Add support for STT_SPARC_REGISTER symbols.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 Value_type value, elfcpp::STT type,
289 elfcpp::STB binding, elfcpp::STV visibility,
290 unsigned char nonvis)
291 {
292 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
293 this->value_ = value;
294 this->symsize_ = 0;
295 }
296
297 // Return an allocated string holding the symbol's name as
298 // name@version. This is used for relocatable links.
299
300 std::string
301 Symbol::versioned_name() const
302 {
303 gold_assert(this->version_ != NULL);
304 std::string ret = this->name_;
305 ret.push_back('@');
306 if (this->is_def_)
307 ret.push_back('@');
308 ret += this->version_;
309 return ret;
310 }
311
312 // Return true if SHNDX represents a common symbol.
313
314 bool
315 Symbol::is_common_shndx(unsigned int shndx)
316 {
317 return (shndx == elfcpp::SHN_COMMON
318 || shndx == parameters->target().small_common_shndx()
319 || shndx == parameters->target().large_common_shndx());
320 }
321
322 // Allocate a common symbol.
323
324 template<int size>
325 void
326 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
327 {
328 this->allocate_base_common(od);
329 this->value_ = value;
330 }
331
332 // The ""'s around str ensure str is a string literal, so sizeof works.
333 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
334
335 // Return true if this symbol should be added to the dynamic symbol
336 // table.
337
338 bool
339 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
340 {
341 // If the symbol is only present on plugin files, the plugin decided we
342 // don't need it.
343 if (!this->in_real_elf())
344 return false;
345
346 // If the symbol is used by a dynamic relocation, we need to add it.
347 if (this->needs_dynsym_entry())
348 return true;
349
350 // If this symbol's section is not added, the symbol need not be added.
351 // The section may have been GCed. Note that export_dynamic is being
352 // overridden here. This should not be done for shared objects.
353 if (parameters->options().gc_sections()
354 && !parameters->options().shared()
355 && this->source() == Symbol::FROM_OBJECT
356 && !this->object()->is_dynamic())
357 {
358 Relobj* relobj = static_cast<Relobj*>(this->object());
359 bool is_ordinary;
360 unsigned int shndx = this->shndx(&is_ordinary);
361 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
362 && !relobj->is_section_included(shndx)
363 && !symtab->is_section_folded(relobj, shndx))
364 return false;
365 }
366
367 // If the symbol was forced dynamic in a --dynamic-list file
368 // or an --export-dynamic-symbol option, add it.
369 if (!this->is_from_dynobj()
370 && (parameters->options().in_dynamic_list(this->name())
371 || parameters->options().is_export_dynamic_symbol(this->name())))
372 {
373 if (!this->is_forced_local())
374 return true;
375 gold_warning(_("Cannot export local symbol '%s'"),
376 this->demangled_name().c_str());
377 return false;
378 }
379
380 // If the symbol was forced local in a version script, do not add it.
381 if (this->is_forced_local())
382 return false;
383
384 // If dynamic-list-data was specified, add any STT_OBJECT.
385 if (parameters->options().dynamic_list_data()
386 && !this->is_from_dynobj()
387 && this->type() == elfcpp::STT_OBJECT)
388 return true;
389
390 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
391 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
392 if ((parameters->options().dynamic_list_cpp_new()
393 || parameters->options().dynamic_list_cpp_typeinfo())
394 && !this->is_from_dynobj())
395 {
396 // TODO(csilvers): We could probably figure out if we're an operator
397 // new/delete or typeinfo without the need to demangle.
398 char* demangled_name = cplus_demangle(this->name(),
399 DMGL_ANSI | DMGL_PARAMS);
400 if (demangled_name == NULL)
401 {
402 // Not a C++ symbol, so it can't satisfy these flags
403 }
404 else if (parameters->options().dynamic_list_cpp_new()
405 && (strprefix(demangled_name, "operator new")
406 || strprefix(demangled_name, "operator delete")))
407 {
408 free(demangled_name);
409 return true;
410 }
411 else if (parameters->options().dynamic_list_cpp_typeinfo()
412 && (strprefix(demangled_name, "typeinfo name for")
413 || strprefix(demangled_name, "typeinfo for")))
414 {
415 free(demangled_name);
416 return true;
417 }
418 else
419 free(demangled_name);
420 }
421
422 // If exporting all symbols or building a shared library,
423 // or the symbol should be globally unique (GNU_UNIQUE),
424 // and the symbol is defined in a regular object and is
425 // externally visible, we need to add it.
426 if ((parameters->options().export_dynamic()
427 || parameters->options().shared()
428 || (parameters->options().gnu_unique()
429 && this->binding() == elfcpp::STB_GNU_UNIQUE))
430 && !this->is_from_dynobj()
431 && !this->is_undefined()
432 && this->is_externally_visible())
433 return true;
434
435 return false;
436 }
437
438 // Return true if the final value of this symbol is known at link
439 // time.
440
441 bool
442 Symbol::final_value_is_known() const
443 {
444 // If we are not generating an executable, then no final values are
445 // known, since they will change at runtime, with the exception of
446 // TLS symbols in a position-independent executable.
447 if ((parameters->options().output_is_position_independent()
448 || parameters->options().relocatable())
449 && !(this->type() == elfcpp::STT_TLS
450 && parameters->options().pie()))
451 return false;
452
453 // If the symbol is not from an object file, and is not undefined,
454 // then it is defined, and known.
455 if (this->source_ != FROM_OBJECT)
456 {
457 if (this->source_ != IS_UNDEFINED)
458 return true;
459 }
460 else
461 {
462 // If the symbol is from a dynamic object, then the final value
463 // is not known.
464 if (this->object()->is_dynamic())
465 return false;
466
467 // If the symbol is not undefined (it is defined or common),
468 // then the final value is known.
469 if (!this->is_undefined())
470 return true;
471 }
472
473 // If the symbol is undefined, then whether the final value is known
474 // depends on whether we are doing a static link. If we are doing a
475 // dynamic link, then the final value could be filled in at runtime.
476 // This could reasonably be the case for a weak undefined symbol.
477 return parameters->doing_static_link();
478 }
479
480 // Return the output section where this symbol is defined.
481
482 Output_section*
483 Symbol::output_section() const
484 {
485 switch (this->source_)
486 {
487 case FROM_OBJECT:
488 {
489 unsigned int shndx = this->u_.from_object.shndx;
490 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
491 {
492 gold_assert(!this->u_.from_object.object->is_dynamic());
493 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
494 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
495 return relobj->output_section(shndx);
496 }
497 return NULL;
498 }
499
500 case IN_OUTPUT_DATA:
501 return this->u_.in_output_data.output_data->output_section();
502
503 case IN_OUTPUT_SEGMENT:
504 case IS_CONSTANT:
505 case IS_UNDEFINED:
506 return NULL;
507
508 default:
509 gold_unreachable();
510 }
511 }
512
513 // Set the symbol's output section. This is used for symbols defined
514 // in scripts. This should only be called after the symbol table has
515 // been finalized.
516
517 void
518 Symbol::set_output_section(Output_section* os)
519 {
520 switch (this->source_)
521 {
522 case FROM_OBJECT:
523 case IN_OUTPUT_DATA:
524 gold_assert(this->output_section() == os);
525 break;
526 case IS_CONSTANT:
527 this->source_ = IN_OUTPUT_DATA;
528 this->u_.in_output_data.output_data = os;
529 this->u_.in_output_data.offset_is_from_end = false;
530 break;
531 case IN_OUTPUT_SEGMENT:
532 case IS_UNDEFINED:
533 default:
534 gold_unreachable();
535 }
536 }
537
538 // Set the symbol's output segment. This is used for pre-defined
539 // symbols whose segments aren't known until after layout is done
540 // (e.g., __ehdr_start).
541
542 void
543 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
544 {
545 gold_assert(this->is_predefined_);
546 this->source_ = IN_OUTPUT_SEGMENT;
547 this->u_.in_output_segment.output_segment = os;
548 this->u_.in_output_segment.offset_base = base;
549 }
550
551 // Set the symbol to undefined. This is used for pre-defined
552 // symbols whose segments aren't known until after layout is done
553 // (e.g., __ehdr_start).
554
555 void
556 Symbol::set_undefined()
557 {
558 this->source_ = IS_UNDEFINED;
559 this->is_predefined_ = false;
560 }
561
562 // Class Symbol_table.
563
564 Symbol_table::Symbol_table(unsigned int count,
565 const Version_script_info& version_script)
566 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
567 forwarders_(), commons_(), tls_commons_(), small_commons_(),
568 large_commons_(), forced_locals_(), warnings_(),
569 version_script_(version_script), gc_(NULL), icf_(NULL),
570 target_symbols_()
571 {
572 namepool_.reserve(count);
573 }
574
575 Symbol_table::~Symbol_table()
576 {
577 }
578
579 // The symbol table key equality function. This is called with
580 // Stringpool keys.
581
582 inline bool
583 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
584 const Symbol_table_key& k2) const
585 {
586 return k1.first == k2.first && k1.second == k2.second;
587 }
588
589 bool
590 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
591 {
592 return (parameters->options().icf_enabled()
593 && this->icf_->is_section_folded(obj, shndx));
594 }
595
596 // For symbols that have been listed with a -u or --export-dynamic-symbol
597 // option, add them to the work list to avoid gc'ing them.
598
599 void
600 Symbol_table::gc_mark_undef_symbols(Layout* layout)
601 {
602 for (options::String_set::const_iterator p =
603 parameters->options().undefined_begin();
604 p != parameters->options().undefined_end();
605 ++p)
606 {
607 const char* name = p->c_str();
608 Symbol* sym = this->lookup(name);
609 gold_assert(sym != NULL);
610 if (sym->source() == Symbol::FROM_OBJECT
611 && !sym->object()->is_dynamic())
612 {
613 this->gc_mark_symbol(sym);
614 }
615 }
616
617 for (options::String_set::const_iterator p =
618 parameters->options().export_dynamic_symbol_begin();
619 p != parameters->options().export_dynamic_symbol_end();
620 ++p)
621 {
622 const char* name = p->c_str();
623 Symbol* sym = this->lookup(name);
624 // It's not an error if a symbol named by --export-dynamic-symbol
625 // is undefined.
626 if (sym != NULL
627 && sym->source() == Symbol::FROM_OBJECT
628 && !sym->object()->is_dynamic())
629 {
630 this->gc_mark_symbol(sym);
631 }
632 }
633
634 for (Script_options::referenced_const_iterator p =
635 layout->script_options()->referenced_begin();
636 p != layout->script_options()->referenced_end();
637 ++p)
638 {
639 Symbol* sym = this->lookup(p->c_str());
640 gold_assert(sym != NULL);
641 if (sym->source() == Symbol::FROM_OBJECT
642 && !sym->object()->is_dynamic())
643 {
644 this->gc_mark_symbol(sym);
645 }
646 }
647 }
648
649 void
650 Symbol_table::gc_mark_symbol(Symbol* sym)
651 {
652 // Add the object and section to the work list.
653 bool is_ordinary;
654 unsigned int shndx = sym->shndx(&is_ordinary);
655 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
656 {
657 gold_assert(this->gc_!= NULL);
658 Relobj* relobj = static_cast<Relobj*>(sym->object());
659 this->gc_->worklist().push_back(Section_id(relobj, shndx));
660 }
661 parameters->target().gc_mark_symbol(this, sym);
662 }
663
664 // When doing garbage collection, keep symbols that have been seen in
665 // dynamic objects.
666 inline void
667 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
668 {
669 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
670 && !sym->object()->is_dynamic())
671 this->gc_mark_symbol(sym);
672 }
673
674 // Make TO a symbol which forwards to FROM.
675
676 void
677 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
678 {
679 gold_assert(from != to);
680 gold_assert(!from->is_forwarder() && !to->is_forwarder());
681 this->forwarders_[from] = to;
682 from->set_forwarder();
683 }
684
685 // Resolve the forwards from FROM, returning the real symbol.
686
687 Symbol*
688 Symbol_table::resolve_forwards(const Symbol* from) const
689 {
690 gold_assert(from->is_forwarder());
691 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
692 this->forwarders_.find(from);
693 gold_assert(p != this->forwarders_.end());
694 return p->second;
695 }
696
697 // Look up a symbol by name.
698
699 Symbol*
700 Symbol_table::lookup(const char* name, const char* version) const
701 {
702 Stringpool::Key name_key;
703 name = this->namepool_.find(name, &name_key);
704 if (name == NULL)
705 return NULL;
706
707 Stringpool::Key version_key = 0;
708 if (version != NULL)
709 {
710 version = this->namepool_.find(version, &version_key);
711 if (version == NULL)
712 return NULL;
713 }
714
715 Symbol_table_key key(name_key, version_key);
716 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
717 if (p == this->table_.end())
718 return NULL;
719 return p->second;
720 }
721
722 // Resolve a Symbol with another Symbol. This is only used in the
723 // unusual case where there are references to both an unversioned
724 // symbol and a symbol with a version, and we then discover that that
725 // version is the default version. Because this is unusual, we do
726 // this the slow way, by converting back to an ELF symbol.
727
728 template<int size, bool big_endian>
729 void
730 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
731 {
732 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
733 elfcpp::Sym_write<size, big_endian> esym(buf);
734 // We don't bother to set the st_name or the st_shndx field.
735 esym.put_st_value(from->value());
736 esym.put_st_size(from->symsize());
737 esym.put_st_info(from->binding(), from->type());
738 esym.put_st_other(from->visibility(), from->nonvis());
739 bool is_ordinary;
740 unsigned int shndx = from->shndx(&is_ordinary);
741 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
742 from->version(), true);
743 if (from->in_reg())
744 to->set_in_reg();
745 if (from->in_dyn())
746 to->set_in_dyn();
747 if (parameters->options().gc_sections())
748 this->gc_mark_dyn_syms(to);
749 }
750
751 // Record that a symbol is forced to be local by a version script or
752 // by visibility.
