Allow for __gnu_lto_slim prefixed with extra "_"
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except
51 // u1_, u2_ and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 this->is_protected_ = false;
84 this->non_zero_localentry_ = false;
85 }
86
87 // Return the demangled version of the symbol's name, but only
88 // if the --demangle flag was set.
89
90 static std::string
91 demangle(const char* name)
92 {
93 if (!parameters->options().do_demangle())
94 return name;
95
96 // cplus_demangle allocates memory for the result it returns,
97 // and returns NULL if the name is already demangled.
98 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
99 if (demangled_name == NULL)
100 return name;
101
102 std::string retval(demangled_name);
103 free(demangled_name);
104 return retval;
105 }
106
107 std::string
108 Symbol::demangled_name() const
109 {
110 return demangle(this->name());
111 }
112
113 // Initialize the fields in the base class Symbol for SYM in OBJECT.
114
115 template<int size, bool big_endian>
116 void
117 Symbol::init_base_object(const char* name, const char* version, Object* object,
118 const elfcpp::Sym<size, big_endian>& sym,
119 unsigned int st_shndx, bool is_ordinary)
120 {
121 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
122 sym.get_st_visibility(), sym.get_st_nonvis());
123 this->u1_.object = object;
124 this->u2_.shndx = st_shndx;
125 this->is_ordinary_shndx_ = is_ordinary;
126 this->source_ = FROM_OBJECT;
127 this->in_reg_ = !object->is_dynamic();
128 this->in_dyn_ = object->is_dynamic();
129 this->in_real_elf_ = object->pluginobj() == NULL;
130 }
131
132 // Initialize the fields in the base class Symbol for a symbol defined
133 // in an Output_data.
134
135 void
136 Symbol::init_base_output_data(const char* name, const char* version,
137 Output_data* od, elfcpp::STT type,
138 elfcpp::STB binding, elfcpp::STV visibility,
139 unsigned char nonvis, bool offset_is_from_end,
140 bool is_predefined)
141 {
142 this->init_fields(name, version, type, binding, visibility, nonvis);
143 this->u1_.output_data = od;
144 this->u2_.offset_is_from_end = offset_is_from_end;
145 this->source_ = IN_OUTPUT_DATA;
146 this->in_reg_ = true;
147 this->in_real_elf_ = true;
148 this->is_predefined_ = is_predefined;
149 }
150
151 // Initialize the fields in the base class Symbol for a symbol defined
152 // in an Output_segment.
153
154 void
155 Symbol::init_base_output_segment(const char* name, const char* version,
156 Output_segment* os, elfcpp::STT type,
157 elfcpp::STB binding, elfcpp::STV visibility,
158 unsigned char nonvis,
159 Segment_offset_base offset_base,
160 bool is_predefined)
161 {
162 this->init_fields(name, version, type, binding, visibility, nonvis);
163 this->u1_.output_segment = os;
164 this->u2_.offset_base = offset_base;
165 this->source_ = IN_OUTPUT_SEGMENT;
166 this->in_reg_ = true;
167 this->in_real_elf_ = true;
168 this->is_predefined_ = is_predefined;
169 }
170
171 // Initialize the fields in the base class Symbol for a symbol defined
172 // as a constant.
173
174 void
175 Symbol::init_base_constant(const char* name, const char* version,
176 elfcpp::STT type, elfcpp::STB binding,
177 elfcpp::STV visibility, unsigned char nonvis,
178 bool is_predefined)
179 {
180 this->init_fields(name, version, type, binding, visibility, nonvis);
181 this->source_ = IS_CONSTANT;
182 this->in_reg_ = true;
183 this->in_real_elf_ = true;
184 this->is_predefined_ = is_predefined;
185 }
186
187 // Initialize the fields in the base class Symbol for an undefined
188 // symbol.
189
190 void
191 Symbol::init_base_undefined(const char* name, const char* version,
192 elfcpp::STT type, elfcpp::STB binding,
193 elfcpp::STV visibility, unsigned char nonvis)
194 {
195 this->init_fields(name, version, type, binding, visibility, nonvis);
196 this->dynsym_index_ = -1U;
197 this->source_ = IS_UNDEFINED;
198 this->in_reg_ = true;
199 this->in_real_elf_ = true;
200 }
201
202 // Allocate a common symbol in the base.
203
204 void
205 Symbol::allocate_base_common(Output_data* od)
206 {
207 gold_assert(this->is_common());
208 this->source_ = IN_OUTPUT_DATA;
209 this->u1_.output_data = od;
210 this->u2_.offset_is_from_end = false;
211 }
212
213 // Initialize the fields in Sized_symbol for SYM in OBJECT.
214
215 template<int size>
216 template<bool big_endian>
217 void
218 Sized_symbol<size>::init_object(const char* name, const char* version,
219 Object* object,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary)
222 {
223 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
224 this->value_ = sym.get_st_value();
225 this->symsize_ = sym.get_st_size();
226 }
227
228 // Initialize the fields in Sized_symbol for a symbol defined in an
229 // Output_data.
230
231 template<int size>
232 void
233 Sized_symbol<size>::init_output_data(const char* name, const char* version,
234 Output_data* od, Value_type value,
235 Size_type symsize, elfcpp::STT type,
236 elfcpp::STB binding,
237 elfcpp::STV visibility,
238 unsigned char nonvis,
239 bool offset_is_from_end,
240 bool is_predefined)
241 {
242 this->init_base_output_data(name, version, od, type, binding, visibility,
243 nonvis, offset_is_from_end, is_predefined);
244 this->value_ = value;
245 this->symsize_ = symsize;
246 }
247
248 // Initialize the fields in Sized_symbol for a symbol defined in an
249 // Output_segment.
250
251 template<int size>
252 void
253 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
254 Output_segment* os, Value_type value,
255 Size_type symsize, elfcpp::STT type,
256 elfcpp::STB binding,
257 elfcpp::STV visibility,
258 unsigned char nonvis,
259 Segment_offset_base offset_base,
260 bool is_predefined)
261 {
262 this->init_base_output_segment(name, version, os, type, binding, visibility,
263 nonvis, offset_base, is_predefined);
264 this->value_ = value;
265 this->symsize_ = symsize;
266 }
267
268 // Initialize the fields in Sized_symbol for a symbol defined as a
269 // constant.
270
271 template<int size>
272 void
273 Sized_symbol<size>::init_constant(const char* name, const char* version,
274 Value_type value, Size_type symsize,
275 elfcpp::STT type, elfcpp::STB binding,
276 elfcpp::STV visibility, unsigned char nonvis,
277 bool is_predefined)
278 {
279 this->init_base_constant(name, version, type, binding, visibility, nonvis,
280 is_predefined);
281 this->value_ = value;
282 this->symsize_ = symsize;
283 }
284
285 // Initialize the fields in Sized_symbol for an undefined symbol.
286
287 template<int size>
288 void
289 Sized_symbol<size>::init_undefined(const char* name, const char* version,
290 Value_type value, elfcpp::STT type,
291 elfcpp::STB binding, elfcpp::STV visibility,
292 unsigned char nonvis)
293 {
294 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
295 this->value_ = value;
296 this->symsize_ = 0;
297 }
298
299 // Return an allocated string holding the symbol's name as
300 // name@version. This is used for relocatable links.
301
302 std::string
303 Symbol::versioned_name() const
304 {
305 gold_assert(this->version_ != NULL);
306 std::string ret = this->name_;
307 ret.push_back('@');
308 if (this->is_def_)
309 ret.push_back('@');
310 ret += this->version_;
311 return ret;
312 }
313
314 // Return true if SHNDX represents a common symbol.
315
316 bool
317 Symbol::is_common_shndx(unsigned int shndx)
318 {
319 return (shndx == elfcpp::SHN_COMMON
320 || shndx == parameters->target().small_common_shndx()
321 || shndx == parameters->target().large_common_shndx());
322 }
323
324 // Allocate a common symbol.
325
326 template<int size>
327 void
328 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
329 {
330 this->allocate_base_common(od);
331 this->value_ = value;
332 }
333
334 // The ""'s around str ensure str is a string literal, so sizeof works.
335 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
336
337 // Return true if this symbol should be added to the dynamic symbol
338 // table.
339
340 bool
341 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
342 {
343 // If the symbol is only present on plugin files, the plugin decided we
344 // don't need it.
345 if (!this->in_real_elf())
346 return false;
347
348 // If the symbol is used by a dynamic relocation, we need to add it.
349 if (this->needs_dynsym_entry())
350 return true;
351
352 // If this symbol's section is not added, the symbol need not be added.
353 // The section may have been GCed. Note that export_dynamic is being
354 // overridden here. This should not be done for shared objects.
355 if (parameters->options().gc_sections()
356 && !parameters->options().shared()
357 && this->source() == Symbol::FROM_OBJECT
358 && !this->object()->is_dynamic())
359 {
360 Relobj* relobj = static_cast<Relobj*>(this->object());
361 bool is_ordinary;
362 unsigned int shndx = this->shndx(&is_ordinary);
363 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
364 && !relobj->is_section_included(shndx)
365 && !symtab->is_section_folded(relobj, shndx))
366 return false;
367 }
368
369 // If the symbol was forced dynamic in a --dynamic-list file
370 // or an --export-dynamic-symbol option, add it.
371 if (!this->is_from_dynobj()
372 && (parameters->options().in_dynamic_list(this->name())
373 || parameters->options().is_export_dynamic_symbol(this->name())))
374 {
375 if (!this->is_forced_local())
376 return true;
377 gold_warning(_("Cannot export local symbol '%s'"),
378 this->demangled_name().c_str());
379 return false;
380 }
381
382 // If the symbol was forced local in a version script, do not add it.
383 if (this->is_forced_local())
384 return false;
385
386 // If dynamic-list-data was specified, add any STT_OBJECT.
387 if (parameters->options().dynamic_list_data()
388 && !this->is_from_dynobj()
389 && this->type() == elfcpp::STT_OBJECT)
390 return true;
391
392 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
393 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
394 if ((parameters->options().dynamic_list_cpp_new()
395 || parameters->options().dynamic_list_cpp_typeinfo())
396 && !this->is_from_dynobj())
397 {
398 // TODO(csilvers): We could probably figure out if we're an operator
399 // new/delete or typeinfo without the need to demangle.
400 char* demangled_name = cplus_demangle(this->name(),
401 DMGL_ANSI | DMGL_PARAMS);
402 if (demangled_name == NULL)
403 {
404 // Not a C++ symbol, so it can't satisfy these flags
405 }
406 else if (parameters->options().dynamic_list_cpp_new()
407 && (strprefix(demangled_name, "operator new")
408 || strprefix(demangled_name, "operator delete")))
409 {
410 free(demangled_name);
411 return true;
412 }
413 else if (parameters->options().dynamic_list_cpp_typeinfo()
414 && (strprefix(demangled_name, "typeinfo name for")
415 || strprefix(demangled_name, "typeinfo for")))
416 {
417 free(demangled_name);
418 return true;
419 }
420 else
421 free(demangled_name);
422 }
423
424 // If exporting all symbols or building a shared library,
425 // or the symbol should be globally unique (GNU_UNIQUE),
426 // and the symbol is defined in a regular object and is
427 // externally visible, we need to add it.
428 if ((parameters->options().export_dynamic()
429 || parameters->options().shared()
430 || (parameters->options().gnu_unique()
431 && this->binding() == elfcpp::STB_GNU_UNIQUE))
432 && !this->is_from_dynobj()
433 && !this->is_undefined()
434 && this->is_externally_visible())
435 return true;
436
437 return false;
438 }
439
440 // Return true if the final value of this symbol is known at link
441 // time.
442
443 bool
444 Symbol::final_value_is_known() const
445 {
446 // If we are not generating an executable, then no final values are
447 // known, since they will change at runtime, with the exception of
448 // TLS symbols in a position-independent executable.
449 if ((parameters->options().output_is_position_independent()
450 || parameters->options().relocatable())
451 && !(this->type() == elfcpp::STT_TLS
452 && parameters->options().pie()))
453 return false;
454
455 // If the symbol is not from an object file, and is not undefined,
456 // then it is defined, and known.
457 if (this->source_ != FROM_OBJECT)
458 {
459 if (this->source_ != IS_UNDEFINED)
460 return true;
461 }
462 else
463 {
464 // If the symbol is from a dynamic object, then the final value
465 // is not known.
466 if (this->object()->is_dynamic())
467 return false;
468
469 // If the symbol is not undefined (it is defined or common),
470 // then the final value is known.
471 if (!this->is_undefined())
472 return true;
473 }
474
475 // If the symbol is undefined, then whether the final value is known
476 // depends on whether we are doing a static link. If we are doing a
477 // dynamic link, then the final value could be filled in at runtime.
478 // This could reasonably be the case for a weak undefined symbol.
479 return parameters->doing_static_link();
480 }
481
482 // Return the output section where this symbol is defined.
483
484 Output_section*
485 Symbol::output_section() const
486 {
487 switch (this->source_)
488 {
489 case FROM_OBJECT:
490 {
491 unsigned int shndx = this->u2_.shndx;
492 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
493 {
494 gold_assert(!this->u1_.object->is_dynamic());
495 gold_assert(this->u1_.object->pluginobj() == NULL);
496 Relobj* relobj = static_cast<Relobj*>(this->u1_.object);
497 return relobj->output_section(shndx);
498 }
499 return NULL;
500 }
501
502 case IN_OUTPUT_DATA:
503 return this->u1_.output_data->output_section();
504
505 case IN_OUTPUT_SEGMENT:
506 case IS_CONSTANT:
507 case IS_UNDEFINED:
508 return NULL;
509
510 default:
511 gold_unreachable();
512 }
513 }
514
515 // Set the symbol's output section. This is used for symbols defined
516 // in scripts. This should only be called after the symbol table has
517 // been finalized.
518
519 void
520 Symbol::set_output_section(Output_section* os)
521 {
522 switch (this->source_)
523 {
524 case FROM_OBJECT:
525 case IN_OUTPUT_DATA:
526 gold_assert(this->output_section() == os);
527 break;
528 case IS_CONSTANT:
529 this->source_ = IN_OUTPUT_DATA;
530 this->u1_.output_data = os;
531 this->u2_.offset_is_from_end = false;
532 break;
533 case IN_OUTPUT_SEGMENT:
534 case IS_UNDEFINED:
535 default:
536 gold_unreachable();
537 }
538 }
539
540 // Set the symbol's output segment. This is used for pre-defined
541 // symbols whose segments aren't known until after layout is done
542 // (e.g., __ehdr_start).
543
544 void
545 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
546 {
547 gold_assert(this->is_predefined_);
548 this->source_ = IN_OUTPUT_SEGMENT;
549 this->u1_.output_segment = os;
550 this->u2_.offset_base = base;
551 }
552
553 // Set the symbol to undefined. This is used for pre-defined
554 // symbols whose segments aren't known until after layout is done
555 // (e.g., __ehdr_start).
556
557 void
558 Symbol::set_undefined()
559 {
560 this->source_ = IS_UNDEFINED;
561 this->is_predefined_ = false;
562 }
563
564 // Class Symbol_table.
