Fix symbol versioning problems in PR 18703.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // or the symbol should be globally unique (GNU_UNIQUE),
423 // and the symbol is defined in a regular object and is
424 // externally visible, we need to add it.
425 if ((parameters->options().export_dynamic()
426 || parameters->options().shared()
427 || (parameters->options().gnu_unique()
428 && this->binding() == elfcpp::STB_GNU_UNIQUE))
429 && !this->is_from_dynobj()
430 && !this->is_undefined()
431 && this->is_externally_visible())
432 return true;
433
434 return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443 // If we are not generating an executable, then no final values are
444 // known, since they will change at runtime, with the exception of
445 // TLS symbols in a position-independent executable.
446 if ((parameters->options().output_is_position_independent()
447 || parameters->options().relocatable())
448 && !(this->type() == elfcpp::STT_TLS
449 && parameters->options().pie()))
450 return false;
451
452 // If the symbol is not from an object file, and is not undefined,
453 // then it is defined, and known.
454 if (this->source_ != FROM_OBJECT)
455 {
456 if (this->source_ != IS_UNDEFINED)
457 return true;
458 }
459 else
460 {
461 // If the symbol is from a dynamic object, then the final value
462 // is not known.
463 if (this->object()->is_dynamic())
464 return false;
465
466 // If the symbol is not undefined (it is defined or common),
467 // then the final value is known.
468 if (!this->is_undefined())
469 return true;
470 }
471
472 // If the symbol is undefined, then whether the final value is known
473 // depends on whether we are doing a static link. If we are doing a
474 // dynamic link, then the final value could be filled in at runtime.
475 // This could reasonably be the case for a weak undefined symbol.
476 return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484 switch (this->source_)
485 {
486 case FROM_OBJECT:
487 {
488 unsigned int shndx = this->u_.from_object.shndx;
489 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490 {
491 gold_assert(!this->u_.from_object.object->is_dynamic());
492 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494 return relobj->output_section(shndx);
495 }
496 return NULL;
497 }
498
499 case IN_OUTPUT_DATA:
500 return this->u_.in_output_data.output_data->output_section();
501
502 case IN_OUTPUT_SEGMENT:
503 case IS_CONSTANT:
504 case IS_UNDEFINED:
505 return NULL;
506
507 default:
508 gold_unreachable();
509 }
510 }
511
512 // Set the symbol's output section. This is used for symbols defined
513 // in scripts. This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519 switch (this->source_)
520 {
521 case FROM_OBJECT:
522 case IN_OUTPUT_DATA:
523 gold_assert(this->output_section() == os);
524 break;
525 case IS_CONSTANT:
526 this->source_ = IN_OUTPUT_DATA;
527 this->u_.in_output_data.output_data = os;
528 this->u_.in_output_data.offset_is_from_end = false;
529 break;
530 case IN_OUTPUT_SEGMENT:
531 case IS_UNDEFINED:
532 default:
533 gold_unreachable();
534 }
535 }
536
537 // Set the symbol's output segment. This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544 gold_assert(this->is_predefined_);
545 this->source_ = IN_OUTPUT_SEGMENT;
546 this->u_.in_output_segment.output_segment = os;
547 this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined. This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557 this->source_ = IS_UNDEFINED;
558 this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564 const Version_script_info& version_script)
565 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566 forwarders_(), commons_(), tls_commons_(), small_commons_(),
567 large_commons_(), forced_locals_(), warnings_(),
568 version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570 namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function. This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582 const Symbol_table_key& k2) const
583 {
584 return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590 return (parameters->options().icf_enabled()
591 && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600 for (options::String_set::const_iterator p =
601 parameters->options().undefined_begin();
602 p != parameters->options().undefined_end();
603 ++p)
604 {
605 const char* name = p->c_str();
606 Symbol* sym = this->lookup(name);
607 gold_assert(sym != NULL);
608 if (sym->source() == Symbol::FROM_OBJECT
609 && !sym->object()->is_dynamic())
610 {
611 this->gc_mark_symbol(sym);
612 }
613 }
614
615 for (options::String_set::const_iterator p =
616 parameters->options().export_dynamic_symbol_begin();
617 p != parameters->options().export_dynamic_symbol_end();
618 ++p)
619 {
620 const char* name = p->c_str();
621 Symbol* sym = this->lookup(name);
622 // It's not an error if a symbol named by --export-dynamic-symbol
623 // is undefined.
624 if (sym != NULL
625 && sym->source() == Symbol::FROM_OBJECT
626 && !sym->object()->is_dynamic())
627 {
628 this->gc_mark_symbol(sym);
629 }
630 }
631
632 for (Script_options::referenced_const_iterator p =
633 layout->script_options()->referenced_begin();
634 p != layout->script_options()->referenced_end();
635 ++p)
636 {
637 Symbol* sym = this->lookup(p->c_str());
638 gold_assert(sym != NULL);
639 if (sym->source() == Symbol::FROM_OBJECT
640 && !sym->object()->is_dynamic())
641 {
642 this->gc_mark_symbol(sym);
643 }
644 }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650 // Add the object and section to the work list.
651 bool is_ordinary;
652 unsigned int shndx = sym->shndx(&is_ordinary);
653 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654 {
655 gold_assert(this->gc_!= NULL);
656 Relobj* relobj = static_cast<Relobj*>(sym->object());
657 this->gc_->worklist().push_back(Section_id(relobj, shndx));
658 }
659 parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668 && !sym->object()->is_dynamic())
669 this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677 gold_assert(from != to);
678 gold_assert(!from->is_forwarder() && !to->is_forwarder());
679 this->forwarders_[from] = to;
680 from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688 gold_assert(from->is_forwarder());
689 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690 this->forwarders_.find(from);
691 gold_assert(p != this->forwarders_.end());
692 return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700 Stringpool::Key name_key;
701 name = this->namepool_.find(name, &name_key);
702 if (name == NULL)
703 return NULL;
704
705 Stringpool::Key version_key = 0;
706 if (version != NULL)
707 {
708 version = this->namepool_.find(version, &version_key);
709 if (version == NULL)
710 return NULL;
711 }
712
713 Symbol_table_key key(name_key, version_key);
714 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715 if (p == this->table_.end())
716 return NULL;
717 return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol. This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version. Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731 elfcpp::Sym_write<size, big_endian> esym(buf);
732 // We don't bother to set the st_name or the st_shndx field.
733 esym.put_st_value(from->value());
734 esym.put_st_size(from->symsize());
735 esym.put_st_info(from->binding(), from->type());
736 esym.put_st_other(from->visibility(), from->nonvis());
737 bool is_ordinary;
738 unsigned int shndx = from->shndx(&is_ordinary);
739 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740 from->version(), true);
741 if (from->in_reg())
742 to->set_in_reg();
743 if (from->in_dyn())
744 to->set_in_dyn();
745 if (parameters->options().gc_sections())
746 this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755 if (!sym->is_defined() && !sym->is_common())
756 return;
757 if (sym->is_forced_local())
758 {
759 // We already got this one.
760 return;
761 }
762 sym->set_is_forced_local();
763 this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773 // For some targets, we need to ignore a specific character when
774 // wrapping, and add it back later.
775 char prefix = '\0';
776 if (name[0] == parameters->target().wrap_char())
777 {
778 prefix = name[0];
779 ++name;
780 }
781
782 if (parameters->options().is_wrap(name))
783 {
784 // Turn NAME into __wrap_NAME.
785 std::string s;
786 if (prefix != '\0')
787 s += prefix;
788 s += "__wrap_";
789 s += name;
790
791 // This will give us both the old and new name in NAMEPOOL_, but
792 // that is OK. Only the versions we need will wind up in the
793 // real string table in the output file.
794 return this->namepool_.add(s.c_str(), true, name_key);
795 }
796
797 const char* const real_prefix = "__real_";
798 const size_t real_prefix_length = strlen(real_prefix);
799 if (strncmp(name, real_prefix, real_prefix_length) == 0
800 && parameters->options().is_wrap(name + real_prefix_length))
801 {
802 // Turn __real_NAME into NAME.
803 std::string s;
804 if (prefix != '\0')
805 s += prefix;
806 s += name + real_prefix_length;
807 return this->namepool_.add(s.c_str(), true, name_key);
808 }
809
810 return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version. SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822 bool default_is_new,
823 Symbol_table_type::iterator pdef)
824 {
825 if (default_is_new)
826 {
827 // This is the first time we have seen NAME/NULL. Make
828 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829 // version.
830 pdef->second = sym;
831 sym->set_is_default();
832 }
833 else if (pdef->second == sym)
834 {
835 // NAME/NULL already points to NAME/VERSION. Don't mark the
836 // symbol as the default if it is not already the default.
837 }
838 else
839 {
840 // This is the unfortunate case where we already have entries
841 // for both NAME/VERSION and NAME/NULL. We now see a symbol
842 // NAME/VERSION where VERSION is the default version. We have
843 // already resolved this new symbol with the existing
844 // NAME/VERSION symbol.
845
846 // It's possible that NAME/NULL and NAME/VERSION are both
847 // defined in regular objects. This can only happen if one
848 // object file defines foo and another defines foo@@ver. This
849 // is somewhat obscure, but we call it a multiple definition
850 // error.
851
852 // It's possible that NAME/NULL actually has a version, in which
853 // case it won't be the same as VERSION. This happens with
854 // ver_test_7.so in the testsuite for the symbol t2_2. We see
855 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
856 // then see an unadorned t2_2 in an object file and give it
857 // version VER1 from the version script. This looks like a
858 // default definition for VER1, so it looks like we should merge
859 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
860 // not obvious that this is an error, either. So we just punt.
861
862 // If one of the symbols has non-default visibility, and the
863 // other is defined in a shared object, then they are different
864 // symbols.
865
866 // Otherwise, we just resolve the symbols as though they were
867 // the same.
868
869 if (pdef->second->version() != NULL)
870 gold_assert(pdef->second->version() != sym->version());
871 else if (sym->visibility() != elfcpp::STV_DEFAULT
872 && pdef->second->is_from_dynobj())
873 ;
874 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875 && sym->is_from_dynobj())
876 ;
877 else
878 {
879 const Sized_symbol<size>* symdef;
880 symdef = this->get_sized_symbol<size>(pdef->second);
881 Symbol_table::resolve<size, big_endian>(sym, symdef);
882 this->make_forwarder(pdef->second, sym);
883 pdef->second = sym;
884 sym->set_is_default();
885 }
886 }
887 }
888
889 // Add one symbol from OBJECT to the symbol table. NAME is symbol
890 // name and VERSION is the version; both are canonicalized. DEF is
891 // whether this is the default version. ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol. That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol. This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION. If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure. That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table. We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files. So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code. ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922 const char* name,
923 Stringpool::Key name_key,
924 const char* version,
925 Stringpool::Key version_key,
926 bool is_default_version,
927 const elfcpp::Sym<size, big_endian>& sym,
928 unsigned int st_shndx,
929 bool is_ordinary,
930 unsigned int orig_st_shndx)
931 {
932 // Print a message if this symbol is being traced.
933 if (parameters->options().is_trace_symbol(name))
934 {
935 if (orig_st_shndx == elfcpp::SHN_UNDEF)
936 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937 else
938 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939 }
940
941 // For an undefined symbol, we may need to adjust the name using
942 // --wrap.
943 if (orig_st_shndx == elfcpp::SHN_UNDEF
944 && parameters->options().any_wrap())
945 {
946 const char* wrap_name = this->wrap_symbol(name, &name_key);
947 if (wrap_name != name)
948 {
949 // If we see a reference to malloc with version GLIBC_2.0,
950 // and we turn it into a reference to __wrap_malloc, then we
951 // discard the version number. Otherwise the user would be
952 // required to specify the correct version for
953 // __wrap_malloc.
954 version = NULL;
955 version_key = 0;
956 name = wrap_name;
957 }
958 }
959
960 Symbol* const snull = NULL;
961 std::pair<typename Symbol_table_type::iterator, bool> ins =
962 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963 snull));
964
965 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966 std::make_pair(this->table_.end(), false);
967 if (is_default_version)
968 {
969 const Stringpool::Key vnull_key = 0;
970 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971 vnull_key),
972 snull));
973 }
974
975 // ins.first: an iterator, which is a pointer to a pair.
976 // ins.first->first: the key (a pair of name and version).
977 // ins.first->second: the value (Symbol*).
978 // ins.second: true if new entry was inserted, false if not.
979
980 Sized_symbol<size>* ret;
981 bool was_undefined;
982 bool was_common;
983 if (!ins.second)
984 {
985 // We already have an entry for NAME/VERSION.