753
754 void
755 Symbol_table::force_local(Symbol* sym)
756 {
757 if (!sym->is_defined() && !sym->is_common())
758 return;
759 if (sym->is_forced_local())
760 {
761 // We already got this one.
762 return;
763 }
764 sym->set_is_forced_local();
765 this->forced_locals_.push_back(sym);
766 }
767
768 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
769 // is only called for undefined symbols, when at least one --wrap
770 // option was used.
771
772 const char*
773 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
774 {
775 // For some targets, we need to ignore a specific character when
776 // wrapping, and add it back later.
777 char prefix = '\0';
778 if (name[0] == parameters->target().wrap_char())
779 {
780 prefix = name[0];
781 ++name;
782 }
783
784 if (parameters->options().is_wrap(name))
785 {
786 // Turn NAME into __wrap_NAME.
787 std::string s;
788 if (prefix != '\0')
789 s += prefix;
790 s += "__wrap_";
791 s += name;
792
793 // This will give us both the old and new name in NAMEPOOL_, but
794 // that is OK. Only the versions we need will wind up in the
795 // real string table in the output file.
796 return this->namepool_.add(s.c_str(), true, name_key);
797 }
798
799 const char* const real_prefix = "__real_";
800 const size_t real_prefix_length = strlen(real_prefix);
801 if (strncmp(name, real_prefix, real_prefix_length) == 0
802 && parameters->options().is_wrap(name + real_prefix_length))
803 {
804 // Turn __real_NAME into NAME.
805 std::string s;
806 if (prefix != '\0')
807 s += prefix;
808 s += name + real_prefix_length;
809 return this->namepool_.add(s.c_str(), true, name_key);
810 }
811
812 return name;
813 }
814
815 // This is called when we see a symbol NAME/VERSION, and the symbol
816 // already exists in the symbol table, and VERSION is marked as being
817 // the default version. SYM is the NAME/VERSION symbol we just added.
818 // DEFAULT_IS_NEW is true if this is the first time we have seen the
819 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
820
821 template<int size, bool big_endian>
822 void
823 Symbol_table::define_default_version(Sized_symbol<size>* sym,
824 bool default_is_new,
825 Symbol_table_type::iterator pdef)
826 {
827 if (default_is_new)
828 {
829 // This is the first time we have seen NAME/NULL. Make
830 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
831 // version.
832 pdef->second = sym;
833 sym->set_is_default();
834 }
835 else if (pdef->second == sym)
836 {
837 // NAME/NULL already points to NAME/VERSION. Don't mark the
838 // symbol as the default if it is not already the default.
839 }
840 else
841 {
842 // This is the unfortunate case where we already have entries
843 // for both NAME/VERSION and NAME/NULL. We now see a symbol
844 // NAME/VERSION where VERSION is the default version. We have
845 // already resolved this new symbol with the existing
846 // NAME/VERSION symbol.
847
848 // It's possible that NAME/NULL and NAME/VERSION are both
849 // defined in regular objects. This can only happen if one
850 // object file defines foo and another defines foo@@ver. This
851 // is somewhat obscure, but we call it a multiple definition
852 // error.
853
854 // It's possible that NAME/NULL actually has a version, in which
855 // case it won't be the same as VERSION. This happens with
856 // ver_test_7.so in the testsuite for the symbol t2_2. We see
857 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
858 // then see an unadorned t2_2 in an object file and give it
859 // version VER1 from the version script. This looks like a
860 // default definition for VER1, so it looks like we should merge
861 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
862 // not obvious that this is an error, either. So we just punt.
863
864 // If one of the symbols has non-default visibility, and the
865 // other is defined in a shared object, then they are different
866 // symbols.
867
868 // Otherwise, we just resolve the symbols as though they were
869 // the same.
870
871 if (pdef->second->version() != NULL)
872 gold_assert(pdef->second->version() != sym->version());
873 else if (sym->visibility() != elfcpp::STV_DEFAULT
874 && pdef->second->is_from_dynobj())
875 ;
876 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
877 && sym->is_from_dynobj())
878 ;
879 else
880 {
881 const Sized_symbol<size>* symdef;
882 symdef = this->get_sized_symbol<size>(pdef->second);
883 Symbol_table::resolve<size, big_endian>(sym, symdef);
884 this->make_forwarder(pdef->second, sym);
885 pdef->second = sym;
886 sym->set_is_default();
887 }
888 }
889 }
890
891 // Add one symbol from OBJECT to the symbol table. NAME is symbol
892 // name and VERSION is the version; both are canonicalized. DEF is
893 // whether this is the default version. ST_SHNDX is the symbol's
894 // section index; IS_ORDINARY is whether this is a normal section
895 // rather than a special code.
896
897 // If IS_DEFAULT_VERSION is true, then this is the definition of a
898 // default version of a symbol. That means that any lookup of
899 // NAME/NULL and any lookup of NAME/VERSION should always return the
900 // same symbol. This is obvious for references, but in particular we
901 // want to do this for definitions: overriding NAME/NULL should also
902 // override NAME/VERSION. If we don't do that, it would be very hard
903 // to override functions in a shared library which uses versioning.
904
905 // We implement this by simply making both entries in the hash table
906 // point to the same Symbol structure. That is easy enough if this is
907 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
908 // that we have seen both already, in which case they will both have
909 // independent entries in the symbol table. We can't simply change
910 // the symbol table entry, because we have pointers to the entries
911 // attached to the object files. So we mark the entry attached to the
912 // object file as a forwarder, and record it in the forwarders_ map.
913 // Note that entries in the hash table will never be marked as
914 // forwarders.
915 //
916 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
917 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
918 // for a special section code. ST_SHNDX may be modified if the symbol
919 // is defined in a section being discarded.
920
921 template<int size, bool big_endian>
922 Sized_symbol<size>*
923 Symbol_table::add_from_object(Object* object,
924 const char* name,
925 Stringpool::Key name_key,
926 const char* version,
927 Stringpool::Key version_key,
928 bool is_default_version,
929 const elfcpp::Sym<size, big_endian>& sym,
930 unsigned int st_shndx,
931 bool is_ordinary,
932 unsigned int orig_st_shndx)
933 {
934 // Print a message if this symbol is being traced.
935 if (parameters->options().is_trace_symbol(name))
936 {
937 if (orig_st_shndx == elfcpp::SHN_UNDEF)
938 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
939 else
940 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
941 }
942
943 // For an undefined symbol, we may need to adjust the name using
944 // --wrap.
945 if (orig_st_shndx == elfcpp::SHN_UNDEF
946 && parameters->options().any_wrap())
947 {
948 const char* wrap_name = this->wrap_symbol(name, &name_key);
949 if (wrap_name != name)
950 {
951 // If we see a reference to malloc with version GLIBC_2.0,
952 // and we turn it into a reference to __wrap_malloc, then we
953 // discard the version number. Otherwise the user would be
954 // required to specify the correct version for
955 // __wrap_malloc.
956 version = NULL;
957 version_key = 0;
958 name = wrap_name;
959 }
960 }
961
962 Symbol* const snull = NULL;
963 std::pair<typename Symbol_table_type::iterator, bool> ins =
964 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
965 snull));
966
967 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
968 std::make_pair(this->table_.end(), false);
969 if (is_default_version)
970 {
971 const Stringpool::Key vnull_key = 0;
972 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
973 vnull_key),
974 snull));
975 }
976
977 // ins.first: an iterator, which is a pointer to a pair.
978 // ins.first->first: the key (a pair of name and version).
979 // ins.first->second: the value (Symbol*).
980 // ins.second: true if new entry was inserted, false if not.
981
982 Sized_symbol<size>* ret;
983 bool was_undefined;
984 bool was_common;
985 if (!ins.second)
986 {
987 // We already have an entry for NAME/VERSION.
988 ret = this->get_sized_symbol<size>(ins.first->second);
989 gold_assert(ret != NULL);
990
991 was_undefined = ret->is_undefined();
992 // Commons from plugins are just placeholders.
993 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
994
995 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
996 version, is_default_version);
997 if (parameters->options().gc_sections())
998 this->gc_mark_dyn_syms(ret);
999
1000 if (is_default_version)
1001 this->define_default_version<size, big_endian>(ret, insdefault.second,
1002 insdefault.first);
1003 else
1004 {
1005 bool dummy;
1006 if (version != NULL
1007 && ret->source() == Symbol::FROM_OBJECT
1008 && ret->object() == object
1009 && is_ordinary
1010 && ret->shndx(&dummy) == st_shndx
1011 && ret->is_default())
1012 {
1013 // We have seen NAME/VERSION already, and marked it as the
1014 // default version, but now we see a definition for
1015 // NAME/VERSION that is not the default version. This can
1016 // happen when the assembler generates two symbols for
1017 // a symbol as a result of a ".symver foo,foo@VER"
1018 // directive. We see the first unversioned symbol and
1019 // we may mark it as the default version (from a
1020 // version script); then we see the second versioned
1021 // symbol and we need to override the first.
1022 // In any other case, the two symbols should have generated
1023 // a multiple definition error.
1024 // (See PR gold/18703.)
1025 ret->set_is_not_default();
1026 const Stringpool::Key vnull_key = 0;
1027 this->table_.erase(std::make_pair(name_key, vnull_key));
1028 }
1029 }
1030 }
1031 else
1032 {
1033 // This is the first time we have seen NAME/VERSION.
1034 gold_assert(ins.first->second == NULL);
1035
1036 if (is_default_version && !insdefault.second)
1037 {
1038 // We already have an entry for NAME/NULL. If we override
1039 // it, then change it to NAME/VERSION.
1040 ret = this->get_sized_symbol<size>(insdefault.first->second);
1041
1042 was_undefined = ret->is_undefined();
1043 // Commons from plugins are just placeholders.
1044 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1045
1046 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1047 version, is_default_version);
1048 if (parameters->options().gc_sections())
1049 this->gc_mark_dyn_syms(ret);
1050 ins.first->second = ret;
1051 }
1052 else
1053 {
1054 was_undefined = false;
1055 was_common = false;
1056
1057 Sized_target<size, big_endian>* target =
1058 parameters->sized_target<size, big_endian>();
1059 if (!target->has_make_symbol())
1060 ret = new Sized_symbol<size>();
1061 else
1062 {
1063 ret = target->make_symbol(name, sym.get_st_type(), object,
1064 st_shndx, sym.get_st_value());
1065 if (ret == NULL)
1066 {
1067 // This means that we don't want a symbol table
1068 // entry after all.
1069 if (!is_default_version)
1070 this->table_.erase(ins.first);
1071 else
1072 {
1073 this->table_.erase(insdefault.first);
1074 // Inserting INSDEFAULT invalidated INS.
1075 this->table_.erase(std::make_pair(name_key,
1076 version_key));
1077 }
1078 return NULL;
1079 }
1080 }
1081
1082 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1083
1084 ins.first->second = ret;
1085 if (is_default_version)
1086 {
1087 // This is the first time we have seen NAME/NULL. Point
1088 // it at the new entry for NAME/VERSION.
1089 gold_assert(insdefault.second);
1090 insdefault.first->second = ret;
1091 }
1092 }
1093
1094 if (is_default_version)
1095 ret->set_is_default();
1096 }
1097
1098 // Record every time we see a new undefined symbol, to speed up
1099 // archive groups.
1100 if (!was_undefined && ret->is_undefined())
1101 {
1102 ++this->saw_undefined_;
1103 if (parameters->options().has_plugins())
1104 parameters->options().plugins()->new_undefined_symbol(ret);
1105 }
1106
1107 // Keep track of common symbols, to speed up common symbol
1108 // allocation. Don't record commons from plugin objects;
1109 // we need to wait until we see the real symbol in the
1110 // replacement file.
1111 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1112 {
1113 if (ret->type() == elfcpp::STT_TLS)
1114 this->tls_commons_.push_back(ret);
1115 else if (!is_ordinary
1116 && st_shndx == parameters->target().small_common_shndx())
1117 this->small_commons_.push_back(ret);
1118 else if (!is_ordinary
1119 && st_shndx == parameters->target().large_common_shndx())
1120 this->large_commons_.push_back(ret);
1121 else
1122 this->commons_.push_back(ret);
1123 }
1124
1125 // If we're not doing a relocatable link, then any symbol with
1126 // hidden or internal visibility is local.
1127 if ((ret->visibility() == elfcpp::STV_HIDDEN
1128 || ret->visibility() == elfcpp::STV_INTERNAL)
1129 && (ret->binding() == elfcpp::STB_GLOBAL
1130 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1131 || ret->binding() == elfcpp::STB_WEAK)
1132 && !parameters->options().relocatable())
1133 this->force_local(ret);
1134
1135 return ret;
1136 }
1137
1138 // Add all the symbols in a relocatable object to the hash table.
1139
1140 template<int size, bool big_endian>
1141 void
1142 Symbol_table::add_from_relobj(
1143 Sized_relobj_file<size, big_endian>* relobj,
1144 const unsigned char* syms,
1145 size_t count,
1146 size_t symndx_offset,
1147 const char* sym_names,
1148 size_t sym_name_size,
1149 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1150 size_t* defined)
1151 {
1152 *defined = 0;
1153
1154 gold_assert(size == parameters->target().get_size());
1155
1156 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1157
1158 const bool just_symbols = relobj->just_symbols();
1159
1160 const unsigned char* p = syms;
1161 for (size_t i = 0; i < count; ++i, p += sym_size)
1162 {
1163 (*sympointers)[i] = NULL;
1164
1165 elfcpp::Sym<size, big_endian> sym(p);
1166
1167 unsigned int st_name = sym.get_st_name();
1168 if (st_name >= sym_name_size)
1169 {
1170 relobj->error(_("bad global symbol name offset %u at %zu"),
1171 st_name, i);
1172 continue;
1173 }
1174
1175 const char* name = sym_names + st_name;
1176
1177 if (!parameters->options().relocatable()
1178 && strcmp (name, "__gnu_lto_slim") == 0)
1179 gold_info(_("%s: plugin needed to handle lto object"),
1180 relobj->name().c_str());
1181
1182 bool is_ordinary;
1183 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1184 sym.get_st_shndx(),
1185 &is_ordinary);
1186 unsigned int orig_st_shndx = st_shndx;
1187 if (!is_ordinary)
1188 orig_st_shndx = elfcpp::SHN_UNDEF;
1189
1190 if (st_shndx != elfcpp::SHN_UNDEF)
1191 ++*defined;
1192
1193 // A symbol defined in a section which we are not including must
1194 // be treated as an undefined symbol.
