFAULT, 0);
2393 ++this->saw_undefined_;
2394 }
2395
2396 // Set the dynamic symbol indexes. INDEX is the index of the first
2397 // global dynamic symbol. Pointers to the symbols are stored into the
2398 // vector SYMS. The names are added to DYNPOOL. This returns an
2399 // updated dynamic symbol index.
2400
2401 unsigned int
2402 Symbol_table::set_dynsym_indexes(unsigned int index,
2403 std::vector<Symbol*>* syms,
2404 Stringpool* dynpool,
2405 Versions* versions)
2406 {
2407 std::vector<Symbol*> as_needed_sym;
2408
2409 // Allow a target to set dynsym indexes.
2410 if (parameters->target().has_custom_set_dynsym_indexes())
2411 {
2412 std::vector<Symbol*> dyn_symbols;
2413 for (Symbol_table_type::iterator p = this->table_.begin();
2414 p != this->table_.end();
2415 ++p)
2416 {
2417 Symbol* sym = p->second;
2418 if (!sym->should_add_dynsym_entry(this))
2419 sym->set_dynsym_index(-1U);
2420 else
2421 dyn_symbols.push_back(sym);
2422 }
2423
2424 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2425 dynpool, versions, this);
2426 }
2427
2428 for (Symbol_table_type::iterator p = this->table_.begin();
2429 p != this->table_.end();
2430 ++p)
2431 {
2432 Symbol* sym = p->second;
2433
2434 // Note that SYM may already have a dynamic symbol index, since
2435 // some symbols appear more than once in the symbol table, with
2436 // and without a version.
2437
2438 if (!sym->should_add_dynsym_entry(this))
2439 sym->set_dynsym_index(-1U);
2440 else if (!sym->has_dynsym_index())
2441 {
2442 sym->set_dynsym_index(index);
2443 ++index;
2444 syms->push_back(sym);
2445 dynpool->add(sym->name(), false, NULL);
2446
2447 // If the symbol is defined in a dynamic object and is
2448 // referenced strongly in a regular object, then mark the
2449 // dynamic object as needed. This is used to implement
2450 // --as-needed.
2451 if (sym->is_from_dynobj()
2452 && sym->in_reg()
2453 && !sym->is_undef_binding_weak())
2454 sym->object()->set_is_needed();
2455
2456 // Record any version information, except those from
2457 // as-needed libraries not seen to be needed. Note that the
2458 // is_needed state for such libraries can change in this loop.
2459 if (sym->version() != NULL)
2460 {
2461 if (!sym->is_from_dynobj()
2462 || !sym->object()->as_needed()
2463 || sym->object()->is_needed())
2464 versions->record_version(this, dynpool, sym);
2465 else
2466 as_needed_sym.push_back(sym);
2467 }
2468 }
2469 }
2470
2471 // Process version information for symbols from as-needed libraries.
2472 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2473 p != as_needed_sym.end();
2474 ++p)
2475 {
2476 Symbol* sym = *p;
2477
2478 if (sym->object()->is_needed())
2479 versions->record_version(this, dynpool, sym);
2480 else
2481 sym->clear_version();
2482 }
2483
2484 // Finish up the versions. In some cases this may add new dynamic
2485 // symbols.
2486 index = versions->finalize(this, index, syms);
2487
2488 return index;
2489 }
2490
2491 // Set the final values for all the symbols. The index of the first
2492 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2493 // file offset OFF. Add their names to POOL. Return the new file
2494 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2495
2496 off_t
2497 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2498 size_t dyncount, Stringpool* pool,
2499 unsigned int* plocal_symcount)
2500 {
2501 off_t ret;
2502
2503 gold_assert(*plocal_symcount != 0);
2504 this->first_global_index_ = *plocal_symcount;
2505
2506 this->dynamic_offset_ = dynoff;
2507 this->first_dynamic_global_index_ = dyn_global_index;
2508 this->dynamic_count_ = dyncount;
2509
2510 if (parameters->target().get_size() == 32)
2511 {
2512 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2513 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2514 #else
2515 gold_unreachable();
2516 #endif
2517 }
2518 else if (parameters->target().get_size() == 64)
2519 {
2520 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2521 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2522 #else
2523 gold_unreachable();
2524 #endif
2525 }
2526 else
2527 gold_unreachable();
2528
2529 // Now that we have the final symbol table, we can reliably note
2530 // which symbols should get warnings.
2531 this->warnings_.note_warnings(this);
2532
2533 return ret;
2534 }
2535
2536 // SYM is going into the symbol table at *PINDEX. Add the name to
2537 // POOL, update *PINDEX and *POFF.
2538
2539 template<int size>
2540 void
2541 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2542 unsigned int* pindex, off_t* poff)
2543 {
2544 sym->set_symtab_index(*pindex);
2545 if (sym->version() == NULL || !parameters->options().relocatable())
2546 pool->add(sym->name(), false, NULL);
2547 else
2548 pool->add(sym->versioned_name(), true, NULL);
2549 ++*pindex;
2550 *poff += elfcpp::Elf_sizes<size>::sym_size;
2551 }
2552
2553 // Set the final value for all the symbols. This is called after
2554 // Layout::finalize, so all the output sections have their final
2555 // address.
2556
2557 template<int size>
2558 off_t
2559 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2560 unsigned int* plocal_symcount)
2561 {
2562 off = align_address(off, size >> 3);
2563 this->offset_ = off;
2564
2565 unsigned int index = *plocal_symcount;
2566 const unsigned int orig_index = index;
2567
2568 // First do all the symbols which have been forced to be local, as
2569 // they must appear before all global symbols.
