Change Section_id type to use Relobj* instead of Object*.
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced dynamic in a --dynamic-list file
367 // or an --export-dynamic-symbol option, add it.
368 if (!this->is_from_dynobj()
369 && (parameters->options().in_dynamic_list(this->name())
370 || parameters->options().is_export_dynamic_symbol(this->name())))
371 {
372 if (!this->is_forced_local())
373 return true;
374 gold_warning(_("Cannot export local symbol '%s'"),
375 this->demangled_name().c_str());
376 return false;
377 }
378
379 // If the symbol was forced local in a version script, do not add it.
380 if (this->is_forced_local())
381 return false;
382
383 // If dynamic-list-data was specified, add any STT_OBJECT.
384 if (parameters->options().dynamic_list_data()
385 && !this->is_from_dynobj()
386 && this->type() == elfcpp::STT_OBJECT)
387 return true;
388
389 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391 if ((parameters->options().dynamic_list_cpp_new()
392 || parameters->options().dynamic_list_cpp_typeinfo())
393 && !this->is_from_dynobj())
394 {
395 // TODO(csilvers): We could probably figure out if we're an operator
396 // new/delete or typeinfo without the need to demangle.
397 char* demangled_name = cplus_demangle(this->name(),
398 DMGL_ANSI | DMGL_PARAMS);
399 if (demangled_name == NULL)
400 {
401 // Not a C++ symbol, so it can't satisfy these flags
402 }
403 else if (parameters->options().dynamic_list_cpp_new()
404 && (strprefix(demangled_name, "operator new")
405 || strprefix(demangled_name, "operator delete")))
406 {
407 free(demangled_name);
408 return true;
409 }
410 else if (parameters->options().dynamic_list_cpp_typeinfo()
411 && (strprefix(demangled_name, "typeinfo name for")
412 || strprefix(demangled_name, "typeinfo for")))
413 {
414 free(demangled_name);
415 return true;
416 }
417 else
418 free(demangled_name);
419 }
420
421 // If exporting all symbols or building a shared library,
422 // or the symbol should be globally unique (GNU_UNIQUE),
423 // and the symbol is defined in a regular object and is
424 // externally visible, we need to add it.
425 if ((parameters->options().export_dynamic()
426 || parameters->options().shared()
427 || (parameters->options().gnu_unique()
428 && this->binding() == elfcpp::STB_GNU_UNIQUE))
429 && !this->is_from_dynobj()
430 && !this->is_undefined()
431 && this->is_externally_visible())
432 return true;
433
434 return false;
435 }
436
437 // Return true if the final value of this symbol is known at link
438 // time.
439
440 bool
441 Symbol::final_value_is_known() const
442 {
443 // If we are not generating an executable, then no final values are
444 // known, since they will change at runtime, with the exception of
445 // TLS symbols in a position-independent executable.
446 if ((parameters->options().output_is_position_independent()
447 || parameters->options().relocatable())
448 && !(this->type() == elfcpp::STT_TLS
449 && parameters->options().pie()))
450 return false;
451
452 // If the symbol is not from an object file, and is not undefined,
453 // then it is defined, and known.
454 if (this->source_ != FROM_OBJECT)
455 {
456 if (this->source_ != IS_UNDEFINED)
457 return true;
458 }
459 else
460 {
461 // If the symbol is from a dynamic object, then the final value
462 // is not known.
463 if (this->object()->is_dynamic())
464 return false;
465
466 // If the symbol is not undefined (it is defined or common),
467 // then the final value is known.
468 if (!this->is_undefined())
469 return true;
470 }
471
472 // If the symbol is undefined, then whether the final value is known
473 // depends on whether we are doing a static link. If we are doing a
474 // dynamic link, then the final value could be filled in at runtime.
475 // This could reasonably be the case for a weak undefined symbol.
476 return parameters->doing_static_link();
477 }
478
479 // Return the output section where this symbol is defined.
480
481 Output_section*
482 Symbol::output_section() const
483 {
484 switch (this->source_)
485 {
486 case FROM_OBJECT:
487 {
488 unsigned int shndx = this->u_.from_object.shndx;
489 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490 {
491 gold_assert(!this->u_.from_object.object->is_dynamic());
492 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494 return relobj->output_section(shndx);
495 }
496 return NULL;
497 }
498
499 case IN_OUTPUT_DATA:
500 return this->u_.in_output_data.output_data->output_section();
501
502 case IN_OUTPUT_SEGMENT:
503 case IS_CONSTANT:
504 case IS_UNDEFINED:
505 return NULL;
506
507 default:
508 gold_unreachable();
509 }
510 }
511
512 // Set the symbol's output section. This is used for symbols defined
513 // in scripts. This should only be called after the symbol table has
514 // been finalized.
515
516 void
517 Symbol::set_output_section(Output_section* os)
518 {
519 switch (this->source_)
520 {
521 case FROM_OBJECT:
522 case IN_OUTPUT_DATA:
523 gold_assert(this->output_section() == os);
524 break;
525 case IS_CONSTANT:
526 this->source_ = IN_OUTPUT_DATA;
527 this->u_.in_output_data.output_data = os;
528 this->u_.in_output_data.offset_is_from_end = false;
529 break;
530 case IN_OUTPUT_SEGMENT:
531 case IS_UNDEFINED:
532 default:
533 gold_unreachable();
534 }
535 }
536
537 // Set the symbol's output segment. This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540
541 void
542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544 gold_assert(this->is_predefined_);
545 this->source_ = IN_OUTPUT_SEGMENT;
546 this->u_.in_output_segment.output_segment = os;
547 this->u_.in_output_segment.offset_base = base;
548 }
549
550 // Set the symbol to undefined. This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553
554 void
555 Symbol::set_undefined()
556 {
557 this->source_ = IS_UNDEFINED;
558 this->is_predefined_ = false;
559 }
560
561 // Class Symbol_table.
562
563 Symbol_table::Symbol_table(unsigned int count,
564 const Version_script_info& version_script)
565 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566 forwarders_(), commons_(), tls_commons_(), small_commons_(),
567 large_commons_(), forced_locals_(), warnings_(),
568 version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570 namepool_.reserve(count);
571 }
572
573 Symbol_table::~Symbol_table()
574 {
575 }
576
577 // The symbol table key equality function. This is called with
578 // Stringpool keys.
579
580 inline bool
581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582 const Symbol_table_key& k2) const
583 {
584 return k1.first == k2.first && k1.second == k2.second;
585 }
586
587 bool
588 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
589 {
590 return (parameters->options().icf_enabled()
591 && this->icf_->is_section_folded(obj, shndx));
592 }
593
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596
597 void
598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600 for (options::String_set::const_iterator p =
601 parameters->options().undefined_begin();
602 p != parameters->options().undefined_end();
603 ++p)
604 {
605 const char* name = p->c_str();
606 Symbol* sym = this->lookup(name);
607 gold_assert(sym != NULL);
608 if (sym->source() == Symbol::FROM_OBJECT
609 && !sym->object()->is_dynamic())
610 {
611 this->gc_mark_symbol(sym);
612 }
613 }
614
615 for (options::String_set::const_iterator p =
616 parameters->options().export_dynamic_symbol_begin();
617 p != parameters->options().export_dynamic_symbol_end();
618 ++p)
619 {
620 const char* name = p->c_str();
621 Symbol* sym = this->lookup(name);
622 // It's not an error if a symbol named by --export-dynamic-symbol
623 // is undefined.
624 if (sym != NULL
625 && sym->source() == Symbol::FROM_OBJECT
626 && !sym->object()->is_dynamic())
627 {
628 this->gc_mark_symbol(sym);
629 }
630 }
631
632 for (Script_options::referenced_const_iterator p =
633 layout->script_options()->referenced_begin();
634 p != layout->script_options()->referenced_end();
635 ++p)
636 {
637 Symbol* sym = this->lookup(p->c_str());
638 gold_assert(sym != NULL);
639 if (sym->source() == Symbol::FROM_OBJECT
640 && !sym->object()->is_dynamic())
641 {
642 this->gc_mark_symbol(sym);
643 }
644 }
645 }
646
647 void
648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650 // Add the object and section to the work list.
651 bool is_ordinary;
652 unsigned int shndx = sym->shndx(&is_ordinary);
653 if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
654 {
655 gold_assert(this->gc_!= NULL);
656 Relobj* relobj = static_cast<Relobj*>(sym->object());
657 this->gc_->worklist().push_back(Section_id(relobj, shndx));
658 }
659 parameters->target().gc_mark_symbol(this, sym);
660 }
661
662 // When doing garbage collection, keep symbols that have been seen in
663 // dynamic objects.
664 inline void
665 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
666 {
667 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
668 && !sym->object()->is_dynamic())
669 this->gc_mark_symbol(sym);
670 }
671
672 // Make TO a symbol which forwards to FROM.
673
674 void
675 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
676 {
677 gold_assert(from != to);
678 gold_assert(!from->is_forwarder() && !to->is_forwarder());
679 this->forwarders_[from] = to;
680 from->set_forwarder();
681 }
682
683 // Resolve the forwards from FROM, returning the real symbol.
684
685 Symbol*
686 Symbol_table::resolve_forwards(const Symbol* from) const
687 {
688 gold_assert(from->is_forwarder());
689 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
690 this->forwarders_.find(from);
691 gold_assert(p != this->forwarders_.end());
692 return p->second;
693 }
694
695 // Look up a symbol by name.
696
697 Symbol*
698 Symbol_table::lookup(const char* name, const char* version) const
699 {
700 Stringpool::Key name_key;
701 name = this->namepool_.find(name, &name_key);
702 if (name == NULL)
703 return NULL;
704
705 Stringpool::Key version_key = 0;
706 if (version != NULL)
707 {
708 version = this->namepool_.find(version, &version_key);
709 if (version == NULL)
710 return NULL;
711 }
712
713 Symbol_table_key key(name_key, version_key);
714 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
715 if (p == this->table_.end())
716 return NULL;
717 return p->second;
718 }
719
720 // Resolve a Symbol with another Symbol. This is only used in the
721 // unusual case where there are references to both an unversioned
722 // symbol and a symbol with a version, and we then discover that that
723 // version is the default version. Because this is unusual, we do
724 // this the slow way, by converting back to an ELF symbol.
725
726 template<int size, bool big_endian>
727 void
728 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
729 {
730 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
731 elfcpp::Sym_write<size, big_endian> esym(buf);
732 // We don't bother to set the st_name or the st_shndx field.
733 esym.put_st_value(from->value());
734 esym.put_st_size(from->symsize());
735 esym.put_st_info(from->binding(), from->type());
736 esym.put_st_other(from->visibility(), from->nonvis());
737 bool is_ordinary;
738 unsigned int shndx = from->shndx(&is_ordinary);
739 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
740 from->version());
741 if (from->in_reg())
742 to->set_in_reg();
743 if (from->in_dyn())
744 to->set_in_dyn();
745 if (parameters->options().gc_sections())
746 this->gc_mark_dyn_syms(to);
747 }
748
749 // Record that a symbol is forced to be local by a version script or
750 // by visibility.
751
752 void
753 Symbol_table::force_local(Symbol* sym)
754 {
755 if (!sym->is_defined() && !sym->is_common())
756 return;
757 if (sym->is_forced_local())
758 {
759 // We already got this one.
760 return;
761 }
762 sym->set_is_forced_local();
763 this->forced_locals_.push_back(sym);
764 }
765
766 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
767 // is only called for undefined symbols, when at least one --wrap
768 // option was used.
769
770 const char*
771 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
772 {
773 // For some targets, we need to ignore a specific character when
774 // wrapping, and add it back later.
775 char prefix = '\0';
776 if (name[0] == parameters->target().wrap_char())
777 {
778 prefix = name[0];
779 ++name;
780 }
781
782 if (parameters->options().is_wrap(name))
783 {
784 // Turn NAME into __wrap_NAME.
785 std::string s;
786 if (prefix != '\0')
787 s += prefix;
788 s += "__wrap_";
789 s += name;
790
791 // This will give us both the old and new name in NAMEPOOL_, but
792 // that is OK. Only the versions we need will wind up in the
793 // real string table in the output file.
794 return this->namepool_.add(s.c_str(), true, name_key);
795 }
796
797 const char* const real_prefix = "__real_";
798 const size_t real_prefix_length = strlen(real_prefix);
799 if (strncmp(name, real_prefix, real_prefix_length) == 0
800 && parameters->options().is_wrap(name + real_prefix_length))
801 {
802 // Turn __real_NAME into NAME.
803 std::string s;
804 if (prefix != '\0')
805 s += prefix;
806 s += name + real_prefix_length;
807 return this->namepool_.add(s.c_str(), true, name_key);
808 }
809
810 return name;
811 }
812
813 // This is called when we see a symbol NAME/VERSION, and the symbol
814 // already exists in the symbol table, and VERSION is marked as being
815 // the default version. SYM is the NAME/VERSION symbol we just added.
816 // DEFAULT_IS_NEW is true if this is the first time we have seen the
817 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
818
819 template<int size, bool big_endian>
820 void
821 Symbol_table::define_default_version(Sized_symbol<size>* sym,
822 bool default_is_new,
823 Symbol_table_type::iterator pdef)
824 {
825 if (default_is_new)
826 {
827 // This is the first time we have seen NAME/NULL. Make
828 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
829 // version.
