Fix handling of __ehdr_start when it cannot be defined.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // and the symbol is defined in a regular object and is
423 // externally visible, we need to add it.
424 if ((parameters->options().export_dynamic() || parameters->options().shared())
425 && !this->is_from_dynobj()
426 && !this->is_undefined()
427 && this->is_externally_visible())
428 return true;
429
430 return false;
431 }
432
433 // Return true if the final value of this symbol is known at link
434 // time.
435
436 bool
437 Symbol::final_value_is_known() const
438 {
439 // If we are not generating an executable, then no final values are
440 // known, since they will change at runtime.
441 if (parameters->options().output_is_position_independent()
442 || parameters->options().relocatable())
443 return false;
444
445 // If the symbol is not from an object file, and is not undefined,
446 // then it is defined, and known.
447 if (this->source_ != FROM_OBJECT)
448 {
449 if (this->source_ != IS_UNDEFINED)
450 return true;
451 }
452 else
453 {
454 // If the symbol is from a dynamic object, then the final value
455 // is not known.
456 if (this->object()->is_dynamic())
457 return false;
458
459 // If the symbol is not undefined (it is defined or common),
460 // then the final value is known.
461 if (!this->is_undefined())
462 return true;
463 }
464
465 // If the symbol is undefined, then whether the final value is known
466 // depends on whether we are doing a static link. If we are doing a
467 // dynamic link, then the final value could be filled in at runtime.
468 // This could reasonably be the case for a weak undefined symbol.
469 return parameters->doing_static_link();
470 }
471
472 // Return the output section where this symbol is defined.
473
474 Output_section*
475 Symbol::output_section() const
476 {
477 switch (this->source_)
478 {
479 case FROM_OBJECT:
480 {
481 unsigned int shndx = this->u_.from_object.shndx;
482 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
483 {
484 gold_assert(!this->u_.from_object.object->is_dynamic());
485 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
486 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
487 return relobj->output_section(shndx);
488 }
489 return NULL;
490 }
491
492 case IN_OUTPUT_DATA:
493 return this->u_.in_output_data.output_data->output_section();
494
495 case IN_OUTPUT_SEGMENT:
496 case IS_CONSTANT:
497 case IS_UNDEFINED:
498 return NULL;
499
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Set the symbol's output section. This is used for symbols defined
506 // in scripts. This should only be called after the symbol table has
507 // been finalized.
508
509 void
510 Symbol::set_output_section(Output_section* os)
511 {
512 switch (this->source_)
513 {
514 case FROM_OBJECT:
515 case IN_OUTPUT_DATA:
516 gold_assert(this->output_section() == os);
517 break;
518 case IS_CONSTANT:
519 this->source_ = IN_OUTPUT_DATA;
520 this->u_.in_output_data.output_data = os;
521 this->u_.in_output_data.offset_is_from_end = false;
522 break;
523 case IN_OUTPUT_SEGMENT:
524 case IS_UNDEFINED:
525 default:
526 gold_unreachable();
527 }
528 }
529
530 // Set the symbol's output segment. This is used for pre-defined
531 // symbols whose segments aren't known until after layout is done
532 // (e.g., __ehdr_start).
533
534 void
535 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
536 {
537 gold_assert(this->is_predefined_);
538 this->source_ = IN_OUTPUT_SEGMENT;
539 this->u_.in_output_segment.output_segment = os;
540 this->u_.in_output_segment.offset_base = base;
541 }
542
543 // Set the symbol to undefined. This is used for pre-defined
544 // symbols whose segments aren't known until after layout is done
545 // (e.g., __ehdr_start).
546
547 void
548 Symbol::set_undefined()
549 {
550 gold_assert(this->is_predefined_);
551 this->source_ = IS_UNDEFINED;
552 this->is_predefined_ = false;
553 }
554
555 // Class Symbol_table.
556
557 Symbol_table::Symbol_table(unsigned int count,
558 const Version_script_info& version_script)
559 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
560 forwarders_(), commons_(), tls_commons_(), small_commons_(),
561 large_commons_(), forced_locals_(), warnings_(),
562 version_script_(version_script), gc_(NULL), icf_(NULL)
563 {
564 namepool_.reserve(count);
565 }
566
567 Symbol_table::~Symbol_table()
568 {
569 }
570
571 // The symbol table key equality function. This is called with
572 // Stringpool keys.
573
574 inline bool
575 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
576 const Symbol_table_key& k2) const
577 {
578 return k1.first == k2.first && k1.second == k2.second;
579 }
580
581 bool
582 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
583 {
584 return (parameters->options().icf_enabled()
585 && this->icf_->is_section_folded(obj, shndx));
586 }
587
588 // For symbols that have been listed with a -u or --export-dynamic-symbol
589 // option, add them to the work list to avoid gc'ing them.
590
591 void
592 Symbol_table::gc_mark_undef_symbols(Layout* layout)
593 {
594 for (options::String_set::const_iterator p =
595 parameters->options().undefined_begin();
596 p != parameters->options().undefined_end();
597 ++p)
598 {
599 const char* name = p->c_str();
600 Symbol* sym = this->lookup(name);
601 gold_assert(sym != NULL);
602 if (sym->source() == Symbol::FROM_OBJECT
603 && !sym->object()->is_dynamic())
604 {
605 this->gc_mark_symbol(sym);
606 }
607 }
608
609 for (options::String_set::const_iterator p =
610 parameters->options().export_dynamic_symbol_begin();
611 p != parameters->options().export_dynamic_symbol_end();
612 ++p)
613 {
614 const char* name = p->c_str();
615 Symbol* sym = this->lookup(name);
616 // It's not an error if a symbol named by --export-dynamic-symbol
617 // is undefined.
618 if (sym != NULL
619 && sym->source() == Symbol::FROM_OBJECT
620 && !sym->object()->is_dynamic())
621 {
622 this->gc_mark_symbol(sym);
623 }
624 }
625
626 for (Script_options::referenced_const_iterator p =
627 layout->script_options()->referenced_begin();
628 p != layout->script_options()->referenced_end();
629 ++p)
630 {
631 Symbol* sym = this->lookup(p->c_str());
632 gold_assert(sym != NULL);
633 if (sym->source() == Symbol::FROM_OBJECT
634 && !sym->object()->is_dynamic())
635 {
636 this->gc_mark_symbol(sym);
637 }
638 }
639 }
640
641 void
642 Symbol_table::gc_mark_symbol(Symbol* sym)
643 {
644 // Add the object and section to the work list.
645 bool is_ordinary;
646 unsigned int shndx = sym->shndx(&is_ordinary);
647 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
648 {
649 gold_assert(this->gc_!= NULL);
650 this->gc_->worklist().push(Section_id(sym->object(), shndx));
651 }
652 parameters->target().gc_mark_symbol(this, sym);
653 }
654
655 // When doing garbage collection, keep symbols that have been seen in
656 // dynamic objects.
657 inline void
658 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
659 {
660 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
661 && !sym->object()->is_dynamic())
662 this->gc_mark_symbol(sym);
663 }
664
665 // Make TO a symbol which forwards to FROM.
666
667 void
668 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
669 {
670 gold_assert(from != to);
671 gold_assert(!from->is_forwarder() && !to->is_forwarder());
672 this->forwarders_[from] = to;
673 from->set_forwarder();
674 }
675
676 // Resolve the forwards from FROM, returning the real symbol.
677
678 Symbol*
679 Symbol_table::resolve_forwards(const Symbol* from) const
680 {
681 gold_assert(from->is_forwarder());
682 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
683 this->forwarders_.find(from);
684 gold_assert(p != this->forwarders_.end());
685 return p->second;
686 }
687
688 // Look up a symbol by name.
689
690 Symbol*
691 Symbol_table::lookup(const char* name, const char* version) const
692 {
693 Stringpool::Key name_key;
694 name = this->namepool_.find(name, &name_key);
695 if (name == NULL)
696 return NULL;
697
698 Stringpool::Key version_key = 0;
699 if (version != NULL)
700 {
701 version = this->namepool_.find(version, &version_key);
702 if (version == NULL)
703 return NULL;
704 }
705
706 Symbol_table_key key(name_key, version_key);
707 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
708 if (p == this->table_.end())
709 return NULL;
710 return p->second;
711 }
712
713 // Resolve a Symbol with another Symbol. This is only used in the
714 // unusual case where there are references to both an unversioned
715 // symbol and a symbol with a version, and we then discover that that
716 // version is the default version. Because this is unusual, we do
717 // this the slow way, by converting back to an ELF symbol.
718
719 template<int size, bool big_endian>
720 void
721 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
722 {
723 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
724 elfcpp::Sym_write<size, big_endian> esym(buf);
725 // We don't bother to set the st_name or the st_shndx field.
726 esym.put_st_value(from->value());
727 esym.put_st_size(from->symsize());
728 esym.put_st_info(from->binding(), from->type());
729 esym.put_st_other(from->visibility(), from->nonvis());
730 bool is_ordinary;
731 unsigned int shndx = from->shndx(&is_ordinary);
732 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
733 from->version());
734 if (from->in_reg())
735 to->set_in_reg();
736 if (from->in_dyn())
737 to->set_in_dyn();
738 if (parameters->options().gc_sections())
739 this->gc_mark_dyn_syms(to);
740 }
741
742 // Record that a symbol is forced to be local by a version script or
743 // by visibility.
744
745 void
746 Symbol_table::force_local(Symbol* sym)
747 {
748 if (!sym->is_defined() && !sym->is_common())
749 return;
750 if (sym->is_forced_local())
751 {
752 // We already got this one.
753 return;
754 }
755 sym->set_is_forced_local();
756 this->forced_locals_.push_back(sym);
757 }
758
759 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
760 // is only called for undefined symbols, when at least one --wrap
761 // option was used.
762
763 const char*
764 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
765 {
766 // For some targets, we need to ignore a specific character when
767 // wrapping, and add it back later.
768 char prefix = '\0';
769 if (name[0] == parameters->target().wrap_char())
770 {
771 prefix = name[0];
772 ++name;
773 }
774
775 if (parameters->options().is_wrap(name))
776 {
777 // Turn NAME into __wrap_NAME.
778 std::string s;
779 if (prefix != '\0')
780 s += prefix;
781 s += "__wrap_";
782 s += name;
783
784 // This will give us both the old and new name in NAMEPOOL_, but
785 // that is OK. Only the versions we need will wind up in the
786 // real string table in the output file.
787 return this->namepool_.add(s.c_str(), true, name_key);
788 }
789
790 const char* const real_prefix = "__real_";
791 const size_t real_prefix_length = strlen(real_prefix);
792 if (strncmp(name, real_prefix, real_prefix_length) == 0
793 && parameters->options().is_wrap(name + real_prefix_length))
794 {
795 // Turn __real_NAME into NAME.
796 std::string s;
797 if (prefix != '\0')
798 s += prefix;
799 s += name + real_prefix_length;
800 return this->namepool_.add(s.c_str(), true, name_key);
801 }
802
803 return name;
804 }
805
806 // This is called when we see a symbol NAME/VERSION, and the symbol
807 // already exists in the symbol table, and VERSION is marked as being
808 // the default version. SYM is the NAME/VERSION symbol we just added.
809 // DEFAULT_IS_NEW is true if this is the first time we have seen the
810 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
811
812 template<int size, bool big_endian>
813 void
814 Symbol_table::define_default_version(Sized_symbol<size>* sym,
815 bool default_is_new,
816 Symbol_table_type::iterator pdef)
817 {
818 if (default_is_new)
819 {
820 // This is the first time we have seen NAME/NULL. Make
821 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
822 // version.
823 pdef->second = sym;
824 sym->set_is_default();
825 }
826 else if (pdef->second == sym)
827 {
828 // NAME/NULL already points to NAME/VERSION. Don't mark the
829 // symbol as the default if it is not already the default.
830 }
831 else
832 {
833 // This is the unfortunate case where we already have entries
834 // for both NAME/VERSION and NAME/NULL. We now see a symbol
835 // NAME/VERSION where VERSION is the default version. We have
836 // already resolved this new symbol with the existing
837 // NAME/VERSION symbol.
838
839 // It's possible that NAME/NULL and NAME/VERSION are both
840 // defined in regular objects. This can only happen if one
841 // object file defines foo and another defines foo@@ver. This
842 // is somewhat obscure, but we call it a multiple definition
843 // error.
844
845 // It's possible that NAME/NULL actually has a version, in which
846 // case it won't be the same as VERSION. This happens with
847 // ver_test_7.so in the testsuite for the symbol t2_2. We see
848 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
849 // then see an unadorned t2_2 in an object file and give it
850 // version VER1 from the version script. This looks like a
851 // default definition for VER1, so it looks like we should merge
852 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
853 // not obvious that this is an error, either. So we just punt.
