gold/
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Class Symbol_table.
531
532 Symbol_table::Symbol_table(unsigned int count,
533 const Version_script_info& version_script)
534 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
535 forwarders_(), commons_(), tls_commons_(), small_commons_(),
536 large_commons_(), forced_locals_(), warnings_(),
537 version_script_(version_script), gc_(NULL), icf_(NULL)
538 {
539 namepool_.reserve(count);
540 }
541
542 Symbol_table::~Symbol_table()
543 {
544 }
545
546 // The symbol table key equality function. This is called with
547 // Stringpool keys.
548
549 inline bool
550 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
551 const Symbol_table_key& k2) const
552 {
553 return k1.first == k2.first && k1.second == k2.second;
554 }
555
556 bool
557 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
558 {
559 return (parameters->options().icf_enabled()
560 && this->icf_->is_section_folded(obj, shndx));
561 }
562
563 // For symbols that have been listed with a -u or --export-dynamic-symbol
564 // option, add them to the work list to avoid gc'ing them.
565
566 void
567 Symbol_table::gc_mark_undef_symbols(Layout* layout)
568 {
569 for (options::String_set::const_iterator p =
570 parameters->options().undefined_begin();
571 p != parameters->options().undefined_end();
572 ++p)
573 {
574 const char* name = p->c_str();
575 Symbol* sym = this->lookup(name);
576 gold_assert(sym != NULL);
577 if (sym->source() == Symbol::FROM_OBJECT
578 && !sym->object()->is_dynamic())
579 {
580 Relobj* obj = static_cast<Relobj*>(sym->object());
581 bool is_ordinary;
582 unsigned int shndx = sym->shndx(&is_ordinary);
583 if (is_ordinary)
584 {
585 gold_assert(this->gc_ != NULL);
586 this->gc_->worklist().push(Section_id(obj, shndx));
587 }
588 }
589 }
590
591 for (options::String_set::const_iterator p =
592 parameters->options().export_dynamic_symbol_begin();
593 p != parameters->options().export_dynamic_symbol_end();
594 ++p)
595 {
596 const char* name = p->c_str();
597 Symbol* sym = this->lookup(name);
598 gold_assert(sym != NULL);
599 if (sym->source() == Symbol::FROM_OBJECT
600 && !sym->object()->is_dynamic())
601 {
602 Relobj* obj = static_cast<Relobj*>(sym->object());
603 bool is_ordinary;
604 unsigned int shndx = sym->shndx(&is_ordinary);
605 if (is_ordinary)
606 {
607 gold_assert(this->gc_ != NULL);
608 this->gc_->worklist().push(Section_id(obj, shndx));
609 }
610 }
611 }
612
613 for (Script_options::referenced_const_iterator p =
614 layout->script_options()->referenced_begin();
615 p != layout->script_options()->referenced_end();
616 ++p)
617 {
618 Symbol* sym = this->lookup(p->c_str());
619 gold_assert(sym != NULL);
620 if (sym->source() == Symbol::FROM_OBJECT
621 && !sym->object()->is_dynamic())
622 {
623 Relobj* obj = static_cast<Relobj*>(sym->object());
624 bool is_ordinary;
625 unsigned int shndx = sym->shndx(&is_ordinary);
626 if (is_ordinary)
627 {
628 gold_assert(this->gc_ != NULL);
629 this->gc_->worklist().push(Section_id(obj, shndx));
630 }
631 }
632 }
633 }
634
635 void
636 Symbol_table::gc_mark_symbol(Symbol* sym)
637 {
638 // Add the object and section to the work list.
639 Relobj* obj = static_cast<Relobj*>(sym->object());
640 bool is_ordinary;
641 unsigned int shndx = sym->shndx(&is_ordinary);
642 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
643 {
644 gold_assert(this->gc_!= NULL);
645 this->gc_->worklist().push(Section_id(obj, shndx));
646 }
647 }
648
649 // When doing garbage collection, keep symbols that have been seen in
650 // dynamic objects.
651 inline void
652 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
653 {
654 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
655 && !sym->object()->is_dynamic())
656 this->gc_mark_symbol(sym);
657 }
658
659 // Make TO a symbol which forwards to FROM.
660
661 void
662 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
663 {
664 gold_assert(from != to);
665 gold_assert(!from->is_forwarder() && !to->is_forwarder());
666 this->forwarders_[from] = to;
667 from->set_forwarder();
668 }
669
670 // Resolve the forwards from FROM, returning the real symbol.
671
672 Symbol*
673 Symbol_table::resolve_forwards(const Symbol* from) const
674 {
675 gold_assert(from->is_forwarder());
676 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
677 this->forwarders_.find(from);
678 gold_assert(p != this->forwarders_.end());
679 return p->second;
680 }
681
682 // Look up a symbol by name.
683
684 Symbol*
685 Symbol_table::lookup(const char* name, const char* version) const
686 {
687 Stringpool::Key name_key;
688 name = this->namepool_.find(name, &name_key);
689 if (name == NULL)
690 return NULL;
691
692 Stringpool::Key version_key = 0;
693 if (version != NULL)
694 {
695 version = this->namepool_.find(version, &version_key);
696 if (version == NULL)
697 return NULL;
698 }
699
700 Symbol_table_key key(name_key, version_key);
701 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
702 if (p == this->table_.end())
703 return NULL;
704 return p->second;
705 }
706
707 // Resolve a Symbol with another Symbol. This is only used in the
708 // unusual case where there are references to both an unversioned
709 // symbol and a symbol with a version, and we then discover that that
710 // version is the default version. Because this is unusual, we do
711 // this the slow way, by converting back to an ELF symbol.
712
713 template<int size, bool big_endian>
714 void
715 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
716 {
717 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
718 elfcpp::Sym_write<size, big_endian> esym(buf);
719 // We don't bother to set the st_name or the st_shndx field.
720 esym.put_st_value(from->value());
721 esym.put_st_size(from->symsize());
722 esym.put_st_info(from->binding(), from->type());
723 esym.put_st_other(from->visibility(), from->nonvis());
724 bool is_ordinary;
725 unsigned int shndx = from->shndx(&is_ordinary);
726 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
727 from->version());
728 if (from->in_reg())
729 to->set_in_reg();
730 if (from->in_dyn())
731 to->set_in_dyn();
732 if (parameters->options().gc_sections())
733 this->gc_mark_dyn_syms(to);
734 }
735
736 // Record that a symbol is forced to be local by a version script or
737 // by visibility.
738
739 void
740 Symbol_table::force_local(Symbol* sym)
741 {
742 if (!sym->is_defined() && !sym->is_common())
743 return;
744 if (sym->is_forced_local())
745 {
746 // We already got this one.
747 return;
748 }
749 sym->set_is_forced_local();
750 this->forced_locals_.push_back(sym);
751 }
752
753 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
754 // is only called for undefined symbols, when at least one --wrap
755 // option was used.
756
757 const char*
758 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
759 {
760 // For some targets, we need to ignore a specific character when
761 // wrapping, and add it back later.
762 char prefix = '\0';
763 if (name[0] == parameters->target().wrap_char())
764 {
765 prefix = name[0];
766 ++name;
767 }
768
769 if (parameters->options().is_wrap(name))
770 {
771 // Turn NAME into __wrap_NAME.
772 std::string s;
773 if (prefix != '\0')
774 s += prefix;
775 s += "__wrap_";
776 s += name;
777
778 // This will give us both the old and new name in NAMEPOOL_, but
779 // that is OK. Only the versions we need will wind up in the
780 // real string table in the output file.
781 return this->namepool_.add(s.c_str(), true, name_key);
782 }
783
784 const char* const real_prefix = "__real_";
785 const size_t real_prefix_length = strlen(real_prefix);
786 if (strncmp(name, real_prefix, real_prefix_length) == 0
787 && parameters->options().is_wrap(name + real_prefix_length))
788 {
789 // Turn __real_NAME into NAME.
790 std::string s;
791 if (prefix != '\0')
792 s += prefix;
793 s += name + real_prefix_length;
794 return this->namepool_.add(s.c_str(), true, name_key);
795 }
796
797 return name;
798 }
799
800 // This is called when we see a symbol NAME/VERSION, and the symbol
801 // already exists in the symbol table, and VERSION is marked as being
802 // the default version. SYM is the NAME/VERSION symbol we just added.
803 // DEFAULT_IS_NEW is true if this is the first time we have seen the
804 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
805
806 template<int size, bool big_endian>
807 void
808 Symbol_table::define_default_version(Sized_symbol<size>* sym,
809 bool default_is_new,
810 Symbol_table_type::iterator pdef)
811 {
812 if (default_is_new)
813 {
814 // This is the first time we have seen NAME/NULL. Make
815 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
816 // version.
817 pdef->second = sym;
818 sym->set_is_default();
819 }
820 else if (pdef->second == sym)
821 {
822 // NAME/NULL already points to NAME/VERSION. Don't mark the
823 // symbol as the default if it is not already the default.
824 }
825 else
826 {
827 // This is the unfortunate case where we already have entries
828 // for both NAME/VERSION and NAME/NULL. We now see a symbol
829 // NAME/VERSION where VERSION is the default version. We have
830 // already resolved this new symbol with the existing
831 // NAME/VERSION symbol.
832
833 // It's possible that NAME/NULL and NAME/VERSION are both
834 // defined in regular objects. This can only happen if one
835 // object file defines foo and another defines foo@@ver. This
836 // is somewhat obscure, but we call it a multiple definition
837 // error.
838
839 // It's possible that NAME/NULL actually has a version, in which
840 // case it won't be the same as VERSION. This happens with
841 // ver_test_7.so in the testsuite for the symbol t2_2. We see
842 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
843 // then see an unadorned t2_2 in an object file and give it
844 // version VER1 from the version script. This looks like a
845 // default definition for VER1, so it looks like we should merge
846 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
847 // not obvious that this is an error, either. So we just punt.
848
849 // If one of the symbols has non-default visibility, and the
850 // other is defined in a shared object, then they are different
851 // symbols.
852
853 // Otherwise, we just resolve the symbols as though they were
854 // the same.
855
856 if (pdef->second->version() != NULL)
857 gold_assert(pdef->second->version() != sym->version());
858 else if (sym->visibility() != elfcpp::STV_DEFAULT
859 && pdef->second->is_from_dynobj())
860 ;
861 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
862 && sym->is_from_dynobj())
863 ;
864 else
865 {
866 const Sized_symbol<size>* symdef;
867 symdef = this->get_sized_symbol<size>(pdef->second);
868 Symbol_table::resolve<size, big_endian>(sym, symdef);
869 this->make_forwarder(pdef->second, sym);
870 pdef->second = sym;
871 sym->set_is_default();
872 }
873 }
874 }
875
876 // Add one symbol from OBJECT to the symbol table. NAME is symbol
877 // name and VERSION is the version; both are canonicalized. DEF is
878 // whether this is the default version. ST_SHNDX is the symbol's
879 // section index; IS_ORDINARY is whether this is a normal section
880 // rather than a special code.
881
882 // If IS_DEFAULT_VERSION is true, then this is the definition of a
883 // default version of a symbol. That means that any lookup of
884 // NAME/NULL and any lookup of NAME/VERSION should always return the
885 // same symbol. This is obvious for references, but in particular we
886 // want to do this for definitions: overriding NAME/NULL should also
887 // override NAME/VERSION. If we don't do that, it would be very hard
888 // to override functions in a shared library which uses versioning.
889
890 // We implement this by simply making both entries in the hash table
891 // point to the same Symbol structure. That is easy enough if this is
892 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
893 // that we have seen both already, in which case they will both have
894 // independent entries in the symbol table. We can't simply change
895 // the symbol table entry, because we have pointers to the entries
896 // attached to the object files. So we mark the entry attached to the
897 // object file as a forwarder, and record it in the forwarders_ map.
898 // Note that entries in the hash table will never be marked as
899 // forwarders.
900 //
901 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
902 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
903 // for a special section code. ST_SHNDX may be modified if the symbol
904 // is defined in a section being discarded.