1195 bool is_defined_in_discarded_section = false;
1196 if (st_shndx != elfcpp::SHN_UNDEF
1197 && is_ordinary
1198 && !relobj->is_section_included(st_shndx)
1199 && !this->is_section_folded(relobj, st_shndx))
1200 {
1201 st_shndx = elfcpp::SHN_UNDEF;
1202 is_defined_in_discarded_section = true;
1203 }
1204
1205 // In an object file, an '@' in the name separates the symbol
1206 // name from the version name. If there are two '@' characters,
1207 // this is the default version.
1208 const char* ver = strchr(name, '@');
1209 Stringpool::Key ver_key = 0;
1210 int namelen = 0;
1211 // IS_DEFAULT_VERSION: is the version default?
1212 // IS_FORCED_LOCAL: is the symbol forced local?
1213 bool is_default_version = false;
1214 bool is_forced_local = false;
1215
1216 // FIXME: For incremental links, we don't store version information,
1217 // so we need to ignore version symbols for now.
1218 if (parameters->incremental_update() && ver != NULL)
1219 {
1220 namelen = ver - name;
1221 ver = NULL;
1222 }
1223
1224 if (ver != NULL)
1225 {
1226 // The symbol name is of the form foo@VERSION or foo@@VERSION
1227 namelen = ver - name;
1228 ++ver;
1229 if (*ver == '@')
1230 {
1231 is_default_version = true;
1232 ++ver;
1233 }
1234 ver = this->namepool_.add(ver, true, &ver_key);
1235 }
1236 // We don't want to assign a version to an undefined symbol,
1237 // even if it is listed in the version script. FIXME: What
1238 // about a common symbol?
1239 else
1240 {
1241 namelen = strlen(name);
1242 if (!this->version_script_.empty()
1243 && st_shndx != elfcpp::SHN_UNDEF)
1244 {
1245 // The symbol name did not have a version, but the
1246 // version script may assign a version anyway.
1247 std::string version;
1248 bool is_global;
1249 if (this->version_script_.get_symbol_version(name, &version,
1250 &is_global))
1251 {
1252 if (!is_global)
1253 is_forced_local = true;
1254 else if (!version.empty())
1255 {
1256 ver = this->namepool_.add_with_length(version.c_str(),
1257 version.length(),
1258 true,
1259 &ver_key);
1260 is_default_version = true;
1261 }
1262 }
1263 }
1264 }
1265
1266 elfcpp::Sym<size, big_endian>* psym = &sym;
1267 unsigned char symbuf[sym_size];
1268 elfcpp::Sym<size, big_endian> sym2(symbuf);
1269 if (just_symbols)
1270 {
1271 memcpy(symbuf, p, sym_size);
1272 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1273 if (orig_st_shndx != elfcpp::SHN_UNDEF
1274 && is_ordinary
1275 && relobj->e_type() == elfcpp::ET_REL)
1276 {
1277 // Symbol values in relocatable object files are section
1278 // relative. This is normally what we want, but since here
1279 // we are converting the symbol to absolute we need to add
1280 // the section address. The section address in an object
1281 // file is normally zero, but people can use a linker
1282 // script to change it.
1283 sw.put_st_value(sym.get_st_value()
1284 + relobj->section_address(orig_st_shndx));
1285 }
1286 st_shndx = elfcpp::SHN_ABS;
1287 is_ordinary = false;
1288 psym = &sym2;
1289 }
1290
1291 // Fix up visibility if object has no-export set.
1292 if (relobj->no_export()
1293 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1294 {
1295 // We may have copied symbol already above.
1296 if (psym != &sym2)
1297 {
1298 memcpy(symbuf, p, sym_size);
1299 psym = &sym2;
1300 }
1301
1302 elfcpp::STV visibility = sym2.get_st_visibility();
1303 if (visibility == elfcpp::STV_DEFAULT
1304 || visibility == elfcpp::STV_PROTECTED)
1305 {
1306 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1307 unsigned char nonvis = sym2.get_st_nonvis();
1308 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1309 }
1310 }
1311
1312 Stringpool::Key name_key;
1313 name = this->namepool_.add_with_length(name, namelen, true,
1314 &name_key);
1315
1316 Sized_symbol<size>* res;
1317 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1318 is_default_version, *psym, st_shndx,
1319 is_ordinary, orig_st_shndx);
1320
1321 if (is_forced_local)
1322 this->force_local(res);
1323
1324 // Do not treat this symbol as garbage if this symbol will be
1325 // exported to the dynamic symbol table. This is true when
1326 // building a shared library or using --export-dynamic and
1327 // the symbol is externally visible.
1328 if (parameters->options().gc_sections()
1329 && res->is_externally_visible()
1330 && !res->is_from_dynobj()
1331 && (parameters->options().shared()
1332 || parameters->options().export_dynamic()
1333 || parameters->options().in_dynamic_list(res->name())))
1334 this->gc_mark_symbol(res);
1335
1336 if (is_defined_in_discarded_section)
1337 res->set_is_defined_in_discarded_section();
1338
1339 (*sympointers)[i] = res;
1340 }
1341 }
1342
1343 // Add a symbol from a plugin-claimed file.
1344
1345 template<int size, bool big_endian>
1346 Symbol*
1347 Symbol_table::add_from_pluginobj(
1348 Sized_pluginobj<size, big_endian>* obj,
1349 const char* name,
1350 const char* ver,
1351 elfcpp::Sym<size, big_endian>* sym)
1352 {
1353 unsigned int st_shndx = sym->get_st_shndx();
1354 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1355
1356 Stringpool::Key ver_key = 0;
1357 bool is_default_version = false;
1358 bool is_forced_local = false;
1359
1360 if (ver != NULL)
1361 {
1362 ver = this->namepool_.add(ver, true, &ver_key);
1363 }
1364 // We don't want to assign a version to an undefined symbol,
1365 // even if it is listed in the version script. FIXME: What
1366 // about a common symbol?
1367 else
1368 {
1369 if (!this->version_script_.empty()
1370 && st_shndx != elfcpp::SHN_UNDEF)
1371 {
1372 // The symbol name did not have a version, but the
1373 // version script may assign a version anyway.
1374 std::string version;
1375 bool is_global;
1376 if (this->version_script_.get_symbol_version(name, &version,
1377 &is_global))
1378 {
1379 if (!is_global)
1380 is_forced_local = true;
1381 else if (!version.empty())
1382 {
1383 ver = this->namepool_.add_with_length(version.c_str(),
1384 version.length(),
1385 true,
1386 &ver_key);
1387 is_default_version = true;
1388 }
1389 }
1390 }
1391 }
1392
1393 Stringpool::Key name_key;
1394 name = this->namepool_.add(name, true, &name_key);
1395
1396 Sized_symbol<size>* res;
1397 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1398 is_default_version, *sym, st_shndx,
1399 is_ordinary, st_shndx);
1400
1401 if (is_forced_local)
1402 this->force_local(res);
1403
1404 return res;
1405 }
1406
1407 // Add all the symbols in a dynamic object to the hash table.
1408
1409 template<int size, bool big_endian>
1410 void
1411 Symbol_table::add_from_dynobj(
1412 Sized_dynobj<size, big_endian>* dynobj,
1413 const unsigned char* syms,
1414 size_t count,
1415 const char* sym_names,
1416 size_t sym_name_size,
1417 const unsigned char* versym,
1418 size_t versym_size,
1419 const std::vector<const char*>* version_map,
1420 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1421 size_t* defined)
1422 {
1423 *defined = 0;
1424
1425 gold_assert(size == parameters->target().get_size());
1426
1427 if (dynobj->just_symbols())
1428 {
1429 gold_error(_("--just-symbols does not make sense with a shared object"));
1430 return;
1431 }
1432
1433 // FIXME: For incremental links, we don't store version information,
1434 // so we need to ignore version symbols for now.
1435 if (parameters->incremental_update())
1436 versym = NULL;
1437
1438 if (versym != NULL && versym_size / 2 < count)
1439 {
1440 dynobj->error(_("too few symbol versions"));
1441 return;
1442 }
1443
1444 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1445
1446 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1447 // weak aliases. This is necessary because if the dynamic object
1448 // provides the same variable under two names, one of which is a
1449 // weak definition, and the regular object refers to the weak
1450 // definition, we have to put both the weak definition and the
1451 // strong definition into the dynamic symbol table. Given a weak
1452 // definition, the only way that we can find the corresponding
1453 // strong definition, if any, is to search the symbol table.
1454 std::vector<Sized_symbol<size>*> object_symbols;
1455
1456 const unsigned char* p = syms;
1457 const unsigned char* vs = versym;
1458 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1459 {
1460 elfcpp::Sym<size, big_endian> sym(p);
1461
1462 if (sympointers != NULL)
1463 (*sympointers)[i] = NULL;
1464
1465 // Ignore symbols with local binding or that have
1466 // internal or hidden visibility.
1467 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1468 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1469 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1470 continue;
1471
1472 // A protected symbol in a shared library must be treated as a
1473 // normal symbol when viewed from outside the shared library.
1474 // Implement this by overriding the visibility here.
1475 // Likewise, an IFUNC symbol in a shared library must be treated
1476 // as a normal FUNC symbol.
1477 elfcpp::Sym<size, big_endian>* psym = &sym;
1478 unsigned char symbuf[sym_size];
1479 elfcpp::Sym<size, big_endian> sym2(symbuf);
1480 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1481 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1482 {
1483 memcpy(symbuf, p, sym_size);
1484 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1485 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1486 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1487 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1488 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1489 psym = &sym2;
1490 }
1491
1492 unsigned int st_name = psym->get_st_name();
1493 if (st_name >= sym_name_size)
1494 {
1495 dynobj->error(_("bad symbol name offset %u at %zu"),
1496 st_name, i);
1497 continue;
1498 }
1499
1500 const char* name = sym_names + st_name;
1501
1502 bool is_ordinary;
1503 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1504 &is_ordinary);
1505
1506 if (st_shndx != elfcpp::SHN_UNDEF)
1507 ++*defined;
1508
1509 Sized_symbol<size>* res;
1510
1511 if (versym == NULL)
1512 {
1513 Stringpool::Key name_key;
1514 name = this->namepool_.add(name, true, &name_key);
1515 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1516 false, *psym, st_shndx, is_ordinary,
1517 st_shndx);
1518 }
1519 else
1520 {
1521 // Read the version information.
1522
1523 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1524
1525 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1526 v &= elfcpp::VERSYM_VERSION;
1527
1528 // The Sun documentation says that V can be VER_NDX_LOCAL,
1529 // or VER_NDX_GLOBAL, or a version index. The meaning of
1530 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1531 // The old GNU linker will happily generate VER_NDX_LOCAL
1532 // for an undefined symbol. I don't know what the Sun
1533 // linker will generate.
1534
1535 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1536 && st_shndx != elfcpp::SHN_UNDEF)
1537 {
1538 // This symbol should not be visible outside the object.
1539 continue;
1540 }
1541
1542 // At this point we are definitely going to add this symbol.
1543 Stringpool::Key name_key;
1544 name = this->namepool_.add(name, true, &name_key);
1545
1546 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1547 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1548 {
1549 // This symbol does not have a version.
1550 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1551 false, *psym, st_shndx, is_ordinary,
1552 st_shndx);
1553 }
1554 else
1555 {
1556 if (v >= version_map->size())
1557 {
1558 dynobj->error(_("versym for symbol %zu out of range: %u"),
1559 i, v);
1560 continue;
1561 }
1562
1563 const char* version = (*version_map)[v];
1564 if (version == NULL)
1565 {
1566 dynobj->error(_("versym for symbol %zu has no name: %u"),
1567 i, v);
1568 continue;
1569 }
1570
1571 Stringpool::Key version_key;
1572 version = this->namepool_.add(version, true, &version_key);
1573
1574 // If this is an absolute symbol, and the version name
1575 // and symbol name are the same, then this is the
1576 // version definition symbol. These symbols exist to
1577 // support using -u to pull in particular versions. We
1578 // do not want to record a version for them.
1579 if (st_shndx == elfcpp::SHN_ABS
1580 && !is_ordinary
1581 && name_key == version_key)
1582 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1583 false, *psym, st_shndx, is_ordinary,
1584 st_shndx);
1585 else
1586 {
1587 const bool is_default_version =
1588 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1589 res = this->add_from_object(dynobj, name, name_key, version,
1590 version_key, is_default_version,
1591 *psym, st_shndx,
1592 is_ordinary, st_shndx);
1593 }
1594 }
1595 }
1596
1597 // Note that it is possible that RES was overridden by an
1598 // earlier object, in which case it can't be aliased here.
1599 if (st_shndx != elfcpp::SHN_UNDEF
1600 && is_ordinary
1601 && psym->get_st_type() == elfcpp::STT_OBJECT
1602 && res->source() == Symbol::FROM_OBJECT
1603 && res->object() == dynobj)
1604 object_symbols.push_back(res);
1605
1606 if (sympointers != NULL)
1607 (*sympointers)[i] = res;
1608 }
1609
1610 this->record_weak_aliases(&object_symbols);
1611 }
1612
1613 // Add a symbol from a incremental object file.