854
855 // If one of the symbols has non-default visibility, and the
856 // other is defined in a shared object, then they are different
857 // symbols.
858
859 // Otherwise, we just resolve the symbols as though they were
860 // the same.
861
862 if (pdef->second->version() != NULL)
863 gold_assert(pdef->second->version() != sym->version());
864 else if (sym->visibility() != elfcpp::STV_DEFAULT
865 && pdef->second->is_from_dynobj())
866 ;
867 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
868 && sym->is_from_dynobj())
869 ;
870 else
871 {
872 const Sized_symbol<size>* symdef;
873 symdef = this->get_sized_symbol<size>(pdef->second);
874 Symbol_table::resolve<size, big_endian>(sym, symdef);
875 this->make_forwarder(pdef->second, sym);
876 pdef->second = sym;
877 sym->set_is_default();
878 }
879 }
880 }
881
882 // Add one symbol from OBJECT to the symbol table. NAME is symbol
883 // name and VERSION is the version; both are canonicalized. DEF is
884 // whether this is the default version. ST_SHNDX is the symbol's
885 // section index; IS_ORDINARY is whether this is a normal section
886 // rather than a special code.
887
888 // If IS_DEFAULT_VERSION is true, then this is the definition of a
889 // default version of a symbol. That means that any lookup of
890 // NAME/NULL and any lookup of NAME/VERSION should always return the
891 // same symbol. This is obvious for references, but in particular we
892 // want to do this for definitions: overriding NAME/NULL should also
893 // override NAME/VERSION. If we don't do that, it would be very hard
894 // to override functions in a shared library which uses versioning.
895
896 // We implement this by simply making both entries in the hash table
897 // point to the same Symbol structure. That is easy enough if this is
898 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
899 // that we have seen both already, in which case they will both have
900 // independent entries in the symbol table. We can't simply change
901 // the symbol table entry, because we have pointers to the entries
902 // attached to the object files. So we mark the entry attached to the
903 // object file as a forwarder, and record it in the forwarders_ map.
904 // Note that entries in the hash table will never be marked as
905 // forwarders.
906 //
907 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
908 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
909 // for a special section code. ST_SHNDX may be modified if the symbol
910 // is defined in a section being discarded.
911
912 template<int size, bool big_endian>
913 Sized_symbol<size>*
914 Symbol_table::add_from_object(Object* object,
915 const char* name,
916 Stringpool::Key name_key,
917 const char* version,
918 Stringpool::Key version_key,
919 bool is_default_version,
920 const elfcpp::Sym<size, big_endian>& sym,
921 unsigned int st_shndx,
922 bool is_ordinary,
923 unsigned int orig_st_shndx)
924 {
925 // Print a message if this symbol is being traced.
926 if (parameters->options().is_trace_symbol(name))
927 {
928 if (orig_st_shndx == elfcpp::SHN_UNDEF)
929 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
930 else
931 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
932 }
933
934 // For an undefined symbol, we may need to adjust the name using
935 // --wrap.
936 if (orig_st_shndx == elfcpp::SHN_UNDEF
937 && parameters->options().any_wrap())
938 {
939 const char* wrap_name = this->wrap_symbol(name, &name_key);
940 if (wrap_name != name)
941 {
942 // If we see a reference to malloc with version GLIBC_2.0,
943 // and we turn it into a reference to __wrap_malloc, then we
944 // discard the version number. Otherwise the user would be
945 // required to specify the correct version for
946 // __wrap_malloc.
947 version = NULL;
948 version_key = 0;
949 name = wrap_name;
950 }
951 }
952
953 Symbol* const snull = NULL;
954 std::pair<typename Symbol_table_type::iterator, bool> ins =
955 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
956 snull));
957
958 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
959 std::make_pair(this->table_.end(), false);
960 if (is_default_version)
961 {
962 const Stringpool::Key vnull_key = 0;
963 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
964 vnull_key),
965 snull));
966 }
967
968 // ins.first: an iterator, which is a pointer to a pair.
969 // ins.first->first: the key (a pair of name and version).
970 // ins.first->second: the value (Symbol*).
971 // ins.second: true if new entry was inserted, false if not.
972
973 Sized_symbol<size>* ret;
974 bool was_undefined;
975 bool was_common;
976 if (!ins.second)
977 {
978 // We already have an entry for NAME/VERSION.
979 ret = this->get_sized_symbol<size>(ins.first->second);
980 gold_assert(ret != NULL);
981
982 was_undefined = ret->is_undefined();
983 was_common = ret->is_common();
984
985 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
986 version);
987 if (parameters->options().gc_sections())
988 this->gc_mark_dyn_syms(ret);
989
990 if (is_default_version)
991 this->define_default_version<size, big_endian>(ret, insdefault.second,
992 insdefault.first);
993 }
994 else
995 {
996 // This is the first time we have seen NAME/VERSION.
997 gold_assert(ins.first->second == NULL);
998
999 if (is_default_version && !insdefault.second)
1000 {
1001 // We already have an entry for NAME/NULL. If we override
1002 // it, then change it to NAME/VERSION.
1003 ret = this->get_sized_symbol<size>(insdefault.first->second);
1004
1005 was_undefined = ret->is_undefined();
1006 was_common = ret->is_common();
1007
1008 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1009 version);
1010 if (parameters->options().gc_sections())
1011 this->gc_mark_dyn_syms(ret);
1012 ins.first->second = ret;
1013 }
1014 else
1015 {
1016 was_undefined = false;
1017 was_common = false;
1018
1019 Sized_target<size, big_endian>* target =
1020 parameters->sized_target<size, big_endian>();
1021 if (!target->has_make_symbol())
1022 ret = new Sized_symbol<size>();
1023 else
1024 {
1025 ret = target->make_symbol();
1026 if (ret == NULL)
1027 {
1028 // This means that we don't want a symbol table
1029 // entry after all.
1030 if (!is_default_version)
1031 this->table_.erase(ins.first);
1032 else
1033 {
1034 this->table_.erase(insdefault.first);
1035 // Inserting INSDEFAULT invalidated INS.
1036 this->table_.erase(std::make_pair(name_key,
1037 version_key));
1038 }
1039 return NULL;
1040 }
1041 }
1042
1043 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1044
1045 ins.first->second = ret;
1046 if (is_default_version)
1047 {
1048 // This is the first time we have seen NAME/NULL. Point
1049 // it at the new entry for NAME/VERSION.
1050 gold_assert(insdefault.second);
1051 insdefault.first->second = ret;
1052 }
1053 }
1054
1055 if (is_default_version)
1056 ret->set_is_default();
1057 }
1058
1059 // Record every time we see a new undefined symbol, to speed up
1060 // archive groups.
1061 if (!was_undefined && ret->is_undefined())
1062 {
1063 ++this->saw_undefined_;
1064 if (parameters->options().has_plugins())
1065 parameters->options().plugins()->new_undefined_symbol(ret);
1066 }
1067
1068 // Keep track of common symbols, to speed up common symbol
1069 // allocation.
1070 if (!was_common && ret->is_common())
1071 {
1072 if (ret->type() == elfcpp::STT_TLS)
1073 this->tls_commons_.push_back(ret);
1074 else if (!is_ordinary
1075 && st_shndx == parameters->target().small_common_shndx())
1076 this->small_commons_.push_back(ret);
1077 else if (!is_ordinary
1078 && st_shndx == parameters->target().large_common_shndx())
1079 this->large_commons_.push_back(ret);
1080 else
1081 this->commons_.push_back(ret);
1082 }
1083
1084 // If we're not doing a relocatable link, then any symbol with
1085 // hidden or internal visibility is local.
1086 if ((ret->visibility() == elfcpp::STV_HIDDEN
1087 || ret->visibility() == elfcpp::STV_INTERNAL)
1088 && (ret->binding() == elfcpp::STB_GLOBAL
1089 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1090 || ret->binding() == elfcpp::STB_WEAK)
1091 && !parameters->options().relocatable())
1092 this->force_local(ret);
1093
1094 return ret;
1095 }
1096
1097 // Add all the symbols in a relocatable object to the hash table.
1098
1099 template<int size, bool big_endian>
1100 void
1101 Symbol_table::add_from_relobj(
1102 Sized_relobj_file<size, big_endian>* relobj,
1103 const unsigned char* syms,
1104 size_t count,
1105 size_t symndx_offset,
1106 const char* sym_names,
1107 size_t sym_name_size,
1108 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1109 size_t* defined)
1110 {
1111 *defined = 0;
1112
1113 gold_assert(size == parameters->target().get_size());
1114
1115 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1116
1117 const bool just_symbols = relobj->just_symbols();
1118
1119 const unsigned char* p = syms;
1120 for (size_t i = 0; i < count; ++i, p += sym_size)
1121 {
1122 (*sympointers)[i] = NULL;
1123
1124 elfcpp::Sym<size, big_endian> sym(p);
1125
1126 unsigned int st_name = sym.get_st_name();
1127 if (st_name >= sym_name_size)
1128 {
1129 relobj->error(_("bad global symbol name offset %u at %zu"),
1130 st_name, i);
1131 continue;
1132 }
1133
1134 const char* name = sym_names + st_name;
1135
1136 bool is_ordinary;
1137 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1138 sym.get_st_shndx(),
1139 &is_ordinary);
1140 unsigned int orig_st_shndx = st_shndx;
1141 if (!is_ordinary)
1142 orig_st_shndx = elfcpp::SHN_UNDEF;
1143
1144 if (st_shndx != elfcpp::SHN_UNDEF)
1145 ++*defined;
1146
1147 // A symbol defined in a section which we are not including must
1148 // be treated as an undefined symbol.
1149 bool is_defined_in_discarded_section = false;
1150 if (st_shndx != elfcpp::SHN_UNDEF
1151 && is_ordinary
1152 && !relobj->is_section_included(st_shndx)
1153 && !this->is_section_folded(relobj, st_shndx))
1154 {
1155 st_shndx = elfcpp::SHN_UNDEF;
1156 is_defined_in_discarded_section = true;
1157 }
1158
1159 // In an object file, an '@' in the name separates the symbol
1160 // name from the version name. If there are two '@' characters,
1161 // this is the default version.
1162 const char* ver = strchr(name, '@');
1163 Stringpool::Key ver_key = 0;
1164 int namelen = 0;
1165 // IS_DEFAULT_VERSION: is the version default?
1166 // IS_FORCED_LOCAL: is the symbol forced local?
1167 bool is_default_version = false;
1168 bool is_forced_local = false;
1169
1170 // FIXME: For incremental links, we don't store version information,
1171 // so we need to ignore version symbols for now.
1172 if (parameters->incremental_update() && ver != NULL)
1173 {
1174 namelen = ver - name;
1175 ver = NULL;
1176 }
1177
1178 if (ver != NULL)
1179 {
1180 // The symbol name is of the form foo@VERSION or foo@@VERSION
1181 namelen = ver - name;
1182 ++ver;
1183 if (*ver == '@')
1184 {
1185 is_default_version = true;
1186 ++ver;
1187 }
1188 ver = this->namepool_.add(ver, true, &ver_key);
1189 }
1190 // We don't want to assign a version to an undefined symbol,
1191 // even if it is listed in the version script. FIXME: What
1192 // about a common symbol?
1193 else
1194 {
1195 namelen = strlen(name);
1196 if (!this->version_script_.empty()
1197 && st_shndx != elfcpp::SHN_UNDEF)
1198 {
1199 // The symbol name did not have a version, but the
1200 // version script may assign a version anyway.
1201 std::string version;
1202 bool is_global;
1203 if (this->version_script_.get_symbol_version(name, &version,
1204 &is_global))
1205 {
1206 if (!is_global)
1207 is_forced_local = true;
1208 else if (!version.empty())
1209 {
1210 ver = this->namepool_.add_with_length(version.c_str(),
1211 version.length(),
1212 true,
1213 &ver_key);
1214 is_default_version = true;
1215 }
1216 }
1217 }
1218 }
1219
1220 elfcpp::Sym<size, big_endian>* psym = &sym;
1221 unsigned char symbuf[sym_size];
1222 elfcpp::Sym<size, big_endian> sym2(symbuf);
1223 if (just_symbols)
1224 {
1225 memcpy(symbuf, p, sym_size);
1226 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1227 if (orig_st_shndx != elfcpp::SHN_UNDEF
1228 && is_ordinary
1229 && relobj->e_type() == elfcpp::ET_REL)
1230 {
1231 // Symbol values in relocatable object files are section
1232 // relative. This is normally what we want, but since here
1233 // we are converting the symbol to absolute we need to add
1234 // the section address. The section address in an object
1235 // file is normally zero, but people can use a linker
1236 // script to change it.
1237 sw.put_st_value(sym.get_st_value()
1238 + relobj->section_address(orig_st_shndx));
1239 }
1240 st_shndx = elfcpp::SHN_ABS;
1241 is_ordinary = false;
1242 psym = &sym2;
1243 }
1244
1245 // Fix up visibility if object has no-export set.