905
906 template<int size, bool big_endian>
907 Sized_symbol<size>*
908 Symbol_table::add_from_object(Object* object,
909 const char* name,
910 Stringpool::Key name_key,
911 const char* version,
912 Stringpool::Key version_key,
913 bool is_default_version,
914 const elfcpp::Sym<size, big_endian>& sym,
915 unsigned int st_shndx,
916 bool is_ordinary,
917 unsigned int orig_st_shndx)
918 {
919 // Print a message if this symbol is being traced.
920 if (parameters->options().is_trace_symbol(name))
921 {
922 if (orig_st_shndx == elfcpp::SHN_UNDEF)
923 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
924 else
925 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
926 }
927
928 // For an undefined symbol, we may need to adjust the name using
929 // --wrap.
930 if (orig_st_shndx == elfcpp::SHN_UNDEF
931 && parameters->options().any_wrap())
932 {
933 const char* wrap_name = this->wrap_symbol(name, &name_key);
934 if (wrap_name != name)
935 {
936 // If we see a reference to malloc with version GLIBC_2.0,
937 // and we turn it into a reference to __wrap_malloc, then we
938 // discard the version number. Otherwise the user would be
939 // required to specify the correct version for
940 // __wrap_malloc.
941 version = NULL;
942 version_key = 0;
943 name = wrap_name;
944 }
945 }
946
947 Symbol* const snull = NULL;
948 std::pair<typename Symbol_table_type::iterator, bool> ins =
949 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
950 snull));
951
952 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
953 std::make_pair(this->table_.end(), false);
954 if (is_default_version)
955 {
956 const Stringpool::Key vnull_key = 0;
957 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
958 vnull_key),
959 snull));
960 }
961
962 // ins.first: an iterator, which is a pointer to a pair.
963 // ins.first->first: the key (a pair of name and version).
964 // ins.first->second: the value (Symbol*).
965 // ins.second: true if new entry was inserted, false if not.
966
967 Sized_symbol<size>* ret;
968 bool was_undefined;
969 bool was_common;
970 if (!ins.second)
971 {
972 // We already have an entry for NAME/VERSION.
973 ret = this->get_sized_symbol<size>(ins.first->second);
974 gold_assert(ret != NULL);
975
976 was_undefined = ret->is_undefined();
977 was_common = ret->is_common();
978
979 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
980 version);
981 if (parameters->options().gc_sections())
982 this->gc_mark_dyn_syms(ret);
983
984 if (is_default_version)
985 this->define_default_version<size, big_endian>(ret, insdefault.second,
986 insdefault.first);
987 }
988 else
989 {
990 // This is the first time we have seen NAME/VERSION.
991 gold_assert(ins.first->second == NULL);
992
993 if (is_default_version && !insdefault.second)
994 {
995 // We already have an entry for NAME/NULL. If we override
996 // it, then change it to NAME/VERSION.
997 ret = this->get_sized_symbol<size>(insdefault.first->second);
998
999 was_undefined = ret->is_undefined();
1000 was_common = ret->is_common();
1001
1002 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1003 version);
1004 if (parameters->options().gc_sections())
1005 this->gc_mark_dyn_syms(ret);
1006 ins.first->second = ret;
1007 }
1008 else
1009 {
1010 was_undefined = false;
1011 was_common = false;
1012
1013 Sized_target<size, big_endian>* target =
1014 parameters->sized_target<size, big_endian>();
1015 if (!target->has_make_symbol())
1016 ret = new Sized_symbol<size>();
1017 else
1018 {
1019 ret = target->make_symbol();
1020 if (ret == NULL)
1021 {
1022 // This means that we don't want a symbol table
1023 // entry after all.
1024 if (!is_default_version)
1025 this->table_.erase(ins.first);
1026 else
1027 {
1028 this->table_.erase(insdefault.first);
1029 // Inserting INSDEFAULT invalidated INS.
1030 this->table_.erase(std::make_pair(name_key,
1031 version_key));
1032 }
1033 return NULL;
1034 }
1035 }
1036
1037 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1038
1039 ins.first->second = ret;
1040 if (is_default_version)
1041 {
1042 // This is the first time we have seen NAME/NULL. Point
1043 // it at the new entry for NAME/VERSION.
1044 gold_assert(insdefault.second);
1045 insdefault.first->second = ret;
1046 }
1047 }
1048
1049 if (is_default_version)
1050 ret->set_is_default();
1051 }
1052
1053 // Record every time we see a new undefined symbol, to speed up
1054 // archive groups.
1055 if (!was_undefined && ret->is_undefined())
1056 {
1057 ++this->saw_undefined_;
1058 if (parameters->options().has_plugins())
1059 parameters->options().plugins()->new_undefined_symbol(ret);
1060 }
1061
1062 // Keep track of common symbols, to speed up common symbol
1063 // allocation.
1064 if (!was_common && ret->is_common())
1065 {
1066 if (ret->type() == elfcpp::STT_TLS)
1067 this->tls_commons_.push_back(ret);
1068 else if (!is_ordinary
1069 && st_shndx == parameters->target().small_common_shndx())
1070 this->small_commons_.push_back(ret);
1071 else if (!is_ordinary
1072 && st_shndx == parameters->target().large_common_shndx())
1073 this->large_commons_.push_back(ret);
1074 else
1075 this->commons_.push_back(ret);
1076 }
1077
1078 // If we're not doing a relocatable link, then any symbol with
1079 // hidden or internal visibility is local.
1080 if ((ret->visibility() == elfcpp::STV_HIDDEN
1081 || ret->visibility() == elfcpp::STV_INTERNAL)
1082 && (ret->binding() == elfcpp::STB_GLOBAL
1083 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1084 || ret->binding() == elfcpp::STB_WEAK)
1085 && !parameters->options().relocatable())
1086 this->force_local(ret);
1087
1088 return ret;
1089 }
1090
1091 // Add all the symbols in a relocatable object to the hash table.
1092
1093 template<int size, bool big_endian>
1094 void
1095 Symbol_table::add_from_relobj(
1096 Sized_relobj_file<size, big_endian>* relobj,
1097 const unsigned char* syms,
1098 size_t count,
1099 size_t symndx_offset,
1100 const char* sym_names,
1101 size_t sym_name_size,
1102 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1103 size_t* defined)
1104 {
1105 *defined = 0;
1106
1107 gold_assert(size == parameters->target().get_size());
1108
1109 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1110
1111 const bool just_symbols = relobj->just_symbols();
1112
1113 const unsigned char* p = syms;
1114 for (size_t i = 0; i < count; ++i, p += sym_size)
1115 {
1116 (*sympointers)[i] = NULL;
1117
1118 elfcpp::Sym<size, big_endian> sym(p);
1119
1120 unsigned int st_name = sym.get_st_name();
1121 if (st_name >= sym_name_size)
1122 {
1123 relobj->error(_("bad global symbol name offset %u at %zu"),
1124 st_name, i);
1125 continue;
1126 }
1127
1128 const char* name = sym_names + st_name;
1129
1130 bool is_ordinary;
1131 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1132 sym.get_st_shndx(),
1133 &is_ordinary);
1134 unsigned int orig_st_shndx = st_shndx;
1135 if (!is_ordinary)
1136 orig_st_shndx = elfcpp::SHN_UNDEF;
1137
1138 if (st_shndx != elfcpp::SHN_UNDEF)
1139 ++*defined;
1140
1141 // A symbol defined in a section which we are not including must
1142 // be treated as an undefined symbol.
1143 bool is_defined_in_discarded_section = false;
1144 if (st_shndx != elfcpp::SHN_UNDEF
1145 && is_ordinary
1146 && !relobj->is_section_included(st_shndx)
1147 && !this->is_section_folded(relobj, st_shndx))
1148 {
1149 st_shndx = elfcpp::SHN_UNDEF;
1150 is_defined_in_discarded_section = true;
1151 }
1152
1153 // In an object file, an '@' in the name separates the symbol
1154 // name from the version name. If there are two '@' characters,
1155 // this is the default version.
1156 const char* ver = strchr(name, '@');
1157 Stringpool::Key ver_key = 0;
1158 int namelen = 0;
1159 // IS_DEFAULT_VERSION: is the version default?
1160 // IS_FORCED_LOCAL: is the symbol forced local?
1161 bool is_default_version = false;
1162 bool is_forced_local = false;
1163
1164 // FIXME: For incremental links, we don't store version information,
1165 // so we need to ignore version symbols for now.
1166 if (parameters->incremental_update() && ver != NULL)
1167 {
1168 namelen = ver - name;
1169 ver = NULL;
1170 }
1171
1172 if (ver != NULL)
1173 {
1174 // The symbol name is of the form foo@VERSION or foo@@VERSION
1175 namelen = ver - name;
1176 ++ver;
1177 if (*ver == '@')
1178 {
1179 is_default_version = true;
1180 ++ver;
1181 }
1182 ver = this->namepool_.add(ver, true, &ver_key);
1183 }
1184 // We don't want to assign a version to an undefined symbol,
1185 // even if it is listed in the version script. FIXME: What
1186 // about a common symbol?
1187 else
1188 {
1189 namelen = strlen(name);
1190 if (!this->version_script_.empty()
1191 && st_shndx != elfcpp::SHN_UNDEF)
1192 {
1193 // The symbol name did not have a version, but the
1194 // version script may assign a version anyway.
1195 std::string version;
1196 bool is_global;
1197 if (this->version_script_.get_symbol_version(name, &version,
1198 &is_global))
1199 {
1200 if (!is_global)
1201 is_forced_local = true;
1202 else if (!version.empty())
1203 {
1204 ver = this->namepool_.add_with_length(version.c_str(),
1205 version.length(),
1206 true,
1207 &ver_key);
1208 is_default_version = true;
1209 }
1210 }
1211 }
1212 }
1213
1214 elfcpp::Sym<size, big_endian>* psym = &sym;
1215 unsigned char symbuf[sym_size];
1216 elfcpp::Sym<size, big_endian> sym2(symbuf);
1217 if (just_symbols)
1218 {
1219 memcpy(symbuf, p, sym_size);
1220 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1221 if (orig_st_shndx != elfcpp::SHN_UNDEF
1222 && is_ordinary
1223 && relobj->e_type() == elfcpp::ET_REL)
1224 {
1225 // Symbol values in relocatable object files are section
1226 // relative. This is normally what we want, but since here
1227 // we are converting the symbol to absolute we need to add
1228 // the section address. The section address in an object
1229 // file is normally zero, but people can use a linker
1230 // script to change it.
1231 sw.put_st_value(sym.get_st_value()
1232 + relobj->section_address(orig_st_shndx));
1233 }
1234 st_shndx = elfcpp::SHN_ABS;
1235 is_ordinary = false;
1236 psym = &sym2;
1237 }
1238
1239 // Fix up visibility if object has no-export set.
1240 if (relobj->no_export()
1241 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1242 {
1243 // We may have copied symbol already above.
1244 if (psym != &sym2)
1245 {
1246 memcpy(symbuf, p, sym_size);
1247 psym = &sym2;
1248 }
1249
1250 elfcpp::STV visibility = sym2.get_st_visibility();
1251 if (visibility == elfcpp::STV_DEFAULT
1252 || visibility == elfcpp::STV_PROTECTED)
1253 {
1254 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1255 unsigned char nonvis = sym2.get_st_nonvis();
1256 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1257 }
1258 }
1259
1260 Stringpool::Key name_key;
1261 name = this->namepool_.add_with_length(name, namelen, true,
1262 &name_key);
1263
1264 Sized_symbol<size>* res;
1265 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1266 is_default_version, *psym, st_shndx,
1267 is_ordinary, orig_st_shndx);
1268
1269 if (is_forced_local)
1270 this->force_local(res);
1271
1272 // Do not treat this symbol as garbage if this symbol will be
1273 // exported to the dynamic symbol table. This is true when
1274 // building a shared library or using --export-dynamic and
1275 // the symbol is externally visible.
1276 if (parameters->options().gc_sections()
1277 && res->is_externally_visible()
1278 && !res->is_from_dynobj()
1279 && (parameters->options().shared()
1280 || parameters->options().export_dynamic()))
1281 this->gc_mark_symbol(res);
1282
1283 if (is_defined_in_discarded_section)
1284 res->set_is_defined_in_discarded_section();
1285
1286 (*sympointers)[i] = res;
1287 }
1288 }
1289
1290 // Add a symbol from a plugin-claimed file.