1614
1615 template<int size, bool big_endian>
1616 Sized_symbol<size>*
1617 Symbol_table::add_from_incrobj(
1618 Object* obj,
1619 const char* name,
1620 const char* ver,
1621 elfcpp::Sym<size, big_endian>* sym)
1622 {
1623 unsigned int st_shndx = sym->get_st_shndx();
1624 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1625
1626 Stringpool::Key ver_key = 0;
1627 bool is_default_version = false;
1628 bool is_forced_local = false;
1629
1630 Stringpool::Key name_key;
1631 name = this->namepool_.add(name, true, &name_key);
1632
1633 Sized_symbol<size>* res;
1634 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1635 is_default_version, *sym, st_shndx,
1636 is_ordinary, st_shndx);
1637
1638 if (is_forced_local)
1639 this->force_local(res);
1640
1641 return res;
1642 }
1643
1644 // This is used to sort weak aliases. We sort them first by section
1645 // index, then by offset, then by weak ahead of strong.
1646
1647 template<int size>
1648 class Weak_alias_sorter
1649 {
1650 public:
1651 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1652 };
1653
1654 template<int size>
1655 bool
1656 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1657 const Sized_symbol<size>* s2) const
1658 {
1659 bool is_ordinary;
1660 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1661 gold_assert(is_ordinary);
1662 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1663 gold_assert(is_ordinary);
1664 if (s1_shndx != s2_shndx)
1665 return s1_shndx < s2_shndx;
1666
1667 if (s1->value() != s2->value())
1668 return s1->value() < s2->value();
1669 if (s1->binding() != s2->binding())
1670 {
1671 if (s1->binding() == elfcpp::STB_WEAK)
1672 return true;
1673 if (s2->binding() == elfcpp::STB_WEAK)
1674 return false;
1675 }
1676 return std::string(s1->name()) < std::string(s2->name());
1677 }
1678
1679 // SYMBOLS is a list of object symbols from a dynamic object. Look
1680 // for any weak aliases, and record them so that if we add the weak
1681 // alias to the dynamic symbol table, we also add the corresponding
1682 // strong symbol.
1683
1684 template<int size>
1685 void
1686 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1687 {
1688 // Sort the vector by section index, then by offset, then by weak
1689 // ahead of strong.
1690 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1691
1692 // Walk through the vector. For each weak definition, record
1693 // aliases.
1694 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1695 symbols->begin();
1696 p != symbols->end();
1697 ++p)
1698 {
1699 if ((*p)->binding() != elfcpp::STB_WEAK)
1700 continue;
1701
1702 // Build a circular list of weak aliases. Each symbol points to
1703 // the next one in the circular list.
1704
1705 Sized_symbol<size>* from_sym = *p;
1706 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1707 for (q = p + 1; q != symbols->end(); ++q)
1708 {
1709 bool dummy;
1710 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1711 || (*q)->value() != from_sym->value())
1712 break;
1713
1714 this->weak_aliases_[from_sym] = *q;
1715 from_sym->set_has_alias();
1716 from_sym = *q;
1717 }
1718
1719 if (from_sym != *p)
1720 {
1721 this->weak_aliases_[from_sym] = *p;
1722 from_sym->set_has_alias();
1723 }
1724
1725 p = q - 1;
1726 }
1727 }
1728
1729 // Create and return a specially defined symbol. If ONLY_IF_REF is
1730 // true, then only create the symbol if there is a reference to it.
1731 // If this does not return NULL, it sets *POLDSYM to the existing
1732 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1733 // resolve the newly created symbol to the old one. This
1734 // canonicalizes *PNAME and *PVERSION.
1735
1736 template<int size, bool big_endian>
1737 Sized_symbol<size>*
1738 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1739 bool only_if_ref,
1740 Sized_symbol<size>** poldsym,
1741 bool* resolve_oldsym)
1742 {
1743 *resolve_oldsym = false;
1744 *poldsym = NULL;
1745
1746 // If the caller didn't give us a version, see if we get one from
1747 // the version script.
1748 std::string v;
1749 bool is_default_version = false;
1750 if (*pversion == NULL)
1751 {
1752 bool is_global;
1753 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1754 {
1755 if (is_global && !v.empty())
1756 {
1757 *pversion = v.c_str();
1758 // If we get the version from a version script, then we
1759 // are also the default version.
1760 is_default_version = true;
1761 }
1762 }
1763 }
1764
1765 Symbol* oldsym;
1766 Sized_symbol<size>* sym;
1767
1768 bool add_to_table = false;
1769 typename Symbol_table_type::iterator add_loc = this->table_.end();
1770 bool add_def_to_table = false;
1771 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1772
1773 if (only_if_ref)
1774 {
1775 oldsym = this->lookup(*pname, *pversion);
1776 if (oldsym == NULL && is_default_version)
1777 oldsym = this->lookup(*pname, NULL);
1778 if (oldsym == NULL || !oldsym->is_undefined())
1779 return NULL;
1780
1781 *pname = oldsym->name();
1782 if (is_default_version)
1783 *pversion = this->namepool_.add(*pversion, true, NULL);
1784 else
1785 *pversion = oldsym->version();
1786 }
1787 else
1788 {
1789 // Canonicalize NAME and VERSION.
1790 Stringpool::Key name_key;
1791 *pname = this->namepool_.add(*pname, true, &name_key);
1792
1793 Stringpool::Key version_key = 0;
1794 if (*pversion != NULL)
1795 *pversion = this->namepool_.add(*pversion, true, &version_key);
1796
1797 Symbol* const snull = NULL;
1798 std::pair<typename Symbol_table_type::iterator, bool> ins =
1799 this->table_.insert(std::make_pair(std::make_pair(name_key,
1800 version_key),
1801 snull));
1802
1803 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1804 std::make_pair(this->table_.end(), false);
1805 if (is_default_version)
1806 {
1807 const Stringpool::Key vnull = 0;
1808 insdefault =
1809 this->table_.insert(std::make_pair(std::make_pair(name_key,
1810 vnull),
1811 snull));
1812 }
1813
1814 if (!ins.second)
1815 {
1816 // We already have a symbol table entry for NAME/VERSION.
1817 oldsym = ins.first->second;
1818 gold_assert(oldsym != NULL);
1819
1820 if (is_default_version)
1821 {
1822 Sized_symbol<size>* soldsym =
1823 this->get_sized_symbol<size>(oldsym);
1824 this->define_default_version<size, big_endian>(soldsym,
1825 insdefault.second,
1826 insdefault.first);
1827 }
1828 }
1829 else
1830 {
1831 // We haven't seen this symbol before.
1832 gold_assert(ins.first->second == NULL);
1833
1834 add_to_table = true;
1835 add_loc = ins.first;
1836
1837 if (is_default_version && !insdefault.second)
1838 {
1839 // We are adding NAME/VERSION, and it is the default
1840 // version. We already have an entry for NAME/NULL.
1841 oldsym = insdefault.first->second;
1842 *resolve_oldsym = true;
1843 }
1844 else
1845 {
1846 oldsym = NULL;
1847
1848 if (is_default_version)
1849 {
1850 add_def_to_table = true;
1851 add_def_loc = insdefault.first;
1852 }
1853 }
1854 }
1855 }
1856
1857 const Target& target = parameters->target();
1858 if (!target.has_make_symbol())
1859 sym = new Sized_symbol<size>();
1860 else
1861 {
1862 Sized_target<size, big_endian>* sized_target =
1863 parameters->sized_target<size, big_endian>();
1864 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1865 NULL, elfcpp::SHN_UNDEF, 0);
1866 if (sym == NULL)
1867 return NULL;
1868 }
1869
1870 if (add_to_table)
1871 add_loc->second = sym;
1872 else
1873 gold_assert(oldsym != NULL);
1874
1875 if (add_def_to_table)
1876 add_def_loc->second = sym;
1877
1878 *poldsym = this->get_sized_symbol<size>(oldsym);
1879
1880 return sym;
1881 }
1882
1883 // Define a symbol based on an Output_data.
1884
1885 Symbol*
1886 Symbol_table::define_in_output_data(const char* name,
1887 const char* version,
1888 Defined defined,
1889 Output_data* od,
1890 uint64_t value,
1891 uint64_t symsize,
1892 elfcpp::STT type,
1893 elfcpp::STB binding,
1894 elfcpp::STV visibility,
1895 unsigned char nonvis,
1896 bool offset_is_from_end,
1897 bool only_if_ref)
1898 {
1899 if (parameters->target().get_size() == 32)
1900 {
1901 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1902 return this->do_define_in_output_data<32>(name, version, defined, od,
1903 value, symsize, type, binding,
1904 visibility, nonvis,
1905 offset_is_from_end,
1906 only_if_ref);
1907 #else
1908 gold_unreachable();
1909 #endif
1910 }
1911 else if (parameters->target().get_size() == 64)
1912 {
1913 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1914 return this->do_define_in_output_data<64>(name, version, defined, od,
1915 value, symsize, type, binding,
1916 visibility, nonvis,
1917 offset_is_from_end,
1918 only_if_ref);
1919 #else
1920 gold_unreachable();
1921 #endif
1922 }
1923 else
1924 gold_unreachable();
1925 }
1926
1927 // Define a symbol in an Output_data, sized version.
1928
1929 template<int size>
1930 Sized_symbol<size>*
1931 Symbol_table::do_define_in_output_data(
1932 const char* name,
1933 const char* version,
1934 Defined defined,
1935 Output_data* od,
1936 typename elfcpp::Elf_types<size>::Elf_Addr value,
1937 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1938 elfcpp::STT type,
1939 elfcpp::STB binding,
1940 elfcpp::STV visibility,
1941 unsigned char nonvis,
1942 bool offset_is_from_end,
1943 bool only_if_ref)
1944 {
1945 Sized_symbol<size>* sym;
1946 Sized_symbol<size>* oldsym;
1947 bool resolve_oldsym;
1948
1949 if (parameters->target().is_big_endian())
1950 {
1951 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1952 sym = this->define_special_symbol<size, true>(&name, &version,
1953 only_if_ref, &oldsym,
1954 &resolve_oldsym);
1955 #else
1956 gold_unreachable();
1957 #endif
1958 }
1959 else
1960 {
1961 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1962 sym = this->define_special_symbol<size, false>(&name, &version,
1963 only_if_ref, &oldsym,
1964 &resolve_oldsym);
1965 #else
1966 gold_unreachable();
1967 #endif
1968 }
1969
1970 if (sym == NULL)
1971 return NULL;
1972
1973 sym->init_output_data(name, version, od, value, symsize, type, binding,
1974 visibility, nonvis, offset_is_from_end,
1975 defined == PREDEFINED);
1976
1977 if (oldsym == NULL)
1978 {
1979 if (binding == elfcpp::STB_LOCAL
1980 || this->version_script_.symbol_is_local(name))
1981 this->force_local(sym);
1982 else if (version != NULL)
1983 sym->set_is_default();
1984 return sym;
1985 }
1986
1987 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1988 this->override_with_special(oldsym, sym);
1989
1990 if (resolve_oldsym)
1991 return sym;
1992 else
1993 {
1994 if (defined == PREDEFINED
1995 && (binding == elfcpp::STB_LOCAL
1996 || this->version_script_.symbol_is_local(name)))
1997 this->force_local(oldsym);
1998 delete sym;
1999 return oldsym;
2000 }
2001 }
2002
2003 // Define a symbol based on an Output_segment.
2004
2005 Symbol*
2006 Symbol_table::define_in_output_segment(const char* name,
2007 const char* version,
2008 Defined defined,
2009 Output_segment* os,
2010 uint64_t value,
2011 uint64_t symsize,
2012 elfcpp::STT type,
2013 elfcpp::STB binding,
2014 elfcpp::STV visibility,
2015 unsigned char nonvis,
2016 Symbol::Segment_offset_base offset_base,
2017 bool only_if_ref)
2018 {
2019 if (parameters->target().get_size() == 32)
2020 {
2021 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2022 return this->do_define_in_output_segment<32>(name, version, defined, os,
2023 value, symsize, type,
2024 binding, visibility, nonvis,
2025 offset_base, only_if_ref);
2026 #else
2027 gold_unreachable();
2028 #endif
2029 }
2030 else if (parameters->target().get_size() == 64)
2031 {
2032 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2033 return this->do_define_in_output_segment<64>(name, version, defined, os,
2034 value, symsize, type,
2035 binding, visibility, nonvis,
2036 offset_base, only_if_ref);
2037 #else
2038 gold_unreachable();
2039 #endif
2040 }
2041 else
2042 gold_unreachable();
2043 }
2044
2045 // Define a symbol in an Output_segment, sized version.
2046
2047 template<int size>
2048 Sized_symbol<size>*
2049 Symbol_table::do_define_in_output_segment(
2050 const char* name,
2051 const char* version,
2052 Defined defined,
2053 Output_segment* os,
2054 typename elfcpp::Elf_types<size>::Elf_Addr value,
2055 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2056 elfcpp::STT type,
2057 elfcpp::STB binding,
2058 elfcpp::STV visibility,
2059 unsigned char nonvis,
2060 Symbol::Segment_offset_base offset_base,
2061 bool only_if_ref)
2062 {
2063 Sized_symbol<size>* sym;
2064 Sized_symbol<size>* oldsym;
2065 bool resolve_oldsym;
2066
2067 if (parameters->target().is_big_endian())
2068 {
2069 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2070 sym = this->define_special_symbol<size, true>(&name, &version,
2071 only_if_ref, &oldsym,
2072 &resolve_oldsym);
2073 #else
2074 gold_unreachable();
2075 #endif
2076 }
2077 else
2078 {
2079 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2080 sym = this->define_special_symbol<size, false>(&name, &version,
2081 only_if_ref, &oldsym,
2082 &resolve_oldsym);
2083 #else
2084 gold_unreachable();
2085 #endif
2086 }
2087
2088 if (sym == NULL)
2089 return NULL;
2090
2091 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2092 visibility, nonvis, offset_base,
2093 defined == PREDEFINED);
2094
2095 if (oldsym == NULL)
2096 {
2097 if (binding == elfcpp::STB_LOCAL
2098 || this->version_script_.symbol_is_local(name))
2099 this->force_local(sym);
2100 else if (version != NULL)
2101 sym->set_is_default();
2102 return sym;
2103 }
2104
2105 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2106 this->override_with_special(oldsym, sym);
2107
2108 if (resolve_oldsym)
2109 return sym;
2110 else
2111 {
2112 if (binding == elfcpp::STB_LOCAL
2113 || this->version_script_.symbol_is_local(name))
2114 this->force_local(oldsym);
2115 delete sym;
2116 return oldsym;
2117 }
2118 }
2119
2120 // Define a special symbol with a constant value. It is a multiple
2121 // definition error if this symbol is already defined.