1246 if (relobj->no_export()
1247 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1248 {
1249 // We may have copied symbol already above.
1250 if (psym != &sym2)
1251 {
1252 memcpy(symbuf, p, sym_size);
1253 psym = &sym2;
1254 }
1255
1256 elfcpp::STV visibility = sym2.get_st_visibility();
1257 if (visibility == elfcpp::STV_DEFAULT
1258 || visibility == elfcpp::STV_PROTECTED)
1259 {
1260 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1261 unsigned char nonvis = sym2.get_st_nonvis();
1262 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1263 }
1264 }
1265
1266 Stringpool::Key name_key;
1267 name = this->namepool_.add_with_length(name, namelen, true,
1268 &name_key);
1269
1270 Sized_symbol<size>* res;
1271 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1272 is_default_version, *psym, st_shndx,
1273 is_ordinary, orig_st_shndx);
1274
1275 if (is_forced_local)
1276 this->force_local(res);
1277
1278 // Do not treat this symbol as garbage if this symbol will be
1279 // exported to the dynamic symbol table. This is true when
1280 // building a shared library or using --export-dynamic and
1281 // the symbol is externally visible.
1282 if (parameters->options().gc_sections()
1283 && res->is_externally_visible()
1284 && !res->is_from_dynobj()
1285 && (parameters->options().shared()
1286 || parameters->options().export_dynamic()
1287 || parameters->options().in_dynamic_list(res->name())))
1288 this->gc_mark_symbol(res);
1289
1290 if (is_defined_in_discarded_section)
1291 res->set_is_defined_in_discarded_section();
1292
1293 (*sympointers)[i] = res;
1294 }
1295 }
1296
1297 // Add a symbol from a plugin-claimed file.
1298
1299 template<int size, bool big_endian>
1300 Symbol*
1301 Symbol_table::add_from_pluginobj(
1302 Sized_pluginobj<size, big_endian>* obj,
1303 const char* name,
1304 const char* ver,
1305 elfcpp::Sym<size, big_endian>* sym)
1306 {
1307 unsigned int st_shndx = sym->get_st_shndx();
1308 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1309
1310 Stringpool::Key ver_key = 0;
1311 bool is_default_version = false;
1312 bool is_forced_local = false;
1313
1314 if (ver != NULL)
1315 {
1316 ver = this->namepool_.add(ver, true, &ver_key);
1317 }
1318 // We don't want to assign a version to an undefined symbol,
1319 // even if it is listed in the version script. FIXME: What
1320 // about a common symbol?
1321 else
1322 {
1323 if (!this->version_script_.empty()
1324 && st_shndx != elfcpp::SHN_UNDEF)
1325 {
1326 // The symbol name did not have a version, but the
1327 // version script may assign a version anyway.
1328 std::string version;
1329 bool is_global;
1330 if (this->version_script_.get_symbol_version(name, &version,
1331 &is_global))
1332 {
1333 if (!is_global)
1334 is_forced_local = true;
1335 else if (!version.empty())
1336 {
1337 ver = this->namepool_.add_with_length(version.c_str(),
1338 version.length(),
1339 true,
1340 &ver_key);
1341 is_default_version = true;
1342 }
1343 }
1344 }
1345 }
1346
1347 Stringpool::Key name_key;
1348 name = this->namepool_.add(name, true, &name_key);
1349
1350 Sized_symbol<size>* res;
1351 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1352 is_default_version, *sym, st_shndx,
1353 is_ordinary, st_shndx);
1354
1355 if (is_forced_local)
1356 this->force_local(res);
1357
1358 return res;
1359 }
1360
1361 // Add all the symbols in a dynamic object to the hash table.
1362
1363 template<int size, bool big_endian>
1364 void
1365 Symbol_table::add_from_dynobj(
1366 Sized_dynobj<size, big_endian>* dynobj,
1367 const unsigned char* syms,
1368 size_t count,
1369 const char* sym_names,
1370 size_t sym_name_size,
1371 const unsigned char* versym,
1372 size_t versym_size,
1373 const std::vector<const char*>* version_map,
1374 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1375 size_t* defined)
1376 {
1377 *defined = 0;
1378
1379 gold_assert(size == parameters->target().get_size());
1380
1381 if (dynobj->just_symbols())
1382 {
1383 gold_error(_("--just-symbols does not make sense with a shared object"));
1384 return;
1385 }
1386
1387 // FIXME: For incremental links, we don't store version information,
1388 // so we need to ignore version symbols for now.
1389 if (parameters->incremental_update())
1390 versym = NULL;
1391
1392 if (versym != NULL && versym_size / 2 < count)
1393 {
1394 dynobj->error(_("too few symbol versions"));
1395 return;
1396 }
1397
1398 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1399
1400 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1401 // weak aliases. This is necessary because if the dynamic object
1402 // provides the same variable under two names, one of which is a
1403 // weak definition, and the regular object refers to the weak
1404 // definition, we have to put both the weak definition and the
1405 // strong definition into the dynamic symbol table. Given a weak
1406 // definition, the only way that we can find the corresponding
1407 // strong definition, if any, is to search the symbol table.
1408 std::vector<Sized_symbol<size>*> object_symbols;
1409
1410 const unsigned char* p = syms;
1411 const unsigned char* vs = versym;
1412 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1413 {
1414 elfcpp::Sym<size, big_endian> sym(p);
1415
1416 if (sympointers != NULL)
1417 (*sympointers)[i] = NULL;
1418
1419 // Ignore symbols with local binding or that have
1420 // internal or hidden visibility.
1421 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1422 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1423 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1424 continue;
1425
1426 // A protected symbol in a shared library must be treated as a
1427 // normal symbol when viewed from outside the shared library.
1428 // Implement this by overriding the visibility here.
1429 elfcpp::Sym<size, big_endian>* psym = &sym;
1430 unsigned char symbuf[sym_size];
1431 elfcpp::Sym<size, big_endian> sym2(symbuf);
1432 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1433 {
1434 memcpy(symbuf, p, sym_size);
1435 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1436 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1437 psym = &sym2;
1438 }
1439
1440 unsigned int st_name = psym->get_st_name();
1441 if (st_name >= sym_name_size)
1442 {
1443 dynobj->error(_("bad symbol name offset %u at %zu"),
1444 st_name, i);
1445 continue;
1446 }
1447
1448 const char* name = sym_names + st_name;
1449
1450 bool is_ordinary;
1451 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1452 &is_ordinary);
1453
1454 if (st_shndx != elfcpp::SHN_UNDEF)
1455 ++*defined;
1456
1457 Sized_symbol<size>* res;
1458
1459 if (versym == NULL)
1460 {
1461 Stringpool::Key name_key;
1462 name = this->namepool_.add(name, true, &name_key);
1463 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1464 false, *psym, st_shndx, is_ordinary,
1465 st_shndx);
1466 }
1467 else
1468 {
1469 // Read the version information.
1470
1471 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1472
1473 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1474 v &= elfcpp::VERSYM_VERSION;
1475
1476 // The Sun documentation says that V can be VER_NDX_LOCAL,
1477 // or VER_NDX_GLOBAL, or a version index. The meaning of
1478 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1479 // The old GNU linker will happily generate VER_NDX_LOCAL
1480 // for an undefined symbol. I don't know what the Sun
1481 // linker will generate.
1482
1483 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1484 && st_shndx != elfcpp::SHN_UNDEF)
1485 {
1486 // This symbol should not be visible outside the object.
1487 continue;
1488 }
1489
1490 // At this point we are definitely going to add this symbol.
1491 Stringpool::Key name_key;
1492 name = this->namepool_.add(name, true, &name_key);
1493
1494 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1495 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1496 {
1497 // This symbol does not have a version.
1498 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1499 false, *psym, st_shndx, is_ordinary,
1500 st_shndx);
1501 }
1502 else
1503 {
1504 if (v >= version_map->size())
1505 {
1506 dynobj->error(_("versym for symbol %zu out of range: %u"),
1507 i, v);
1508 continue;
1509 }
1510
1511 const char* version = (*version_map)[v];
1512 if (version == NULL)
1513 {
1514 dynobj->error(_("versym for symbol %zu has no name: %u"),
1515 i, v);
1516 continue;
1517 }
1518
1519 Stringpool::Key version_key;
1520 version = this->namepool_.add(version, true, &version_key);
1521
1522 // If this is an absolute symbol, and the version name
1523 // and symbol name are the same, then this is the
1524 // version definition symbol. These symbols exist to
1525 // support using -u to pull in particular versions. We
1526 // do not want to record a version for them.
1527 if (st_shndx == elfcpp::SHN_ABS
1528 && !is_ordinary
1529 && name_key == version_key)
1530 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1531 false, *psym, st_shndx, is_ordinary,
1532 st_shndx);
1533 else
1534 {
1535 const bool is_default_version =
1536 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1537 res = this->add_from_object(dynobj, name, name_key, version,
1538 version_key, is_default_version,
1539 *psym, st_shndx,
1540 is_ordinary, st_shndx);
1541 }
1542 }
1543 }
1544
1545 // Note that it is possible that RES was overridden by an
1546 // earlier object, in which case it can't be aliased here.
1547 if (st_shndx != elfcpp::SHN_UNDEF
1548 && is_ordinary
1549 && psym->get_st_type() == elfcpp::STT_OBJECT
1550 && res->source() == Symbol::FROM_OBJECT
1551 && res->object() == dynobj)
1552 object_symbols.push_back(res);
1553
1554 if (sympointers != NULL)
1555 (*sympointers)[i] = res;
1556 }
1557
1558 this->record_weak_aliases(&object_symbols);
1559 }
1560
1561 // Add a symbol from a incremental object file.
1562
1563 template<int size, bool big_endian>
1564 Sized_symbol<size>*
1565 Symbol_table::add_from_incrobj(
1566 Object* obj,
1567 const char* name,
1568 const char* ver,
1569 elfcpp::Sym<size, big_endian>* sym)
1570 {
1571 unsigned int st_shndx = sym->get_st_shndx();
1572 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1573
1574 Stringpool::Key ver_key = 0;
1575 bool is_default_version = false;
1576 bool is_forced_local = false;
1577
1578 Stringpool::Key name_key;
1579 name = this->namepool_.add(name, true, &name_key);
1580
1581 Sized_symbol<size>* res;
1582 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1583 is_default_version, *sym, st_shndx,
1584 is_ordinary, st_shndx);
1585
1586 if (is_forced_local)
1587 this->force_local(res);
1588
1589 return res;
1590 }
1591
1592 // This is used to sort weak aliases. We sort them first by section
1593 // index, then by offset, then by weak ahead of strong.
1594
1595 template<int size>
1596 class Weak_alias_sorter
1597 {
1598 public:
1599 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1600 };
1601
1602 template<int size>
1603 bool
1604 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1605 const Sized_symbol<size>* s2) const
1606 {
1607 bool is_ordinary;
1608 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1609 gold_assert(is_ordinary);
1610 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1611 gold_assert(is_ordinary);
1612 if (s1_shndx != s2_shndx)
1613 return s1_shndx < s2_shndx;
1614
1615 if (s1->value() != s2->value())
1616 return s1->value() < s2->value();
1617 if (s1->binding() != s2->binding())
1618 {
1619 if (s1->binding() == elfcpp::STB_WEAK)
1620 return true;
1621 if (s2->binding() == elfcpp::STB_WEAK)
1622 return false;
1623 }
1624 return std::string(s1->name()) < std::string(s2->name());
1625 }
1626
1627 // SYMBOLS is a list of object symbols from a dynamic object. Look
1628 // for any weak aliases, and record them so that if we add the weak
1629 // alias to the dynamic symbol table, we also add the corresponding
1630 // strong symbol.
1631
1632 template<int size>
1633 void
1634 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1635 {
1636 // Sort the vector by section index, then by offset, then by weak
1637 // ahead of strong.
1638 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1639
1640 // Walk through the vector. For each weak definition, record
1641 // aliases.
1642 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1643 symbols->begin();
1644 p != symbols->end();
1645 ++p)
1646 {
1647 if ((*p)->binding() != elfcpp::STB_WEAK)
1648 continue;
1649
1650 // Build a circular list of weak aliases. Each symbol points to
1651 // the next one in the circular list.
1652
1653 Sized_symbol<size>* from_sym = *p;
1654 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1655 for (q = p + 1; q != symbols->end(); ++q)
1656 {
1657 bool dummy;
1658 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1659 || (*q)->value() != from_sym->value())
1660 break;
1661
1662 this->weak_aliases_[from_sym] = *q;
1663 from_sym->set_has_alias();
1664 from_sym = *q;
1665 }
1666
1667 if (from_sym != *p)
1668 {
1669 this->weak_aliases_[from_sym] = *p;
1670 from_sym->set_has_alias();
1671 }
1672
1673 p = q - 1;
1674 }
1675 }
1676
1677 // Create and return a specially defined symbol. If ONLY_IF_REF is
1678 // true, then only create the symbol if there is a reference to it.