1291
1292 template<int size, bool big_endian>
1293 Symbol*
1294 Symbol_table::add_from_pluginobj(
1295 Sized_pluginobj<size, big_endian>* obj,
1296 const char* name,
1297 const char* ver,
1298 elfcpp::Sym<size, big_endian>* sym)
1299 {
1300 unsigned int st_shndx = sym->get_st_shndx();
1301 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1302
1303 Stringpool::Key ver_key = 0;
1304 bool is_default_version = false;
1305 bool is_forced_local = false;
1306
1307 if (ver != NULL)
1308 {
1309 ver = this->namepool_.add(ver, true, &ver_key);
1310 }
1311 // We don't want to assign a version to an undefined symbol,
1312 // even if it is listed in the version script. FIXME: What
1313 // about a common symbol?
1314 else
1315 {
1316 if (!this->version_script_.empty()
1317 && st_shndx != elfcpp::SHN_UNDEF)
1318 {
1319 // The symbol name did not have a version, but the
1320 // version script may assign a version anyway.
1321 std::string version;
1322 bool is_global;
1323 if (this->version_script_.get_symbol_version(name, &version,
1324 &is_global))
1325 {
1326 if (!is_global)
1327 is_forced_local = true;
1328 else if (!version.empty())
1329 {
1330 ver = this->namepool_.add_with_length(version.c_str(),
1331 version.length(),
1332 true,
1333 &ver_key);
1334 is_default_version = true;
1335 }
1336 }
1337 }
1338 }
1339
1340 Stringpool::Key name_key;
1341 name = this->namepool_.add(name, true, &name_key);
1342
1343 Sized_symbol<size>* res;
1344 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1345 is_default_version, *sym, st_shndx,
1346 is_ordinary, st_shndx);
1347
1348 if (is_forced_local)
1349 this->force_local(res);
1350
1351 return res;
1352 }
1353
1354 // Add all the symbols in a dynamic object to the hash table.
1355
1356 template<int size, bool big_endian>
1357 void
1358 Symbol_table::add_from_dynobj(
1359 Sized_dynobj<size, big_endian>* dynobj,
1360 const unsigned char* syms,
1361 size_t count,
1362 const char* sym_names,
1363 size_t sym_name_size,
1364 const unsigned char* versym,
1365 size_t versym_size,
1366 const std::vector<const char*>* version_map,
1367 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1368 size_t* defined)
1369 {
1370 *defined = 0;
1371
1372 gold_assert(size == parameters->target().get_size());
1373
1374 if (dynobj->just_symbols())
1375 {
1376 gold_error(_("--just-symbols does not make sense with a shared object"));
1377 return;
1378 }
1379
1380 // FIXME: For incremental links, we don't store version information,
1381 // so we need to ignore version symbols for now.
1382 if (parameters->incremental_update())
1383 versym = NULL;
1384
1385 if (versym != NULL && versym_size / 2 < count)
1386 {
1387 dynobj->error(_("too few symbol versions"));
1388 return;
1389 }
1390
1391 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1392
1393 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1394 // weak aliases. This is necessary because if the dynamic object
1395 // provides the same variable under two names, one of which is a
1396 // weak definition, and the regular object refers to the weak
1397 // definition, we have to put both the weak definition and the
1398 // strong definition into the dynamic symbol table. Given a weak
1399 // definition, the only way that we can find the corresponding
1400 // strong definition, if any, is to search the symbol table.
1401 std::vector<Sized_symbol<size>*> object_symbols;
1402
1403 const unsigned char* p = syms;
1404 const unsigned char* vs = versym;
1405 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1406 {
1407 elfcpp::Sym<size, big_endian> sym(p);
1408
1409 if (sympointers != NULL)
1410 (*sympointers)[i] = NULL;
1411
1412 // Ignore symbols with local binding or that have
1413 // internal or hidden visibility.
1414 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1415 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1416 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1417 continue;
1418
1419 // A protected symbol in a shared library must be treated as a
1420 // normal symbol when viewed from outside the shared library.
1421 // Implement this by overriding the visibility here.
1422 elfcpp::Sym<size, big_endian>* psym = &sym;
1423 unsigned char symbuf[sym_size];
1424 elfcpp::Sym<size, big_endian> sym2(symbuf);
1425 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1426 {
1427 memcpy(symbuf, p, sym_size);
1428 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1429 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1430 psym = &sym2;
1431 }
1432
1433 unsigned int st_name = psym->get_st_name();
1434 if (st_name >= sym_name_size)
1435 {
1436 dynobj->error(_("bad symbol name offset %u at %zu"),
1437 st_name, i);
1438 continue;
1439 }
1440
1441 const char* name = sym_names + st_name;
1442
1443 bool is_ordinary;
1444 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1445 &is_ordinary);
1446
1447 if (st_shndx != elfcpp::SHN_UNDEF)
1448 ++*defined;
1449
1450 Sized_symbol<size>* res;
1451
1452 if (versym == NULL)
1453 {
1454 Stringpool::Key name_key;
1455 name = this->namepool_.add(name, true, &name_key);
1456 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1457 false, *psym, st_shndx, is_ordinary,
1458 st_shndx);
1459 }
1460 else
1461 {
1462 // Read the version information.
1463
1464 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1465
1466 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1467 v &= elfcpp::VERSYM_VERSION;
1468
1469 // The Sun documentation says that V can be VER_NDX_LOCAL,
1470 // or VER_NDX_GLOBAL, or a version index. The meaning of
1471 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1472 // The old GNU linker will happily generate VER_NDX_LOCAL
1473 // for an undefined symbol. I don't know what the Sun
1474 // linker will generate.
1475
1476 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1477 && st_shndx != elfcpp::SHN_UNDEF)
1478 {
1479 // This symbol should not be visible outside the object.
1480 continue;
1481 }
1482
1483 // At this point we are definitely going to add this symbol.
1484 Stringpool::Key name_key;
1485 name = this->namepool_.add(name, true, &name_key);
1486
1487 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1488 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1489 {
1490 // This symbol does not have a version.
1491 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1492 false, *psym, st_shndx, is_ordinary,
1493 st_shndx);
1494 }
1495 else
1496 {
1497 if (v >= version_map->size())
1498 {
1499 dynobj->error(_("versym for symbol %zu out of range: %u"),
1500 i, v);
1501 continue;
1502 }
1503
1504 const char* version = (*version_map)[v];
1505 if (version == NULL)
1506 {
1507 dynobj->error(_("versym for symbol %zu has no name: %u"),
1508 i, v);
1509 continue;
1510 }
1511
1512 Stringpool::Key version_key;
1513 version = this->namepool_.add(version, true, &version_key);
1514
1515 // If this is an absolute symbol, and the version name
1516 // and symbol name are the same, then this is the
1517 // version definition symbol. These symbols exist to
1518 // support using -u to pull in particular versions. We
1519 // do not want to record a version for them.
1520 if (st_shndx == elfcpp::SHN_ABS
1521 && !is_ordinary
1522 && name_key == version_key)
1523 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1524 false, *psym, st_shndx, is_ordinary,
1525 st_shndx);
1526 else
1527 {
1528 const bool is_default_version =
1529 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1530 res = this->add_from_object(dynobj, name, name_key, version,
1531 version_key, is_default_version,
1532 *psym, st_shndx,
1533 is_ordinary, st_shndx);
1534 }
1535 }
1536 }
1537
1538 // Note that it is possible that RES was overridden by an
1539 // earlier object, in which case it can't be aliased here.
1540 if (st_shndx != elfcpp::SHN_UNDEF
1541 && is_ordinary
1542 && psym->get_st_type() == elfcpp::STT_OBJECT
1543 && res->source() == Symbol::FROM_OBJECT
1544 && res->object() == dynobj)
1545 object_symbols.push_back(res);
1546
1547 if (sympointers != NULL)
1548 (*sympointers)[i] = res;
1549 }
1550
1551 this->record_weak_aliases(&object_symbols);
1552 }
1553
1554 // Add a symbol from a incremental object file.
1555
1556 template<int size, bool big_endian>
1557 Sized_symbol<size>*
1558 Symbol_table::add_from_incrobj(
1559 Object* obj,
1560 const char* name,
1561 const char* ver,
1562 elfcpp::Sym<size, big_endian>* sym)
1563 {
1564 unsigned int st_shndx = sym->get_st_shndx();
1565 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1566
1567 Stringpool::Key ver_key = 0;
1568 bool is_default_version = false;
1569 bool is_forced_local = false;
1570
1571 Stringpool::Key name_key;
1572 name = this->namepool_.add(name, true, &name_key);
1573
1574 Sized_symbol<size>* res;
1575 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1576 is_default_version, *sym, st_shndx,
1577 is_ordinary, st_shndx);
1578
1579 if (is_forced_local)
1580 this->force_local(res);
1581
1582 return res;
1583 }
1584
1585 // This is used to sort weak aliases. We sort them first by section
1586 // index, then by offset, then by weak ahead of strong.
1587
1588 template<int size>
1589 class Weak_alias_sorter
1590 {
1591 public:
1592 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1593 };
1594
1595 template<int size>
1596 bool
1597 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1598 const Sized_symbol<size>* s2) const
1599 {
1600 bool is_ordinary;
1601 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1602 gold_assert(is_ordinary);
1603 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1604 gold_assert(is_ordinary);
1605 if (s1_shndx != s2_shndx)
1606 return s1_shndx < s2_shndx;
1607
1608 if (s1->value() != s2->value())
1609 return s1->value() < s2->value();
1610 if (s1->binding() != s2->binding())
1611 {
1612 if (s1->binding() == elfcpp::STB_WEAK)
1613 return true;
1614 if (s2->binding() == elfcpp::STB_WEAK)
1615 return false;
1616 }
1617 return std::string(s1->name()) < std::string(s2->name());
1618 }
1619
1620 // SYMBOLS is a list of object symbols from a dynamic object. Look
1621 // for any weak aliases, and record them so that if we add the weak
1622 // alias to the dynamic symbol table, we also add the corresponding
1623 // strong symbol.
1624
1625 template<int size>
1626 void
1627 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1628 {
1629 // Sort the vector by section index, then by offset, then by weak
1630 // ahead of strong.
1631 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1632
1633 // Walk through the vector. For each weak definition, record
1634 // aliases.
1635 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1636 symbols->begin();
1637 p != symbols->end();
1638 ++p)
1639 {
1640 if ((*p)->binding() != elfcpp::STB_WEAK)
1641 continue;
1642
1643 // Build a circular list of weak aliases. Each symbol points to
1644 // the next one in the circular list.
1645
1646 Sized_symbol<size>* from_sym = *p;
1647 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1648 for (q = p + 1; q != symbols->end(); ++q)
1649 {
1650 bool dummy;
1651 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1652 || (*q)->value() != from_sym->value())
1653 break;
1654
1655 this->weak_aliases_[from_sym] = *q;
1656 from_sym->set_has_alias();
1657 from_sym = *q;
1658 }
1659
1660 if (from_sym != *p)
1661 {
1662 this->weak_aliases_[from_sym] = *p;
1663 from_sym->set_has_alias();
1664 }
1665
1666 p = q - 1;
1667 }
1668 }
1669
1670 // Create and return a specially defined symbol. If ONLY_IF_REF is
1671 // true, then only create the symbol if there is a reference to it.
1672 // If this does not return NULL, it sets *POLDSYM to the existing
1673 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1674 // resolve the newly created symbol to the old one. This
1675 // canonicalizes *PNAME and *PVERSION.
1676
1677 template<int size, bool big_endian>
1678 Sized_symbol<size>*
1679 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1680 bool only_if_ref,
1681 Sized_symbol<size>** poldsym,
1682 bool* resolve_oldsym)
1683 {
1684 *resolve_oldsym = false;
1685
1686 // If the caller didn't give us a version, see if we get one from
1687 // the version script.
1688 std::string v;
1689 bool is_default_version = false;
1690 if (*pversion == NULL)
1691 {
1692 bool is_global;
1693 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1694 {
1695 if (is_global && !v.empty())
1696 {
1697 *pversion = v.c_str();
1698 // If we get the version from a version script, then we
1699 // are also the default version.