986 ret = this->get_sized_symbol<size>(ins.first->second);
987 gold_assert(ret != NULL);
988
989 was_undefined = ret->is_undefined();
990 // Commons from plugins are just placeholders.
991 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994 version, is_default_version);
995 if (parameters->options().gc_sections())
996 this->gc_mark_dyn_syms(ret);
997
998 if (is_default_version)
999 this->define_default_version<size, big_endian>(ret, insdefault.second,
1000 insdefault.first);
1001 else if (version != NULL && ret->is_default())
1002 {
1003 // We have seen NAME/VERSION already, and marked it as the
1004 // default version, but now we see a definition for
1005 // NAME/VERSION that is not the default version. This can
1006 // happen when the assembler generates two symbols for
1007 // a symbol as a result of a ".symver foo,foo@VER"
1008 // directive. We see the first unversioned symbol and
1009 // we may mark it as the default version (from a
1010 // version script); then we see the second versioned
1011 // symbol and we need to override the first.
1012 // In any other case, the two symbols should have generated
1013 // a multiple definition error.
1014 // (See PR gold/18703.)
1015 bool dummy;
1016 if (ret->source() == Symbol::FROM_OBJECT
1017 && ret->object() == object
1018 && is_ordinary
1019 && ret->shndx(&dummy) == st_shndx)
1020 {
1021 ret->set_is_not_default();
1022 const Stringpool::Key vnull_key = 0;
1023 this->table_.erase(std::make_pair(name_key, vnull_key));
1024 }
1025 }
1026 }
1027 else
1028 {
1029 // This is the first time we have seen NAME/VERSION.
1030 gold_assert(ins.first->second == NULL);
1031
1032 if (is_default_version && !insdefault.second)
1033 {
1034 // We already have an entry for NAME/NULL. If we override
1035 // it, then change it to NAME/VERSION.
1036 ret = this->get_sized_symbol<size>(insdefault.first->second);
1037
1038 was_undefined = ret->is_undefined();
1039 // Commons from plugins are just placeholders.
1040 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1041
1042 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1043 version, is_default_version);
1044 if (parameters->options().gc_sections())
1045 this->gc_mark_dyn_syms(ret);
1046 ins.first->second = ret;
1047 }
1048 else
1049 {
1050 was_undefined = false;
1051 was_common = false;
1052
1053 Sized_target<size, big_endian>* target =
1054 parameters->sized_target<size, big_endian>();
1055 if (!target->has_make_symbol())
1056 ret = new Sized_symbol<size>();
1057 else
1058 {
1059 ret = target->make_symbol();
1060 if (ret == NULL)
1061 {
1062 // This means that we don't want a symbol table
1063 // entry after all.
1064 if (!is_default_version)
1065 this->table_.erase(ins.first);
1066 else
1067 {
1068 this->table_.erase(insdefault.first);
1069 // Inserting INSDEFAULT invalidated INS.
1070 this->table_.erase(std::make_pair(name_key,
1071 version_key));
1072 }
1073 return NULL;
1074 }
1075 }
1076
1077 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1078
1079 ins.first->second = ret;
1080 if (is_default_version)
1081 {
1082 // This is the first time we have seen NAME/NULL. Point
1083 // it at the new entry for NAME/VERSION.
1084 gold_assert(insdefault.second);
1085 insdefault.first->second = ret;
1086 }
1087 }
1088
1089 if (is_default_version)
1090 ret->set_is_default();
1091 }
1092
1093 // Record every time we see a new undefined symbol, to speed up
1094 // archive groups.
1095 if (!was_undefined && ret->is_undefined())
1096 {
1097 ++this->saw_undefined_;
1098 if (parameters->options().has_plugins())
1099 parameters->options().plugins()->new_undefined_symbol(ret);
1100 }
1101
1102 // Keep track of common symbols, to speed up common symbol
1103 // allocation. Don't record commons from plugin objects;
1104 // we need to wait until we see the real symbol in the
1105 // replacement file.
1106 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1107 {
1108 if (ret->type() == elfcpp::STT_TLS)
1109 this->tls_commons_.push_back(ret);
1110 else if (!is_ordinary
1111 && st_shndx == parameters->target().small_common_shndx())
1112 this->small_commons_.push_back(ret);
1113 else if (!is_ordinary
1114 && st_shndx == parameters->target().large_common_shndx())
1115 this->large_commons_.push_back(ret);
1116 else
1117 this->commons_.push_back(ret);
1118 }
1119
1120 // If we're not doing a relocatable link, then any symbol with
1121 // hidden or internal visibility is local.
1122 if ((ret->visibility() == elfcpp::STV_HIDDEN
1123 || ret->visibility() == elfcpp::STV_INTERNAL)
1124 && (ret->binding() == elfcpp::STB_GLOBAL
1125 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1126 || ret->binding() == elfcpp::STB_WEAK)
1127 && !parameters->options().relocatable())
1128 this->force_local(ret);
1129
1130 return ret;
1131 }
1132
1133 // Add all the symbols in a relocatable object to the hash table.
1134
1135 template<int size, bool big_endian>
1136 void
1137 Symbol_table::add_from_relobj(
1138 Sized_relobj_file<size, big_endian>* relobj,
1139 const unsigned char* syms,
1140 size_t count,
1141 size_t symndx_offset,
1142 const char* sym_names,
1143 size_t sym_name_size,
1144 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1145 size_t* defined)
1146 {
1147 *defined = 0;
1148
1149 gold_assert(size == parameters->target().get_size());
1150
1151 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1152
1153 const bool just_symbols = relobj->just_symbols();
1154
1155 const unsigned char* p = syms;
1156 for (size_t i = 0; i < count; ++i, p += sym_size)
1157 {
1158 (*sympointers)[i] = NULL;
1159
1160 elfcpp::Sym<size, big_endian> sym(p);
1161
1162 unsigned int st_name = sym.get_st_name();
1163 if (st_name >= sym_name_size)
1164 {
1165 relobj->error(_("bad global symbol name offset %u at %zu"),
1166 st_name, i);
1167 continue;
1168 }
1169
1170 const char* name = sym_names + st_name;
1171
1172 if (strcmp (name, "__gnu_lto_slim") == 0)
1173 gold_info(_("%s: plugin needed to handle lto object"),
1174 relobj->name().c_str());
1175
1176 bool is_ordinary;
1177 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1178 sym.get_st_shndx(),
1179 &is_ordinary);
1180 unsigned int orig_st_shndx = st_shndx;
1181 if (!is_ordinary)
1182 orig_st_shndx = elfcpp::SHN_UNDEF;
1183
1184 if (st_shndx != elfcpp::SHN_UNDEF)
1185 ++*defined;
1186
1187 // A symbol defined in a section which we are not including must
1188 // be treated as an undefined symbol.
1189 bool is_defined_in_discarded_section = false;
1190 if (st_shndx != elfcpp::SHN_UNDEF
1191 && is_ordinary
1192 && !relobj->is_section_included(st_shndx)
1193 && !this->is_section_folded(relobj, st_shndx))
1194 {
1195 st_shndx = elfcpp::SHN_UNDEF;
1196 is_defined_in_discarded_section = true;
1197 }
1198
1199 // In an object file, an '@' in the name separates the symbol
1200 // name from the version name. If there are two '@' characters,
1201 // this is the default version.
1202 const char* ver = strchr(name, '@');
1203 Stringpool::Key ver_key = 0;
1204 int namelen = 0;
1205 // IS_DEFAULT_VERSION: is the version default?
1206 // IS_FORCED_LOCAL: is the symbol forced local?
1207 bool is_default_version = false;
1208 bool is_forced_local = false;
1209
1210 // FIXME: For incremental links, we don't store version information,
1211 // so we need to ignore version symbols for now.
1212 if (parameters->incremental_update() && ver != NULL)
1213 {
1214 namelen = ver - name;
1215 ver = NULL;
1216 }
1217
1218 if (ver != NULL)
1219 {
1220 // The symbol name is of the form foo@VERSION or foo@@VERSION
1221 namelen = ver - name;
1222 ++ver;
1223 if (*ver == '@')
1224 {
1225 is_default_version = true;
1226 ++ver;
1227 }
1228 ver = this->namepool_.add(ver, true, &ver_key);
1229 }
1230 // We don't want to assign a version to an undefined symbol,
1231 // even if it is listed in the version script. FIXME: What
1232 // about a common symbol?
1233 else
1234 {
1235 namelen = strlen(name);
1236 if (!this->version_script_.empty()
1237 && st_shndx != elfcpp::SHN_UNDEF)
1238 {
1239 // The symbol name did not have a version, but the
1240 // version script may assign a version anyway.
1241 std::string version;
1242 bool is_global;
1243 if (this->version_script_.get_symbol_version(name, &version,
1244 &is_global))
1245 {
1246 if (!is_global)
1247 is_forced_local = true;
1248 else if (!version.empty())
1249 {
1250 ver = this->namepool_.add_with_length(version.c_str(),
1251 version.length(),
1252 true,
1253 &ver_key);
1254 is_default_version = true;
1255 }
1256 }
1257 }
1258 }
1259
1260 elfcpp::Sym<size, big_endian>* psym = &sym;
1261 unsigned char symbuf[sym_size];
1262 elfcpp::Sym<size, big_endian> sym2(symbuf);
1263 if (just_symbols)
1264 {
1265 memcpy(symbuf, p, sym_size);
1266 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1267 if (orig_st_shndx != elfcpp::SHN_UNDEF
1268 && is_ordinary
1269 && relobj->e_type() == elfcpp::ET_REL)
1270 {
1271 // Symbol values in relocatable object files are section
1272 // relative. This is normally what we want, but since here
1273 // we are converting the symbol to absolute we need to add
1274 // the section address. The section address in an object
1275 // file is normally zero, but people can use a linker
1276 // script to change it.
1277 sw.put_st_value(sym.get_st_value()
1278 + relobj->section_address(orig_st_shndx));
1279 }
1280 st_shndx = elfcpp::SHN_ABS;
1281 is_ordinary = false;
1282 psym = &sym2;
1283 }
1284
1285 // Fix up visibility if object has no-export set.
1286 if (relobj->no_export()
1287 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1288 {
1289 // We may have copied symbol already above.
1290 if (psym != &sym2)
1291 {
1292 memcpy(symbuf, p, sym_size);
1293 psym = &sym2;
1294 }
1295
1296 elfcpp::STV visibility = sym2.get_st_visibility();
1297 if (visibility == elfcpp::STV_DEFAULT
1298 || visibility == elfcpp::STV_PROTECTED)
1299 {
1300 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1301 unsigned char nonvis = sym2.get_st_nonvis();
1302 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1303 }
1304 }
1305
1306 Stringpool::Key name_key;
1307 name = this->namepool_.add_with_length(name, namelen, true,
1308 &name_key);
1309
1310 Sized_symbol<size>* res;
1311 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1312 is_default_version, *psym, st_shndx,
1313 is_ordinary, orig_st_shndx);
1314
1315 if (is_forced_local)
1316 this->force_local(res);
1317
1318 // Do not treat this symbol as garbage if this symbol will be
1319 // exported to the dynamic symbol table. This is true when
1320 // building a shared library or using --export-dynamic and
1321 // the symbol is externally visible.
1322 if (parameters->options().gc_sections()
1323 && res->is_externally_visible()
1324 && !res->is_from_dynobj()
1325 && (parameters->options().shared()
1326 || parameters->options().export_dynamic()
1327 || parameters->options().in_dynamic_list(res->name())))
1328 this->gc_mark_symbol(res);
1329
1330 if (is_defined_in_discarded_section)
1331 res->set_is_defined_in_discarded_section();
1332
1333 (*sympointers)[i] = res;
1334 }
1335 }
1336
1337 // Add a symbol from a plugin-claimed file.
1338
1339 template<int size, bool big_endian>
1340 Symbol*
1341 Symbol_table::add_from_pluginobj(
1342 Sized_pluginobj<size, big_endian>* obj,
1343 const char* name,
1344 const char* ver,
1345 elfcpp::Sym<size, big_endian>* sym)
1346 {
1347 unsigned int st_shndx = sym->get_st_shndx();
1348 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1349
1350 Stringpool::Key ver_key = 0;
1351 bool is_default_version = false;
1352 bool is_forced_local = false;
1353
1354 if (ver != NULL)
1355 {
1356 ver = this->namepool_.add(ver, true, &ver_key);
1357 }
1358 // We don't want to assign a version to an undefined symbol,
1359 // even if it is listed in the version script. FIXME: What
1360 // about a common symbol?