565
566 Symbol_table::Symbol_table(unsigned int count,
567 const Version_script_info& version_script)
568 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
569 forwarders_(), commons_(), tls_commons_(), small_commons_(),
570 large_commons_(), forced_locals_(), warnings_(),
571 version_script_(version_script), gc_(NULL), icf_(NULL),
572 target_symbols_()
573 {
574 namepool_.reserve(count);
575 }
576
577 Symbol_table::~Symbol_table()
578 {
579 }
580
581 // The symbol table key equality function. This is called with
582 // Stringpool keys.
583
584 inline bool
585 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
586 const Symbol_table_key& k2) const
587 {
588 return k1.first == k2.first && k1.second == k2.second;
589 }
590
591 bool
592 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
593 {
594 return (parameters->options().icf_enabled()
595 && this->icf_->is_section_folded(obj, shndx));
596 }
597
598 // For symbols that have been listed with a -u or --export-dynamic-symbol
599 // option, add them to the work list to avoid gc'ing them.
600
601 void
602 Symbol_table::gc_mark_undef_symbols(Layout* layout)
603 {
604 for (options::String_set::const_iterator p =
605 parameters->options().undefined_begin();
606 p != parameters->options().undefined_end();
607 ++p)
608 {
609 const char* name = p->c_str();
610 Symbol* sym = this->lookup(name);
611 gold_assert(sym != NULL);
612 if (sym->source() == Symbol::FROM_OBJECT
613 && !sym->object()->is_dynamic())
614 {
615 this->gc_mark_symbol(sym);
616 }
617 }
618
619 for (options::String_set::const_iterator p =
620 parameters->options().export_dynamic_symbol_begin();
621 p != parameters->options().export_dynamic_symbol_end();
622 ++p)
623 {
624 const char* name = p->c_str();
625 Symbol* sym = this->lookup(name);
626 // It's not an error if a symbol named by --export-dynamic-symbol
627 // is undefined.
628 if (sym != NULL
629 && sym->source() == Symbol::FROM_OBJECT
630 && !sym->object()->is_dynamic())
631 {
632 this->gc_mark_symbol(sym);
633 }
634 }
635
636 for (Script_options::referenced_const_iterator p =
637 layout->script_options()->referenced_begin();
638 p != layout->script_options()->referenced_end();
639 ++p)
640 {
641 Symbol* sym = this->lookup(p->c_str());
642 gold_assert(sym != NULL);
643 if (sym->source() == Symbol::FROM_OBJECT
644 && !sym->object()->is_dynamic())
645 {
646 this->gc_mark_symbol(sym);
647 }
648 }
649 }
650
651 void
652 Symbol_table::gc_mark_symbol(Symbol* sym)
653 {
654 // Add the object and section to the work list.
655 bool is_ordinary;
656 unsigned int shndx = sym->shndx(&is_ordinary);
657 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
658 {
659 gold_assert(this->gc_!= NULL);
660 Relobj* relobj = static_cast<Relobj*>(sym->object());
661 this->gc_->worklist().push_back(Section_id(relobj, shndx));
662 }
663 parameters->target().gc_mark_symbol(this, sym);
664 }
665
666 // When doing garbage collection, keep symbols that have been seen in
667 // dynamic objects.
668 inline void
669 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
670 {
671 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
672 && !sym->object()->is_dynamic())
673 this->gc_mark_symbol(sym);
674 }
675
676 // Make TO a symbol which forwards to FROM.
677
678 void
679 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
680 {
681 gold_assert(from != to);
682 gold_assert(!from->is_forwarder() && !to->is_forwarder());
683 this->forwarders_[from] = to;
684 from->set_forwarder();
685 }
686
687 // Resolve the forwards from FROM, returning the real symbol.
688
689 Symbol*
690 Symbol_table::resolve_forwards(const Symbol* from) const
691 {
692 gold_assert(from->is_forwarder());
693 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
694 this->forwarders_.find(from);
695 gold_assert(p != this->forwarders_.end());
696 return p->second;
697 }
698
699 // Look up a symbol by name.
700
701 Symbol*
702 Symbol_table::lookup(const char* name, const char* version) const
703 {
704 Stringpool::Key name_key;
705 name = this->namepool_.find(name, &name_key);
706 if (name == NULL)
707 return NULL;
708
709 Stringpool::Key version_key = 0;
710 if (version != NULL)
711 {
712 version = this->namepool_.find(version, &version_key);
713 if (version == NULL)
714 return NULL;
715 }
716
717 Symbol_table_key key(name_key, version_key);
718 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
719 if (p == this->table_.end())
720 return NULL;
721 return p->second;
722 }
723
724 // Resolve a Symbol with another Symbol. This is only used in the
725 // unusual case where there are references to both an unversioned
726 // symbol and a symbol with a version, and we then discover that that
727 // version is the default version. Because this is unusual, we do
728 // this the slow way, by converting back to an ELF symbol.
729
730 template<int size, bool big_endian>
731 void
732 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
733 {
734 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
735 elfcpp::Sym_write<size, big_endian> esym(buf);
736 // We don't bother to set the st_name or the st_shndx field.
737 esym.put_st_value(from->value());
738 esym.put_st_size(from->symsize());
739 esym.put_st_info(from->binding(), from->type());
740 esym.put_st_other(from->visibility(), from->nonvis());
741 bool is_ordinary;
742 unsigned int shndx = from->shndx(&is_ordinary);
743 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
744 from->version(), true);
745 if (from->in_reg())
746 to->set_in_reg();
747 if (from->in_dyn())
748 to->set_in_dyn();
749 if (parameters->options().gc_sections())
750 this->gc_mark_dyn_syms(to);
751 }
752
753 // Record that a symbol is forced to be local by a version script or
754 // by visibility.
755
756 void
757 Symbol_table::force_local(Symbol* sym)
758 {
759 if (!sym->is_defined() && !sym->is_common())
760 return;
761 if (sym->is_forced_local())
762 {
763 // We already got this one.
764 return;
765 }
766 sym->set_is_forced_local();
767 this->forced_locals_.push_back(sym);
768 }
769
770 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
771 // is only called for undefined symbols, when at least one --wrap
772 // option was used.
773
774 const char*
775 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
776 {
777 // For some targets, we need to ignore a specific character when
778 // wrapping, and add it back later.
779 char prefix = '\0';
780 if (name[0] == parameters->target().wrap_char())
781 {
782 prefix = name[0];
783 ++name;
784 }
785
786 if (parameters->options().is_wrap(name))
787 {
788 // Turn NAME into __wrap_NAME.
789 std::string s;
790 if (prefix != '\0')
791 s += prefix;
792 s += "__wrap_";
793 s += name;
794
795 // This will give us both the old and new name in NAMEPOOL_, but
796 // that is OK. Only the versions we need will wind up in the
797 // real string table in the output file.
798 return this->namepool_.add(s.c_str(), true, name_key);
799 }
800
801 const char* const real_prefix = "__real_";
802 const size_t real_prefix_length = strlen(real_prefix);
803 if (strncmp(name, real_prefix, real_prefix_length) == 0
804 && parameters->options().is_wrap(name + real_prefix_length))
805 {
806 // Turn __real_NAME into NAME.
807 std::string s;
808 if (prefix != '\0')
809 s += prefix;
810 s += name + real_prefix_length;
811 return this->namepool_.add(s.c_str(), true, name_key);
812 }
813
814 return name;
815 }
816
817 // This is called when we see a symbol NAME/VERSION, and the symbol
818 // already exists in the symbol table, and VERSION is marked as being
819 // the default version. SYM is the NAME/VERSION symbol we just added.
820 // DEFAULT_IS_NEW is true if this is the first time we have seen the
821 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
822
823 template<int size, bool big_endian>
824 void
825 Symbol_table::define_default_version(Sized_symbol<size>* sym,
826 bool default_is_new,
827 Symbol_table_type::iterator pdef)
828 {
829 if (default_is_new)
830 {
831 // This is the first time we have seen NAME/NULL. Make
832 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
833 // version.
834 pdef->second = sym;
835 sym->set_is_default();
836 }
837 else if (pdef->second == sym)
838 {
839 // NAME/NULL already points to NAME/VERSION. Don't mark the
840 // symbol as the default if it is not already the default.
841 }
842 else
843 {
844 // This is the unfortunate case where we already have entries
845 // for both NAME/VERSION and NAME/NULL. We now see a symbol
846 // NAME/VERSION where VERSION is the default version. We have
847 // already resolved this new symbol with the existing
848 // NAME/VERSION symbol.
849
850 // It's possible that NAME/NULL and NAME/VERSION are both
851 // defined in regular objects. This can only happen if one
852 // object file defines foo and another defines foo@@ver. This
853 // is somewhat obscure, but we call it a multiple definition
854 // error.
855
856 // It's possible that NAME/NULL actually has a version, in which
857 // case it won't be the same as VERSION. This happens with
858 // ver_test_7.so in the testsuite for the symbol t2_2. We see
859 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
860 // then see an unadorned t2_2 in an object file and give it
861 // version VER1 from the version script. This looks like a
862 // default definition for VER1, so it looks like we should merge
863 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
864 // not obvious that this is an error, either. So we just punt.
865
866 // If one of the symbols has non-default visibility, and the
867 // other is defined in a shared object, then they are different
868 // symbols.
869
870 // If the two symbols are from different shared objects,
871 // they are different symbols.
872
873 // Otherwise, we just resolve the symbols as though they were
874 // the same.
875
876 if (pdef->second->version() != NULL)
877 gold_assert(pdef->second->version() != sym->version());
878 else if (sym->visibility() != elfcpp::STV_DEFAULT
879 && pdef->second->is_from_dynobj())
880 ;
881 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
882 && sym->is_from_dynobj())
883 ;
884 else if (pdef->second->is_from_dynobj()
885 && sym->is_from_dynobj()
886 && pdef->second->is_defined()
887 && pdef->second->object() != sym->object())
888 ;
889 else
890 {
891 const Sized_symbol<size>* symdef;
892 symdef = this->get_sized_symbol<size>(pdef->second);
893 Symbol_table::resolve<size, big_endian>(sym, symdef);
894 this->make_forwarder(pdef->second, sym);
895 pdef->second = sym;
896 sym->set_is_default();
897 }
898 }
899 }
900
901 // Add one symbol from OBJECT to the symbol table. NAME is symbol
902 // name and VERSION is the version; both are canonicalized. DEF is
903 // whether this is the default version. ST_SHNDX is the symbol's
904 // section index; IS_ORDINARY is whether this is a normal section
905 // rather than a special code.
906
907 // If IS_DEFAULT_VERSION is true, then this is the definition of a
908 // default version of a symbol. That means that any lookup of
909 // NAME/NULL and any lookup of NAME/VERSION should always return the
910 // same symbol. This is obvious for references, but in particular we
911 // want to do this for definitions: overriding NAME/NULL should also
912 // override NAME/VERSION. If we don't do that, it would be very hard
913 // to override functions in a shared library which uses versioning.
914
915 // We implement this by simply making both entries in the hash table
916 // point to the same Symbol structure. That is easy enough if this is
917 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
918 // that we have seen both already, in which case they will both have
919 // independent entries in the symbol table. We can't simply change
920 // the symbol table entry, because we have pointers to the entries
921 // attached to the object files. So we mark the entry attached to the
922 // object file as a forwarder, and record it in the forwarders_ map.
923 // Note that entries in the hash table will never be marked as
924 // forwarders.
925 //
926 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
927 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
928 // for a special section code. ST_SHNDX may be modified if the symbol
929 // is defined in a section being discarded.
930
931 template<int size, bool big_endian>
932 Sized_symbol<size>*
933 Symbol_table::add_from_object(Object* object,
934 const char* name,
935 Stringpool::Key name_key,
936 const char* version,
937 Stringpool::Key version_key,
938 bool is_default_version,
939 const elfcpp::Sym<size, big_endian>& sym,
940 unsigned int st_shndx,
941 bool is_ordinary,
942 unsigned int orig_st_shndx)
943 {
944 // Print a message if this symbol is being traced.
945 if (parameters->options().is_trace_symbol(name))
946 {
947 if (orig_st_shndx == elfcpp::SHN_UNDEF)
948 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
949 else
950 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
951 }
952
953 // For an undefined symbol, we may need to adjust the name using
954 // --wrap.
955 if (orig_st_shndx == elfcpp::SHN_UNDEF
956 && parameters->options().any_wrap())
957 {
958 const char* wrap_name = this->wrap_symbol(name, &name_key);
959 if (wrap_name != name)
960 {
961 // If we see a reference to malloc with version GLIBC_2.0,
962 // and we turn it into a reference to __wrap_malloc, then we
963 // discard the version number. Otherwise the user would be
964 // required to specify the correct version for
965 // __wrap_malloc.
966 version = NULL;
967 version_key = 0;
968 name = wrap_name;
969 }
970 }
971
972 Symbol* const snull = NULL;
973 std::pair<typename Symbol_table_type::iterator, bool> ins =
974 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
975 snull));
976
977 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
978 std::make_pair(this->table_.end(), false);
979 if (is_default_version)
980 {
981 const Stringpool::Key vnull_key = 0;
982 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
983 vnull_key),
984 snull));
985 }
986
987 // ins.first: an iterator, which is a pointer to a pair.
988 // ins.first->first: the key (a pair of name and version).
989 // ins.first->second: the value (Symbol*).
990 // ins.second: true if new entry was inserted, false if not.
991
992 Sized_symbol<size>* ret;
993 bool was_undefined;
994 bool was_common;
995 if (!ins.second)
996 {
997 // We already have an entry for NAME/VERSION.
998 ret = this->get_sized_symbol<size>(ins.first->second);
999 gold_assert(ret != NULL);
1000
1001 was_undefined = ret->is_undefined();
1002 // Commons from plugins are just placeholders.
1003 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1004
1005 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1006 version, is_default_version);
1007 if (parameters->options().gc_sections())
1008 this->gc_mark_dyn_syms(ret);
1009
1010 if (is_default_version)
1011 this->define_default_version<size, big_endian>(ret, insdefault.second,
1012 insdefault.first);
1013 else
1014 {
1015 bool dummy;
1016 if (version != NULL
1017 && ret->source() == Symbol::FROM_OBJECT
1018 && ret->object() == object
1019 && is_ordinary
1020 && ret->shndx(&dummy) == st_shndx
1021 && ret->is_default())
1022 {
1023 // We have seen NAME/VERSION already, and marked it as the
1024 // default version, but now we see a definition for
1025 // NAME/VERSION that is not the default version. This can
1026 // happen when the assembler generates two symbols for
1027 // a symbol as a result of a ".symver foo,foo@VER"
1028 // directive. We see the first unversioned symbol and
1029 // we may mark it as the default version (from a
1030 // version script); then we see the second versioned
1031 // symbol and we need to override the first.
1032 // In any other case, the two symbols should have generated
1033 // a multiple definition error.
1034 // (See PR gold/18703.)
1035 ret->set_is_not_default();
1036 const Stringpool::Key vnull_key = 0;
1037 this->table_.erase(std::make_pair(name_key, vnull_key));
1038 }
1039 }
1040 }
1041 else
1042 {
1043 // This is the first time we have seen NAME/VERSION.