1679 // If this does not return NULL, it sets *POLDSYM to the existing
1680 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1681 // resolve the newly created symbol to the old one. This
1682 // canonicalizes *PNAME and *PVERSION.
1683
1684 template<int size, bool big_endian>
1685 Sized_symbol<size>*
1686 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1687 bool only_if_ref,
1688 Sized_symbol<size>** poldsym,
1689 bool* resolve_oldsym)
1690 {
1691 *resolve_oldsym = false;
1692 *poldsym = NULL;
1693
1694 // If the caller didn't give us a version, see if we get one from
1695 // the version script.
1696 std::string v;
1697 bool is_default_version = false;
1698 if (*pversion == NULL)
1699 {
1700 bool is_global;
1701 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1702 {
1703 if (is_global && !v.empty())
1704 {
1705 *pversion = v.c_str();
1706 // If we get the version from a version script, then we
1707 // are also the default version.
1708 is_default_version = true;
1709 }
1710 }
1711 }
1712
1713 Symbol* oldsym;
1714 Sized_symbol<size>* sym;
1715
1716 bool add_to_table = false;
1717 typename Symbol_table_type::iterator add_loc = this->table_.end();
1718 bool add_def_to_table = false;
1719 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1720
1721 if (only_if_ref)
1722 {
1723 oldsym = this->lookup(*pname, *pversion);
1724 if (oldsym == NULL && is_default_version)
1725 oldsym = this->lookup(*pname, NULL);
1726 if (oldsym == NULL || !oldsym->is_undefined())
1727 return NULL;
1728
1729 *pname = oldsym->name();
1730 if (is_default_version)
1731 *pversion = this->namepool_.add(*pversion, true, NULL);
1732 else
1733 *pversion = oldsym->version();
1734 }
1735 else
1736 {
1737 // Canonicalize NAME and VERSION.
1738 Stringpool::Key name_key;
1739 *pname = this->namepool_.add(*pname, true, &name_key);
1740
1741 Stringpool::Key version_key = 0;
1742 if (*pversion != NULL)
1743 *pversion = this->namepool_.add(*pversion, true, &version_key);
1744
1745 Symbol* const snull = NULL;
1746 std::pair<typename Symbol_table_type::iterator, bool> ins =
1747 this->table_.insert(std::make_pair(std::make_pair(name_key,
1748 version_key),
1749 snull));
1750
1751 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1752 std::make_pair(this->table_.end(), false);
1753 if (is_default_version)
1754 {
1755 const Stringpool::Key vnull = 0;
1756 insdefault =
1757 this->table_.insert(std::make_pair(std::make_pair(name_key,
1758 vnull),
1759 snull));
1760 }
1761
1762 if (!ins.second)
1763 {
1764 // We already have a symbol table entry for NAME/VERSION.
1765 oldsym = ins.first->second;
1766 gold_assert(oldsym != NULL);
1767
1768 if (is_default_version)
1769 {
1770 Sized_symbol<size>* soldsym =
1771 this->get_sized_symbol<size>(oldsym);
1772 this->define_default_version<size, big_endian>(soldsym,
1773 insdefault.second,
1774 insdefault.first);
1775 }
1776 }
1777 else
1778 {
1779 // We haven't seen this symbol before.
1780 gold_assert(ins.first->second == NULL);
1781
1782 add_to_table = true;
1783 add_loc = ins.first;
1784
1785 if (is_default_version && !insdefault.second)
1786 {
1787 // We are adding NAME/VERSION, and it is the default
1788 // version. We already have an entry for NAME/NULL.
1789 oldsym = insdefault.first->second;
1790 *resolve_oldsym = true;
1791 }
1792 else
1793 {
1794 oldsym = NULL;
1795
1796 if (is_default_version)
1797 {
1798 add_def_to_table = true;
1799 add_def_loc = insdefault.first;
1800 }
1801 }
1802 }
1803 }
1804
1805 const Target& target = parameters->target();
1806 if (!target.has_make_symbol())
1807 sym = new Sized_symbol<size>();
1808 else
1809 {
1810 Sized_target<size, big_endian>* sized_target =
1811 parameters->sized_target<size, big_endian>();
1812 sym = sized_target->make_symbol();
1813 if (sym == NULL)
1814 return NULL;
1815 }
1816
1817 if (add_to_table)
1818 add_loc->second = sym;
1819 else
1820 gold_assert(oldsym != NULL);
1821
1822 if (add_def_to_table)
1823 add_def_loc->second = sym;
1824
1825 *poldsym = this->get_sized_symbol<size>(oldsym);
1826
1827 return sym;
1828 }
1829
1830 // Define a symbol based on an Output_data.
1831
1832 Symbol*
1833 Symbol_table::define_in_output_data(const char* name,
1834 const char* version,
1835 Defined defined,
1836 Output_data* od,
1837 uint64_t value,
1838 uint64_t symsize,
1839 elfcpp::STT type,
1840 elfcpp::STB binding,
1841 elfcpp::STV visibility,
1842 unsigned char nonvis,
1843 bool offset_is_from_end,
1844 bool only_if_ref)
1845 {
1846 if (parameters->target().get_size() == 32)
1847 {
1848 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1849 return this->do_define_in_output_data<32>(name, version, defined, od,
1850 value, symsize, type, binding,
1851 visibility, nonvis,
1852 offset_is_from_end,
1853 only_if_ref);
1854 #else
1855 gold_unreachable();
1856 #endif
1857 }
1858 else if (parameters->target().get_size() == 64)
1859 {
1860 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1861 return this->do_define_in_output_data<64>(name, version, defined, od,
1862 value, symsize, type, binding,
1863 visibility, nonvis,
1864 offset_is_from_end,
1865 only_if_ref);
1866 #else
1867 gold_unreachable();
1868 #endif
1869 }
1870 else
1871 gold_unreachable();
1872 }
1873
1874 // Define a symbol in an Output_data, sized version.
1875
1876 template<int size>
1877 Sized_symbol<size>*
1878 Symbol_table::do_define_in_output_data(
1879 const char* name,
1880 const char* version,
1881 Defined defined,
1882 Output_data* od,
1883 typename elfcpp::Elf_types<size>::Elf_Addr value,
1884 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1885 elfcpp::STT type,
1886 elfcpp::STB binding,
1887 elfcpp::STV visibility,
1888 unsigned char nonvis,
1889 bool offset_is_from_end,
1890 bool only_if_ref)
1891 {
1892 Sized_symbol<size>* sym;
1893 Sized_symbol<size>* oldsym;
1894 bool resolve_oldsym;
1895
1896 if (parameters->target().is_big_endian())
1897 {
1898 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1899 sym = this->define_special_symbol<size, true>(&name, &version,
1900 only_if_ref, &oldsym,
1901 &resolve_oldsym);
1902 #else
1903 gold_unreachable();
1904 #endif
1905 }
1906 else
1907 {
1908 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1909 sym = this->define_special_symbol<size, false>(&name, &version,
1910 only_if_ref, &oldsym,
1911 &resolve_oldsym);
1912 #else
1913 gold_unreachable();
1914 #endif
1915 }
1916
1917 if (sym == NULL)
1918 return NULL;
1919
1920 sym->init_output_data(name, version, od, value, symsize, type, binding,
1921 visibility, nonvis, offset_is_from_end,
1922 defined == PREDEFINED);
1923
1924 if (oldsym == NULL)
1925 {
1926 if (binding == elfcpp::STB_LOCAL
1927 || this->version_script_.symbol_is_local(name))
1928 this->force_local(sym);
1929 else if (version != NULL)
1930 sym->set_is_default();
1931 return sym;
1932 }
1933
1934 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1935 this->override_with_special(oldsym, sym);
1936
1937 if (resolve_oldsym)
1938 return sym;
1939 else
1940 {
1941 delete sym;
1942 return oldsym;
1943 }
1944 }
1945
1946 // Define a symbol based on an Output_segment.
1947
1948 Symbol*
1949 Symbol_table::define_in_output_segment(const char* name,
1950 const char* version,
1951 Defined defined,
1952 Output_segment* os,
1953 uint64_t value,
1954 uint64_t symsize,
1955 elfcpp::STT type,
1956 elfcpp::STB binding,
1957 elfcpp::STV visibility,
1958 unsigned char nonvis,
1959 Symbol::Segment_offset_base offset_base,
1960 bool only_if_ref)
1961 {
1962 if (parameters->target().get_size() == 32)
1963 {
1964 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1965 return this->do_define_in_output_segment<32>(name, version, defined, os,
1966 value, symsize, type,
1967 binding, visibility, nonvis,
1968 offset_base, only_if_ref);
1969 #else
1970 gold_unreachable();
1971 #endif
1972 }
1973 else if (parameters->target().get_size() == 64)
1974 {
1975 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1976 return this->do_define_in_output_segment<64>(name, version, defined, os,
1977 value, symsize, type,
1978 binding, visibility, nonvis,
1979 offset_base, only_if_ref);
1980 #else
1981 gold_unreachable();
1982 #endif
1983 }
1984 else
1985 gold_unreachable();
1986 }
1987
1988 // Define a symbol in an Output_segment, sized version.
1989
1990 template<int size>
1991 Sized_symbol<size>*
1992 Symbol_table::do_define_in_output_segment(
1993 const char* name,
1994 const char* version,
1995 Defined defined,
1996 Output_segment* os,
1997 typename elfcpp::Elf_types<size>::Elf_Addr value,
1998 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1999 elfcpp::STT type,
2000 elfcpp::STB binding,
2001 elfcpp::STV visibility,
2002 unsigned char nonvis,
2003 Symbol::Segment_offset_base offset_base,
2004 bool only_if_ref)
2005 {
2006 Sized_symbol<size>* sym;
2007 Sized_symbol<size>* oldsym;
2008 bool resolve_oldsym;
2009
2010 if (parameters->target().is_big_endian())
2011 {
2012 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2013 sym = this->define_special_symbol<size, true>(&name, &version,
2014 only_if_ref, &oldsym,
2015 &resolve_oldsym);
2016 #else
2017 gold_unreachable();
2018 #endif
2019 }
2020 else
2021 {
2022 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2023 sym = this->define_special_symbol<size, false>(&name, &version,
2024 only_if_ref, &oldsym,
2025 &resolve_oldsym);
2026 #else
2027 gold_unreachable();
2028 #endif
2029 }
2030
2031 if (sym == NULL)
2032 return NULL;
2033
2034 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2035 visibility, nonvis, offset_base,
2036 defined == PREDEFINED);
2037
2038 if (oldsym == NULL)
2039 {
2040 if (binding == elfcpp::STB_LOCAL
2041 || this->version_script_.symbol_is_local(name))
2042 this->force_local(sym);
2043 else if (version != NULL)
2044 sym->set_is_default();
2045 return sym;
2046 }
2047
2048 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2049 this->override_with_special(oldsym, sym);
2050
2051 if (resolve_oldsym)
2052 return sym;
2053 else
2054 {
2055 delete sym;
2056 return oldsym;
2057 }
2058 }
2059
2060 // Define a special symbol with a constant value. It is a multiple
2061 // definition error if this symbol is already defined.
2062
2063 Symbol*
2064 Symbol_table::define_as_constant(const char* name,
2065 const char* version,
2066 Defined defined,
2067 uint64_t value,
2068 uint64_t symsize,
2069 elfcpp::STT type,
2070 elfcpp::STB binding,
2071 elfcpp::STV visibility,
2072 unsigned char nonvis,
2073 bool only_if_ref,
2074 bool force_override)
2075 {
2076 if (parameters->target().get_size() == 32)
2077 {
2078 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2079 return this->do_define_as_constant<32>(name, version, defined, value,
2080 symsize, type, binding,
2081 visibility, nonvis, only_if_ref,
2082 force_override);
2083 #else
2084 gold_unreachable();
2085 #endif
2086 }
2087 else if (parameters->target().get_size() == 64)
2088 {
2089 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2090 return this->do_define_as_constant<64>(name, version, defined, value,
2091 symsize, type, binding,
2092 visibility, nonvis, only_if_ref,
2093 force_override);
2094 #else
2095 gold_unreachable();
2096 #endif
2097 }
2098 else
2099 gold_unreachable();
2100 }
2101
2102 // Define a symbol as a constant, sized version.