2570 for (Forced_locals::iterator p = this->forced_locals_.begin();
2571 p != this->forced_locals_.end();
2572 ++p)
2573 {
2574 Symbol* sym = *p;
2575 gold_assert(sym->is_forced_local());
2576 if (this->sized_finalize_symbol<size>(sym))
2577 {
2578 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2579 ++*plocal_symcount;
2580 }
2581 }
2582
2583 // Now do all the remaining symbols.
2584 for (Symbol_table_type::iterator p = this->table_.begin();
2585 p != this->table_.end();
2586 ++p)
2587 {
2588 Symbol* sym = p->second;
2589 if (this->sized_finalize_symbol<size>(sym))
2590 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2591 }
2592
2593 this->output_count_ = index - orig_index;
2594
2595 return off;
2596 }
2597
2598 // Compute the final value of SYM and store status in location PSTATUS.
2599 // During relaxation, this may be called multiple times for a symbol to
2600 // compute its would-be final value in each relaxation pass.
2601
2602 template<int size>
2603 typename Sized_symbol<size>::Value_type
2604 Symbol_table::compute_final_value(
2605 const Sized_symbol<size>* sym,
2606 Compute_final_value_status* pstatus) const
2607 {
2608 typedef typename Sized_symbol<size>::Value_type Value_type;
2609 Value_type value;
2610
2611 switch (sym->source())
2612 {
2613 case Symbol::FROM_OBJECT:
2614 {
2615 bool is_ordinary;
2616 unsigned int shndx = sym->shndx(&is_ordinary);
2617
2618 if (!is_ordinary
2619 && shndx != elfcpp::SHN_ABS
2620 && !Symbol::is_common_shndx(shndx))
2621 {
2622 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2623 return 0;
2624 }
2625
2626 Object* symobj = sym->object();
2627 if (symobj->is_dynamic())
2628 {
2629 value = 0;
2630 shndx = elfcpp::SHN_UNDEF;
2631 }
2632 else if (symobj->pluginobj() != NULL)
2633 {
2634 value = 0;
2635 shndx = elfcpp::SHN_UNDEF;
2636 }
2637 else if (shndx == elfcpp::SHN_UNDEF)
2638 value = 0;
2639 else if (!is_ordinary
2640 && (shndx == elfcpp::SHN_ABS
2641 || Symbol::is_common_shndx(shndx)))
2642 value = sym->value();
2643 else
2644 {
2645 Relobj* relobj = static_cast<Relobj*>(symobj);
2646 Output_section* os = relobj->output_section(shndx);
2647
2648 if (this->is_section_folded(relobj, shndx))
2649 {
2650 gold_assert(os == NULL);
2651 // Get the os of the section it is folded onto.
2652 Section_id folded = this->icf_->get_folded_section(relobj,
2653 shndx);
2654 gold_assert(folded.first != NULL);
2655 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2656 unsigned folded_shndx = folded.second;
2657
2658 os = folded_obj->output_section(folded_shndx);
2659 gold_assert(os != NULL);
2660
2661 // Replace (relobj, shndx) with canonical ICF input section.
2662 shndx = folded_shndx;
2663 relobj = folded_obj;
2664 }
2665
2666 uint64_t secoff64 = relobj->output_section_offset(shndx);
2667 if (os == NULL)
2668 {
2669 bool static_or_reloc = (parameters->doing_static_link() ||
2670 parameters->options().relocatable());
2671 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2672
2673 *pstatus = CFVS_NO_OUTPUT_SECTION;
2674 return 0;
2675 }
2676
2677 if (secoff64 == -1ULL)
2678 {
2679 // The section needs special handling (e.g., a merge section).
2680
2681 value = os->output_address(relobj, shndx, sym->value());
2682 }
2683 else
2684 {
2685 Value_type secoff =
2686 convert_types<Value_type, uint64_t>(secoff64);
2687 if (sym->type() == elfcpp::STT_TLS)
2688 value = sym->value() + os->tls_offset() + secoff;
2689 else
2690 value = sym->value() + os->address() + secoff;
2691 }
2692 }
2693 }
2694 break;
2695
2696 case Symbol::IN_OUTPUT_DATA:
2697 {
2698 Output_data* od = sym->output_data();
2699 value = sym->value();
2700 if (sym->type() != elfcpp::STT_TLS)
2701 value += od->address();
2702 else
2703 {
2704 Output_section* os = od->output_section();
2705 gold_assert(os != NULL);
2706 value += os->tls_offset() + (od->address() - os->address());
2707 }
2708 if (sym->offset_is_from_end())
2709 value += od->data_size();
2710 }
2711 break;
2712
2713 case Symbol::IN_OUTPUT_SEGMENT:
2714 {
2715 Output_segment* os = sym->output_segment();
2716 value = sym->value();
2717 if (sym->type() != elfcpp::STT_TLS)
2718 value += os->vaddr();
2719 switch (sym->offset_base())
2720 {
2721 case Symbol::SEGMENT_START:
2722 break;
2723 case Symbol::SEGMENT_END:
2724 value += os->memsz();
2725 break;
2726 case Symbol::SEGMENT_BSS:
2727 value += os->filesz();
2728 break;
2729 default:
2730 gold_unreachable();
2731 }
2732 }
2733 break;
2734
2735 case Symbol::IS_CONSTANT:
2736 value = sym->value();
2737 break;
2738
2739 case Symbol::IS_UNDEFINED:
2740 value = 0;
2741 break;
2742
2743 default:
2744 gold_unreachable();
2745 }
2746
2747 *pstatus = CFVS_OK;
2748 return value;
2749 }
2750
2751 // Finalize the symbol SYM. This returns true if the symbol should be
2752 // added to the symbol table, false otherwise.