830 pdef->second = sym;
831 sym->set_is_default();
832 }
833 else if (pdef->second == sym)
834 {
835 // NAME/NULL already points to NAME/VERSION. Don't mark the
836 // symbol as the default if it is not already the default.
837 }
838 else
839 {
840 // This is the unfortunate case where we already have entries
841 // for both NAME/VERSION and NAME/NULL. We now see a symbol
842 // NAME/VERSION where VERSION is the default version. We have
843 // already resolved this new symbol with the existing
844 // NAME/VERSION symbol.
845
846 // It's possible that NAME/NULL and NAME/VERSION are both
847 // defined in regular objects. This can only happen if one
848 // object file defines foo and another defines foo@@ver. This
849 // is somewhat obscure, but we call it a multiple definition
850 // error.
851
852 // It's possible that NAME/NULL actually has a version, in which
853 // case it won't be the same as VERSION. This happens with
854 // ver_test_7.so in the testsuite for the symbol t2_2. We see
855 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
856 // then see an unadorned t2_2 in an object file and give it
857 // version VER1 from the version script. This looks like a
858 // default definition for VER1, so it looks like we should merge
859 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
860 // not obvious that this is an error, either. So we just punt.
861
862 // If one of the symbols has non-default visibility, and the
863 // other is defined in a shared object, then they are different
864 // symbols.
865
866 // Otherwise, we just resolve the symbols as though they were
867 // the same.
868
869 if (pdef->second->version() != NULL)
870 gold_assert(pdef->second->version() != sym->version());
871 else if (sym->visibility() != elfcpp::STV_DEFAULT
872 && pdef->second->is_from_dynobj())
873 ;
874 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
875 && sym->is_from_dynobj())
876 ;
877 else
878 {
879 const Sized_symbol<size>* symdef;
880 symdef = this->get_sized_symbol<size>(pdef->second);
881 Symbol_table::resolve<size, big_endian>(sym, symdef);
882 this->make_forwarder(pdef->second, sym);
883 pdef->second = sym;
884 sym->set_is_default();
885 }
886 }
887 }
888
889 // Add one symbol from OBJECT to the symbol table. NAME is symbol
890 // name and VERSION is the version; both are canonicalized. DEF is
891 // whether this is the default version. ST_SHNDX is the symbol's
892 // section index; IS_ORDINARY is whether this is a normal section
893 // rather than a special code.
894
895 // If IS_DEFAULT_VERSION is true, then this is the definition of a
896 // default version of a symbol. That means that any lookup of
897 // NAME/NULL and any lookup of NAME/VERSION should always return the
898 // same symbol. This is obvious for references, but in particular we
899 // want to do this for definitions: overriding NAME/NULL should also
900 // override NAME/VERSION. If we don't do that, it would be very hard
901 // to override functions in a shared library which uses versioning.
902
903 // We implement this by simply making both entries in the hash table
904 // point to the same Symbol structure. That is easy enough if this is
905 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
906 // that we have seen both already, in which case they will both have
907 // independent entries in the symbol table. We can't simply change
908 // the symbol table entry, because we have pointers to the entries
909 // attached to the object files. So we mark the entry attached to the
910 // object file as a forwarder, and record it in the forwarders_ map.
911 // Note that entries in the hash table will never be marked as
912 // forwarders.
913 //
914 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
915 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
916 // for a special section code. ST_SHNDX may be modified if the symbol
917 // is defined in a section being discarded.
918
919 template<int size, bool big_endian>
920 Sized_symbol<size>*
921 Symbol_table::add_from_object(Object* object,
922 const char* name,
923 Stringpool::Key name_key,
924 const char* version,
925 Stringpool::Key version_key,
926 bool is_default_version,
927 const elfcpp::Sym<size, big_endian>& sym,
928 unsigned int st_shndx,
929 bool is_ordinary,
930 unsigned int orig_st_shndx)
931 {
932 // Print a message if this symbol is being traced.
933 if (parameters->options().is_trace_symbol(name))
934 {
935 if (orig_st_shndx == elfcpp::SHN_UNDEF)
936 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
937 else
938 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
939 }
940
941 // For an undefined symbol, we may need to adjust the name using
942 // --wrap.
943 if (orig_st_shndx == elfcpp::SHN_UNDEF
944 && parameters->options().any_wrap())
945 {
946 const char* wrap_name = this->wrap_symbol(name, &name_key);
947 if (wrap_name != name)
948 {
949 // If we see a reference to malloc with version GLIBC_2.0,
950 // and we turn it into a reference to __wrap_malloc, then we
951 // discard the version number. Otherwise the user would be
952 // required to specify the correct version for
953 // __wrap_malloc.
954 version = NULL;
955 version_key = 0;
956 name = wrap_name;
957 }
958 }
959
960 Symbol* const snull = NULL;
961 std::pair<typename Symbol_table_type::iterator, bool> ins =
962 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
963 snull));
964
965 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
966 std::make_pair(this->table_.end(), false);
967 if (is_default_version)
968 {
969 const Stringpool::Key vnull_key = 0;
970 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
971 vnull_key),
972 snull));
973 }
974
975 // ins.first: an iterator, which is a pointer to a pair.
976 // ins.first->first: the key (a pair of name and version).
977 // ins.first->second: the value (Symbol*).
978 // ins.second: true if new entry was inserted, false if not.
979
980 Sized_symbol<size>* ret;
981 bool was_undefined;
982 bool was_common;
983 if (!ins.second)
984 {
985 // We already have an entry for NAME/VERSION.
986 ret = this->get_sized_symbol<size>(ins.first->second);
987 gold_assert(ret != NULL);
988
989 was_undefined = ret->is_undefined();
990 // Commons from plugins are just placeholders.
991 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
992
993 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
994 version);
995 if (parameters->options().gc_sections())
996 this->gc_mark_dyn_syms(ret);
997
998 if (is_default_version)
999 this->define_default_version<size, big_endian>(ret, insdefault.second,
1000 insdefault.first);
1001 }
1002 else
1003 {
1004 // This is the first time we have seen NAME/VERSION.
1005 gold_assert(ins.first->second == NULL);
1006
1007 if (is_default_version && !insdefault.second)
1008 {
1009 // We already have an entry for NAME/NULL. If we override
1010 // it, then change it to NAME/VERSION.
1011 ret = this->get_sized_symbol<size>(insdefault.first->second);
1012
1013 was_undefined = ret->is_undefined();
1014 // Commons from plugins are just placeholders.
1015 was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1016
1017 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1018 version);
1019 if (parameters->options().gc_sections())
1020 this->gc_mark_dyn_syms(ret);
1021 ins.first->second = ret;
1022 }
1023 else
1024 {
1025 was_undefined = false;
1026 was_common = false;
1027
1028 Sized_target<size, big_endian>* target =
1029 parameters->sized_target<size, big_endian>();
1030 if (!target->has_make_symbol())
1031 ret = new Sized_symbol<size>();
1032 else
1033 {
1034 ret = target->make_symbol();
1035 if (ret == NULL)
1036 {
1037 // This means that we don't want a symbol table
1038 // entry after all.
1039 if (!is_default_version)
1040 this->table_.erase(ins.first);
1041 else
1042 {
1043 this->table_.erase(insdefault.first);
1044 // Inserting INSDEFAULT invalidated INS.
1045 this->table_.erase(std::make_pair(name_key,
1046 version_key));
1047 }
1048 return NULL;
1049 }
1050 }
1051
1052 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1053
1054 ins.first->second = ret;
1055 if (is_default_version)
1056 {
1057 // This is the first time we have seen NAME/NULL. Point
1058 // it at the new entry for NAME/VERSION.
1059 gold_assert(insdefault.second);
1060 insdefault.first->second = ret;
1061 }
1062 }
1063
1064 if (is_default_version)
1065 ret->set_is_default();
1066 }
1067
1068 // Record every time we see a new undefined symbol, to speed up
1069 // archive groups.
1070 if (!was_undefined && ret->is_undefined())
1071 {
1072 ++this->saw_undefined_;
1073 if (parameters->options().has_plugins())
1074 parameters->options().plugins()->new_undefined_symbol(ret);
1075 }
1076
1077 // Keep track of common symbols, to speed up common symbol
1078 // allocation. Don't record commons from plugin objects;
1079 // we need to wait until we see the real symbol in the
1080 // replacement file.
1081 if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1082 {
1083 if (ret->type() == elfcpp::STT_TLS)
1084 this->tls_commons_.push_back(ret);
1085 else if (!is_ordinary
1086 && st_shndx == parameters->target().small_common_shndx())
1087 this->small_commons_.push_back(ret);
1088 else if (!is_ordinary
1089 && st_shndx == parameters->target().large_common_shndx())
1090 this->large_commons_.push_back(ret);
1091 else
1092 this->commons_.push_back(ret);
1093 }
1094
1095 // If we're not doing a relocatable link, then any symbol with
1096 // hidden or internal visibility is local.
1097 if ((ret->visibility() == elfcpp::STV_HIDDEN
1098 || ret->visibility() == elfcpp::STV_INTERNAL)
1099 && (ret->binding() == elfcpp::STB_GLOBAL
1100 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1101 || ret->binding() == elfcpp::STB_WEAK)
1102 && !parameters->options().relocatable())
1103 this->force_local(ret);
1104
1105 return ret;
1106 }
1107
1108 // Add all the symbols in a relocatable object to the hash table.
1109
1110 template<int size, bool big_endian>
1111 void
1112 Symbol_table::add_from_relobj(
1113 Sized_relobj_file<size, big_endian>* relobj,
1114 const unsigned char* syms,
1115 size_t count,
1116 size_t symndx_offset,
1117 const char* sym_names,
1118 size_t sym_name_size,
1119 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1120 size_t* defined)
1121 {
1122 *defined = 0;
1123
1124 gold_assert(size == parameters->target().get_size());
1125
1126 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1127
1128 const bool just_symbols = relobj->just_symbols();
1129
1130 const unsigned char* p = syms;
1131 for (size_t i = 0; i < count; ++i, p += sym_size)
1132 {
1133 (*sympointers)[i] = NULL;
1134
1135 elfcpp::Sym<size, big_endian> sym(p);
1136
1137 unsigned int st_name = sym.get_st_name();
1138 if (st_name >= sym_name_size)
1139 {
1140 relobj->error(_("bad global symbol name offset %u at %zu"),
1141 st_name, i);
1142 continue;
1143 }
1144
1145 const char* name = sym_names + st_name;
1146
1147 if (strcmp (name, "__gnu_lto_slim") == 0)
1148 gold_info(_("%s: plugin needed to handle lto object"),
1149 relobj->name().c_str());
1150
1151 bool is_ordinary;
1152 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1153 sym.get_st_shndx(),
1154 &is_ordinary);
1155 unsigned int orig_st_shndx = st_shndx;
1156 if (!is_ordinary)
1157 orig_st_shndx = elfcpp::SHN_UNDEF;
1158
1159 if (st_shndx != elfcpp::SHN_UNDEF)
1160 ++*defined;
1161
1162 // A symbol defined in a section which we are not including must
1163 // be treated as an undefined symbol.
1164 bool is_defined_in_discarded_section = false;
1165 if (st_shndx != elfcpp::SHN_UNDEF
1166 && is_ordinary
1167 && !relobj->is_section_included(st_shndx)
1168 && !this->is_section_folded(relobj, st_shndx))
1169 {
1170 st_shndx = elfcpp::SHN_UNDEF;
1171 is_defined_in_discarded_section = true;
1172 }
1173
1174 // In an object file, an '@' in the name separates the symbol
1175 // name from the version name. If there are two '@' characters,
1176 // this is the default version.
1177 const char* ver = strchr(name, '@');
1178 Stringpool::Key ver_key = 0;
1179 int namelen = 0;
1180 // IS_DEFAULT_VERSION: is the version default?
1181 // IS_FORCED_LOCAL: is the symbol forced local?
1182 bool is_default_version = false;
1183 bool is_forced_local = false;
1184
1185 // FIXME: For incremental links, we don't store version information,
1186 // so we need to ignore version symbols for now.
1187 if (parameters->incremental_update() && ver != NULL)
1188 {
1189 namelen = ver - name;
1190 ver = NULL;
1191 }
1192
1193 if (ver != NULL)
1194 {
1195 // The symbol name is of the form foo@VERSION or foo@@VERSION
1196 namelen = ver - name;
1197 ++ver;
1198 if (*ver == '@')
1199 {
1200 is_default_version = true;
1201 ++ver;
1202 }
1203 ver = this->namepool_.add(ver, true, &ver_key);
1204 }
1205 // We don't want to assign a version to an undefined symbol,
1206 // even if it is listed in the version script. FIXME: What
1207 // about a common symbol?
1208 else
1209 {
1210 namelen = strlen(name);
1211 if (!this->version_script_.empty()
1212 && st_shndx != elfcpp::SHN_UNDEF)
1213 {
1214 // The symbol name did not have a version, but the
1215 // version script may assign a version anyway.