2103
2104 template<int size>
2105 Sized_symbol<size>*
2106 Symbol_table::do_define_as_constant(
2107 const char* name,
2108 const char* version,
2109 Defined defined,
2110 typename elfcpp::Elf_types<size>::Elf_Addr value,
2111 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2112 elfcpp::STT type,
2113 elfcpp::STB binding,
2114 elfcpp::STV visibility,
2115 unsigned char nonvis,
2116 bool only_if_ref,
2117 bool force_override)
2118 {
2119 Sized_symbol<size>* sym;
2120 Sized_symbol<size>* oldsym;
2121 bool resolve_oldsym;
2122
2123 if (parameters->target().is_big_endian())
2124 {
2125 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2126 sym = this->define_special_symbol<size, true>(&name, &version,
2127 only_if_ref, &oldsym,
2128 &resolve_oldsym);
2129 #else
2130 gold_unreachable();
2131 #endif
2132 }
2133 else
2134 {
2135 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2136 sym = this->define_special_symbol<size, false>(&name, &version,
2137 only_if_ref, &oldsym,
2138 &resolve_oldsym);
2139 #else
2140 gold_unreachable();
2141 #endif
2142 }
2143
2144 if (sym == NULL)
2145 return NULL;
2146
2147 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2148 nonvis, defined == PREDEFINED);
2149
2150 if (oldsym == NULL)
2151 {
2152 // Version symbols are absolute symbols with name == version.
2153 // We don't want to force them to be local.
2154 if ((version == NULL
2155 || name != version
2156 || value != 0)
2157 && (binding == elfcpp::STB_LOCAL
2158 || this->version_script_.symbol_is_local(name)))
2159 this->force_local(sym);
2160 else if (version != NULL
2161 && (name != version || value != 0))
2162 sym->set_is_default();
2163 return sym;
2164 }
2165
2166 if (force_override
2167 || Symbol_table::should_override_with_special(oldsym, type, defined))
2168 this->override_with_special(oldsym, sym);
2169
2170 if (resolve_oldsym)
2171 return sym;
2172 else
2173 {
2174 delete sym;
2175 return oldsym;
2176 }
2177 }
2178
2179 // Define a set of symbols in output sections.
2180
2181 void
2182 Symbol_table::define_symbols(const Layout* layout, int count,
2183 const Define_symbol_in_section* p,
2184 bool only_if_ref)
2185 {
2186 for (int i = 0; i < count; ++i, ++p)
2187 {
2188 Output_section* os = layout->find_output_section(p->output_section);
2189 if (os != NULL)
2190 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2191 p->size, p->type, p->binding,
2192 p->visibility, p->nonvis,
2193 p->offset_is_from_end,
2194 only_if_ref || p->only_if_ref);
2195 else
2196 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2197 p->type, p->binding, p->visibility, p->nonvis,
2198 only_if_ref || p->only_if_ref,
2199 false);
2200 }
2201 }
2202
2203 // Define a set of symbols in output segments.
2204
2205 void
2206 Symbol_table::define_symbols(const Layout* layout, int count,
2207 const Define_symbol_in_segment* p,
2208 bool only_if_ref)
2209 {
2210 for (int i = 0; i < count; ++i, ++p)
2211 {
2212 Output_segment* os = layout->find_output_segment(p->segment_type,
2213 p->segment_flags_set,
2214 p->segment_flags_clear);
2215 if (os != NULL)
2216 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2217 p->size, p->type, p->binding,
2218 p->visibility, p->nonvis,
2219 p->offset_base,
2220 only_if_ref || p->only_if_ref);
2221 else
2222 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2223 p->type, p->binding, p->visibility, p->nonvis,
2224 only_if_ref || p->only_if_ref,
2225 false);
2226 }
2227 }
2228
2229 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2230 // symbol should be defined--typically a .dyn.bss section. VALUE is
2231 // the offset within POSD.
2232
2233 template<int size>
2234 void
2235 Symbol_table::define_with_copy_reloc(
2236 Sized_symbol<size>* csym,
2237 Output_data* posd,
2238 typename elfcpp::Elf_types<size>::Elf_Addr value)
2239 {
2240 gold_assert(csym->is_from_dynobj());
2241 gold_assert(!csym->is_copied_from_dynobj());
2242 Object* object = csym->object();
2243 gold_assert(object->is_dynamic());
2244 Dynobj* dynobj = static_cast<Dynobj*>(object);
2245
2246 // Our copied variable has to override any variable in a shared
2247 // library.
2248 elfcpp::STB binding = csym->binding();
2249 if (binding == elfcpp::STB_WEAK)
2250 binding = elfcpp::STB_GLOBAL;
2251
2252 this->define_in_output_data(csym->name(), csym->version(), COPY,
2253 posd, value, csym->symsize(),
2254 csym->type(), binding,
2255 csym->visibility(), csym->nonvis(),
2256 false, false);
2257
2258 csym->set_is_copied_from_dynobj();
2259 csym->set_needs_dynsym_entry();
2260
2261 this->copied_symbol_dynobjs_[csym] = dynobj;
2262
2263 // We have now defined all aliases, but we have not entered them all
2264 // in the copied_symbol_dynobjs_ map.
2265 if (csym->has_alias())
2266 {
2267 Symbol* sym = csym;
2268 while (true)
2269 {
2270 sym = this->weak_aliases_[sym];
2271 if (sym == csym)
2272 break;
2273 gold_assert(sym->output_data() == posd);
2274
2275 sym->set_is_copied_from_dynobj();
2276 this->copied_symbol_dynobjs_[sym] = dynobj;
2277 }
2278 }
2279 }
2280
2281 // SYM is defined using a COPY reloc. Return the dynamic object where
2282 // the original definition was found.
2283
2284 Dynobj*
2285 Symbol_table::get_copy_source(const Symbol* sym) const
2286 {
2287 gold_assert(sym->is_copied_from_dynobj());
2288 Copied_symbol_dynobjs::const_iterator p =
2289 this->copied_symbol_dynobjs_.find(sym);
2290 gold_assert(p != this->copied_symbol_dynobjs_.end());
2291 return p->second;
2292 }
2293
2294 // Add any undefined symbols named on the command line.
2295
2296 void
2297 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2298 {
2299 if (parameters->options().any_undefined()
2300 || layout->script_options()->any_unreferenced())
2301 {
2302 if (parameters->target().get_size() == 32)
2303 {
2304 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2305 this->do_add_undefined_symbols_from_command_line<32>(layout);
2306 #else
2307 gold_unreachable();
2308 #endif
2309 }
2310 else if (parameters->target().get_size() == 64)
2311 {
2312 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2313 this->do_add_undefined_symbols_from_command_line<64>(layout);
2314 #else
2315 gold_unreachable();
2316 #endif
2317 }
2318 else
2319 gold_unreachable();
2320 }
2321 }
2322
2323 template<int size>
2324 void
2325 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2326 {
2327 for (options::String_set::const_iterator p =
2328 parameters->options().undefined_begin();
2329 p != parameters->options().undefined_end();
2330 ++p)
2331 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2332
2333 for (options::String_set::const_iterator p =
2334 parameters->options().export_dynamic_symbol_begin();
2335 p != parameters->options().export_dynamic_symbol_end();
2336 ++p)
2337 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2338
2339 for (Script_options::referenced_const_iterator p =
2340 layout->script_options()->referenced_begin();
2341 p != layout->script_options()->referenced_end();
2342 ++p)
2343 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2344 }
2345
2346 template<int size>
2347 void
2348 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2349 {
2350 if (this->lookup(name) != NULL)
2351 return;
2352
2353 const char* version = NULL;
2354
2355 Sized_symbol<size>* sym;
2356 Sized_symbol<size>* oldsym;
2357 bool resolve_oldsym;
2358 if (parameters->target().is_big_endian())
2359 {
2360 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2361 sym = this->define_special_symbol<size, true>(&name, &version,
2362 false, &oldsym,
2363 &resolve_oldsym);
2364 #else
2365 gold_unreachable();
2366 #endif
2367 }
2368 else
2369 {
2370 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2371 sym = this->define_special_symbol<size, false>(&name, &version,
2372 false, &oldsym,
2373 &resolve_oldsym);
2374 #else
2375 gold_unreachable();
2376 #endif
2377 }
2378
2379 gold_assert(oldsym == NULL);
2380
2381 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2382 elfcpp::STV_DEFAULT, 0);
2383 ++this->saw_undefined_;
2384 }
2385
2386 // Set the dynamic symbol indexes. INDEX is the index of the first
2387 // global dynamic symbol. Pointers to the symbols are stored into the
2388 // vector SYMS. The names are added to DYNPOOL. This returns an
2389 // updated dynamic symbol index.
2390
2391 unsigned int
2392 Symbol_table::set_dynsym_indexes(unsigned int index,
2393 std::vector<Symbol*>* syms,
2394 Stringpool* dynpool,
2395 Versions* versions)
2396 {
2397 std::vector<Symbol*> as_needed_sym;
2398
2399 // Allow a target to set dynsym indexes.
2400 if (parameters->target().has_custom_set_dynsym_indexes())
2401 {
2402 std::vector<Symbol*> dyn_symbols;
2403 for (Symbol_table_type::iterator p = this->table_.begin();
2404 p != this->table_.end();
2405 ++p)
2406 {
2407 Symbol* sym = p->second;
2408 if (!sym->should_add_dynsym_entry(this))
2409 sym->set_dynsym_index(-1U);
2410 else
2411 dyn_symbols.push_back(sym);
2412 }
2413
2414 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2415 dynpool, versions, this);
2416 }
2417
2418 for (Symbol_table_type::iterator p = this->table_.begin();
2419 p != this->table_.end();
2420 ++p)
2421 {
2422 Symbol* sym = p->second;
2423
2424 // Note that SYM may already have a dynamic symbol index, since
2425 // some symbols appear more than once in the symbol table, with
2426 // and without a version.
2427
2428 if (!sym->should_add_dynsym_entry(this))
2429 sym->set_dynsym_index(-1U);
2430 else if (!sym->has_dynsym_index())
2431 {
2432 sym->set_dynsym_index(index);
2433 ++index;
2434 syms->push_back(sym);
2435 dynpool->add(sym->name(), false, NULL);
2436
2437 // If the symbol is defined in a dynamic object and is
2438 // referenced strongly in a regular object, then mark the
2439 // dynamic object as needed. This is used to implement
2440 // --as-needed.
2441 if (sym->is_from_dynobj()
2442 && sym->in_reg()
2443 && !sym->is_undef_binding_weak())
2444 sym->object()->set_is_needed();
2445
2446 // Record any version information, except those from
2447 // as-needed libraries not seen to be needed. Note that the
2448 // is_needed state for such libraries can change in this loop.
2449 if (sym->version() != NULL)
2450 {
2451 if (!sym->is_from_dynobj()
2452 || !sym->object()->as_needed()
2453 || sym->object()->is_needed())
2454 versions->record_version(this, dynpool, sym);
2455 else
2456 as_needed_sym.push_back(sym);
2457 }
2458 }
2459 }
2460
2461 // Process version information for symbols from as-needed libraries.
2462 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2463 p != as_needed_sym.end();
2464 ++p)
2465 {
2466 Symbol* sym = *p;
2467
2468 if (sym->object()->is_needed())
2469 versions->record_version(this, dynpool, sym);
2470 else
2471 sym->clear_version();
2472 }
2473
2474 // Finish up the versions. In some cases this may add new dynamic
2475 // symbols.
2476 index = versions->finalize(this, index, syms);
2477
2478 return index;
2479 }
2480
2481 // Set the final values for all the symbols. The index of the first
2482 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2483 // file offset OFF. Add their names to POOL. Return the new file
2484 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2485
2486 off_t
2487 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2488 size_t dyncount, Stringpool* pool,
2489 unsigned int* plocal_symcount)
2490 {
2491 off_t ret;
2492
2493 gold_assert(*plocal_symcount != 0);
2494 this->first_global_index_ = *plocal_symcount;
2495
2496 this->dynamic_offset_ = dynoff;
2497 this->first_dynamic_global_index_ = dyn_global_index;
2498 this->dynamic_count_ = dyncount;
2499
2500 if (parameters->target().get_size() == 32)
2501 {
2502 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2503 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2504 #else
2505 gold_unreachable();
2506 #endif
2507 }
2508 else if (parameters->target().get_size() == 64)
2509 {
2510 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2511 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2512 #else
2513 gold_unreachable();
2514 #endif
2515 }
2516 else
2517 gold_unreachable();
2518
2519 // Now that we have the final symbol table, we can reliably note
2520 // which symbols should get warnings.
2521 this->warnings_.note_warnings(this);
2522
2523 return ret;
2524 }
2525
2526 // SYM is going into the symbol table at *PINDEX. Add the name to
2527 // POOL, update *PINDEX and *POFF.
2528
2529 template<int size>
2530 void
2531 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2532 unsigned int* pindex, off_t* poff)
2533 {
2534 sym->set_symtab_index(*pindex);
2535 if (sym->version() == NULL || !parameters->options().relocatable())
2536 pool->add(sym->name(), false, NULL);
2537 else
2538 pool->add(sym->versioned_name(), true, NULL);
2539 ++*pindex;
2540 *poff += elfcpp::Elf_sizes<size>::sym_size;
2541 }
2542
2543 // Set the final value for all the symbols. This is called after
2544 // Layout::finalize, so all the output sections have their final
2545 // address.