2753
2754 template<int size>
2755 bool
2756 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2757 {
2758 typedef typename Sized_symbol<size>::Value_type Value_type;
2759
2760 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2761
2762 // The default version of a symbol may appear twice in the symbol
2763 // table. We only need to finalize it once.
2764 if (sym->has_symtab_index())
2765 return false;
2766
2767 if (!sym->in_reg())
2768 {
2769 gold_assert(!sym->has_symtab_index());
2770 sym->set_symtab_index(-1U);
2771 gold_assert(sym->dynsym_index() == -1U);
2772 return false;
2773 }
2774
2775 // If the symbol is only present on plugin files, the plugin decided we
2776 // don't need it.
2777 if (!sym->in_real_elf())
2778 {
2779 gold_assert(!sym->has_symtab_index());
2780 sym->set_symtab_index(-1U);
2781 return false;
2782 }
2783
2784 // Compute final symbol value.
2785 Compute_final_value_status status;
2786 Value_type value = this->compute_final_value(sym, &status);
2787
2788 switch (status)
2789 {
2790 case CFVS_OK:
2791 break;
2792 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2793 {
2794 bool is_ordinary;
2795 unsigned int shndx = sym->shndx(&is_ordinary);
2796 gold_error(_("%s: unsupported symbol section 0x%x"),
2797 sym->demangled_name().c_str(), shndx);
2798 }
2799 break;
2800 case CFVS_NO_OUTPUT_SECTION:
2801 sym->set_symtab_index(-1U);
2802 return false;
2803 default:
2804 gold_unreachable();
2805 }
2806
2807 sym->set_value(value);
2808
2809 if (parameters->options().strip_all()
2810 || !parameters->options().should_retain_symbol(sym->name()))
2811 {
2812 sym->set_symtab_index(-1U);
2813 return false;
2814 }
2815
2816 return true;
2817 }
2818
2819 // Write out the global symbols.
2820
2821 void
2822 Symbol_table::write_globals(const Stringpool* sympool,
2823 const Stringpool* dynpool,
2824 Output_symtab_xindex* symtab_xindex,
2825 Output_symtab_xindex* dynsym_xindex,
2826 Output_file* of) const
2827 {
2828 switch (parameters->size_and_endianness())
2829 {
2830 #ifdef HAVE_TARGET_32_LITTLE
2831 case Parameters::TARGET_32_LITTLE:
2832 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2833 dynsym_xindex, of);
2834 break;
2835 #endif
2836 #ifdef HAVE_TARGET_32_BIG
2837 case Parameters::TARGET_32_BIG:
2838 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2839 dynsym_xindex, of);
2840 break;
2841 #endif
2842 #ifdef HAVE_TARGET_64_LITTLE
2843 case Parameters::TARGET_64_LITTLE:
2844 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2845 dynsym_xindex, of);
2846 break;
2847 #endif
2848 #ifdef HAVE_TARGET_64_BIG
2849 case Parameters::TARGET_64_BIG:
2850 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2851 dynsym_xindex, of);
2852 break;
2853 #endif
2854 default:
2855 gold_unreachable();
2856 }
2857 }
2858
2859 // Write out the global symbols.
2860
2861 template<int size, bool big_endian>
2862 void
2863 Symbol_table::sized_write_globals(const Stringpool* sympool,
2864 const Stringpool* dynpool,
2865 Output_symtab_xindex* symtab_xindex,
2866 Output_symtab_xindex* dynsym_xindex,
2867 Output_file* of) const
2868 {
2869 const Target& target = parameters->target();
2870
2871 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2872
2873 const unsigned int output_count = this->output_count_;
2874 const section_size_type oview_size = output_count * sym_size;
2875 const unsigned int first_global_index = this->first_global_index_;
2876 unsigned char* psyms;
2877 if (this->offset_ == 0 || output_count == 0)
2878 psyms = NULL;
2879 else
2880 psyms = of->get_output_view(this->offset_, oview_size);
2881
2882 const unsigned int dynamic_count = this->dynamic_count_;
2883 const section_size_type dynamic_size = dynamic_count * sym_size;
2884 const unsigned int first_dynamic_global_index =
2885 this->first_dynamic_global_index_;
2886 unsigned char* dynamic_view;
2887 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2888 dynamic_view = NULL;
2889 else
2890 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2891
2892 for (Symbol_table_type::const_iterator p = this->table_.begin();
2893 p != this->table_.end();
2894 ++p)
2895 {
2896 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2897
2898 // Possibly warn about unresolved symbols in shared libraries.
2899 this->warn_about_undefined_dynobj_symbol(sym);
2900
2901 unsigned int sym_index = sym->symtab_index();
2902 unsigned int dynsym_index;
2903 if (dynamic_view == NULL)
2904 dynsym_index = -1U;
2905 else
2906 dynsym_index = sym->dynsym_index();
2907
2908 if (sym_index == -1U && dynsym_index == -1U)
2909 {
2910 // This symbol is not included in the output file.