1361 else
1362 {
1363 if (!this->version_script_.empty()
1364 && st_shndx != elfcpp::SHN_UNDEF)
1365 {
1366 // The symbol name did not have a version, but the
1367 // version script may assign a version anyway.
1368 std::string version;
1369 bool is_global;
1370 if (this->version_script_.get_symbol_version(name, &version,
1371 &is_global))
1372 {
1373 if (!is_global)
1374 is_forced_local = true;
1375 else if (!version.empty())
1376 {
1377 ver = this->namepool_.add_with_length(version.c_str(),
1378 version.length(),
1379 true,
1380 &ver_key);
1381 is_default_version = true;
1382 }
1383 }
1384 }
1385 }
1386
1387 Stringpool::Key name_key;
1388 name = this->namepool_.add(name, true, &name_key);
1389
1390 Sized_symbol<size>* res;
1391 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1392 is_default_version, *sym, st_shndx,
1393 is_ordinary, st_shndx);
1394
1395 if (is_forced_local)
1396 this->force_local(res);
1397
1398 return res;
1399 }
1400
1401 // Add all the symbols in a dynamic object to the hash table.
1402
1403 template<int size, bool big_endian>
1404 void
1405 Symbol_table::add_from_dynobj(
1406 Sized_dynobj<size, big_endian>* dynobj,
1407 const unsigned char* syms,
1408 size_t count,
1409 const char* sym_names,
1410 size_t sym_name_size,
1411 const unsigned char* versym,
1412 size_t versym_size,
1413 const std::vector<const char*>* version_map,
1414 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1415 size_t* defined)
1416 {
1417 *defined = 0;
1418
1419 gold_assert(size == parameters->target().get_size());
1420
1421 if (dynobj->just_symbols())
1422 {
1423 gold_error(_("--just-symbols does not make sense with a shared object"));
1424 return;
1425 }
1426
1427 // FIXME: For incremental links, we don't store version information,
1428 // so we need to ignore version symbols for now.
1429 if (parameters->incremental_update())
1430 versym = NULL;
1431
1432 if (versym != NULL && versym_size / 2 < count)
1433 {
1434 dynobj->error(_("too few symbol versions"));
1435 return;
1436 }
1437
1438 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1439
1440 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1441 // weak aliases. This is necessary because if the dynamic object
1442 // provides the same variable under two names, one of which is a
1443 // weak definition, and the regular object refers to the weak
1444 // definition, we have to put both the weak definition and the
1445 // strong definition into the dynamic symbol table. Given a weak
1446 // definition, the only way that we can find the corresponding
1447 // strong definition, if any, is to search the symbol table.
1448 std::vector<Sized_symbol<size>*> object_symbols;
1449
1450 const unsigned char* p = syms;
1451 const unsigned char* vs = versym;
1452 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1453 {
1454 elfcpp::Sym<size, big_endian> sym(p);
1455
1456 if (sympointers != NULL)
1457 (*sympointers)[i] = NULL;
1458
1459 // Ignore symbols with local binding or that have
1460 // internal or hidden visibility.
1461 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1462 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1463 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1464 continue;
1465
1466 // A protected symbol in a shared library must be treated as a
1467 // normal symbol when viewed from outside the shared library.
1468 // Implement this by overriding the visibility here.
1469 elfcpp::Sym<size, big_endian>* psym = &sym;
1470 unsigned char symbuf[sym_size];
1471 elfcpp::Sym<size, big_endian> sym2(symbuf);
1472 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1473 {
1474 memcpy(symbuf, p, sym_size);
1475 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1476 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1477 psym = &sym2;
1478 }
1479
1480 unsigned int st_name = psym->get_st_name();
1481 if (st_name >= sym_name_size)
1482 {
1483 dynobj->error(_("bad symbol name offset %u at %zu"),
1484 st_name, i);
1485 continue;
1486 }
1487
1488 const char* name = sym_names + st_name;
1489
1490 bool is_ordinary;
1491 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1492 &is_ordinary);
1493
1494 if (st_shndx != elfcpp::SHN_UNDEF)
1495 ++*defined;
1496
1497 Sized_symbol<size>* res;
1498
1499 if (versym == NULL)
1500 {
1501 Stringpool::Key name_key;
1502 name = this->namepool_.add(name, true, &name_key);
1503 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1504 false, *psym, st_shndx, is_ordinary,
1505 st_shndx);
1506 }
1507 else
1508 {
1509 // Read the version information.
1510
1511 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1512
1513 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1514 v &= elfcpp::VERSYM_VERSION;
1515
1516 // The Sun documentation says that V can be VER_NDX_LOCAL,
1517 // or VER_NDX_GLOBAL, or a version index. The meaning of
1518 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1519 // The old GNU linker will happily generate VER_NDX_LOCAL
1520 // for an undefined symbol. I don't know what the Sun
1521 // linker will generate.
1522
1523 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1524 && st_shndx != elfcpp::SHN_UNDEF)
1525 {
1526 // This symbol should not be visible outside the object.
1527 continue;
1528 }
1529
1530 // At this point we are definitely going to add this symbol.
1531 Stringpool::Key name_key;
1532 name = this->namepool_.add(name, true, &name_key);
1533
1534 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1535 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1536 {
1537 // This symbol does not have a version.
1538 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1539 false, *psym, st_shndx, is_ordinary,
1540 st_shndx);
1541 }
1542 else
1543 {
1544 if (v >= version_map->size())
1545 {
1546 dynobj->error(_("versym for symbol %zu out of range: %u"),
1547 i, v);
1548 continue;
1549 }
1550
1551 const char* version = (*version_map)[v];
1552 if (version == NULL)
1553 {
1554 dynobj->error(_("versym for symbol %zu has no name: %u"),
1555 i, v);
1556 continue;
1557 }
1558
1559 Stringpool::Key version_key;
1560 version = this->namepool_.add(version, true, &version_key);
1561
1562 // If this is an absolute symbol, and the version name
1563 // and symbol name are the same, then this is the
1564 // version definition symbol. These symbols exist to
1565 // support using -u to pull in particular versions. We
1566 // do not want to record a version for them.
1567 if (st_shndx == elfcpp::SHN_ABS
1568 && !is_ordinary
1569 && name_key == version_key)
1570 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1571 false, *psym, st_shndx, is_ordinary,
1572 st_shndx);
1573 else
1574 {
1575 const bool is_default_version =
1576 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1577 res = this->add_from_object(dynobj, name, name_key, version,
1578 version_key, is_default_version,
1579 *psym, st_shndx,
1580 is_ordinary, st_shndx);
1581 }
1582 }
1583 }
1584
1585 // Note that it is possible that RES was overridden by an
1586 // earlier object, in which case it can't be aliased here.
1587 if (st_shndx != elfcpp::SHN_UNDEF
1588 && is_ordinary
1589 && psym->get_st_type() == elfcpp::STT_OBJECT
1590 && res->source() == Symbol::FROM_OBJECT
1591 && res->object() == dynobj)
1592 object_symbols.push_back(res);
1593
1594 if (sympointers != NULL)
1595 (*sympointers)[i] = res;
1596 }
1597
1598 this->record_weak_aliases(&object_symbols);
1599 }
1600
1601 // Add a symbol from a incremental object file.
1602
1603 template<int size, bool big_endian>
1604 Sized_symbol<size>*
1605 Symbol_table::add_from_incrobj(
1606 Object* obj,
1607 const char* name,
1608 const char* ver,
1609 elfcpp::Sym<size, big_endian>* sym)
1610 {
1611 unsigned int st_shndx = sym->get_st_shndx();
1612 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1613
1614 Stringpool::Key ver_key = 0;
1615 bool is_default_version = false;
1616 bool is_forced_local = false;
1617
1618 Stringpool::Key name_key;
1619 name = this->namepool_.add(name, true, &name_key);
1620
1621 Sized_symbol<size>* res;
1622 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1623 is_default_version, *sym, st_shndx,
1624 is_ordinary, st_shndx);
1625
1626 if (is_forced_local)
1627 this->force_local(res);
1628
1629 return res;
1630 }
1631
1632 // This is used to sort weak aliases. We sort them first by section
1633 // index, then by offset, then by weak ahead of strong.
1634
1635 template<int size>
1636 class Weak_alias_sorter
1637 {
1638 public:
1639 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1640 };
1641
1642 template<int size>
1643 bool
1644 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1645 const Sized_symbol<size>* s2) const
1646 {
1647 bool is_ordinary;
1648 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1649 gold_assert(is_ordinary);
1650 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1651 gold_assert(is_ordinary);
1652 if (s1_shndx != s2_shndx)
1653 return s1_shndx < s2_shndx;
1654
1655 if (s1->value() != s2->value())
1656 return s1->value() < s2->value();
1657 if (s1->binding() != s2->binding())
1658 {
1659 if (s1->binding() == elfcpp::STB_WEAK)
1660 return true;
1661 if (s2->binding() == elfcpp::STB_WEAK)
1662 return false;
1663 }
1664 return std::string(s1->name()) < std::string(s2->name());
1665 }
1666
1667 // SYMBOLS is a list of object symbols from a dynamic object. Look
1668 // for any weak aliases, and record them so that if we add the weak
1669 // alias to the dynamic symbol table, we also add the corresponding
1670 // strong symbol.
1671
1672 template<int size>
1673 void
1674 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1675 {
1676 // Sort the vector by section index, then by offset, then by weak
1677 // ahead of strong.
1678 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1679
1680 // Walk through the vector. For each weak definition, record
1681 // aliases.
1682 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1683 symbols->begin();
1684 p != symbols->end();
1685 ++p)
1686 {
1687 if ((*p)->binding() != elfcpp::STB_WEAK)
1688 continue;
1689
1690 // Build a circular list of weak aliases. Each symbol points to
1691 // the next one in the circular list.
1692
1693 Sized_symbol<size>* from_sym = *p;
1694 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1695 for (q = p + 1; q != symbols->end(); ++q)
1696 {
1697 bool dummy;
1698 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1699 || (*q)->value() != from_sym->value())
1700 break;
1701
1702 this->weak_aliases_[from_sym] = *q;
1703 from_sym->set_has_alias();
1704 from_sym = *q;
1705 }
1706
1707 if (from_sym != *p)
1708 {
1709 this->weak_aliases_[from_sym] = *p;
1710 from_sym->set_has_alias();
1711 }
1712
1713 p = q - 1;
1714 }
1715 }
1716
1717 // Create and return a specially defined symbol. If ONLY_IF_REF is
1718 // true, then only create the symbol if there is a reference to it.
1719 // If this does not return NULL, it sets *POLDSYM to the existing
1720 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1721 // resolve the newly created symbol to the old one. This
1722 // canonicalizes *PNAME and *PVERSION.
1723
1724 template<int size, bool big_endian>
1725 Sized_symbol<size>*
1726 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1727 bool only_if_ref,
1728 Sized_symbol<size>** poldsym,
1729 bool* resolve_oldsym)
1730 {
1731 *resolve_oldsym = false;
1732 *poldsym = NULL;
1733
1734 // If the caller didn't give us a version, see if we get one from
1735 // the version script.
1736 std::string v;
1737 bool is_default_version = false;
1738 if (*pversion == NULL)
1739 {
1740 bool is_global;
1741 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1742 {
1743 if (is_global && !v.empty())
1744 {
1745 *pversion = v.c_str();
1746 // If we get the version from a version script, then we
1747 // are also the default version.
1748 is_default_version = true;
1749 }
1750 }
1751 }
1752
1753 Symbol* oldsym;
1754 Sized_symbol<size>* sym;
1755
1756 bool add_to_table = false;
1757 typename Symbol_table_type::iterator add_loc = this->table_.end();
1758 bool add_def_to_table = false;
1759 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1760
1761 if (only_if_ref)
1762 {
1763 oldsym = this->lookup(*pname, *pversion);
1764 if (oldsym == NULL && is_default_version)
1765 oldsym = this->lookup(*pname, NULL);
1766 if (oldsym == NULL || !oldsym->is_undefined())
1767 return NULL;
1768
1769 *pname = oldsym->name();
1770 if (is_default_version)
1771 *pversion = this->namepool_.add(*pversion, true, NULL);
1772 else
1773 *pversion = oldsym->version();
1774 }
1775 else
1776 {
1777 // Canonicalize NAME and VERSION.