2546
2547 template<int size>
2548 off_t
2549 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2550 unsigned int* plocal_symcount)
2551 {
2552 off = align_address(off, size >> 3);
2553 this->offset_ = off;
2554
2555 unsigned int index = *plocal_symcount;
2556 const unsigned int orig_index = index;
2557
2558 // First do all the symbols which have been forced to be local, as
2559 // they must appear before all global symbols.
2560 for (Forced_locals::iterator p = this->forced_locals_.begin();
2561 p != this->forced_locals_.end();
2562 ++p)
2563 {
2564 Symbol* sym = *p;
2565 gold_assert(sym->is_forced_local());
2566 if (this->sized_finalize_symbol<size>(sym))
2567 {
2568 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2569 ++*plocal_symcount;
2570 }
2571 }
2572
2573 // Now do all the remaining symbols.
2574 for (Symbol_table_type::iterator p = this->table_.begin();
2575 p != this->table_.end();
2576 ++p)
2577 {
2578 Symbol* sym = p->second;
2579 if (this->sized_finalize_symbol<size>(sym))
2580 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2581 }
2582
2583 this->output_count_ = index - orig_index;
2584
2585 return off;
2586 }
2587
2588 // Compute the final value of SYM and store status in location PSTATUS.
2589 // During relaxation, this may be called multiple times for a symbol to
2590 // compute its would-be final value in each relaxation pass.
2591
2592 template<int size>
2593 typename Sized_symbol<size>::Value_type
2594 Symbol_table::compute_final_value(
2595 const Sized_symbol<size>* sym,
2596 Compute_final_value_status* pstatus) const
2597 {
2598 typedef typename Sized_symbol<size>::Value_type Value_type;
2599 Value_type value;
2600
2601 switch (sym->source())
2602 {
2603 case Symbol::FROM_OBJECT:
2604 {
2605 bool is_ordinary;
2606 unsigned int shndx = sym->shndx(&is_ordinary);
2607
2608 if (!is_ordinary
2609 && shndx != elfcpp::SHN_ABS
2610 && !Symbol::is_common_shndx(shndx))
2611 {
2612 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2613 return 0;
2614 }
2615
2616 Object* symobj = sym->object();
2617 if (symobj->is_dynamic())
2618 {
2619 value = 0;
2620 shndx = elfcpp::SHN_UNDEF;
2621 }
2622 else if (symobj->pluginobj() != NULL)
2623 {
2624 value = 0;
2625 shndx = elfcpp::SHN_UNDEF;
2626 }
2627 else if (shndx == elfcpp::SHN_UNDEF)
2628 value = 0;
2629 else if (!is_ordinary
2630 && (shndx == elfcpp::SHN_ABS
2631 || Symbol::is_common_shndx(shndx)))
2632 value = sym->value();
2633 else
2634 {
2635 Relobj* relobj = static_cast<Relobj*>(symobj);
2636 Output_section* os = relobj->output_section(shndx);
2637
2638 if (this->is_section_folded(relobj, shndx))
2639 {
2640 gold_assert(os == NULL);
2641 // Get the os of the section it is folded onto.
2642 Section_id folded = this->icf_->get_folded_section(relobj,
2643 shndx);
2644 gold_assert(folded.first != NULL);
2645 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2646 unsigned folded_shndx = folded.second;
2647
2648 os = folded_obj->output_section(folded_shndx);
2649 gold_assert(os != NULL);
2650
2651 // Replace (relobj, shndx) with canonical ICF input section.
2652 shndx = folded_shndx;
2653 relobj = folded_obj;
2654 }
2655
2656 uint64_t secoff64 = relobj->output_section_offset(shndx);
2657 if (os == NULL)
2658 {
2659 bool static_or_reloc = (parameters->doing_static_link() ||
2660 parameters->options().relocatable());
2661 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2662
2663 *pstatus = CFVS_NO_OUTPUT_SECTION;
2664 return 0;
2665 }
2666
2667 if (secoff64 == -1ULL)
2668 {
2669 // The section needs special handling (e.g., a merge section).
2670
2671 value = os->output_address(relobj, shndx, sym->value());
2672 }
2673 else
2674 {
2675 Value_type secoff =
2676 convert_types<Value_type, uint64_t>(secoff64);
2677 if (sym->type() == elfcpp::STT_TLS)
2678 value = sym->value() + os->tls_offset() + secoff;
2679 else
2680 value = sym->value() + os->address() + secoff;
2681 }
2682 }
2683 }
2684 break;
2685
2686 case Symbol::IN_OUTPUT_DATA:
2687 {
2688 Output_data* od = sym->output_data();
2689 value = sym->value();
2690 if (sym->type() != elfcpp::STT_TLS)
2691 value += od->address();
2692 else
2693 {
2694 Output_section* os = od->output_section();
2695 gold_assert(os != NULL);
2696 value += os->tls_offset() + (od->address() - os->address());
2697 }
2698 if (sym->offset_is_from_end())
2699 value += od->data_size();
2700 }
2701 break;
2702
2703 case Symbol::IN_OUTPUT_SEGMENT:
2704 {
2705 Output_segment* os = sym->output_segment();
2706 value = sym->value();
2707 if (sym->type() != elfcpp::STT_TLS)
2708 value += os->vaddr();
2709 switch (sym->offset_base())
2710 {
2711 case Symbol::SEGMENT_START:
2712 break;
2713 case Symbol::SEGMENT_END:
2714 value += os->memsz();
2715 break;
2716 case Symbol::SEGMENT_BSS:
2717 value += os->filesz();
2718 break;
2719 default:
2720 gold_unreachable();
2721 }
2722 }
2723 break;
2724
2725 case Symbol::IS_CONSTANT:
2726 value = sym->value();
2727 break;
2728
2729 case Symbol::IS_UNDEFINED:
2730 value = 0;
2731 break;
2732
2733 default:
2734 gold_unreachable();
2735 }
2736
2737 *pstatus = CFVS_OK;
2738 return value;
2739 }
2740
2741 // Finalize the symbol SYM. This returns true if the symbol should be
2742 // added to the symbol table, false otherwise.
2743
2744 template<int size>
2745 bool
2746 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2747 {
2748 typedef typename Sized_symbol<size>::Value_type Value_type;
2749
2750 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2751
2752 // The default version of a symbol may appear twice in the symbol
2753 // table. We only need to finalize it once.
2754 if (sym->has_symtab_index())
2755 return false;
2756
2757 if (!sym->in_reg())
2758 {
2759 gold_assert(!sym->has_symtab_index());
2760 sym->set_symtab_index(-1U);
2761 gold_assert(sym->dynsym_index() == -1U);
2762 return false;
2763 }
2764
2765 // If the symbol is only present on plugin files, the plugin decided we
2766 // don't need it.
2767 if (!sym->in_real_elf())
2768 {
2769 gold_assert(!sym->has_symtab_index());
2770 sym->set_symtab_index(-1U);
2771 return false;
2772 }
2773
2774 // Compute final symbol value.
2775 Compute_final_value_status status;
2776 Value_type value = this->compute_final_value(sym, &status);
2777
2778 switch (status)
2779 {
2780 case CFVS_OK:
2781 break;
2782 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2783 {
2784 bool is_ordinary;
2785 unsigned int shndx = sym->shndx(&is_ordinary);
2786 gold_error(_("%s: unsupported symbol section 0x%x"),
2787 sym->demangled_name().c_str(), shndx);
2788 }
2789 break;
2790 case CFVS_NO_OUTPUT_SECTION:
2791 sym->set_symtab_index(-1U);
2792 return false;
2793 default:
2794 gold_unreachable();
2795 }
2796
2797 sym->set_value(value);
2798
2799 if (parameters->options().strip_all()
2800 || !parameters->options().should_retain_symbol(sym->name()))
2801 {
2802 sym->set_symtab_index(-1U);
2803 return false;
2804 }
2805
2806 return true;
2807 }
2808
2809 // Write out the global symbols.
2810
2811 void
2812 Symbol_table::write_globals(const Stringpool* sympool,
2813 const Stringpool* dynpool,
2814 Output_symtab_xindex* symtab_xindex,
2815 Output_symtab_xindex* dynsym_xindex,
2816 Output_file* of) const
2817 {
2818 switch (parameters->size_and_endianness())
2819 {
2820 #ifdef HAVE_TARGET_32_LITTLE
2821 case Parameters::TARGET_32_LITTLE:
2822 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2823 dynsym_xindex, of);
2824 break;
2825 #endif
2826 #ifdef HAVE_TARGET_32_BIG
2827 case Parameters::TARGET_32_BIG:
2828 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2829 dynsym_xindex, of);
2830 break;
2831 #endif
2832 #ifdef HAVE_TARGET_64_LITTLE
2833 case Parameters::TARGET_64_LITTLE:
2834 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2835 dynsym_xindex, of);
2836 break;
2837 #endif
2838 #ifdef HAVE_TARGET_64_BIG
2839 case Parameters::TARGET_64_BIG:
2840 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2841 dynsym_xindex, of);
2842 break;
2843 #endif
2844 default:
2845 gold_unreachable();
2846 }
2847 }
2848
2849 // Write out the global symbols.
2850
2851 template<int size, bool big_endian>
2852 void
2853 Symbol_table::sized_write_globals(const Stringpool* sympool,
2854 const Stringpool* dynpool,
2855 Output_symtab_xindex* symtab_xindex,
2856 Output_symtab_xindex* dynsym_xindex,
2857 Output_file* of) const
2858 {
2859 const Target& target = parameters->target();
2860
2861 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2862
2863 const unsigned int output_count = this->output_count_;
2864 const section_size_type oview_size = output_count * sym_size;
2865 const unsigned int first_global_index = this->first_global_index_;
2866 unsigned char* psyms;
2867 if (this->offset_ == 0 || output_count == 0)
2868 psyms = NULL;
2869 else
2870 psyms = of->get_output_view(this->offset_, oview_size);
2871
2872 const unsigned int dynamic_count = this->dynamic_count_;
2873 const section_size_type dynamic_size = dynamic_count * sym_size;
2874 const unsigned int first_dynamic_global_index =
2875 this->first_dynamic_global_index_;
2876 unsigned char* dynamic_view;
2877 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2878 dynamic_view = NULL;
2879 else
2880 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2881
2882 for (Symbol_table_type::const_iterator p = this->table_.begin();
2883 p != this->table_.end();
2884 ++p)
2885 {
2886 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2887
2888 // Possibly warn about unresolved symbols in shared libraries.
2889 this->warn_about_undefined_dynobj_symbol(sym);
2890
2891 unsigned int sym_index = sym->symtab_index();
2892 unsigned int dynsym_index;
2893 if (dynamic_view == NULL)
2894 dynsym_index = -1U;
2895 else
2896 dynsym_index = sym->dynsym_index();
2897
2898 if (sym_index == -1U && dynsym_index == -1U)
2899 {
2900 // This symbol is not included in the output file.
2901 continue;
2902 }
2903
2904 unsigned int shndx;
2905 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2906 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2907 elfcpp::STB binding = sym->binding();
2908
2909 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2910 if (binding == elfcpp::STB_GNU_UNIQUE
2911 && !parameters->options().gnu_unique())
2912 binding = elfcpp::STB_GLOBAL;
2913
2914 switch (sym->source())
2915 {
2916 case Symbol::FROM_OBJECT:
2917 {
2918 bool is_ordinary;
2919 unsigned int in_shndx = sym->shndx(&is_ordinary);
2920
2921 if (!is_ordinary
2922 && in_shndx != elfcpp::SHN_ABS
2923 && !Symbol::is_common_shndx(in_shndx))
2924 {
2925 gold_error(_("%s: unsupported symbol section 0x%x"),
2926 sym->demangled_name().c_str(), in_shndx);
2927 shndx = in_shndx;
2928 }
2929 else
2930 {
2931 Object* symobj = sym->object();
2932 if (symobj->is_dynamic())
2933 {
2934 if (sym->needs_dynsym_value())
2935 dynsym_value = target.dynsym_value(sym);
2936 shndx = elfcpp::SHN_UNDEF;
2937 if (sym->is_undef_binding_weak())
2938 binding = elfcpp::STB_WEAK;
2939 else
2940 binding = elfcpp::STB_GLOBAL;
2941 }
2942 else if (symobj->pluginobj() != NULL)
2943 shndx = elfcpp::SHN_UNDEF;
2944 else if (in_shndx == elfcpp::SHN_UNDEF
2945 || (!is_ordinary
2946 && (in_shndx == elfcpp::SHN_ABS
2947 || Symbol::is_common_shndx(in_shndx))))
2948 shndx = in_shndx;
2949 else
2950 {
2951 Relobj* relobj = static_cast<Relobj*>(symobj);
2952 Output_section* os = relobj->output_section(in_shndx);
2953 if (this->is_section_folded(relobj, in_shndx))
2954 {
2955 // This global symbol must be written out even though
2956 // it is folded.
