PR gold/12818
[deliverable/binutils-gdb.git] / gold / symtab.cc
1 // symtab.cc -- the gold symbol table
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Class Symbol.
49
50 // Initialize fields in Symbol. This initializes everything except u_
51 // and source_.
52
53 void
54 Symbol::init_fields(const char* name, const char* version,
55 elfcpp::STT type, elfcpp::STB binding,
56 elfcpp::STV visibility, unsigned char nonvis)
57 {
58 this->name_ = name;
59 this->version_ = version;
60 this->symtab_index_ = 0;
61 this->dynsym_index_ = 0;
62 this->got_offsets_.init();
63 this->plt_offset_ = -1U;
64 this->type_ = type;
65 this->binding_ = binding;
66 this->visibility_ = visibility;
67 this->nonvis_ = nonvis;
68 this->is_def_ = false;
69 this->is_forwarder_ = false;
70 this->has_alias_ = false;
71 this->needs_dynsym_entry_ = false;
72 this->in_reg_ = false;
73 this->in_dyn_ = false;
74 this->has_warning_ = false;
75 this->is_copied_from_dynobj_ = false;
76 this->is_forced_local_ = false;
77 this->is_ordinary_shndx_ = false;
78 this->in_real_elf_ = false;
79 this->is_defined_in_discarded_section_ = false;
80 this->undef_binding_set_ = false;
81 this->undef_binding_weak_ = false;
82 this->is_predefined_ = false;
83 }
84
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87
88 static std::string
89 demangle(const char* name)
90 {
91 if (!parameters->options().do_demangle())
92 return name;
93
94 // cplus_demangle allocates memory for the result it returns,
95 // and returns NULL if the name is already demangled.
96 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97 if (demangled_name == NULL)
98 return name;
99
100 std::string retval(demangled_name);
101 free(demangled_name);
102 return retval;
103 }
104
105 std::string
106 Symbol::demangled_name() const
107 {
108 return demangle(this->name());
109 }
110
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112
113 template<int size, bool big_endian>
114 void
115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 const elfcpp::Sym<size, big_endian>& sym,
117 unsigned int st_shndx, bool is_ordinary)
118 {
119 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 sym.get_st_visibility(), sym.get_st_nonvis());
121 this->u_.from_object.object = object;
122 this->u_.from_object.shndx = st_shndx;
123 this->is_ordinary_shndx_ = is_ordinary;
124 this->source_ = FROM_OBJECT;
125 this->in_reg_ = !object->is_dynamic();
126 this->in_dyn_ = object->is_dynamic();
127 this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132
133 void
134 Symbol::init_base_output_data(const char* name, const char* version,
135 Output_data* od, elfcpp::STT type,
136 elfcpp::STB binding, elfcpp::STV visibility,
137 unsigned char nonvis, bool offset_is_from_end,
138 bool is_predefined)
139 {
140 this->init_fields(name, version, type, binding, visibility, nonvis);
141 this->u_.in_output_data.output_data = od;
142 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143 this->source_ = IN_OUTPUT_DATA;
144 this->in_reg_ = true;
145 this->in_real_elf_ = true;
146 this->is_predefined_ = is_predefined;
147 }
148
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151
152 void
153 Symbol::init_base_output_segment(const char* name, const char* version,
154 Output_segment* os, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis,
157 Segment_offset_base offset_base,
158 bool is_predefined)
159 {
160 this->init_fields(name, version, type, binding, visibility, nonvis);
161 this->u_.in_output_segment.output_segment = os;
162 this->u_.in_output_segment.offset_base = offset_base;
163 this->source_ = IN_OUTPUT_SEGMENT;
164 this->in_reg_ = true;
165 this->in_real_elf_ = true;
166 this->is_predefined_ = is_predefined;
167 }
168
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171
172 void
173 Symbol::init_base_constant(const char* name, const char* version,
174 elfcpp::STT type, elfcpp::STB binding,
175 elfcpp::STV visibility, unsigned char nonvis,
176 bool is_predefined)
177 {
178 this->init_fields(name, version, type, binding, visibility, nonvis);
179 this->source_ = IS_CONSTANT;
180 this->in_reg_ = true;
181 this->in_real_elf_ = true;
182 this->is_predefined_ = is_predefined;
183 }
184
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187
188 void
189 Symbol::init_base_undefined(const char* name, const char* version,
190 elfcpp::STT type, elfcpp::STB binding,
191 elfcpp::STV visibility, unsigned char nonvis)
192 {
193 this->init_fields(name, version, type, binding, visibility, nonvis);
194 this->dynsym_index_ = -1U;
195 this->source_ = IS_UNDEFINED;
196 this->in_reg_ = true;
197 this->in_real_elf_ = true;
198 }
199
200 // Allocate a common symbol in the base.
201
202 void
203 Symbol::allocate_base_common(Output_data* od)
204 {
205 gold_assert(this->is_common());
206 this->source_ = IN_OUTPUT_DATA;
207 this->u_.in_output_data.output_data = od;
208 this->u_.in_output_data.offset_is_from_end = false;
209 }
210
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212
213 template<int size>
214 template<bool big_endian>
215 void
216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 Object* object,
218 const elfcpp::Sym<size, big_endian>& sym,
219 unsigned int st_shndx, bool is_ordinary)
220 {
221 this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222 this->value_ = sym.get_st_value();
223 this->symsize_ = sym.get_st_size();
224 }
225
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228
229 template<int size>
230 void
231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 Output_data* od, Value_type value,
233 Size_type symsize, elfcpp::STT type,
234 elfcpp::STB binding,
235 elfcpp::STV visibility,
236 unsigned char nonvis,
237 bool offset_is_from_end,
238 bool is_predefined)
239 {
240 this->init_base_output_data(name, version, od, type, binding, visibility,
241 nonvis, offset_is_from_end, is_predefined);
242 this->value_ = value;
243 this->symsize_ = symsize;
244 }
245
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248
249 template<int size>
250 void
251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 Output_segment* os, Value_type value,
253 Size_type symsize, elfcpp::STT type,
254 elfcpp::STB binding,
255 elfcpp::STV visibility,
256 unsigned char nonvis,
257 Segment_offset_base offset_base,
258 bool is_predefined)
259 {
260 this->init_base_output_segment(name, version, os, type, binding, visibility,
261 nonvis, offset_base, is_predefined);
262 this->value_ = value;
263 this->symsize_ = symsize;
264 }
265
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268
269 template<int size>
270 void
271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 Value_type value, Size_type symsize,
273 elfcpp::STT type, elfcpp::STB binding,
274 elfcpp::STV visibility, unsigned char nonvis,
275 bool is_predefined)
276 {
277 this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 is_predefined);
279 this->value_ = value;
280 this->symsize_ = symsize;
281 }
282
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284
285 template<int size>
286 void
287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 elfcpp::STT type, elfcpp::STB binding,
289 elfcpp::STV visibility, unsigned char nonvis)
290 {
291 this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292 this->value_ = 0;
293 this->symsize_ = 0;
294 }
295
296 // Return an allocated string holding the symbol's name as
297 // name@version. This is used for relocatable links.
298
299 std::string
300 Symbol::versioned_name() const
301 {
302 gold_assert(this->version_ != NULL);
303 std::string ret = this->name_;
304 ret.push_back('@');
305 if (this->is_def_)
306 ret.push_back('@');
307 ret += this->version_;
308 return ret;
309 }
310
311 // Return true if SHNDX represents a common symbol.
312
313 bool
314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316 return (shndx == elfcpp::SHN_COMMON
317 || shndx == parameters->target().small_common_shndx()
318 || shndx == parameters->target().large_common_shndx());
319 }
320
321 // Allocate a common symbol.
322
323 template<int size>
324 void
325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327 this->allocate_base_common(od);
328 this->value_ = value;
329 }
330
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str) (strncmp(var, str, sizeof("" str "") - 1) == 0)
333
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336
337 inline bool
338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340 // If the symbol is only present on plugin files, the plugin decided we
341 // don't need it.
342 if (!this->in_real_elf())
343 return false;
344
345 // If the symbol is used by a dynamic relocation, we need to add it.
346 if (this->needs_dynsym_entry())
347 return true;
348
349 // If this symbol's section is not added, the symbol need not be added.
350 // The section may have been GCed. Note that export_dynamic is being
351 // overridden here. This should not be done for shared objects.
352 if (parameters->options().gc_sections()
353 && !parameters->options().shared()
354 && this->source() == Symbol::FROM_OBJECT
355 && !this->object()->is_dynamic())
356 {
357 Relobj* relobj = static_cast<Relobj*>(this->object());
358 bool is_ordinary;
359 unsigned int shndx = this->shndx(&is_ordinary);
360 if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361 && !relobj->is_section_included(shndx)
362 && !symtab->is_section_folded(relobj, shndx))
363 return false;
364 }
365
366 // If the symbol was forced local in a version script, do not add it.