2122
2123 Symbol*
2124 Symbol_table::define_as_constant(const char* name,
2125 const char* version,
2126 Defined defined,
2127 uint64_t value,
2128 uint64_t symsize,
2129 elfcpp::STT type,
2130 elfcpp::STB binding,
2131 elfcpp::STV visibility,
2132 unsigned char nonvis,
2133 bool only_if_ref,
2134 bool force_override)
2135 {
2136 if (parameters->target().get_size() == 32)
2137 {
2138 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2139 return this->do_define_as_constant<32>(name, version, defined, value,
2140 symsize, type, binding,
2141 visibility, nonvis, only_if_ref,
2142 force_override);
2143 #else
2144 gold_unreachable();
2145 #endif
2146 }
2147 else if (parameters->target().get_size() == 64)
2148 {
2149 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2150 return this->do_define_as_constant<64>(name, version, defined, value,
2151 symsize, type, binding,
2152 visibility, nonvis, only_if_ref,
2153 force_override);
2154 #else
2155 gold_unreachable();
2156 #endif
2157 }
2158 else
2159 gold_unreachable();
2160 }
2161
2162 // Define a symbol as a constant, sized version.
2163
2164 template<int size>
2165 Sized_symbol<size>*
2166 Symbol_table::do_define_as_constant(
2167 const char* name,
2168 const char* version,
2169 Defined defined,
2170 typename elfcpp::Elf_types<size>::Elf_Addr value,
2171 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2172 elfcpp::STT type,
2173 elfcpp::STB binding,
2174 elfcpp::STV visibility,
2175 unsigned char nonvis,
2176 bool only_if_ref,
2177 bool force_override)
2178 {
2179 Sized_symbol<size>* sym;
2180 Sized_symbol<size>* oldsym;
2181 bool resolve_oldsym;
2182
2183 if (parameters->target().is_big_endian())
2184 {
2185 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2186 sym = this->define_special_symbol<size, true>(&name, &version,
2187 only_if_ref, &oldsym,
2188 &resolve_oldsym);
2189 #else
2190 gold_unreachable();
2191 #endif
2192 }
2193 else
2194 {
2195 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2196 sym = this->define_special_symbol<size, false>(&name, &version,
2197 only_if_ref, &oldsym,
2198 &resolve_oldsym);
2199 #else
2200 gold_unreachable();
2201 #endif
2202 }
2203
2204 if (sym == NULL)
2205 return NULL;
2206
2207 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2208 nonvis, defined == PREDEFINED);
2209
2210 if (oldsym == NULL)
2211 {
2212 // Version symbols are absolute symbols with name == version.
2213 // We don't want to force them to be local.
2214 if ((version == NULL
2215 || name != version
2216 || value != 0)
2217 && (binding == elfcpp::STB_LOCAL
2218 || this->version_script_.symbol_is_local(name)))
2219 this->force_local(sym);
2220 else if (version != NULL
2221 && (name != version || value != 0))
2222 sym->set_is_default();
2223 return sym;
2224 }
2225
2226 if (force_override
2227 || Symbol_table::should_override_with_special(oldsym, type, defined))
2228 this->override_with_special(oldsym, sym);
2229
2230 if (resolve_oldsym)
2231 return sym;
2232 else
2233 {
2234 if (binding == elfcpp::STB_LOCAL
2235 || this->version_script_.symbol_is_local(name))
2236 this->force_local(oldsym);
2237 delete sym;
2238 return oldsym;
2239 }
2240 }
2241
2242 // Define a set of symbols in output sections.
2243
2244 void
2245 Symbol_table::define_symbols(const Layout* layout, int count,
2246 const Define_symbol_in_section* p,
2247 bool only_if_ref)
2248 {
2249 for (int i = 0; i < count; ++i, ++p)
2250 {
2251 Output_section* os = layout->find_output_section(p->output_section);
2252 if (os != NULL)
2253 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2254 p->size, p->type, p->binding,
2255 p->visibility, p->nonvis,
2256 p->offset_is_from_end,
2257 only_if_ref || p->only_if_ref);
2258 else
2259 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2260 p->type, p->binding, p->visibility, p->nonvis,
2261 only_if_ref || p->only_if_ref,
2262 false);
2263 }
2264 }
2265
2266 // Define a set of symbols in output segments.
2267
2268 void
2269 Symbol_table::define_symbols(const Layout* layout, int count,
2270 const Define_symbol_in_segment* p,
2271 bool only_if_ref)
2272 {
2273 for (int i = 0; i < count; ++i, ++p)
2274 {
2275 Output_segment* os = layout->find_output_segment(p->segment_type,
2276 p->segment_flags_set,
2277 p->segment_flags_clear);
2278 if (os != NULL)
2279 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2280 p->size, p->type, p->binding,
2281 p->visibility, p->nonvis,
2282 p->offset_base,
2283 only_if_ref || p->only_if_ref);
2284 else
2285 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2286 p->type, p->binding, p->visibility, p->nonvis,
2287 only_if_ref || p->only_if_ref,
2288 false);
2289 }
2290 }
2291
2292 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2293 // symbol should be defined--typically a .dyn.bss section. VALUE is
2294 // the offset within POSD.
2295
2296 template<int size>
2297 void
2298 Symbol_table::define_with_copy_reloc(
2299 Sized_symbol<size>* csym,
2300 Output_data* posd,
2301 typename elfcpp::Elf_types<size>::Elf_Addr value)
2302 {
2303 gold_assert(csym->is_from_dynobj());
2304 gold_assert(!csym->is_copied_from_dynobj());
2305 Object* object = csym->object();
2306 gold_assert(object->is_dynamic());
2307 Dynobj* dynobj = static_cast<Dynobj*>(object);
2308
2309 // Our copied variable has to override any variable in a shared
2310 // library.
2311 elfcpp::STB binding = csym->binding();
2312 if (binding == elfcpp::STB_WEAK)
2313 binding = elfcpp::STB_GLOBAL;
2314
2315 this->define_in_output_data(csym->name(), csym->version(), COPY,
2316 posd, value, csym->symsize(),
2317 csym->type(), binding,
2318 csym->visibility(), csym->nonvis(),
2319 false, false);
2320
2321 csym->set_is_copied_from_dynobj();
2322 csym->set_needs_dynsym_entry();
2323
2324 this->copied_symbol_dynobjs_[csym] = dynobj;
2325
2326 // We have now defined all aliases, but we have not entered them all
2327 // in the copied_symbol_dynobjs_ map.
2328 if (csym->has_alias())
2329 {
2330 Symbol* sym = csym;
2331 while (true)
2332 {
2333 sym = this->weak_aliases_[sym];
2334 if (sym == csym)
2335 break;
2336 gold_assert(sym->output_data() == posd);
2337
2338 sym->set_is_copied_from_dynobj();
2339 this->copied_symbol_dynobjs_[sym] = dynobj;
2340 }
2341 }
2342 }
2343
2344 // SYM is defined using a COPY reloc. Return the dynamic object where
2345 // the original definition was found.
2346
2347 Dynobj*
2348 Symbol_table::get_copy_source(const Symbol* sym) const
2349 {
2350 gold_assert(sym->is_copied_from_dynobj());
2351 Copied_symbol_dynobjs::const_iterator p =
2352 this->copied_symbol_dynobjs_.find(sym);
2353 gold_assert(p != this->copied_symbol_dynobjs_.end());
2354 return p->second;
2355 }
2356
2357 // Add any undefined symbols named on the command line.
2358
2359 void
2360 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2361 {
2362 if (parameters->options().any_undefined()
2363 || layout->script_options()->any_unreferenced())
2364 {
2365 if (parameters->target().get_size() == 32)
2366 {
2367 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2368 this->do_add_undefined_symbols_from_command_line<32>(layout);
2369 #else
2370 gold_unreachable();
2371 #endif
2372 }
2373 else if (parameters->target().get_size() == 64)
2374 {
2375 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2376 this->do_add_undefined_symbols_from_command_line<64>(layout);
2377 #else
2378 gold_unreachable();
2379 #endif
2380 }
2381 else
2382 gold_unreachable();
2383 }
2384 }
2385
2386 template<int size>
2387 void
2388 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2389 {
2390 for (options::String_set::const_iterator p =
2391 parameters->options().undefined_begin();
2392 p != parameters->options().undefined_end();
2393 ++p)
2394 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2395
2396 for (options::String_set::const_iterator p =
2397 parameters->options().export_dynamic_symbol_begin();
2398 p != parameters->options().export_dynamic_symbol_end();
2399 ++p)
2400 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2401
2402 for (Script_options::referenced_const_iterator p =
2403 layout->script_options()->referenced_begin();
2404 p != layout->script_options()->referenced_end();
2405 ++p)
2406 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2407 }
2408
2409 template<int size>
2410 void
2411 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2412 {
2413 if (this->lookup(name) != NULL)
2414 return;
2415
2416 const char* version = NULL;
2417
2418 Sized_symbol<size>* sym;
2419 Sized_symbol<size>* oldsym;
2420 bool resolve_oldsym;
2421 if (parameters->target().is_big_endian())
2422 {
2423 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2424 sym = this->define_special_symbol<size, true>(&name, &version,
2425 false, &oldsym,
2426 &resolve_oldsym);
2427 #else
2428 gold_unreachable();
2429 #endif
2430 }
2431 else
2432 {
2433 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2434 sym = this->define_special_symbol<size, false>(&name, &version,
2435 false, &oldsym,
2436 &resolve_oldsym);
2437 #else
2438 gold_unreachable();
2439 #endif
2440 }
2441
2442 gold_assert(oldsym == NULL);
2443
2444 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2445 elfcpp::STV_DEFAULT, 0);
2446 ++this->saw_undefined_;
2447 }
2448
2449 // Set the dynamic symbol indexes. INDEX is the index of the first
2450 // global dynamic symbol. Pointers to the symbols are stored into the
2451 // vector SYMS. The names are added to DYNPOOL. This returns an
2452 // updated dynamic symbol index.
2453
2454 unsigned int
2455 Symbol_table::set_dynsym_indexes(unsigned int index,
2456 std::vector<Symbol*>* syms,
2457 Stringpool* dynpool,
2458 Versions* versions)
2459 {
2460 std::vector<Symbol*> as_needed_sym;
2461
2462 // Allow a target to set dynsym indexes.
2463 if (parameters->target().has_custom_set_dynsym_indexes())
2464 {
2465 std::vector<Symbol*> dyn_symbols;
2466 for (Symbol_table_type::iterator p = this->table_.begin();
2467 p != this->table_.end();
2468 ++p)
2469 {
2470 Symbol* sym = p->second;
2471 if (!sym->should_add_dynsym_entry(this))
2472 sym->set_dynsym_index(-1U);
2473 else
2474 dyn_symbols.push_back(sym);
2475 }
2476
2477 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2478 dynpool, versions, this);
2479 }
2480
2481 for (Symbol_table_type::iterator p = this->table_.begin();
2482 p != this->table_.end();
2483 ++p)
2484 {
2485 Symbol* sym = p->second;
2486
2487 // Note that SYM may already have a dynamic symbol index, since
2488 // some symbols appear more than once in the symbol table, with
2489 // and without a version.
2490
2491 if (!sym->should_add_dynsym_entry(this))
2492 sym->set_dynsym_index(-1U);
2493 else if (!sym->has_dynsym_index())
2494 {
2495 sym->set_dynsym_index(index);
2496 ++index;
2497 syms->push_back(sym);
2498 dynpool->add(sym->name(), false, NULL);
2499
2500 // If the symbol is defined in a dynamic object and is
2501 // referenced strongly in a regular object, then mark the
2502 // dynamic object as needed. This is used to implement
2503 // --as-needed.
2504 if (sym->is_from_dynobj()
2505 && sym->in_reg()
2506 && !sym->is_undef_binding_weak())
2507 sym->object()->set_is_needed();
2508
2509 // Record any version information, except those from
2510 // as-needed libraries not seen to be needed. Note that the
2511 // is_needed state for such libraries can change in this loop.
2512 if (sym->version() != NULL)
2513 {
2514 if (!sym->is_from_dynobj()
2515 || !sym->object()->as_needed()
2516 || sym->object()->is_needed())
2517 versions->record_version(this, dynpool, sym);
2518 else
2519 as_needed_sym.push_back(sym);
2520 }
2521 }
2522 }
2523
2524 // Process version information for symbols from as-needed libraries.
2525 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2526 p != as_needed_sym.end();
2527 ++p)
2528 {
2529 Symbol* sym = *p;
2530
2531 if (sym->object()->is_needed())
2532 versions->record_version(this, dynpool, sym);
2533 else
2534 sym->clear_version();
2535 }
2536
2537 // Finish up the versions. In some cases this may add new dynamic
2538 // symbols.
2539 index = versions->finalize(this, index, syms);
2540
2541 // Process target-specific symbols.