1044 gold_assert(ins.first->second == NULL);
1045
1046 if (is_default_version && !insdefault.second)
1047 {
1048 // We already have an entry for NAME/NULL. If we override
1049 // it, then change it to NAME/VERSION.
1050 ret = this->get_sized_symbol<size>(insdefault.first->second);
1051
1052 was_undefined = ret->is_undefined();
1053 // Commons from plugins are just placeholders.
1054 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1055
1056 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1057 version, is_default_version);
1058 if (parameters->options().gc_sections())
1059 this->gc_mark_dyn_syms(ret);
1060 ins.first->second = ret;
1061 }
1062 else
1063 {
1064 was_undefined = false;
1065 was_common = false;
1066
1067 Sized_target<size, big_endian>* target =
1068 parameters->sized_target<size, big_endian>();
1069 if (!target->has_make_symbol())
1070 ret = new Sized_symbol<size>();
1071 else
1072 {
1073 ret = target->make_symbol(name, sym.get_st_type(), object,
1074 st_shndx, sym.get_st_value());
1075 if (ret == NULL)
1076 {
1077 // This means that we don't want a symbol table
1078 // entry after all.
1079 if (!is_default_version)
1080 this->table_.erase(ins.first);
1081 else
1082 {
1083 this->table_.erase(insdefault.first);
1084 // Inserting INSDEFAULT invalidated INS.
1085 this->table_.erase(std::make_pair(name_key,
1086 version_key));
1087 }
1088 return NULL;
1089 }
1090 }
1091
1092 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1093
1094 ins.first->second = ret;
1095 if (is_default_version)
1096 {
1097 // This is the first time we have seen NAME/NULL. Point
1098 // it at the new entry for NAME/VERSION.
1099 gold_assert(insdefault.second);
1100 insdefault.first->second = ret;
1101 }
1102 }
1103
1104 if (is_default_version)
1105 ret->set_is_default();
1106 }
1107
1108 // Record every time we see a new undefined symbol, to speed up
1109 // archive groups.
1110 if (!was_undefined && ret->is_undefined())
1111 {
1112 ++this->saw_undefined_;
1113 if (parameters->options().has_plugins())
1114 parameters->options().plugins()->new_undefined_symbol(ret);
1115 }
1116
1117 // Keep track of common symbols, to speed up common symbol
1118 // allocation. Don't record commons from plugin objects;
1119 // we need to wait until we see the real symbol in the
1120 // replacement file.
1121 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1122 {
1123 if (ret->type() == elfcpp::STT_TLS)
1124 this->tls_commons_.push_back(ret);
1125 else if (!is_ordinary
1126 && st_shndx == parameters->target().small_common_shndx())
1127 this->small_commons_.push_back(ret);
1128 else if (!is_ordinary
1129 && st_shndx == parameters->target().large_common_shndx())
1130 this->large_commons_.push_back(ret);
1131 else
1132 this->commons_.push_back(ret);
1133 }
1134
1135 // If we're not doing a relocatable link, then any symbol with
1136 // hidden or internal visibility is local.
1137 if ((ret->visibility() == elfcpp::STV_HIDDEN
1138 || ret->visibility() == elfcpp::STV_INTERNAL)
1139 && (ret->binding() == elfcpp::STB_GLOBAL
1140 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1141 || ret->binding() == elfcpp::STB_WEAK)
1142 && !parameters->options().relocatable())
1143 this->force_local(ret);
1144
1145 return ret;
1146 }
1147
1148 // Add all the symbols in a relocatable object to the hash table.
1149
1150 template<int size, bool big_endian>
1151 void
1152 Symbol_table::add_from_relobj(
1153 Sized_relobj_file<size, big_endian>* relobj,
1154 const unsigned char* syms,
1155 size_t count,
1156 size_t symndx_offset,
1157 const char* sym_names,
1158 size_t sym_name_size,
1159 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1160 size_t* defined)
1161 {
1162 *defined = 0;
1163
1164 gold_assert(size == parameters->target().get_size());
1165
1166 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1167
1168 const bool just_symbols = relobj->just_symbols();
1169
1170 const unsigned char* p = syms;
1171 for (size_t i = 0; i < count; ++i, p += sym_size)
1172 {
1173 (*sympointers)[i] = NULL;
1174
1175 elfcpp::Sym<size, big_endian> sym(p);
1176
1177 unsigned int st_name = sym.get_st_name();
1178 if (st_name >= sym_name_size)
1179 {
1180 relobj->error(_("bad global symbol name offset %u at %zu"),
1181 st_name, i);
1182 continue;
1183 }
1184
1185 const char* name = sym_names + st_name;
1186
1187 if (!parameters->options().relocatable()
1188 && name[0] == '_'
1189 && name[1] == '_'
1190 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1191 gold_info(_("%s: plugin needed to handle lto object"),
1192 relobj->name().c_str());
1193
1194 bool is_ordinary;
1195 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1196 sym.get_st_shndx(),
1197 &is_ordinary);
1198 unsigned int orig_st_shndx = st_shndx;
1199 if (!is_ordinary)
1200 orig_st_shndx = elfcpp::SHN_UNDEF;
1201
1202 if (st_shndx != elfcpp::SHN_UNDEF)
1203 ++*defined;
1204
1205 // A symbol defined in a section which we are not including must
1206 // be treated as an undefined symbol.
1207 bool is_defined_in_discarded_section = false;
1208 if (st_shndx != elfcpp::SHN_UNDEF
1209 && is_ordinary
1210 && !relobj->is_section_included(st_shndx)
1211 && !this->is_section_folded(relobj, st_shndx))
1212 {
1213 st_shndx = elfcpp::SHN_UNDEF;
1214 is_defined_in_discarded_section = true;
1215 }
1216
1217 // In an object file, an '@' in the name separates the symbol
1218 // name from the version name. If there are two '@' characters,
1219 // this is the default version.
1220 const char* ver = strchr(name, '@');
1221 Stringpool::Key ver_key = 0;
1222 int namelen = 0;
1223 // IS_DEFAULT_VERSION: is the version default?
1224 // IS_FORCED_LOCAL: is the symbol forced local?
1225 bool is_default_version = false;
1226 bool is_forced_local = false;
1227
1228 // FIXME: For incremental links, we don't store version information,
1229 // so we need to ignore version symbols for now.
1230 if (parameters->incremental_update() && ver != NULL)
1231 {
1232 namelen = ver - name;
1233 ver = NULL;
1234 }
1235
1236 if (ver != NULL)
1237 {
1238 // The symbol name is of the form foo@VERSION or foo@@VERSION
1239 namelen = ver - name;
1240 ++ver;
1241 if (*ver == '@')
1242 {
1243 is_default_version = true;
1244 ++ver;
1245 }
1246 ver = this->namepool_.add(ver, true, &ver_key);
1247 }
1248 // We don't want to assign a version to an undefined symbol,
1249 // even if it is listed in the version script. FIXME: What
1250 // about a common symbol?
1251 else
1252 {
1253 namelen = strlen(name);
1254 if (!this->version_script_.empty()
1255 && st_shndx != elfcpp::SHN_UNDEF)
1256 {
1257 // The symbol name did not have a version, but the
1258 // version script may assign a version anyway.
1259 std::string version;
1260 bool is_global;
1261 if (this->version_script_.get_symbol_version(name, &version,
1262 &is_global))
1263 {
1264 if (!is_global)
1265 is_forced_local = true;
1266 else if (!version.empty())
1267 {
1268 ver = this->namepool_.add_with_length(version.c_str(),
1269 version.length(),
1270 true,
1271 &ver_key);
1272 is_default_version = true;
1273 }
1274 }
1275 }
1276 }
1277
1278 elfcpp::Sym<size, big_endian>* psym = &sym;
1279 unsigned char symbuf[sym_size];
1280 elfcpp::Sym<size, big_endian> sym2(symbuf);
1281 if (just_symbols)
1282 {
1283 memcpy(symbuf, p, sym_size);
1284 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1285 if (orig_st_shndx != elfcpp::SHN_UNDEF
1286 && is_ordinary
1287 && relobj->e_type() == elfcpp::ET_REL)
1288 {
1289 // Symbol values in relocatable object files are section
1290 // relative. This is normally what we want, but since here
1291 // we are converting the symbol to absolute we need to add
1292 // the section address. The section address in an object
1293 // file is normally zero, but people can use a linker
1294 // script to change it.
1295 sw.put_st_value(sym.get_st_value()
1296 + relobj->section_address(orig_st_shndx));
1297 }
1298 st_shndx = elfcpp::SHN_ABS;
1299 is_ordinary = false;
1300 psym = &sym2;
1301 }
1302
1303 // Fix up visibility if object has no-export set.
1304 if (relobj->no_export()
1305 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1306 {
1307 // We may have copied symbol already above.
1308 if (psym != &sym2)
1309 {
1310 memcpy(symbuf, p, sym_size);
1311 psym = &sym2;
1312 }
1313
1314 elfcpp::STV visibility = sym2.get_st_visibility();
1315 if (visibility == elfcpp::STV_DEFAULT
1316 || visibility == elfcpp::STV_PROTECTED)
1317 {
1318 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1319 unsigned char nonvis = sym2.get_st_nonvis();
1320 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1321 }
1322 }
1323
1324 Stringpool::Key name_key;
1325 name = this->namepool_.add_with_length(name, namelen, true,
1326 &name_key);
1327
1328 Sized_symbol<size>* res;
1329 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1330 is_default_version, *psym, st_shndx,
1331 is_ordinary, orig_st_shndx);
1332
1333 if (res == NULL)
1334 continue;
1335
1336 if (is_forced_local)
1337 this->force_local(res);
1338
1339 // Do not treat this symbol as garbage if this symbol will be
1340 // exported to the dynamic symbol table. This is true when
1341 // building a shared library or using --export-dynamic and
1342 // the symbol is externally visible.
1343 if (parameters->options().gc_sections()
1344 && res->is_externally_visible()
1345 && !res->is_from_dynobj()
1346 && (parameters->options().shared()
1347 || parameters->options().export_dynamic()
1348 || parameters->options().in_dynamic_list(res->name())))
1349 this->gc_mark_symbol(res);
1350
1351 if (is_defined_in_discarded_section)
1352 res->set_is_defined_in_discarded_section();
1353
1354 (*sympointers)[i] = res;
1355 }
1356 }
1357
1358 // Add a symbol from a plugin-claimed file.
1359
1360 template<int size, bool big_endian>
1361 Symbol*
1362 Symbol_table::add_from_pluginobj(
1363 Sized_pluginobj<size, big_endian>* obj,
1364 const char* name,
1365 const char* ver,
1366 elfcpp::Sym<size, big_endian>* sym)
1367 {
1368 unsigned int st_shndx = sym->get_st_shndx();
1369 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1370
1371 Stringpool::Key ver_key = 0;
1372 bool is_default_version = false;
1373 bool is_forced_local = false;
1374
1375 if (ver != NULL)
1376 {
1377 ver = this->namepool_.add(ver, true, &ver_key);
1378 }
1379 // We don't want to assign a version to an undefined symbol,
1380 // even if it is listed in the version script. FIXME: What
1381 // about a common symbol?
1382 else
1383 {
1384 if (!this->version_script_.empty()
1385 && st_shndx != elfcpp::SHN_UNDEF)
1386 {
1387 // The symbol name did not have a version, but the
1388 // version script may assign a version anyway.
1389 std::string version;
1390 bool is_global;
1391 if (this->version_script_.get_symbol_version(name, &version,
1392 &is_global))
1393 {
1394 if (!is_global)
1395 is_forced_local = true;
1396 else if (!version.empty())
1397 {
1398 ver = this->namepool_.add_with_length(version.c_str(),
1399 version.length(),
1400 true,
1401 &ver_key);
1402 is_default_version = true;
1403 }
1404 }
1405 }
1406 }
1407
1408 Stringpool::Key name_key;
1409 name = this->namepool_.add(name, true, &name_key);
1410
1411 Sized_symbol<size>* res;
1412 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1413 is_default_version, *sym, st_shndx,
1414 is_ordinary, st_shndx);
1415
1416 if (res == NULL)
1417 return NULL;
1418
1419 if (is_forced_local)
1420 this->force_local(res);
1421
1422 return res;
1423 }
1424
1425 // Add all the symbols in a dynamic object to the hash table.
1426
1427 template<int size, bool big_endian>
1428 void
1429 Symbol_table::add_from_dynobj(
1430 Sized_dynobj<size, big_endian>* dynobj,
1431 const unsigned char* syms,
1432 size_t count,
1433 const char* sym_names,
1434 size_t sym_name_size,
1435 const unsigned char* versym,
1436 size_t versym_size,
1437 const std::vector<const char*>* version_map,
1438 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1439 size_t* defined)
1440 {
1441 *defined = 0;
1442
1443 gold_assert(size == parameters->target().get_size());
1444
1445 if (dynobj->just_symbols())
1446 {
1447 gold_error(_("--just-symbols does not make sense with a shared object"));
1448 return;
1449 }
1450
1451 // FIXME: For incremental links, we don't store version information,
1452 // so we need to ignore version symbols for now.
1453 if (parameters->incremental_update())
1454 versym = NULL;
1455
1456 if (versym != NULL && versym_size / 2 < count)
1457 {
1458 dynobj->error(_("too few symbol versions"));
1459 return;
1460 }
1461
1462 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1463
1464 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1465 // weak aliases. This is necessary because if the dynamic object
1466 // provides the same variable under two names, one of which is a
1467 // weak definition, and the regular object refers to the weak
1468 // definition, we have to put both the weak definition and the
1469 // strong definition into the dynamic symbol table. Given a weak
1470 // definition, the only way that we can find the corresponding
1471 // strong definition, if any, is to search the symbol table.
1472 std::vector<Sized_symbol<size>*> object_symbols;
1473
1474 const unsigned char* p = syms;
1475 const unsigned char* vs = versym;
1476 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1477 {
1478 elfcpp::Sym<size, big_endian> sym(p);
1479
1480 if (sympointers != NULL)
1481 (*sympointers)[i] = NULL;
1482
1483 // Ignore symbols with local binding or that have
1484 // internal or hidden visibility.
1485 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1486 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1487 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1488 continue;
1489
1490 // A protected symbol in a shared library must be treated as a
1491 // normal symbol when viewed from outside the shared library.
1492 // Implement this by overriding the visibility here.
1493 // Likewise, an IFUNC symbol in a shared library must be treated
1494 // as a normal FUNC symbol.
1495 elfcpp::Sym<size, big_endian>* psym = &sym;
1496 unsigned char symbuf[sym_size];
1497 elfcpp::Sym<size, big_endian> sym2(symbuf);
1498 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
1499 || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1500 {
1501 memcpy(symbuf, p, sym_size);
1502 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1503 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1504 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1505 if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1506 sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
1507 psym = &sym2;
1508 }
1509
1510 unsigned int st_name = psym->get_st_name();
1511 if (st_name >= sym_name_size)
1512 {
1513 dynobj->error(_("bad symbol name offset %u at %zu"),
1514 st_name, i);
1515 continue;
1516 }
1517
1518 const char* name = sym_names + st_name;
1519
1520 bool is_ordinary;
1521 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1522 &is_ordinary);
1523
1524 if (st_shndx != elfcpp::SHN_UNDEF)
1525 ++*defined;
1526
1527 Sized_symbol<size>* res;
1528
1529 if (versym == NULL)
1530 {
1531 Stringpool::Key name_key;
1532 name = this->namepool_.add(name, true, &name_key);
1533 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1534 false, *psym, st_shndx, is_ordinary,
1535 st_shndx);
1536 }
1537 else
1538 {
1539 // Read the version information.