1700 is_default_version = true;
1701 }
1702 }
1703 }
1704
1705 Symbol* oldsym;
1706 Sized_symbol<size>* sym;
1707
1708 bool add_to_table = false;
1709 typename Symbol_table_type::iterator add_loc = this->table_.end();
1710 bool add_def_to_table = false;
1711 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1712
1713 if (only_if_ref)
1714 {
1715 oldsym = this->lookup(*pname, *pversion);
1716 if (oldsym == NULL && is_default_version)
1717 oldsym = this->lookup(*pname, NULL);
1718 if (oldsym == NULL || !oldsym->is_undefined())
1719 return NULL;
1720
1721 *pname = oldsym->name();
1722 if (is_default_version)
1723 *pversion = this->namepool_.add(*pversion, true, NULL);
1724 else
1725 *pversion = oldsym->version();
1726 }
1727 else
1728 {
1729 // Canonicalize NAME and VERSION.
1730 Stringpool::Key name_key;
1731 *pname = this->namepool_.add(*pname, true, &name_key);
1732
1733 Stringpool::Key version_key = 0;
1734 if (*pversion != NULL)
1735 *pversion = this->namepool_.add(*pversion, true, &version_key);
1736
1737 Symbol* const snull = NULL;
1738 std::pair<typename Symbol_table_type::iterator, bool> ins =
1739 this->table_.insert(std::make_pair(std::make_pair(name_key,
1740 version_key),
1741 snull));
1742
1743 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1744 std::make_pair(this->table_.end(), false);
1745 if (is_default_version)
1746 {
1747 const Stringpool::Key vnull = 0;
1748 insdefault =
1749 this->table_.insert(std::make_pair(std::make_pair(name_key,
1750 vnull),
1751 snull));
1752 }
1753
1754 if (!ins.second)
1755 {
1756 // We already have a symbol table entry for NAME/VERSION.
1757 oldsym = ins.first->second;
1758 gold_assert(oldsym != NULL);
1759
1760 if (is_default_version)
1761 {
1762 Sized_symbol<size>* soldsym =
1763 this->get_sized_symbol<size>(oldsym);
1764 this->define_default_version<size, big_endian>(soldsym,
1765 insdefault.second,
1766 insdefault.first);
1767 }
1768 }
1769 else
1770 {
1771 // We haven't seen this symbol before.
1772 gold_assert(ins.first->second == NULL);
1773
1774 add_to_table = true;
1775 add_loc = ins.first;
1776
1777 if (is_default_version && !insdefault.second)
1778 {
1779 // We are adding NAME/VERSION, and it is the default
1780 // version. We already have an entry for NAME/NULL.
1781 oldsym = insdefault.first->second;
1782 *resolve_oldsym = true;
1783 }
1784 else
1785 {
1786 oldsym = NULL;
1787
1788 if (is_default_version)
1789 {
1790 add_def_to_table = true;
1791 add_def_loc = insdefault.first;
1792 }
1793 }
1794 }
1795 }
1796
1797 const Target& target = parameters->target();
1798 if (!target.has_make_symbol())
1799 sym = new Sized_symbol<size>();
1800 else
1801 {
1802 Sized_target<size, big_endian>* sized_target =
1803 parameters->sized_target<size, big_endian>();
1804 sym = sized_target->make_symbol();
1805 if (sym == NULL)
1806 return NULL;
1807 }
1808
1809 if (add_to_table)
1810 add_loc->second = sym;
1811 else
1812 gold_assert(oldsym != NULL);
1813
1814 if (add_def_to_table)
1815 add_def_loc->second = sym;
1816
1817 *poldsym = this->get_sized_symbol<size>(oldsym);
1818
1819 return sym;
1820 }
1821
1822 // Define a symbol based on an Output_data.
1823
1824 Symbol*
1825 Symbol_table::define_in_output_data(const char* name,
1826 const char* version,
1827 Defined defined,
1828 Output_data* od,
1829 uint64_t value,
1830 uint64_t symsize,
1831 elfcpp::STT type,
1832 elfcpp::STB binding,
1833 elfcpp::STV visibility,
1834 unsigned char nonvis,
1835 bool offset_is_from_end,
1836 bool only_if_ref)
1837 {
1838 if (parameters->target().get_size() == 32)
1839 {
1840 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1841 return this->do_define_in_output_data<32>(name, version, defined, od,
1842 value, symsize, type, binding,
1843 visibility, nonvis,
1844 offset_is_from_end,
1845 only_if_ref);
1846 #else
1847 gold_unreachable();
1848 #endif
1849 }
1850 else if (parameters->target().get_size() == 64)
1851 {
1852 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1853 return this->do_define_in_output_data<64>(name, version, defined, od,
1854 value, symsize, type, binding,
1855 visibility, nonvis,
1856 offset_is_from_end,
1857 only_if_ref);
1858 #else
1859 gold_unreachable();
1860 #endif
1861 }
1862 else
1863 gold_unreachable();
1864 }
1865
1866 // Define a symbol in an Output_data, sized version.
1867
1868 template<int size>
1869 Sized_symbol<size>*
1870 Symbol_table::do_define_in_output_data(
1871 const char* name,
1872 const char* version,
1873 Defined defined,
1874 Output_data* od,
1875 typename elfcpp::Elf_types<size>::Elf_Addr value,
1876 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1877 elfcpp::STT type,
1878 elfcpp::STB binding,
1879 elfcpp::STV visibility,
1880 unsigned char nonvis,
1881 bool offset_is_from_end,
1882 bool only_if_ref)
1883 {
1884 Sized_symbol<size>* sym;
1885 Sized_symbol<size>* oldsym;
1886 bool resolve_oldsym;
1887
1888 if (parameters->target().is_big_endian())
1889 {
1890 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1891 sym = this->define_special_symbol<size, true>(&name, &version,
1892 only_if_ref, &oldsym,
1893 &resolve_oldsym);
1894 #else
1895 gold_unreachable();
1896 #endif
1897 }
1898 else
1899 {
1900 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1901 sym = this->define_special_symbol<size, false>(&name, &version,
1902 only_if_ref, &oldsym,
1903 &resolve_oldsym);
1904 #else
1905 gold_unreachable();
1906 #endif
1907 }
1908
1909 if (sym == NULL)
1910 return NULL;
1911
1912 sym->init_output_data(name, version, od, value, symsize, type, binding,
1913 visibility, nonvis, offset_is_from_end,
1914 defined == PREDEFINED);
1915
1916 if (oldsym == NULL)
1917 {
1918 if (binding == elfcpp::STB_LOCAL
1919 || this->version_script_.symbol_is_local(name))
1920 this->force_local(sym);
1921 else if (version != NULL)
1922 sym->set_is_default();
1923 return sym;
1924 }
1925
1926 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1927 this->override_with_special(oldsym, sym);
1928
1929 if (resolve_oldsym)
1930 return sym;
1931 else
1932 {
1933 delete sym;
1934 return oldsym;
1935 }
1936 }
1937
1938 // Define a symbol based on an Output_segment.
1939
1940 Symbol*
1941 Symbol_table::define_in_output_segment(const char* name,
1942 const char* version,
1943 Defined defined,
1944 Output_segment* os,
1945 uint64_t value,
1946 uint64_t symsize,
1947 elfcpp::STT type,
1948 elfcpp::STB binding,
1949 elfcpp::STV visibility,
1950 unsigned char nonvis,
1951 Symbol::Segment_offset_base offset_base,
1952 bool only_if_ref)
1953 {
1954 if (parameters->target().get_size() == 32)
1955 {
1956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1957 return this->do_define_in_output_segment<32>(name, version, defined, os,
1958 value, symsize, type,
1959 binding, visibility, nonvis,
1960 offset_base, only_if_ref);
1961 #else
1962 gold_unreachable();
1963 #endif
1964 }
1965 else if (parameters->target().get_size() == 64)
1966 {
1967 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1968 return this->do_define_in_output_segment<64>(name, version, defined, os,
1969 value, symsize, type,
1970 binding, visibility, nonvis,
1971 offset_base, only_if_ref);
1972 #else
1973 gold_unreachable();
1974 #endif
1975 }
1976 else
1977 gold_unreachable();
1978 }
1979
1980 // Define a symbol in an Output_segment, sized version.
1981
1982 template<int size>
1983 Sized_symbol<size>*
1984 Symbol_table::do_define_in_output_segment(
1985 const char* name,
1986 const char* version,
1987 Defined defined,
1988 Output_segment* os,
1989 typename elfcpp::Elf_types<size>::Elf_Addr value,
1990 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1991 elfcpp::STT type,
1992 elfcpp::STB binding,
1993 elfcpp::STV visibility,
1994 unsigned char nonvis,
1995 Symbol::Segment_offset_base offset_base,
1996 bool only_if_ref)
1997 {
1998 Sized_symbol<size>* sym;
1999 Sized_symbol<size>* oldsym;
2000 bool resolve_oldsym;
2001
2002 if (parameters->target().is_big_endian())
2003 {
2004 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2005 sym = this->define_special_symbol<size, true>(&name, &version,
2006 only_if_ref, &oldsym,
2007 &resolve_oldsym);
2008 #else
2009 gold_unreachable();
2010 #endif
2011 }
2012 else
2013 {
2014 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2015 sym = this->define_special_symbol<size, false>(&name, &version,
2016 only_if_ref, &oldsym,
2017 &resolve_oldsym);
2018 #else
2019 gold_unreachable();
2020 #endif
2021 }
2022
2023 if (sym == NULL)
2024 return NULL;
2025
2026 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2027 visibility, nonvis, offset_base,
2028 defined == PREDEFINED);
2029
2030 if (oldsym == NULL)
2031 {
2032 if (binding == elfcpp::STB_LOCAL
2033 || this->version_script_.symbol_is_local(name))
2034 this->force_local(sym);
2035 else if (version != NULL)
2036 sym->set_is_default();
2037 return sym;
2038 }
2039
2040 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2041 this->override_with_special(oldsym, sym);
2042
2043 if (resolve_oldsym)
2044 return sym;
2045 else
2046 {
2047 delete sym;
2048 return oldsym;
2049 }
2050 }
2051
2052 // Define a special symbol with a constant value. It is a multiple
2053 // definition error if this symbol is already defined.
2054
2055 Symbol*
2056 Symbol_table::define_as_constant(const char* name,
2057 const char* version,
2058 Defined defined,
2059 uint64_t value,
2060 uint64_t symsize,
2061 elfcpp::STT type,
2062 elfcpp::STB binding,
2063 elfcpp::STV visibility,
2064 unsigned char nonvis,
2065 bool only_if_ref,
2066 bool force_override)
2067 {
2068 if (parameters->target().get_size() == 32)
2069 {
2070 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2071 return this->do_define_as_constant<32>(name, version, defined, value,
2072 symsize, type, binding,
2073 visibility, nonvis, only_if_ref,
2074 force_override);
2075 #else
2076 gold_unreachable();
2077 #endif
2078 }
2079 else if (parameters->target().get_size() == 64)
2080 {
2081 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2082 return this->do_define_as_constant<64>(name, version, defined, value,
2083 symsize, type, binding,
2084 visibility, nonvis, only_if_ref,
2085 force_override);
2086 #else
2087 gold_unreachable();
2088 #endif
2089 }
2090 else
2091 gold_unreachable();
2092 }
2093
2094 // Define a symbol as a constant, sized version.