2911 continue;
2912 }
2913
2914 unsigned int shndx;
2915 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2916 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2917 elfcpp::STB binding = sym->binding();
2918
2919 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2920 if (binding == elfcpp::STB_GNU_UNIQUE
2921 && !parameters->options().gnu_unique())
2922 binding = elfcpp::STB_GLOBAL;
2923
2924 switch (sym->source())
2925 {
2926 case Symbol::FROM_OBJECT:
2927 {
2928 bool is_ordinary;
2929 unsigned int in_shndx = sym->shndx(&is_ordinary);
2930
2931 if (!is_ordinary
2932 && in_shndx != elfcpp::SHN_ABS
2933 && !Symbol::is_common_shndx(in_shndx))
2934 {
2935 gold_error(_("%s: unsupported symbol section 0x%x"),
2936 sym->demangled_name().c_str(), in_shndx);
2937 shndx = in_shndx;
2938 }
2939 else
2940 {
2941 Object* symobj = sym->object();
2942 if (symobj->is_dynamic())
2943 {
2944 if (sym->needs_dynsym_value())
2945 dynsym_value = target.dynsym_value(sym);
2946 shndx = elfcpp::SHN_UNDEF;
2947 if (sym->is_undef_binding_weak())
2948 binding = elfcpp::STB_WEAK;
2949 else
2950 binding = elfcpp::STB_GLOBAL;
2951 }
2952 else if (symobj->pluginobj() != NULL)
2953 shndx = elfcpp::SHN_UNDEF;
2954 else if (in_shndx == elfcpp::SHN_UNDEF
2955 || (!is_ordinary
2956 && (in_shndx == elfcpp::SHN_ABS
2957 || Symbol::is_common_shndx(in_shndx))))
2958 shndx = in_shndx;
2959 else
2960 {
2961 Relobj* relobj = static_cast<Relobj*>(symobj);
2962 Output_section* os = relobj->output_section(in_shndx);
2963 if (this->is_section_folded(relobj, in_shndx))
2964 {
2965 // This global symbol must be written out even though
2966 // it is folded.
2967 // Get the os of the section it is folded onto.
2968 Section_id folded =
2969 this->icf_->get_folded_section(relobj, in_shndx);
2970 gold_assert(folded.first !=NULL);
2971 Relobj* folded_obj =
2972 reinterpret_cast<Relobj*>(folded.first);
2973 os = folded_obj->output_section(folded.second);
2974 gold_assert(os != NULL);
2975 }
2976 gold_assert(os != NULL);
2977 shndx = os->out_shndx();
2978
2979 if (shndx >= elfcpp::SHN_LORESERVE)
2980 {
2981 if (sym_index != -1U)
2982 symtab_xindex->add(sym_index, shndx);
2983 if (dynsym_index != -1U)
2984 dynsym_xindex->add(dynsym_index, shndx);
2985 shndx = elfcpp::SHN_XINDEX;
2986 }
2987
2988 // In object files symbol values are section
2989 // relative.
2990 if (parameters->options().relocatable())
2991 sym_value -= os->address();
2992 }
2993 }
2994 }
2995 break;
2996
2997 case Symbol::IN_OUTPUT_DATA:
2998 {
2999 Output_data* od = sym->output_data();
3000
3001 shndx = od->out_shndx();
3002 if (shndx >= elfcpp::SHN_LORESERVE)
3003 {
3004 if (sym_index != -1U)
3005 symtab_xindex->add(sym_index, shndx);
3006 if (dynsym_index != -1U)
3007 dynsym_xindex->add(dynsym_index, shndx);
3008 shndx = elfcpp::SHN_XINDEX;
3009 }
3010
3011 // In object files symbol values are section
3012 // relative.
3013 if (parameters->options().relocatable())
3014 sym_value -= od->address();
3015 }
3016 break;
3017
3018 case Symbol::IN_OUTPUT_SEGMENT:
3019 shndx = elfcpp::SHN_ABS;
3020 break;
3021
3022 case Symbol::IS_CONSTANT:
3023 shndx = elfcpp::SHN_ABS;
3024 break;
3025
3026 case Symbol::IS_UNDEFINED:
3027 shndx = elfcpp::SHN_UNDEF;
3028 break;
3029
3030 default:
3031 gold_unreachable();
3032 }
3033
3034 if (sym_index != -1U)
3035 {
3036 sym_index -= first_global_index;
3037 gold_assert(sym_index < output_count);
3038 unsigned char* ps = psyms + (sym_index * sym_size);
3039 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3040 binding, sympool, ps);
3041 }
3042
3043 if (dynsym_index != -1U)
3044 {
3045 dynsym_index -= first_dynamic_global_index;
3046 gold_assert(dynsym_index < dynamic_count);
3047 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3048 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3049 binding, dynpool, pd);
3050 // Allow a target to adjust dynamic symbol value.
3051 parameters->target().adjust_dyn_symbol(sym, pd);
3052 }
3053 }
3054
3055 of->write_output_view(this->offset_, oview_size, psyms);
3056 if (dynamic_view != NULL)
3057 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3058 }
3059
3060 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3061 // strtab holding the name.
3062
3063 template<int size, bool big_endian>
3064 void
3065 Symbol_table::sized_write_symbol(
3066 Sized_symbol<size>* sym,
3067 typename elfcpp::Elf_types<size>::Elf_Addr value,
3068 unsigned int shndx,
3069 elfcpp::STB binding,
3070 const Stringpool* pool,
3071 unsigned char* p) const
3072 {
3073 elfcpp::Sym_write<size, big_endian> osym(p);
3074 if (sym->version() == NULL || !parameters->options().relocatable())
3075 osym.put_st_name(pool->get_offset(sym->name()));
3076 else
3077 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3078 osym.put_st_value(value);
3079 // Use a symbol size of zero for undefined symbols from shared libraries.