1216 std::string version;
1217 bool is_global;
1218 if (this->version_script_.get_symbol_version(name, &version,
1219 &is_global))
1220 {
1221 if (!is_global)
1222 is_forced_local = true;
1223 else if (!version.empty())
1224 {
1225 ver = this->namepool_.add_with_length(version.c_str(),
1226 version.length(),
1227 true,
1228 &ver_key);
1229 is_default_version = true;
1230 }
1231 }
1232 }
1233 }
1234
1235 elfcpp::Sym<size, big_endian>* psym = &sym;
1236 unsigned char symbuf[sym_size];
1237 elfcpp::Sym<size, big_endian> sym2(symbuf);
1238 if (just_symbols)
1239 {
1240 memcpy(symbuf, p, sym_size);
1241 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1242 if (orig_st_shndx != elfcpp::SHN_UNDEF
1243 && is_ordinary
1244 && relobj->e_type() == elfcpp::ET_REL)
1245 {
1246 // Symbol values in relocatable object files are section
1247 // relative. This is normally what we want, but since here
1248 // we are converting the symbol to absolute we need to add
1249 // the section address. The section address in an object
1250 // file is normally zero, but people can use a linker
1251 // script to change it.
1252 sw.put_st_value(sym.get_st_value()
1253 + relobj->section_address(orig_st_shndx));
1254 }
1255 st_shndx = elfcpp::SHN_ABS;
1256 is_ordinary = false;
1257 psym = &sym2;
1258 }
1259
1260 // Fix up visibility if object has no-export set.
1261 if (relobj->no_export()
1262 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1263 {
1264 // We may have copied symbol already above.
1265 if (psym != &sym2)
1266 {
1267 memcpy(symbuf, p, sym_size);
1268 psym = &sym2;
1269 }
1270
1271 elfcpp::STV visibility = sym2.get_st_visibility();
1272 if (visibility == elfcpp::STV_DEFAULT
1273 || visibility == elfcpp::STV_PROTECTED)
1274 {
1275 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1276 unsigned char nonvis = sym2.get_st_nonvis();
1277 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1278 }
1279 }
1280
1281 Stringpool::Key name_key;
1282 name = this->namepool_.add_with_length(name, namelen, true,
1283 &name_key);
1284
1285 Sized_symbol<size>* res;
1286 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1287 is_default_version, *psym, st_shndx,
1288 is_ordinary, orig_st_shndx);
1289
1290 if (is_forced_local)
1291 this->force_local(res);
1292
1293 // Do not treat this symbol as garbage if this symbol will be
1294 // exported to the dynamic symbol table. This is true when
1295 // building a shared library or using --export-dynamic and
1296 // the symbol is externally visible.
1297 if (parameters->options().gc_sections()
1298 && res->is_externally_visible()
1299 && !res->is_from_dynobj()
1300 && (parameters->options().shared()
1301 || parameters->options().export_dynamic()
1302 || parameters->options().in_dynamic_list(res->name())))
1303 this->gc_mark_symbol(res);
1304
1305 if (is_defined_in_discarded_section)
1306 res->set_is_defined_in_discarded_section();
1307
1308 (*sympointers)[i] = res;
1309 }
1310 }
1311
1312 // Add a symbol from a plugin-claimed file.
1313
1314 template<int size, bool big_endian>
1315 Symbol*
1316 Symbol_table::add_from_pluginobj(
1317 Sized_pluginobj<size, big_endian>* obj,
1318 const char* name,
1319 const char* ver,
1320 elfcpp::Sym<size, big_endian>* sym)
1321 {
1322 unsigned int st_shndx = sym->get_st_shndx();
1323 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1324
1325 Stringpool::Key ver_key = 0;
1326 bool is_default_version = false;
1327 bool is_forced_local = false;
1328
1329 if (ver != NULL)
1330 {
1331 ver = this->namepool_.add(ver, true, &ver_key);
1332 }
1333 // We don't want to assign a version to an undefined symbol,
1334 // even if it is listed in the version script. FIXME: What
1335 // about a common symbol?
1336 else
1337 {
1338 if (!this->version_script_.empty()
1339 && st_shndx != elfcpp::SHN_UNDEF)
1340 {
1341 // The symbol name did not have a version, but the
1342 // version script may assign a version anyway.
1343 std::string version;
1344 bool is_global;
1345 if (this->version_script_.get_symbol_version(name, &version,
1346 &is_global))
1347 {
1348 if (!is_global)
1349 is_forced_local = true;
1350 else if (!version.empty())
1351 {
1352 ver = this->namepool_.add_with_length(version.c_str(),
1353 version.length(),
1354 true,
1355 &ver_key);
1356 is_default_version = true;
1357 }
1358 }
1359 }
1360 }
1361
1362 Stringpool::Key name_key;
1363 name = this->namepool_.add(name, true, &name_key);
1364
1365 Sized_symbol<size>* res;
1366 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1367 is_default_version, *sym, st_shndx,
1368 is_ordinary, st_shndx);
1369
1370 if (is_forced_local)
1371 this->force_local(res);
1372
1373 return res;
1374 }
1375
1376 // Add all the symbols in a dynamic object to the hash table.
1377
1378 template<int size, bool big_endian>
1379 void
1380 Symbol_table::add_from_dynobj(
1381 Sized_dynobj<size, big_endian>* dynobj,
1382 const unsigned char* syms,
1383 size_t count,
1384 const char* sym_names,
1385 size_t sym_name_size,
1386 const unsigned char* versym,
1387 size_t versym_size,
1388 const std::vector<const char*>* version_map,
1389 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1390 size_t* defined)
1391 {
1392 *defined = 0;
1393
1394 gold_assert(size == parameters->target().get_size());
1395
1396 if (dynobj->just_symbols())
1397 {
1398 gold_error(_("--just-symbols does not make sense with a shared object"));
1399 return;
1400 }
1401
1402 // FIXME: For incremental links, we don't store version information,
1403 // so we need to ignore version symbols for now.
1404 if (parameters->incremental_update())
1405 versym = NULL;
1406
1407 if (versym != NULL && versym_size / 2 < count)
1408 {
1409 dynobj->error(_("too few symbol versions"));
1410 return;
1411 }
1412
1413 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1414
1415 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1416 // weak aliases. This is necessary because if the dynamic object
1417 // provides the same variable under two names, one of which is a
1418 // weak definition, and the regular object refers to the weak
1419 // definition, we have to put both the weak definition and the
1420 // strong definition into the dynamic symbol table. Given a weak
1421 // definition, the only way that we can find the corresponding
1422 // strong definition, if any, is to search the symbol table.
1423 std::vector<Sized_symbol<size>*> object_symbols;
1424
1425 const unsigned char* p = syms;
1426 const unsigned char* vs = versym;
1427 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1428 {
1429 elfcpp::Sym<size, big_endian> sym(p);
1430
1431 if (sympointers != NULL)
1432 (*sympointers)[i] = NULL;
1433
1434 // Ignore symbols with local binding or that have
1435 // internal or hidden visibility.
1436 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1437 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1438 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1439 continue;
1440
1441 // A protected symbol in a shared library must be treated as a
1442 // normal symbol when viewed from outside the shared library.
1443 // Implement this by overriding the visibility here.
1444 elfcpp::Sym<size, big_endian>* psym = &sym;
1445 unsigned char symbuf[sym_size];
1446 elfcpp::Sym<size, big_endian> sym2(symbuf);
1447 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1448 {
1449 memcpy(symbuf, p, sym_size);
1450 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1451 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1452 psym = &sym2;
1453 }
1454
1455 unsigned int st_name = psym->get_st_name();
1456 if (st_name >= sym_name_size)
1457 {
1458 dynobj->error(_("bad symbol name offset %u at %zu"),
1459 st_name, i);
1460 continue;
1461 }
1462
1463 const char* name = sym_names + st_name;
1464
1465 bool is_ordinary;
1466 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1467 &is_ordinary);
1468
1469 if (st_shndx != elfcpp::SHN_UNDEF)
1470 ++*defined;
1471
1472 Sized_symbol<size>* res;
1473
1474 if (versym == NULL)
1475 {
1476 Stringpool::Key name_key;
1477 name = this->namepool_.add(name, true, &name_key);
1478 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1479 false, *psym, st_shndx, is_ordinary,
1480 st_shndx);
1481 }
1482 else
1483 {
1484 // Read the version information.
1485
1486 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1487
1488 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1489 v &= elfcpp::VERSYM_VERSION;
1490
1491 // The Sun documentation says that V can be VER_NDX_LOCAL,
1492 // or VER_NDX_GLOBAL, or a version index. The meaning of
1493 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1494 // The old GNU linker will happily generate VER_NDX_LOCAL
1495 // for an undefined symbol. I don't know what the Sun
1496 // linker will generate.
1497
1498 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1499 && st_shndx != elfcpp::SHN_UNDEF)
1500 {
1501 // This symbol should not be visible outside the object.
1502 continue;
1503 }
1504
1505 // At this point we are definitely going to add this symbol.
1506 Stringpool::Key name_key;
1507 name = this->namepool_.add(name, true, &name_key);
1508
1509 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1510 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1511 {
1512 // This symbol does not have a version.
1513 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1514 false, *psym, st_shndx, is_ordinary,
1515 st_shndx);
1516 }
1517 else
1518 {
1519 if (v >= version_map->size())
1520 {
1521 dynobj->error(_("versym for symbol %zu out of range: %u"),
1522 i, v);
1523 continue;
1524 }
1525
1526 const char* version = (*version_map)[v];
1527 if (version == NULL)
1528 {
1529 dynobj->error(_("versym for symbol %zu has no name: %u"),
1530 i, v);
1531 continue;
1532 }
1533
1534 Stringpool::Key version_key;
1535 version = this->namepool_.add(version, true, &version_key);
1536
1537 // If this is an absolute symbol, and the version name
1538 // and symbol name are the same, then this is the
1539 // version definition symbol. These symbols exist to
1540 // support using -u to pull in particular versions. We
1541 // do not want to record a version for them.
1542 if (st_shndx == elfcpp::SHN_ABS
1543 && !is_ordinary
1544 && name_key == version_key)
1545 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1546 false, *psym, st_shndx, is_ordinary,
1547 st_shndx);
1548 else
1549 {
1550 const bool is_default_version =
1551 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1552 res = this->add_from_object(dynobj, name, name_key, version,
1553 version_key, is_default_version,
1554 *psym, st_shndx,
1555 is_ordinary, st_shndx);
1556 }
1557 }
1558 }
1559
1560 // Note that it is possible that RES was overridden by an
1561 // earlier object, in which case it can't be aliased here.
1562 if (st_shndx != elfcpp::SHN_UNDEF
1563 && is_ordinary
1564 && psym->get_st_type() == elfcpp::STT_OBJECT
1565 && res->source() == Symbol::FROM_OBJECT
1566 && res->object() == dynobj)
1567 object_symbols.push_back(res);
1568
1569 if (sympointers != NULL)
1570 (*sympointers)[i] = res;
1571 }
1572
1573 this->record_weak_aliases(&object_symbols);
1574 }
1575
1576 // Add a symbol from a incremental object file.
1577
1578 template<int size, bool big_endian>
1579 Sized_symbol<size>*
1580 Symbol_table::add_from_incrobj(
1581 Object* obj,
1582 const char* name,
1583 const char* ver,
1584 elfcpp::Sym<size, big_endian>* sym)
1585 {
1586 unsigned int st_shndx = sym->get_st_shndx();
1587 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1588
1589 Stringpool::Key ver_key = 0;
1590 bool is_default_version = false;
1591 bool is_forced_local = false;
1592
1593 Stringpool::Key name_key;
1594 name = this->namepool_.add(name, true, &name_key);
1595
1596 Sized_symbol<size>* res;
1597 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1598 is_default_version, *sym, st_shndx,
1599 is_ordinary, st_shndx);
1600
1601 if (is_forced_local)
1602 this->force_local(res);
1603
1604 return res;
1605 }
1606
1607 // This is used to sort weak aliases. We sort them first by section
1608 // index, then by offset, then by weak ahead of strong.
1609
1610 template<int size>
1611 class Weak_alias_sorter
1612 {
1613 public:
1614 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1615 };
1616
1617 template<int size>
1618 bool
1619 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1620 const Sized_symbol<size>* s2) const
1621 {
1622 bool is_ordinary;
1623 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1624 gold_assert(is_ordinary);
1625 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1626 gold_assert(is_ordinary);
1627 if (s1_shndx != s2_shndx)
1628 return s1_shndx < s2_shndx;
1629
1630 if (s1->value() != s2->value())
1631 return s1->value() < s2->value();
1632 if (s1->binding() != s2->binding())
1633 {
1634 if (s1->binding() == elfcpp::STB_WEAK)
1635 return true;
1636 if (s2->binding() == elfcpp::STB_WEAK)
1637 return false;
1638 }
1639 return std::string(s1->name()) < std::string(s2->name());
1640 }
1641
1642 // SYMBOLS is a list of object symbols from a dynamic object. Look
1643 // for any weak aliases, and record them so that if we add the weak
1644 // alias to the dynamic symbol table, we also add the corresponding
1645 // strong symbol.