2095
2096 template<int size>
2097 Sized_symbol<size>*
2098 Symbol_table::do_define_as_constant(
2099 const char* name,
2100 const char* version,
2101 Defined defined,
2102 typename elfcpp::Elf_types<size>::Elf_Addr value,
2103 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2104 elfcpp::STT type,
2105 elfcpp::STB binding,
2106 elfcpp::STV visibility,
2107 unsigned char nonvis,
2108 bool only_if_ref,
2109 bool force_override)
2110 {
2111 Sized_symbol<size>* sym;
2112 Sized_symbol<size>* oldsym;
2113 bool resolve_oldsym;
2114
2115 if (parameters->target().is_big_endian())
2116 {
2117 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2118 sym = this->define_special_symbol<size, true>(&name, &version,
2119 only_if_ref, &oldsym,
2120 &resolve_oldsym);
2121 #else
2122 gold_unreachable();
2123 #endif
2124 }
2125 else
2126 {
2127 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2128 sym = this->define_special_symbol<size, false>(&name, &version,
2129 only_if_ref, &oldsym,
2130 &resolve_oldsym);
2131 #else
2132 gold_unreachable();
2133 #endif
2134 }
2135
2136 if (sym == NULL)
2137 return NULL;
2138
2139 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2140 nonvis, defined == PREDEFINED);
2141
2142 if (oldsym == NULL)
2143 {
2144 // Version symbols are absolute symbols with name == version.
2145 // We don't want to force them to be local.
2146 if ((version == NULL
2147 || name != version
2148 || value != 0)
2149 && (binding == elfcpp::STB_LOCAL
2150 || this->version_script_.symbol_is_local(name)))
2151 this->force_local(sym);
2152 else if (version != NULL
2153 && (name != version || value != 0))
2154 sym->set_is_default();
2155 return sym;
2156 }
2157
2158 if (force_override
2159 || Symbol_table::should_override_with_special(oldsym, type, defined))
2160 this->override_with_special(oldsym, sym);
2161
2162 if (resolve_oldsym)
2163 return sym;
2164 else
2165 {
2166 delete sym;
2167 return oldsym;
2168 }
2169 }
2170
2171 // Define a set of symbols in output sections.
2172
2173 void
2174 Symbol_table::define_symbols(const Layout* layout, int count,
2175 const Define_symbol_in_section* p,
2176 bool only_if_ref)
2177 {
2178 for (int i = 0; i < count; ++i, ++p)
2179 {
2180 Output_section* os = layout->find_output_section(p->output_section);
2181 if (os != NULL)
2182 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2183 p->size, p->type, p->binding,
2184 p->visibility, p->nonvis,
2185 p->offset_is_from_end,
2186 only_if_ref || p->only_if_ref);
2187 else
2188 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2189 p->type, p->binding, p->visibility, p->nonvis,
2190 only_if_ref || p->only_if_ref,
2191 false);
2192 }
2193 }
2194
2195 // Define a set of symbols in output segments.
2196
2197 void
2198 Symbol_table::define_symbols(const Layout* layout, int count,
2199 const Define_symbol_in_segment* p,
2200 bool only_if_ref)
2201 {
2202 for (int i = 0; i < count; ++i, ++p)
2203 {
2204 Output_segment* os = layout->find_output_segment(p->segment_type,
2205 p->segment_flags_set,
2206 p->segment_flags_clear);
2207 if (os != NULL)
2208 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2209 p->size, p->type, p->binding,
2210 p->visibility, p->nonvis,
2211 p->offset_base,
2212 only_if_ref || p->only_if_ref);
2213 else
2214 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2215 p->type, p->binding, p->visibility, p->nonvis,
2216 only_if_ref || p->only_if_ref,
2217 false);
2218 }
2219 }
2220
2221 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2222 // symbol should be defined--typically a .dyn.bss section. VALUE is
2223 // the offset within POSD.
2224
2225 template<int size>
2226 void
2227 Symbol_table::define_with_copy_reloc(
2228 Sized_symbol<size>* csym,
2229 Output_data* posd,
2230 typename elfcpp::Elf_types<size>::Elf_Addr value)
2231 {
2232 gold_assert(csym->is_from_dynobj());
2233 gold_assert(!csym->is_copied_from_dynobj());
2234 Object* object = csym->object();
2235 gold_assert(object->is_dynamic());
2236 Dynobj* dynobj = static_cast<Dynobj*>(object);
2237
2238 // Our copied variable has to override any variable in a shared
2239 // library.
2240 elfcpp::STB binding = csym->binding();
2241 if (binding == elfcpp::STB_WEAK)
2242 binding = elfcpp::STB_GLOBAL;
2243
2244 this->define_in_output_data(csym->name(), csym->version(), COPY,
2245 posd, value, csym->symsize(),
2246 csym->type(), binding,
2247 csym->visibility(), csym->nonvis(),
2248 false, false);
2249
2250 csym->set_is_copied_from_dynobj();
2251 csym->set_needs_dynsym_entry();
2252
2253 this->copied_symbol_dynobjs_[csym] = dynobj;
2254
2255 // We have now defined all aliases, but we have not entered them all
2256 // in the copied_symbol_dynobjs_ map.
2257 if (csym->has_alias())
2258 {
2259 Symbol* sym = csym;
2260 while (true)
2261 {
2262 sym = this->weak_aliases_[sym];
2263 if (sym == csym)
2264 break;
2265 gold_assert(sym->output_data() == posd);
2266
2267 sym->set_is_copied_from_dynobj();
2268 this->copied_symbol_dynobjs_[sym] = dynobj;
2269 }
2270 }
2271 }
2272
2273 // SYM is defined using a COPY reloc. Return the dynamic object where
2274 // the original definition was found.
2275
2276 Dynobj*
2277 Symbol_table::get_copy_source(const Symbol* sym) const
2278 {
2279 gold_assert(sym->is_copied_from_dynobj());
2280 Copied_symbol_dynobjs::const_iterator p =
2281 this->copied_symbol_dynobjs_.find(sym);
2282 gold_assert(p != this->copied_symbol_dynobjs_.end());
2283 return p->second;
2284 }
2285
2286 // Add any undefined symbols named on the command line.
2287
2288 void
2289 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2290 {
2291 if (parameters->options().any_undefined()
2292 || layout->script_options()->any_unreferenced())
2293 {
2294 if (parameters->target().get_size() == 32)
2295 {
2296 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2297 this->do_add_undefined_symbols_from_command_line<32>(layout);
2298 #else
2299 gold_unreachable();
2300 #endif
2301 }
2302 else if (parameters->target().get_size() == 64)
2303 {
2304 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2305 this->do_add_undefined_symbols_from_command_line<64>(layout);
2306 #else
2307 gold_unreachable();
2308 #endif
2309 }
2310 else
2311 gold_unreachable();
2312 }
2313 }
2314
2315 template<int size>
2316 void
2317 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2318 {
2319 for (options::String_set::const_iterator p =
2320 parameters->options().undefined_begin();
2321 p != parameters->options().undefined_end();
2322 ++p)
2323 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2324
2325 for (options::String_set::const_iterator p =
2326 parameters->options().export_dynamic_symbol_begin();
2327 p != parameters->options().export_dynamic_symbol_end();
2328 ++p)
2329 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2330
2331 for (Script_options::referenced_const_iterator p =
2332 layout->script_options()->referenced_begin();
2333 p != layout->script_options()->referenced_end();
2334 ++p)
2335 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2336 }
2337
2338 template<int size>
2339 void
2340 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2341 {
2342 if (this->lookup(name) != NULL)
2343 return;
2344
2345 const char* version = NULL;
2346
2347 Sized_symbol<size>* sym;
2348 Sized_symbol<size>* oldsym;
2349 bool resolve_oldsym;
2350 if (parameters->target().is_big_endian())
2351 {
2352 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2353 sym = this->define_special_symbol<size, true>(&name, &version,
2354 false, &oldsym,
2355 &resolve_oldsym);
2356 #else
2357 gold_unreachable();
2358 #endif
2359 }
2360 else
2361 {
2362 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2363 sym = this->define_special_symbol<size, false>(&name, &version,
2364 false, &oldsym,
2365 &resolve_oldsym);
2366 #else
2367 gold_unreachable();
2368 #endif
2369 }
2370
2371 gold_assert(oldsym == NULL);
2372
2373 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2374 elfcpp::STV_DEFAULT, 0);
2375 ++this->saw_undefined_;
2376 }
2377
2378 // Set the dynamic symbol indexes. INDEX is the index of the first
2379 // global dynamic symbol. Pointers to the symbols are stored into the
2380 // vector SYMS. The names are added to DYNPOOL. This returns an
2381 // updated dynamic symbol index.
2382
2383 unsigned int
2384 Symbol_table::set_dynsym_indexes(unsigned int index,
2385 std::vector<Symbol*>* syms,
2386 Stringpool* dynpool,
2387 Versions* versions)
2388 {
2389 for (Symbol_table_type::iterator p = this->table_.begin();
2390 p != this->table_.end();
2391 ++p)
2392 {
2393 Symbol* sym = p->second;
2394
2395 // Note that SYM may already have a dynamic symbol index, since
2396 // some symbols appear more than once in the symbol table, with
2397 // and without a version.
2398
2399 if (!sym->should_add_dynsym_entry(this))
2400 sym->set_dynsym_index(-1U);
2401 else if (!sym->has_dynsym_index())
2402 {
2403 sym->set_dynsym_index(index);
2404 ++index;
2405 syms->push_back(sym);
2406 dynpool->add(sym->name(), false, NULL);
2407
2408 // Record any version information.
2409 if (sym->version() != NULL)
2410 versions->record_version(this, dynpool, sym);
2411
2412 // If the symbol is defined in a dynamic object and is
2413 // referenced in a regular object, then mark the dynamic
2414 // object as needed. This is used to implement --as-needed.
2415 if (sym->is_from_dynobj() && sym->in_reg())
2416 sym->object()->set_is_needed();
2417 }
2418 }
2419
2420 // Finish up the versions. In some cases this may add new dynamic
2421 // symbols.
2422 index = versions->finalize(this, index, syms);
2423
2424 return index;
2425 }
2426
2427 // Set the final values for all the symbols. The index of the first
2428 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2429 // file offset OFF. Add their names to POOL. Return the new file
2430 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2431
2432 off_t
2433 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2434 size_t dyncount, Stringpool* pool,
2435 unsigned int* plocal_symcount)
2436 {
2437 off_t ret;
2438
2439 gold_assert(*plocal_symcount != 0);
2440 this->first_global_index_ = *plocal_symcount;
2441
2442 this->dynamic_offset_ = dynoff;
2443 this->first_dynamic_global_index_ = dyn_global_index;
2444 this->dynamic_count_ = dyncount;
2445
2446 if (parameters->target().get_size() == 32)
2447 {
2448 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2449 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2450 #else
2451 gold_unreachable();
2452 #endif
2453 }
2454 else if (parameters->target().get_size() == 64)
2455 {
2456 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2457 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2458 #else
2459 gold_unreachable();
2460 #endif
2461 }
2462 else
2463 gold_unreachable();
2464
2465 // Now that we have the final symbol table, we can reliably note
2466 // which symbols should get warnings.
2467 this->warnings_.note_warnings(this);
2468
2469 return ret;
2470 }
2471
2472 // SYM is going into the symbol table at *PINDEX. Add the name to
2473 // POOL, update *PINDEX and *POFF.
2474
2475 template<int size>
2476 void
2477 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2478 unsigned int* pindex, off_t* poff)
2479 {
2480 sym->set_symtab_index(*pindex);
2481 if (sym->version() == NULL || !parameters->options().relocatable())
2482 pool->add(sym->name(), false, NULL);
2483 else
2484 pool->add(sym->versioned_name(), true, NULL);
2485 ++*pindex;
2486 *poff += elfcpp::Elf_sizes<size>::sym_size;
2487 }
2488
2489 // Set the final value for all the symbols. This is called after
2490 // Layout::finalize, so all the output sections have their final
2491 // address.
2492
2493 template<int size>
2494 off_t
2495 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2496 unsigned int* plocal_symcount)
2497 {
2498 off = align_address(off, size >> 3);
2499 this->offset_ = off;
2500
2501 unsigned int index = *plocal_symcount;
2502 const unsigned int orig_index = index;
2503
2504 // First do all the symbols which have been forced to be local, as
2505 // they must appear before all global symbols.
2506 for (Forced_locals::iterator p = this->forced_locals_.begin();
2507 p != this->forced_locals_.end();
2508 ++p)
2509 {
2510 Symbol* sym = *p;
2511 gold_assert(sym->is_forced_local());
2512 if (this->sized_finalize_symbol<size>(sym))
2513 {
2514 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2515 ++*plocal_symcount;
2516 }
2517 }
2518
2519 // Now do all the remaining symbols.