3080 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3081 osym.put_st_size(0);
3082 else
3083 osym.put_st_size(sym->symsize());
3084 elfcpp::STT type = sym->type();
3085 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3086 if (type == elfcpp::STT_GNU_IFUNC
3087 && sym->is_from_dynobj())
3088 type = elfcpp::STT_FUNC;
3089 // A version script may have overridden the default binding.
3090 if (sym->is_forced_local())
3091 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3092 else
3093 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3094 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3095 osym.put_st_shndx(shndx);
3096 }
3097
3098 // Check for unresolved symbols in shared libraries. This is
3099 // controlled by the --allow-shlib-undefined option.
3100
3101 // We only warn about libraries for which we have seen all the
3102 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3103 // which were not seen in this link. If we didn't see a DT_NEEDED
3104 // entry, we aren't going to be able to reliably report whether the
3105 // symbol is undefined.
3106
3107 // We also don't warn about libraries found in a system library
3108 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3109 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3110 // can have undefined references satisfied by ld-linux.so.
3111
3112 inline void
3113 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3114 {
3115 bool dummy;
3116 if (sym->source() == Symbol::FROM_OBJECT
3117 && sym->object()->is_dynamic()
3118 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3119 && sym->binding() != elfcpp::STB_WEAK
3120 && !parameters->options().allow_shlib_undefined()
3121 && !parameters->target().is_defined_by_abi(sym)
3122 && !sym->object()->is_in_system_directory())
3123 {
3124 // A very ugly cast.
3125 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3126 if (!dynobj->has_unknown_needed_entries())
3127 gold_undefined_symbol(sym);
3128 }
3129 }
3130
3131 // Write out a section symbol. Return the update offset.
3132
3133 void
3134 Symbol_table::write_section_symbol(const Output_section* os,
3135 Output_symtab_xindex* symtab_xindex,
3136 Output_file* of,
3137 off_t offset) const
3138 {
3139 switch (parameters->size_and_endianness())
3140 {
3141 #ifdef HAVE_TARGET_32_LITTLE
3142 case Parameters::TARGET_32_LITTLE:
3143 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3144 offset);
3145 break;
3146 #endif
3147 #ifdef HAVE_TARGET_32_BIG
3148 case Parameters::TARGET_32_BIG:
3149 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3150 offset);
3151 break;
3152 #endif
3153 #ifdef HAVE_TARGET_64_LITTLE
3154 case Parameters::TARGET_64_LITTLE:
3155 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3156 offset);
3157 break;
3158 #endif
3159 #ifdef HAVE_TARGET_64_BIG
3160 case Parameters::TARGET_64_BIG:
3161 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3162 offset);
3163 break;
3164 #endif
3165 default:
3166 gold_unreachable();
3167 }
3168 }
3169
3170 // Write out a section symbol, specialized for size and endianness.
3171
3172 template<int size, bool big_endian>
3173 void
3174 Symbol_table::sized_write_section_symbol(const Output_section* os,
3175 Output_symtab_xindex* symtab_xindex,
3176 Output_file* of,
3177 off_t offset) const
3178 {
3179 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3180
3181 unsigned char* pov = of->get_output_view(offset, sym_size);
3182
3183 elfcpp::Sym_write<size, big_endian> osym(pov);
3184 osym.put_st_name(0);
3185 if (parameters->options().relocatable())
3186 osym.put_st_value(0);
3187 else
3188 osym.put_st_value(os->address());
3189 osym.put_st_size(0);
3190 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3191 elfcpp::STT_SECTION));
3192 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3193
3194 unsigned int shndx = os->out_shndx();
3195 if (shndx >= elfcpp::SHN_LORESERVE)
3196 {
3197 symtab_xindex->add(os->symtab_index(), shndx);
3198 shndx = elfcpp::SHN_XINDEX;
3199 }
3200 osym.put_st_shndx(shndx);
3201
3202 of->write_output_view(offset, sym_size, pov);
3203 }
3204
3205 // Print statistical information to stderr. This is used for --stats.
3206
3207 void
3208 Symbol_table::print_stats() const
3209 {
3210 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3211 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3212 program_name, this->table_.size(), this->table_.bucket_count());
3213 #else
3214 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3215 program_name, this->table_.size());
3216 #endif
3217 this->namepool_.print_stats("symbol table stringpool");
3218 }
3219
3220 // We check for ODR violations by looking for symbols with the same
3221 // name for which the debugging information reports that they were
3222 // defined in disjoint source locations. When comparing the source
3223 // location, we consider instances with the same base filename to be
3224 // the same. This is because different object files/shared libraries
3225 // can include the same header file using different paths, and
3226 // different optimization settings can make the line number appear to
3227 // be a couple lines off, and we don't want to report an ODR violation
3228 // in those cases.
3229
3230 // This struct is used to compare line information, as returned by
3231 // Dwarf_line_info::one_addr2line. It implements a < comparison
3232 // operator used with std::sort.
3233
3234 struct Odr_violation_compare
3235 {
3236 bool
3237 operator()(const std::string& s1, const std::string& s2) const
3238 {
3239 // Inputs should be of the form "dirname/filename:linenum" where
3240 // "dirname/" is optional. We want to compare just the filename:linenum.
3241
3242 // Find the last '/' in each string.
3243 std::string::size_type s1begin = s1.rfind('/');
3244 std::string::size_type s2begin = s2.rfind('/');
3245 // If there was no '/' in a string, start at the beginning.