1646
1647 template<int size>
1648 void
1649 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1650 {
1651 // Sort the vector by section index, then by offset, then by weak
1652 // ahead of strong.
1653 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1654
1655 // Walk through the vector. For each weak definition, record
1656 // aliases.
1657 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1658 symbols->begin();
1659 p != symbols->end();
1660 ++p)
1661 {
1662 if ((*p)->binding() != elfcpp::STB_WEAK)
1663 continue;
1664
1665 // Build a circular list of weak aliases. Each symbol points to
1666 // the next one in the circular list.
1667
1668 Sized_symbol<size>* from_sym = *p;
1669 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1670 for (q = p + 1; q != symbols->end(); ++q)
1671 {
1672 bool dummy;
1673 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1674 || (*q)->value() != from_sym->value())
1675 break;
1676
1677 this->weak_aliases_[from_sym] = *q;
1678 from_sym->set_has_alias();
1679 from_sym = *q;
1680 }
1681
1682 if (from_sym != *p)
1683 {
1684 this->weak_aliases_[from_sym] = *p;
1685 from_sym->set_has_alias();
1686 }
1687
1688 p = q - 1;
1689 }
1690 }
1691
1692 // Create and return a specially defined symbol. If ONLY_IF_REF is
1693 // true, then only create the symbol if there is a reference to it.
1694 // If this does not return NULL, it sets *POLDSYM to the existing
1695 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1696 // resolve the newly created symbol to the old one. This
1697 // canonicalizes *PNAME and *PVERSION.
1698
1699 template<int size, bool big_endian>
1700 Sized_symbol<size>*
1701 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1702 bool only_if_ref,
1703 Sized_symbol<size>** poldsym,
1704 bool* resolve_oldsym)
1705 {
1706 *resolve_oldsym = false;
1707 *poldsym = NULL;
1708
1709 // If the caller didn't give us a version, see if we get one from
1710 // the version script.
1711 std::string v;
1712 bool is_default_version = false;
1713 if (*pversion == NULL)
1714 {
1715 bool is_global;
1716 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1717 {
1718 if (is_global && !v.empty())
1719 {
1720 *pversion = v.c_str();
1721 // If we get the version from a version script, then we
1722 // are also the default version.
1723 is_default_version = true;
1724 }
1725 }
1726 }
1727
1728 Symbol* oldsym;
1729 Sized_symbol<size>* sym;
1730
1731 bool add_to_table = false;
1732 typename Symbol_table_type::iterator add_loc = this->table_.end();
1733 bool add_def_to_table = false;
1734 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1735
1736 if (only_if_ref)
1737 {
1738 oldsym = this->lookup(*pname, *pversion);
1739 if (oldsym == NULL && is_default_version)
1740 oldsym = this->lookup(*pname, NULL);
1741 if (oldsym == NULL || !oldsym->is_undefined())
1742 return NULL;
1743
1744 *pname = oldsym->name();
1745 if (is_default_version)
1746 *pversion = this->namepool_.add(*pversion, true, NULL);
1747 else
1748 *pversion = oldsym->version();
1749 }
1750 else
1751 {
1752 // Canonicalize NAME and VERSION.
1753 Stringpool::Key name_key;
1754 *pname = this->namepool_.add(*pname, true, &name_key);
1755
1756 Stringpool::Key version_key = 0;
1757 if (*pversion != NULL)
1758 *pversion = this->namepool_.add(*pversion, true, &version_key);
1759
1760 Symbol* const snull = NULL;
1761 std::pair<typename Symbol_table_type::iterator, bool> ins =
1762 this->table_.insert(std::make_pair(std::make_pair(name_key,
1763 version_key),
1764 snull));
1765
1766 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1767 std::make_pair(this->table_.end(), false);
1768 if (is_default_version)
1769 {
1770 const Stringpool::Key vnull = 0;
1771 insdefault =
1772 this->table_.insert(std::make_pair(std::make_pair(name_key,
1773 vnull),
1774 snull));
1775 }
1776
1777 if (!ins.second)
1778 {
1779 // We already have a symbol table entry for NAME/VERSION.
1780 oldsym = ins.first->second;
1781 gold_assert(oldsym != NULL);
1782
1783 if (is_default_version)
1784 {
1785 Sized_symbol<size>* soldsym =
1786 this->get_sized_symbol<size>(oldsym);
1787 this->define_default_version<size, big_endian>(soldsym,
1788 insdefault.second,
1789 insdefault.first);
1790 }
1791 }
1792 else
1793 {
1794 // We haven't seen this symbol before.
1795 gold_assert(ins.first->second == NULL);
1796
1797 add_to_table = true;
1798 add_loc = ins.first;
1799
1800 if (is_default_version && !insdefault.second)
1801 {
1802 // We are adding NAME/VERSION, and it is the default
1803 // version. We already have an entry for NAME/NULL.
1804 oldsym = insdefault.first->second;
1805 *resolve_oldsym = true;
1806 }
1807 else
1808 {
1809 oldsym = NULL;
1810
1811 if (is_default_version)
1812 {
1813 add_def_to_table = true;
1814 add_def_loc = insdefault.first;
1815 }
1816 }
1817 }
1818 }
1819
1820 const Target& target = parameters->target();
1821 if (!target.has_make_symbol())
1822 sym = new Sized_symbol<size>();
1823 else
1824 {
1825 Sized_target<size, big_endian>* sized_target =
1826 parameters->sized_target<size, big_endian>();
1827 sym = sized_target->make_symbol();
1828 if (sym == NULL)
1829 return NULL;
1830 }
1831
1832 if (add_to_table)
1833 add_loc->second = sym;
1834 else
1835 gold_assert(oldsym != NULL);
1836
1837 if (add_def_to_table)
1838 add_def_loc->second = sym;
1839
1840 *poldsym = this->get_sized_symbol<size>(oldsym);
1841
1842 return sym;
1843 }
1844
1845 // Define a symbol based on an Output_data.
1846
1847 Symbol*
1848 Symbol_table::define_in_output_data(const char* name,
1849 const char* version,
1850 Defined defined,
1851 Output_data* od,
1852 uint64_t value,
1853 uint64_t symsize,
1854 elfcpp::STT type,
1855 elfcpp::STB binding,
1856 elfcpp::STV visibility,
1857 unsigned char nonvis,
1858 bool offset_is_from_end,
1859 bool only_if_ref)
1860 {
1861 if (parameters->target().get_size() == 32)
1862 {
1863 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1864 return this->do_define_in_output_data<32>(name, version, defined, od,
1865 value, symsize, type, binding,
1866 visibility, nonvis,
1867 offset_is_from_end,
1868 only_if_ref);
1869 #else
1870 gold_unreachable();
1871 #endif
1872 }
1873 else if (parameters->target().get_size() == 64)
1874 {
1875 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1876 return this->do_define_in_output_data<64>(name, version, defined, od,
1877 value, symsize, type, binding,
1878 visibility, nonvis,
1879 offset_is_from_end,
1880 only_if_ref);
1881 #else
1882 gold_unreachable();
1883 #endif
1884 }
1885 else
1886 gold_unreachable();
1887 }
1888
1889 // Define a symbol in an Output_data, sized version.
1890
1891 template<int size>
1892 Sized_symbol<size>*
1893 Symbol_table::do_define_in_output_data(
1894 const char* name,
1895 const char* version,
1896 Defined defined,
1897 Output_data* od,
1898 typename elfcpp::Elf_types<size>::Elf_Addr value,
1899 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1900 elfcpp::STT type,
1901 elfcpp::STB binding,
1902 elfcpp::STV visibility,
1903 unsigned char nonvis,
1904 bool offset_is_from_end,
1905 bool only_if_ref)
1906 {
1907 Sized_symbol<size>* sym;
1908 Sized_symbol<size>* oldsym;
1909 bool resolve_oldsym;
1910
1911 if (parameters->target().is_big_endian())
1912 {
1913 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1914 sym = this->define_special_symbol<size, true>(&name, &version,
1915 only_if_ref, &oldsym,
1916 &resolve_oldsym);
1917 #else
1918 gold_unreachable();
1919 #endif
1920 }
1921 else
1922 {
1923 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1924 sym = this->define_special_symbol<size, false>(&name, &version,
1925 only_if_ref, &oldsym,
1926 &resolve_oldsym);
1927 #else
1928 gold_unreachable();
1929 #endif
1930 }
1931
1932 if (sym == NULL)
1933 return NULL;
1934
1935 sym->init_output_data(name, version, od, value, symsize, type, binding,
1936 visibility, nonvis, offset_is_from_end,
1937 defined == PREDEFINED);
1938
1939 if (oldsym == NULL)
1940 {
1941 if (binding == elfcpp::STB_LOCAL
1942 || this->version_script_.symbol_is_local(name))
1943 this->force_local(sym);
1944 else if (version != NULL)
1945 sym->set_is_default();
1946 return sym;
1947 }
1948
1949 if (Symbol_table::should_override_with_special(oldsym, type, defined))
1950 this->override_with_special(oldsym, sym);
1951
1952 if (resolve_oldsym)
1953 return sym;
1954 else
1955 {
1956 delete sym;
1957 return oldsym;
1958 }
1959 }
1960
1961 // Define a symbol based on an Output_segment.
1962
1963 Symbol*
1964 Symbol_table::define_in_output_segment(const char* name,
1965 const char* version,
1966 Defined defined,
1967 Output_segment* os,
1968 uint64_t value,
1969 uint64_t symsize,
1970 elfcpp::STT type,
1971 elfcpp::STB binding,
1972 elfcpp::STV visibility,
1973 unsigned char nonvis,
1974 Symbol::Segment_offset_base offset_base,
1975 bool only_if_ref)
1976 {
1977 if (parameters->target().get_size() == 32)
1978 {
1979 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1980 return this->do_define_in_output_segment<32>(name, version, defined, os,
1981 value, symsize, type,
1982 binding, visibility, nonvis,
1983 offset_base, only_if_ref);
1984 #else
1985 gold_unreachable();
1986 #endif
1987 }
1988 else if (parameters->target().get_size() == 64)
1989 {
1990 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1991 return this->do_define_in_output_segment<64>(name, version, defined, os,
1992 value, symsize, type,
1993 binding, visibility, nonvis,
1994 offset_base, only_if_ref);
1995 #else
1996 gold_unreachable();
1997 #endif
1998 }
1999 else
2000 gold_unreachable();
2001 }
2002
2003 // Define a symbol in an Output_segment, sized version.
2004
2005 template<int size>
2006 Sized_symbol<size>*
2007 Symbol_table::do_define_in_output_segment(
2008 const char* name,
2009 const char* version,
2010 Defined defined,
2011 Output_segment* os,
2012 typename elfcpp::Elf_types<size>::Elf_Addr value,
2013 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2014 elfcpp::STT type,
2015 elfcpp::STB binding,
2016 elfcpp::STV visibility,
2017 unsigned char nonvis,
2018 Symbol::Segment_offset_base offset_base,
2019 bool only_if_ref)
2020 {
2021 Sized_symbol<size>* sym;
2022 Sized_symbol<size>* oldsym;
2023 bool resolve_oldsym;
2024
2025 if (parameters->target().is_big_endian())
2026 {
2027 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2028 sym = this->define_special_symbol<size, true>(&name, &version,
2029 only_if_ref, &oldsym,
2030 &resolve_oldsym);
2031 #else
2032 gold_unreachable();
2033 #endif
2034 }
2035 else
2036 {
2037 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2038 sym = this->define_special_symbol<size, false>(&name, &version,
2039 only_if_ref, &oldsym,
2040 &resolve_oldsym);
2041 #else
2042 gold_unreachable();
2043 #endif
2044 }
2045
2046 if (sym == NULL)
2047 return NULL;
2048
2049 sym->init_output_segment(name, version, os, value, symsize, type, binding,
2050 visibility, nonvis, offset_base,
2051 defined == PREDEFINED);
2052
2053 if (oldsym == NULL)
2054 {
2055 if (binding == elfcpp::STB_LOCAL
2056 || this->version_script_.symbol_is_local(name))
2057 this->force_local(sym);
2058 else if (version != NULL)
2059 sym->set_is_default();
2060 return sym;
2061 }
2062
2063 if (Symbol_table::should_override_with_special(oldsym, type, defined))
2064 this->override_with_special(oldsym, sym);
2065
2066 if (resolve_oldsym)
2067 return sym;
2068 else
2069 {
2070 delete sym;
2071 return oldsym;
2072 }
2073 }
2074
2075 // Define a special symbol with a constant value. It is a multiple
2076 // definition error if this symbol is already defined.
2077
2078 Symbol*
2079 Symbol_table::define_as_constant(const char* name,
2080 const char* version,
2081 Defined defined,
2082 uint64_t value,
2083 uint64_t symsize,
2084 elfcpp::STT type,
2085 elfcpp::STB binding,
2086 elfcpp::STV visibility,
2087 unsigned char nonvis,
2088 bool only_if_ref,
2089 bool force_override)
2090 {
2091 if (parameters->target().get_size() == 32)
2092 {
2093 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2094 return this->do_define_as_constant<32>(name, version, defined, value,
2095 symsize, type, binding,
2096 visibility, nonvis, only_if_ref,
2097 force_override);
2098 #else
2099 gold_unreachable();
2100 #endif
2101 }
2102 else if (parameters->target().get_size() == 64)
2103 {
2104 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2105 return this->do_define_as_constant<64>(name, version, defined, value,
2106 symsize, type, binding,
2107 visibility, nonvis, only_if_ref,
2108 force_override);
2109 #else
2110 gold_unreachable();
2111 #endif
2112 }
2113 else
2114 gold_unreachable();
2115 }
2116
2117 // Define a symbol as a constant, sized version.