2520 for (Symbol_table_type::iterator p = this->table_.begin();
2521 p != this->table_.end();
2522 ++p)
2523 {
2524 Symbol* sym = p->second;
2525 if (this->sized_finalize_symbol<size>(sym))
2526 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2527 }
2528
2529 this->output_count_ = index - orig_index;
2530
2531 return off;
2532 }
2533
2534 // Compute the final value of SYM and store status in location PSTATUS.
2535 // During relaxation, this may be called multiple times for a symbol to
2536 // compute its would-be final value in each relaxation pass.
2537
2538 template<int size>
2539 typename Sized_symbol<size>::Value_type
2540 Symbol_table::compute_final_value(
2541 const Sized_symbol<size>* sym,
2542 Compute_final_value_status* pstatus) const
2543 {
2544 typedef typename Sized_symbol<size>::Value_type Value_type;
2545 Value_type value;
2546
2547 switch (sym->source())
2548 {
2549 case Symbol::FROM_OBJECT:
2550 {
2551 bool is_ordinary;
2552 unsigned int shndx = sym->shndx(&is_ordinary);
2553
2554 if (!is_ordinary
2555 && shndx != elfcpp::SHN_ABS
2556 && !Symbol::is_common_shndx(shndx))
2557 {
2558 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2559 return 0;
2560 }
2561
2562 Object* symobj = sym->object();
2563 if (symobj->is_dynamic())
2564 {
2565 value = 0;
2566 shndx = elfcpp::SHN_UNDEF;
2567 }
2568 else if (symobj->pluginobj() != NULL)
2569 {
2570 value = 0;
2571 shndx = elfcpp::SHN_UNDEF;
2572 }
2573 else if (shndx == elfcpp::SHN_UNDEF)
2574 value = 0;
2575 else if (!is_ordinary
2576 && (shndx == elfcpp::SHN_ABS
2577 || Symbol::is_common_shndx(shndx)))
2578 value = sym->value();
2579 else
2580 {
2581 Relobj* relobj = static_cast<Relobj*>(symobj);
2582 Output_section* os = relobj->output_section(shndx);
2583
2584 if (this->is_section_folded(relobj, shndx))
2585 {
2586 gold_assert(os == NULL);
2587 // Get the os of the section it is folded onto.
2588 Section_id folded = this->icf_->get_folded_section(relobj,
2589 shndx);
2590 gold_assert(folded.first != NULL);
2591 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2592 unsigned folded_shndx = folded.second;
2593
2594 os = folded_obj->output_section(folded_shndx);
2595 gold_assert(os != NULL);
2596
2597 // Replace (relobj, shndx) with canonical ICF input section.
2598 shndx = folded_shndx;
2599 relobj = folded_obj;
2600 }
2601
2602 uint64_t secoff64 = relobj->output_section_offset(shndx);
2603 if (os == NULL)
2604 {
2605 bool static_or_reloc = (parameters->doing_static_link() ||
2606 parameters->options().relocatable());
2607 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2608
2609 *pstatus = CFVS_NO_OUTPUT_SECTION;
2610 return 0;
2611 }
2612
2613 if (secoff64 == -1ULL)
2614 {
2615 // The section needs special handling (e.g., a merge section).
2616
2617 value = os->output_address(relobj, shndx, sym->value());
2618 }
2619 else
2620 {
2621 Value_type secoff =
2622 convert_types<Value_type, uint64_t>(secoff64);
2623 if (sym->type() == elfcpp::STT_TLS)
2624 value = sym->value() + os->tls_offset() + secoff;
2625 else
2626 value = sym->value() + os->address() + secoff;
2627 }
2628 }
2629 }
2630 break;
2631
2632 case Symbol::IN_OUTPUT_DATA:
2633 {
2634 Output_data* od = sym->output_data();
2635 value = sym->value();
2636 if (sym->type() != elfcpp::STT_TLS)
2637 value += od->address();
2638 else
2639 {
2640 Output_section* os = od->output_section();
2641 gold_assert(os != NULL);
2642 value += os->tls_offset() + (od->address() - os->address());
2643 }
2644 if (sym->offset_is_from_end())
2645 value += od->data_size();
2646 }
2647 break;
2648
2649 case Symbol::IN_OUTPUT_SEGMENT:
2650 {
2651 Output_segment* os = sym->output_segment();
2652 value = sym->value();
2653 if (sym->type() != elfcpp::STT_TLS)
2654 value += os->vaddr();
2655 switch (sym->offset_base())
2656 {
2657 case Symbol::SEGMENT_START:
2658 break;
2659 case Symbol::SEGMENT_END:
2660 value += os->memsz();
2661 break;
2662 case Symbol::SEGMENT_BSS:
2663 value += os->filesz();
2664 break;
2665 default:
2666 gold_unreachable();
2667 }
2668 }
2669 break;
2670
2671 case Symbol::IS_CONSTANT:
2672 value = sym->value();
2673 break;
2674
2675 case Symbol::IS_UNDEFINED:
2676 value = 0;
2677 break;
2678
2679 default:
2680 gold_unreachable();
2681 }
2682
2683 *pstatus = CFVS_OK;
2684 return value;
2685 }
2686
2687 // Finalize the symbol SYM. This returns true if the symbol should be
2688 // added to the symbol table, false otherwise.
2689
2690 template<int size>
2691 bool
2692 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2693 {
2694 typedef typename Sized_symbol<size>::Value_type Value_type;
2695
2696 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2697
2698 // The default version of a symbol may appear twice in the symbol
2699 // table. We only need to finalize it once.
2700 if (sym->has_symtab_index())
2701 return false;
2702
2703 if (!sym->in_reg())
2704 {
2705 gold_assert(!sym->has_symtab_index());
2706 sym->set_symtab_index(-1U);
2707 gold_assert(sym->dynsym_index() == -1U);
2708 return false;
2709 }
2710
2711 // If the symbol is only present on plugin files, the plugin decided we
2712 // don't need it.
2713 if (!sym->in_real_elf())
2714 {
2715 gold_assert(!sym->has_symtab_index());
2716 sym->set_symtab_index(-1U);
2717 return false;
2718 }
2719
2720 // Compute final symbol value.
2721 Compute_final_value_status status;
2722 Value_type value = this->compute_final_value(sym, &status);
2723
2724 switch (status)
2725 {
2726 case CFVS_OK:
2727 break;
2728 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2729 {
2730 bool is_ordinary;
2731 unsigned int shndx = sym->shndx(&is_ordinary);
2732 gold_error(_("%s: unsupported symbol section 0x%x"),
2733 sym->demangled_name().c_str(), shndx);
2734 }
2735 break;
2736 case CFVS_NO_OUTPUT_SECTION:
2737 sym->set_symtab_index(-1U);
2738 return false;
2739 default:
2740 gold_unreachable();
2741 }
2742
2743 sym->set_value(value);
2744
2745 if (parameters->options().strip_all()
2746 || !parameters->options().should_retain_symbol(sym->name()))
2747 {
2748 sym->set_symtab_index(-1U);
2749 return false;
2750 }
2751
2752 return true;
2753 }
2754
2755 // Write out the global symbols.
2756
2757 void
2758 Symbol_table::write_globals(const Stringpool* sympool,
2759 const Stringpool* dynpool,
2760 Output_symtab_xindex* symtab_xindex,
2761 Output_symtab_xindex* dynsym_xindex,
2762 Output_file* of) const
2763 {
2764 switch (parameters->size_and_endianness())
2765 {
2766 #ifdef HAVE_TARGET_32_LITTLE
2767 case Parameters::TARGET_32_LITTLE:
2768 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2769 dynsym_xindex, of);
2770 break;
2771 #endif
2772 #ifdef HAVE_TARGET_32_BIG
2773 case Parameters::TARGET_32_BIG:
2774 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2775 dynsym_xindex, of);
2776 break;
2777 #endif
2778 #ifdef HAVE_TARGET_64_LITTLE
2779 case Parameters::TARGET_64_LITTLE:
2780 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2781 dynsym_xindex, of);
2782 break;
2783 #endif
2784 #ifdef HAVE_TARGET_64_BIG
2785 case Parameters::TARGET_64_BIG:
2786 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2787 dynsym_xindex, of);
2788 break;
2789 #endif
2790 default:
2791 gold_unreachable();
2792 }
2793 }
2794
2795 // Write out the global symbols.
2796
2797 template<int size, bool big_endian>
2798 void
2799 Symbol_table::sized_write_globals(const Stringpool* sympool,
2800 const Stringpool* dynpool,
2801 Output_symtab_xindex* symtab_xindex,
2802 Output_symtab_xindex* dynsym_xindex,
2803 Output_file* of) const
2804 {
2805 const Target& target = parameters->target();
2806
2807 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2808
2809 const unsigned int output_count = this->output_count_;
2810 const section_size_type oview_size = output_count * sym_size;
2811 const unsigned int first_global_index = this->first_global_index_;
2812 unsigned char* psyms;
2813 if (this->offset_ == 0 || output_count == 0)
2814 psyms = NULL;
2815 else
2816 psyms = of->get_output_view(this->offset_, oview_size);
2817
2818 const unsigned int dynamic_count = this->dynamic_count_;
2819 const section_size_type dynamic_size = dynamic_count * sym_size;
2820 const unsigned int first_dynamic_global_index =
2821 this->first_dynamic_global_index_;
2822 unsigned char* dynamic_view;
2823 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2824 dynamic_view = NULL;
2825 else
2826 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2827
2828 for (Symbol_table_type::const_iterator p = this->table_.begin();
2829 p != this->table_.end();
2830 ++p)
2831 {
2832 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2833
2834 // Possibly warn about unresolved symbols in shared libraries.
2835 this->warn_about_undefined_dynobj_symbol(sym);
2836
2837 unsigned int sym_index = sym->symtab_index();
2838 unsigned int dynsym_index;
2839 if (dynamic_view == NULL)
2840 dynsym_index = -1U;
2841 else
2842 dynsym_index = sym->dynsym_index();
2843
2844 if (sym_index == -1U && dynsym_index == -1U)
2845 {
2846 // This symbol is not included in the output file.
2847 continue;
2848 }
2849
2850 unsigned int shndx;
2851 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2852 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2853 elfcpp::STB binding = sym->binding();
2854
2855 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2856 if (binding == elfcpp::STB_GNU_UNIQUE
2857 && !parameters->options().gnu_unique())
2858 binding = elfcpp::STB_GLOBAL;
2859
2860 switch (sym->source())
2861 {
2862 case Symbol::FROM_OBJECT:
2863 {
2864 bool is_ordinary;
2865 unsigned int in_shndx = sym->shndx(&is_ordinary);
2866
2867 if (!is_ordinary
2868 && in_shndx != elfcpp::SHN_ABS
2869 && !Symbol::is_common_shndx(in_shndx))
2870 {
2871 gold_error(_("%s: unsupported symbol section 0x%x"),
2872 sym->demangled_name().c_str(), in_shndx);
2873 shndx = in_shndx;
2874 }
2875 else
2876 {
2877 Object* symobj = sym->object();
2878 if (symobj->is_dynamic())
2879 {
2880 if (sym->needs_dynsym_value())
2881 dynsym_value = target.dynsym_value(sym);
2882 shndx = elfcpp::SHN_UNDEF;
2883 if (sym->is_undef_binding_weak())
2884 binding = elfcpp::STB_WEAK;
2885 else
2886 binding = elfcpp::STB_GLOBAL;
2887 }
2888 else if (symobj->pluginobj() != NULL)
2889 shndx = elfcpp::SHN_UNDEF;
2890 else if (in_shndx == elfcpp::SHN_UNDEF
2891 || (!is_ordinary
2892 && (in_shndx == elfcpp::SHN_ABS
2893 || Symbol::is_common_shndx(in_shndx))))
2894 shndx = in_shndx;
2895 else
2896 {
2897 Relobj* relobj = static_cast<Relobj*>(symobj);
2898 Output_section* os = relobj->output_section(in_shndx);
2899 if (this->is_section_folded(relobj, in_shndx))
2900 {
2901 // This global symbol must be written out even though
2902 // it is folded.