1540
1541 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1542
1543 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1544 v &= elfcpp::VERSYM_VERSION;
1545
1546 // The Sun documentation says that V can be VER_NDX_LOCAL,
1547 // or VER_NDX_GLOBAL, or a version index. The meaning of
1548 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1549 // The old GNU linker will happily generate VER_NDX_LOCAL
1550 // for an undefined symbol. I don't know what the Sun
1551 // linker will generate.
1552
1553 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1554 && st_shndx != elfcpp::SHN_UNDEF)
1555 {
1556 // This symbol should not be visible outside the object.
1557 continue;
1558 }
1559
1560 // At this point we are definitely going to add this symbol.
1561 Stringpool::Key name_key;
1562 name = this->namepool_.add(name, true, &name_key);
1563
1564 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1565 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1566 {
1567 // This symbol does not have a version.
1568 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1569 false, *psym, st_shndx, is_ordinary,
1570 st_shndx);
1571 }
1572 else
1573 {
1574 if (v >= version_map->size())
1575 {
1576 dynobj->error(_("versym for symbol %zu out of range: %u"),
1577 i, v);
1578 continue;
1579 }
1580
1581 const char* version = (*version_map)[v];
1582 if (version == NULL)
1583 {
1584 dynobj->error(_("versym for symbol %zu has no name: %u"),
1585 i, v);
1586 continue;
1587 }
1588
1589 Stringpool::Key version_key;
1590 version = this->namepool_.add(version, true, &version_key);
1591
1592 // If this is an absolute symbol, and the version name
1593 // and symbol name are the same, then this is the
1594 // version definition symbol. These symbols exist to
1595 // support using -u to pull in particular versions. We
1596 // do not want to record a version for them.
1597 if (st_shndx == elfcpp::SHN_ABS
1598 && !is_ordinary
1599 && name_key == version_key)
1600 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1601 false, *psym, st_shndx, is_ordinary,
1602 st_shndx);
1603 else
1604 {
1605 const bool is_default_version =
1606 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1607 res = this->add_from_object(dynobj, name, name_key, version,
1608 version_key, is_default_version,
1609 *psym, st_shndx,
1610 is_ordinary, st_shndx);
1611 }
1612 }
1613 }
1614
1615 if (res == NULL)
1616 continue;
1617
1618 // Note that it is possible that RES was overridden by an
1619 // earlier object, in which case it can't be aliased here.
1620 if (st_shndx != elfcpp::SHN_UNDEF
1621 && is_ordinary
1622 && psym->get_st_type() == elfcpp::STT_OBJECT
1623 && res->source() == Symbol::FROM_OBJECT
1624 && res->object() == dynobj)
1625 object_symbols.push_back(res);
1626
1627 // If the symbol has protected visibility in the dynobj,
1628 // mark it as such if it was not overridden.
1629 if (res->source() == Symbol::FROM_OBJECT
1630 && res->object() == dynobj
1631 && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1632 res->set_is_protected();
1633
1634 if (sympointers != NULL)
1635 (*sympointers)[i] = res;
1636 }
1637
1638 this->record_weak_aliases(&object_symbols);
1639 }
1640
1641 // Add a symbol from a incremental object file.
1642
1643 template<int size, bool big_endian>
1644 Sized_symbol<size>*
1645 Symbol_table::add_from_incrobj(
1646 Object* obj,
1647 const char* name,
1648 const char* ver,
1649 elfcpp::Sym<size, big_endian>* sym)
1650 {
1651 unsigned int st_shndx = sym->get_st_shndx();
1652 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1653
1654 Stringpool::Key ver_key = 0;
1655 bool is_default_version = false;
1656
1657 Stringpool::Key name_key;
1658 name = this->namepool_.add(name, true, &name_key);
1659
1660 Sized_symbol<size>* res;
1661 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1662 is_default_version, *sym, st_shndx,
1663 is_ordinary, st_shndx);
1664
1665 return res;
1666 }
1667
1668 // This is used to sort weak aliases. We sort them first by section
1669 // index, then by offset, then by weak ahead of strong.
1670
1671 template<int size>
1672 class Weak_alias_sorter
1673 {
1674 public:
1675 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1676 };
1677
1678 template<int size>
1679 bool
1680 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1681 const Sized_symbol<size>* s2) const
1682 {
1683 bool is_ordinary;
1684 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1685 gold_assert(is_ordinary);
1686 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1687 gold_assert(is_ordinary);
1688 if (s1_shndx != s2_shndx)
1689 return s1_shndx < s2_shndx;
1690
1691 if (s1->value() != s2->value())
1692 return s1->value() < s2->value();
1693 if (s1->binding() != s2->binding())
1694 {
1695 if (s1->binding() == elfcpp::STB_WEAK)
1696 return true;
1697 if (s2->binding() == elfcpp::STB_WEAK)
1698 return false;
1699 }
1700 return std::string(s1->name()) < std::string(s2->name());
1701 }
1702
1703 // SYMBOLS is a list of object symbols from a dynamic object. Look
1704 // for any weak aliases, and record them so that if we add the weak
1705 // alias to the dynamic symbol table, we also add the corresponding
1706 // strong symbol.
1707
1708 template<int size>
1709 void
1710 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1711 {
1712 // Sort the vector by section index, then by offset, then by weak
1713 // ahead of strong.
1714 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1715
1716 // Walk through the vector. For each weak definition, record
1717 // aliases.
1718 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1719 symbols->begin();
1720 p != symbols->end();
1721 ++p)
1722 {
1723 if ((*p)->binding() != elfcpp::STB_WEAK)
1724 continue;
1725
1726 // Build a circular list of weak aliases. Each symbol points to
1727 // the next one in the circular list.
1728
1729 Sized_symbol<size>* from_sym = *p;
1730 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1731 for (q = p + 1; q != symbols->end(); ++q)
1732 {
1733 bool dummy;
1734 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1735 || (*q)->value() != from_sym->value())
1736 break;
1737
1738 this->weak_aliases_[from_sym] = *q;
1739 from_sym->set_has_alias();
1740 from_sym = *q;
1741 }
1742
1743 if (from_sym != *p)
1744 {
1745 this->weak_aliases_[from_sym] = *p;
1746 from_sym->set_has_alias();
1747 }
1748
1749 p = q - 1;
1750 }
1751 }
1752
1753 // Create and return a specially defined symbol. If ONLY_IF_REF is
1754 // true, then only create the symbol if there is a reference to it.
1755 // If this does not return NULL, it sets *POLDSYM to the existing
1756 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1757 // resolve the newly created symbol to the old one. This
1758 // canonicalizes *PNAME and *PVERSION.
1759
1760 template<int size, bool big_endian>
1761 Sized_symbol<size>*
1762 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1763 bool only_if_ref,
1764 Sized_symbol<size>** poldsym,
1765 bool* resolve_oldsym, bool is_forced_local)
1766 {
1767 *resolve_oldsym = false;
1768 *poldsym = NULL;
1769
1770 // If the caller didn't give us a version, see if we get one from
1771 // the version script.
1772 std::string v;
1773 bool is_default_version = false;
1774 if (!is_forced_local && *pversion == NULL)
1775 {
1776 bool is_global;
1777 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1778 {
1779 if (is_global && !v.empty())
1780 {
1781 *pversion = v.c_str();
1782 // If we get the version from a version script, then we
1783 // are also the default version.
1784 is_default_version = true;
1785 }
1786 }
1787 }
1788
1789 Symbol* oldsym;
1790 Sized_symbol<size>* sym;
1791
1792 bool add_to_table = false;
1793 typename Symbol_table_type::iterator add_loc = this->table_.end();
1794 bool add_def_to_table = false;
1795 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1796
1797 if (only_if_ref)
1798 {
1799 oldsym = this->lookup(*pname, *pversion);
1800 if (oldsym == NULL && is_default_version)
1801 oldsym = this->lookup(*pname, NULL);
1802 if (oldsym == NULL || !oldsym->is_undefined())
1803 return NULL;
1804
1805 *pname = oldsym->name();
1806 if (is_default_version)
1807 *pversion = this->namepool_.add(*pversion, true, NULL);
1808 else
1809 *pversion = oldsym->version();
1810 }
1811 else
1812 {
1813 // Canonicalize NAME and VERSION.
1814 Stringpool::Key name_key;
1815 *pname = this->namepool_.add(*pname, true, &name_key);
1816
1817 Stringpool::Key version_key = 0;
1818 if (*pversion != NULL)
1819 *pversion = this->namepool_.add(*pversion, true, &version_key);
1820
1821 Symbol* const snull = NULL;
1822 std::pair<typename Symbol_table_type::iterator, bool> ins =
1823 this->table_.insert(std::make_pair(std::make_pair(name_key,
1824 version_key),
1825 snull));
1826
1827 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1828 std::make_pair(this->table_.end(), false);
1829 if (is_default_version)
1830 {
1831 const Stringpool::Key vnull = 0;
1832 insdefault =
1833 this->table_.insert(std::make_pair(std::make_pair(name_key,
1834 vnull),
1835 snull));
1836 }
1837
1838 if (!ins.second)
1839 {
1840 // We already have a symbol table entry for NAME/VERSION.
1841 oldsym = ins.first->second;
1842 gold_assert(oldsym != NULL);
1843
1844 if (is_default_version)
1845 {
1846 Sized_symbol<size>* soldsym =
1847 this->get_sized_symbol<size>(oldsym);
1848 this->define_default_version<size, big_endian>(soldsym,
1849 insdefault.second,
1850 insdefault.first);
1851 }
1852 }
1853 else
1854 {
1855 // We haven't seen this symbol before.
1856 gold_assert(ins.first->second == NULL);
1857
1858 add_to_table = true;
1859 add_loc = ins.first;
1860
1861 if (is_default_version && !insdefault.second)
1862 {
1863 // We are adding NAME/VERSION, and it is the default
1864 // version. We already have an entry for NAME/NULL.
1865 oldsym = insdefault.first->second;
1866 *resolve_oldsym = true;
1867 }
1868 else
1869 {
1870 oldsym = NULL;
1871
1872 if (is_default_version)
1873 {
1874 add_def_to_table = true;
1875 add_def_loc = insdefault.first;
1876 }
1877 }
1878 }
1879 }
1880
1881 const Target& target = parameters->target();
1882 if (!target.has_make_symbol())
1883 sym = new Sized_symbol<size>();
1884 else
1885 {
1886 Sized_target<size, big_endian>* sized_target =
1887 parameters->sized_target<size, big_endian>();
1888 sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
1889 NULL, elfcpp::SHN_UNDEF, 0);
1890 if (sym == NULL)
1891 return NULL;
1892 }
1893
1894 if (add_to_table)
1895 add_loc->second = sym;
1896 else
1897 gold_assert(oldsym != NULL);
1898
1899 if (add_def_to_table)
1900 add_def_loc->second = sym;
1901
1902 *poldsym = this->get_sized_symbol<size>(oldsym);
1903
1904 return sym;
1905 }
1906
1907 // Define a symbol based on an Output_data.
1908
1909 Symbol*
1910 Symbol_table::define_in_output_data(const char* name,
1911 const char* version,
1912 Defined defined,
1913 Output_data* od,
1914 uint64_t value,
1915 uint64_t symsize,
1916 elfcpp::STT type,
1917 elfcpp::STB binding,
1918 elfcpp::STV visibility,
1919 unsigned char nonvis,
1920 bool offset_is_from_end,
1921 bool only_if_ref)
1922 {
1923 if (parameters->target().get_size() == 32)
1924 {
1925 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1926 return this->do_define_in_output_data<32>(name, version, defined, od,
1927 value, symsize, type, binding,
1928 visibility, nonvis,
1929 offset_is_from_end,
1930 only_if_ref);
1931 #else
1932 gold_unreachable();
1933 #endif
1934 }
1935 else if (parameters->target().get_size() == 64)
1936 {
1937 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1938 return this->do_define_in_output_data<64>(name, version, defined, od,
1939 value, symsize, type, binding,
1940 visibility, nonvis,
1941 offset_is_from_end,
1942 only_if_ref);
1943 #else
1944 gold_unreachable();
1945 #endif
1946 }
1947 else
1948 gold_unreachable();
1949 }
1950
1951 // Define a symbol in an Output_data, sized version.
1952
1953 template<int size>
1954 Sized_symbol<size>*
1955 Symbol_table::do_define_in_output_data(
1956 const char* name,
1957 const char* version,
1958 Defined defined,
1959 Output_data* od,
1960 typename elfcpp::Elf_types<size>::Elf_Addr value,
1961 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1962 elfcpp::STT type,
1963 elfcpp::STB binding,
1964 elfcpp::STV visibility,
1965 unsigned char nonvis,
1966 bool offset_is_from_end,
1967 bool only_if_ref)
1968 {
1969 Sized_symbol<size>* sym;
1970 Sized_symbol<size>* oldsym;
1971 bool resolve_oldsym;
1972 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
1973
1974 if (parameters->target().is_big_endian())
1975 {
1976 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1977 sym = this->define_special_symbol<size, true>(&name, &version,
1978 only_if_ref, &oldsym,
1979 &resolve_oldsym,
1980 is_forced_local);
1981 #else
1982 gold_unreachable();
1983 #endif
1984 }
1985 else
1986 {
1987 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1988 sym = this->define_special_symbol<size, false>(&name, &version,
1989 only_if_ref, &oldsym,
1990 &resolve_oldsym,
1991 is_forced_local);
1992 #else
1993 gold_unreachable();
1994 #endif
1995 }
1996
1997 if (sym == NULL)
1998 return NULL;
1999
2000 sym->init_output_data(name, version, od, value, symsize, type, binding,
2001 visibility, nonvis, offset_is_from_end,
2002 defined == PREDEFINED);
2003
2004 if (oldsym == NULL)
2005 {
2006 if (is_forced_local || this->version_script_.symbol_is_local(name))
2007 this->force_local(sym);
2008 else if (version != NULL)
2009 sym->set_is_default();
2010 return sym;
2011 }
2012
2013 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2014 this->override_with_special(oldsym, sym);
2015
2016 if (resolve_oldsym)
2017 return sym;
2018 else
2019 {
2020 if (defined == PREDEFINED
2021 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2022 this->force_local(oldsym);
2023 delete sym;
2024 return oldsym;
2025 }
2026 }
2027
2028 // Define a symbol based on an Output_segment.