2542 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2543 p != this->target_symbols_.end();
2544 ++p)
2545 {
2546 (*p)->set_dynsym_index(index);
2547 ++index;
2548 syms->push_back(*p);
2549 dynpool->add((*p)->name(), false, NULL);
2550 }
2551
2552 return index;
2553 }
2554
2555 // Set the final values for all the symbols. The index of the first
2556 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2557 // file offset OFF. Add their names to POOL. Return the new file
2558 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2559
2560 off_t
2561 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2562 size_t dyncount, Stringpool* pool,
2563 unsigned int* plocal_symcount)
2564 {
2565 off_t ret;
2566
2567 gold_assert(*plocal_symcount != 0);
2568 this->first_global_index_ = *plocal_symcount;
2569
2570 this->dynamic_offset_ = dynoff;
2571 this->first_dynamic_global_index_ = dyn_global_index;
2572 this->dynamic_count_ = dyncount;
2573
2574 if (parameters->target().get_size() == 32)
2575 {
2576 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2577 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2578 #else
2579 gold_unreachable();
2580 #endif
2581 }
2582 else if (parameters->target().get_size() == 64)
2583 {
2584 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2585 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2586 #else
2587 gold_unreachable();
2588 #endif
2589 }
2590 else
2591 gold_unreachable();
2592
2593 // Now that we have the final symbol table, we can reliably note
2594 // which symbols should get warnings.
2595 this->warnings_.note_warnings(this);
2596
2597 return ret;
2598 }
2599
2600 // SYM is going into the symbol table at *PINDEX. Add the name to
2601 // POOL, update *PINDEX and *POFF.
2602
2603 template<int size>
2604 void
2605 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2606 unsigned int* pindex, off_t* poff)
2607 {
2608 sym->set_symtab_index(*pindex);
2609 if (sym->version() == NULL || !parameters->options().relocatable())
2610 pool->add(sym->name(), false, NULL);
2611 else
2612 pool->add(sym->versioned_name(), true, NULL);
2613 ++*pindex;
2614 *poff += elfcpp::Elf_sizes<size>::sym_size;
2615 }
2616
2617 // Set the final value for all the symbols. This is called after
2618 // Layout::finalize, so all the output sections have their final
2619 // address.
2620
2621 template<int size>
2622 off_t
2623 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2624 unsigned int* plocal_symcount)
2625 {
2626 off = align_address(off, size >> 3);
2627 this->offset_ = off;
2628
2629 unsigned int index = *plocal_symcount;
2630 const unsigned int orig_index = index;
2631
2632 // First do all the symbols which have been forced to be local, as
2633 // they must appear before all global symbols.
2634 for (Forced_locals::iterator p = this->forced_locals_.begin();
2635 p != this->forced_locals_.end();
2636 ++p)
2637 {
2638 Symbol* sym = *p;
2639 gold_assert(sym->is_forced_local());
2640 if (this->sized_finalize_symbol<size>(sym))
2641 {
2642 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2643 ++*plocal_symcount;
2644 }
2645 }
2646
2647 // Now do all the remaining symbols.
2648 for (Symbol_table_type::iterator p = this->table_.begin();
2649 p != this->table_.end();
2650 ++p)
2651 {
2652 Symbol* sym = p->second;
2653 if (this->sized_finalize_symbol<size>(sym))
2654 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2655 }
2656
2657 // Now do target-specific symbols.
2658 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2659 p != this->target_symbols_.end();
2660 ++p)
2661 {
2662 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2663 }
2664
2665 this->output_count_ = index - orig_index;
2666
2667 return off;
2668 }
2669
2670 // Compute the final value of SYM and store status in location PSTATUS.
2671 // During relaxation, this may be called multiple times for a symbol to
2672 // compute its would-be final value in each relaxation pass.
2673
2674 template<int size>
2675 typename Sized_symbol<size>::Value_type
2676 Symbol_table::compute_final_value(
2677 const Sized_symbol<size>* sym,
2678 Compute_final_value_status* pstatus) const
2679 {
2680 typedef typename Sized_symbol<size>::Value_type Value_type;
2681 Value_type value;
2682
2683 switch (sym->source())
2684 {
2685 case Symbol::FROM_OBJECT:
2686 {
2687 bool is_ordinary;
2688 unsigned int shndx = sym->shndx(&is_ordinary);
2689
2690 if (!is_ordinary
2691 && shndx != elfcpp::SHN_ABS
2692 && !Symbol::is_common_shndx(shndx))
2693 {
2694 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2695 return 0;
2696 }
2697
2698 Object* symobj = sym->object();
2699 if (symobj->is_dynamic())
2700 {
2701 value = 0;
2702 shndx = elfcpp::SHN_UNDEF;
2703 }
2704 else if (symobj->pluginobj() != NULL)
2705 {
2706 value = 0;
2707 shndx = elfcpp::SHN_UNDEF;
2708 }
2709 else if (shndx == elfcpp::SHN_UNDEF)
2710 value = 0;
2711 else if (!is_ordinary
2712 && (shndx == elfcpp::SHN_ABS
2713 || Symbol::is_common_shndx(shndx)))
2714 value = sym->value();
2715 else
2716 {
2717 Relobj* relobj = static_cast<Relobj*>(symobj);
2718 Output_section* os = relobj->output_section(shndx);
2719
2720 if (this->is_section_folded(relobj, shndx))
2721 {
2722 gold_assert(os == NULL);
2723 // Get the os of the section it is folded onto.
2724 Section_id folded = this->icf_->get_folded_section(relobj,
2725 shndx);
2726 gold_assert(folded.first != NULL);
2727 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2728 unsigned folded_shndx = folded.second;
2729
2730 os = folded_obj->output_section(folded_shndx);
2731 gold_assert(os != NULL);
2732
2733 // Replace (relobj, shndx) with canonical ICF input section.
2734 shndx = folded_shndx;
2735 relobj = folded_obj;
2736 }
2737
2738 uint64_t secoff64 = relobj->output_section_offset(shndx);
2739 if (os == NULL)
2740 {
2741 bool static_or_reloc = (parameters->doing_static_link() ||
2742 parameters->options().relocatable());
2743 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2744
2745 *pstatus = CFVS_NO_OUTPUT_SECTION;
2746 return 0;
2747 }
2748
2749 if (secoff64 == -1ULL)
2750 {
2751 // The section needs special handling (e.g., a merge section).
2752
2753 value = os->output_address(relobj, shndx, sym->value());
2754 }
2755 else
2756 {
2757 Value_type secoff =
2758 convert_types<Value_type, uint64_t>(secoff64);
2759 if (sym->type() == elfcpp::STT_TLS)
2760 value = sym->value() + os->tls_offset() + secoff;
2761 else
2762 value = sym->value() + os->address() + secoff;
2763 }
2764 }
2765 }
2766 break;
2767
2768 case Symbol::IN_OUTPUT_DATA:
2769 {
2770 Output_data* od = sym->output_data();
2771 value = sym->value();
2772 if (sym->type() != elfcpp::STT_TLS)
2773 value += od->address();
2774 else
2775 {
2776 Output_section* os = od->output_section();
2777 gold_assert(os != NULL);
2778 value += os->tls_offset() + (od->address() - os->address());
2779 }
2780 if (sym->offset_is_from_end())
2781 value += od->data_size();
2782 }
2783 break;
2784
2785 case Symbol::IN_OUTPUT_SEGMENT:
2786 {
2787 Output_segment* os = sym->output_segment();
2788 value = sym->value();
2789 if (sym->type() != elfcpp::STT_TLS)
2790 value += os->vaddr();
2791 switch (sym->offset_base())
2792 {
2793 case Symbol::SEGMENT_START:
2794 break;
2795 case Symbol::SEGMENT_END:
2796 value += os->memsz();
2797 break;
2798 case Symbol::SEGMENT_BSS:
2799 value += os->filesz();
2800 break;
2801 default:
2802 gold_unreachable();
2803 }
2804 }
2805 break;
2806
2807 case Symbol::IS_CONSTANT:
2808 value = sym->value();
2809 break;
2810
2811 case Symbol::IS_UNDEFINED:
2812 value = 0;
2813 break;
2814
2815 default:
2816 gold_unreachable();
2817 }
2818
2819 *pstatus = CFVS_OK;
2820 return value;
2821 }
2822
2823 // Finalize the symbol SYM. This returns true if the symbol should be
2824 // added to the symbol table, false otherwise.
2825
2826 template<int size>
2827 bool
2828 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2829 {
2830 typedef typename Sized_symbol<size>::Value_type Value_type;
2831
2832 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2833
2834 // The default version of a symbol may appear twice in the symbol
2835 // table. We only need to finalize it once.
2836 if (sym->has_symtab_index())
2837 return false;
2838
2839 if (!sym->in_reg())
2840 {
2841 gold_assert(!sym->has_symtab_index());
2842 sym->set_symtab_index(-1U);
2843 gold_assert(sym->dynsym_index() == -1U);
2844 return false;
2845 }
2846
2847 // If the symbol is only present on plugin files, the plugin decided we
2848 // don't need it.
2849 if (!sym->in_real_elf())
2850 {
2851 gold_assert(!sym->has_symtab_index());
2852 sym->set_symtab_index(-1U);
2853 return false;
2854 }
2855
2856 // Compute final symbol value.
2857 Compute_final_value_status status;
2858 Value_type value = this->compute_final_value(sym, &status);
2859
2860 switch (status)
2861 {
2862 case CFVS_OK:
2863 break;
2864 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2865 {
2866 bool is_ordinary;
2867 unsigned int shndx = sym->shndx(&is_ordinary);
2868 gold_error(_("%s: unsupported symbol section 0x%x"),
2869 sym->demangled_name().c_str(), shndx);
2870 }
2871 break;
2872 case CFVS_NO_OUTPUT_SECTION:
2873 sym->set_symtab_index(-1U);
2874 return false;
2875 default:
2876 gold_unreachable();
2877 }
2878
2879 sym->set_value(value);
2880
2881 if (parameters->options().strip_all()
2882 || !parameters->options().should_retain_symbol(sym->name()))
2883 {
2884 sym->set_symtab_index(-1U);
2885 return false;
2886 }
2887
2888 return true;
2889 }
2890
2891 // Write out the global symbols.
2892
2893 void
2894 Symbol_table::write_globals(const Stringpool* sympool,
2895 const Stringpool* dynpool,
2896 Output_symtab_xindex* symtab_xindex,
2897 Output_symtab_xindex* dynsym_xindex,
2898 Output_file* of) const
2899 {
2900 switch (parameters->size_and_endianness())
2901 {
2902 #ifdef HAVE_TARGET_32_LITTLE
2903 case Parameters::TARGET_32_LITTLE:
2904 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2905 dynsym_xindex, of);
2906 break;
2907 #endif
2908 #ifdef HAVE_TARGET_32_BIG
2909 case Parameters::TARGET_32_BIG:
2910 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2911 dynsym_xindex, of);
2912 break;
2913 #endif
2914 #ifdef HAVE_TARGET_64_LITTLE
2915 case Parameters::TARGET_64_LITTLE:
2916 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2917 dynsym_xindex, of);
2918 break;
2919 #endif
2920 #ifdef HAVE_TARGET_64_BIG
2921 case Parameters::TARGET_64_BIG:
2922 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2923 dynsym_xindex, of);
2924 break;
2925 #endif
2926 default:
2927 gold_unreachable();
2928 }
2929 }
2930
2931 // Write out the global symbols.
2932
2933 template<int size, bool big_endian>
2934 void
2935 Symbol_table::sized_write_globals(const Stringpool* sympool,
2936 const Stringpool* dynpool,
2937 Output_symtab_xindex* symtab_xindex,
2938 Output_symtab_xindex* dynsym_xindex,
2939 Output_file* of) const
2940 {
2941 const Target& target = parameters->target();
2942
2943 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2944
2945 const unsigned int output_count = this->output_count_;
2946 const section_size_type oview_size = output_count * sym_size;
2947 const unsigned int first_global_index = this->first_global_index_;
2948 unsigned char* psyms;
2949 if (this->offset_ == 0 || output_count == 0)
2950 psyms = NULL;
2951 else
2952 psyms = of->get_output_view(this->offset_, oview_size);
2953
2954 const unsigned int dynamic_count = this->dynamic_count_;
2955 const section_size_type dynamic_size = dynamic_count * sym_size;
2956 const unsigned int first_dynamic_global_index =
2957 this->first_dynamic_global_index_;
2958 unsigned char* dynamic_view;
2959 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2960 dynamic_view = NULL;
2961 else
2962 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2963
2964 for (Symbol_table_type::const_iterator p = this->table_.begin();
2965 p != this->table_.end();
2966 ++p)
2967 {
2968 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2969
2970 // Possibly warn about unresolved symbols in shared libraries.
2971 this->warn_about_undefined_dynobj_symbol(sym);
2972
2973 unsigned int sym_index = sym->symtab_index();
2974 unsigned int dynsym_index;
2975 if (dynamic_view == NULL)
2976 dynsym_index = -1U;
2977 else
2978 dynsym_index = sym->dynsym_index();
2979
2980 if (sym_index == -1U && dynsym_index == -1U)
2981 {
2982 // This symbol is not included in the output file.
2983 continue;
2984 }
2985
2986 unsigned int shndx;
2987 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2988 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2989 elfcpp::STB binding = sym->binding();
2990
2991 // If --weak-unresolved-symbols is set, change binding of unresolved
2992 // global symbols to STB_WEAK.