367 if (this->is_forced_local())
368 return false;
369
370 // If the symbol was forced dynamic in a --dynamic-list file, add it.
371 if (parameters->options().in_dynamic_list(this->name()))
372 return true;
373
374 // If dynamic-list-data was specified, add any STT_OBJECT.
375 if (parameters->options().dynamic_list_data()
376 && !this->is_from_dynobj()
377 && this->type() == elfcpp::STT_OBJECT)
378 return true;
379
380 // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
381 // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
382 if ((parameters->options().dynamic_list_cpp_new()
383 || parameters->options().dynamic_list_cpp_typeinfo())
384 && !this->is_from_dynobj())
385 {
386 // TODO(csilvers): We could probably figure out if we're an operator
387 // new/delete or typeinfo without the need to demangle.
388 char* demangled_name = cplus_demangle(this->name(),
389 DMGL_ANSI | DMGL_PARAMS);
390 if (demangled_name == NULL)
391 {
392 // Not a C++ symbol, so it can't satisfy these flags
393 }
394 else if (parameters->options().dynamic_list_cpp_new()
395 && (strprefix(demangled_name, "operator new")
396 || strprefix(demangled_name, "operator delete")))
397 {
398 free(demangled_name);
399 return true;
400 }
401 else if (parameters->options().dynamic_list_cpp_typeinfo()
402 && (strprefix(demangled_name, "typeinfo name for")
403 || strprefix(demangled_name, "typeinfo for")))
404 {
405 free(demangled_name);
406 return true;
407 }
408 else
409 free(demangled_name);
410 }
411
412 // If exporting all symbols or building a shared library,
413 // and the symbol is defined in a regular object and is
414 // externally visible, we need to add it.
415 if ((parameters->options().export_dynamic() || parameters->options().shared())
416 && !this->is_from_dynobj()
417 && !this->is_undefined()
418 && this->is_externally_visible())
419 return true;
420
421 return false;
422 }
423
424 // Return true if the final value of this symbol is known at link
425 // time.
426
427 bool
428 Symbol::final_value_is_known() const
429 {
430 // If we are not generating an executable, then no final values are
431 // known, since they will change at runtime.
432 if (parameters->options().output_is_position_independent()
433 || parameters->options().relocatable())
434 return false;
435
436 // If the symbol is not from an object file, and is not undefined,
437 // then it is defined, and known.
438 if (this->source_ != FROM_OBJECT)
439 {
440 if (this->source_ != IS_UNDEFINED)
441 return true;
442 }
443 else
444 {
445 // If the symbol is from a dynamic object, then the final value
446 // is not known.
447 if (this->object()->is_dynamic())
448 return false;
449
450 // If the symbol is not undefined (it is defined or common),
451 // then the final value is known.
452 if (!this->is_undefined())
453 return true;
454 }
455
456 // If the symbol is undefined, then whether the final value is known
457 // depends on whether we are doing a static link. If we are doing a
458 // dynamic link, then the final value could be filled in at runtime.
459 // This could reasonably be the case for a weak undefined symbol.
460 return parameters->doing_static_link();
461 }
462
463 // Return the output section where this symbol is defined.
464
465 Output_section*
466 Symbol::output_section() const
467 {
468 switch (this->source_)
469 {
470 case FROM_OBJECT:
471 {
472 unsigned int shndx = this->u_.from_object.shndx;
473 if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
474 {
475 gold_assert(!this->u_.from_object.object->is_dynamic());
476 gold_assert(this->u_.from_object.object->pluginobj() == NULL);
477 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
478 return relobj->output_section(shndx);
479 }
480 return NULL;
481 }
482
483 case IN_OUTPUT_DATA:
484 return this->u_.in_output_data.output_data->output_section();
485
486 case IN_OUTPUT_SEGMENT:
487 case IS_CONSTANT:
488 case IS_UNDEFINED:
489 return NULL;
490
491 default:
492 gold_unreachable();
493 }
494 }
495
496 // Set the symbol's output section. This is used for symbols defined
497 // in scripts. This should only be called after the symbol table has
498 // been finalized.
499
500 void
501 Symbol::set_output_section(Output_section* os)
502 {
503 switch (this->source_)
504 {
505 case FROM_OBJECT:
506 case IN_OUTPUT_DATA:
507 gold_assert(this->output_section() == os);
508 break;
509 case IS_CONSTANT:
510 this->source_ = IN_OUTPUT_DATA;
511 this->u_.in_output_data.output_data = os;
512 this->u_.in_output_data.offset_is_from_end = false;
513 break;
514 case IN_OUTPUT_SEGMENT:
515 case IS_UNDEFINED:
516 default:
517 gold_unreachable();
518 }
519 }
520
521 // Class Symbol_table.
522
523 Symbol_table::Symbol_table(unsigned int count,
524 const Version_script_info& version_script)
525 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
526 forwarders_(), commons_(), tls_commons_(), small_commons_(),
527 large_commons_(), forced_locals_(), warnings_(),
528 version_script_(version_script), gc_(NULL), icf_(NULL)
529 {
530 namepool_.reserve(count);
531 }
532
533 Symbol_table::~Symbol_table()
534 {
535 }
536
537 // The symbol table key equality function. This is called with
538 // Stringpool keys.
539
540 inline bool
541 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
542 const Symbol_table_key& k2) const
543 {
544 return k1.first == k2.first && k1.second == k2.second;
545 }
546
547 bool
548 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
549 {
550 return (parameters->options().icf_enabled()
551 && this->icf_->is_section_folded(obj, shndx));
552 }
553
554 // For symbols that have been listed with -u option, add them to the
555 // work list to avoid gc'ing them.
556
557 void
558 Symbol_table::gc_mark_undef_symbols(Layout* layout)
559 {
560 for (options::String_set::const_iterator p =
561 parameters->options().undefined_begin();
562 p != parameters->options().undefined_end();
563 ++p)
564 {
565 const char* name = p->c_str();
566 Symbol* sym = this->lookup(name);
567 gold_assert(sym != NULL);
568 if (sym->source() == Symbol::FROM_OBJECT
569 && !sym->object()->is_dynamic())
570 {
571 Relobj* obj = static_cast<Relobj*>(sym->object());
572 bool is_ordinary;
573 unsigned int shndx = sym->shndx(&is_ordinary);
574 if (is_ordinary)
575 {
576 gold_assert(this->gc_ != NULL);
577 this->gc_->worklist().push(Section_id(obj, shndx));
578 }
579 }
580 }
581
582 for (Script_options::referenced_const_iterator p =
583 layout->script_options()->referenced_begin();
584 p != layout->script_options()->referenced_end();
585 ++p)
586 {
587 Symbol* sym = this->lookup(p->c_str());
588 gold_assert(sym != NULL);
589 if (sym->source() == Symbol::FROM_OBJECT
590 && !sym->object()->is_dynamic())
591 {
592 Relobj* obj = static_cast<Relobj*>(sym->object());
593 bool is_ordinary;
594 unsigned int shndx = sym->shndx(&is_ordinary);
595 if (is_ordinary)
596 {
597 gold_assert(this->gc_ != NULL);
598 this->gc_->worklist().push(Section_id(obj, shndx));
599 }
600 }
601 }
602 }
603
604 void
605 Symbol_table::gc_mark_symbol_for_shlib(Symbol* sym)
606 {
607 if (!sym->is_from_dynobj()
608 && sym->is_externally_visible())
609 {
610 //Add the object and section to the work list.
611 Relobj* obj = static_cast<Relobj*>(sym->object());
612 bool is_ordinary;
613 unsigned int shndx = sym->shndx(&is_ordinary);
614 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
615 {
616 gold_assert(this->gc_!= NULL);
617 this->gc_->worklist().push(Section_id(obj, shndx));
618 }
619 }
620 }
621
622 // When doing garbage collection, keep symbols that have been seen in
623 // dynamic objects.
624 inline void
625 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
626 {
627 if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
628 && !sym->object()->is_dynamic())
629 {
630 Relobj* obj = static_cast<Relobj*>(sym->object());
631 bool is_ordinary;
632 unsigned int shndx = sym->shndx(&is_ordinary);
633 if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
634 {
635 gold_assert(this->gc_ != NULL);
636 this->gc_->worklist().push(Section_id(obj, shndx));
637 }
638 }
639 }
640
641 // Make TO a symbol which forwards to FROM.
642
643 void
644 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
645 {
646 gold_assert(from != to);
647 gold_assert(!from->is_forwarder() && !to->is_forwarder());
648 this->forwarders_[from] = to;
649 from->set_forwarder();
650 }
651
652 // Resolve the forwards from FROM, returning the real symbol.