2029
2030 Symbol*
2031 Symbol_table::define_in_output_segment(const char* name,
2032 const char* version,
2033 Defined defined,
2034 Output_segment* os,
2035 uint64_t value,
2036 uint64_t symsize,
2037 elfcpp::STT type,
2038 elfcpp::STB binding,
2039 elfcpp::STV visibility,
2040 unsigned char nonvis,
2041 Symbol::Segment_offset_base offset_base,
2042 bool only_if_ref)
2043 {
2044 if (parameters->target().get_size() == 32)
2045 {
2046 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2047 return this->do_define_in_output_segment<32>(name, version, defined, os,
2048 value, symsize, type,
2049 binding, visibility, nonvis,
2050 offset_base, only_if_ref);
2051 #else
2052 gold_unreachable();
2053 #endif
2054 }
2055 else if (parameters->target().get_size() == 64)
2056 {
2057 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2058 return this->do_define_in_output_segment<64>(name, version, defined, os,
2059 value, symsize, type,
2060 binding, visibility, nonvis,
2061 offset_base, only_if_ref);
2062 #else
2063 gold_unreachable();
2064 #endif
2065 }
2066 else
2067 gold_unreachable();
2068 }
2069
2070 // Define a symbol in an Output_segment, sized version.
2071
2072 template<int size>
2073 Sized_symbol<size>*
2074 Symbol_table::do_define_in_output_segment(
2075 const char* name,
2076 const char* version,
2077 Defined defined,
2078 Output_segment* os,
2079 typename elfcpp::Elf_types<size>::Elf_Addr value,
2080 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2081 elfcpp::STT type,
2082 elfcpp::STB binding,
2083 elfcpp::STV visibility,
2084 unsigned char nonvis,
2085 Symbol::Segment_offset_base offset_base,
2086 bool only_if_ref)
2087 {
2088 Sized_symbol<size>* sym;
2089 Sized_symbol<size>* oldsym;
2090 bool resolve_oldsym;
2091 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2092
2093 if (parameters->target().is_big_endian())
2094 {
2095 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2096 sym = this->define_special_symbol<size, true>(&name, &version,
2097 only_if_ref, &oldsym,
2098 &resolve_oldsym,
2099 is_forced_local);
2100 #else
2101 gold_unreachable();
2102 #endif
2103 }
2104 else
2105 {
2106 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2107 sym = this->define_special_symbol<size, false>(&name, &version,
2108 only_if_ref, &oldsym,
2109 &resolve_oldsym,
2110 is_forced_local);
2111 #else
2112 gold_unreachable();
2113 #endif
2114 }
2115
2116 if (sym == NULL)
2117 return NULL;
2118
2119 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2120 visibility, nonvis, offset_base,
2121 defined == PREDEFINED);
2122
2123 if (oldsym == NULL)
2124 {
2125 if (is_forced_local || this->version_script_.symbol_is_local(name))
2126 this->force_local(sym);
2127 else if (version != NULL)
2128 sym->set_is_default();
2129 return sym;
2130 }
2131
2132 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2133 this->override_with_special(oldsym, sym);
2134
2135 if (resolve_oldsym)
2136 return sym;
2137 else
2138 {
2139 if (is_forced_local || this->version_script_.symbol_is_local(name))
2140 this->force_local(oldsym);
2141 delete sym;
2142 return oldsym;
2143 }
2144 }
2145
2146 // Define a special symbol with a constant value. It is a multiple
2147 // definition error if this symbol is already defined.
2148
2149 Symbol*
2150 Symbol_table::define_as_constant(const char* name,
2151 const char* version,
2152 Defined defined,
2153 uint64_t value,
2154 uint64_t symsize,
2155 elfcpp::STT type,
2156 elfcpp::STB binding,
2157 elfcpp::STV visibility,
2158 unsigned char nonvis,
2159 bool only_if_ref,
2160 bool force_override)
2161 {
2162 if (parameters->target().get_size() == 32)
2163 {
2164 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2165 return this->do_define_as_constant<32>(name, version, defined, value,
2166 symsize, type, binding,
2167 visibility, nonvis, only_if_ref,
2168 force_override);
2169 #else
2170 gold_unreachable();
2171 #endif
2172 }
2173 else if (parameters->target().get_size() == 64)
2174 {
2175 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2176 return this->do_define_as_constant<64>(name, version, defined, value,
2177 symsize, type, binding,
2178 visibility, nonvis, only_if_ref,
2179 force_override);
2180 #else
2181 gold_unreachable();
2182 #endif
2183 }
2184 else
2185 gold_unreachable();
2186 }
2187
2188 // Define a symbol as a constant, sized version.
2189
2190 template<int size>
2191 Sized_symbol<size>*
2192 Symbol_table::do_define_as_constant(
2193 const char* name,
2194 const char* version,
2195 Defined defined,
2196 typename elfcpp::Elf_types<size>::Elf_Addr value,
2197 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2198 elfcpp::STT type,
2199 elfcpp::STB binding,
2200 elfcpp::STV visibility,
2201 unsigned char nonvis,
2202 bool only_if_ref,
2203 bool force_override)
2204 {
2205 Sized_symbol<size>* sym;
2206 Sized_symbol<size>* oldsym;
2207 bool resolve_oldsym;
2208 const bool is_forced_local = binding == elfcpp::STB_LOCAL;
2209
2210 if (parameters->target().is_big_endian())
2211 {
2212 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2213 sym = this->define_special_symbol<size, true>(&name, &version,
2214 only_if_ref, &oldsym,
2215 &resolve_oldsym,
2216 is_forced_local);
2217 #else
2218 gold_unreachable();
2219 #endif
2220 }
2221 else
2222 {
2223 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2224 sym = this->define_special_symbol<size, false>(&name, &version,
2225 only_if_ref, &oldsym,
2226 &resolve_oldsym,
2227 is_forced_local);
2228 #else
2229 gold_unreachable();
2230 #endif
2231 }
2232
2233 if (sym == NULL)
2234 return NULL;
2235
2236 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2237 nonvis, defined == PREDEFINED);
2238
2239 if (oldsym == NULL)
2240 {
2241 // Version symbols are absolute symbols with name == version.
2242 // We don't want to force them to be local.
2243 if ((version == NULL
2244 || name != version
2245 || value != 0)
2246 && (is_forced_local || this->version_script_.symbol_is_local(name)))
2247 this->force_local(sym);
2248 else if (version != NULL
2249 && (name != version || value != 0))
2250 sym->set_is_default();
2251 return sym;
2252 }
2253
2254 if (force_override
2255 || Symbol_table::should_override_with_special(oldsym, type, defined))
2256 this->override_with_special(oldsym, sym);
2257
2258 if (resolve_oldsym)
2259 return sym;
2260 else
2261 {
2262 if (is_forced_local || this->version_script_.symbol_is_local(name))
2263 this->force_local(oldsym);
2264 delete sym;
2265 return oldsym;
2266 }
2267 }
2268
2269 // Define a set of symbols in output sections.
2270
2271 void
2272 Symbol_table::define_symbols(const Layout* layout, int count,
2273 const Define_symbol_in_section* p,
2274 bool only_if_ref)
2275 {
2276 for (int i = 0; i < count; ++i, ++p)
2277 {
2278 Output_section* os = layout->find_output_section(p->output_section);
2279 if (os != NULL)
2280 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2281 p->size, p->type, p->binding,
2282 p->visibility, p->nonvis,
2283 p->offset_is_from_end,
2284 only_if_ref || p->only_if_ref);
2285 else
2286 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2287 p->type, p->binding, p->visibility, p->nonvis,
2288 only_if_ref || p->only_if_ref,
2289 false);
2290 }
2291 }
2292
2293 // Define a set of symbols in output segments.
2294
2295 void
2296 Symbol_table::define_symbols(const Layout* layout, int count,
2297 const Define_symbol_in_segment* p,
2298 bool only_if_ref)
2299 {
2300 for (int i = 0; i < count; ++i, ++p)
2301 {
2302 Output_segment* os = layout->find_output_segment(p->segment_type,
2303 p->segment_flags_set,
2304 p->segment_flags_clear);
2305 if (os != NULL)
2306 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2307 p->size, p->type, p->binding,
2308 p->visibility, p->nonvis,
2309 p->offset_base,
2310 only_if_ref || p->only_if_ref);
2311 else
2312 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2313 p->type, p->binding, p->visibility, p->nonvis,
2314 only_if_ref || p->only_if_ref,
2315 false);
2316 }
2317 }
2318
2319 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2320 // symbol should be defined--typically a .dyn.bss section. VALUE is
2321 // the offset within POSD.
2322
2323 template<int size>
2324 void
2325 Symbol_table::define_with_copy_reloc(
2326 Sized_symbol<size>* csym,
2327 Output_data* posd,
2328 typename elfcpp::Elf_types<size>::Elf_Addr value)
2329 {
2330 gold_assert(csym->is_from_dynobj());
2331 gold_assert(!csym->is_copied_from_dynobj());
2332 Object* object = csym->object();
2333 gold_assert(object->is_dynamic());
2334 Dynobj* dynobj = static_cast<Dynobj*>(object);
2335
2336 // Our copied variable has to override any variable in a shared
2337 // library.
2338 elfcpp::STB binding = csym->binding();
2339 if (binding == elfcpp::STB_WEAK)
2340 binding = elfcpp::STB_GLOBAL;
2341
2342 this->define_in_output_data(csym->name(), csym->version(), COPY,
2343 posd, value, csym->symsize(),
2344 csym->type(), binding,
2345 csym->visibility(), csym->nonvis(),
2346 false, false);
2347
2348 csym->set_is_copied_from_dynobj();
2349 csym->set_needs_dynsym_entry();
2350
2351 this->copied_symbol_dynobjs_[csym] = dynobj;
2352
2353 // We have now defined all aliases, but we have not entered them all
2354 // in the copied_symbol_dynobjs_ map.
2355 if (csym->has_alias())
2356 {
2357 Symbol* sym = csym;
2358 while (true)
2359 {
2360 sym = this->weak_aliases_[sym];
2361 if (sym == csym)
2362 break;
2363 gold_assert(sym->output_data() == posd);
2364
2365 sym->set_is_copied_from_dynobj();
2366 this->copied_symbol_dynobjs_[sym] = dynobj;
2367 }
2368 }
2369 }
2370
2371 // SYM is defined using a COPY reloc. Return the dynamic object where
2372 // the original definition was found.
2373
2374 Dynobj*
2375 Symbol_table::get_copy_source(const Symbol* sym) const
2376 {
2377 gold_assert(sym->is_copied_from_dynobj());
2378 Copied_symbol_dynobjs::const_iterator p =
2379 this->copied_symbol_dynobjs_.find(sym);
2380 gold_assert(p != this->copied_symbol_dynobjs_.end());
2381 return p->second;
2382 }
2383
2384 // Add any undefined symbols named on the command line.
2385
2386 void
2387 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2388 {
2389 if (parameters->options().any_undefined()
2390 || layout->script_options()->any_unreferenced())
2391 {
2392 if (parameters->target().get_size() == 32)
2393 {
2394 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2395 this->do_add_undefined_symbols_from_command_line<32>(layout);
2396 #else
2397 gold_unreachable();
2398 #endif
2399 }
2400 else if (parameters->target().get_size() == 64)
2401 {
2402 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2403 this->do_add_undefined_symbols_from_command_line<64>(layout);
2404 #else
2405 gold_unreachable();
2406 #endif
2407 }
2408 else
2409 gold_unreachable();
2410 }
2411 }
2412
2413 template<int size>
2414 void
2415 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2416 {
2417 for (options::String_set::const_iterator p =
2418 parameters->options().undefined_begin();
2419 p != parameters->options().undefined_end();
2420 ++p)
2421 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2422
2423 for (options::String_set::const_iterator p =
2424 parameters->options().export_dynamic_symbol_begin();
2425 p != parameters->options().export_dynamic_symbol_end();
2426 ++p)
2427 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2428
2429 for (Script_options::referenced_const_iterator p =
2430 layout->script_options()->referenced_begin();
2431 p != layout->script_options()->referenced_end();
2432 ++p)
2433 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2434 }
2435
2436 template<int size>
2437 void
2438 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2439 {
2440 if (this->lookup(name) != NULL)
2441 return;
2442
2443 const char* version = NULL;
2444
2445 Sized_symbol<size>* sym;
2446 Sized_symbol<size>* oldsym;
2447 bool resolve_oldsym;
2448 if (parameters->target().is_big_endian())
2449 {
2450 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2451 sym = this->define_special_symbol<size, true>(&name, &version,
2452 false, &oldsym,
2453 &resolve_oldsym,
2454 false);
2455 #else
2456 gold_unreachable();
2457 #endif
2458 }
2459 else
2460 {
2461 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2462 sym = this->define_special_symbol<size, false>(&name, &version,
2463 false, &oldsym,
2464 &resolve_oldsym,
2465 false);
2466 #else
2467 gold_unreachable();
2468 #endif
2469 }
2470
2471 gold_assert(oldsym == NULL);
2472
2473 sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2474 elfcpp::STV_DEFAULT, 0);
2475 ++this->saw_undefined_;
2476 }
2477
2478 // Set the dynamic symbol indexes. INDEX is the index of the first
2479 // global dynamic symbol. Pointers to the global symbols are stored
2480 // into the vector SYMS. The names are added to DYNPOOL.
2481 // This returns an updated dynamic symbol index.
2482
2483 unsigned int
2484 Symbol_table::set_dynsym_indexes(unsigned int index,
2485 unsigned int* pforced_local_count,
2486 std::vector<Symbol*>* syms,
2487 Stringpool* dynpool,
2488 Versions* versions)
2489 {
2490 std::vector<Symbol*> as_needed_sym;
2491
2492 // First process all the symbols which have been forced to be local,
2493 // as they must appear before all global symbols.
2494 unsigned int forced_local_count = 0;
2495 for (Forced_locals::iterator p = this->forced_locals_.begin();
2496 p != this->forced_locals_.end();
2497 ++p)
2498 {
2499 Symbol* sym = *p;
2500 gold_assert(sym->is_forced_local());
2501 if (sym->has_dynsym_index())
2502 continue;
2503 if (!sym->should_add_dynsym_entry(this))
2504 sym->set_dynsym_index(-1U);
2505 else
2506 {
2507 sym->set_dynsym_index(index);
2508 ++index;
2509 ++forced_local_count;
2510 dynpool->add(sym->name(), false, NULL);
2511 }
2512 }
2513 *pforced_local_count = forced_local_count;
2514
2515 // Allow a target to set dynsym indexes.
2516 if (parameters->target().has_custom_set_dynsym_indexes())
2517 {
2518 std::vector<Symbol*> dyn_symbols;
2519 for (Symbol_table_type::iterator p = this->table_.begin();
2520 p != this->table_.end();
2521 ++p)
2522 {
2523 Symbol* sym = p->second;
2524 if (sym->is_forced_local())
2525 continue;
2526 if (!sym->should_add_dynsym_entry(this))
2527 sym->set_dynsym_index(-1U);
2528 else
2529 dyn_symbols.push_back(sym);
2530 }
2531
2532 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2533 dynpool, versions, this);
2534 }
2535
2536 for (Symbol_table_type::iterator p = this->table_.begin();
2537 p != this->table_.end();
2538 ++p)
2539 {
2540 Symbol* sym = p->second;
2541
2542 if (sym->is_forced_local())
2543 continue;
2544
2545 // Note that SYM may already have a dynamic symbol index, since
2546 // some symbols appear more than once in the symbol table, with
2547 // and without a version.