2903 // Get the os of the section it is folded onto.
2904 Section_id folded =
2905 this->icf_->get_folded_section(relobj, in_shndx);
2906 gold_assert(folded.first !=NULL);
2907 Relobj* folded_obj =
2908 reinterpret_cast<Relobj*>(folded.first);
2909 os = folded_obj->output_section(folded.second);
2910 gold_assert(os != NULL);
2911 }
2912 gold_assert(os != NULL);
2913 shndx = os->out_shndx();
2914
2915 if (shndx >= elfcpp::SHN_LORESERVE)
2916 {
2917 if (sym_index != -1U)
2918 symtab_xindex->add(sym_index, shndx);
2919 if (dynsym_index != -1U)
2920 dynsym_xindex->add(dynsym_index, shndx);
2921 shndx = elfcpp::SHN_XINDEX;
2922 }
2923
2924 // In object files symbol values are section
2925 // relative.
2926 if (parameters->options().relocatable())
2927 sym_value -= os->address();
2928 }
2929 }
2930 }
2931 break;
2932
2933 case Symbol::IN_OUTPUT_DATA:
2934 shndx = sym->output_data()->out_shndx();
2935 if (shndx >= elfcpp::SHN_LORESERVE)
2936 {
2937 if (sym_index != -1U)
2938 symtab_xindex->add(sym_index, shndx);
2939 if (dynsym_index != -1U)
2940 dynsym_xindex->add(dynsym_index, shndx);
2941 shndx = elfcpp::SHN_XINDEX;
2942 }
2943 break;
2944
2945 case Symbol::IN_OUTPUT_SEGMENT:
2946 shndx = elfcpp::SHN_ABS;
2947 break;
2948
2949 case Symbol::IS_CONSTANT:
2950 shndx = elfcpp::SHN_ABS;
2951 break;
2952
2953 case Symbol::IS_UNDEFINED:
2954 shndx = elfcpp::SHN_UNDEF;
2955 break;
2956
2957 default:
2958 gold_unreachable();
2959 }
2960
2961 if (sym_index != -1U)
2962 {
2963 sym_index -= first_global_index;
2964 gold_assert(sym_index < output_count);
2965 unsigned char* ps = psyms + (sym_index * sym_size);
2966 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2967 binding, sympool, ps);
2968 }
2969
2970 if (dynsym_index != -1U)
2971 {
2972 dynsym_index -= first_dynamic_global_index;
2973 gold_assert(dynsym_index < dynamic_count);
2974 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2975 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2976 binding, dynpool, pd);
2977 }
2978 }
2979
2980 of->write_output_view(this->offset_, oview_size, psyms);
2981 if (dynamic_view != NULL)
2982 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2983 }
2984
2985 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2986 // strtab holding the name.
2987
2988 template<int size, bool big_endian>
2989 void
2990 Symbol_table::sized_write_symbol(
2991 Sized_symbol<size>* sym,
2992 typename elfcpp::Elf_types<size>::Elf_Addr value,
2993 unsigned int shndx,
2994 elfcpp::STB binding,
2995 const Stringpool* pool,
2996 unsigned char* p) const
2997 {
2998 elfcpp::Sym_write<size, big_endian> osym(p);
2999 if (sym->version() == NULL || !parameters->options().relocatable())
3000 osym.put_st_name(pool->get_offset(sym->name()));
3001 else
3002 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3003 osym.put_st_value(value);
3004 // Use a symbol size of zero for undefined symbols from shared libraries.
3005 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3006 osym.put_st_size(0);
3007 else
3008 osym.put_st_size(sym->symsize());
3009 elfcpp::STT type = sym->type();
3010 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3011 if (type == elfcpp::STT_GNU_IFUNC
3012 && sym->is_from_dynobj())
3013 type = elfcpp::STT_FUNC;
3014 // A version script may have overridden the default binding.
3015 if (sym->is_forced_local())
3016 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3017 else
3018 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3019 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3020 osym.put_st_shndx(shndx);
3021 }
3022
3023 // Check for unresolved symbols in shared libraries. This is
3024 // controlled by the --allow-shlib-undefined option.
3025
3026 // We only warn about libraries for which we have seen all the
3027 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3028 // which were not seen in this link. If we didn't see a DT_NEEDED
3029 // entry, we aren't going to be able to reliably report whether the
3030 // symbol is undefined.
3031
3032 // We also don't warn about libraries found in a system library
3033 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3034 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3035 // can have undefined references satisfied by ld-linux.so.
3036
3037 inline void
3038 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3039 {
3040 bool dummy;
3041 if (sym->source() == Symbol::FROM_OBJECT
3042 && sym->object()->is_dynamic()
3043 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3044 && sym->binding() != elfcpp::STB_WEAK
3045 && !parameters->options().allow_shlib_undefined()
3046 && !parameters->target().is_defined_by_abi(sym)
3047 && !sym->object()->is_in_system_directory())
3048 {
3049 // A very ugly cast.
3050 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3051 if (!dynobj->has_unknown_needed_entries())
3052 gold_undefined_symbol(sym);
3053 }
3054 }
3055
3056 // Write out a section symbol. Return the update offset.
3057
3058 void
3059 Symbol_table::write_section_symbol(const Output_section* os,
3060 Output_symtab_xindex* symtab_xindex,
3061 Output_file* of,
3062 off_t offset) const
3063 {
3064 switch (parameters->size_and_endianness())
3065 {
3066 #ifdef HAVE_TARGET_32_LITTLE
3067 case Parameters::TARGET_32_LITTLE:
3068 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3069 offset);
3070 break;
3071 #endif
3072 #ifdef HAVE_TARGET_32_BIG
3073 case Parameters::TARGET_32_BIG:
3074 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3075 offset);
3076 break;
3077 #endif
3078 #ifdef HAVE_TARGET_64_LITTLE
3079 case Parameters::TARGET_64_LITTLE:
3080 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3081 offset);
3082 break;
3083 #endif
3084 #ifdef HAVE_TARGET_64_BIG
3085 case Parameters::TARGET_64_BIG:
3086 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3087 offset);
3088 break;
3089 #endif
3090 default:
3091 gold_unreachable();
3092 }
3093 }
3094
3095 // Write out a section symbol, specialized for size and endianness.
3096
3097 template<int size, bool big_endian>
3098 void
3099 Symbol_table::sized_write_section_symbol(const Output_section* os,
3100 Output_symtab_xindex* symtab_xindex,
3101 Output_file* of,
3102 off_t offset) const
3103 {
3104 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3105
3106 unsigned char* pov = of->get_output_view(offset, sym_size);
3107
3108 elfcpp::Sym_write<size, big_endian> osym(pov);
3109 osym.put_st_name(0);
3110 if (parameters->options().relocatable())
3111 osym.put_st_value(0);
3112 else
3113 osym.put_st_value(os->address());
3114 osym.put_st_size(0);
3115 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3116 elfcpp::STT_SECTION));
3117 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3118
3119 unsigned int shndx = os->out_shndx();
3120 if (shndx >= elfcpp::SHN_LORESERVE)
3121 {
3122 symtab_xindex->add(os->symtab_index(), shndx);
3123 shndx = elfcpp::SHN_XINDEX;
3124 }
3125 osym.put_st_shndx(shndx);
3126
3127 of->write_output_view(offset, sym_size, pov);
3128 }
3129
3130 // Print statistical information to stderr. This is used for --stats.
3131
3132 void
3133 Symbol_table::print_stats() const
3134 {
3135 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3136 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3137 program_name, this->table_.size(), this->table_.bucket_count());
3138 #else
3139 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3140 program_name, this->table_.size());
3141 #endif
3142 this->namepool_.print_stats("symbol table stringpool");
3143 }
3144
3145 // We check for ODR violations by looking for symbols with the same
3146 // name for which the debugging information reports that they were
3147 // defined in disjoint source locations. When comparing the source
3148 // location, we consider instances with the same base filename to be
3149 // the same. This is because different object files/shared libraries
3150 // can include the same header file using different paths, and
3151 // different optimization settings can make the line number appear to
3152 // be a couple lines off, and we don't want to report an ODR violation
3153 // in those cases.
3154
3155 // This struct is used to compare line information, as returned by
3156 // Dwarf_line_info::one_addr2line. It implements a < comparison
3157 // operator used with std::sort.
3158
3159 struct Odr_violation_compare
3160 {
3161 bool
3162 operator()(const std::string& s1, const std::string& s2) const
3163 {
3164 // Inputs should be of the form "dirname/filename:linenum" where
3165 // "dirname/" is optional. We want to compare just the filename:linenum.
3166
3167 // Find the last '/' in each string.
3168 std::string::size_type s1begin = s1.rfind('/');
3169 std::string::size_type s2begin = s2.rfind('/');
3170 // If there was no '/' in a string, start at the beginning.
3171 if (s1begin == std::string::npos)
3172 s1begin = 0;
3173 if (s2begin == std::string::npos)
3174 s2begin = 0;
3175 return s1.compare(s1begin, std::string::npos,
3176 s2, s2begin, std::string::npos) < 0;
3177 }
3178 };
3179
3180 // Returns all of the lines attached to LOC, not just the one the
3181 // instruction actually came from.
3182 std::vector<std::string>
3183 Symbol_table::linenos_from_loc(const Task* task,
3184 const Symbol_location& loc)
3185 {
3186 // We need to lock the object in order to read it. This
3187 // means that we have to run in a singleton Task. If we
3188 // want to run this in a general Task for better
3189 // performance, we will need one Task for object, plus
3190 // appropriate locking to ensure that we don't conflict with
3191 // other uses of the object. Also note, one_addr2line is not
3192 // currently thread-safe.
3193 Task_lock_obj<Object> tl(task, loc.object);
3194
3195 std::vector<std::string> result;
3196 // 16 is the size of the object-cache that one_addr2line should use.
3197 std::string canonical_result = Dwarf_line_info::one_addr2line(
3198 loc.object, loc.shndx, loc.offset, 16, &result);
3199 if (!canonical_result.empty())
3200 result.push_back(canonical_result);
3201 return result;
3202 }
3203
3204 // OutputIterator that records if it was ever assigned to. This
3205 // allows it to be used with std::set_intersection() to check for
3206 // intersection rather than computing the intersection.
3207 struct Check_intersection
3208 {
3209 Check_intersection()
3210 : value_(false)
3211 {}
3212
3213 bool had_intersection() const
3214 { return this->value_; }
3215
3216 Check_intersection& operator++()
3217 { return *this; }
3218
3219 Check_intersection& operator*()
3220 { return *this; }
3221
3222 template<typename T>
3223 Check_intersection& operator=(const T&)
3224 {
3225 this->value_ = true;
3226 return *this;
3227 }
3228
3229 private:
3230 bool value_;
3231 };
3232
3233 // Check candidate_odr_violations_ to find symbols with the same name
3234 // but apparently different definitions (different source-file/line-no
3235 // for each line assigned to the first instruction).
3236
3237 void
3238 Symbol_table::detect_odr_violations(const Task* task,
3239 const char* output_file_name) const
3240 {
3241 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3242 it != candidate_odr_violations_.end();
3243 ++it)
3244 {
3245 const char* const symbol_name = it->first;
3246
3247 std::string first_object_name;
3248 std::vector<std::string> first_object_linenos;
3249
3250 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3251 locs = it->second.begin();
3252 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3253 locs_end = it->second.end();
3254 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3255 {
3256 // Save the line numbers from the first definition to
3257 // compare to the other definitions. Ideally, we'd compare
3258 // every definition to every other, but we don't want to
3259 // take O(N^2) time to do this. This shortcut may cause
3260 // false negatives that appear or disappear depending on the
3261 // link order, but it won't cause false positives.
3262 first_object_name = locs->object->name();
3263 first_object_linenos = this->linenos_from_loc(task, *locs);
3264 }
3265
3266 // Sort by Odr_violation_compare to make std::set_intersection work.
3267 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3268 Odr_violation_compare());
3269
3270 for (; locs != locs_end; ++locs)
3271 {
3272 std::vector<std::string> linenos =
3273 this->linenos_from_loc(task, *locs);
3274 // linenos will be empty if we couldn't parse the debug info.