653
654 Symbol*
655 Symbol_table::resolve_forwards(const Symbol* from) const
656 {
657 gold_assert(from->is_forwarder());
658 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
659 this->forwarders_.find(from);
660 gold_assert(p != this->forwarders_.end());
661 return p->second;
662 }
663
664 // Look up a symbol by name.
665
666 Symbol*
667 Symbol_table::lookup(const char* name, const char* version) const
668 {
669 Stringpool::Key name_key;
670 name = this->namepool_.find(name, &name_key);
671 if (name == NULL)
672 return NULL;
673
674 Stringpool::Key version_key = 0;
675 if (version != NULL)
676 {
677 version = this->namepool_.find(version, &version_key);
678 if (version == NULL)
679 return NULL;
680 }
681
682 Symbol_table_key key(name_key, version_key);
683 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
684 if (p == this->table_.end())
685 return NULL;
686 return p->second;
687 }
688
689 // Resolve a Symbol with another Symbol. This is only used in the
690 // unusual case where there are references to both an unversioned
691 // symbol and a symbol with a version, and we then discover that that
692 // version is the default version. Because this is unusual, we do
693 // this the slow way, by converting back to an ELF symbol.
694
695 template<int size, bool big_endian>
696 void
697 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
698 {
699 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
700 elfcpp::Sym_write<size, big_endian> esym(buf);
701 // We don't bother to set the st_name or the st_shndx field.
702 esym.put_st_value(from->value());
703 esym.put_st_size(from->symsize());
704 esym.put_st_info(from->binding(), from->type());
705 esym.put_st_other(from->visibility(), from->nonvis());
706 bool is_ordinary;
707 unsigned int shndx = from->shndx(&is_ordinary);
708 this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
709 from->version());
710 if (from->in_reg())
711 to->set_in_reg();
712 if (from->in_dyn())
713 to->set_in_dyn();
714 if (parameters->options().gc_sections())
715 this->gc_mark_dyn_syms(to);
716 }
717
718 // Record that a symbol is forced to be local by a version script or
719 // by visibility.
720
721 void
722 Symbol_table::force_local(Symbol* sym)
723 {
724 if (!sym->is_defined() && !sym->is_common())
725 return;
726 if (sym->is_forced_local())
727 {
728 // We already got this one.
729 return;
730 }
731 sym->set_is_forced_local();
732 this->forced_locals_.push_back(sym);
733 }
734
735 // Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
736 // is only called for undefined symbols, when at least one --wrap
737 // option was used.
738
739 const char*
740 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
741 {
742 // For some targets, we need to ignore a specific character when
743 // wrapping, and add it back later.
744 char prefix = '\0';
745 if (name[0] == parameters->target().wrap_char())
746 {
747 prefix = name[0];
748 ++name;
749 }
750
751 if (parameters->options().is_wrap(name))
752 {
753 // Turn NAME into __wrap_NAME.
754 std::string s;
755 if (prefix != '\0')
756 s += prefix;
757 s += "__wrap_";
758 s += name;
759
760 // This will give us both the old and new name in NAMEPOOL_, but
761 // that is OK. Only the versions we need will wind up in the
762 // real string table in the output file.
763 return this->namepool_.add(s.c_str(), true, name_key);
764 }
765
766 const char* const real_prefix = "__real_";
767 const size_t real_prefix_length = strlen(real_prefix);
768 if (strncmp(name, real_prefix, real_prefix_length) == 0
769 && parameters->options().is_wrap(name + real_prefix_length))
770 {
771 // Turn __real_NAME into NAME.
772 std::string s;
773 if (prefix != '\0')
774 s += prefix;
775 s += name + real_prefix_length;
776 return this->namepool_.add(s.c_str(), true, name_key);
777 }
778
779 return name;
780 }
781
782 // This is called when we see a symbol NAME/VERSION, and the symbol
783 // already exists in the symbol table, and VERSION is marked as being
784 // the default version. SYM is the NAME/VERSION symbol we just added.
785 // DEFAULT_IS_NEW is true if this is the first time we have seen the
786 // symbol NAME/NULL. PDEF points to the entry for NAME/NULL.
787
788 template<int size, bool big_endian>
789 void
790 Symbol_table::define_default_version(Sized_symbol<size>* sym,
791 bool default_is_new,
792 Symbol_table_type::iterator pdef)
793 {
794 if (default_is_new)
795 {
796 // This is the first time we have seen NAME/NULL. Make
797 // NAME/NULL point to NAME/VERSION, and mark SYM as the default
798 // version.
799 pdef->second = sym;
800 sym->set_is_default();
801 }
802 else if (pdef->second == sym)
803 {
804 // NAME/NULL already points to NAME/VERSION. Don't mark the
805 // symbol as the default if it is not already the default.
806 }
807 else
808 {
809 // This is the unfortunate case where we already have entries
810 // for both NAME/VERSION and NAME/NULL. We now see a symbol
811 // NAME/VERSION where VERSION is the default version. We have
812 // already resolved this new symbol with the existing
813 // NAME/VERSION symbol.
814
815 // It's possible that NAME/NULL and NAME/VERSION are both
816 // defined in regular objects. This can only happen if one
817 // object file defines foo and another defines foo@@ver. This
818 // is somewhat obscure, but we call it a multiple definition
819 // error.
820
821 // It's possible that NAME/NULL actually has a version, in which
822 // case it won't be the same as VERSION. This happens with
823 // ver_test_7.so in the testsuite for the symbol t2_2. We see
824 // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL. We
825 // then see an unadorned t2_2 in an object file and give it
826 // version VER1 from the version script. This looks like a
827 // default definition for VER1, so it looks like we should merge
828 // t2_2/NULL with t2_2/VER1. That doesn't make sense, but it's
829 // not obvious that this is an error, either. So we just punt.
830
831 // If one of the symbols has non-default visibility, and the
832 // other is defined in a shared object, then they are different
833 // symbols.
834
835 // Otherwise, we just resolve the symbols as though they were
836 // the same.
837
838 if (pdef->second->version() != NULL)
839 gold_assert(pdef->second->version() != sym->version());
840 else if (sym->visibility() != elfcpp::STV_DEFAULT
841 && pdef->second->is_from_dynobj())
842 ;
843 else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
844 && sym->is_from_dynobj())
845 ;
846 else
847 {
848 const Sized_symbol<size>* symdef;
849 symdef = this->get_sized_symbol<size>(pdef->second);
850 Symbol_table::resolve<size, big_endian>(sym, symdef);
851 this->make_forwarder(pdef->second, sym);
852 pdef->second = sym;
853 sym->set_is_default();
854 }
855 }
856 }
857
858 // Add one symbol from OBJECT to the symbol table. NAME is symbol
859 // name and VERSION is the version; both are canonicalized. DEF is
860 // whether this is the default version. ST_SHNDX is the symbol's
861 // section index; IS_ORDINARY is whether this is a normal section
862 // rather than a special code.
863
864 // If IS_DEFAULT_VERSION is true, then this is the definition of a
865 // default version of a symbol. That means that any lookup of
866 // NAME/NULL and any lookup of NAME/VERSION should always return the
867 // same symbol. This is obvious for references, but in particular we
868 // want to do this for definitions: overriding NAME/NULL should also
869 // override NAME/VERSION. If we don't do that, it would be very hard
870 // to override functions in a shared library which uses versioning.
871
872 // We implement this by simply making both entries in the hash table
873 // point to the same Symbol structure. That is easy enough if this is
874 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
875 // that we have seen both already, in which case they will both have
876 // independent entries in the symbol table. We can't simply change
877 // the symbol table entry, because we have pointers to the entries
878 // attached to the object files. So we mark the entry attached to the
879 // object file as a forwarder, and record it in the forwarders_ map.
880 // Note that entries in the hash table will never be marked as
881 // forwarders.
882 //
883 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
884 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
885 // for a special section code. ST_SHNDX may be modified if the symbol
886 // is defined in a section being discarded.
887
888 template<int size, bool big_endian>
889 Sized_symbol<size>*
890 Symbol_table::add_from_object(Object* object,
891 const char* name,
892 Stringpool::Key name_key,
893 const char* version,
894 Stringpool::Key version_key,
895 bool is_default_version,
896 const elfcpp::Sym<size, big_endian>& sym,
897 unsigned int st_shndx,
898 bool is_ordinary,
899 unsigned int orig_st_shndx)
900 {
901 // Print a message if this symbol is being traced.
902 if (parameters->options().is_trace_symbol(name))
903 {
904 if (orig_st_shndx == elfcpp::SHN_UNDEF)
905 gold_info(_("%s: reference to %s"), object->name().c_str(), name);
906 else
907 gold_info(_("%s: definition of %s"), object->name().c_str(), name);
908 }
909
910 // For an undefined symbol, we may need to adjust the name using
911 // --wrap.