2548
2549 if (!sym->should_add_dynsym_entry(this))
2550 sym->set_dynsym_index(-1U);
2551 else if (!sym->has_dynsym_index())
2552 {
2553 sym->set_dynsym_index(index);
2554 ++index;
2555 syms->push_back(sym);
2556 dynpool->add(sym->name(), false, NULL);
2557
2558 // If the symbol is defined in a dynamic object and is
2559 // referenced strongly in a regular object, then mark the
2560 // dynamic object as needed. This is used to implement
2561 // --as-needed.
2562 if (sym->is_from_dynobj()
2563 && sym->in_reg()
2564 && !sym->is_undef_binding_weak())
2565 sym->object()->set_is_needed();
2566
2567 // Record any version information, except those from
2568 // as-needed libraries not seen to be needed. Note that the
2569 // is_needed state for such libraries can change in this loop.
2570 if (sym->version() != NULL)
2571 {
2572 if (!sym->is_from_dynobj()
2573 || !sym->object()->as_needed()
2574 || sym->object()->is_needed())
2575 versions->record_version(this, dynpool, sym);
2576 else
2577 as_needed_sym.push_back(sym);
2578 }
2579 }
2580 }
2581
2582 // Process version information for symbols from as-needed libraries.
2583 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2584 p != as_needed_sym.end();
2585 ++p)
2586 {
2587 Symbol* sym = *p;
2588
2589 if (sym->object()->is_needed())
2590 versions->record_version(this, dynpool, sym);
2591 else
2592 sym->clear_version();
2593 }
2594
2595 // Finish up the versions. In some cases this may add new dynamic
2596 // symbols.
2597 index = versions->finalize(this, index, syms);
2598
2599 // Process target-specific symbols.
2600 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2601 p != this->target_symbols_.end();
2602 ++p)
2603 {
2604 (*p)->set_dynsym_index(index);
2605 ++index;
2606 syms->push_back(*p);
2607 dynpool->add((*p)->name(), false, NULL);
2608 }
2609
2610 return index;
2611 }
2612
2613 // Set the final values for all the symbols. The index of the first
2614 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2615 // file offset OFF. Add their names to POOL. Return the new file
2616 // offset. Update *PLOCAL_SYMCOUNT if necessary. DYNOFF and
2617 // DYN_GLOBAL_INDEX refer to the start of the symbols that will be
2618 // written from the global symbol table in Symtab::write_globals(),
2619 // which will include forced-local symbols. DYN_GLOBAL_INDEX is
2620 // not necessarily the same as the sh_info field for the .dynsym
2621 // section, which will point to the first real global symbol.
2622
2623 off_t
2624 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2625 size_t dyncount, Stringpool* pool,
2626 unsigned int* plocal_symcount)
2627 {
2628 off_t ret;
2629
2630 gold_assert(*plocal_symcount != 0);
2631 this->first_global_index_ = *plocal_symcount;
2632
2633 this->dynamic_offset_ = dynoff;
2634 this->first_dynamic_global_index_ = dyn_global_index;
2635 this->dynamic_count_ = dyncount;
2636
2637 if (parameters->target().get_size() == 32)
2638 {
2639 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2640 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2641 #else
2642 gold_unreachable();
2643 #endif
2644 }
2645 else if (parameters->target().get_size() == 64)
2646 {
2647 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2648 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2649 #else
2650 gold_unreachable();
2651 #endif
2652 }
2653 else
2654 gold_unreachable();
2655
2656 // Now that we have the final symbol table, we can reliably note
2657 // which symbols should get warnings.
2658 this->warnings_.note_warnings(this);
2659
2660 return ret;
2661 }
2662
2663 // SYM is going into the symbol table at *PINDEX. Add the name to
2664 // POOL, update *PINDEX and *POFF.
2665
2666 template<int size>
2667 void
2668 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2669 unsigned int* pindex, off_t* poff)
2670 {
2671 sym->set_symtab_index(*pindex);
2672 if (sym->version() == NULL || !parameters->options().relocatable())
2673 pool->add(sym->name(), false, NULL);
2674 else
2675 pool->add(sym->versioned_name(), true, NULL);
2676 ++*pindex;
2677 *poff += elfcpp::Elf_sizes<size>::sym_size;
2678 }
2679
2680 // Set the final value for all the symbols. This is called after
2681 // Layout::finalize, so all the output sections have their final
2682 // address.
2683
2684 template<int size>
2685 off_t
2686 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2687 unsigned int* plocal_symcount)
2688 {
2689 off = align_address(off, size >> 3);
2690 this->offset_ = off;
2691
2692 unsigned int index = *plocal_symcount;
2693 const unsigned int orig_index = index;
2694
2695 // First do all the symbols which have been forced to be local, as
2696 // they must appear before all global symbols.
2697 for (Forced_locals::iterator p = this->forced_locals_.begin();
2698 p != this->forced_locals_.end();
2699 ++p)
2700 {
2701 Symbol* sym = *p;
2702 gold_assert(sym->is_forced_local());
2703 if (this->sized_finalize_symbol<size>(sym))
2704 {
2705 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2706 ++*plocal_symcount;
2707 }
2708 }
2709
2710 // Now do all the remaining symbols.
2711 for (Symbol_table_type::iterator p = this->table_.begin();
2712 p != this->table_.end();
2713 ++p)
2714 {
2715 Symbol* sym = p->second;
2716 if (this->sized_finalize_symbol<size>(sym))
2717 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2718 }
2719
2720 // Now do target-specific symbols.
2721 for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
2722 p != this->target_symbols_.end();
2723 ++p)
2724 {
2725 this->add_to_final_symtab<size>(*p, pool, &index, &off);
2726 }
2727
2728 this->output_count_ = index - orig_index;
2729
2730 return off;
2731 }
2732
2733 // Compute the final value of SYM and store status in location PSTATUS.
2734 // During relaxation, this may be called multiple times for a symbol to
2735 // compute its would-be final value in each relaxation pass.
2736
2737 template<int size>
2738 typename Sized_symbol<size>::Value_type
2739 Symbol_table::compute_final_value(
2740 const Sized_symbol<size>* sym,
2741 Compute_final_value_status* pstatus) const
2742 {
2743 typedef typename Sized_symbol<size>::Value_type Value_type;
2744 Value_type value;
2745
2746 switch (sym->source())
2747 {
2748 case Symbol::FROM_OBJECT:
2749 {
2750 bool is_ordinary;
2751 unsigned int shndx = sym->shndx(&is_ordinary);
2752
2753 if (!is_ordinary
2754 && shndx != elfcpp::SHN_ABS
2755 && !Symbol::is_common_shndx(shndx))
2756 {
2757 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2758 return 0;
2759 }
2760
2761 Object* symobj = sym->object();
2762 if (symobj->is_dynamic())
2763 {
2764 value = 0;
2765 shndx = elfcpp::SHN_UNDEF;
2766 }
2767 else if (symobj->pluginobj() != NULL)
2768 {
2769 value = 0;
2770 shndx = elfcpp::SHN_UNDEF;
2771 }
2772 else if (shndx == elfcpp::SHN_UNDEF)
2773 value = 0;
2774 else if (!is_ordinary
2775 && (shndx == elfcpp::SHN_ABS
2776 || Symbol::is_common_shndx(shndx)))
2777 value = sym->value();
2778 else
2779 {
2780 Relobj* relobj = static_cast<Relobj*>(symobj);
2781 Output_section* os = relobj->output_section(shndx);
2782
2783 if (this->is_section_folded(relobj, shndx))
2784 {
2785 gold_assert(os == NULL);
2786 // Get the os of the section it is folded onto.
2787 Section_id folded = this->icf_->get_folded_section(relobj,
2788 shndx);
2789 gold_assert(folded.first != NULL);
2790 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2791 unsigned folded_shndx = folded.second;
2792
2793 os = folded_obj->output_section(folded_shndx);
2794 gold_assert(os != NULL);
2795
2796 // Replace (relobj, shndx) with canonical ICF input section.
2797 shndx = folded_shndx;
2798 relobj = folded_obj;
2799 }
2800
2801 uint64_t secoff64 = relobj->output_section_offset(shndx);
2802 if (os == NULL)
2803 {
2804 bool static_or_reloc = (parameters->doing_static_link() ||
2805 parameters->options().relocatable());
2806 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2807
2808 *pstatus = CFVS_NO_OUTPUT_SECTION;
2809 return 0;
2810 }
2811
2812 if (secoff64 == -1ULL)
2813 {
2814 // The section needs special handling (e.g., a merge section).
2815
2816 value = os->output_address(relobj, shndx, sym->value());
2817 }
2818 else
2819 {
2820 Value_type secoff =
2821 convert_types<Value_type, uint64_t>(secoff64);
2822 if (sym->type() == elfcpp::STT_TLS)
2823 value = sym->value() + os->tls_offset() + secoff;
2824 else
2825 value = sym->value() + os->address() + secoff;
2826 }
2827 }
2828 }
2829 break;
2830
2831 case Symbol::IN_OUTPUT_DATA:
2832 {
2833 Output_data* od = sym->output_data();
2834 value = sym->value();
2835 if (sym->type() != elfcpp::STT_TLS)
2836 value += od->address();
2837 else
2838 {
2839 Output_section* os = od->output_section();
2840 gold_assert(os != NULL);
2841 value += os->tls_offset() + (od->address() - os->address());
2842 }
2843 if (sym->offset_is_from_end())
2844 value += od->data_size();
2845 }
2846 break;
2847
2848 case Symbol::IN_OUTPUT_SEGMENT:
2849 {
2850 Output_segment* os = sym->output_segment();
2851 value = sym->value();
2852 if (sym->type() != elfcpp::STT_TLS)
2853 value += os->vaddr();
2854 switch (sym->offset_base())
2855 {
2856 case Symbol::SEGMENT_START:
2857 break;
2858 case Symbol::SEGMENT_END:
2859 value += os->memsz();
2860 break;
2861 case Symbol::SEGMENT_BSS:
2862 value += os->filesz();
2863 break;
2864 default:
2865 gold_unreachable();
2866 }
2867 }
2868 break;
2869
2870 case Symbol::IS_CONSTANT:
2871 value = sym->value();
2872 break;
2873
2874 case Symbol::IS_UNDEFINED:
2875 value = 0;
2876 break;
2877
2878 default:
2879 gold_unreachable();
2880 }
2881
2882 *pstatus = CFVS_OK;
2883 return value;
2884 }
2885
2886 // Finalize the symbol SYM. This returns true if the symbol should be
2887 // added to the symbol table, false otherwise.
2888
2889 template<int size>
2890 bool
2891 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2892 {
2893 typedef typename Sized_symbol<size>::Value_type Value_type;
2894
2895 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2896
2897 // The default version of a symbol may appear twice in the symbol
2898 // table. We only need to finalize it once.
2899 if (sym->has_symtab_index())
2900 return false;
2901
2902 if (!sym->in_reg())
2903 {
2904 gold_assert(!sym->has_symtab_index());
2905 sym->set_symtab_index(-1U);
2906 gold_assert(sym->dynsym_index() == -1U);
2907 return false;
2908 }
2909
2910 // If the symbol is only present on plugin files, the plugin decided we
2911 // don't need it.
2912 if (!sym->in_real_elf())
2913 {
2914 gold_assert(!sym->has_symtab_index());
2915 sym->set_symtab_index(-1U);
2916 return false;
2917 }
2918
2919 // Compute final symbol value.
2920 Compute_final_value_status status;
2921 Value_type value = this->compute_final_value(sym, &status);
2922
2923 switch (status)
2924 {
2925 case CFVS_OK:
2926 break;
2927 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2928 {
2929 bool is_ordinary;
2930 unsigned int shndx = sym->shndx(&is_ordinary);
2931 gold_error(_("%s: unsupported symbol section 0x%x"),
2932 sym->demangled_name().c_str(), shndx);
2933 }
2934 break;
2935 case CFVS_NO_OUTPUT_SECTION:
2936 sym->set_symtab_index(-1U);
2937 return false;
2938 default:
2939 gold_unreachable();
2940 }
2941
2942 sym->set_value(value);
2943
2944 if (parameters->options().strip_all()
2945 || !parameters->options().should_retain_symbol(sym->name()))
2946 {
2947 sym->set_symtab_index(-1U);
2948 return false;
2949 }
2950
2951 return true;
2952 }
2953
2954 // Write out the global symbols.
2955
2956 void
2957 Symbol_table::write_globals(const Stringpool* sympool,
2958 const Stringpool* dynpool,
2959 Output_symtab_xindex* symtab_xindex,
2960 Output_symtab_xindex* dynsym_xindex,
2961 Output_file* of) const
2962 {
2963 switch (parameters->size_and_endianness())
2964 {
2965 #ifdef HAVE_TARGET_32_LITTLE
2966 case Parameters::TARGET_32_LITTLE:
2967 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2968 dynsym_xindex, of);
2969 break;
2970 #endif
2971 #ifdef HAVE_TARGET_32_BIG
2972 case Parameters::TARGET_32_BIG:
2973 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2974 dynsym_xindex, of);
2975 break;
2976 #endif
2977 #ifdef HAVE_TARGET_64_LITTLE
2978 case Parameters::TARGET_64_LITTLE:
2979 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2980 dynsym_xindex, of);
2981 break;
2982 #endif
2983 #ifdef HAVE_TARGET_64_BIG
2984 case Parameters::TARGET_64_BIG:
2985 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2986 dynsym_xindex, of);
2987 break;
2988 #endif
2989 default:
2990 gold_unreachable();
2991 }
2992 }
2993
2994 // Write out the global symbols.
2995
2996 template<int size, bool big_endian>
2997 void
2998 Symbol_table::sized_write_globals(const Stringpool* sympool,
2999 const Stringpool* dynpool,
3000 Output_symtab_xindex* symtab_xindex,
3001 Output_symtab_xindex* dynsym_xindex,
3002 Output_file* of) const
3003 {
3004 const Target& target = parameters->target();
3005
3006 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3007
3008 const unsigned int output_count = this->output_count_;
3009 const section_size_type oview_size = output_count * sym_size;
3010 const unsigned int first_global_index = this->first_global_index_;
3011 unsigned char* psyms;
3012 if (this->offset_ == 0 || output_count == 0)
3013 psyms = NULL;
3014 else
3015 psyms = of->get_output_view(this->offset_, oview_size);
3016
3017 const unsigned int dynamic_count = this->dynamic_count_;
3018 const section_size_type dynamic_size = dynamic_count * sym_size;
3019 const unsigned int first_dynamic_global_index =
3020 this->first_dynamic_global_index_;
3021 unsigned char* dynamic_view;
3022 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
3023 dynamic_view = NULL;
3024 else
3025 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
3026
3027 for (Symbol_table_type::const_iterator p = this->table_.begin();
3028 p != this->table_.end();
3029 ++p)
3030 {
3031 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
3032
3033 // Possibly warn about unresolved symbols in shared libraries.
3034 this->warn_about_undefined_dynobj_symbol(sym);
3035
3036 unsigned int sym_index = sym->symtab_index();
3037 unsigned int dynsym_index;
3038 if (dynamic_view == NULL)
3039 dynsym_index = -1U;
3040 else
3041 dynsym_index = sym->dynsym_index();
3042
3043 if (sym_index == -1U && dynsym_index == -1U)
3044 {
3045 // This symbol is not included in the output file.