3246 if (s1begin == std::string::npos)
3247 s1begin = 0;
3248 if (s2begin == std::string::npos)
3249 s2begin = 0;
3250 return s1.compare(s1begin, std::string::npos,
3251 s2, s2begin, std::string::npos) < 0;
3252 }
3253 };
3254
3255 // Returns all of the lines attached to LOC, not just the one the
3256 // instruction actually came from.
3257 std::vector<std::string>
3258 Symbol_table::linenos_from_loc(const Task* task,
3259 const Symbol_location& loc)
3260 {
3261 // We need to lock the object in order to read it. This
3262 // means that we have to run in a singleton Task. If we
3263 // want to run this in a general Task for better
3264 // performance, we will need one Task for object, plus
3265 // appropriate locking to ensure that we don't conflict with
3266 // other uses of the object. Also note, one_addr2line is not
3267 // currently thread-safe.
3268 Task_lock_obj<Object> tl(task, loc.object);
3269
3270 std::vector<std::string> result;
3271 Symbol_location code_loc = loc;
3272 parameters->target().function_location(&code_loc);
3273 // 16 is the size of the object-cache that one_addr2line should use.
3274 std::string canonical_result = Dwarf_line_info::one_addr2line(
3275 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3276 if (!canonical_result.empty())
3277 result.push_back(canonical_result);
3278 return result;
3279 }
3280
3281 // OutputIterator that records if it was ever assigned to. This
3282 // allows it to be used with std::set_intersection() to check for
3283 // intersection rather than computing the intersection.
3284 struct Check_intersection
3285 {
3286 Check_intersection()
3287 : value_(false)
3288 {}
3289
3290 bool had_intersection() const
3291 { return this->value_; }
3292
3293 Check_intersection& operator++()
3294 { return *this; }
3295
3296 Check_intersection& operator*()
3297 { return *this; }
3298
3299 template<typename T>
3300 Check_intersection& operator=(const T&)
3301 {
3302 this->value_ = true;
3303 return *this;
3304 }
3305
3306 private:
3307 bool value_;
3308 };
3309
3310 // Check candidate_odr_violations_ to find symbols with the same name
3311 // but apparently different definitions (different source-file/line-no
3312 // for each line assigned to the first instruction).
3313
3314 void
3315 Symbol_table::detect_odr_violations(const Task* task,
3316 const char* output_file_name) const
3317 {
3318 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3319 it != candidate_odr_violations_.end();
3320 ++it)
3321 {
3322 const char* const symbol_name = it->first;
3323
3324 std::string first_object_name;
3325 std::vector<std::string> first_object_linenos;
3326
3327 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3328 locs = it->second.begin();
3329 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3330 locs_end = it->second.end();
3331 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3332 {
3333 // Save the line numbers from the first definition to
3334 // compare to the other definitions. Ideally, we'd compare
3335 // every definition to every other, but we don't want to
3336 // take O(N^2) time to do this. This shortcut may cause
3337 // false negatives that appear or disappear depending on the
3338 // link order, but it won't cause false positives.
3339 first_object_name = locs->object->name();
3340 first_object_linenos = this->linenos_from_loc(task, *locs);
3341 }
3342 if (first_object_linenos.empty())
3343 continue;
3344
3345 // Sort by Odr_violation_compare to make std::set_intersection work.
3346 std::string first_object_canonical_result = first_object_linenos.back();
3347 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3348 Odr_violation_compare());
3349
3350 for (; locs != locs_end; ++locs)
3351 {
3352 std::vector<std::string> linenos =
3353 this->linenos_from_loc(task, *locs);
3354 // linenos will be empty if we couldn't parse the debug info.
3355 if (linenos.empty())
3356 continue;
3357 // Sort by Odr_violation_compare to make std::set_intersection work.
3358 gold_assert(!linenos.empty());
3359 std::string second_object_canonical_result = linenos.back();
3360 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3361
3362 Check_intersection intersection_result =
3363 std::set_intersection(first_object_linenos.begin(),
3364 first_object_linenos.end(),
3365 linenos.begin(),
3366 linenos.end(),
3367 Check_intersection(),
3368 Odr_violation_compare());
3369 if (!intersection_result.had_intersection())
3370 {
3371 gold_warning(_("while linking %s: symbol '%s' defined in "
3372 "multiple places (possible ODR violation):"),
3373 output_file_name, demangle(symbol_name).c_str());
3374 // This only prints one location from each definition,
3375 // which may not be the location we expect to intersect
3376 // with another definition. We could print the whole
3377 // set of locations, but that seems too verbose.
3378 fprintf(stderr, _(" %s from %s\n"),
3379 first_object_canonical_result.c_str(),
3380 first_object_name.c_str());
3381 fprintf(stderr, _(" %s from %s\n"),
3382 second_object_canonical_result.c_str(),
3383 locs->object->name().c_str());
3384 // Only print one broken pair, to avoid needing to
3385 // compare against a list of the disjoint definition
3386 // locations we've found so far. (If we kept comparing
3387 // against just the first one, we'd get a lot of
3388 // redundant complaints about the second definition
3389 // location.)
3390 break;
3391 }
3392 }
3393 }
3394 // We only call one_addr2line() in this function, so we can clear its cache.
3395 Dwarf_line_info::clear_addr2line_cache();
3396 }
3397
3398 // Warnings functions.
3399
3400 // Add a new warning.
3401
3402 void
3403 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3404 const std::string& warning)
3405 {
3406 name = symtab->canonicalize_name(name);
3407 this->warnings_[name].set(obj, warning);
3408 }
3409
3410 // Look through the warnings and mark the symbols for which we should
3411 // warn. This is called during Layout::finalize when we know the
3412 // sources for all the symbols.