912 if (orig_st_shndx == elfcpp::SHN_UNDEF
913 && parameters->options().any_wrap())
914 {
915 const char* wrap_name = this->wrap_symbol(name, &name_key);
916 if (wrap_name != name)
917 {
918 // If we see a reference to malloc with version GLIBC_2.0,
919 // and we turn it into a reference to __wrap_malloc, then we
920 // discard the version number. Otherwise the user would be
921 // required to specify the correct version for
922 // __wrap_malloc.
923 version = NULL;
924 version_key = 0;
925 name = wrap_name;
926 }
927 }
928
929 Symbol* const snull = NULL;
930 std::pair<typename Symbol_table_type::iterator, bool> ins =
931 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
932 snull));
933
934 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
935 std::make_pair(this->table_.end(), false);
936 if (is_default_version)
937 {
938 const Stringpool::Key vnull_key = 0;
939 insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
940 vnull_key),
941 snull));
942 }
943
944 // ins.first: an iterator, which is a pointer to a pair.
945 // ins.first->first: the key (a pair of name and version).
946 // ins.first->second: the value (Symbol*).
947 // ins.second: true if new entry was inserted, false if not.
948
949 Sized_symbol<size>* ret;
950 bool was_undefined;
951 bool was_common;
952 if (!ins.second)
953 {
954 // We already have an entry for NAME/VERSION.
955 ret = this->get_sized_symbol<size>(ins.first->second);
956 gold_assert(ret != NULL);
957
958 was_undefined = ret->is_undefined();
959 was_common = ret->is_common();
960
961 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
962 version);
963 if (parameters->options().gc_sections())
964 this->gc_mark_dyn_syms(ret);
965
966 if (is_default_version)
967 this->define_default_version<size, big_endian>(ret, insdefault.second,
968 insdefault.first);
969 }
970 else
971 {
972 // This is the first time we have seen NAME/VERSION.
973 gold_assert(ins.first->second == NULL);
974
975 if (is_default_version && !insdefault.second)
976 {
977 // We already have an entry for NAME/NULL. If we override
978 // it, then change it to NAME/VERSION.
979 ret = this->get_sized_symbol<size>(insdefault.first->second);
980
981 was_undefined = ret->is_undefined();
982 was_common = ret->is_common();
983
984 this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
985 version);
986 if (parameters->options().gc_sections())
987 this->gc_mark_dyn_syms(ret);
988 ins.first->second = ret;
989 }
990 else
991 {
992 was_undefined = false;
993 was_common = false;
994
995 Sized_target<size, big_endian>* target =
996 parameters->sized_target<size, big_endian>();
997 if (!target->has_make_symbol())
998 ret = new Sized_symbol<size>();
999 else
1000 {
1001 ret = target->make_symbol();
1002 if (ret == NULL)
1003 {
1004 // This means that we don't want a symbol table
1005 // entry after all.
1006 if (!is_default_version)
1007 this->table_.erase(ins.first);
1008 else
1009 {
1010 this->table_.erase(insdefault.first);
1011 // Inserting INSDEFAULT invalidated INS.
1012 this->table_.erase(std::make_pair(name_key,
1013 version_key));
1014 }
1015 return NULL;
1016 }
1017 }
1018
1019 ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1020
1021 ins.first->second = ret;
1022 if (is_default_version)
1023 {
1024 // This is the first time we have seen NAME/NULL. Point
1025 // it at the new entry for NAME/VERSION.
1026 gold_assert(insdefault.second);
1027 insdefault.first->second = ret;
1028 }
1029 }
1030
1031 if (is_default_version)
1032 ret->set_is_default();
1033 }
1034
1035 // Record every time we see a new undefined symbol, to speed up
1036 // archive groups.
1037 if (!was_undefined && ret->is_undefined())
1038 {
1039 ++this->saw_undefined_;
1040 if (parameters->options().has_plugins())
1041 parameters->options().plugins()->new_undefined_symbol(ret);
1042 }
1043
1044 // Keep track of common symbols, to speed up common symbol
1045 // allocation.
1046 if (!was_common && ret->is_common())
1047 {
1048 if (ret->type() == elfcpp::STT_TLS)
1049 this->tls_commons_.push_back(ret);
1050 else if (!is_ordinary
1051 && st_shndx == parameters->target().small_common_shndx())
1052 this->small_commons_.push_back(ret);
1053 else if (!is_ordinary
1054 && st_shndx == parameters->target().large_common_shndx())
1055 this->large_commons_.push_back(ret);
1056 else
1057 this->commons_.push_back(ret);
1058 }
1059
1060 // If we're not doing a relocatable link, then any symbol with
1061 // hidden or internal visibility is local.
1062 if ((ret->visibility() == elfcpp::STV_HIDDEN
1063 || ret->visibility() == elfcpp::STV_INTERNAL)
1064 && (ret->binding() == elfcpp::STB_GLOBAL
1065 || ret->binding() == elfcpp::STB_GNU_UNIQUE
1066 || ret->binding() == elfcpp::STB_WEAK)
1067 && !parameters->options().relocatable())
1068 this->force_local(ret);
1069
1070 return ret;
1071 }
1072
1073 // Add all the symbols in a relocatable object to the hash table.
1074
1075 template<int size, bool big_endian>
1076 void
1077 Symbol_table::add_from_relobj(
1078 Sized_relobj_file<size, big_endian>* relobj,
1079 const unsigned char* syms,
1080 size_t count,
1081 size_t symndx_offset,
1082 const char* sym_names,
1083 size_t sym_name_size,
1084 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1085 size_t* defined)
1086 {
1087 *defined = 0;
1088
1089 gold_assert(size == parameters->target().get_size());
1090
1091 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1092
1093 const bool just_symbols = relobj->just_symbols();
1094
1095 const unsigned char* p = syms;
1096 for (size_t i = 0; i < count; ++i, p += sym_size)
1097 {
1098 (*sympointers)[i] = NULL;
1099
1100 elfcpp::Sym<size, big_endian> sym(p);
1101
1102 unsigned int st_name = sym.get_st_name();
1103 if (st_name >= sym_name_size)
1104 {
1105 relobj->error(_("bad global symbol name offset %u at %zu"),
1106 st_name, i);
1107 continue;
1108 }
1109
1110 const char* name = sym_names + st_name;
1111
1112 bool is_ordinary;
1113 unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1114 sym.get_st_shndx(),
1115 &is_ordinary);
1116 unsigned int orig_st_shndx = st_shndx;
1117 if (!is_ordinary)
1118 orig_st_shndx = elfcpp::SHN_UNDEF;
1119
1120 if (st_shndx != elfcpp::SHN_UNDEF)
1121 ++*defined;
1122
1123 // A symbol defined in a section which we are not including must
1124 // be treated as an undefined symbol.
1125 bool is_defined_in_discarded_section = false;
1126 if (st_shndx != elfcpp::SHN_UNDEF
1127 && is_ordinary
1128 && !relobj->is_section_included(st_shndx)
1129 && !this->is_section_folded(relobj, st_shndx))
1130 {
1131 st_shndx = elfcpp::SHN_UNDEF;
1132 is_defined_in_discarded_section = true;
1133 }
1134
1135 // In an object file, an '@' in the name separates the symbol
1136 // name from the version name. If there are two '@' characters,
1137 // this is the default version.
1138 const char* ver = strchr(name, '@');
1139 Stringpool::Key ver_key = 0;
1140 int namelen = 0;
1141 // IS_DEFAULT_VERSION: is the version default?
1142 // IS_FORCED_LOCAL: is the symbol forced local?
1143 bool is_default_version = false;
1144 bool is_forced_local = false;
1145
1146 if (ver != NULL)
1147 {
1148 // The symbol name is of the form foo@VERSION or foo@@VERSION
1149 namelen = ver - name;
1150 ++ver;
1151 if (*ver == '@')
1152 {
1153 is_default_version = true;
1154 ++ver;
1155 }
1156 ver = this->namepool_.add(ver, true, &ver_key);
1157 }
1158 // We don't want to assign a version to an undefined symbol,
1159 // even if it is listed in the version script. FIXME: What
1160 // about a common symbol?
1161 else
1162 {
1163 namelen = strlen(name);
1164 if (!this->version_script_.empty()
1165 && st_shndx != elfcpp::SHN_UNDEF)
1166 {
1167 // The symbol name did not have a version, but the
1168 // version script may assign a version anyway.
1169 std::string version;
1170 bool is_global;
1171 if (this->version_script_.get_symbol_version(name, &version,
1172 &is_global))
1173 {
1174 if (!is_global)
1175 is_forced_local = true;
1176 else if (!version.empty())
1177 {
1178 ver = this->namepool_.add_with_length(version.c_str(),
1179 version.length(),
1180 true,
1181 &ver_key);
1182 is_default_version = true;
1183 }
1184 }
1185 }
1186 }
1187
1188 elfcpp::Sym<size, big_endian>* psym = &sym;
1189 unsigned char symbuf[sym_size];
1190 elfcpp::Sym<size, big_endian> sym2(symbuf);
1191 if (just_symbols)
1192 {
1193 memcpy(symbuf, p, sym_size);
1194 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1195 if (orig_st_shndx != elfcpp::SHN_UNDEF && is_ordinary)
1196 {
1197 // Symbol values in object files are section relative.