3046 continue;
3047 }
3048
3049 unsigned int shndx;
3050 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
3051 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
3052 elfcpp::STB binding = sym->binding();
3053
3054 // If --weak-unresolved-symbols is set, change binding of unresolved
3055 // global symbols to STB_WEAK.
3056 if (parameters->options().weak_unresolved_symbols()
3057 && binding == elfcpp::STB_GLOBAL
3058 && sym->is_undefined())
3059 binding = elfcpp::STB_WEAK;
3060
3061 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
3062 if (binding == elfcpp::STB_GNU_UNIQUE
3063 && !parameters->options().gnu_unique())
3064 binding = elfcpp::STB_GLOBAL;
3065
3066 switch (sym->source())
3067 {
3068 case Symbol::FROM_OBJECT:
3069 {
3070 bool is_ordinary;
3071 unsigned int in_shndx = sym->shndx(&is_ordinary);
3072
3073 if (!is_ordinary
3074 && in_shndx != elfcpp::SHN_ABS
3075 && !Symbol::is_common_shndx(in_shndx))
3076 {
3077 gold_error(_("%s: unsupported symbol section 0x%x"),
3078 sym->demangled_name().c_str(), in_shndx);
3079 shndx = in_shndx;
3080 }
3081 else
3082 {
3083 Object* symobj = sym->object();
3084 if (symobj->is_dynamic())
3085 {
3086 if (sym->needs_dynsym_value())
3087 dynsym_value = target.dynsym_value(sym);
3088 shndx = elfcpp::SHN_UNDEF;
3089 if (sym->is_undef_binding_weak())
3090 binding = elfcpp::STB_WEAK;
3091 else
3092 binding = elfcpp::STB_GLOBAL;
3093 }
3094 else if (symobj->pluginobj() != NULL)
3095 shndx = elfcpp::SHN_UNDEF;
3096 else if (in_shndx == elfcpp::SHN_UNDEF
3097 || (!is_ordinary
3098 && (in_shndx == elfcpp::SHN_ABS
3099 || Symbol::is_common_shndx(in_shndx))))
3100 shndx = in_shndx;
3101 else
3102 {
3103 Relobj* relobj = static_cast<Relobj*>(symobj);
3104 Output_section* os = relobj->output_section(in_shndx);
3105 if (this->is_section_folded(relobj, in_shndx))
3106 {
3107 // This global symbol must be written out even though
3108 // it is folded.
3109 // Get the os of the section it is folded onto.
3110 Section_id folded =
3111 this->icf_->get_folded_section(relobj, in_shndx);
3112 gold_assert(folded.first !=NULL);
3113 Relobj* folded_obj =
3114 reinterpret_cast<Relobj*>(folded.first);
3115 os = folded_obj->output_section(folded.second);
3116 gold_assert(os != NULL);
3117 }
3118 gold_assert(os != NULL);
3119 shndx = os->out_shndx();
3120
3121 if (shndx >= elfcpp::SHN_LORESERVE)
3122 {
3123 if (sym_index != -1U)
3124 symtab_xindex->add(sym_index, shndx);
3125 if (dynsym_index != -1U)
3126 dynsym_xindex->add(dynsym_index, shndx);
3127 shndx = elfcpp::SHN_XINDEX;
3128 }
3129
3130 // In object files symbol values are section
3131 // relative.
3132 if (parameters->options().relocatable())
3133 sym_value -= os->address();
3134 }
3135 }
3136 }
3137 break;
3138
3139 case Symbol::IN_OUTPUT_DATA:
3140 {
3141 Output_data* od = sym->output_data();
3142
3143 shndx = od->out_shndx();
3144 if (shndx >= elfcpp::SHN_LORESERVE)
3145 {
3146 if (sym_index != -1U)
3147 symtab_xindex->add(sym_index, shndx);
3148 if (dynsym_index != -1U)
3149 dynsym_xindex->add(dynsym_index, shndx);
3150 shndx = elfcpp::SHN_XINDEX;
3151 }
3152
3153 // In object files symbol values are section
3154 // relative.
3155 if (parameters->options().relocatable())
3156 {
3157 Output_section* os = od->output_section();
3158 gold_assert(os != NULL);
3159 sym_value -= os->address();
3160 }
3161 }
3162 break;
3163
3164 case Symbol::IN_OUTPUT_SEGMENT:
3165 {
3166 Output_segment* oseg = sym->output_segment();
3167 Output_section* osect = oseg->first_section();
3168 if (osect == NULL)
3169 shndx = elfcpp::SHN_ABS;
3170 else
3171 shndx = osect->out_shndx();
3172 }
3173 break;
3174
3175 case Symbol::IS_CONSTANT:
3176 shndx = elfcpp::SHN_ABS;
3177 break;
3178
3179 case Symbol::IS_UNDEFINED:
3180 shndx = elfcpp::SHN_UNDEF;
3181 break;
3182
3183 default:
3184 gold_unreachable();
3185 }
3186
3187 if (sym_index != -1U)
3188 {
3189 sym_index -= first_global_index;
3190 gold_assert(sym_index < output_count);
3191 unsigned char* ps = psyms + (sym_index * sym_size);
3192 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3193 binding, sympool, ps);
3194 }
3195
3196 if (dynsym_index != -1U)
3197 {
3198 dynsym_index -= first_dynamic_global_index;
3199 gold_assert(dynsym_index < dynamic_count);
3200 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3201 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3202 binding, dynpool, pd);
3203 // Allow a target to adjust dynamic symbol value.
3204 parameters->target().adjust_dyn_symbol(sym, pd);
3205 }
3206 }
3207
3208 // Write the target-specific symbols.
3209 for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
3210 p != this->target_symbols_.end();
3211 ++p)
3212 {
3213 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
3214
3215 unsigned int sym_index = sym->symtab_index();
3216 unsigned int dynsym_index;
3217 if (dynamic_view == NULL)
3218 dynsym_index = -1U;
3219 else
3220 dynsym_index = sym->dynsym_index();
3221
3222 unsigned int shndx;
3223 switch (sym->source())
3224 {
3225 case Symbol::IS_CONSTANT:
3226 shndx = elfcpp::SHN_ABS;
3227 break;
3228 case Symbol::IS_UNDEFINED:
3229 shndx = elfcpp::SHN_UNDEF;
3230 break;
3231 default:
3232 gold_unreachable();
3233 }
3234
3235 if (sym_index != -1U)
3236 {
3237 sym_index -= first_global_index;
3238 gold_assert(sym_index < output_count);
3239 unsigned char* ps = psyms + (sym_index * sym_size);
3240 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3241 sym->binding(), sympool,
3242 ps);
3243 }
3244
3245 if (dynsym_index != -1U)
3246 {
3247 dynsym_index -= first_dynamic_global_index;
3248 gold_assert(dynsym_index < dynamic_count);
3249 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3250 this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
3251 sym->binding(), dynpool,
3252 pd);
3253 }
3254 }
3255
3256 of->write_output_view(this->offset_, oview_size, psyms);
3257 if (dynamic_view != NULL)
3258 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3259 }
3260
3261 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3262 // strtab holding the name.
3263
3264 template<int size, bool big_endian>
3265 void
3266 Symbol_table::sized_write_symbol(
3267 Sized_symbol<size>* sym,
3268 typename elfcpp::Elf_types<size>::Elf_Addr value,
3269 unsigned int shndx,
3270 elfcpp::STB binding,
3271 const Stringpool* pool,
3272 unsigned char* p) const
3273 {
3274 elfcpp::Sym_write<size, big_endian> osym(p);
3275 if (sym->version() == NULL || !parameters->options().relocatable())
3276 osym.put_st_name(pool->get_offset(sym->name()));
3277 else
3278 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3279 osym.put_st_value(value);
3280 // Use a symbol size of zero for undefined symbols from shared libraries.
3281 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3282 osym.put_st_size(0);
3283 else
3284 osym.put_st_size(sym->symsize());
3285 elfcpp::STT type = sym->type();
3286 gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
3287 // A version script may have overridden the default binding.
3288 if (sym->is_forced_local())
3289 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3290 else
3291 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3292 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3293 osym.put_st_shndx(shndx);
3294 }
3295
3296 // Check for unresolved symbols in shared libraries. This is
3297 // controlled by the --allow-shlib-undefined option.
3298
3299 // We only warn about libraries for which we have seen all the
3300 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3301 // which were not seen in this link. If we didn't see a DT_NEEDED
3302 // entry, we aren't going to be able to reliably report whether the
3303 // symbol is undefined.
3304
3305 // We also don't warn about libraries found in a system library
3306 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3307 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3308 // can have undefined references satisfied by ld-linux.so.
3309
3310 inline void
3311 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3312 {
3313 bool dummy;
3314 if (sym->source() == Symbol::FROM_OBJECT
3315 && sym->object()->is_dynamic()
3316 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3317 && sym->binding() != elfcpp::STB_WEAK
3318 && !parameters->options().allow_shlib_undefined()
3319 && !parameters->target().is_defined_by_abi(sym)
3320 && !sym->object()->is_in_system_directory())
3321 {
3322 // A very ugly cast.
3323 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3324 if (!dynobj->has_unknown_needed_entries())
3325 gold_undefined_symbol(sym);
3326 }
3327 }
3328
3329 // Write out a section symbol. Return the update offset.
3330
3331 void
3332 Symbol_table::write_section_symbol(const Output_section* os,
3333 Output_symtab_xindex* symtab_xindex,
3334 Output_file* of,
3335 off_t offset) const
3336 {
3337 switch (parameters->size_and_endianness())
3338 {
3339 #ifdef HAVE_TARGET_32_LITTLE
3340 case Parameters::TARGET_32_LITTLE:
3341 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3342 offset);
3343 break;
3344 #endif
3345 #ifdef HAVE_TARGET_32_BIG
3346 case Parameters::TARGET_32_BIG:
3347 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3348 offset);
3349 break;
3350 #endif
3351 #ifdef HAVE_TARGET_64_LITTLE
3352 case Parameters::TARGET_64_LITTLE:
3353 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3354 offset);
3355 break;
3356 #endif
3357 #ifdef HAVE_TARGET_64_BIG
3358 case Parameters::TARGET_64_BIG:
3359 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3360 offset);
3361 break;
3362 #endif
3363 default:
3364 gold_unreachable();
3365 }
3366 }
3367
3368 // Write out a section symbol, specialized for size and endianness.
3369
3370 template<int size, bool big_endian>
3371 void
3372 Symbol_table::sized_write_section_symbol(const Output_section* os,
3373 Output_symtab_xindex* symtab_xindex,
3374 Output_file* of,
3375 off_t offset) const
3376 {
3377 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3378
3379 unsigned char* pov = of->get_output_view(offset, sym_size);
3380
3381 elfcpp::Sym_write<size, big_endian> osym(pov);
3382 osym.put_st_name(0);
3383 if (parameters->options().relocatable())
3384 osym.put_st_value(0);
3385 else
3386 osym.put_st_value(os->address());
3387 osym.put_st_size(0);
3388 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3389 elfcpp::STT_SECTION));
3390 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3391
3392 unsigned int shndx = os->out_shndx();
3393 if (shndx >= elfcpp::SHN_LORESERVE)
3394 {
3395 symtab_xindex->add(os->symtab_index(), shndx);
3396 shndx = elfcpp::SHN_XINDEX;
3397 }
3398 osym.put_st_shndx(shndx);
3399
3400 of->write_output_view(offset, sym_size, pov);
3401 }
3402
3403 // Print statistical information to stderr. This is used for --stats.
3404
3405 void
3406 Symbol_table::print_stats() const
3407 {
3408 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3409 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3410 program_name, this->table_.size(), this->table_.bucket_count());
3411 #else
3412 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3413 program_name, this->table_.size());
3414 #endif
3415 this->namepool_.print_stats("symbol table stringpool");
3416 }
3417
3418 // We check for ODR violations by looking for symbols with the same
3419 // name for which the debugging information reports that they were
3420 // defined in disjoint source locations. When comparing the source
3421 // location, we consider instances with the same base filename to be
3422 // the same. This is because different object files/shared libraries
3423 // can include the same header file using different paths, and
3424 // different optimization settings can make the line number appear to
3425 // be a couple lines off, and we don't want to report an ODR violation
3426 // in those cases.
3427
3428 // This struct is used to compare line information, as returned by
3429 // Dwarf_line_info::one_addr2line. It implements a < comparison
3430 // operator used with std::sort.
3431
3432 struct Odr_violation_compare
3433 {
3434 bool
3435 operator()(const std::string& s1, const std::string& s2) const
3436 {
3437 // Inputs should be of the form "dirname/filename:linenum" where
3438 // "dirname/" is optional. We want to compare just the filename:linenum.
3439
3440 // Find the last '/' in each string.
3441 std::string::size_type s1begin = s1.rfind('/');
3442 std::string::size_type s2begin = s2.rfind('/');
3443 // If there was no '/' in a string, start at the beginning.
3444 if (s1begin == std::string::npos)
3445 s1begin = 0;
3446 if (s2begin == std::string::npos)
3447 s2begin = 0;
3448 return s1.compare(s1begin, std::string::npos,
3449 s2, s2begin, std::string::npos) < 0;
3450 }
3451 };
3452
3453 // Returns all of the lines attached to LOC, not just the one the
3454 // instruction actually came from.
3455 std::vector<std::string>
3456 Symbol_table::linenos_from_loc(const Task* task,
3457 const Symbol_location& loc)
3458 {
3459 // We need to lock the object in order to read it. This
3460 // means that we have to run in a singleton Task. If we
3461 // want to run this in a general Task for better
3462 // performance, we will need one Task for object, plus
3463 // appropriate locking to ensure that we don't conflict with
3464 // other uses of the object. Also note, one_addr2line is not
3465 // currently thread-safe.
3466 Task_lock_obj<Object> tl(task, loc.object);
3467
3468 std::vector<std::string> result;
3469 Symbol_location code_loc = loc;
3470 parameters->target().function_location(&code_loc);
3471 // 16 is the size of the object-cache that one_addr2line should use.
3472 std::string canonical_result = Dwarf_line_info::one_addr2line(
3473 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3474 if (!canonical_result.empty())
3475 result.push_back(canonical_result);
3476 return result;
3477 }
3478
3479 // OutputIterator that records if it was ever assigned to. This
3480 // allows it to be used with std::set_intersection() to check for
3481 // intersection rather than computing the intersection.
3482 struct Check_intersection
3483 {
3484 Check_intersection()
3485 : value_(false)
3486 {}
3487
3488 bool had_intersection() const
3489 { return this->value_; }
3490
3491 Check_intersection& operator++()
3492 { return *this; }
3493
3494 Check_intersection& operator*()
3495 { return *this; }
3496
3497 template<typename T>
3498 Check_intersection& operator=(const T&)
3499 {
3500 this->value_ = true;
3501 return *this;
3502 }
3503
3504 private:
3505 bool value_;
3506 };
3507
3508 // Check candidate_odr_violations_ to find symbols with the same name
3509 // but apparently different definitions (different source-file/line-no
3510 // for each line assigned to the first instruction).