2957 // Get the os of the section it is folded onto.
2958 Section_id folded =
2959 this->icf_->get_folded_section(relobj, in_shndx);
2960 gold_assert(folded.first !=NULL);
2961 Relobj* folded_obj =
2962 reinterpret_cast<Relobj*>(folded.first);
2963 os = folded_obj->output_section(folded.second);
2964 gold_assert(os != NULL);
2965 }
2966 gold_assert(os != NULL);
2967 shndx = os->out_shndx();
2968
2969 if (shndx >= elfcpp::SHN_LORESERVE)
2970 {
2971 if (sym_index != -1U)
2972 symtab_xindex->add(sym_index, shndx);
2973 if (dynsym_index != -1U)
2974 dynsym_xindex->add(dynsym_index, shndx);
2975 shndx = elfcpp::SHN_XINDEX;
2976 }
2977
2978 // In object files symbol values are section
2979 // relative.
2980 if (parameters->options().relocatable())
2981 sym_value -= os->address();
2982 }
2983 }
2984 }
2985 break;
2986
2987 case Symbol::IN_OUTPUT_DATA:
2988 {
2989 Output_data* od = sym->output_data();
2990
2991 shndx = od->out_shndx();
2992 if (shndx >= elfcpp::SHN_LORESERVE)
2993 {
2994 if (sym_index != -1U)
2995 symtab_xindex->add(sym_index, shndx);
2996 if (dynsym_index != -1U)
2997 dynsym_xindex->add(dynsym_index, shndx);
2998 shndx = elfcpp::SHN_XINDEX;
2999 }
3000
3001 // In object files symbol values are section
3002 // relative.
3003 if (parameters->options().relocatable())
3004 sym_value -= od->address();
3005 }
3006 break;
3007
3008 case Symbol::IN_OUTPUT_SEGMENT:
3009 shndx = elfcpp::SHN_ABS;
3010 break;
3011
3012 case Symbol::IS_CONSTANT:
3013 shndx = elfcpp::SHN_ABS;
3014 break;
3015
3016 case Symbol::IS_UNDEFINED:
3017 shndx = elfcpp::SHN_UNDEF;
3018 break;
3019
3020 default:
3021 gold_unreachable();
3022 }
3023
3024 if (sym_index != -1U)
3025 {
3026 sym_index -= first_global_index;
3027 gold_assert(sym_index < output_count);
3028 unsigned char* ps = psyms + (sym_index * sym_size);
3029 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3030 binding, sympool, ps);
3031 }
3032
3033 if (dynsym_index != -1U)
3034 {
3035 dynsym_index -= first_dynamic_global_index;
3036 gold_assert(dynsym_index < dynamic_count);
3037 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3038 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3039 binding, dynpool, pd);
3040 // Allow a target to adjust dynamic symbol value.
3041 parameters->target().adjust_dyn_symbol(sym, pd);
3042 }
3043 }
3044
3045 of->write_output_view(this->offset_, oview_size, psyms);
3046 if (dynamic_view != NULL)
3047 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3048 }
3049
3050 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3051 // strtab holding the name.
3052
3053 template<int size, bool big_endian>
3054 void
3055 Symbol_table::sized_write_symbol(
3056 Sized_symbol<size>* sym,
3057 typename elfcpp::Elf_types<size>::Elf_Addr value,
3058 unsigned int shndx,
3059 elfcpp::STB binding,
3060 const Stringpool* pool,
3061 unsigned char* p) const
3062 {
3063 elfcpp::Sym_write<size, big_endian> osym(p);
3064 if (sym->version() == NULL || !parameters->options().relocatable())
3065 osym.put_st_name(pool->get_offset(sym->name()));
3066 else
3067 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3068 osym.put_st_value(value);
3069 // Use a symbol size of zero for undefined symbols from shared libraries.
3070 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3071 osym.put_st_size(0);
3072 else
3073 osym.put_st_size(sym->symsize());
3074 elfcpp::STT type = sym->type();
3075 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3076 if (type == elfcpp::STT_GNU_IFUNC
3077 && sym->is_from_dynobj())
3078 type = elfcpp::STT_FUNC;
3079 // A version script may have overridden the default binding.
3080 if (sym->is_forced_local())
3081 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3082 else
3083 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3084 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3085 osym.put_st_shndx(shndx);
3086 }
3087
3088 // Check for unresolved symbols in shared libraries. This is
3089 // controlled by the --allow-shlib-undefined option.
3090
3091 // We only warn about libraries for which we have seen all the
3092 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3093 // which were not seen in this link. If we didn't see a DT_NEEDED
3094 // entry, we aren't going to be able to reliably report whether the
3095 // symbol is undefined.
3096
3097 // We also don't warn about libraries found in a system library
3098 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3099 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3100 // can have undefined references satisfied by ld-linux.so.
3101
3102 inline void
3103 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3104 {
3105 bool dummy;
3106 if (sym->source() == Symbol::FROM_OBJECT
3107 && sym->object()->is_dynamic()
3108 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3109 && sym->binding() != elfcpp::STB_WEAK
3110 && !parameters->options().allow_shlib_undefined()
3111 && !parameters->target().is_defined_by_abi(sym)
3112 && !sym->object()->is_in_system_directory())
3113 {
3114 // A very ugly cast.
3115 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3116 if (!dynobj->has_unknown_needed_entries())
3117 gold_undefined_symbol(sym);
3118 }
3119 }
3120
3121 // Write out a section symbol. Return the update offset.
3122
3123 void
3124 Symbol_table::write_section_symbol(const Output_section* os,
3125 Output_symtab_xindex* symtab_xindex,
3126 Output_file* of,
3127 off_t offset) const
3128 {
3129 switch (parameters->size_and_endianness())
3130 {
3131 #ifdef HAVE_TARGET_32_LITTLE
3132 case Parameters::TARGET_32_LITTLE:
3133 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3134 offset);
3135 break;
3136 #endif
3137 #ifdef HAVE_TARGET_32_BIG
3138 case Parameters::TARGET_32_BIG:
3139 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3140 offset);
3141 break;
3142 #endif
3143 #ifdef HAVE_TARGET_64_LITTLE
3144 case Parameters::TARGET_64_LITTLE:
3145 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3146 offset);
3147 break;
3148 #endif
3149 #ifdef HAVE_TARGET_64_BIG
3150 case Parameters::TARGET_64_BIG:
3151 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3152 offset);
3153 break;
3154 #endif
3155 default:
3156 gold_unreachable();
3157 }
3158 }
3159
3160 // Write out a section symbol, specialized for size and endianness.
3161
3162 template<int size, bool big_endian>
3163 void
3164 Symbol_table::sized_write_section_symbol(const Output_section* os,
3165 Output_symtab_xindex* symtab_xindex,
3166 Output_file* of,
3167 off_t offset) const
3168 {
3169 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3170
3171 unsigned char* pov = of->get_output_view(offset, sym_size);
3172
3173 elfcpp::Sym_write<size, big_endian> osym(pov);
3174 osym.put_st_name(0);
3175 if (parameters->options().relocatable())
3176 osym.put_st_value(0);
3177 else
3178 osym.put_st_value(os->address());
3179 osym.put_st_size(0);
3180 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3181 elfcpp::STT_SECTION));
3182 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3183
3184 unsigned int shndx = os->out_shndx();
3185 if (shndx >= elfcpp::SHN_LORESERVE)
3186 {
3187 symtab_xindex->add(os->symtab_index(), shndx);
3188 shndx = elfcpp::SHN_XINDEX;
3189 }
3190 osym.put_st_shndx(shndx);
3191
3192 of->write_output_view(offset, sym_size, pov);
3193 }
3194
3195 // Print statistical information to stderr. This is used for --stats.
3196
3197 void
3198 Symbol_table::print_stats() const
3199 {
3200 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3201 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3202 program_name, this->table_.size(), this->table_.bucket_count());
3203 #else
3204 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3205 program_name, this->table_.size());
3206 #endif
3207 this->namepool_.print_stats("symbol table stringpool");
3208 }
3209
3210 // We check for ODR violations by looking for symbols with the same
3211 // name for which the debugging information reports that they were
3212 // defined in disjoint source locations. When comparing the source
3213 // location, we consider instances with the same base filename to be
3214 // the same. This is because different object files/shared libraries
3215 // can include the same header file using different paths, and
3216 // different optimization settings can make the line number appear to
3217 // be a couple lines off, and we don't want to report an ODR violation
3218 // in those cases.
3219
3220 // This struct is used to compare line information, as returned by
3221 // Dwarf_line_info::one_addr2line. It implements a < comparison
3222 // operator used with std::sort.
3223
3224 struct Odr_violation_compare
3225 {
3226 bool
3227 operator()(const std::string& s1, const std::string& s2) const
3228 {
3229 // Inputs should be of the form "dirname/filename:linenum" where
3230 // "dirname/" is optional. We want to compare just the filename:linenum.
3231
3232 // Find the last '/' in each string.
3233 std::string::size_type s1begin = s1.rfind('/');
3234 std::string::size_type s2begin = s2.rfind('/');
3235 // If there was no '/' in a string, start at the beginning.
3236 if (s1begin == std::string::npos)
3237 s1begin = 0;
3238 if (s2begin == std::string::npos)
3239 s2begin = 0;
3240 return s1.compare(s1begin, std::string::npos,
3241 s2, s2begin, std::string::npos) < 0;
3242 }
3243 };
3244
3245 // Returns all of the lines attached to LOC, not just the one the
3246 // instruction actually came from.
3247 std::vector<std::string>
3248 Symbol_table::linenos_from_loc(const Task* task,
3249 const Symbol_location& loc)
3250 {
3251 // We need to lock the object in order to read it. This
3252 // means that we have to run in a singleton Task. If we
3253 // want to run this in a general Task for better
3254 // performance, we will need one Task for object, plus
3255 // appropriate locking to ensure that we don't conflict with
3256 // other uses of the object. Also note, one_addr2line is not
3257 // currently thread-safe.
3258 Task_lock_obj<Object> tl(task, loc.object);
3259
3260 std::vector<std::string> result;
3261 Symbol_location code_loc = loc;
3262 parameters->target().function_location(&code_loc);
3263 // 16 is the size of the object-cache that one_addr2line should use.
3264 std::string canonical_result = Dwarf_line_info::one_addr2line(
3265 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3266 if (!canonical_result.empty())
3267 result.push_back(canonical_result);
3268 return result;
3269 }
3270
3271 // OutputIterator that records if it was ever assigned to. This
3272 // allows it to be used with std::set_intersection() to check for
3273 // intersection rather than computing the intersection.
3274 struct Check_intersection
3275 {
3276 Check_intersection()
3277 : value_(false)
3278 {}
3279
3280 bool had_intersection() const
3281 { return this->value_; }
3282
3283 Check_intersection& operator++()
3284 { return *this; }
3285
3286 Check_intersection& operator*()
3287 { return *this; }
3288
3289 template<typename T>
3290 Check_intersection& operator=(const T&)
3291 {
3292 this->value_ = true;
3293 return *this;
3294 }
3295
3296 private:
3297 bool value_;
3298 };
3299
3300 // Check candidate_odr_violations_ to find symbols with the same name
3301 // but apparently different definitions (different source-file/line-no
3302 // for each line assigned to the first instruction).
3303
3304 void
3305 Symbol_table::detect_odr_violations(const Task* task,
3306 const char* output_file_name) const
3307 {
3308 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3309 it != candidate_odr_violations_.end();
3310 ++it)
3311 {
3312 const char* const symbol_name = it->first;
3313
3314 std::string first_object_name;
3315 std::vector<std::string> first_object_linenos;
3316
3317 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3318 locs = it->second.begin();
3319 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3320 locs_end = it->second.end();
3321 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3322 {
3323 // Save the line numbers from the first definition to
3324 // compare to the other definitions. Ideally, we'd compare
3325 // every definition to every other, but we don't want to
3326 // take O(N^2) time to do this. This shortcut may cause
3327 // false negatives that appear or disappear depending on the
3328 // link order, but it won't cause false positives.
3329 first_object_name = locs->object->name();
3330 first_object_linenos = this->linenos_from_loc(task, *locs);
3331 }
3332
3333 // Sort by Odr_violation_compare to make std::set_intersection work.
3334 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3335 Odr_violation_compare());
3336
3337 for (; locs != locs_end; ++locs)
3338 {
3339 std::vector<std::string> linenos =
3340 this->linenos_from_loc(task, *locs);
3341 // linenos will be empty if we couldn't parse the debug info.