2118
2119 template<int size>
2120 Sized_symbol<size>*
2121 Symbol_table::do_define_as_constant(
2122 const char* name,
2123 const char* version,
2124 Defined defined,
2125 typename elfcpp::Elf_types<size>::Elf_Addr value,
2126 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2127 elfcpp::STT type,
2128 elfcpp::STB binding,
2129 elfcpp::STV visibility,
2130 unsigned char nonvis,
2131 bool only_if_ref,
2132 bool force_override)
2133 {
2134 Sized_symbol<size>* sym;
2135 Sized_symbol<size>* oldsym;
2136 bool resolve_oldsym;
2137
2138 if (parameters->target().is_big_endian())
2139 {
2140 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2141 sym = this->define_special_symbol<size, true>(&name, &version,
2142 only_if_ref, &oldsym,
2143 &resolve_oldsym);
2144 #else
2145 gold_unreachable();
2146 #endif
2147 }
2148 else
2149 {
2150 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2151 sym = this->define_special_symbol<size, false>(&name, &version,
2152 only_if_ref, &oldsym,
2153 &resolve_oldsym);
2154 #else
2155 gold_unreachable();
2156 #endif
2157 }
2158
2159 if (sym == NULL)
2160 return NULL;
2161
2162 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2163 nonvis, defined == PREDEFINED);
2164
2165 if (oldsym == NULL)
2166 {
2167 // Version symbols are absolute symbols with name == version.
2168 // We don't want to force them to be local.
2169 if ((version == NULL
2170 || name != version
2171 || value != 0)
2172 && (binding == elfcpp::STB_LOCAL
2173 || this->version_script_.symbol_is_local(name)))
2174 this->force_local(sym);
2175 else if (version != NULL
2176 && (name != version || value != 0))
2177 sym->set_is_default();
2178 return sym;
2179 }
2180
2181 if (force_override
2182 || Symbol_table::should_override_with_special(oldsym, type, defined))
2183 this->override_with_special(oldsym, sym);
2184
2185 if (resolve_oldsym)
2186 return sym;
2187 else
2188 {
2189 delete sym;
2190 return oldsym;
2191 }
2192 }
2193
2194 // Define a set of symbols in output sections.
2195
2196 void
2197 Symbol_table::define_symbols(const Layout* layout, int count,
2198 const Define_symbol_in_section* p,
2199 bool only_if_ref)
2200 {
2201 for (int i = 0; i < count; ++i, ++p)
2202 {
2203 Output_section* os = layout->find_output_section(p->output_section);
2204 if (os != NULL)
2205 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2206 p->size, p->type, p->binding,
2207 p->visibility, p->nonvis,
2208 p->offset_is_from_end,
2209 only_if_ref || p->only_if_ref);
2210 else
2211 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2212 p->type, p->binding, p->visibility, p->nonvis,
2213 only_if_ref || p->only_if_ref,
2214 false);
2215 }
2216 }
2217
2218 // Define a set of symbols in output segments.
2219
2220 void
2221 Symbol_table::define_symbols(const Layout* layout, int count,
2222 const Define_symbol_in_segment* p,
2223 bool only_if_ref)
2224 {
2225 for (int i = 0; i < count; ++i, ++p)
2226 {
2227 Output_segment* os = layout->find_output_segment(p->segment_type,
2228 p->segment_flags_set,
2229 p->segment_flags_clear);
2230 if (os != NULL)
2231 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2232 p->size, p->type, p->binding,
2233 p->visibility, p->nonvis,
2234 p->offset_base,
2235 only_if_ref || p->only_if_ref);
2236 else
2237 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2238 p->type, p->binding, p->visibility, p->nonvis,
2239 only_if_ref || p->only_if_ref,
2240 false);
2241 }
2242 }
2243
2244 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2245 // symbol should be defined--typically a .dyn.bss section. VALUE is
2246 // the offset within POSD.
2247
2248 template<int size>
2249 void
2250 Symbol_table::define_with_copy_reloc(
2251 Sized_symbol<size>* csym,
2252 Output_data* posd,
2253 typename elfcpp::Elf_types<size>::Elf_Addr value)
2254 {
2255 gold_assert(csym->is_from_dynobj());
2256 gold_assert(!csym->is_copied_from_dynobj());
2257 Object* object = csym->object();
2258 gold_assert(object->is_dynamic());
2259 Dynobj* dynobj = static_cast<Dynobj*>(object);
2260
2261 // Our copied variable has to override any variable in a shared
2262 // library.
2263 elfcpp::STB binding = csym->binding();
2264 if (binding == elfcpp::STB_WEAK)
2265 binding = elfcpp::STB_GLOBAL;
2266
2267 this->define_in_output_data(csym->name(), csym->version(), COPY,
2268 posd, value, csym->symsize(),
2269 csym->type(), binding,
2270 csym->visibility(), csym->nonvis(),
2271 false, false);
2272
2273 csym->set_is_copied_from_dynobj();
2274 csym->set_needs_dynsym_entry();
2275
2276 this->copied_symbol_dynobjs_[csym] = dynobj;
2277
2278 // We have now defined all aliases, but we have not entered them all
2279 // in the copied_symbol_dynobjs_ map.
2280 if (csym->has_alias())
2281 {
2282 Symbol* sym = csym;
2283 while (true)
2284 {
2285 sym = this->weak_aliases_[sym];
2286 if (sym == csym)
2287 break;
2288 gold_assert(sym->output_data() == posd);
2289
2290 sym->set_is_copied_from_dynobj();
2291 this->copied_symbol_dynobjs_[sym] = dynobj;
2292 }
2293 }
2294 }
2295
2296 // SYM is defined using a COPY reloc. Return the dynamic object where
2297 // the original definition was found.
2298
2299 Dynobj*
2300 Symbol_table::get_copy_source(const Symbol* sym) const
2301 {
2302 gold_assert(sym->is_copied_from_dynobj());
2303 Copied_symbol_dynobjs::const_iterator p =
2304 this->copied_symbol_dynobjs_.find(sym);
2305 gold_assert(p != this->copied_symbol_dynobjs_.end());
2306 return p->second;
2307 }
2308
2309 // Add any undefined symbols named on the command line.
2310
2311 void
2312 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2313 {
2314 if (parameters->options().any_undefined()
2315 || layout->script_options()->any_unreferenced())
2316 {
2317 if (parameters->target().get_size() == 32)
2318 {
2319 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2320 this->do_add_undefined_symbols_from_command_line<32>(layout);
2321 #else
2322 gold_unreachable();
2323 #endif
2324 }
2325 else if (parameters->target().get_size() == 64)
2326 {
2327 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2328 this->do_add_undefined_symbols_from_command_line<64>(layout);
2329 #else
2330 gold_unreachable();
2331 #endif
2332 }
2333 else
2334 gold_unreachable();
2335 }
2336 }
2337
2338 template<int size>
2339 void
2340 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2341 {
2342 for (options::String_set::const_iterator p =
2343 parameters->options().undefined_begin();
2344 p != parameters->options().undefined_end();
2345 ++p)
2346 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2347
2348 for (options::String_set::const_iterator p =
2349 parameters->options().export_dynamic_symbol_begin();
2350 p != parameters->options().export_dynamic_symbol_end();
2351 ++p)
2352 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2353
2354 for (Script_options::referenced_const_iterator p =
2355 layout->script_options()->referenced_begin();
2356 p != layout->script_options()->referenced_end();
2357 ++p)
2358 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2359 }
2360
2361 template<int size>
2362 void
2363 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2364 {
2365 if (this->lookup(name) != NULL)
2366 return;
2367
2368 const char* version = NULL;
2369
2370 Sized_symbol<size>* sym;
2371 Sized_symbol<size>* oldsym;
2372 bool resolve_oldsym;
2373 if (parameters->target().is_big_endian())
2374 {
2375 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2376 sym = this->define_special_symbol<size, true>(&name, &version,
2377 false, &oldsym,
2378 &resolve_oldsym);
2379 #else
2380 gold_unreachable();
2381 #endif
2382 }
2383 else
2384 {
2385 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2386 sym = this->define_special_symbol<size, false>(&name, &version,
2387 false, &oldsym,
2388 &resolve_oldsym);
2389 #else
2390 gold_unreachable();
2391 #endif
2392 }
2393
2394 gold_assert(oldsym == NULL);
2395
2396 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2397 elfcpp::STV_DEFAULT, 0);
2398 ++this->saw_undefined_;
2399 }
2400
2401 // Set the dynamic symbol indexes. INDEX is the index of the first
2402 // global dynamic symbol. Pointers to the symbols are stored into the
2403 // vector SYMS. The names are added to DYNPOOL. This returns an
2404 // updated dynamic symbol index.
2405
2406 unsigned int
2407 Symbol_table::set_dynsym_indexes(unsigned int index,
2408 std::vector<Symbol*>* syms,
2409 Stringpool* dynpool,
2410 Versions* versions)
2411 {
2412 std::vector<Symbol*> as_needed_sym;
2413
2414 // Allow a target to set dynsym indexes.
2415 if (parameters->target().has_custom_set_dynsym_indexes())
2416 {
2417 std::vector<Symbol*> dyn_symbols;
2418 for (Symbol_table_type::iterator p = this->table_.begin();
2419 p != this->table_.end();
2420 ++p)
2421 {
2422 Symbol* sym = p->second;
2423 if (!sym->should_add_dynsym_entry(this))
2424 sym->set_dynsym_index(-1U);
2425 else
2426 dyn_symbols.push_back(sym);
2427 }
2428
2429 return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2430 dynpool, versions, this);
2431 }
2432
2433 for (Symbol_table_type::iterator p = this->table_.begin();
2434 p != this->table_.end();
2435 ++p)
2436 {
2437 Symbol* sym = p->second;
2438
2439 // Note that SYM may already have a dynamic symbol index, since
2440 // some symbols appear more than once in the symbol table, with
2441 // and without a version.
2442
2443 if (!sym->should_add_dynsym_entry(this))
2444 sym->set_dynsym_index(-1U);
2445 else if (!sym->has_dynsym_index())
2446 {
2447 sym->set_dynsym_index(index);
2448 ++index;
2449 syms->push_back(sym);
2450 dynpool->add(sym->name(), false, NULL);
2451
2452 // If the symbol is defined in a dynamic object and is
2453 // referenced strongly in a regular object, then mark the
2454 // dynamic object as needed. This is used to implement
2455 // --as-needed.
2456 if (sym->is_from_dynobj()
2457 && sym->in_reg()
2458 && !sym->is_undef_binding_weak())
2459 sym->object()->set_is_needed();
2460
2461 // Record any version information, except those from
2462 // as-needed libraries not seen to be needed. Note that the
2463 // is_needed state for such libraries can change in this loop.
2464 if (sym->version() != NULL)
2465 {
2466 if (!sym->is_from_dynobj()
2467 || !sym->object()->as_needed()
2468 || sym->object()->is_needed())
2469 versions->record_version(this, dynpool, sym);
2470 else
2471 as_needed_sym.push_back(sym);
2472 }
2473 }
2474 }
2475
2476 // Process version information for symbols from as-needed libraries.
2477 for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2478 p != as_needed_sym.end();
2479 ++p)
2480 {
2481 Symbol* sym = *p;
2482
2483 if (sym->object()->is_needed())
2484 versions->record_version(this, dynpool, sym);
2485 else
2486 sym->clear_version();
2487 }
2488
2489 // Finish up the versions. In some cases this may add new dynamic
2490 // symbols.
2491 index = versions->finalize(this, index, syms);
2492
2493 return index;
2494 }
2495
2496 // Set the final values for all the symbols. The index of the first
2497 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2498 // file offset OFF. Add their names to POOL. Return the new file
2499 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2500
2501 off_t
2502 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2503 size_t dyncount, Stringpool* pool,
2504 unsigned int* plocal_symcount)
2505 {
2506 off_t ret;
2507
2508 gold_assert(*plocal_symcount != 0);
2509 this->first_global_index_ = *plocal_symcount;
2510
2511 this->dynamic_offset_ = dynoff;
2512 this->first_dynamic_global_index_ = dyn_global_index;
2513 this->dynamic_count_ = dyncount;
2514
2515 if (parameters->target().get_size() == 32)
2516 {
2517 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2518 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2519 #else
2520 gold_unreachable();
2521 #endif
2522 }
2523 else if (parameters->target().get_size() == 64)
2524 {
2525 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2526 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2527 #else
2528 gold_unreachable();
2529 #endif
2530 }
2531 else
2532 gold_unreachable();
2533
2534 // Now that we have the final symbol table, we can reliably note
2535 // which symbols should get warnings.