1198 // This is normally what we want, but since here we are
1199 // converting the symbol to absolute we need to add the
1200 // section address. The section address in an object
1201 // file is normally zero, but people can use a linker
1202 // script to change it.
1203 sw.put_st_value(sym.get_st_value()
1204 + relobj->section_address(orig_st_shndx));
1205 }
1206 st_shndx = elfcpp::SHN_ABS;
1207 is_ordinary = false;
1208 psym = &sym2;
1209 }
1210
1211 // Fix up visibility if object has no-export set.
1212 if (relobj->no_export()
1213 && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1214 {
1215 // We may have copied symbol already above.
1216 if (psym != &sym2)
1217 {
1218 memcpy(symbuf, p, sym_size);
1219 psym = &sym2;
1220 }
1221
1222 elfcpp::STV visibility = sym2.get_st_visibility();
1223 if (visibility == elfcpp::STV_DEFAULT
1224 || visibility == elfcpp::STV_PROTECTED)
1225 {
1226 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1227 unsigned char nonvis = sym2.get_st_nonvis();
1228 sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1229 }
1230 }
1231
1232 Stringpool::Key name_key;
1233 name = this->namepool_.add_with_length(name, namelen, true,
1234 &name_key);
1235
1236 Sized_symbol<size>* res;
1237 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1238 is_default_version, *psym, st_shndx,
1239 is_ordinary, orig_st_shndx);
1240
1241 // If building a shared library using garbage collection, do not
1242 // treat externally visible symbols as garbage.
1243 if (parameters->options().gc_sections()
1244 && parameters->options().shared())
1245 this->gc_mark_symbol_for_shlib(res);
1246
1247 if (is_forced_local)
1248 this->force_local(res);
1249
1250 if (is_defined_in_discarded_section)
1251 res->set_is_defined_in_discarded_section();
1252
1253 (*sympointers)[i] = res;
1254 }
1255 }
1256
1257 // Add a symbol from a plugin-claimed file.
1258
1259 template<int size, bool big_endian>
1260 Symbol*
1261 Symbol_table::add_from_pluginobj(
1262 Sized_pluginobj<size, big_endian>* obj,
1263 const char* name,
1264 const char* ver,
1265 elfcpp::Sym<size, big_endian>* sym)
1266 {
1267 unsigned int st_shndx = sym->get_st_shndx();
1268 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1269
1270 Stringpool::Key ver_key = 0;
1271 bool is_default_version = false;
1272 bool is_forced_local = false;
1273
1274 if (ver != NULL)
1275 {
1276 ver = this->namepool_.add(ver, true, &ver_key);
1277 }
1278 // We don't want to assign a version to an undefined symbol,
1279 // even if it is listed in the version script. FIXME: What
1280 // about a common symbol?
1281 else
1282 {
1283 if (!this->version_script_.empty()
1284 && st_shndx != elfcpp::SHN_UNDEF)
1285 {
1286 // The symbol name did not have a version, but the
1287 // version script may assign a version anyway.
1288 std::string version;
1289 bool is_global;
1290 if (this->version_script_.get_symbol_version(name, &version,
1291 &is_global))
1292 {
1293 if (!is_global)
1294 is_forced_local = true;
1295 else if (!version.empty())
1296 {
1297 ver = this->namepool_.add_with_length(version.c_str(),
1298 version.length(),
1299 true,
1300 &ver_key);
1301 is_default_version = true;
1302 }
1303 }
1304 }
1305 }
1306
1307 Stringpool::Key name_key;
1308 name = this->namepool_.add(name, true, &name_key);
1309
1310 Sized_symbol<size>* res;
1311 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1312 is_default_version, *sym, st_shndx,
1313 is_ordinary, st_shndx);
1314
1315 if (is_forced_local)
1316 this->force_local(res);
1317
1318 return res;
1319 }
1320
1321 // Add all the symbols in a dynamic object to the hash table.
1322
1323 template<int size, bool big_endian>
1324 void
1325 Symbol_table::add_from_dynobj(
1326 Sized_dynobj<size, big_endian>* dynobj,
1327 const unsigned char* syms,
1328 size_t count,
1329 const char* sym_names,
1330 size_t sym_name_size,
1331 const unsigned char* versym,
1332 size_t versym_size,
1333 const std::vector<const char*>* version_map,
1334 typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1335 size_t* defined)
1336 {
1337 *defined = 0;
1338
1339 gold_assert(size == parameters->target().get_size());
1340
1341 if (dynobj->just_symbols())
1342 {
1343 gold_error(_("--just-symbols does not make sense with a shared object"));
1344 return;
1345 }
1346
1347 if (versym != NULL && versym_size / 2 < count)
1348 {
1349 dynobj->error(_("too few symbol versions"));
1350 return;
1351 }
1352
1353 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1354
1355 // We keep a list of all STT_OBJECT symbols, so that we can resolve
1356 // weak aliases. This is necessary because if the dynamic object
1357 // provides the same variable under two names, one of which is a
1358 // weak definition, and the regular object refers to the weak
1359 // definition, we have to put both the weak definition and the
1360 // strong definition into the dynamic symbol table. Given a weak
1361 // definition, the only way that we can find the corresponding
1362 // strong definition, if any, is to search the symbol table.
1363 std::vector<Sized_symbol<size>*> object_symbols;
1364
1365 const unsigned char* p = syms;
1366 const unsigned char* vs = versym;
1367 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1368 {
1369 elfcpp::Sym<size, big_endian> sym(p);
1370
1371 if (sympointers != NULL)
1372 (*sympointers)[i] = NULL;
1373
1374 // Ignore symbols with local binding or that have
1375 // internal or hidden visibility.
1376 if (sym.get_st_bind() == elfcpp::STB_LOCAL
1377 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1378 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1379 continue;
1380
1381 // A protected symbol in a shared library must be treated as a
1382 // normal symbol when viewed from outside the shared library.
1383 // Implement this by overriding the visibility here.
1384 elfcpp::Sym<size, big_endian>* psym = &sym;
1385 unsigned char symbuf[sym_size];
1386 elfcpp::Sym<size, big_endian> sym2(symbuf);
1387 if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1388 {
1389 memcpy(symbuf, p, sym_size);
1390 elfcpp::Sym_write<size, big_endian> sw(symbuf);
1391 sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1392 psym = &sym2;
1393 }
1394
1395 unsigned int st_name = psym->get_st_name();
1396 if (st_name >= sym_name_size)
1397 {
1398 dynobj->error(_("bad symbol name offset %u at %zu"),
1399 st_name, i);
1400 continue;
1401 }
1402
1403 const char* name = sym_names + st_name;
1404
1405 bool is_ordinary;
1406 unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1407 &is_ordinary);
1408
1409 if (st_shndx != elfcpp::SHN_UNDEF)
1410 ++*defined;
1411
1412 Sized_symbol<size>* res;
1413
1414 if (versym == NULL)
1415 {
1416 Stringpool::Key name_key;
1417 name = this->namepool_.add(name, true, &name_key);
1418 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1419 false, *psym, st_shndx, is_ordinary,
1420 st_shndx);
1421 }
1422 else
1423 {
1424 // Read the version information.
1425
1426 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1427
1428 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1429 v &= elfcpp::VERSYM_VERSION;
1430
1431 // The Sun documentation says that V can be VER_NDX_LOCAL,
1432 // or VER_NDX_GLOBAL, or a version index. The meaning of
1433 // VER_NDX_LOCAL is defined as "Symbol has local scope."
1434 // The old GNU linker will happily generate VER_NDX_LOCAL
1435 // for an undefined symbol. I don't know what the Sun
1436 // linker will generate.
1437
1438 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1439 && st_shndx != elfcpp::SHN_UNDEF)
1440 {
1441 // This symbol should not be visible outside the object.
1442 continue;
1443 }
1444
1445 // At this point we are definitely going to add this symbol.
1446 Stringpool::Key name_key;
1447 name = this->namepool_.add(name, true, &name_key);
1448
1449 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1450 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1451 {
1452 // This symbol does not have a version.
1453 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1454 false, *psym, st_shndx, is_ordinary,
1455 st_shndx);
1456 }
1457 else
1458 {
1459 if (v >= version_map->size())
1460 {
1461 dynobj->error(_("versym for symbol %zu out of range: %u"),
1462 i, v);
1463 continue;
1464 }
1465
1466 const char* version = (*version_map)[v];
1467 if (version == NULL)
1468 {
1469 dynobj->error(_("versym for symbol %zu has no name: %u"),
1470 i, v);
1471 continue;
1472 }
1473
1474 Stringpool::Key version_key;
1475 version = this->namepool_.add(version, true, &version_key);
1476
1477 // If this is an absolute symbol, and the version name
1478 // and symbol name are the same, then this is the
1479 // version definition symbol. These symbols exist to
1480 // support using -u to pull in particular versions. We
1481 // do not want to record a version for them.