1778 Stringpool::Key name_key;
1779 *pname = this->namepool_.add(*pname, true, &name_key);
1780
1781 Stringpool::Key version_key = 0;
1782 if (*pversion != NULL)
1783 *pversion = this->namepool_.add(*pversion, true, &version_key);
1784
1785 Symbol* const snull = NULL;
1786 std::pair<typename Symbol_table_type::iterator, bool> ins =
1787 this->table_.insert(std::make_pair(std::make_pair(name_key,
1788 version_key),
1789 snull));
1790
1791 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1792 std::make_pair(this->table_.end(), false);
1793 if (is_default_version)
1794 {
1795 const Stringpool::Key vnull = 0;
1796 insdefault =
1797 this->table_.insert(std::make_pair(std::make_pair(name_key,
1798 vnull),
1799 snull));
1800 }
1801
1802 if (!ins.second)
1803 {
1804 // We already have a symbol table entry for NAME/VERSION.
1805 oldsym = ins.first->second;
1806 gold_assert(oldsym != NULL);
1807
1808 if (is_default_version)
1809 {
1810 Sized_symbol<size>* soldsym =
1811 this->get_sized_symbol<size>(oldsym);
1812 this->define_default_version<size, big_endian>(soldsym,
1813 insdefault.second,
1814 insdefault.first);
1815 }
1816 }
1817 else
1818 {
1819 // We haven't seen this symbol before.
1820 gold_assert(ins.first->second == NULL);
1821
1822 add_to_table = true;
1823 add_loc = ins.first;
1824
1825 if (is_default_version && !insdefault.second)
1826 {
1827 // We are adding NAME/VERSION, and it is the default
1828 // version. We already have an entry for NAME/NULL.
1829 oldsym = insdefault.first->second;
1830 *resolve_oldsym = true;
1831 }
1832 else
1833 {
1834 oldsym = NULL;
1835
1836 if (is_default_version)
1837 {
1838 add_def_to_table = true;
1839 add_def_loc = insdefault.first;
1840 }
1841 }
1842 }
1843 }
1844
1845 const Target& target = parameters->target();
1846 if (!target.has_make_symbol())
1847 sym = new Sized_symbol<size>();
1848 else
1849 {
1850 Sized_target<size, big_endian>* sized_target =
1851 parameters->sized_target<size, big_endian>();
1852 sym = sized_target->make_symbol();
1853 if (sym == NULL)
1854 return NULL;
1855 }
1856
1857 if (add_to_table)
1858 add_loc->second = sym;
1859 else
1860 gold_assert(oldsym != NULL);
1861
1862 if (add_def_to_table)
1863 add_def_loc->second = sym;
1864
1865 *poldsym = this->get_sized_symbol<size>(oldsym);
1866
1867 return sym;
1868 }
1869
1870 // Define a symbol based on an Output_data.
1871
1872 Symbol*
1873 Symbol_table::define_in_output_data(const char* name,
1874 const char* version,
1875 Defined defined,
1876 Output_data* od,
1877 uint64_t value,
1878 uint64_t symsize,
1879 elfcpp::STT type,
1880 elfcpp::STB binding,
1881 elfcpp::STV visibility,
1882 unsigned char nonvis,
1883 bool offset_is_from_end,
1884 bool only_if_ref)
1885 {
1886 if (parameters->target().get_size() == 32)
1887 {
1888 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1889 return this->do_define_in_output_data<32>(name, version, defined, od,
1890 value, symsize, type, binding,
1891 visibility, nonvis,
1892 offset_is_from_end,
1893 only_if_ref);
1894 #else
1895 gold_unreachable();
1896 #endif
1897 }
1898 else if (parameters->target().get_size() == 64)
1899 {
1900 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1901 return this->do_define_in_output_data<64>(name, version, defined, od,
1902 value, symsize, type, binding,
1903 visibility, nonvis,
1904 offset_is_from_end,
1905 only_if_ref);
1906 #else
1907 gold_unreachable();
1908 #endif
1909 }
1910 else
1911 gold_unreachable();
1912 }
1913
1914 // Define a symbol in an Output_data, sized version.
1915
1916 template<int size>
1917 Sized_symbol<size>*
1918 Symbol_table::do_define_in_output_data(
1919 const char* name,
1920 const char* version,
1921 Defined defined,
1922 Output_data* od,
1923 typename elfcpp::Elf_types<size>::Elf_Addr value,
1924 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1925 elfcpp::STT type,
1926 elfcpp::STB binding,
1927 elfcpp::STV visibility,
1928 unsigned char nonvis,
1929 bool offset_is_from_end,
1930 bool only_if_ref)
1931 {
1932 Sized_symbol<size>* sym;
1933 Sized_symbol<size>* oldsym;
1934 bool resolve_oldsym;
1935
1936 if (parameters->target().is_big_endian())
1937 {
1938 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1939 sym = this->define_special_symbol<size, true>(&name, &version,
1940 only_if_ref, &oldsym,
1941 &resolve_oldsym);
1942 #else
1943 gold_unreachable();
1944 #endif
1945 }
1946 else
1947 {
1948 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1949 sym = this->define_special_symbol<size, false>(&name, &version,
1950 only_if_ref, &oldsym,
1951 &resolve_oldsym);
1952 #else
1953 gold_unreachable();
1954 #endif
1955 }
1956
1957 if (sym == NULL)
1958 return NULL;
1959
1960 sym->init_output_data(name, version, od, value, symsize, type, binding,
1961 visibility, nonvis, offset_is_from_end,
1962 defined == PREDEFINED);
1963
1964 if (oldsym == NULL)
1965 {
1966 if (binding == elfcpp::STB_LOCAL
1967 || this->version_script_.symbol_is_local(name))
1968 this->force_local(sym);
1969 else if (version != NULL)
1970 sym->set_is_default();
1971 return sym;
1972 }
1973
1974 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1975 this->override_with_special(oldsym, sym);
1976
1977 if (resolve_oldsym)
1978 return sym;
1979 else
1980 {
1981 if (binding == elfcpp::STB_LOCAL
1982 || this->version_script_.symbol_is_local(name))
1983 this->force_local(oldsym);
1984 delete sym;
1985 return oldsym;
1986 }
1987 }
1988
1989 // Define a symbol based on an Output_segment.
1990
1991 Symbol*
1992 Symbol_table::define_in_output_segment(const char* name,
1993 const char* version,
1994 Defined defined,
1995 Output_segment* os,
1996 uint64_t value,
1997 uint64_t symsize,
1998 elfcpp::STT type,
1999 elfcpp::STB binding,
2000 elfcpp::STV visibility,
2001 unsigned char nonvis,
2002 Symbol::Segment_offset_base offset_base,
2003 bool only_if_ref)
2004 {
2005 if (parameters->target().get_size() == 32)
2006 {
2007 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2008 return this->do_define_in_output_segment<32>(name, version, defined, os,
2009 value, symsize, type,
2010 binding, visibility, nonvis,
2011 offset_base, only_if_ref);
2012 #else
2013 gold_unreachable();
2014 #endif
2015 }
2016 else if (parameters->target().get_size() == 64)
2017 {
2018 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2019 return this->do_define_in_output_segment<64>(name, version, defined, os,
2020 value, symsize, type,
2021 binding, visibility, nonvis,
2022 offset_base, only_if_ref);
2023 #else
2024 gold_unreachable();
2025 #endif
2026 }
2027 else
2028 gold_unreachable();
2029 }
2030
2031 // Define a symbol in an Output_segment, sized version.
2032
2033 template<int size>
2034 Sized_symbol<size>*
2035 Symbol_table::do_define_in_output_segment(
2036 const char* name,
2037 const char* version,
2038 Defined defined,
2039 Output_segment* os,
2040 typename elfcpp::Elf_types<size>::Elf_Addr value,
2041 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2042 elfcpp::STT type,
2043 elfcpp::STB binding,
2044 elfcpp::STV visibility,
2045 unsigned char nonvis,
2046 Symbol::Segment_offset_base offset_base,
2047 bool only_if_ref)
2048 {
2049 Sized_symbol<size>* sym;
2050 Sized_symbol<size>* oldsym;
2051 bool resolve_oldsym;
2052
2053 if (parameters->target().is_big_endian())
2054 {
2055 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2056 sym = this->define_special_symbol<size, true>(&name, &version,
2057 only_if_ref, &oldsym,
2058 &resolve_oldsym);
2059 #else
2060 gold_unreachable();
2061 #endif
2062 }
2063 else
2064 {
2065 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2066 sym = this->define_special_symbol<size, false>(&name, &version,
2067 only_if_ref, &oldsym,
2068 &resolve_oldsym);
2069 #else
2070 gold_unreachable();
2071 #endif
2072 }
2073
2074 if (sym == NULL)
2075 return NULL;
2076
2077 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2078 visibility, nonvis, offset_base,
2079 defined == PREDEFINED);
2080
2081 if (oldsym == NULL)
2082 {
2083 if (binding == elfcpp::STB_LOCAL
2084 || this->version_script_.symbol_is_local(name))
2085 this->force_local(sym);
2086 else if (version != NULL)
2087 sym->set_is_default();
2088 return sym;
2089 }
2090
2091 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2092 this->override_with_special(oldsym, sym);
2093
2094 if (resolve_oldsym)
2095 return sym;
2096 else
2097 {
2098 if (binding == elfcpp::STB_LOCAL
2099 || this->version_script_.symbol_is_local(name))
2100 this->force_local(oldsym);
2101 delete sym;
2102 return oldsym;
2103 }
2104 }
2105
2106 // Define a special symbol with a constant value. It is a multiple
2107 // definition error if this symbol is already defined.
2108
2109 Symbol*
2110 Symbol_table::define_as_constant(const char* name,
2111 const char* version,
2112 Defined defined,
2113 uint64_t value,
2114 uint64_t symsize,
2115 elfcpp::STT type,
2116 elfcpp::STB binding,
2117 elfcpp::STV visibility,
2118 unsigned char nonvis,
2119 bool only_if_ref,
2120 bool force_override)
2121 {
2122 if (parameters->target().get_size() == 32)
2123 {
2124 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2125 return this->do_define_as_constant<32>(name, version, defined, value,
2126 symsize, type, binding,
2127 visibility, nonvis, only_if_ref,
2128 force_override);
2129 #else
2130 gold_unreachable();
2131 #endif
2132 }
2133 else if (parameters->target().get_size() == 64)
2134 {
2135 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2136 return this->do_define_as_constant<64>(name, version, defined, value,
2137 symsize, type, binding,
2138 visibility, nonvis, only_if_ref,
2139 force_override);
2140 #else
2141 gold_unreachable();
2142 #endif
2143 }
2144 else
2145 gold_unreachable();
2146 }
2147
2148 // Define a symbol as a constant, sized version.
2149
2150 template<int size>
2151 Sized_symbol<size>*
2152 Symbol_table::do_define_as_constant(
2153 const char* name,
2154 const char* version,
2155 Defined defined,
2156 typename elfcpp::Elf_types<size>::Elf_Addr value,
2157 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2158 elfcpp::STT type,
2159 elfcpp::STB binding,
2160 elfcpp::STV visibility,
2161 unsigned char nonvis,
2162 bool only_if_ref,
2163 bool force_override)
2164 {
2165 Sized_symbol<size>* sym;
2166 Sized_symbol<size>* oldsym;
2167 bool resolve_oldsym;
2168
2169 if (parameters->target().is_big_endian())
2170 {
2171 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2172 sym = this->define_special_symbol<size, true>(&name, &version,
2173 only_if_ref, &oldsym,
2174 &resolve_oldsym);
2175 #else
2176 gold_unreachable();
2177 #endif
2178 }
2179 else
2180 {
2181 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2182 sym = this->define_special_symbol<size, false>(&name, &version,
2183 only_if_ref, &oldsym,
2184 &resolve_oldsym);
2185 #else
2186 gold_unreachable();
2187 #endif
2188 }
2189
2190 if (sym == NULL)
2191 return NULL;
2192
2193 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2194 nonvis, defined == PREDEFINED);
2195
2196 if (oldsym == NULL)
2197 {
2198 // Version symbols are absolute symbols with name == version.
2199 // We don't want to force them to be local.
2200 if ((version == NULL
2201 || name != version
2202 || value != 0)
2203 && (binding == elfcpp::STB_LOCAL
2204 || this->version_script_.symbol_is_local(name)))
2205 this->force_local(sym);
2206 else if (version != NULL
2207 && (name != version || value != 0))
2208 sym->set_is_default();
2209 return sym;
2210 }
2211
2212 if (force_override
2213 || Symbol_table::should_override_with_special(oldsym, type, defined))
2214 this->override_with_special(oldsym, sym);
2215
2216 if (resolve_oldsym)
2217 return sym;
2218 else
2219 {
2220 if (binding == elfcpp::STB_LOCAL
2221 || this->version_script_.symbol_is_local(name))
2222 this->force_local(oldsym);
2223 delete sym;
2224 return oldsym;
2225 }
2226 }
2227
2228 // Define a set of symbols in output sections.