2993 if (parameters->options().weak_unresolved_symbols()
2994 && binding == elfcpp::STB_GLOBAL
2995 && sym->is_undefined())
2996 binding = elfcpp::STB_WEAK;
2997
2998 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2999 if (binding == elfcpp::STB_GNU_UNIQUE
3000 && !parameters->options().gnu_unique())
3001 binding = elfcpp::STB_GLOBAL;
3002
3003 switch (sym->source())
3004 {
3005 case Symbol::FROM_OBJECT:
3006 {
3007 bool is_ordinary;
3008 unsigned int in_shndx = sym->shndx(&is_ordinary);
3009
3010 if (!is_ordinary
3011 && in_shndx != elfcpp::SHN_ABS
3012 && !Symbol::is_common_shndx(in_shndx))
3013 {
3014 gold_error(_("%s: unsupported symbol section 0x%x"),
3015 sym->demangled_name().c_str(), in_shndx);
3016 shndx = in_shndx;
3017 }
3018 else
3019 {
3020 Object* symobj = sym->object();
3021 if (symobj->is_dynamic())
3022 {
3023 if (sym->needs_dynsym_value())
3024 dynsym_value = target.dynsym_value(sym);
3025 shndx = elfcpp::SHN_UNDEF;
3026 if (sym->is_undef_binding_weak())
3027 binding = elfcpp::STB_WEAK;
3028 else
3029 binding = elfcpp::STB_GLOBAL;
3030 }
3031 else if (symobj->pluginobj() != NULL)
3032 shndx = elfcpp::SHN_UNDEF;
3033 else if (in_shndx == elfcpp::SHN_UNDEF
3034 || (!is_ordinary
3035 && (in_shndx == elfcpp::SHN_ABS
3036 || Symbol::is_common_shndx(in_shndx))))
3037 shndx = in_shndx;
3038 else
3039 {
3040 Relobj* relobj = static_cast<Relobj*>(symobj);
3041 Output_section* os = relobj->output_section(in_shndx);
3042 if (this->is_section_folded(relobj, in_shndx))
3043 {
3044 // This global symbol must be written out even though
3045 // it is folded.
3046 // Get the os of the section it is folded onto.
3047 Section_id folded =
3048 this->icf_->get_folded_section(relobj, in_shndx);
3049 gold_assert(folded.first !=NULL);
3050 Relobj* folded_obj =
3051 reinterpret_cast<Relobj*>(folded.first);
3052 os = folded_obj->output_section(folded.second);
3053 gold_assert(os != NULL);
3054 }
3055 gold_assert(os != NULL);
3056 shndx = os->out_shndx();
3057
3058 if (shndx >= elfcpp::SHN_LORESERVE)
3059 {
3060 if (sym_index != -1U)
3061 symtab_xindex->add(sym_index, shndx);
3062 if (dynsym_index != -1U)
3063 dynsym_xindex->add(dynsym_index, shndx);
3064 shndx = elfcpp::SHN_XINDEX;
3065 }
3066
3067 // In object files symbol values are section
3068 // relative.
3069 if (parameters->options().relocatable())
3070 sym_value -= os->address();
3071 }
3072 }
3073 }
3074 break;
3075
3076 case Symbol::IN_OUTPUT_DATA:
3077 {
3078 Output_data* od = sym->output_data();
3079
3080 shndx = od->out_shndx();
3081 if (shndx >= elfcpp::SHN_LORESERVE)
3082 {
3083 if (sym_index != -1U)
3084 symtab_xindex->add(sym_index, shndx);
3085 if (dynsym_index != -1U)
3086 dynsym_xindex->add(dynsym_index, shndx);
3087 shndx = elfcpp::SHN_XINDEX;
3088 }
3089
3090 // In object files symbol values are section
3091 // relative.
3092 if (parameters->options().relocatable())
3093 sym_value -= od->address();
3094 }
3095 break;
3096
3097 case Symbol::IN_OUTPUT_SEGMENT:
3098 shndx = elfcpp::SHN_ABS;
3099 break;
3100
3101 case Symbol::IS_CONSTANT:
3102 shndx = elfcpp::SHN_ABS;
3103 break;
3104
3105 case Symbol::IS_UNDEFINED:
3106 shndx = elfcpp::SHN_UNDEF;
3107 break;
3108
3109 default:
3110 gold_unreachable();
3111 }
3112
3113 if (sym_index != -1U)
3114 {
3115 sym_index -= first_global_index;
3116 gold_assert(sym_index < output_count);
3117 unsigned char* ps = psyms + (sym_index * sym_size);
3118 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3119 binding, sympool, ps);
3120 }
3121
3122 if (dynsym_index != -1U)
3123 {
3124 dynsym_index -= first_dynamic_global_index;
3125 gold_assert(dynsym_index < dynamic_count);
3126 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3127 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3128 binding, dynpool, pd);
3129 // Allow a target to adjust dynamic symbol value.
3130 parameters->target().adjust_dyn_symbol(sym, pd);
3131 }
3132 }
3133
3134 // Write the target-specific symbols.
3135 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3136 p != this->target_symbols_.end();
3137 ++p)
3138 {
3139 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3140
3141 unsigned int sym_index = sym->symtab_index();
3142 unsigned int dynsym_index;
3143 if (dynamic_view == NULL)
3144 dynsym_index = -1U;
3145 else
3146 dynsym_index = sym->dynsym_index();
3147
3148 unsigned int shndx;
3149 switch (sym->source())
3150 {
3151 case Symbol::IS_CONSTANT:
3152 shndx = elfcpp::SHN_ABS;
3153 break;
3154 case Symbol::IS_UNDEFINED:
3155 shndx = elfcpp::SHN_UNDEF;
3156 break;
3157 default:
3158 gold_unreachable();
3159 }
3160
3161 if (sym_index != -1U)
3162 {
3163 sym_index -= first_global_index;
3164 gold_assert(sym_index < output_count);
3165 unsigned char* ps = psyms + (sym_index * sym_size);
3166 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3167 sym->binding(), sympool,
3168 ps);
3169 }
3170
3171 if (dynsym_index != -1U)
3172 {
3173 dynsym_index -= first_dynamic_global_index;
3174 gold_assert(dynsym_index < dynamic_count);
3175 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3176 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3177 sym->binding(), dynpool,
3178 pd);
3179 }
3180 }
3181
3182 of->write_output_view(this->offset_, oview_size, psyms);
3183 if (dynamic_view != NULL)
3184 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3185 }
3186
3187 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3188 // strtab holding the name.
3189
3190 template<int size, bool big_endian>
3191 void
3192 Symbol_table::sized_write_symbol(
3193 Sized_symbol<size>* sym,
3194 typename elfcpp::Elf_types<size>::Elf_Addr value,
3195 unsigned int shndx,
3196 elfcpp::STB binding,
3197 const Stringpool* pool,
3198 unsigned char* p) const
3199 {
3200 elfcpp::Sym_write<size, big_endian> osym(p);
3201 if (sym->version() == NULL || !parameters->options().relocatable())
3202 osym.put_st_name(pool->get_offset(sym->name()));
3203 else
3204 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3205 osym.put_st_value(value);
3206 // Use a symbol size of zero for undefined symbols from shared libraries.
3207 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3208 osym.put_st_size(0);
3209 else
3210 osym.put_st_size(sym->symsize());
3211 elfcpp::STT type = sym->type();
3212 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3213 // A version script may have overridden the default binding.
3214 if (sym->is_forced_local())
3215 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3216 else
3217 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3218 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3219 osym.put_st_shndx(shndx);
3220 }
3221
3222 // Check for unresolved symbols in shared libraries. This is
3223 // controlled by the --allow-shlib-undefined option.
3224
3225 // We only warn about libraries for which we have seen all the
3226 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3227 // which were not seen in this link. If we didn't see a DT_NEEDED
3228 // entry, we aren't going to be able to reliably report whether the
3229 // symbol is undefined.
3230
3231 // We also don't warn about libraries found in a system library
3232 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3233 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3234 // can have undefined references satisfied by ld-linux.so.
3235
3236 inline void
3237 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3238 {
3239 bool dummy;
3240 if (sym->source() == Symbol::FROM_OBJECT
3241 && sym->object()->is_dynamic()
3242 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3243 && sym->binding() != elfcpp::STB_WEAK
3244 && !parameters->options().allow_shlib_undefined()
3245 && !parameters->target().is_defined_by_abi(sym)
3246 && !sym->object()->is_in_system_directory())
3247 {
3248 // A very ugly cast.
3249 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3250 if (!dynobj->has_unknown_needed_entries())
3251 gold_undefined_symbol(sym);
3252 }
3253 }
3254
3255 // Write out a section symbol. Return the update offset.
3256
3257 void
3258 Symbol_table::write_section_symbol(const Output_section* os,
3259 Output_symtab_xindex* symtab_xindex,
3260 Output_file* of,
3261 off_t offset) const
3262 {
3263 switch (parameters->size_and_endianness())
3264 {
3265 #ifdef HAVE_TARGET_32_LITTLE
3266 case Parameters::TARGET_32_LITTLE:
3267 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3268 offset);
3269 break;
3270 #endif
3271 #ifdef HAVE_TARGET_32_BIG
3272 case Parameters::TARGET_32_BIG:
3273 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3274 offset);
3275 break;
3276 #endif
3277 #ifdef HAVE_TARGET_64_LITTLE
3278 case Parameters::TARGET_64_LITTLE:
3279 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3280 offset);
3281 break;
3282 #endif
3283 #ifdef HAVE_TARGET_64_BIG
3284 case Parameters::TARGET_64_BIG:
3285 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3286 offset);
3287 break;
3288 #endif
3289 default:
3290 gold_unreachable();
3291 }
3292 }
3293
3294 // Write out a section symbol, specialized for size and endianness.
3295
3296 template<int size, bool big_endian>
3297 void
3298 Symbol_table::sized_write_section_symbol(const Output_section* os,
3299 Output_symtab_xindex* symtab_xindex,
3300 Output_file* of,
3301 off_t offset) const
3302 {
3303 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3304
3305 unsigned char* pov = of->get_output_view(offset, sym_size);
3306
3307 elfcpp::Sym_write<size, big_endian> osym(pov);
3308 osym.put_st_name(0);
3309 if (parameters->options().relocatable())
3310 osym.put_st_value(0);
3311 else
3312 osym.put_st_value(os->address());
3313 osym.put_st_size(0);
3314 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3315 elfcpp::STT_SECTION));
3316 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3317
3318 unsigned int shndx = os->out_shndx();
3319 if (shndx >= elfcpp::SHN_LORESERVE)
3320 {
3321 symtab_xindex->add(os->symtab_index(), shndx);
3322 shndx = elfcpp::SHN_XINDEX;
3323 }
3324 osym.put_st_shndx(shndx);
3325
3326 of->write_output_view(offset, sym_size, pov);
3327 }
3328
3329 // Print statistical information to stderr. This is used for --stats.
3330
3331 void
3332 Symbol_table::print_stats() const
3333 {
3334 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3335 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3336 program_name, this->table_.size(), this->table_.bucket_count());
3337 #else
3338 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3339 program_name, this->table_.size());
3340 #endif
3341 this->namepool_.print_stats("symbol table stringpool");
3342 }
3343
3344 // We check for ODR violations by looking for symbols with the same
3345 // name for which the debugging information reports that they were
3346 // defined in disjoint source locations. When comparing the source
3347 // location, we consider instances with the same base filename to be
3348 // the same. This is because different object files/shared libraries
3349 // can include the same header file using different paths, and
3350 // different optimization settings can make the line number appear to
3351 // be a couple lines off, and we don't want to report an ODR violation
3352 // in those cases.
3353
3354 // This struct is used to compare line information, as returned by
3355 // Dwarf_line_info::one_addr2line. It implements a < comparison
3356 // operator used with std::sort.
3357
3358 struct Odr_violation_compare
3359 {
3360 bool
3361 operator()(const std::string& s1, const std::string& s2) const
3362 {
3363 // Inputs should be of the form "dirname/filename:linenum" where
3364 // "dirname/" is optional. We want to compare just the filename:linenum.
3365
3366 // Find the last '/' in each string.
3367 std::string::size_type s1begin = s1.rfind('/');
3368 std::string::size_type s2begin = s2.rfind('/');
3369 // If there was no '/' in a string, start at the beginning.
3370 if (s1begin == std::string::npos)
3371 s1begin = 0;
3372 if (s2begin == std::string::npos)
3373 s2begin = 0;
3374 return s1.compare(s1begin, std::string::npos,
3375 s2, s2begin, std::string::npos) < 0;
3376 }
3377 };
3378
3379 // Returns all of the lines attached to LOC, not just the one the
3380 // instruction actually came from.
3381 std::vector<std::string>
3382 Symbol_table::linenos_from_loc(const Task* task,
3383 const Symbol_location& loc)
3384 {
3385 // We need to lock the object in order to read it. This
3386 // means that we have to run in a singleton Task. If we
3387 // want to run this in a general Task for better
3388 // performance, we will need one Task for object, plus
3389 // appropriate locking to ensure that we don't conflict with
3390 // other uses of the object. Also note, one_addr2line is not
3391 // currently thread-safe.
3392 Task_lock_obj<Object> tl(task, loc.object);
3393
3394 std::vector<std::string> result;
3395 Symbol_location code_loc = loc;
3396 parameters->target().function_location(&code_loc);
3397 // 16 is the size of the object-cache that one_addr2line should use.
3398 std::string canonical_result = Dwarf_line_info::one_addr2line(
3399 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3400 if (!canonical_result.empty())
3401 result.push_back(canonical_result);
3402 return result;
3403 }
3404
3405 // OutputIterator that records if it was ever assigned to. This
3406 // allows it to be used with std::set_intersection() to check for
3407 // intersection rather than computing the intersection.
3408 struct Check_intersection
3409 {
3410 Check_intersection()
3411 : value_(false)
3412 {}
3413
3414 bool had_intersection() const
3415 { return this->value_; }
3416
3417 Check_intersection& operator++()
3418 { return *this; }
3419
3420 Check_intersection& operator*()
3421 { return *this; }
3422
3423 template<typename T>
3424 Check_intersection& operator=(const T&)
3425 {
3426 this->value_ = true;
3427 return *this;
3428 }
3429
3430 private:
3431 bool value_;
3432 };
3433
3434 // Check candidate_odr_violations_ to find symbols with the same name
3435 // but apparently different definitions (different source-file/line-no
3436 // for each line assigned to the first instruction).