1482 if (st_shndx == elfcpp::SHN_ABS
1483 && !is_ordinary
1484 && name_key == version_key)
1485 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1486 false, *psym, st_shndx, is_ordinary,
1487 st_shndx);
1488 else
1489 {
1490 const bool is_default_version =
1491 !hidden && st_shndx != elfcpp::SHN_UNDEF;
1492 res = this->add_from_object(dynobj, name, name_key, version,
1493 version_key, is_default_version,
1494 *psym, st_shndx,
1495 is_ordinary, st_shndx);
1496 }
1497 }
1498 }
1499
1500 // Note that it is possible that RES was overridden by an
1501 // earlier object, in which case it can't be aliased here.
1502 if (st_shndx != elfcpp::SHN_UNDEF
1503 && is_ordinary
1504 && psym->get_st_type() == elfcpp::STT_OBJECT
1505 && res->source() == Symbol::FROM_OBJECT
1506 && res->object() == dynobj)
1507 object_symbols.push_back(res);
1508
1509 if (sympointers != NULL)
1510 (*sympointers)[i] = res;
1511 }
1512
1513 this->record_weak_aliases(&object_symbols);
1514 }
1515
1516 // Add a symbol from a incremental object file.
1517
1518 template<int size, bool big_endian>
1519 Sized_symbol<size>*
1520 Symbol_table::add_from_incrobj(
1521 Object* obj,
1522 const char* name,
1523 const char* ver,
1524 elfcpp::Sym<size, big_endian>* sym)
1525 {
1526 unsigned int st_shndx = sym->get_st_shndx();
1527 bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1528
1529 Stringpool::Key ver_key = 0;
1530 bool is_default_version = false;
1531 bool is_forced_local = false;
1532
1533 Stringpool::Key name_key;
1534 name = this->namepool_.add(name, true, &name_key);
1535
1536 Sized_symbol<size>* res;
1537 res = this->add_from_object(obj, name, name_key, ver, ver_key,
1538 is_default_version, *sym, st_shndx,
1539 is_ordinary, st_shndx);
1540
1541 if (is_forced_local)
1542 this->force_local(res);
1543
1544 return res;
1545 }
1546
1547 // This is used to sort weak aliases. We sort them first by section
1548 // index, then by offset, then by weak ahead of strong.
1549
1550 template<int size>
1551 class Weak_alias_sorter
1552 {
1553 public:
1554 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1555 };
1556
1557 template<int size>
1558 bool
1559 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1560 const Sized_symbol<size>* s2) const
1561 {
1562 bool is_ordinary;
1563 unsigned int s1_shndx = s1->shndx(&is_ordinary);
1564 gold_assert(is_ordinary);
1565 unsigned int s2_shndx = s2->shndx(&is_ordinary);
1566 gold_assert(is_ordinary);
1567 if (s1_shndx != s2_shndx)
1568 return s1_shndx < s2_shndx;
1569
1570 if (s1->value() != s2->value())
1571 return s1->value() < s2->value();
1572 if (s1->binding() != s2->binding())
1573 {
1574 if (s1->binding() == elfcpp::STB_WEAK)
1575 return true;
1576 if (s2->binding() == elfcpp::STB_WEAK)
1577 return false;
1578 }
1579 return std::string(s1->name()) < std::string(s2->name());
1580 }
1581
1582 // SYMBOLS is a list of object symbols from a dynamic object. Look
1583 // for any weak aliases, and record them so that if we add the weak
1584 // alias to the dynamic symbol table, we also add the corresponding
1585 // strong symbol.
1586
1587 template<int size>
1588 void
1589 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1590 {
1591 // Sort the vector by section index, then by offset, then by weak
1592 // ahead of strong.
1593 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1594
1595 // Walk through the vector. For each weak definition, record
1596 // aliases.
1597 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1598 symbols->begin();
1599 p != symbols->end();
1600 ++p)
1601 {
1602 if ((*p)->binding() != elfcpp::STB_WEAK)
1603 continue;
1604
1605 // Build a circular list of weak aliases. Each symbol points to
1606 // the next one in the circular list.
1607
1608 Sized_symbol<size>* from_sym = *p;
1609 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1610 for (q = p + 1; q != symbols->end(); ++q)
1611 {
1612 bool dummy;
1613 if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1614 || (*q)->value() != from_sym->value())
1615 break;
1616
1617 this->weak_aliases_[from_sym] = *q;
1618 from_sym->set_has_alias();
1619 from_sym = *q;
1620 }
1621
1622 if (from_sym != *p)
1623 {
1624 this->weak_aliases_[from_sym] = *p;
1625 from_sym->set_has_alias();
1626 }
1627
1628 p = q - 1;
1629 }
1630 }
1631
1632 // Create and return a specially defined symbol. If ONLY_IF_REF is
1633 // true, then only create the symbol if there is a reference to it.
1634 // If this does not return NULL, it sets *POLDSYM to the existing
1635 // symbol if there is one. This sets *RESOLVE_OLDSYM if we should
1636 // resolve the newly created symbol to the old one. This
1637 // canonicalizes *PNAME and *PVERSION.
1638
1639 template<int size, bool big_endian>
1640 Sized_symbol<size>*
1641 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1642 bool only_if_ref,
1643 Sized_symbol<size>** poldsym,
1644 bool* resolve_oldsym)
1645 {
1646 *resolve_oldsym = false;
1647
1648 // If the caller didn't give us a version, see if we get one from
1649 // the version script.
1650 std::string v;
1651 bool is_default_version = false;
1652 if (*pversion == NULL)
1653 {
1654 bool is_global;
1655 if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1656 {
1657 if (is_global && !v.empty())
1658 {
1659 *pversion = v.c_str();
1660 // If we get the version from a version script, then we
1661 // are also the default version.
1662 is_default_version = true;
1663 }
1664 }
1665 }
1666
1667 Symbol* oldsym;
1668 Sized_symbol<size>* sym;
1669
1670 bool add_to_table = false;
1671 typename Symbol_table_type::iterator add_loc = this->table_.end();
1672 bool add_def_to_table = false;
1673 typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1674
1675 if (only_if_ref)
1676 {
1677 oldsym = this->lookup(*pname, *pversion);
1678 if (oldsym == NULL && is_default_version)
1679 oldsym = this->lookup(*pname, NULL);
1680 if (oldsym == NULL || !oldsym->is_undefined())
1681 return NULL;
1682
1683 *pname = oldsym->name();
1684 if (!is_default_version)
1685 *pversion = oldsym->version();
1686 }
1687 else
1688 {
1689 // Canonicalize NAME and VERSION.
1690 Stringpool::Key name_key;
1691 *pname = this->namepool_.add(*pname, true, &name_key);
1692
1693 Stringpool::Key version_key = 0;
1694 if (*pversion != NULL)
1695 *pversion = this->namepool_.add(*pversion, true, &version_key);
1696
1697 Symbol* const snull = NULL;
1698 std::pair<typename Symbol_table_type::iterator, bool> ins =
1699 this->table_.insert(std::make_pair(std::make_pair(name_key,
1700 version_key),
1701 snull));
1702
1703 std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1704 std::make_pair(this->table_.end(), false);
1705 if (is_default_version)
1706 {
1707 const Stringpool::Key vnull = 0;
1708 insdefault =
1709 this->table_.insert(std::make_pair(std::make_pair(name_key,
1710 vnull),
1711 snull));
1712 }
1713
1714 if (!ins.second)
1715 {
1716 // We already have a symbol table entry for NAME/VERSION.
1717 oldsym = ins.first->second;
1718 gold_assert(oldsym != NULL);
1719
1720 if (is_default_version)
1721 {
1722 Sized_symbol<size>* soldsym =
1723 this->get_sized_symbol<size>(oldsym);
1724 this->define_default_version<size, big_endian>(soldsym,
1725 insdefault.second,
1726 insdefault.first);
1727 }
1728 }
1729 else
1730 {
1731 // We haven't seen this symbol before.
1732 gold_assert(ins.first->second == NULL);
1733
1734 add_to_table = true;
1735 add_loc = ins.first;
1736
1737 if (is_default_version && !insdefault.second)
1738 {
1739 // We are adding NAME/VERSION, and it is the default
1740 // version. We already have an entry for NAME/NULL.