3511
3512 void
3513 Symbol_table::detect_odr_violations(const Task* task,
3514 const char* output_file_name) const
3515 {
3516 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3517 it != candidate_odr_violations_.end();
3518 ++it)
3519 {
3520 const char* const symbol_name = it->first;
3521
3522 std::string first_object_name;
3523 std::vector<std::string> first_object_linenos;
3524
3525 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3526 locs = it->second.begin();
3527 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3528 locs_end = it->second.end();
3529 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3530 {
3531 // Save the line numbers from the first definition to
3532 // compare to the other definitions. Ideally, we'd compare
3533 // every definition to every other, but we don't want to
3534 // take O(N^2) time to do this. This shortcut may cause
3535 // false negatives that appear or disappear depending on the
3536 // link order, but it won't cause false positives.
3537 first_object_name = locs->object->name();
3538 first_object_linenos = this->linenos_from_loc(task, *locs);
3539 }
3540 if (first_object_linenos.empty())
3541 continue;
3542
3543 // Sort by Odr_violation_compare to make std::set_intersection work.
3544 std::string first_object_canonical_result = first_object_linenos.back();
3545 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3546 Odr_violation_compare());
3547
3548 for (; locs != locs_end; ++locs)
3549 {
3550 std::vector<std::string> linenos =
3551 this->linenos_from_loc(task, *locs);
3552 // linenos will be empty if we couldn't parse the debug info.
3553 if (linenos.empty())
3554 continue;
3555 // Sort by Odr_violation_compare to make std::set_intersection work.
3556 gold_assert(!linenos.empty());
3557 std::string second_object_canonical_result = linenos.back();
3558 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3559
3560 Check_intersection intersection_result =
3561 std::set_intersection(first_object_linenos.begin(),
3562 first_object_linenos.end(),
3563 linenos.begin(),
3564 linenos.end(),
3565 Check_intersection(),
3566 Odr_violation_compare());
3567 if (!intersection_result.had_intersection())
3568 {
3569 gold_warning(_("while linking %s: symbol '%s' defined in "
3570 "multiple places (possible ODR violation):"),
3571 output_file_name, demangle(symbol_name).c_str());
3572 // This only prints one location from each definition,
3573 // which may not be the location we expect to intersect
3574 // with another definition. We could print the whole
3575 // set of locations, but that seems too verbose.
3576 fprintf(stderr, _(" %s from %s\n"),
3577 first_object_canonical_result.c_str(),
3578 first_object_name.c_str());
3579 fprintf(stderr, _(" %s from %s\n"),
3580 second_object_canonical_result.c_str(),
3581 locs->object->name().c_str());
3582 // Only print one broken pair, to avoid needing to
3583 // compare against a list of the disjoint definition
3584 // locations we've found so far. (If we kept comparing
3585 // against just the first one, we'd get a lot of
3586 // redundant complaints about the second definition
3587 // location.)
3588 break;
3589 }
3590 }
3591 }
3592 // We only call one_addr2line() in this function, so we can clear its cache.
3593 Dwarf_line_info::clear_addr2line_cache();
3594 }
3595
3596 // Warnings functions.
3597
3598 // Add a new warning.
3599
3600 void
3601 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3602 const std::string& warning)
3603 {
3604 name = symtab->canonicalize_name(name);
3605 this->warnings_[name].set(obj, warning);
3606 }
3607
3608 // Look through the warnings and mark the symbols for which we should
3609 // warn. This is called during Layout::finalize when we know the
3610 // sources for all the symbols.
3611
3612 void
3613 Warnings::note_warnings(Symbol_table* symtab)
3614 {
3615 for (Warning_table::iterator p = this->warnings_.begin();
3616 p != this->warnings_.end();
3617 ++p)
3618 {
3619 Symbol* sym = symtab->lookup(p->first, NULL);
3620 if (sym != NULL
3621 && sym->source() == Symbol::FROM_OBJECT
3622 && sym->object() == p->second.object)
3623 sym->set_has_warning();
3624 }
3625 }
3626
3627 // Issue a warning. This is called when we see a relocation against a
3628 // symbol for which has a warning.
3629
3630 template<int size, bool big_endian>
3631 void
3632 Warnings::issue_warning(const Symbol* sym,
3633 const Relocate_info<size, big_endian>* relinfo,
3634 size_t relnum, off_t reloffset) const
3635 {
3636 gold_assert(sym->has_warning());
3637
3638 // We don't want to issue a warning for a relocation against the
3639 // symbol in the same object file in which the symbol is defined.
3640 if (sym->object() == relinfo->object)
3641 return;
3642
3643 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3644 gold_assert(p != this->warnings_.end());
3645 gold_warning_at_location(relinfo, relnum, reloffset,
3646 "%s", p->second.text.c_str());
3647 }
3648
3649 // Instantiate the templates we need. We could use the configure
3650 // script to restrict this to only the ones needed for implemented
3651 // targets.
3652
3653 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3654 template
3655 void
3656 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3657 #endif
3658
3659 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3660 template
3661 void
3662 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3663 #endif
3664
3665 #ifdef HAVE_TARGET_32_LITTLE
3666 template
3667 void
3668 Symbol_table::add_from_relobj<32, false>(
3669 Sized_relobj_file<32, false>* relobj,
3670 const unsigned char* syms,
3671 size_t count,
3672 size_t symndx_offset,
3673 const char* sym_names,
3674 size_t sym_name_size,
3675 Sized_relobj_file<32, false>::Symbols* sympointers,
3676 size_t* defined);
3677 #endif
3678
3679 #ifdef HAVE_TARGET_32_BIG
3680 template
3681 void
3682 Symbol_table::add_from_relobj<32, true>(
3683 Sized_relobj_file<32, true>* relobj,
3684 const unsigned char* syms,
3685 size_t count,
3686 size_t symndx_offset,
3687 const char* sym_names,
3688 size_t sym_name_size,
3689 Sized_relobj_file<32, true>::Symbols* sympointers,
3690 size_t* defined);
3691 #endif
3692
3693 #ifdef HAVE_TARGET_64_LITTLE
3694 template
3695 void
3696 Symbol_table::add_from_relobj<64, false>(
3697 Sized_relobj_file<64, false>* relobj,
3698 const unsigned char* syms,
3699 size_t count,
3700 size_t symndx_offset,
3701 const char* sym_names,
3702 size_t sym_name_size,
3703 Sized_relobj_file<64, false>::Symbols* sympointers,
3704 size_t* defined);
3705 #endif
3706
3707 #ifdef HAVE_TARGET_64_BIG
3708 template
3709 void
3710 Symbol_table::add_from_relobj<64, true>(
3711 Sized_relobj_file<64, true>* relobj,
3712 const unsigned char* syms,
3713 size_t count,
3714 size_t symndx_offset,
3715 const char* sym_names,
3716 size_t sym_name_size,
3717 Sized_relobj_file<64, true>::Symbols* sympointers,
3718 size_t* defined);
3719 #endif
3720
3721 #ifdef HAVE_TARGET_32_LITTLE
3722 template
3723 Symbol*
3724 Symbol_table::add_from_pluginobj<32, false>(
3725 Sized_pluginobj<32, false>* obj,
3726 const char* name,
3727 const char* ver,
3728 elfcpp::Sym<32, false>* sym);
3729 #endif
3730
3731 #ifdef HAVE_TARGET_32_BIG
3732 template
3733 Symbol*
3734 Symbol_table::add_from_pluginobj<32, true>(
3735 Sized_pluginobj<32, true>* obj,
3736 const char* name,
3737 const char* ver,
3738 elfcpp::Sym<32, true>* sym);
3739 #endif
3740
3741 #ifdef HAVE_TARGET_64_LITTLE
3742 template
3743 Symbol*
3744 Symbol_table::add_from_pluginobj<64, false>(
3745 Sized_pluginobj<64, false>* obj,
3746 const char* name,
3747 const char* ver,
3748 elfcpp::Sym<64, false>* sym);
3749 #endif
3750
3751 #ifdef HAVE_TARGET_64_BIG
3752 template
3753 Symbol*
3754 Symbol_table::add_from_pluginobj<64, true>(
3755 Sized_pluginobj<64, true>* obj,
3756 const char* name,
3757 const char* ver,
3758 elfcpp::Sym<64, true>* sym);
3759 #endif
3760
3761 #ifdef HAVE_TARGET_32_LITTLE
3762 template
3763 void
3764 Symbol_table::add_from_dynobj<32, false>(
3765 Sized_dynobj<32, false>* dynobj,
3766 const unsigned char* syms,
3767 size_t count,
3768 const char* sym_names,
3769 size_t sym_name_size,
3770 const unsigned char* versym,
3771 size_t versym_size,
3772 const std::vector<const char*>* version_map,
3773 Sized_relobj_file<32, false>::Symbols* sympointers,
3774 size_t* defined);
3775 #endif
3776
3777 #ifdef HAVE_TARGET_32_BIG
3778 template
3779 void
3780 Symbol_table::add_from_dynobj<32, true>(
3781 Sized_dynobj<32, true>* dynobj,
3782 const unsigned char* syms,
3783 size_t count,
3784 const char* sym_names,
3785 size_t sym_name_size,
3786 const unsigned char* versym,
3787 size_t versym_size,
3788 const std::vector<const char*>* version_map,
3789 Sized_relobj_file<32, true>::Symbols* sympointers,
3790 size_t* defined);
3791 #endif
3792
3793 #ifdef HAVE_TARGET_64_LITTLE
3794 template
3795 void
3796 Symbol_table::add_from_dynobj<64, false>(
3797 Sized_dynobj<64, false>* dynobj,
3798 const unsigned char* syms,
3799 size_t count,
3800 const char* sym_names,
3801 size_t sym_name_size,
3802 const unsigned char* versym,
3803 size_t versym_size,
3804 const std::vector<const char*>* version_map,
3805 Sized_relobj_file<64, false>::Symbols* sympointers,
3806 size_t* defined);
3807 #endif
3808
3809 #ifdef HAVE_TARGET_64_BIG
3810 template
3811 void
3812 Symbol_table::add_from_dynobj<64, true>(
3813 Sized_dynobj<64, true>* dynobj,
3814 const unsigned char* syms,
3815 size_t count,
3816 const char* sym_names,
3817 size_t sym_name_size,
3818 const unsigned char* versym,
3819 size_t versym_size,
3820 const std::vector<const char*>* version_map,
3821 Sized_relobj_file<64, true>::Symbols* sympointers,
3822 size_t* defined);
3823 #endif
3824
3825 #ifdef HAVE_TARGET_32_LITTLE
3826 template
3827 Sized_symbol<32>*
3828 Symbol_table::add_from_incrobj(
3829 Object* obj,
3830 const char* name,
3831 const char* ver,
3832 elfcpp::Sym<32, false>* sym);
3833 #endif
3834
3835 #ifdef HAVE_TARGET_32_BIG
3836 template
3837 Sized_symbol<32>*
3838 Symbol_table::add_from_incrobj(
3839 Object* obj,
3840 const char* name,
3841 const char* ver,
3842 elfcpp::Sym<32, true>* sym);
3843 #endif
3844
3845 #ifdef HAVE_TARGET_64_LITTLE
3846 template
3847 Sized_symbol<64>*
3848 Symbol_table::add_from_incrobj(
3849 Object* obj,
3850 const char* name,
3851 const char* ver,
3852 elfcpp::Sym<64, false>* sym);
3853 #endif
3854
3855 #ifdef HAVE_TARGET_64_BIG
3856 template
3857 Sized_symbol<64>*
3858 Symbol_table::add_from_incrobj(
3859 Object* obj,
3860 const char* name,
3861 const char* ver,
3862 elfcpp::Sym<64, true>* sym);
3863 #endif
3864
3865 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3866 template
3867 void
3868 Symbol_table::define_with_copy_reloc<32>(
3869 Sized_symbol<32>* sym,
3870 Output_data* posd,
3871 elfcpp::Elf_types<32>::Elf_Addr value);
3872 #endif
3873
3874 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3875 template
3876 void
3877 Symbol_table::define_with_copy_reloc<64>(
3878 Sized_symbol<64>* sym,
3879 Output_data* posd,
3880 elfcpp::Elf_types<64>::Elf_Addr value);
3881 #endif
3882
3883 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3884 template
3885 void
3886 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3887 Output_data* od, Value_type value,
3888 Size_type symsize, elfcpp::STT type,
3889 elfcpp::STB binding,
3890 elfcpp::STV visibility,
3891 unsigned char nonvis,
3892 bool offset_is_from_end,
3893 bool is_predefined);
3894
3895 template
3896 void
3897 Sized_symbol<32>::init_constant(const char* name, const char* version,
3898 Value_type value, Size_type symsize,
3899 elfcpp::STT type, elfcpp::STB binding,
3900 elfcpp::STV visibility, unsigned char nonvis,
3901 bool is_predefined);
3902
3903 template
3904 void
3905 Sized_symbol<32>::init_undefined(const char* name, const char* version,
3906 Value_type value, elfcpp::STT type,
3907 elfcpp::STB binding, elfcpp::STV visibility,
3908 unsigned char nonvis);
3909 #endif
3910
3911 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3912 template
3913 void
3914 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3915 Output_data* od, Value_type value,
3916 Size_type symsize, elfcpp::STT type,
3917 elfcpp::STB binding,
3918 elfcpp::STV visibility,
3919 unsigned char nonvis,
3920 bool offset_is_from_end,
3921 bool is_predefined);
3922
3923 template
3924 void
3925 Sized_symbol<64>::init_constant(const char* name, const char* version,
3926 Value_type value, Size_type symsize,
3927 elfcpp::STT type, elfcpp::STB binding,
3928 elfcpp::STV visibility, unsigned char nonvis,
3929 bool is_predefined);
3930
3931 template
3932 void
3933 Sized_symbol<64>::init_undefined(const char* name, const char* version,
3934 Value_type value, elfcpp::STT type,
3935 elfcpp::STB binding, elfcpp::STV visibility,
3936 unsigned char nonvis);
3937 #endif
3938
3939 #ifdef HAVE_TARGET_32_LITTLE
3940 template
3941 void
3942 Warnings::issue_warning<32, false>(const Symbol* sym,
3943 const Relocate_info<32, false>* relinfo,
3944 size_t relnum, off_t reloffset) const;
3945 #endif
3946
3947 #ifdef HAVE_TARGET_32_BIG
3948 template
3949 void
3950 Warnings::issue_warning<32, true>(const Symbol* sym,
3951 const Relocate_info<32, true>* relinfo,
3952 size_t relnum, off_t reloffset) const;
3953 #endif
3954
3955 #ifdef HAVE_TARGET_64_LITTLE
3956 template
3957 void
3958 Warnings::issue_warning<64, false>(const Symbol* sym,
3959 const Relocate_info<64, false>* relinfo,
3960 size_t relnum, off_t reloffset) const;
3961 #endif
3962
3963 #ifdef HAVE_TARGET_64_BIG
3964 template
3965 void
3966 Warnings::issue_warning<64, true>(const Symbol* sym,
3967 const Relocate_info<64, true>* relinfo,
3968 size_t relnum, off_t reloffset) const;
3969 #endif
3970
3971 } // End namespace gold.
This page took 0.112377 seconds and 5 git commands to generate.