2536 this->warnings_.note_warnings(this);
2537
2538 return ret;
2539 }
2540
2541 // SYM is going into the symbol table at *PINDEX. Add the name to
2542 // POOL, update *PINDEX and *POFF.
2543
2544 template<int size>
2545 void
2546 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2547 unsigned int* pindex, off_t* poff)
2548 {
2549 sym->set_symtab_index(*pindex);
2550 if (sym->version() == NULL || !parameters->options().relocatable())
2551 pool->add(sym->name(), false, NULL);
2552 else
2553 pool->add(sym->versioned_name(), true, NULL);
2554 ++*pindex;
2555 *poff += elfcpp::Elf_sizes<size>::sym_size;
2556 }
2557
2558 // Set the final value for all the symbols. This is called after
2559 // Layout::finalize, so all the output sections have their final
2560 // address.
2561
2562 template<int size>
2563 off_t
2564 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2565 unsigned int* plocal_symcount)
2566 {
2567 off = align_address(off, size >> 3);
2568 this->offset_ = off;
2569
2570 unsigned int index = *plocal_symcount;
2571 const unsigned int orig_index = index;
2572
2573 // First do all the symbols which have been forced to be local, as
2574 // they must appear before all global symbols.
2575 for (Forced_locals::iterator p = this->forced_locals_.begin();
2576 p != this->forced_locals_.end();
2577 ++p)
2578 {
2579 Symbol* sym = *p;
2580 gold_assert(sym->is_forced_local());
2581 if (this->sized_finalize_symbol<size>(sym))
2582 {
2583 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2584 ++*plocal_symcount;
2585 }
2586 }
2587
2588 // Now do all the remaining symbols.
2589 for (Symbol_table_type::iterator p = this->table_.begin();
2590 p != this->table_.end();
2591 ++p)
2592 {
2593 Symbol* sym = p->second;
2594 if (this->sized_finalize_symbol<size>(sym))
2595 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2596 }
2597
2598 this->output_count_ = index - orig_index;
2599
2600 return off;
2601 }
2602
2603 // Compute the final value of SYM and store status in location PSTATUS.
2604 // During relaxation, this may be called multiple times for a symbol to
2605 // compute its would-be final value in each relaxation pass.
2606
2607 template<int size>
2608 typename Sized_symbol<size>::Value_type
2609 Symbol_table::compute_final_value(
2610 const Sized_symbol<size>* sym,
2611 Compute_final_value_status* pstatus) const
2612 {
2613 typedef typename Sized_symbol<size>::Value_type Value_type;
2614 Value_type value;
2615
2616 switch (sym->source())
2617 {
2618 case Symbol::FROM_OBJECT:
2619 {
2620 bool is_ordinary;
2621 unsigned int shndx = sym->shndx(&is_ordinary);
2622
2623 if (!is_ordinary
2624 && shndx != elfcpp::SHN_ABS
2625 && !Symbol::is_common_shndx(shndx))
2626 {
2627 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2628 return 0;
2629 }
2630
2631 Object* symobj = sym->object();
2632 if (symobj->is_dynamic())
2633 {
2634 value = 0;
2635 shndx = elfcpp::SHN_UNDEF;
2636 }
2637 else if (symobj->pluginobj() != NULL)
2638 {
2639 value = 0;
2640 shndx = elfcpp::SHN_UNDEF;
2641 }
2642 else if (shndx == elfcpp::SHN_UNDEF)
2643 value = 0;
2644 else if (!is_ordinary
2645 && (shndx == elfcpp::SHN_ABS
2646 || Symbol::is_common_shndx(shndx)))
2647 value = sym->value();
2648 else
2649 {
2650 Relobj* relobj = static_cast<Relobj*>(symobj);
2651 Output_section* os = relobj->output_section(shndx);
2652
2653 if (this->is_section_folded(relobj, shndx))
2654 {
2655 gold_assert(os == NULL);
2656 // Get the os of the section it is folded onto.
2657 Section_id folded = this->icf_->get_folded_section(relobj,
2658 shndx);
2659 gold_assert(folded.first != NULL);
2660 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2661 unsigned folded_shndx = folded.second;
2662
2663 os = folded_obj->output_section(folded_shndx);
2664 gold_assert(os != NULL);
2665
2666 // Replace (relobj, shndx) with canonical ICF input section.
2667 shndx = folded_shndx;
2668 relobj = folded_obj;
2669 }
2670
2671 uint64_t secoff64 = relobj->output_section_offset(shndx);
2672 if (os == NULL)
2673 {
2674 bool static_or_reloc = (parameters->doing_static_link() ||
2675 parameters->options().relocatable());
2676 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2677
2678 *pstatus = CFVS_NO_OUTPUT_SECTION;
2679 return 0;
2680 }
2681
2682 if (secoff64 == -1ULL)
2683 {
2684 // The section needs special handling (e.g., a merge section).
2685
2686 value = os->output_address(relobj, shndx, sym->value());
2687 }
2688 else
2689 {
2690 Value_type secoff =
2691 convert_types<Value_type, uint64_t>(secoff64);
2692 if (sym->type() == elfcpp::STT_TLS)
2693 value = sym->value() + os->tls_offset() + secoff;
2694 else
2695 value = sym->value() + os->address() + secoff;
2696 }
2697 }
2698 }
2699 break;
2700
2701 case Symbol::IN_OUTPUT_DATA:
2702 {
2703 Output_data* od = sym->output_data();
2704 value = sym->value();
2705 if (sym->type() != elfcpp::STT_TLS)
2706 value += od->address();
2707 else
2708 {
2709 Output_section* os = od->output_section();
2710 gold_assert(os != NULL);
2711 value += os->tls_offset() + (od->address() - os->address());
2712 }
2713 if (sym->offset_is_from_end())
2714 value += od->data_size();
2715 }
2716 break;
2717
2718 case Symbol::IN_OUTPUT_SEGMENT:
2719 {
2720 Output_segment* os = sym->output_segment();
2721 value = sym->value();
2722 if (sym->type() != elfcpp::STT_TLS)
2723 value += os->vaddr();
2724 switch (sym->offset_base())
2725 {
2726 case Symbol::SEGMENT_START:
2727 break;
2728 case Symbol::SEGMENT_END:
2729 value += os->memsz();
2730 break;
2731 case Symbol::SEGMENT_BSS:
2732 value += os->filesz();
2733 break;
2734 default:
2735 gold_unreachable();
2736 }
2737 }
2738 break;
2739
2740 case Symbol::IS_CONSTANT:
2741 value = sym->value();
2742 break;
2743
2744 case Symbol::IS_UNDEFINED:
2745 value = 0;
2746 break;
2747
2748 default:
2749 gold_unreachable();
2750 }
2751
2752 *pstatus = CFVS_OK;
2753 return value;
2754 }
2755
2756 // Finalize the symbol SYM. This returns true if the symbol should be
2757 // added to the symbol table, false otherwise.
2758
2759 template<int size>
2760 bool
2761 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2762 {
2763 typedef typename Sized_symbol<size>::Value_type Value_type;
2764
2765 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2766
2767 // The default version of a symbol may appear twice in the symbol
2768 // table. We only need to finalize it once.
2769 if (sym->has_symtab_index())
2770 return false;
2771
2772 if (!sym->in_reg())
2773 {
2774 gold_assert(!sym->has_symtab_index());
2775 sym->set_symtab_index(-1U);
2776 gold_assert(sym->dynsym_index() == -1U);
2777 return false;
2778 }
2779
2780 // If the symbol is only present on plugin files, the plugin decided we
2781 // don't need it.
2782 if (!sym->in_real_elf())
2783 {
2784 gold_assert(!sym->has_symtab_index());
2785 sym->set_symtab_index(-1U);
2786 return false;
2787 }
2788
2789 // Compute final symbol value.
2790 Compute_final_value_status status;
2791 Value_type value = this->compute_final_value(sym, &status);
2792
2793 switch (status)
2794 {
2795 case CFVS_OK:
2796 break;
2797 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2798 {
2799 bool is_ordinary;
2800 unsigned int shndx = sym->shndx(&is_ordinary);
2801 gold_error(_("%s: unsupported symbol section 0x%x"),
2802 sym->demangled_name().c_str(), shndx);
2803 }
2804 break;
2805 case CFVS_NO_OUTPUT_SECTION:
2806 sym->set_symtab_index(-1U);
2807 return false;
2808 default:
2809 gold_unreachable();
2810 }
2811
2812 sym->set_value(value);
2813
2814 if (parameters->options().strip_all()
2815 || !parameters->options().should_retain_symbol(sym->name()))
2816 {
2817 sym->set_symtab_index(-1U);
2818 return false;
2819 }
2820
2821 return true;
2822 }
2823
2824 // Write out the global symbols.
2825
2826 void
2827 Symbol_table::write_globals(const Stringpool* sympool,
2828 const Stringpool* dynpool,
2829 Output_symtab_xindex* symtab_xindex,
2830 Output_symtab_xindex* dynsym_xindex,
2831 Output_file* of) const
2832 {
2833 switch (parameters->size_and_endianness())
2834 {
2835 #ifdef HAVE_TARGET_32_LITTLE
2836 case Parameters::TARGET_32_LITTLE:
2837 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2838 dynsym_xindex, of);
2839 break;
2840 #endif
2841 #ifdef HAVE_TARGET_32_BIG
2842 case Parameters::TARGET_32_BIG:
2843 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2844 dynsym_xindex, of);
2845 break;
2846 #endif
2847 #ifdef HAVE_TARGET_64_LITTLE
2848 case Parameters::TARGET_64_LITTLE:
2849 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2850 dynsym_xindex, of);
2851 break;
2852 #endif
2853 #ifdef HAVE_TARGET_64_BIG
2854 case Parameters::TARGET_64_BIG:
2855 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2856 dynsym_xindex, of);
2857 break;
2858 #endif
2859 default:
2860 gold_unreachable();
2861 }
2862 }
2863
2864 // Write out the global symbols.
2865
2866 template<int size, bool big_endian>
2867 void
2868 Symbol_table::sized_write_globals(const Stringpool* sympool,
2869 const Stringpool* dynpool,
2870 Output_symtab_xindex* symtab_xindex,
2871 Output_symtab_xindex* dynsym_xindex,
2872 Output_file* of) const
2873 {
2874 const Target& target = parameters->target();
2875
2876 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2877
2878 const unsigned int output_count = this->output_count_;
2879 const section_size_type oview_size = output_count * sym_size;
2880 const unsigned int first_global_index = this->first_global_index_;
2881 unsigned char* psyms;
2882 if (this->offset_ == 0 || output_count == 0)
2883 psyms = NULL;
2884 else
2885 psyms = of->get_output_view(this->offset_, oview_size);
2886
2887 const unsigned int dynamic_count = this->dynamic_count_;
2888 const section_size_type dynamic_size = dynamic_count * sym_size;
2889 const unsigned int first_dynamic_global_index =
2890 this->first_dynamic_global_index_;
2891 unsigned char* dynamic_view;
2892 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2893 dynamic_view = NULL;
2894 else
2895 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2896
2897 for (Symbol_table_type::const_iterator p = this->table_.begin();
2898 p != this->table_.end();
2899 ++p)
2900 {
2901 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2902
2903 // Possibly warn about unresolved symbols in shared libraries.
2904 this->warn_about_undefined_dynobj_symbol(sym);
2905
2906 unsigned int sym_index = sym->symtab_index();
2907 unsigned int dynsym_index;
2908 if (dynamic_view == NULL)
2909 dynsym_index = -1U;
2910 else
2911 dynsym_index = sym->dynsym_index();
2912
2913 if (sym_index == -1U && dynsym_index == -1U)
2914 {
2915 // This symbol is not included in the output file.
2916 continue;
2917 }
2918
2919 unsigned int shndx;
2920 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2921 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2922 elfcpp::STB binding = sym->binding();
2923
2924 // If --weak-unresolved-symbols is set, change binding of unresolved
2925 // global symbols to STB_WEAK.
2926 if (parameters->options().weak_unresolved_symbols()
2927 && binding == elfcpp::STB_GLOBAL
2928 && sym->is_undefined())
2929 binding = elfcpp::STB_WEAK;
2930
2931 // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2932 if (binding == elfcpp::STB_GNU_UNIQUE
2933 && !parameters->options().gnu_unique())
2934 binding = elfcpp::STB_GLOBAL;
2935
2936 switch (sym->source())
2937 {
2938 case Symbol::FROM_OBJECT:
2939 {
2940 bool is_ordinary;
2941 unsigned int in_shndx = sym->shndx(&is_ordinary);
2942
2943 if (!is_ordinary
2944 && in_shndx != elfcpp::SHN_ABS
2945 && !Symbol::is_common_shndx(in_shndx))
2946 {
2947 gold_error(_("%s: unsupported symbol section 0x%x"),
2948 sym->demangled_name().c_str(), in_shndx);
2949 shndx = in_shndx;
2950 }
2951 else
2952 {
2953 Object* symobj = sym->object();
2954 if (symobj->is_dynamic())
2955 {
2956 if (sym->needs_dynsym_value())
2957 dynsym_value = target.dynsym_value(sym);
2958 shndx = elfcpp::SHN_UNDEF;
2959 if (sym->is_undef_binding_weak())
2960 binding = elfcpp::STB_WEAK;
2961 else
2962 binding = elfcpp::STB_GLOBAL;
2963 }
2964 else if (symobj->pluginobj() != NULL)
2965 shndx = elfcpp::SHN_UNDEF;
2966 else if (in_shndx == elfcpp::SHN_UNDEF
2967 || (!is_ordinary
2968 && (in_shndx == elfcpp::SHN_ABS
2969 || Symbol::is_common_shndx(in_shndx))))
2970 shndx = in_shndx;
2971 else
2972 {
2973 Relobj* relobj = static_cast<Relobj*>(symobj);
2974 Output_section* os = relobj->output_section(in_shndx);
2975 if (this->is_section_folded(relobj, in_shndx))
2976 {
2977 // This global symbol must be written out even though
2978 // it is folded.