1741 oldsym = insdefault.first->second;
1742 *resolve_oldsym = true;
1743 }
1744 else
1745 {
1746 oldsym = NULL;
1747
1748 if (is_default_version)
1749 {
1750 add_def_to_table = true;
1751 add_def_loc = insdefault.first;
1752 }
1753 }
1754 }
1755 }
1756
1757 const Target& target = parameters->target();
1758 if (!target.has_make_symbol())
1759 sym = new Sized_symbol<size>();
1760 else
1761 {
1762 Sized_target<size, big_endian>* sized_target =
1763 parameters->sized_target<size, big_endian>();
1764 sym = sized_target->make_symbol();
1765 if (sym == NULL)
1766 return NULL;
1767 }
1768
1769 if (add_to_table)
1770 add_loc->second = sym;
1771 else
1772 gold_assert(oldsym != NULL);
1773
1774 if (add_def_to_table)
1775 add_def_loc->second = sym;
1776
1777 *poldsym = this->get_sized_symbol<size>(oldsym);
1778
1779 return sym;
1780 }
1781
1782 // Define a symbol based on an Output_data.
1783
1784 Symbol*
1785 Symbol_table::define_in_output_data(const char* name,
1786 const char* version,
1787 Defined defined,
1788 Output_data* od,
1789 uint64_t value,
1790 uint64_t symsize,
1791 elfcpp::STT type,
1792 elfcpp::STB binding,
1793 elfcpp::STV visibility,
1794 unsigned char nonvis,
1795 bool offset_is_from_end,
1796 bool only_if_ref)
1797 {
1798 if (parameters->target().get_size() == 32)
1799 {
1800 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1801 return this->do_define_in_output_data<32>(name, version, defined, od,
1802 value, symsize, type, binding,
1803 visibility, nonvis,
1804 offset_is_from_end,
1805 only_if_ref);
1806 #else
1807 gold_unreachable();
1808 #endif
1809 }
1810 else if (parameters->target().get_size() == 64)
1811 {
1812 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1813 return this->do_define_in_output_data<64>(name, version, defined, od,
1814 value, symsize, type, binding,
1815 visibility, nonvis,
1816 offset_is_from_end,
1817 only_if_ref);
1818 #else
1819 gold_unreachable();
1820 #endif
1821 }
1822 else
1823 gold_unreachable();
1824 }
1825
1826 // Define a symbol in an Output_data, sized version.
1827
1828 template<int size>
1829 Sized_symbol<size>*
1830 Symbol_table::do_define_in_output_data(
1831 const char* name,
1832 const char* version,
1833 Defined defined,
1834 Output_data* od,
1835 typename elfcpp::Elf_types<size>::Elf_Addr value,
1836 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1837 elfcpp::STT type,
1838 elfcpp::STB binding,
1839 elfcpp::STV visibility,
1840 unsigned char nonvis,
1841 bool offset_is_from_end,
1842 bool only_if_ref)
1843 {
1844 Sized_symbol<size>* sym;
1845 Sized_symbol<size>* oldsym;
1846 bool resolve_oldsym;
1847
1848 if (parameters->target().is_big_endian())
1849 {
1850 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1851 sym = this->define_special_symbol<size, true>(&name, &version,
1852 only_if_ref, &oldsym,
1853 &resolve_oldsym);
1854 #else
1855 gold_unreachable();
1856 #endif
1857 }
1858 else
1859 {
1860 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1861 sym = this->define_special_symbol<size, false>(&name, &version,
1862 only_if_ref, &oldsym,
1863 &resolve_oldsym);
1864 #else
1865 gold_unreachable();
1866 #endif
1867 }
1868
1869 if (sym == NULL)
1870 return NULL;
1871
1872 sym->init_output_data(name, version, od, value, symsize, type, binding,
1873 visibility, nonvis, offset_is_from_end,
1874 defined == PREDEFINED);
1875
1876 if (oldsym == NULL)
1877 {
1878 if (binding == elfcpp::STB_LOCAL
1879 || this->version_script_.symbol_is_local(name))
1880 this->force_local(sym);
1881 else if (version != NULL)
1882 sym->set_is_default();
1883 return sym;
1884 }
1885
1886 if (Symbol_table::should_override_with_special(oldsym, defined))
1887 this->override_with_special(oldsym, sym);
1888
1889 if (resolve_oldsym)
1890 return sym;
1891 else
1892 {
1893 delete sym;
1894 return oldsym;
1895 }
1896 }
1897
1898 // Define a symbol based on an Output_segment.
1899
1900 Symbol*
1901 Symbol_table::define_in_output_segment(const char* name,
1902 const char* version,
1903 Defined defined,
1904 Output_segment* os,
1905 uint64_t value,
1906 uint64_t symsize,
1907 elfcpp::STT type,
1908 elfcpp::STB binding,
1909 elfcpp::STV visibility,
1910 unsigned char nonvis,
1911 Symbol::Segment_offset_base offset_base,
1912 bool only_if_ref)
1913 {
1914 if (parameters->target().get_size() == 32)
1915 {
1916 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1917 return this->do_define_in_output_segment<32>(name, version, defined, os,
1918 value, symsize, type,
1919 binding, visibility, nonvis,
1920 offset_base, only_if_ref);
1921 #else
1922 gold_unreachable();
1923 #endif
1924 }
1925 else if (parameters->target().get_size() == 64)
1926 {
1927 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1928 return this->do_define_in_output_segment<64>(name, version, defined, os,
1929 value, symsize, type,
1930 binding, visibility, nonvis,
1931 offset_base, only_if_ref);
1932 #else
1933 gold_unreachable();
1934 #endif
1935 }
1936 else
1937 gold_unreachable();
1938 }
1939
1940 // Define a symbol in an Output_segment, sized version.
1941
1942 template<int size>
1943 Sized_symbol<size>*
1944 Symbol_table::do_define_in_output_segment(
1945 const char* name,
1946 const char* version,
1947 Defined defined,
1948 Output_segment* os,
1949 typename elfcpp::Elf_types<size>::Elf_Addr value,
1950 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1951 elfcpp::STT type,
1952 elfcpp::STB binding,
1953 elfcpp::STV visibility,
1954 unsigned char nonvis,
1955 Symbol::Segment_offset_base offset_base,
1956 bool only_if_ref)
1957 {
1958 Sized_symbol<size>* sym;
1959 Sized_symbol<size>* oldsym;
1960 bool resolve_oldsym;
1961
1962 if (parameters->target().is_big_endian())
1963 {
1964 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1965 sym = this->define_special_symbol<size, true>(&name, &version,
1966 only_if_ref, &oldsym,
1967 &resolve_oldsym);
1968 #else
1969 gold_unreachable();
1970 #endif
1971 }
1972 else
1973 {
1974 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1975 sym = this->define_special_symbol<size, false>(&name, &version,
1976 only_if_ref, &oldsym,
1977 &resolve_oldsym);
1978 #else
1979 gold_unreachable();
1980 #endif
1981 }
1982
1983 if (sym == NULL)
1984 return NULL;
1985
1986 sym->init_output_segment(name, version, os, value, symsize, type, binding,
1987 visibility, nonvis, offset_base,
1988 defined == PREDEFINED);
1989
1990 if (oldsym == NULL)
1991 {
1992 if (binding == elfcpp::STB_LOCAL
1993 || this->version_script_.symbol_is_local(name))
1994 this->force_local(sym);
1995 else if (version != NULL)
1996 sym->set_is_default();
1997 return sym;
1998 }
1999
2000 if (Symbol_table::should_override_with_special(oldsym, defined))
2001 this->override_with_special(oldsym, sym);
2002
2003 if (resolve_oldsym)
2004 return sym;
2005 else
2006 {
2007 delete sym;
2008 return oldsym;
2009 }
2010 }
2011
2012 // Define a special symbol with a constant value. It is a multiple
2013 // definition error if this symbol is already defined.
2014
2015 Symbol*
2016 Symbol_table::define_as_constant(const char* name,
2017 const char* version,
2018 Defined defined,
2019 uint64_t value,
2020 uint64_t symsize,
2021 elfcpp::STT type,
2022 elfcpp::STB binding,
2023 elfcpp::STV visibility,
2024 unsigned char nonvis,
2025 bool only_if_ref,
2026 bool force_override)
2027 {
2028 if (parameters->target().get_size() == 32)
2029 {
2030 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2031 return this->do_define_as_constant<32>(name, version, defined, value,
2032 symsize, type, binding,
2033 visibility, nonvis, only_if_ref,
2034 force_override);
2035 #else
2036 gold_unreachable();
2037 #endif
2038 }
2039 else if (parameters->target().get_size() == 64)
2040 {
2041 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2042 return this->do_define_as_constant<64>(name, version, defined, value,
2043 symsize, type, binding,
2044 visibility, nonvis, only_if_ref,
2045 force_override);
2046 #else
2047 gold_unreachable();
2048 #endif
2049 }
2050 else
2051 gold_unreachable();
2052 }
2053
2054 // Define a symbol as a constant, sized version.