2229
2230 void
2231 Symbol_table::define_symbols(const Layout* layout, int count,
2232 const Define_symbol_in_section* p,
2233 bool only_if_ref)
2234 {
2235 for (int i = 0; i < count; ++i, ++p)
2236 {
2237 Output_section* os = layout->find_output_section(p->output_section);
2238 if (os != NULL)
2239 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2240 p->size, p->type, p->binding,
2241 p->visibility, p->nonvis,
2242 p->offset_is_from_end,
2243 only_if_ref || p->only_if_ref);
2244 else
2245 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2246 p->type, p->binding, p->visibility, p->nonvis,
2247 only_if_ref || p->only_if_ref,
2248 false);
2249 }
2250 }
2251
2252 // Define a set of symbols in output segments.
2253
2254 void
2255 Symbol_table::define_symbols(const Layout* layout, int count,
2256 const Define_symbol_in_segment* p,
2257 bool only_if_ref)
2258 {
2259 for (int i = 0; i < count; ++i, ++p)
2260 {
2261 Output_segment* os = layout->find_output_segment(p->segment_type,
2262 p->segment_flags_set,
2263 p->segment_flags_clear);
2264 if (os != NULL)
2265 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2266 p->size, p->type, p->binding,
2267 p->visibility, p->nonvis,
2268 p->offset_base,
2269 only_if_ref || p->only_if_ref);
2270 else
2271 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2272 p->type, p->binding, p->visibility, p->nonvis,
2273 only_if_ref || p->only_if_ref,
2274 false);
2275 }
2276 }
2277
2278 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2279 // symbol should be defined--typically a .dyn.bss section. VALUE is
2280 // the offset within POSD.
2281
2282 template<int size>
2283 void
2284 Symbol_table::define_with_copy_reloc(
2285 Sized_symbol<size>* csym,
2286 Output_data* posd,
2287 typename elfcpp::Elf_types<size>::Elf_Addr value)
2288 {
2289 gold_assert(csym->is_from_dynobj());
2290 gold_assert(!csym->is_copied_from_dynobj());
2291 Object* object = csym->object();
2292 gold_assert(object->is_dynamic());
2293 Dynobj* dynobj = static_cast<Dynobj*>(object);
2294
2295 // Our copied variable has to override any variable in a shared
2296 // library.
2297 elfcpp::STB binding = csym->binding();
2298 if (binding == elfcpp::STB_WEAK)
2299 binding = elfcpp::STB_GLOBAL;
2300
2301 this->define_in_output_data(csym->name(), csym->version(), COPY,
2302 posd, value, csym->symsize(),
2303 csym->type(), binding,
2304 csym->visibility(), csym->nonvis(),
2305 false, false);
2306
2307 csym->set_is_copied_from_dynobj();
2308 csym->set_needs_dynsym_entry();
2309
2310 this->copied_symbol_dynobjs_[csym] = dynobj;
2311
2312 // We have now defined all aliases, but we have not entered them all
2313 // in the copied_symbol_dynobjs_ map.
2314 if (csym->has_alias())
2315 {
2316 Symbol* sym = csym;
2317 while (true)
2318 {
2319 sym = this->weak_aliases_[sym];
2320 if (sym == csym)
2321 break;
2322 gold_assert(sym->output_data() == posd);
2323
2324 sym->set_is_copied_from_dynobj();
2325 this->copied_symbol_dynobjs_[sym] = dynobj;
2326 }
2327 }
2328 }
2329
2330 // SYM is defined using a COPY reloc. Return the dynamic object where
2331 // the original definition was found.
2332
2333 Dynobj*
2334 Symbol_table::get_copy_source(const Symbol* sym) const
2335 {
2336 gold_assert(sym->is_copied_from_dynobj());
2337 Copied_symbol_dynobjs::const_iterator p =
2338 this->copied_symbol_dynobjs_.find(sym);
2339 gold_assert(p != this->copied_symbol_dynobjs_.end());
2340 return p->second;
2341 }
2342
2343 // Add any undefined symbols named on the command line.
2344
2345 void
2346 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2347 {
2348 if (parameters->options().any_undefined()
2349 || layout->script_options()->any_unreferenced())
2350 {
2351 if (parameters->target().get_size() == 32)
2352 {
2353 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2354 this->do_add_undefined_symbols_from_command_line<32>(layout);
2355 #else
2356 gold_unreachable();
2357 #endif
2358 }
2359 else if (parameters->target().get_size() == 64)
2360 {
2361 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2362 this->do_add_undefined_symbols_from_command_line<64>(layout);
2363 #else
2364 gold_unreachable();
2365 #endif
2366 }
2367 else
2368 gold_unreachable();
2369 }
2370 }
2371
2372 template<int size>
2373 void
2374 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2375 {
2376 for (options::String_set::const_iterator p =
2377 parameters->options().undefined_begin();
2378 p != parameters->options().undefined_end();
2379 ++p)
2380 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2381
2382 for (options::String_set::const_iterator p =
2383 parameters->options().export_dynamic_symbol_begin();
2384 p != parameters->options().export_dynamic_symbol_end();
2385 ++p)
2386 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2387
2388 for (Script_options::referenced_const_iterator p =
2389 layout->script_options()->referenced_begin();
2390 p != layout->script_options()->referenced_end();
2391 ++p)
2392 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2393 }
2394
2395 template<int size>
2396 void
2397 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2398 {
2399 if (this->lookup(name) != NULL)
2400 return;
2401
2402 const char* version = NULL;
2403
2404 Sized_symbol<size>* sym;
2405 Sized_symbol<size>* oldsym;
2406 bool resolve_oldsym;
2407 if (parameters->target().is_big_endian())
2408 {
2409 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2410 sym = this->define_special_symbol<size, true>(&name, &version,
2411 false, &oldsym,
2412 &resolve_oldsym);
2413 #else
2414 gold_unreachable();
2415 #endif
2416 }
2417 else
2418 {
2419 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2420 sym = this->define_special_symbol<size, false>(&name, &version,
2421 false, &oldsym,
2422 &resolve_oldsym);
2423 #else
2424 gold_unreachable();
2425 #endif
2426 }
2427
2428 gold_assert(oldsym == NULL);
2429
2430 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2431 elfcpp::STV_DEFAULT, 0);
2432 ++this->saw_undefined_;
2433 }
2434
2435 // Set the dynamic symbol indexes. INDEX is the index of the first
2436 // global dynamic symbol. Pointers to the symbols are stored into the
2437 // vector SYMS. The names are added to DYNPOOL. This returns an
2438 // updated dynamic symbol index.
2439
2440 unsigned int
2441 Symbol_table::set_dynsym_indexes(unsigned int index,
2442 std::vector<Symbol*>* syms,
2443 Stringpool* dynpool,
2444 Versions* versions)
2445 {
2446 std::vector<Symbol*> as_needed_sym;
2447
2448 // Allow a target to set dynsym indexes.
2449 if (parameters->target().has_custom_set_dynsym_indexes())
2450 {
2451 std::vector<Symbol*> dyn_symbols;
2452 for (Symbol_table_type::iterator p = this->table_.begin();
2453 p != this->table_.end();
2454 ++p)
2455 {
2456 Symbol* sym = p->second;
2457 if (!sym->should_add_dynsym_entry(this))
2458 sym->set_dynsym_index(-1U);
2459 else
2460 dyn_symbols.push_back(sym);
2461 }
2462
2463 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2464 dynpool, versions, this);
2465 }
2466
2467 for (Symbol_table_type::iterator p = this->table_.begin();
2468 p != this->table_.end();
2469 ++p)
2470 {
2471 Symbol* sym = p->second;
2472
2473 // Note that SYM may already have a dynamic symbol index, since
2474 // some symbols appear more than once in the symbol table, with
2475 // and without a version.
2476
2477 if (!sym->should_add_dynsym_entry(this))
2478 sym->set_dynsym_index(-1U);
2479 else if (!sym->has_dynsym_index())
2480 {
2481 sym->set_dynsym_index(index);
2482 ++index;
2483 syms->push_back(sym);
2484 dynpool->add(sym->name(), false, NULL);
2485
2486 // If the symbol is defined in a dynamic object and is
2487 // referenced strongly in a regular object, then mark the
2488 // dynamic object as needed. This is used to implement
2489 // --as-needed.
2490 if (sym->is_from_dynobj()
2491 && sym->in_reg()
2492 && !sym->is_undef_binding_weak())
2493 sym->object()->set_is_needed();
2494
2495 // Record any version information, except those from
2496 // as-needed libraries not seen to be needed. Note that the
2497 // is_needed state for such libraries can change in this loop.
2498 if (sym->version() != NULL)
2499 {
2500 if (!sym->is_from_dynobj()
2501 || !sym->object()->as_needed()
2502 || sym->object()->is_needed())
2503 versions->record_version(this, dynpool, sym);
2504 else
2505 as_needed_sym.push_back(sym);
2506 }
2507 }
2508 }
2509
2510 // Process version information for symbols from as-needed libraries.
2511 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2512 p != as_needed_sym.end();
2513 ++p)
2514 {
2515 Symbol* sym = *p;
2516
2517 if (sym->object()->is_needed())
2518 versions->record_version(this, dynpool, sym);
2519 else
2520 sym->clear_version();
2521 }
2522
2523 // Finish up the versions. In some cases this may add new dynamic
2524 // symbols.
2525 index = versions->finalize(this, index, syms);
2526
2527 return index;
2528 }
2529
2530 // Set the final values for all the symbols. The index of the first
2531 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2532 // file offset OFF. Add their names to POOL. Return the new file
2533 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2534
2535 off_t
2536 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2537 size_t dyncount, Stringpool* pool,
2538 unsigned int* plocal_symcount)
2539 {
2540 off_t ret;
2541
2542 gold_assert(*plocal_symcount != 0);
2543 this->first_global_index_ = *plocal_symcount;
2544
2545 this->dynamic_offset_ = dynoff;
2546 this->first_dynamic_global_index_ = dyn_global_index;
2547 this->dynamic_count_ = dyncount;
2548
2549 if (parameters->target().get_size() == 32)
2550 {
2551 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2552 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2553 #else
2554 gold_unreachable();
2555 #endif
2556 }
2557 else if (parameters->target().get_size() == 64)
2558 {
2559 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2560 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2561 #else
2562 gold_unreachable();
2563 #endif
2564 }
2565 else
2566 gold_unreachable();
2567
2568 // Now that we have the final symbol table, we can reliably note
2569 // which symbols should get warnings.
2570 this->warnings_.note_warnings(this);
2571
2572 return ret;
2573 }
2574
2575 // SYM is going into the symbol table at *PINDEX. Add the name to
2576 // POOL, update *PINDEX and *POFF.
2577
2578 template<int size>
2579 void
2580 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2581 unsigned int* pindex, off_t* poff)
2582 {
2583 sym->set_symtab_index(*pindex);
2584 if (sym->version() == NULL || !parameters->options().relocatable())
2585 pool->add(sym->name(), false, NULL);
2586 else
2587 pool->add(sym->versioned_name(), true, NULL);
2588 ++*pindex;
2589 *poff += elfcpp::Elf_sizes<size>::sym_size;
2590 }
2591
2592 // Set the final value for all the symbols. This is called after
2593 // Layout::finalize, so all the output sections have their final
2594 // address.
2595
2596 template<int size>
2597 off_t
2598 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2599 unsigned int* plocal_symcount)
2600 {
2601 off = align_address(off, size >> 3);
2602 this->offset_ = off;
2603
2604 unsigned int index = *plocal_symcount;
2605 const unsigned int orig_index = index;
2606
2607 // First do all the symbols which have been forced to be local, as
2608 // they must appear before all global symbols.
2609 for (Forced_locals::iterator p = this->forced_locals_.begin();
2610 p != this->forced_locals_.end();
2611 ++p)
2612 {
2613 Symbol* sym = *p;
2614 gold_assert(sym->is_forced_local());
2615 if (this->sized_finalize_symbol<size>(sym))
2616 {
2617 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2618 ++*plocal_symcount;
2619 }
2620 }
2621
2622 // Now do all the remaining symbols.