3413
3414 void
3415 Warnings::note_warnings(Symbol_table* symtab)
3416 {
3417 for (Warning_table::iterator p = this->warnings_.begin();
3418 p != this->warnings_.end();
3419 ++p)
3420 {
3421 Symbol* sym = symtab->lookup(p->first, NULL);
3422 if (sym != NULL
3423 && sym->source() == Symbol::FROM_OBJECT
3424 && sym->object() == p->second.object)
3425 sym->set_has_warning();
3426 }
3427 }
3428
3429 // Issue a warning. This is called when we see a relocation against a
3430 // symbol for which has a warning.
3431
3432 template<int size, bool big_endian>
3433 void
3434 Warnings::issue_warning(const Symbol* sym,
3435 const Relocate_info<size, big_endian>* relinfo,
3436 size_t relnum, off_t reloffset) const
3437 {
3438 gold_assert(sym->has_warning());
3439
3440 // We don't want to issue a warning for a relocation against the
3441 // symbol in the same object file in which the symbol is defined.
3442 if (sym->object() == relinfo->object)
3443 return;
3444
3445 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3446 gold_assert(p != this->warnings_.end());
3447 gold_warning_at_location(relinfo, relnum, reloffset,
3448 "%s", p->second.text.c_str());
3449 }
3450
3451 // Instantiate the templates we need. We could use the configure
3452 // script to restrict this to only the ones needed for implemented
3453 // targets.
3454
3455 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3456 template
3457 void
3458 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3459 #endif
3460
3461 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3462 template
3463 void
3464 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3465 #endif
3466
3467 #ifdef HAVE_TARGET_32_LITTLE
3468 template
3469 void
3470 Symbol_table::add_from_relobj<32, false>(
3471 Sized_relobj_file<32, false>* relobj,
3472 const unsigned char* syms,
3473 size_t count,
3474 size_t symndx_offset,
3475 const char* sym_names,
3476 size_t sym_name_size,
3477 Sized_relobj_file<32, false>::Symbols* sympointers,
3478 size_t* defined);
3479 #endif
3480
3481 #ifdef HAVE_TARGET_32_BIG
3482 template
3483 void
3484 Symbol_table::add_from_relobj<32, true>(
3485 Sized_relobj_file<32, true>* relobj,
3486 const unsigned char* syms,
3487 size_t count,
3488 size_t symndx_offset,
3489 const char* sym_names,
3490 size_t sym_name_size,
3491 Sized_relobj_file<32, true>::Symbols* sympointers,
3492 size_t* defined);
3493 #endif
3494
3495 #ifdef HAVE_TARGET_64_LITTLE
3496 template
3497 void
3498 Symbol_table::add_from_relobj<64, false>(
3499 Sized_relobj_file<64, false>* relobj,
3500 const unsigned char* syms,
3501 size_t count,
3502 size_t symndx_offset,
3503 const char* sym_names,
3504 size_t sym_name_size,
3505 Sized_relobj_file<64, false>::Symbols* sympointers,
3506 size_t* defined);
3507 #endif
3508
3509 #ifdef HAVE_TARGET_64_BIG
3510 template
3511 void
3512 Symbol_table::add_from_relobj<64, true>(
3513 Sized_relobj_file<64, true>* relobj,
3514 const unsigned char* syms,
3515 size_t count,
3516 size_t symndx_offset,
3517 const char* sym_names,
3518 size_t sym_name_size,
3519 Sized_relobj_file<64, true>::Symbols* sympointers,
3520 size_t* defined);
3521 #endif
3522
3523 #ifdef HAVE_TARGET_32_LITTLE
3524 template
3525 Symbol*
3526 Symbol_table::add_from_pluginobj<32, false>(
3527 Sized_pluginobj<32, false>* obj,
3528 const char* name,
3529 const char* ver,
3530 elfcpp::Sym<32, false>* sym);
3531 #endif
3532
3533 #ifdef HAVE_TARGET_32_BIG
3534 template
3535 Symbol*
3536 Symbol_table::add_from_pluginobj<32, true>(
3537 Sized_pluginobj<32, true>* obj,
3538 const char* name,
3539 const char* ver,
3540 elfcpp::Sym<32, true>* sym);
3541 #endif
3542
3543 #ifdef HAVE_TARGET_64_LITTLE
3544 template
3545 Symbol*
3546 Symbol_table::add_from_pluginobj<64, false>(
3547 Sized_pluginobj<64, false>* obj,
3548 const char* name,
3549 const char* ver,
3550 elfcpp::Sym<64, false>* sym);
3551 #endif
3552
3553 #ifdef HAVE_TARGET_64_BIG
3554 template
3555 Symbol*
3556 Symbol_table::add_from_pluginobj<64, true>(
3557 Sized_pluginobj<64, true>* obj,
3558 const char* name,
3559 const char* ver,
3560 elfcpp::Sym<64, true>* sym);
3561 #endif
3562
3563 #ifdef HAVE_TARGET_32_LITTLE
3564 template
3565 void
3566 Symbol_table::add_from_dynobj<32, false>(
3567 Sized_dynobj<32, false>* dynobj,
3568 const unsigned char* syms,
3569 size_t count,
3570 const char* sym_names,
3571 size_t sym_name_size,
3572 const unsigned char* versym,
3573 size_t versym_size,
3574 const std::vector<const char*>* version_map,
3575 Sized_relobj_file<32, false>::Symbols* sympointers,