3342 if (linenos.empty())
3343 continue;
3344 // Sort by Odr_violation_compare to make std::set_intersection work.
3345 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3346
3347 Check_intersection intersection_result =
3348 std::set_intersection(first_object_linenos.begin(),
3349 first_object_linenos.end(),
3350 linenos.begin(),
3351 linenos.end(),
3352 Check_intersection(),
3353 Odr_violation_compare());
3354 if (!intersection_result.had_intersection())
3355 {
3356 gold_warning(_("while linking %s: symbol '%s' defined in "
3357 "multiple places (possible ODR violation):"),
3358 output_file_name, demangle(symbol_name).c_str());
3359 // This only prints one location from each definition,
3360 // which may not be the location we expect to intersect
3361 // with another definition. We could print the whole
3362 // set of locations, but that seems too verbose.
3363 gold_assert(!first_object_linenos.empty());
3364 gold_assert(!linenos.empty());
3365 fprintf(stderr, _(" %s from %s\n"),
3366 first_object_linenos[0].c_str(),
3367 first_object_name.c_str());
3368 fprintf(stderr, _(" %s from %s\n"),
3369 linenos[0].c_str(),
3370 locs->object->name().c_str());
3371 // Only print one broken pair, to avoid needing to
3372 // compare against a list of the disjoint definition
3373 // locations we've found so far. (If we kept comparing
3374 // against just the first one, we'd get a lot of
3375 // redundant complaints about the second definition
3376 // location.)
3377 break;
3378 }
3379 }
3380 }
3381 // We only call one_addr2line() in this function, so we can clear its cache.
3382 Dwarf_line_info::clear_addr2line_cache();
3383 }
3384
3385 // Warnings functions.
3386
3387 // Add a new warning.
3388
3389 void
3390 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3391 const std::string& warning)
3392 {
3393 name = symtab->canonicalize_name(name);
3394 this->warnings_[name].set(obj, warning);
3395 }
3396
3397 // Look through the warnings and mark the symbols for which we should
3398 // warn. This is called during Layout::finalize when we know the
3399 // sources for all the symbols.
3400
3401 void
3402 Warnings::note_warnings(Symbol_table* symtab)
3403 {
3404 for (Warning_table::iterator p = this->warnings_.begin();
3405 p != this->warnings_.end();
3406 ++p)
3407 {
3408 Symbol* sym = symtab->lookup(p->first, NULL);
3409 if (sym != NULL
3410 && sym->source() == Symbol::FROM_OBJECT
3411 && sym->object() == p->second.object)
3412 sym->set_has_warning();
3413 }
3414 }
3415
3416 // Issue a warning. This is called when we see a relocation against a
3417 // symbol for which has a warning.
3418
3419 template<int size, bool big_endian>
3420 void
3421 Warnings::issue_warning(const Symbol* sym,
3422 const Relocate_info<size, big_endian>* relinfo,
3423 size_t relnum, off_t reloffset) const
3424 {
3425 gold_assert(sym->has_warning());
3426
3427 // We don't want to issue a warning for a relocation against the
3428 // symbol in the same object file in which the symbol is defined.
3429 if (sym->object() == relinfo->object)
3430 return;
3431
3432 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3433 gold_assert(p != this->warnings_.end());
3434 gold_warning_at_location(relinfo, relnum, reloffset,
3435 "%s", p->second.text.c_str());
3436 }
3437
3438 // Instantiate the templates we need. We could use the configure
3439 // script to restrict this to only the ones needed for implemented
3440 // targets.
3441
3442 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3443 template
3444 void
3445 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3446 #endif
3447
3448 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3449 template
3450 void
3451 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3452 #endif
3453
3454 #ifdef HAVE_TARGET_32_LITTLE
3455 template
3456 void
3457 Symbol_table::add_from_relobj<32, false>(
3458 Sized_relobj_file<32, false>* relobj,
3459 const unsigned char* syms,
3460 size_t count,
3461 size_t symndx_offset,
3462 const char* sym_names,
3463 size_t sym_name_size,
3464 Sized_relobj_file<32, false>::Symbols* sympointers,
3465 size_t* defined);
3466 #endif
3467
3468 #ifdef HAVE_TARGET_32_BIG
3469 template
3470 void
3471 Symbol_table::add_from_relobj<32, true>(
3472 Sized_relobj_file<32, true>* relobj,
3473 const unsigned char* syms,
3474 size_t count,
3475 size_t symndx_offset,
3476 const char* sym_names,
3477 size_t sym_name_size,
3478 Sized_relobj_file<32, true>::Symbols* sympointers,
3479 size_t* defined);
3480 #endif
3481
3482 #ifdef HAVE_TARGET_64_LITTLE
3483 template
3484 void
3485 Symbol_table::add_from_relobj<64, false>(
3486 Sized_relobj_file<64, false>* relobj,
3487 const unsigned char* syms,
3488 size_t count,
3489 size_t symndx_offset,
3490 const char* sym_names,
3491 size_t sym_name_size,
3492 Sized_relobj_file<64, false>::Symbols* sympointers,
3493 size_t* defined);
3494 #endif
3495
3496 #ifdef HAVE_TARGET_64_BIG
3497 template
3498 void
3499 Symbol_table::add_from_relobj<64, true>(
3500 Sized_relobj_file<64, true>* relobj,
3501 const unsigned char* syms,
3502 size_t count,
3503 size_t symndx_offset,
3504 const char* sym_names,
3505 size_t sym_name_size,
3506 Sized_relobj_file<64, true>::Symbols* sympointers,
3507 size_t* defined);
3508 #endif
3509
3510 #ifdef HAVE_TARGET_32_LITTLE
3511 template
3512 Symbol*
3513 Symbol_table::add_from_pluginobj<32, false>(
3514 Sized_pluginobj<32, false>* obj,
3515 const char* name,
3516 const char* ver,
3517 elfcpp::Sym<32, false>* sym);
3518 #endif
3519
3520 #ifdef HAVE_TARGET_32_BIG
3521 template
3522 Symbol*
3523 Symbol_table::add_from_pluginobj<32, true>(
3524 Sized_pluginobj<32, true>* obj,
3525 const char* name,
3526 const char* ver,
3527 elfcpp::Sym<32, true>* sym);
3528 #endif
3529
3530 #ifdef HAVE_TARGET_64_LITTLE
3531 template
3532 Symbol*
3533 Symbol_table::add_from_pluginobj<64, false>(
3534 Sized_pluginobj<64, false>* obj,
3535 const char* name,
3536 const char* ver,
3537 elfcpp::Sym<64, false>* sym);
3538 #endif
3539
3540 #ifdef HAVE_TARGET_64_BIG
3541 template
3542 Symbol*
3543 Symbol_table::add_from_pluginobj<64, true>(
3544 Sized_pluginobj<64, true>* obj,
3545 const char* name,
3546 const char* ver,
3547 elfcpp::Sym<64, true>* sym);
3548 #endif
3549
3550 #ifdef HAVE_TARGET_32_LITTLE
3551 template
3552 void
3553 Symbol_table::add_from_dynobj<32, false>(
3554 Sized_dynobj<32, false>* dynobj,
3555 const unsigned char* syms,
3556 size_t count,
3557 const char* sym_names,
3558 size_t sym_name_size,
3559 const unsigned char* versym,
3560 size_t versym_size,
3561 const std::vector<const char*>* version_map,
3562 Sized_relobj_file<32, false>::Symbols* sympointers,
3563 size_t* defined);
3564 #endif
3565
3566 #ifdef HAVE_TARGET_32_BIG
3567 template
3568 void
3569 Symbol_table::add_from_dynobj<32, true>(
3570 Sized_dynobj<32, true>* dynobj,
3571 const unsigned char* syms,
3572 size_t count,
3573 const char* sym_names,
3574 size_t sym_name_size,
3575 const unsigned char* versym,
3576 size_t versym_size,
3577 const std::vector<const char*>* version_map,
3578 Sized_relobj_file<32, true>::Symbols* sympointers,
3579 size_t* defined);
3580 #endif
3581
3582 #ifdef HAVE_TARGET_64_LITTLE
3583 template
3584 void
3585 Symbol_table::add_from_dynobj<64, false>(
3586 Sized_dynobj<64, false>* dynobj,
3587 const unsigned char* syms,
3588 size_t count,
3589 const char* sym_names,
3590 size_t sym_name_size,
3591 const unsigned char* versym,
3592 size_t versym_size,
3593 const std::vector<const char*>* version_map,
3594 Sized_relobj_file<64, false>::Symbols* sympointers,
3595 size_t* defined);
3596 #endif
3597
3598 #ifdef HAVE_TARGET_64_BIG
3599 template
3600 void
3601 Symbol_table::add_from_dynobj<64, true>(
3602 Sized_dynobj<64, true>* dynobj,
3603 const unsigned char* syms,
3604 size_t count,
3605 const char* sym_names,
3606 size_t sym_name_size,
3607 const unsigned char* versym,
3608 size_t versym_size,
3609 const std::vector<const char*>* version_map,
3610 Sized_relobj_file<64, true>::Symbols* sympointers,
3611 size_t* defined);
3612 #endif
3613
3614 #ifdef HAVE_TARGET_32_LITTLE
3615 template
3616 Sized_symbol<32>*
3617 Symbol_table::add_from_incrobj(
3618 Object* obj,
3619 const char* name,
3620 const char* ver,
3621 elfcpp::Sym<32, false>* sym);
3622 #endif
3623
3624 #ifdef HAVE_TARGET_32_BIG
3625 template
3626 Sized_symbol<32>*
3627 Symbol_table::add_from_incrobj(
3628 Object* obj,
3629 const char* name,
3630 const char* ver,
3631 elfcpp::Sym<32, true>* sym);
3632 #endif
3633
3634 #ifdef HAVE_TARGET_64_LITTLE
3635 template
3636 Sized_symbol<64>*
3637 Symbol_table::add_from_incrobj(
3638 Object* obj,
3639 const char* name,
3640 const char* ver,
3641 elfcpp::Sym<64, false>* sym);
3642 #endif
3643
3644 #ifdef HAVE_TARGET_64_BIG
3645 template
3646 Sized_symbol<64>*
3647 Symbol_table::add_from_incrobj(
3648 Object* obj,
3649 const char* name,
3650 const char* ver,
3651 elfcpp::Sym<64, true>* sym);
3652 #endif
3653
3654 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3655 template
3656 void
3657 Symbol_table::define_with_copy_reloc<32>(
3658 Sized_symbol<32>* sym,
3659 Output_data* posd,
3660 elfcpp::Elf_types<32>::Elf_Addr value);
3661 #endif
3662
3663 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3664 template
3665 void
3666 Symbol_table::define_with_copy_reloc<64>(
3667 Sized_symbol<64>* sym,
3668 Output_data* posd,
3669 elfcpp::Elf_types<64>::Elf_Addr value);
3670 #endif
3671
3672 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3673 template
3674 void
3675 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3676 Output_data* od, Value_type value,
3677 Size_type symsize, elfcpp::STT type,
3678 elfcpp::STB binding,
3679 elfcpp::STV visibility,
3680 unsigned char nonvis,
3681 bool offset_is_from_end,
3682 bool is_predefined);
3683 #endif
3684
3685 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3686 template
3687 void
3688 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3689 Output_data* od, Value_type value,
3690 Size_type symsize, elfcpp::STT type,
3691 elfcpp::STB binding,
3692 elfcpp::STV visibility,
3693 unsigned char nonvis,
3694 bool offset_is_from_end,
3695 bool is_predefined);
3696 #endif
3697
3698 #ifdef HAVE_TARGET_32_LITTLE
3699 template
3700 void
3701 Warnings::issue_warning<32, false>(const Symbol* sym,
3702 const Relocate_info<32, false>* relinfo,
3703 size_t relnum, off_t reloffset) const;
3704 #endif
3705
3706 #ifdef HAVE_TARGET_32_BIG
3707 template
3708 void
3709 Warnings::issue_warning<32, true>(const Symbol* sym,
3710 const Relocate_info<32, true>* relinfo,
3711 size_t relnum, off_t reloffset) const;
3712 #endif
3713
3714 #ifdef HAVE_TARGET_64_LITTLE
3715 template
3716 void
3717 Warnings::issue_warning<64, false>(const Symbol* sym,
3718 const Relocate_info<64, false>* relinfo,
3719 size_t relnum, off_t reloffset) const;
3720 #endif
3721
3722 #ifdef HAVE_TARGET_64_BIG
3723 template
3724 void
3725 Warnings::issue_warning<64, true>(const Symbol* sym,
3726 const Relocate_info<64, true>* relinfo,
3727 size_t relnum, off_t reloffset) const;
3728 #endif
3729
3730 } // End namespace gold.
This page took 0.107517 seconds and 5 git commands to generate.