2623 for (Symbol_table_type::iterator p = this->table_.begin();
2624 p != this->table_.end();
2625 ++p)
2626 {
2627 Symbol* sym = p->second;
2628 if (this->sized_finalize_symbol<size>(sym))
2629 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2630 }
2631
2632 this->output_count_ = index - orig_index;
2633
2634 return off;
2635 }
2636
2637 // Compute the final value of SYM and store status in location PSTATUS.
2638 // During relaxation, this may be called multiple times for a symbol to
2639 // compute its would-be final value in each relaxation pass.
2640
2641 template<int size>
2642 typename Sized_symbol<size>::Value_type
2643 Symbol_table::compute_final_value(
2644 const Sized_symbol<size>* sym,
2645 Compute_final_value_status* pstatus) const
2646 {
2647 typedef typename Sized_symbol<size>::Value_type Value_type;
2648 Value_type value;
2649
2650 switch (sym->source())
2651 {
2652 case Symbol::FROM_OBJECT:
2653 {
2654 bool is_ordinary;
2655 unsigned int shndx = sym->shndx(&is_ordinary);
2656
2657 if (!is_ordinary
2658 && shndx != elfcpp::SHN_ABS
2659 && !Symbol::is_common_shndx(shndx))
2660 {
2661 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2662 return 0;
2663 }
2664
2665 Object* symobj = sym->object();
2666 if (symobj->is_dynamic())
2667 {
2668 value = 0;
2669 shndx = elfcpp::SHN_UNDEF;
2670 }
2671 else if (symobj->pluginobj() != NULL)
2672 {
2673 value = 0;
2674 shndx = elfcpp::SHN_UNDEF;
2675 }
2676 else if (shndx == elfcpp::SHN_UNDEF)
2677 value = 0;
2678 else if (!is_ordinary
2679 && (shndx == elfcpp::SHN_ABS
2680 || Symbol::is_common_shndx(shndx)))
2681 value = sym->value();
2682 else
2683 {
2684 Relobj* relobj = static_cast<Relobj*>(symobj);
2685 Output_section* os = relobj->output_section(shndx);
2686
2687 if (this->is_section_folded(relobj, shndx))
2688 {
2689 gold_assert(os == NULL);
2690 // Get the os of the section it is folded onto.
2691 Section_id folded = this->icf_->get_folded_section(relobj,
2692 shndx);
2693 gold_assert(folded.first != NULL);
2694 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2695 unsigned folded_shndx = folded.second;
2696
2697 os = folded_obj->output_section(folded_shndx);
2698 gold_assert(os != NULL);
2699
2700 // Replace (relobj, shndx) with canonical ICF input section.
2701 shndx = folded_shndx;
2702 relobj = folded_obj;
2703 }
2704
2705 uint64_t secoff64 = relobj->output_section_offset(shndx);
2706 if (os == NULL)
2707 {
2708 bool static_or_reloc = (parameters->doing_static_link() ||
2709 parameters->options().relocatable());
2710 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2711
2712 *pstatus = CFVS_NO_OUTPUT_SECTION;
2713 return 0;
2714 }
2715
2716 if (secoff64 == -1ULL)
2717 {
2718 // The section needs special handling (e.g., a merge section).
2719
2720 value = os->output_address(relobj, shndx, sym->value());
2721 }
2722 else
2723 {
2724 Value_type secoff =
2725 convert_types<Value_type, uint64_t>(secoff64);
2726 if (sym->type() == elfcpp::STT_TLS)
2727 value = sym->value() + os->tls_offset() + secoff;
2728 else
2729 value = sym->value() + os->address() + secoff;
2730 }
2731 }
2732 }
2733 break;
2734
2735 case Symbol::IN_OUTPUT_DATA:
2736 {
2737 Output_data* od = sym->output_data();
2738 value = sym->value();
2739 if (sym->type() != elfcpp::STT_TLS)
2740 value += od->address();
2741 else
2742 {
2743 Output_section* os = od->output_section();
2744 gold_assert(os != NULL);
2745 value += os->tls_offset() + (od->address() - os->address());
2746 }
2747 if (sym->offset_is_from_end())
2748 value += od->data_size();
2749 }
2750 break;
2751
2752 case Symbol::IN_OUTPUT_SEGMENT:
2753 {
2754 Output_segment* os = sym->output_segment();
2755 value = sym->value();
2756 if (sym->type() != elfcpp::STT_TLS)
2757 value += os->vaddr();
2758 switch (sym->offset_base())
2759 {
2760 case Symbol::SEGMENT_START:
2761 break;
2762 case Symbol::SEGMENT_END:
2763 value += os->memsz();
2764 break;
2765 case Symbol::SEGMENT_BSS:
2766 value += os->filesz();
2767 break;
2768 default:
2769 gold_unreachable();
2770 }
2771 }
2772 break;
2773
2774 case Symbol::IS_CONSTANT:
2775 value = sym->value();
2776 break;
2777
2778 case Symbol::IS_UNDEFINED:
2779 value = 0;
2780 break;
2781
2782 default:
2783 gold_unreachable();
2784 }
2785
2786 *pstatus = CFVS_OK;
2787 return value;
2788 }
2789
2790 // Finalize the symbol SYM. This returns true if the symbol should be
2791 // added to the symbol table, false otherwise.
2792
2793 template<int size>
2794 bool
2795 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2796 {
2797 typedef typename Sized_symbol<size>::Value_type Value_type;
2798
2799 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2800
2801 // The default version of a symbol may appear twice in the symbol
2802 // table. We only need to finalize it once.
2803 if (sym->has_symtab_index())
2804 return false;
2805
2806 if (!sym->in_reg())
2807 {
2808 gold_assert(!sym->has_symtab_index());
2809 sym->set_symtab_index(-1U);
2810 gold_assert(sym->dynsym_index() == -1U);
2811 return false;
2812 }
2813
2814 // If the symbol is only present on plugin files, the plugin decided we
2815 // don't need it.
2816 if (!sym->in_real_elf())
2817 {
2818 gold_assert(!sym->has_symtab_index());
2819 sym->set_symtab_index(-1U);
2820 return false;
2821 }
2822
2823 // Compute final symbol value.
2824 Compute_final_value_status status;
2825 Value_type value = this->compute_final_value(sym, &status);
2826
2827 switch (status)
2828 {
2829 case CFVS_OK:
2830 break;
2831 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2832 {
2833 bool is_ordinary;
2834 unsigned int shndx = sym->shndx(&is_ordinary);
2835 gold_error(_("%s: unsupported symbol section 0x%x"),
2836 sym->demangled_name().c_str(), shndx);
2837 }
2838 break;
2839 case CFVS_NO_OUTPUT_SECTION:
2840 sym->set_symtab_index(-1U);
2841 return false;
2842 default:
2843 gold_unreachable();
2844 }
2845
2846 sym->set_value(value);
2847
2848 if (parameters->options().strip_all()
2849 || !parameters->options().should_retain_symbol(sym->name()))
2850 {
2851 sym->set_symtab_index(-1U);
2852 return false;
2853 }
2854
2855 return true;
2856 }
2857
2858 // Write out the global symbols.
2859
2860 void
2861 Symbol_table::write_globals(const Stringpool* sympool,
2862 const Stringpool* dynpool,
2863 Output_symtab_xindex* symtab_xindex,
2864 Output_symtab_xindex* dynsym_xindex,
2865 Output_file* of) const
2866 {
2867 switch (parameters->size_and_endianness())
2868 {
2869 #ifdef HAVE_TARGET_32_LITTLE
2870 case Parameters::TARGET_32_LITTLE:
2871 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2872 dynsym_xindex, of);
2873 break;
2874 #endif
2875 #ifdef HAVE_TARGET_32_BIG
2876 case Parameters::TARGET_32_BIG:
2877 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2878 dynsym_xindex, of);
2879 break;
2880 #endif
2881 #ifdef HAVE_TARGET_64_LITTLE
2882 case Parameters::TARGET_64_LITTLE:
2883 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2884 dynsym_xindex, of);
2885 break;
2886 #endif
2887 #ifdef HAVE_TARGET_64_BIG
2888 case Parameters::TARGET_64_BIG:
2889 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2890 dynsym_xindex, of);
2891 break;
2892 #endif
2893 default:
2894 gold_unreachable();
2895 }
2896 }
2897
2898 // Write out the global symbols.
2899
2900 template<int size, bool big_endian>
2901 void
2902 Symbol_table::sized_write_globals(const Stringpool* sympool,
2903 const Stringpool* dynpool,
2904 Output_symtab_xindex* symtab_xindex,
2905 Output_symtab_xindex* dynsym_xindex,
2906 Output_file* of) const
2907 {
2908 const Target& target = parameters->target();
2909
2910 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2911
2912 const unsigned int output_count = this->output_count_;
2913 const section_size_type oview_size = output_count * sym_size;
2914 const unsigned int first_global_index = this->first_global_index_;
2915 unsigned char* psyms;
2916 if (this->offset_ == 0 || output_count == 0)
2917 psyms = NULL;
2918 else
2919 psyms = of->get_output_view(this->offset_, oview_size);
2920
2921 const unsigned int dynamic_count = this->dynamic_count_;
2922 const section_size_type dynamic_size = dynamic_count * sym_size;
2923 const unsigned int first_dynamic_global_index =
2924 this->first_dynamic_global_index_;
2925 unsigned char* dynamic_view;
2926 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2927 dynamic_view = NULL;
2928 else
2929 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2930
2931 for (Symbol_table_type::const_iterator p = this->table_.begin();
2932 p != this->table_.end();
2933 ++p)
2934 {
2935 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2936
2937 // Possibly warn about unresolved symbols in shared libraries.
2938 this->warn_about_undefined_dynobj_symbol(sym);
2939
2940 unsigned int sym_index = sym->symtab_index();
2941 unsigned int dynsym_index;
2942 if (dynamic_view == NULL)
2943 dynsym_index = -1U;
2944 else
2945 dynsym_index = sym->dynsym_index();
2946
2947 if (sym_index == -1U && dynsym_index == -1U)
2948 {
2949 // This symbol is not included in the output file.
2950 continue;
2951 }
2952
2953 unsigned int shndx;
2954 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2955 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2956 elfcpp::STB binding = sym->binding();
2957
2958 // If --weak-unresolved-symbols is set, change binding of unresolved
2959 // global symbols to STB_WEAK.
2960 if (parameters->options().weak_unresolved_symbols()
2961 && binding == elfcpp::STB_GLOBAL
2962 && sym->is_undefined())
2963 binding = elfcpp::STB_WEAK;
2964
2965 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2966 if (binding == elfcpp::STB_GNU_UNIQUE
2967 && !parameters->options().gnu_unique())
2968 binding = elfcpp::STB_GLOBAL;
2969
2970 switch (sym->source())
2971 {
2972 case Symbol::FROM_OBJECT:
2973 {
2974 bool is_ordinary;
2975 unsigned int in_shndx = sym->shndx(&is_ordinary);
2976
2977 if (!is_ordinary
2978 && in_shndx != elfcpp::SHN_ABS
2979 && !Symbol::is_common_shndx(in_shndx))
2980 {
2981 gold_error(_("%s: unsupported symbol section 0x%x"),
2982 sym->demangled_name().c_str(), in_shndx);
2983 shndx = in_shndx;
2984 }
2985 else
2986 {
2987 Object* symobj = sym->object();
2988 if (symobj->is_dynamic())
2989 {
2990 if (sym->needs_dynsym_value())
2991 dynsym_value = target.dynsym_value(sym);
2992 shndx = elfcpp::SHN_UNDEF;
2993 if (sym->is_undef_binding_weak())
2994 binding = elfcpp::STB_WEAK;
2995 else
2996 binding = elfcpp::STB_GLOBAL;
2997 }
2998 else if (symobj->pluginobj() != NULL)
2999 shndx = elfcpp::SHN_UNDEF;
3000 else if (in_shndx == elfcpp::SHN_UNDEF
3001 || (!is_ordinary
3002 && (in_shndx == elfcpp::SHN_ABS
3003 || Symbol::is_common_shndx(in_shndx))))
3004 shndx = in_shndx;
3005 else
3006 {
3007 Relobj* relobj = static_cast<Relobj*>(symobj);
3008 Output_section* os = relobj->output_section(in_shndx);
3009 if (this->is_section_folded(relobj, in_shndx))
3010 {
3011 // This global symbol must be written out even though
3012 // it is folded.
3013 // Get the os of the section it is folded onto.