3576 size_t* defined);
3577 #endif
3578
3579 #ifdef HAVE_TARGET_32_BIG
3580 template
3581 void
3582 Symbol_table::add_from_dynobj<32, true>(
3583 Sized_dynobj<32, true>* dynobj,
3584 const unsigned char* syms,
3585 size_t count,
3586 const char* sym_names,
3587 size_t sym_name_size,
3588 const unsigned char* versym,
3589 size_t versym_size,
3590 const std::vector<const char*>* version_map,
3591 Sized_relobj_file<32, true>::Symbols* sympointers,
3592 size_t* defined);
3593 #endif
3594
3595 #ifdef HAVE_TARGET_64_LITTLE
3596 template
3597 void
3598 Symbol_table::add_from_dynobj<64, false>(
3599 Sized_dynobj<64, false>* dynobj,
3600 const unsigned char* syms,
3601 size_t count,
3602 const char* sym_names,
3603 size_t sym_name_size,
3604 const unsigned char* versym,
3605 size_t versym_size,
3606 const std::vector<const char*>* version_map,
3607 Sized_relobj_file<64, false>::Symbols* sympointers,
3608 size_t* defined);
3609 #endif
3610
3611 #ifdef HAVE_TARGET_64_BIG
3612 template
3613 void
3614 Symbol_table::add_from_dynobj<64, true>(
3615 Sized_dynobj<64, true>* dynobj,
3616 const unsigned char* syms,
3617 size_t count,
3618 const char* sym_names,
3619 size_t sym_name_size,
3620 const unsigned char* versym,
3621 size_t versym_size,
3622 const std::vector<const char*>* version_map,
3623 Sized_relobj_file<64, true>::Symbols* sympointers,
3624 size_t* defined);
3625 #endif
3626
3627 #ifdef HAVE_TARGET_32_LITTLE
3628 template
3629 Sized_symbol<32>*
3630 Symbol_table::add_from_incrobj(
3631 Object* obj,
3632 const char* name,
3633 const char* ver,
3634 elfcpp::Sym<32, false>* sym);
3635 #endif
3636
3637 #ifdef HAVE_TARGET_32_BIG
3638 template
3639 Sized_symbol<32>*
3640 Symbol_table::add_from_incrobj(
3641 Object* obj,
3642 const char* name,
3643 const char* ver,
3644 elfcpp::Sym<32, true>* sym);
3645 #endif
3646
3647 #ifdef HAVE_TARGET_64_LITTLE
3648 template
3649 Sized_symbol<64>*
3650 Symbol_table::add_from_incrobj(
3651 Object* obj,
3652 const char* name,
3653 const char* ver,
3654 elfcpp::Sym<64, false>* sym);
3655 #endif
3656
3657 #ifdef HAVE_TARGET_64_BIG
3658 template
3659 Sized_symbol<64>*
3660 Symbol_table::add_from_incrobj(
3661 Object* obj,
3662 const char* name,
3663 const char* ver,
3664 elfcpp::Sym<64, true>* sym);
3665 #endif
3666
3667 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3668 template
3669 void
3670 Symbol_table::define_with_copy_reloc<32>(
3671 Sized_symbol<32>* sym,
3672 Output_data* posd,
3673 elfcpp::Elf_types<32>::Elf_Addr value);
3674 #endif
3675
3676 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3677 template
3678 void
3679 Symbol_table::define_with_copy_reloc<64>(
3680 Sized_symbol<64>* sym,
3681 Output_data* posd,
3682 elfcpp::Elf_types<64>::Elf_Addr value);
3683 #endif
3684
3685 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3686 template
3687 void
3688 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3689 Output_data* od, Value_type value,
3690 Size_type symsize, elfcpp::STT type,
3691 elfcpp::STB binding,
3692 elfcpp::STV visibility,
3693 unsigned char nonvis,
3694 bool offset_is_from_end,
3695 bool is_predefined);
3696 #endif
3697
3698 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3699 template
3700 void
3701 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3702 Output_data* od, Value_type value,
3703 Size_type symsize, elfcpp::STT type,
3704 elfcpp::STB binding,
3705 elfcpp::STV visibility,
3706 unsigned char nonvis,
3707 bool offset_is_from_end,
3708 bool is_predefined);
3709 #endif
3710
3711 #ifdef HAVE_TARGET_32_LITTLE
3712 template
3713 void
3714 Warnings::issue_warning<32, false>(const Symbol* sym,
3715 const Relocate_info<32, false>* relinfo,
3716 size_t relnum, off_t reloffset) const;
3717 #endif
3718
3719 #ifdef HAVE_TARGET_32_BIG
3720 template
3721 void
3722 Warnings::issue_warning<32, true>(const Symbol* sym,
3723 const Relocate_info<32, true>* relinfo,
3724 size_t relnum, off_t reloffset) const;
3725 #endif
3726
3727 #ifdef HAVE_TARGET_64_LITTLE
3728 template
3729 void
3730 Warnings::issue_warning<64, false>(const Symbol* sym,
3731 const Relocate_info<64, false>* relinfo,
3732 size_t relnum, off_t reloffset) const;
3733 #endif
3734
3735 #ifdef HAVE_TARGET_64_BIG
3736 template
3737 void
3738 Warnings::issue_warning<64, true>(const Symbol* sym,
3739 const Relocate_info<64, true>* relinfo,
3740 size_t relnum, off_t reloffset) const;
3741 #endif
3742
3743 } // End namespace gold.
This page took 0.124793 seconds and 5 git commands to generate.