2979 // Get the os of the section it is folded onto.
2980 Section_id folded =
2981 this->icf_->get_folded_section(relobj, in_shndx);
2982 gold_assert(folded.first !=NULL);
2983 Relobj* folded_obj =
2984 reinterpret_cast<Relobj*>(folded.first);
2985 os = folded_obj->output_section(folded.second);
2986 gold_assert(os != NULL);
2987 }
2988 gold_assert(os != NULL);
2989 shndx = os->out_shndx();
2990
2991 if (shndx >= elfcpp::SHN_LORESERVE)
2992 {
2993 if (sym_index != -1U)
2994 symtab_xindex->add(sym_index, shndx);
2995 if (dynsym_index != -1U)
2996 dynsym_xindex->add(dynsym_index, shndx);
2997 shndx = elfcpp::SHN_XINDEX;
2998 }
2999
3000 // In object files symbol values are section
3001 // relative.
3002 if (parameters->options().relocatable())
3003 sym_value -= os->address();
3004 }
3005 }
3006 }
3007 break;
3008
3009 case Symbol::IN_OUTPUT_DATA:
3010 {
3011 Output_data* od = sym->output_data();
3012
3013 shndx = od->out_shndx();
3014 if (shndx >= elfcpp::SHN_LORESERVE)
3015 {
3016 if (sym_index != -1U)
3017 symtab_xindex->add(sym_index, shndx);
3018 if (dynsym_index != -1U)
3019 dynsym_xindex->add(dynsym_index, shndx);
3020 shndx = elfcpp::SHN_XINDEX;
3021 }
3022
3023 // In object files symbol values are section
3024 // relative.
3025 if (parameters->options().relocatable())
3026 sym_value -= od->address();
3027 }
3028 break;
3029
3030 case Symbol::IN_OUTPUT_SEGMENT:
3031 shndx = elfcpp::SHN_ABS;
3032 break;
3033
3034 case Symbol::IS_CONSTANT:
3035 shndx = elfcpp::SHN_ABS;
3036 break;
3037
3038 case Symbol::IS_UNDEFINED:
3039 shndx = elfcpp::SHN_UNDEF;
3040 break;
3041
3042 default:
3043 gold_unreachable();
3044 }
3045
3046 if (sym_index != -1U)
3047 {
3048 sym_index -= first_global_index;
3049 gold_assert(sym_index < output_count);
3050 unsigned char* ps = psyms + (sym_index * sym_size);
3051 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3052 binding, sympool, ps);
3053 }
3054
3055 if (dynsym_index != -1U)
3056 {
3057 dynsym_index -= first_dynamic_global_index;
3058 gold_assert(dynsym_index < dynamic_count);
3059 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3060 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3061 binding, dynpool, pd);
3062 // Allow a target to adjust dynamic symbol value.
3063 parameters->target().adjust_dyn_symbol(sym, pd);
3064 }
3065 }
3066
3067 of->write_output_view(this->offset_, oview_size, psyms);
3068 if (dynamic_view != NULL)
3069 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3070 }
3071
3072 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
3073 // strtab holding the name.
3074
3075 template<int size, bool big_endian>
3076 void
3077 Symbol_table::sized_write_symbol(
3078 Sized_symbol<size>* sym,
3079 typename elfcpp::Elf_types<size>::Elf_Addr value,
3080 unsigned int shndx,
3081 elfcpp::STB binding,
3082 const Stringpool* pool,
3083 unsigned char* p) const
3084 {
3085 elfcpp::Sym_write<size, big_endian> osym(p);
3086 if (sym->version() == NULL || !parameters->options().relocatable())
3087 osym.put_st_name(pool->get_offset(sym->name()));
3088 else
3089 osym.put_st_name(pool->get_offset(sym->versioned_name()));
3090 osym.put_st_value(value);
3091 // Use a symbol size of zero for undefined symbols from shared libraries.
3092 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3093 osym.put_st_size(0);
3094 else
3095 osym.put_st_size(sym->symsize());
3096 elfcpp::STT type = sym->type();
3097 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3098 if (type == elfcpp::STT_GNU_IFUNC
3099 && sym->is_from_dynobj())
3100 type = elfcpp::STT_FUNC;
3101 // A version script may have overridden the default binding.
3102 if (sym->is_forced_local())
3103 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3104 else
3105 osym.put_st_info(elfcpp::elf_st_info(binding, type));
3106 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3107 osym.put_st_shndx(shndx);
3108 }
3109
3110 // Check for unresolved symbols in shared libraries. This is
3111 // controlled by the --allow-shlib-undefined option.
3112
3113 // We only warn about libraries for which we have seen all the
3114 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
3115 // which were not seen in this link. If we didn't see a DT_NEEDED
3116 // entry, we aren't going to be able to reliably report whether the
3117 // symbol is undefined.
3118
3119 // We also don't warn about libraries found in a system library
3120 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3121 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
3122 // can have undefined references satisfied by ld-linux.so.
3123
3124 inline void
3125 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3126 {
3127 bool dummy;
3128 if (sym->source() == Symbol::FROM_OBJECT
3129 && sym->object()->is_dynamic()
3130 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3131 && sym->binding() != elfcpp::STB_WEAK
3132 && !parameters->options().allow_shlib_undefined()
3133 && !parameters->target().is_defined_by_abi(sym)
3134 && !sym->object()->is_in_system_directory())
3135 {
3136 // A very ugly cast.
3137 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3138 if (!dynobj->has_unknown_needed_entries())
3139 gold_undefined_symbol(sym);
3140 }
3141 }
3142
3143 // Write out a section symbol. Return the update offset.
3144
3145 void
3146 Symbol_table::write_section_symbol(const Output_section* os,
3147 Output_symtab_xindex* symtab_xindex,
3148 Output_file* of,
3149 off_t offset) const
3150 {
3151 switch (parameters->size_and_endianness())
3152 {
3153 #ifdef HAVE_TARGET_32_LITTLE
3154 case Parameters::TARGET_32_LITTLE:
3155 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3156 offset);
3157 break;
3158 #endif
3159 #ifdef HAVE_TARGET_32_BIG
3160 case Parameters::TARGET_32_BIG:
3161 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3162 offset);
3163 break;
3164 #endif
3165 #ifdef HAVE_TARGET_64_LITTLE
3166 case Parameters::TARGET_64_LITTLE:
3167 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3168 offset);
3169 break;
3170 #endif
3171 #ifdef HAVE_TARGET_64_BIG
3172 case Parameters::TARGET_64_BIG:
3173 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3174 offset);
3175 break;
3176 #endif
3177 default:
3178 gold_unreachable();
3179 }
3180 }
3181
3182 // Write out a section symbol, specialized for size and endianness.
3183
3184 template<int size, bool big_endian>
3185 void
3186 Symbol_table::sized_write_section_symbol(const Output_section* os,
3187 Output_symtab_xindex* symtab_xindex,
3188 Output_file* of,
3189 off_t offset) const
3190 {
3191 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3192
3193 unsigned char* pov = of->get_output_view(offset, sym_size);
3194
3195 elfcpp::Sym_write<size, big_endian> osym(pov);
3196 osym.put_st_name(0);
3197 if (parameters->options().relocatable())
3198 osym.put_st_value(0);
3199 else
3200 osym.put_st_value(os->address());
3201 osym.put_st_size(0);
3202 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3203 elfcpp::STT_SECTION));
3204 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3205
3206 unsigned int shndx = os->out_shndx();
3207 if (shndx >= elfcpp::SHN_LORESERVE)
3208 {
3209 symtab_xindex->add(os->symtab_index(), shndx);
3210 shndx = elfcpp::SHN_XINDEX;
3211 }
3212 osym.put_st_shndx(shndx);
3213
3214 of->write_output_view(offset, sym_size, pov);
3215 }
3216
3217 // Print statistical information to stderr. This is used for --stats.
3218
3219 void
3220 Symbol_table::print_stats() const
3221 {
3222 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3223 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3224 program_name, this->table_.size(), this->table_.bucket_count());
3225 #else
3226 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3227 program_name, this->table_.size());
3228 #endif
3229 this->namepool_.print_stats("symbol table stringpool");
3230 }
3231
3232 // We check for ODR violations by looking for symbols with the same
3233 // name for which the debugging information reports that they were
3234 // defined in disjoint source locations. When comparing the source
3235 // location, we consider instances with the same base filename to be
3236 // the same. This is because different object files/shared libraries
3237 // can include the same header file using different paths, and
3238 // different optimization settings can make the line number appear to
3239 // be a couple lines off, and we don't want to report an ODR violation
3240 // in those cases.
3241
3242 // This struct is used to compare line information, as returned by
3243 // Dwarf_line_info::one_addr2line. It implements a < comparison
3244 // operator used with std::sort.
3245
3246 struct Odr_violation_compare
3247 {
3248 bool
3249 operator()(const std::string& s1, const std::string& s2) const
3250 {
3251 // Inputs should be of the form "dirname/filename:linenum" where
3252 // "dirname/" is optional. We want to compare just the filename:linenum.
3253
3254 // Find the last '/' in each string.
3255 std::string::size_type s1begin = s1.rfind('/');
3256 std::string::size_type s2begin = s2.rfind('/');
3257 // If there was no '/' in a string, start at the beginning.
3258 if (s1begin == std::string::npos)
3259 s1begin = 0;
3260 if (s2begin == std::string::npos)
3261 s2begin = 0;
3262 return s1.compare(s1begin, std::string::npos,
3263 s2, s2begin, std::string::npos) < 0;
3264 }
3265 };
3266
3267 // Returns all of the lines attached to LOC, not just the one the
3268 // instruction actually came from.
3269 std::vector<std::string>
3270 Symbol_table::linenos_from_loc(const Task* task,
3271 const Symbol_location& loc)
3272 {
3273 // We need to lock the object in order to read it. This
3274 // means that we have to run in a singleton Task. If we
3275 // want to run this in a general Task for better
3276 // performance, we will need one Task for object, plus
3277 // appropriate locking to ensure that we don't conflict with
3278 // other uses of the object. Also note, one_addr2line is not
3279 // currently thread-safe.
3280 Task_lock_obj<Object> tl(task, loc.object);
3281
3282 std::vector<std::string> result;
3283 Symbol_location code_loc = loc;
3284 parameters->target().function_location(&code_loc);
3285 // 16 is the size of the object-cache that one_addr2line should use.
3286 std::string canonical_result = Dwarf_line_info::one_addr2line(
3287 code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3288 if (!canonical_result.empty())
3289 result.push_back(canonical_result);
3290 return result;
3291 }
3292
3293 // OutputIterator that records if it was ever assigned to. This
3294 // allows it to be used with std::set_intersection() to check for
3295 // intersection rather than computing the intersection.
3296 struct Check_intersection
3297 {
3298 Check_intersection()
3299 : value_(false)
3300 {}
3301
3302 bool had_intersection() const
3303 { return this->value_; }
3304
3305 Check_intersection& operator++()
3306 { return *this; }
3307
3308 Check_intersection& operator*()
3309 { return *this; }
3310
3311 template<typename T>
3312 Check_intersection& operator=(const T&)
3313 {
3314 this->value_ = true;
3315 return *this;
3316 }
3317
3318 private:
3319 bool value_;
3320 };
3321
3322 // Check candidate_odr_violations_ to find symbols with the same name
3323 // but apparently different definitions (different source-file/line-no
3324 // for each line assigned to the first instruction).
3325
3326 void
3327 Symbol_table::detect_odr_violations(const Task* task,
3328 const char* output_file_name) const
3329 {
3330 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3331 it != candidate_odr_violations_.end();
3332 ++it)
3333 {
3334 const char* const symbol_name = it->first;
3335
3336 std::string first_object_name;
3337 std::vector<std::string> first_object_linenos;
3338
3339 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3340 locs = it->second.begin();
3341 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3342 locs_end = it->second.end();
3343 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3344 {
3345 // Save the line numbers from the first definition to
3346 // compare to the other definitions. Ideally, we'd compare
3347 // every definition to every other, but we don't want to
3348 // take O(N^2) time to do this. This shortcut may cause
3349 // false negatives that appear or disappear depending on the
3350 // link order, but it won't cause false positives.
3351 first_object_name = locs->object->name();
3352 first_object_linenos = this->linenos_from_loc(task, *locs);
3353 }
3354 if (first_object_linenos.empty())
3355 continue;
3356
3357 // Sort by Odr_violation_compare to make std::set_intersection work.