3275 if (linenos.empty())
3276 continue;
3277 // Sort by Odr_violation_compare to make std::set_intersection work.
3278 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3279
3280 Check_intersection intersection_result =
3281 std::set_intersection(first_object_linenos.begin(),
3282 first_object_linenos.end(),
3283 linenos.begin(),
3284 linenos.end(),
3285 Check_intersection(),
3286 Odr_violation_compare());
3287 if (!intersection_result.had_intersection())
3288 {
3289 gold_warning(_("while linking %s: symbol '%s' defined in "
3290 "multiple places (possible ODR violation):"),
3291 output_file_name, demangle(symbol_name).c_str());
3292 // This only prints one location from each definition,
3293 // which may not be the location we expect to intersect
3294 // with another definition. We could print the whole
3295 // set of locations, but that seems too verbose.
3296 gold_assert(!first_object_linenos.empty());
3297 gold_assert(!linenos.empty());
3298 fprintf(stderr, _(" %s from %s\n"),
3299 first_object_linenos[0].c_str(),
3300 first_object_name.c_str());
3301 fprintf(stderr, _(" %s from %s\n"),
3302 linenos[0].c_str(),
3303 locs->object->name().c_str());
3304 // Only print one broken pair, to avoid needing to
3305 // compare against a list of the disjoint definition
3306 // locations we've found so far. (If we kept comparing
3307 // against just the first one, we'd get a lot of
3308 // redundant complaints about the second definition
3309 // location.)
3310 break;
3311 }
3312 }
3313 }
3314 // We only call one_addr2line() in this function, so we can clear its cache.
3315 Dwarf_line_info::clear_addr2line_cache();
3316 }
3317
3318 // Warnings functions.
3319
3320 // Add a new warning.
3321
3322 void
3323 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3324 const std::string& warning)
3325 {
3326 name = symtab->canonicalize_name(name);
3327 this->warnings_[name].set(obj, warning);
3328 }
3329
3330 // Look through the warnings and mark the symbols for which we should
3331 // warn. This is called during Layout::finalize when we know the
3332 // sources for all the symbols.
3333
3334 void
3335 Warnings::note_warnings(Symbol_table* symtab)
3336 {
3337 for (Warning_table::iterator p = this->warnings_.begin();
3338 p != this->warnings_.end();
3339 ++p)
3340 {
3341 Symbol* sym = symtab->lookup(p->first, NULL);
3342 if (sym != NULL
3343 && sym->source() == Symbol::FROM_OBJECT
3344 && sym->object() == p->second.object)
3345 sym->set_has_warning();
3346 }
3347 }
3348
3349 // Issue a warning. This is called when we see a relocation against a
3350 // symbol for which has a warning.
3351
3352 template<int size, bool big_endian>
3353 void
3354 Warnings::issue_warning(const Symbol* sym,
3355 const Relocate_info<size, big_endian>* relinfo,
3356 size_t relnum, off_t reloffset) const
3357 {
3358 gold_assert(sym->has_warning());
3359
3360 // We don't want to issue a warning for a relocation against the
3361 // symbol in the same object file in which the symbol is defined.
3362 if (sym->object() == relinfo->object)
3363 return;
3364
3365 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3366 gold_assert(p != this->warnings_.end());
3367 gold_warning_at_location(relinfo, relnum, reloffset,
3368 "%s", p->second.text.c_str());
3369 }
3370
3371 // Instantiate the templates we need. We could use the configure
3372 // script to restrict this to only the ones needed for implemented
3373 // targets.
3374
3375 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3376 template
3377 void
3378 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3379 #endif
3380
3381 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3382 template
3383 void
3384 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3385 #endif
3386
3387 #ifdef HAVE_TARGET_32_LITTLE
3388 template
3389 void
3390 Symbol_table::add_from_relobj<32, false>(
3391 Sized_relobj_file<32, false>* relobj,
3392 const unsigned char* syms,
3393 size_t count,
3394 size_t symndx_offset,
3395 const char* sym_names,
3396 size_t sym_name_size,
3397 Sized_relobj_file<32, false>::Symbols* sympointers,
3398 size_t* defined);
3399 #endif
3400
3401 #ifdef HAVE_TARGET_32_BIG
3402 template
3403 void
3404 Symbol_table::add_from_relobj<32, true>(
3405 Sized_relobj_file<32, true>* relobj,
3406 const unsigned char* syms,
3407 size_t count,
3408 size_t symndx_offset,
3409 const char* sym_names,
3410 size_t sym_name_size,
3411 Sized_relobj_file<32, true>::Symbols* sympointers,
3412 size_t* defined);
3413 #endif
3414
3415 #ifdef HAVE_TARGET_64_LITTLE
3416 template
3417 void
3418 Symbol_table::add_from_relobj<64, false>(
3419 Sized_relobj_file<64, false>* relobj,
3420 const unsigned char* syms,
3421 size_t count,
3422 size_t symndx_offset,
3423 const char* sym_names,
3424 size_t sym_name_size,
3425 Sized_relobj_file<64, false>::Symbols* sympointers,
3426 size_t* defined);
3427 #endif
3428
3429 #ifdef HAVE_TARGET_64_BIG
3430 template
3431 void
3432 Symbol_table::add_from_relobj<64, true>(
3433 Sized_relobj_file<64, true>* relobj,
3434 const unsigned char* syms,
3435 size_t count,
3436 size_t symndx_offset,
3437 const char* sym_names,
3438 size_t sym_name_size,
3439 Sized_relobj_file<64, true>::Symbols* sympointers,
3440 size_t* defined);
3441 #endif
3442
3443 #ifdef HAVE_TARGET_32_LITTLE
3444 template
3445 Symbol*
3446 Symbol_table::add_from_pluginobj<32, false>(
3447 Sized_pluginobj<32, false>* obj,
3448 const char* name,
3449 const char* ver,
3450 elfcpp::Sym<32, false>* sym);
3451 #endif
3452
3453 #ifdef HAVE_TARGET_32_BIG
3454 template
3455 Symbol*
3456 Symbol_table::add_from_pluginobj<32, true>(
3457 Sized_pluginobj<32, true>* obj,
3458 const char* name,
3459 const char* ver,
3460 elfcpp::Sym<32, true>* sym);
3461 #endif
3462
3463 #ifdef HAVE_TARGET_64_LITTLE
3464 template
3465 Symbol*
3466 Symbol_table::add_from_pluginobj<64, false>(
3467 Sized_pluginobj<64, false>* obj,
3468 const char* name,
3469 const char* ver,
3470 elfcpp::Sym<64, false>* sym);
3471 #endif
3472
3473 #ifdef HAVE_TARGET_64_BIG
3474 template
3475 Symbol*
3476 Symbol_table::add_from_pluginobj<64, true>(
3477 Sized_pluginobj<64, true>* obj,
3478 const char* name,
3479 const char* ver,
3480 elfcpp::Sym<64, true>* sym);
3481 #endif
3482
3483 #ifdef HAVE_TARGET_32_LITTLE
3484 template
3485 void
3486 Symbol_table::add_from_dynobj<32, false>(
3487 Sized_dynobj<32, false>* dynobj,
3488 const unsigned char* syms,
3489 size_t count,
3490 const char* sym_names,
3491 size_t sym_name_size,
3492 const unsigned char* versym,
3493 size_t versym_size,
3494 const std::vector<const char*>* version_map,
3495 Sized_relobj_file<32, false>::Symbols* sympointers,
3496 size_t* defined);
3497 #endif
3498
3499 #ifdef HAVE_TARGET_32_BIG
3500 template
3501 void
3502 Symbol_table::add_from_dynobj<32, true>(
3503 Sized_dynobj<32, true>* dynobj,
3504 const unsigned char* syms,
3505 size_t count,
3506 const char* sym_names,
3507 size_t sym_name_size,
3508 const unsigned char* versym,
3509 size_t versym_size,
3510 const std::vector<const char*>* version_map,
3511 Sized_relobj_file<32, true>::Symbols* sympointers,
3512 size_t* defined);
3513 #endif
3514
3515 #ifdef HAVE_TARGET_64_LITTLE
3516 template
3517 void
3518 Symbol_table::add_from_dynobj<64, false>(
3519 Sized_dynobj<64, false>* dynobj,
3520 const unsigned char* syms,
3521 size_t count,
3522 const char* sym_names,
3523 size_t sym_name_size,
3524 const unsigned char* versym,
3525 size_t versym_size,
3526 const std::vector<const char*>* version_map,
3527 Sized_relobj_file<64, false>::Symbols* sympointers,
3528 size_t* defined);
3529 #endif
3530
3531 #ifdef HAVE_TARGET_64_BIG
3532 template
3533 void
3534 Symbol_table::add_from_dynobj<64, true>(
3535 Sized_dynobj<64, true>* dynobj,
3536 const unsigned char* syms,
3537 size_t count,
3538 const char* sym_names,
3539 size_t sym_name_size,
3540 const unsigned char* versym,
3541 size_t versym_size,
3542 const std::vector<const char*>* version_map,
3543 Sized_relobj_file<64, true>::Symbols* sympointers,
3544 size_t* defined);
3545 #endif
3546
3547 #ifdef HAVE_TARGET_32_LITTLE
3548 template
3549 Sized_symbol<32>*
3550 Symbol_table::add_from_incrobj(
3551 Object* obj,
3552 const char* name,
3553 const char* ver,
3554 elfcpp::Sym<32, false>* sym);
3555 #endif
3556
3557 #ifdef HAVE_TARGET_32_BIG
3558 template
3559 Sized_symbol<32>*
3560 Symbol_table::add_from_incrobj(
3561 Object* obj,
3562 const char* name,
3563 const char* ver,
3564 elfcpp::Sym<32, true>* sym);
3565 #endif
3566
3567 #ifdef HAVE_TARGET_64_LITTLE
3568 template
3569 Sized_symbol<64>*
3570 Symbol_table::add_from_incrobj(
3571 Object* obj,
3572 const char* name,
3573 const char* ver,
3574 elfcpp::Sym<64, false>* sym);
3575 #endif
3576
3577 #ifdef HAVE_TARGET_64_BIG
3578 template
3579 Sized_symbol<64>*
3580 Symbol_table::add_from_incrobj(
3581 Object* obj,
3582 const char* name,
3583 const char* ver,
3584 elfcpp::Sym<64, true>* sym);
3585 #endif
3586
3587 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3588 template
3589 void
3590 Symbol_table::define_with_copy_reloc<32>(
3591 Sized_symbol<32>* sym,
3592 Output_data* posd,
3593 elfcpp::Elf_types<32>::Elf_Addr value);
3594 #endif
3595
3596 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3597 template
3598 void
3599 Symbol_table::define_with_copy_reloc<64>(
3600 Sized_symbol<64>* sym,
3601 Output_data* posd,
3602 elfcpp::Elf_types<64>::Elf_Addr value);
3603 #endif
3604
3605 #ifdef HAVE_TARGET_32_LITTLE
3606 template
3607 void
3608 Warnings::issue_warning<32, false>(const Symbol* sym,
3609 const Relocate_info<32, false>* relinfo,
3610 size_t relnum, off_t reloffset) const;
3611 #endif
3612
3613 #ifdef HAVE_TARGET_32_BIG
3614 template
3615 void
3616 Warnings::issue_warning<32, true>(const Symbol* sym,
3617 const Relocate_info<32, true>* relinfo,
3618 size_t relnum, off_t reloffset) const;
3619 #endif
3620
3621 #ifdef HAVE_TARGET_64_LITTLE
3622 template
3623 void
3624 Warnings::issue_warning<64, false>(const Symbol* sym,
3625 const Relocate_info<64, false>* relinfo,
3626 size_t relnum, off_t reloffset) const;
3627 #endif
3628
3629 #ifdef HAVE_TARGET_64_BIG
3630 template
3631 void
3632 Warnings::issue_warning<64, true>(const Symbol* sym,
3633 const Relocate_info<64, true>* relinfo,
3634 size_t relnum, off_t reloffset) const;
3635 #endif
3636
3637 } // End namespace gold.
This page took 0.144804 seconds and 5 git commands to generate.