3014 Section_id folded =
3015 this->icf_->get_folded_section(relobj, in_shndx);
3016 gold_assert(folded.first !=NULL);
3017 Relobj* folded_obj =
3018 reinterpret_cast<Relobj*>(folded.first);
3019 os = folded_obj->output_section(folded.second);
3020 gold_assert(os != NULL);
3021 }
3022 gold_assert(os != NULL);
3023 shndx = os->out_shndx();
3024
3025 if (shndx >= elfcpp::SHN_LORESERVE)
3026 {
3027 if (sym_index != -1U)
3028 symtab_xindex->add(sym_index, shndx);
3029 if (dynsym_index != -1U)
3030 dynsym_xindex->add(dynsym_index, shndx);
3031 shndx = elfcpp::SHN_XINDEX;
3032 }
3033
3034 // In object files symbol values are section
3035 // relative.
3036 if (parameters->options().relocatable())
3037 sym_value -= os->address();
3038 }
3039 }
3040 }
3041 break;
3042
3043 case Symbol::IN_OUTPUT_DATA:
3044 {
3045 Output_data* od = sym->output_data();
3046
3047 shndx = od->out_shndx();
3048 if (shndx >= elfcpp::SHN_LORESERVE)
3049 {
3050 if (sym_index != -1U)
3051 symtab_xindex->add(sym_index, shndx);
3052 if (dynsym_index != -1U)
3053 dynsym_xindex->add(dynsym_index, shndx);
3054 shndx = elfcpp::SHN_XINDEX;
3055 }
3056
3057 // In object files symbol values are section
3058 // relative.
3059 if (parameters->options().relocatable())
3060 sym_value -= od->address();
3061 }
3062 break;
3063
3064 case Symbol::IN_OUTPUT_SEGMENT:
3065 shndx = elfcpp::SHN_ABS;
3066 break;
3067
3068 case Symbol::IS_CONSTANT:
3069 shndx = elfcpp::SHN_ABS;
3070 break;
3071
3072 case Symbol::IS_UNDEFINED:
3073 shndx = elfcpp::SHN_UNDEF;
3074 break;
3075
3076 default:
3077 gold_unreachable();
3078 }
3079
3080 if (sym_index != -1U)
3081 {
3082 sym_index -= first_global_index;
3083 gold_assert(sym_index < output_count);
3084 unsigned char* ps = psyms + (sym_index * sym_size);
3085 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3086 binding, sympool, ps);
3087 }
3088
3089 if (dynsym_index != -1U)
3090 {
3091 dynsym_index -= first_dynamic_global_index;
3092 gold_assert(dynsym_index < dynamic_count);
3093 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3094 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3095 binding, dynpool, pd);
3096 // Allow a target to adjust dynamic symbol value.
3097 parameters->target().adjust_dyn_symbol(sym, pd);
3098 }
3099 }
3100
3101 of->write_output_view(this->offset_, oview_size, psyms);
3102 if (dynamic_view != NULL)
3103 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3104 }
3105
3106 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3107 // strtab holding the name.
3108
3109 template<int size, bool big_endian>
3110 void
3111 Symbol_table::sized_write_symbol(
3112 Sized_symbol<size>* sym,
3113 typename elfcpp::Elf_types<size>::Elf_Addr value,
3114 unsigned int shndx,
3115 elfcpp::STB binding,
3116 const Stringpool* pool,
3117 unsigned char* p) const
3118 {
3119 elfcpp::Sym_write<size, big_endian> osym(p);
3120 if (sym->version() == NULL || !parameters->options().relocatable())
3121 osym.put_st_name(pool->get_offset(sym->name()));
3122 else
3123 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3124 osym.put_st_value(value);
3125 // Use a symbol size of zero for undefined symbols from shared libraries.
3126 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3127 osym.put_st_size(0);
3128 else
3129 osym.put_st_size(sym->symsize());
3130 elfcpp::STT type = sym->type();
3131 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3132 if (type == elfcpp::STT_GNU_IFUNC
3133 && sym->is_from_dynobj())
3134 type = elfcpp::STT_FUNC;
3135 // A version script may have overridden the default binding.
3136 if (sym->is_forced_local())
3137 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3138 else
3139 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3140 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3141 osym.put_st_shndx(shndx);
3142 }
3143
3144 // Check for unresolved symbols in shared libraries. This is
3145 // controlled by the --allow-shlib-undefined option.
3146
3147 // We only warn about libraries for which we have seen all the
3148 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3149 // which were not seen in this link. If we didn't see a DT_NEEDED
3150 // entry, we aren't going to be able to reliably report whether the
3151 // symbol is undefined.
3152
3153 // We also don't warn about libraries found in a system library
3154 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3155 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3156 // can have undefined references satisfied by ld-linux.so.
3157
3158 inline void
3159 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3160 {
3161 bool dummy;
3162 if (sym->source() == Symbol::FROM_OBJECT
3163 && sym->object()->is_dynamic()
3164 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3165 && sym->binding() != elfcpp::STB_WEAK
3166 && !parameters->options().allow_shlib_undefined()
3167 && !parameters->target().is_defined_by_abi(sym)
3168 && !sym->object()->is_in_system_directory())
3169 {
3170 // A very ugly cast.
3171 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3172 if (!dynobj->has_unknown_needed_entries())
3173 gold_undefined_symbol(sym);
3174 }
3175 }
3176
3177 // Write out a section symbol. Return the update offset.
3178
3179 void
3180 Symbol_table::write_section_symbol(const Output_section* os,
3181 Output_symtab_xindex* symtab_xindex,
3182 Output_file* of,
3183 off_t offset) const
3184 {
3185 switch (parameters->size_and_endianness())
3186 {
3187 #ifdef HAVE_TARGET_32_LITTLE
3188 case Parameters::TARGET_32_LITTLE:
3189 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3190 offset);
3191 break;
3192 #endif
3193 #ifdef HAVE_TARGET_32_BIG
3194 case Parameters::TARGET_32_BIG:
3195 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3196 offset);
3197 break;
3198 #endif
3199 #ifdef HAVE_TARGET_64_LITTLE
3200 case Parameters::TARGET_64_LITTLE:
3201 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3202 offset);
3203 break;
3204 #endif
3205 #ifdef HAVE_TARGET_64_BIG
3206 case Parameters::TARGET_64_BIG:
3207 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3208 offset);
3209 break;
3210 #endif
3211 default:
3212 gold_unreachable();
3213 }
3214 }
3215
3216 // Write out a section symbol, specialized for size and endianness.
3217
3218 template<int size, bool big_endian>
3219 void
3220 Symbol_table::sized_write_section_symbol(const Output_section* os,
3221 Output_symtab_xindex* symtab_xindex,
3222 Output_file* of,
3223 off_t offset) const
3224 {
3225 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3226
3227 unsigned char* pov = of->get_output_view(offset, sym_size);
3228
3229 elfcpp::Sym_write<size, big_endian> osym(pov);
3230 osym.put_st_name(0);
3231 if (parameters->options().relocatable())
3232 osym.put_st_value(0);
3233 else
3234 osym.put_st_value(os->address());
3235 osym.put_st_size(0);
3236 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3237 elfcpp::STT_SECTION));
3238 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3239
3240 unsigned int shndx = os->out_shndx();
3241 if (shndx >= elfcpp::SHN_LORESERVE)
3242 {
3243 symtab_xindex->add(os->symtab_index(), shndx);
3244 shndx = elfcpp::SHN_XINDEX;
3245 }
3246 osym.put_st_shndx(shndx);
3247
3248 of->write_output_view(offset, sym_size, pov);
3249 }
3250
3251 // Print statistical information to stderr. This is used for --stats.
3252
3253 void
3254 Symbol_table::print_stats() const
3255 {
3256 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3257 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3258 program_name, this->table_.size(), this->table_.bucket_count());
3259 #else
3260 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3261 program_name, this->table_.size());
3262 #endif
3263 this->namepool_.print_stats("symbol table stringpool");
3264 }
3265
3266 // We check for ODR violations by looking for symbols with the same
3267 // name for which the debugging information reports that they were
3268 // defined in disjoint source locations. When comparing the source
3269 // location, we consider instances with the same base filename to be
3270 // the same. This is because different object files/shared libraries
3271 // can include the same header file using different paths, and
3272 // different optimization settings can make the line number appear to
3273 // be a couple lines off, and we don't want to report an ODR violation
3274 // in those cases.
3275
3276 // This struct is used to compare line information, as returned by
3277 // Dwarf_line_info::one_addr2line. It implements a < comparison
3278 // operator used with std::sort.
3279
3280 struct Odr_violation_compare
3281 {
3282 bool
3283 operator()(const std::string& s1, const std::string& s2) const
3284 {
3285 // Inputs should be of the form "dirname/filename:linenum" where
3286 // "dirname/" is optional. We want to compare just the filename:linenum.
3287
3288 // Find the last '/' in each string.
3289 std::string::size_type s1begin = s1.rfind('/');
3290 std::string::size_type s2begin = s2.rfind('/');
3291 // If there was no '/' in a string, start at the beginning.
3292 if (s1begin == std::string::npos)
3293 s1begin = 0;
3294 if (s2begin == std::string::npos)
3295 s2begin = 0;
3296 return s1.compare(s1begin, std::string::npos,
3297 s2, s2begin, std::string::npos) < 0;
3298 }
3299 };
3300
3301 // Returns all of the lines attached to LOC, not just the one the
3302 // instruction actually came from.
3303 std::vector<std::string>
3304 Symbol_table::linenos_from_loc(const Task* task,
3305 const Symbol_location& loc)
3306 {
3307 // We need to lock the object in order to read it. This
3308 // means that we have to run in a singleton Task. If we
3309 // want to run this in a general Task for better
3310 // performance, we will need one Task for object, plus
3311 // appropriate locking to ensure that we don't conflict with
3312 // other uses of the object. Also note, one_addr2line is not
3313 // currently thread-safe.
3314 Task_lock_obj<Object> tl(task, loc.object);
3315
3316 std::vector<std::string> result;
3317 Symbol_location code_loc = loc;
3318 parameters->target().function_location(&code_loc);
3319 // 16 is the size of the object-cache that one_addr2line should use.
3320 std::string canonical_result = Dwarf_line_info::one_addr2line(
3321 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3322 if (!canonical_result.empty())
3323 result.push_back(canonical_result);
3324 return result;
3325 }
3326
3327 // OutputIterator that records if it was ever assigned to. This
3328 // allows it to be used with std::set_intersection() to check for
3329 // intersection rather than computing the intersection.
3330 struct Check_intersection
3331 {
3332 Check_intersection()
3333 : value_(false)
3334 {}
3335
3336 bool had_intersection() const
3337 { return this->value_; }
3338
3339 Check_intersection& operator++()
3340 { return *this; }
3341
3342 Check_intersection& operator*()
3343 { return *this; }
3344
3345 template<typename T>
3346 Check_intersection& operator=(const T&)
3347 {
3348 this->value_ = true;
3349 return *this;
3350 }
3351
3352 private:
3353 bool value_;
3354 };
3355
3356 // Check candidate_odr_violations_ to find symbols with the same name
3357 // but apparently different definitions (different source-file/line-no
3358 // for each line assigned to the first instruction).
3359
3360 void
3361 Symbol_table::detect_odr_violations(const Task* task,
3362 const char* output_file_name) const
3363 {
3364 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3365 it != candidate_odr_violations_.end();
3366 ++it)
3367 {
3368 const char* const symbol_name = it->first;
3369
3370 std::string first_object_name;
3371 std::vector<std::string> first_object_linenos;
3372
3373 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3374 locs = it->second.begin();
3375 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3376 locs_end = it->second.end();
3377 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3378 {
3379 // Save the line numbers from the first definition to
3380 // compare to the other definitions. Ideally, we'd compare
3381 // every definition to every other, but we don't want to
3382 // take O(N^2) time to do this. This shortcut may cause
3383 // false negatives that appear or disappear depending on the
3384 // link order, but it won't cause false positives.
3385 first_object_name = locs->object->name();
3386 first_object_linenos = this->linenos_from_loc(task, *locs);
3387 }
3388 if (first_object_linenos.empty())
3389 continue;
3390
3391 // Sort by Odr_violation_compare to make std::set_intersection work.
3392 std::string first_object_canonical_result = first_object_linenos.back();
3393 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3394 Odr_violation_compare());
3395
3396 for (; locs != locs_end; ++locs)
3397 {
3398 std::vector<std::string> linenos =
3399 this->linenos_from_loc(task, *locs);
3400 // linenos will be empty if we couldn't parse the debug info.
3401 if (linenos.empty())
3402 continue;
3403 // Sort by Odr_violation_compare to make std::set_intersection work.