3358 std::string first_object_canonical_result = first_object_linenos.back();
3359 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3360 Odr_violation_compare());
3361
3362 for (; locs != locs_end; ++locs)
3363 {
3364 std::vector<std::string> linenos =
3365 this->linenos_from_loc(task, *locs);
3366 // linenos will be empty if we couldn't parse the debug info.
3367 if (linenos.empty())
3368 continue;
3369 // Sort by Odr_violation_compare to make std::set_intersection work.
3370 gold_assert(!linenos.empty());
3371 std::string second_object_canonical_result = linenos.back();
3372 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3373
3374 Check_intersection intersection_result =
3375 std::set_intersection(first_object_linenos.begin(),
3376 first_object_linenos.end(),
3377 linenos.begin(),
3378 linenos.end(),
3379 Check_intersection(),
3380 Odr_violation_compare());
3381 if (!intersection_result.had_intersection())
3382 {
3383 gold_warning(_("while linking %s: symbol '%s' defined in "
3384 "multiple places (possible ODR violation):"),
3385 output_file_name, demangle(symbol_name).c_str());
3386 // This only prints one location from each definition,
3387 // which may not be the location we expect to intersect
3388 // with another definition. We could print the whole
3389 // set of locations, but that seems too verbose.
3390 fprintf(stderr, _(" %s from %s\n"),
3391 first_object_canonical_result.c_str(),
3392 first_object_name.c_str());
3393 fprintf(stderr, _(" %s from %s\n"),
3394 second_object_canonical_result.c_str(),
3395 locs->object->name().c_str());
3396 // Only print one broken pair, to avoid needing to
3397 // compare against a list of the disjoint definition
3398 // locations we've found so far. (If we kept comparing
3399 // against just the first one, we'd get a lot of
3400 // redundant complaints about the second definition
3401 // location.)
3402 break;
3403 }
3404 }
3405 }
3406 // We only call one_addr2line() in this function, so we can clear its cache.
3407 Dwarf_line_info::clear_addr2line_cache();
3408 }
3409
3410 // Warnings functions.
3411
3412 // Add a new warning.
3413
3414 void
3415 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3416 const std::string& warning)
3417 {
3418 name = symtab->canonicalize_name(name);
3419 this->warnings_[name].set(obj, warning);
3420 }
3421
3422 // Look through the warnings and mark the symbols for which we should
3423 // warn. This is called during Layout::finalize when we know the
3424 // sources for all the symbols.
3425
3426 void
3427 Warnings::note_warnings(Symbol_table* symtab)
3428 {
3429 for (Warning_table::iterator p = this->warnings_.begin();
3430 p != this->warnings_.end();
3431 ++p)
3432 {
3433 Symbol* sym = symtab->lookup(p->first, NULL);
3434 if (sym != NULL
3435 && sym->source() == Symbol::FROM_OBJECT
3436 && sym->object() == p->second.object)
3437 sym->set_has_warning();
3438 }
3439 }
3440
3441 // Issue a warning. This is called when we see a relocation against a
3442 // symbol for which has a warning.
3443
3444 template<int size, bool big_endian>
3445 void
3446 Warnings::issue_warning(const Symbol* sym,
3447 const Relocate_info<size, big_endian>* relinfo,
3448 size_t relnum, off_t reloffset) const
3449 {
3450 gold_assert(sym->has_warning());
3451
3452 // We don't want to issue a warning for a relocation against the
3453 // symbol in the same object file in which the symbol is defined.
3454 if (sym->object() == relinfo->object)
3455 return;
3456
3457 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3458 gold_assert(p != this->warnings_.end());
3459 gold_warning_at_location(relinfo, relnum, reloffset,
3460 "%s", p->second.text.c_str());
3461 }
3462
3463 // Instantiate the templates we need. We could use the configure
3464 // script to restrict this to only the ones needed for implemented
3465 // targets.
3466
3467 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3468 template
3469 void
3470 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3471 #endif
3472
3473 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3474 template
3475 void
3476 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3477 #endif
3478
3479 #ifdef HAVE_TARGET_32_LITTLE
3480 template
3481 void
3482 Symbol_table::add_from_relobj<32, false>(
3483 Sized_relobj_file<32, false>* relobj,
3484 const unsigned char* syms,
3485 size_t count,
3486 size_t symndx_offset,
3487 const char* sym_names,
3488 size_t sym_name_size,
3489 Sized_relobj_file<32, false>::Symbols* sympointers,
3490 size_t* defined);
3491 #endif
3492
3493 #ifdef HAVE_TARGET_32_BIG
3494 template
3495 void
3496 Symbol_table::add_from_relobj<32, true>(
3497 Sized_relobj_file<32, true>* relobj,
3498 const unsigned char* syms,
3499 size_t count,
3500 size_t symndx_offset,
3501 const char* sym_names,
3502 size_t sym_name_size,
3503 Sized_relobj_file<32, true>::Symbols* sympointers,
3504 size_t* defined);
3505 #endif
3506
3507 #ifdef HAVE_TARGET_64_LITTLE
3508 template
3509 void
3510 Symbol_table::add_from_relobj<64, false>(
3511 Sized_relobj_file<64, false>* relobj,
3512 const unsigned char* syms,
3513 size_t count,
3514 size_t symndx_offset,
3515 const char* sym_names,
3516 size_t sym_name_size,
3517 Sized_relobj_file<64, false>::Symbols* sympointers,
3518 size_t* defined);
3519 #endif
3520
3521 #ifdef HAVE_TARGET_64_BIG
3522 template
3523 void
3524 Symbol_table::add_from_relobj<64, true>(
3525 Sized_relobj_file<64, true>* relobj,
3526 const unsigned char* syms,
3527 size_t count,
3528 size_t symndx_offset,
3529 const char* sym_names,
3530 size_t sym_name_size,
3531 Sized_relobj_file<64, true>::Symbols* sympointers,
3532 size_t* defined);
3533 #endif
3534
3535 #ifdef HAVE_TARGET_32_LITTLE
3536 template
3537 Symbol*
3538 Symbol_table::add_from_pluginobj<32, false>(
3539 Sized_pluginobj<32, false>* obj,
3540 const char* name,
3541 const char* ver,
3542 elfcpp::Sym<32, false>* sym);
3543 #endif
3544
3545 #ifdef HAVE_TARGET_32_BIG
3546 template
3547 Symbol*
3548 Symbol_table::add_from_pluginobj<32, true>(
3549 Sized_pluginobj<32, true>* obj,
3550 const char* name,
3551 const char* ver,
3552 elfcpp::Sym<32, true>* sym);
3553 #endif
3554
3555 #ifdef HAVE_TARGET_64_LITTLE
3556 template
3557 Symbol*
3558 Symbol_table::add_from_pluginobj<64, false>(
3559 Sized_pluginobj<64, false>* obj,
3560 const char* name,
3561 const char* ver,
3562 elfcpp::Sym<64, false>* sym);
3563 #endif
3564
3565 #ifdef HAVE_TARGET_64_BIG
3566 template
3567 Symbol*
3568 Symbol_table::add_from_pluginobj<64, true>(
3569 Sized_pluginobj<64, true>* obj,
3570 const char* name,
3571 const char* ver,
3572 elfcpp::Sym<64, true>* sym);
3573 #endif
3574
3575 #ifdef HAVE_TARGET_32_LITTLE
3576 template
3577 void
3578 Symbol_table::add_from_dynobj<32, false>(
3579 Sized_dynobj<32, false>* dynobj,
3580 const unsigned char* syms,
3581 size_t count,
3582 const char* sym_names,
3583 size_t sym_name_size,
3584 const unsigned char* versym,
3585 size_t versym_size,
3586 const std::vector<const char*>* version_map,
3587 Sized_relobj_file<32, false>::Symbols* sympointers,
3588 size_t* defined);
3589 #endif
3590
3591 #ifdef HAVE_TARGET_32_BIG
3592 template
3593 void
3594 Symbol_table::add_from_dynobj<32, true>(
3595 Sized_dynobj<32, true>* dynobj,
3596 const unsigned char* syms,
3597 size_t count,
3598 const char* sym_names,
3599 size_t sym_name_size,
3600 const unsigned char* versym,
3601 size_t versym_size,
3602 const std::vector<const char*>* version_map,
3603 Sized_relobj_file<32, true>::Symbols* sympointers,
3604 size_t* defined);
3605 #endif
3606
3607 #ifdef HAVE_TARGET_64_LITTLE
3608 template
3609 void
3610 Symbol_table::add_from_dynobj<64, false>(
3611 Sized_dynobj<64, false>* dynobj,
3612 const unsigned char* syms,
3613 size_t count,
3614 const char* sym_names,
3615 size_t sym_name_size,
3616 const unsigned char* versym,
3617 size_t versym_size,
3618 const std::vector<const char*>* version_map,
3619 Sized_relobj_file<64, false>::Symbols* sympointers,
3620 size_t* defined);
3621 #endif
3622
3623 #ifdef HAVE_TARGET_64_BIG
3624 template
3625 void
3626 Symbol_table::add_from_dynobj<64, true>(
3627 Sized_dynobj<64, true>* dynobj,
3628 const unsigned char* syms,
3629 size_t count,
3630 const char* sym_names,
3631 size_t sym_name_size,
3632 const unsigned char* versym,
3633 size_t versym_size,
3634 const std::vector<const char*>* version_map,
3635 Sized_relobj_file<64, true>::Symbols* sympointers,
3636 size_t* defined);
3637 #endif
3638
3639 #ifdef HAVE_TARGET_32_LITTLE
3640 template
3641 Sized_symbol<32>*
3642 Symbol_table::add_from_incrobj(
3643 Object* obj,
3644 const char* name,
3645 const char* ver,
3646 elfcpp::Sym<32, false>* sym);
3647 #endif
3648
3649 #ifdef HAVE_TARGET_32_BIG
3650 template
3651 Sized_symbol<32>*
3652 Symbol_table::add_from_incrobj(
3653 Object* obj,
3654 const char* name,
3655 const char* ver,
3656 elfcpp::Sym<32, true>* sym);
3657 #endif
3658
3659 #ifdef HAVE_TARGET_64_LITTLE
3660 template
3661 Sized_symbol<64>*
3662 Symbol_table::add_from_incrobj(
3663 Object* obj,
3664 const char* name,
3665 const char* ver,
3666 elfcpp::Sym<64, false>* sym);
3667 #endif
3668
3669 #ifdef HAVE_TARGET_64_BIG
3670 template
3671 Sized_symbol<64>*
3672 Symbol_table::add_from_incrobj(
3673 Object* obj,
3674 const char* name,
3675 const char* ver,
3676 elfcpp::Sym<64, true>* sym);
3677 #endif
3678
3679 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3680 template
3681 void
3682 Symbol_table::define_with_copy_reloc<32>(
3683 Sized_symbol<32>* sym,
3684 Output_data* posd,
3685 elfcpp::Elf_types<32>::Elf_Addr value);
3686 #endif
3687
3688 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3689 template
3690 void
3691 Symbol_table::define_with_copy_reloc<64>(
3692 Sized_symbol<64>* sym,
3693 Output_data* posd,
3694 elfcpp::Elf_types<64>::Elf_Addr value);
3695 #endif
3696
3697 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3698 template
3699 void
3700 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3701 Output_data* od, Value_type value,
3702 Size_type symsize, elfcpp::STT type,
3703 elfcpp::STB binding,
3704 elfcpp::STV visibility,
3705 unsigned char nonvis,
3706 bool offset_is_from_end,
3707 bool is_predefined);
3708 #endif
3709
3710 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3711 template
3712 void
3713 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3714 Output_data* od, Value_type value,
3715 Size_type symsize, elfcpp::STT type,
3716 elfcpp::STB binding,
3717 elfcpp::STV visibility,
3718 unsigned char nonvis,
3719 bool offset_is_from_end,
3720 bool is_predefined);
3721 #endif
3722
3723 #ifdef HAVE_TARGET_32_LITTLE
3724 template
3725 void
3726 Warnings::issue_warning<32, false>(const Symbol* sym,
3727 const Relocate_info<32, false>* relinfo,
3728 size_t relnum, off_t reloffset) const;
3729 #endif
3730
3731 #ifdef HAVE_TARGET_32_BIG
3732 template
3733 void
3734 Warnings::issue_warning<32, true>(const Symbol* sym,
3735 const Relocate_info<32, true>* relinfo,
3736 size_t relnum, off_t reloffset) const;
3737 #endif
3738
3739 #ifdef HAVE_TARGET_64_LITTLE
3740 template
3741 void
3742 Warnings::issue_warning<64, false>(const Symbol* sym,
3743 const Relocate_info<64, false>* relinfo,
3744 size_t relnum, off_t reloffset) const;
3745 #endif
3746
3747 #ifdef HAVE_TARGET_64_BIG
3748 template
3749 void
3750 Warnings::issue_warning<64, true>(const Symbol* sym,
3751 const Relocate_info<64, true>* relinfo,
3752 size_t relnum, off_t reloffset) const;
3753 #endif
3754
3755 } // End namespace gold.
This page took 0.16166 seconds and 5 git commands to generate.