3437
3438 void
3439 Symbol_table::detect_odr_violations(const Task* task,
3440 const char* output_file_name) const
3441 {
3442 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3443 it != candidate_odr_violations_.end();
3444 ++it)
3445 {
3446 const char* const symbol_name = it->first;
3447
3448 std::string first_object_name;
3449 std::vector<std::string> first_object_linenos;
3450
3451 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3452 locs = it->second.begin();
3453 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3454 locs_end = it->second.end();
3455 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3456 {
3457 // Save the line numbers from the first definition to
3458 // compare to the other definitions. Ideally, we'd compare
3459 // every definition to every other, but we don't want to
3460 // take O(N^2) time to do this. This shortcut may cause
3461 // false negatives that appear or disappear depending on the
3462 // link order, but it won't cause false positives.
3463 first_object_name = locs->object->name();
3464 first_object_linenos = this->linenos_from_loc(task, *locs);
3465 }
3466 if (first_object_linenos.empty())
3467 continue;
3468
3469 // Sort by Odr_violation_compare to make std::set_intersection work.
3470 std::string first_object_canonical_result = first_object_linenos.back();
3471 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3472 Odr_violation_compare());
3473
3474 for (; locs != locs_end; ++locs)
3475 {
3476 std::vector<std::string> linenos =
3477 this->linenos_from_loc(task, *locs);
3478 // linenos will be empty if we couldn't parse the debug info.
3479 if (linenos.empty())
3480 continue;
3481 // Sort by Odr_violation_compare to make std::set_intersection work.
3482 gold_assert(!linenos.empty());
3483 std::string second_object_canonical_result = linenos.back();
3484 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3485
3486 Check_intersection intersection_result =
3487 std::set_intersection(first_object_linenos.begin(),
3488 first_object_linenos.end(),
3489 linenos.begin(),
3490 linenos.end(),
3491 Check_intersection(),
3492 Odr_violation_compare());
3493 if (!intersection_result.had_intersection())
3494 {
3495 gold_warning(_("while linking %s: symbol '%s' defined in "
3496 "multiple places (possible ODR violation):"),
3497 output_file_name, demangle(symbol_name).c_str());
3498 // This only prints one location from each definition,
3499 // which may not be the location we expect to intersect
3500 // with another definition. We could print the whole
3501 // set of locations, but that seems too verbose.
3502 fprintf(stderr, _(" %s from %s\n"),
3503 first_object_canonical_result.c_str(),
3504 first_object_name.c_str());
3505 fprintf(stderr, _(" %s from %s\n"),
3506 second_object_canonical_result.c_str(),
3507 locs->object->name().c_str());
3508 // Only print one broken pair, to avoid needing to
3509 // compare against a list of the disjoint definition
3510 // locations we've found so far. (If we kept comparing
3511 // against just the first one, we'd get a lot of
3512 // redundant complaints about the second definition
3513 // location.)
3514 break;
3515 }
3516 }
3517 }
3518 // We only call one_addr2line() in this function, so we can clear its cache.
3519 Dwarf_line_info::clear_addr2line_cache();
3520 }
3521
3522 // Warnings functions.
3523
3524 // Add a new warning.
3525
3526 void
3527 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3528 const std::string& warning)
3529 {
3530 name = symtab->canonicalize_name(name);
3531 this->warnings_[name].set(obj, warning);
3532 }
3533
3534 // Look through the warnings and mark the symbols for which we should
3535 // warn. This is called during Layout::finalize when we know the
3536 // sources for all the symbols.
3537
3538 void
3539 Warnings::note_warnings(Symbol_table* symtab)
3540 {
3541 for (Warning_table::iterator p = this->warnings_.begin();
3542 p != this->warnings_.end();
3543 ++p)
3544 {
3545 Symbol* sym = symtab->lookup(p->first, NULL);
3546 if (sym != NULL
3547 && sym->source() == Symbol::FROM_OBJECT
3548 && sym->object() == p->second.object)
3549 sym->set_has_warning();
3550 }
3551 }
3552
3553 // Issue a warning. This is called when we see a relocation against a
3554 // symbol for which has a warning.
3555
3556 template<int size, bool big_endian>
3557 void
3558 Warnings::issue_warning(const Symbol* sym,
3559 const Relocate_info<size, big_endian>* relinfo,
3560 size_t relnum, off_t reloffset) const
3561 {
3562 gold_assert(sym->has_warning());
3563
3564 // We don't want to issue a warning for a relocation against the
3565 // symbol in the same object file in which the symbol is defined.
3566 if (sym->object() == relinfo->object)
3567 return;
3568
3569 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3570 gold_assert(p != this->warnings_.end());
3571 gold_warning_at_location(relinfo, relnum, reloffset,
3572 "%s", p->second.text.c_str());
3573 }
3574
3575 // Instantiate the templates we need. We could use the configure
3576 // script to restrict this to only the ones needed for implemented
3577 // targets.
3578
3579 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3580 template
3581 void
3582 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3583 #endif
3584
3585 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3586 template
3587 void
3588 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3589 #endif
3590
3591 #ifdef HAVE_TARGET_32_LITTLE
3592 template
3593 void
3594 Symbol_table::add_from_relobj<32, false>(
3595 Sized_relobj_file<32, false>* relobj,
3596 const unsigned char* syms,
3597 size_t count,
3598 size_t symndx_offset,
3599 const char* sym_names,
3600 size_t sym_name_size,
3601 Sized_relobj_file<32, false>::Symbols* sympointers,
3602 size_t* defined);
3603 #endif
3604
3605 #ifdef HAVE_TARGET_32_BIG
3606 template
3607 void
3608 Symbol_table::add_from_relobj<32, true>(
3609 Sized_relobj_file<32, true>* relobj,
3610 const unsigned char* syms,
3611 size_t count,
3612 size_t symndx_offset,
3613 const char* sym_names,
3614 size_t sym_name_size,
3615 Sized_relobj_file<32, true>::Symbols* sympointers,
3616 size_t* defined);
3617 #endif
3618
3619 #ifdef HAVE_TARGET_64_LITTLE
3620 template
3621 void
3622 Symbol_table::add_from_relobj<64, false>(
3623 Sized_relobj_file<64, false>* relobj,
3624 const unsigned char* syms,
3625 size_t count,
3626 size_t symndx_offset,
3627 const char* sym_names,
3628 size_t sym_name_size,
3629 Sized_relobj_file<64, false>::Symbols* sympointers,
3630 size_t* defined);
3631 #endif
3632
3633 #ifdef HAVE_TARGET_64_BIG
3634 template
3635 void
3636 Symbol_table::add_from_relobj<64, true>(
3637 Sized_relobj_file<64, true>* relobj,
3638 const unsigned char* syms,
3639 size_t count,
3640 size_t symndx_offset,
3641 const char* sym_names,
3642 size_t sym_name_size,
3643 Sized_relobj_file<64, true>::Symbols* sympointers,
3644 size_t* defined);
3645 #endif
3646
3647 #ifdef HAVE_TARGET_32_LITTLE
3648 template
3649 Symbol*
3650 Symbol_table::add_from_pluginobj<32, false>(
3651 Sized_pluginobj<32, false>* obj,
3652 const char* name,
3653 const char* ver,
3654 elfcpp::Sym<32, false>* sym);
3655 #endif
3656
3657 #ifdef HAVE_TARGET_32_BIG
3658 template
3659 Symbol*
3660 Symbol_table::add_from_pluginobj<32, true>(
3661 Sized_pluginobj<32, true>* obj,
3662 const char* name,
3663 const char* ver,
3664 elfcpp::Sym<32, true>* sym);
3665 #endif
3666
3667 #ifdef HAVE_TARGET_64_LITTLE
3668 template
3669 Symbol*
3670 Symbol_table::add_from_pluginobj<64, false>(
3671 Sized_pluginobj<64, false>* obj,
3672 const char* name,
3673 const char* ver,
3674 elfcpp::Sym<64, false>* sym);
3675 #endif
3676
3677 #ifdef HAVE_TARGET_64_BIG
3678 template
3679 Symbol*
3680 Symbol_table::add_from_pluginobj<64, true>(
3681 Sized_pluginobj<64, true>* obj,
3682 const char* name,
3683 const char* ver,
3684 elfcpp::Sym<64, true>* sym);
3685 #endif
3686
3687 #ifdef HAVE_TARGET_32_LITTLE
3688 template
3689 void
3690 Symbol_table::add_from_dynobj<32, false>(
3691 Sized_dynobj<32, false>* dynobj,
3692 const unsigned char* syms,
3693 size_t count,
3694 const char* sym_names,
3695 size_t sym_name_size,
3696 const unsigned char* versym,
3697 size_t versym_size,
3698 const std::vector<const char*>* version_map,
3699 Sized_relobj_file<32, false>::Symbols* sympointers,
3700 size_t* defined);
3701 #endif
3702
3703 #ifdef HAVE_TARGET_32_BIG
3704 template
3705 void
3706 Symbol_table::add_from_dynobj<32, true>(
3707 Sized_dynobj<32, true>* dynobj,
3708 const unsigned char* syms,
3709 size_t count,
3710 const char* sym_names,
3711 size_t sym_name_size,
3712 const unsigned char* versym,
3713 size_t versym_size,
3714 const std::vector<const char*>* version_map,
3715 Sized_relobj_file<32, true>::Symbols* sympointers,
3716 size_t* defined);
3717 #endif
3718
3719 #ifdef HAVE_TARGET_64_LITTLE
3720 template
3721 void
3722 Symbol_table::add_from_dynobj<64, false>(
3723 Sized_dynobj<64, false>* dynobj,
3724 const unsigned char* syms,
3725 size_t count,
3726 const char* sym_names,
3727 size_t sym_name_size,
3728 const unsigned char* versym,
3729 size_t versym_size,
3730 const std::vector<const char*>* version_map,
3731 Sized_relobj_file<64, false>::Symbols* sympointers,
3732 size_t* defined);
3733 #endif
3734
3735 #ifdef HAVE_TARGET_64_BIG
3736 template
3737 void
3738 Symbol_table::add_from_dynobj<64, true>(
3739 Sized_dynobj<64, true>* dynobj,
3740 const unsigned char* syms,
3741 size_t count,
3742 const char* sym_names,
3743 size_t sym_name_size,
3744 const unsigned char* versym,
3745 size_t versym_size,
3746 const std::vector<const char*>* version_map,
3747 Sized_relobj_file<64, true>::Symbols* sympointers,
3748 size_t* defined);
3749 #endif
3750
3751 #ifdef HAVE_TARGET_32_LITTLE
3752 template
3753 Sized_symbol<32>*
3754 Symbol_table::add_from_incrobj(
3755 Object* obj,
3756 const char* name,
3757 const char* ver,
3758 elfcpp::Sym<32, false>* sym);
3759 #endif
3760
3761 #ifdef HAVE_TARGET_32_BIG
3762 template
3763 Sized_symbol<32>*
3764 Symbol_table::add_from_incrobj(
3765 Object* obj,
3766 const char* name,
3767 const char* ver,
3768 elfcpp::Sym<32, true>* sym);
3769 #endif
3770
3771 #ifdef HAVE_TARGET_64_LITTLE
3772 template
3773 Sized_symbol<64>*
3774 Symbol_table::add_from_incrobj(
3775 Object* obj,
3776 const char* name,
3777 const char* ver,
3778 elfcpp::Sym<64, false>* sym);
3779 #endif
3780
3781 #ifdef HAVE_TARGET_64_BIG
3782 template
3783 Sized_symbol<64>*
3784 Symbol_table::add_from_incrobj(
3785 Object* obj,
3786 const char* name,
3787 const char* ver,
3788 elfcpp::Sym<64, true>* sym);
3789 #endif
3790
3791 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3792 template
3793 void
3794 Symbol_table::define_with_copy_reloc<32>(
3795 Sized_symbol<32>* sym,
3796 Output_data* posd,
3797 elfcpp::Elf_types<32>::Elf_Addr value);
3798 #endif
3799
3800 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3801 template
3802 void
3803 Symbol_table::define_with_copy_reloc<64>(
3804 Sized_symbol<64>* sym,
3805 Output_data* posd,
3806 elfcpp::Elf_types<64>::Elf_Addr value);
3807 #endif
3808
3809 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3810 template
3811 void
3812 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3813 Output_data* od, Value_type value,
3814 Size_type symsize, elfcpp::STT type,
3815 elfcpp::STB binding,
3816 elfcpp::STV visibility,
3817 unsigned char nonvis,
3818 bool offset_is_from_end,
3819 bool is_predefined);
3820 #endif
3821
3822 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3823 template
3824 void
3825 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3826 Output_data* od, Value_type value,
3827 Size_type symsize, elfcpp::STT type,
3828 elfcpp::STB binding,
3829 elfcpp::STV visibility,
3830 unsigned char nonvis,
3831 bool offset_is_from_end,
3832 bool is_predefined);
3833 #endif
3834
3835 #ifdef HAVE_TARGET_32_LITTLE
3836 template
3837 void
3838 Warnings::issue_warning<32, false>(const Symbol* sym,
3839 const Relocate_info<32, false>* relinfo,
3840 size_t relnum, off_t reloffset) const;
3841 #endif
3842
3843 #ifdef HAVE_TARGET_32_BIG
3844 template
3845 void
3846 Warnings::issue_warning<32, true>(const Symbol* sym,
3847 const Relocate_info<32, true>* relinfo,
3848 size_t relnum, off_t reloffset) const;
3849 #endif
3850
3851 #ifdef HAVE_TARGET_64_LITTLE
3852 template
3853 void
3854 Warnings::issue_warning<64, false>(const Symbol* sym,
3855 const Relocate_info<64, false>* relinfo,
3856 size_t relnum, off_t reloffset) const;
3857 #endif
3858
3859 #ifdef HAVE_TARGET_64_BIG
3860 template
3861 void
3862 Warnings::issue_warning<64, true>(const Symbol* sym,
3863 const Relocate_info<64, true>* relinfo,
3864 size_t relnum, off_t reloffset) const;
3865 #endif
3866
3867 } // End namespace gold.
This page took 0.112509 seconds and 5 git commands to generate.