3404 gold_assert(!linenos.empty());
3405 std::string second_object_canonical_result = linenos.back();
3406 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3407
3408 Check_intersection intersection_result =
3409 std::set_intersection(first_object_linenos.begin(),
3410 first_object_linenos.end(),
3411 linenos.begin(),
3412 linenos.end(),
3413 Check_intersection(),
3414 Odr_violation_compare());
3415 if (!intersection_result.had_intersection())
3416 {
3417 gold_warning(_("while linking %s: symbol '%s' defined in "
3418 "multiple places (possible ODR violation):"),
3419 output_file_name, demangle(symbol_name).c_str());
3420 // This only prints one location from each definition,
3421 // which may not be the location we expect to intersect
3422 // with another definition. We could print the whole
3423 // set of locations, but that seems too verbose.
3424 fprintf(stderr, _(" %s from %s\n"),
3425 first_object_canonical_result.c_str(),
3426 first_object_name.c_str());
3427 fprintf(stderr, _(" %s from %s\n"),
3428 second_object_canonical_result.c_str(),
3429 locs->object->name().c_str());
3430 // Only print one broken pair, to avoid needing to
3431 // compare against a list of the disjoint definition
3432 // locations we've found so far. (If we kept comparing
3433 // against just the first one, we'd get a lot of
3434 // redundant complaints about the second definition
3435 // location.)
3436 break;
3437 }
3438 }
3439 }
3440 // We only call one_addr2line() in this function, so we can clear its cache.
3441 Dwarf_line_info::clear_addr2line_cache();
3442 }
3443
3444 // Warnings functions.
3445
3446 // Add a new warning.
3447
3448 void
3449 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3450 const std::string& warning)
3451 {
3452 name = symtab->canonicalize_name(name);
3453 this->warnings_[name].set(obj, warning);
3454 }
3455
3456 // Look through the warnings and mark the symbols for which we should
3457 // warn. This is called during Layout::finalize when we know the
3458 // sources for all the symbols.
3459
3460 void
3461 Warnings::note_warnings(Symbol_table* symtab)
3462 {
3463 for (Warning_table::iterator p = this->warnings_.begin();
3464 p != this->warnings_.end();
3465 ++p)
3466 {
3467 Symbol* sym = symtab->lookup(p->first, NULL);
3468 if (sym != NULL
3469 && sym->source() == Symbol::FROM_OBJECT
3470 && sym->object() == p->second.object)
3471 sym->set_has_warning();
3472 }
3473 }
3474
3475 // Issue a warning. This is called when we see a relocation against a
3476 // symbol for which has a warning.
3477
3478 template<int size, bool big_endian>
3479 void
3480 Warnings::issue_warning(const Symbol* sym,
3481 const Relocate_info<size, big_endian>* relinfo,
3482 size_t relnum, off_t reloffset) const
3483 {
3484 gold_assert(sym->has_warning());
3485
3486 // We don't want to issue a warning for a relocation against the
3487 // symbol in the same object file in which the symbol is defined.
3488 if (sym->object() == relinfo->object)
3489 return;
3490
3491 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3492 gold_assert(p != this->warnings_.end());
3493 gold_warning_at_location(relinfo, relnum, reloffset,
3494 "%s", p->second.text.c_str());
3495 }
3496
3497 // Instantiate the templates we need. We could use the configure
3498 // script to restrict this to only the ones needed for implemented
3499 // targets.
3500
3501 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3502 template
3503 void
3504 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3505 #endif
3506
3507 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3508 template
3509 void
3510 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3511 #endif
3512
3513 #ifdef HAVE_TARGET_32_LITTLE
3514 template
3515 void
3516 Symbol_table::add_from_relobj<32, false>(
3517 Sized_relobj_file<32, false>* relobj,
3518 const unsigned char* syms,
3519 size_t count,
3520 size_t symndx_offset,
3521 const char* sym_names,
3522 size_t sym_name_size,
3523 Sized_relobj_file<32, false>::Symbols* sympointers,
3524 size_t* defined);
3525 #endif
3526
3527 #ifdef HAVE_TARGET_32_BIG
3528 template
3529 void
3530 Symbol_table::add_from_relobj<32, true>(
3531 Sized_relobj_file<32, true>* relobj,
3532 const unsigned char* syms,
3533 size_t count,
3534 size_t symndx_offset,
3535 const char* sym_names,
3536 size_t sym_name_size,
3537 Sized_relobj_file<32, true>::Symbols* sympointers,
3538 size_t* defined);
3539 #endif
3540
3541 #ifdef HAVE_TARGET_64_LITTLE
3542 template
3543 void
3544 Symbol_table::add_from_relobj<64, false>(
3545 Sized_relobj_file<64, false>* relobj,
3546 const unsigned char* syms,
3547 size_t count,
3548 size_t symndx_offset,
3549 const char* sym_names,
3550 size_t sym_name_size,
3551 Sized_relobj_file<64, false>::Symbols* sympointers,
3552 size_t* defined);
3553 #endif
3554
3555 #ifdef HAVE_TARGET_64_BIG
3556 template
3557 void
3558 Symbol_table::add_from_relobj<64, true>(
3559 Sized_relobj_file<64, true>* relobj,
3560 const unsigned char* syms,
3561 size_t count,
3562 size_t symndx_offset,
3563 const char* sym_names,
3564 size_t sym_name_size,
3565 Sized_relobj_file<64, true>::Symbols* sympointers,
3566 size_t* defined);
3567 #endif
3568
3569 #ifdef HAVE_TARGET_32_LITTLE
3570 template
3571 Symbol*
3572 Symbol_table::add_from_pluginobj<32, false>(
3573 Sized_pluginobj<32, false>* obj,
3574 const char* name,
3575 const char* ver,
3576 elfcpp::Sym<32, false>* sym);
3577 #endif
3578
3579 #ifdef HAVE_TARGET_32_BIG
3580 template
3581 Symbol*
3582 Symbol_table::add_from_pluginobj<32, true>(
3583 Sized_pluginobj<32, true>* obj,
3584 const char* name,
3585 const char* ver,
3586 elfcpp::Sym<32, true>* sym);
3587 #endif
3588
3589 #ifdef HAVE_TARGET_64_LITTLE
3590 template
3591 Symbol*
3592 Symbol_table::add_from_pluginobj<64, false>(
3593 Sized_pluginobj<64, false>* obj,
3594 const char* name,
3595 const char* ver,
3596 elfcpp::Sym<64, false>* sym);
3597 #endif
3598
3599 #ifdef HAVE_TARGET_64_BIG
3600 template
3601 Symbol*
3602 Symbol_table::add_from_pluginobj<64, true>(
3603 Sized_pluginobj<64, true>* obj,
3604 const char* name,
3605 const char* ver,
3606 elfcpp::Sym<64, true>* sym);
3607 #endif
3608
3609 #ifdef HAVE_TARGET_32_LITTLE
3610 template
3611 void
3612 Symbol_table::add_from_dynobj<32, false>(
3613 Sized_dynobj<32, false>* dynobj,
3614 const unsigned char* syms,
3615 size_t count,
3616 const char* sym_names,
3617 size_t sym_name_size,
3618 const unsigned char* versym,
3619 size_t versym_size,
3620 const std::vector<const char*>* version_map,
3621 Sized_relobj_file<32, false>::Symbols* sympointers,
3622 size_t* defined);
3623 #endif
3624
3625 #ifdef HAVE_TARGET_32_BIG
3626 template
3627 void
3628 Symbol_table::add_from_dynobj<32, true>(
3629 Sized_dynobj<32, true>* dynobj,
3630 const unsigned char* syms,
3631 size_t count,
3632 const char* sym_names,
3633 size_t sym_name_size,
3634 const unsigned char* versym,
3635 size_t versym_size,
3636 const std::vector<const char*>* version_map,
3637 Sized_relobj_file<32, true>::Symbols* sympointers,
3638 size_t* defined);
3639 #endif
3640
3641 #ifdef HAVE_TARGET_64_LITTLE
3642 template
3643 void
3644 Symbol_table::add_from_dynobj<64, false>(
3645 Sized_dynobj<64, false>* dynobj,
3646 const unsigned char* syms,
3647 size_t count,
3648 const char* sym_names,
3649 size_t sym_name_size,
3650 const unsigned char* versym,
3651 size_t versym_size,
3652 const std::vector<const char*>* version_map,
3653 Sized_relobj_file<64, false>::Symbols* sympointers,
3654 size_t* defined);
3655 #endif
3656
3657 #ifdef HAVE_TARGET_64_BIG
3658 template
3659 void
3660 Symbol_table::add_from_dynobj<64, true>(
3661 Sized_dynobj<64, true>* dynobj,
3662 const unsigned char* syms,
3663 size_t count,
3664 const char* sym_names,
3665 size_t sym_name_size,
3666 const unsigned char* versym,
3667 size_t versym_size,
3668 const std::vector<const char*>* version_map,
3669 Sized_relobj_file<64, true>::Symbols* sympointers,
3670 size_t* defined);
3671 #endif
3672
3673 #ifdef HAVE_TARGET_32_LITTLE
3674 template
3675 Sized_symbol<32>*
3676 Symbol_table::add_from_incrobj(
3677 Object* obj,
3678 const char* name,
3679 const char* ver,
3680 elfcpp::Sym<32, false>* sym);
3681 #endif
3682
3683 #ifdef HAVE_TARGET_32_BIG
3684 template
3685 Sized_symbol<32>*
3686 Symbol_table::add_from_incrobj(
3687 Object* obj,
3688 const char* name,
3689 const char* ver,
3690 elfcpp::Sym<32, true>* sym);
3691 #endif
3692
3693 #ifdef HAVE_TARGET_64_LITTLE
3694 template
3695 Sized_symbol<64>*
3696 Symbol_table::add_from_incrobj(
3697 Object* obj,
3698 const char* name,
3699 const char* ver,
3700 elfcpp::Sym<64, false>* sym);
3701 #endif
3702
3703 #ifdef HAVE_TARGET_64_BIG
3704 template
3705 Sized_symbol<64>*
3706 Symbol_table::add_from_incrobj(
3707 Object* obj,
3708 const char* name,
3709 const char* ver,
3710 elfcpp::Sym<64, true>* sym);
3711 #endif
3712
3713 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3714 template
3715 void
3716 Symbol_table::define_with_copy_reloc<32>(
3717 Sized_symbol<32>* sym,
3718 Output_data* posd,
3719 elfcpp::Elf_types<32>::Elf_Addr value);
3720 #endif
3721
3722 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3723 template
3724 void
3725 Symbol_table::define_with_copy_reloc<64>(
3726 Sized_symbol<64>* sym,
3727 Output_data* posd,
3728 elfcpp::Elf_types<64>::Elf_Addr value);
3729 #endif
3730
3731 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3732 template
3733 void
3734 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3735 Output_data* od, Value_type value,
3736 Size_type symsize, elfcpp::STT type,
3737 elfcpp::STB binding,
3738 elfcpp::STV visibility,
3739 unsigned char nonvis,
3740 bool offset_is_from_end,
3741 bool is_predefined);
3742 #endif
3743
3744 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3745 template
3746 void
3747 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3748 Output_data* od, Value_type value,
3749 Size_type symsize, elfcpp::STT type,
3750 elfcpp::STB binding,
3751 elfcpp::STV visibility,
3752 unsigned char nonvis,
3753 bool offset_is_from_end,
3754 bool is_predefined);
3755 #endif
3756
3757 #ifdef HAVE_TARGET_32_LITTLE
3758 template
3759 void
3760 Warnings::issue_warning<32, false>(const Symbol* sym,
3761 const Relocate_info<32, false>* relinfo,
3762 size_t relnum, off_t reloffset) const;
3763 #endif
3764
3765 #ifdef HAVE_TARGET_32_BIG
3766 template
3767 void
3768 Warnings::issue_warning<32, true>(const Symbol* sym,
3769 const Relocate_info<32, true>* relinfo,
3770 size_t relnum, off_t reloffset) const;
3771 #endif
3772
3773 #ifdef HAVE_TARGET_64_LITTLE
3774 template
3775 void
3776 Warnings::issue_warning<64, false>(const Symbol* sym,
3777 const Relocate_info<64, false>* relinfo,
3778 size_t relnum, off_t reloffset) const;
3779 #endif
3780
3781 #ifdef HAVE_TARGET_64_BIG
3782 template
3783 void
3784 Warnings::issue_warning<64, true>(const Symbol* sym,
3785 const Relocate_info<64, true>* relinfo,
3786 size_t relnum, off_t reloffset) const;
3787 #endif
3788
3789 } // End namespace gold.
This page took 0.102985 seconds and 5 git commands to generate.