2055
2056 template<int size>
2057 Sized_symbol<size>*
2058 Symbol_table::do_define_as_constant(
2059 const char* name,
2060 const char* version,
2061 Defined defined,
2062 typename elfcpp::Elf_types<size>::Elf_Addr value,
2063 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2064 elfcpp::STT type,
2065 elfcpp::STB binding,
2066 elfcpp::STV visibility,
2067 unsigned char nonvis,
2068 bool only_if_ref,
2069 bool force_override)
2070 {
2071 Sized_symbol<size>* sym;
2072 Sized_symbol<size>* oldsym;
2073 bool resolve_oldsym;
2074
2075 if (parameters->target().is_big_endian())
2076 {
2077 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2078 sym = this->define_special_symbol<size, true>(&name, &version,
2079 only_if_ref, &oldsym,
2080 &resolve_oldsym);
2081 #else
2082 gold_unreachable();
2083 #endif
2084 }
2085 else
2086 {
2087 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2088 sym = this->define_special_symbol<size, false>(&name, &version,
2089 only_if_ref, &oldsym,
2090 &resolve_oldsym);
2091 #else
2092 gold_unreachable();
2093 #endif
2094 }
2095
2096 if (sym == NULL)
2097 return NULL;
2098
2099 sym->init_constant(name, version, value, symsize, type, binding, visibility,
2100 nonvis, defined == PREDEFINED);
2101
2102 if (oldsym == NULL)
2103 {
2104 // Version symbols are absolute symbols with name == version.
2105 // We don't want to force them to be local.
2106 if ((version == NULL
2107 || name != version
2108 || value != 0)
2109 && (binding == elfcpp::STB_LOCAL
2110 || this->version_script_.symbol_is_local(name)))
2111 this->force_local(sym);
2112 else if (version != NULL
2113 && (name != version || value != 0))
2114 sym->set_is_default();
2115 return sym;
2116 }
2117
2118 if (force_override
2119 || Symbol_table::should_override_with_special(oldsym, defined))
2120 this->override_with_special(oldsym, sym);
2121
2122 if (resolve_oldsym)
2123 return sym;
2124 else
2125 {
2126 delete sym;
2127 return oldsym;
2128 }
2129 }
2130
2131 // Define a set of symbols in output sections.
2132
2133 void
2134 Symbol_table::define_symbols(const Layout* layout, int count,
2135 const Define_symbol_in_section* p,
2136 bool only_if_ref)
2137 {
2138 for (int i = 0; i < count; ++i, ++p)
2139 {
2140 Output_section* os = layout->find_output_section(p->output_section);
2141 if (os != NULL)
2142 this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2143 p->size, p->type, p->binding,
2144 p->visibility, p->nonvis,
2145 p->offset_is_from_end,
2146 only_if_ref || p->only_if_ref);
2147 else
2148 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2149 p->type, p->binding, p->visibility, p->nonvis,
2150 only_if_ref || p->only_if_ref,
2151 false);
2152 }
2153 }
2154
2155 // Define a set of symbols in output segments.
2156
2157 void
2158 Symbol_table::define_symbols(const Layout* layout, int count,
2159 const Define_symbol_in_segment* p,
2160 bool only_if_ref)
2161 {
2162 for (int i = 0; i < count; ++i, ++p)
2163 {
2164 Output_segment* os = layout->find_output_segment(p->segment_type,
2165 p->segment_flags_set,
2166 p->segment_flags_clear);
2167 if (os != NULL)
2168 this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2169 p->size, p->type, p->binding,
2170 p->visibility, p->nonvis,
2171 p->offset_base,
2172 only_if_ref || p->only_if_ref);
2173 else
2174 this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2175 p->type, p->binding, p->visibility, p->nonvis,
2176 only_if_ref || p->only_if_ref,
2177 false);
2178 }
2179 }
2180
2181 // Define CSYM using a COPY reloc. POSD is the Output_data where the
2182 // symbol should be defined--typically a .dyn.bss section. VALUE is
2183 // the offset within POSD.
2184
2185 template<int size>
2186 void
2187 Symbol_table::define_with_copy_reloc(
2188 Sized_symbol<size>* csym,
2189 Output_data* posd,
2190 typename elfcpp::Elf_types<size>::Elf_Addr value)
2191 {
2192 gold_assert(csym->is_from_dynobj());
2193 gold_assert(!csym->is_copied_from_dynobj());
2194 Object* object = csym->object();
2195 gold_assert(object->is_dynamic());
2196 Dynobj* dynobj = static_cast<Dynobj*>(object);
2197
2198 // Our copied variable has to override any variable in a shared
2199 // library.
2200 elfcpp::STB binding = csym->binding();
2201 if (binding == elfcpp::STB_WEAK)
2202 binding = elfcpp::STB_GLOBAL;
2203
2204 this->define_in_output_data(csym->name(), csym->version(), COPY,
2205 posd, value, csym->symsize(),
2206 csym->type(), binding,
2207 csym->visibility(), csym->nonvis(),
2208 false, false);
2209
2210 csym->set_is_copied_from_dynobj();
2211 csym->set_needs_dynsym_entry();
2212
2213 this->copied_symbol_dynobjs_[csym] = dynobj;
2214
2215 // We have now defined all aliases, but we have not entered them all
2216 // in the copied_symbol_dynobjs_ map.
2217 if (csym->has_alias())
2218 {
2219 Symbol* sym = csym;
2220 while (true)
2221 {
2222 sym = this->weak_aliases_[sym];
2223 if (sym == csym)
2224 break;
2225 gold_assert(sym->output_data() == posd);
2226
2227 sym->set_is_copied_from_dynobj();
2228 this->copied_symbol_dynobjs_[sym] = dynobj;
2229 }
2230 }
2231 }
2232
2233 // SYM is defined using a COPY reloc. Return the dynamic object where
2234 // the original definition was found.
2235
2236 Dynobj*
2237 Symbol_table::get_copy_source(const Symbol* sym) const
2238 {
2239 gold_assert(sym->is_copied_from_dynobj());
2240 Copied_symbol_dynobjs::const_iterator p =
2241 this->copied_symbol_dynobjs_.find(sym);
2242 gold_assert(p != this->copied_symbol_dynobjs_.end());
2243 return p->second;
2244 }
2245
2246 // Add any undefined symbols named on the command line.
2247
2248 void
2249 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2250 {
2251 if (parameters->options().any_undefined()
2252 || layout->script_options()->any_unreferenced())
2253 {
2254 if (parameters->target().get_size() == 32)
2255 {
2256 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2257 this->do_add_undefined_symbols_from_command_line<32>(layout);
2258 #else
2259 gold_unreachable();
2260 #endif
2261 }
2262 else if (parameters->target().get_size() == 64)
2263 {
2264 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2265 this->do_add_undefined_symbols_from_command_line<64>(layout);
2266 #else
2267 gold_unreachable();
2268 #endif
2269 }
2270 else
2271 gold_unreachable();
2272 }
2273 }
2274
2275 template<int size>
2276 void
2277 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2278 {
2279 for (options::String_set::const_iterator p =
2280 parameters->options().undefined_begin();
2281 p != parameters->options().undefined_end();
2282 ++p)
2283 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2284
2285 for (Script_options::referenced_const_iterator p =
2286 layout->script_options()->referenced_begin();
2287 p != layout->script_options()->referenced_end();
2288 ++p)
2289 this->add_undefined_symbol_from_command_line<size>(p->c_str());
2290 }
2291
2292 template<int size>
2293 void
2294 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2295 {
2296 if (this->lookup(name) != NULL)
2297 return;
2298
2299 const char* version = NULL;
2300
2301 Sized_symbol<size>* sym;
2302 Sized_symbol<size>* oldsym;
2303 bool resolve_oldsym;
2304 if (parameters->target().is_big_endian())
2305 {
2306 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2307 sym = this->define_special_symbol<size, true>(&name, &version,
2308 false, &oldsym,
2309 &resolve_oldsym);
2310 #else
2311 gold_unreachable();
2312 #endif
2313 }
2314 else
2315 {
2316 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2317 sym = this->define_special_symbol<size, false>(&name, &version,
2318 false, &oldsym,
2319 &resolve_oldsym);
2320 #else
2321 gold_unreachable();
2322 #endif
2323 }
2324
2325 gold_assert(oldsym == NULL);
2326
2327 sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2328 elfcpp::STV_DEFAULT, 0);
2329 ++this->saw_undefined_;
2330 }
2331
2332 // Set the dynamic symbol indexes. INDEX is the index of the first
2333 // global dynamic symbol. Pointers to the symbols are stored into the
2334 // vector SYMS. The names are added to DYNPOOL. This returns an
2335 // updated dynamic symbol index.
2336
2337 unsigned int
2338 Symbol_table::set_dynsym_indexes(unsigned int index,
2339 std::vector<Symbol*>* syms,
2340 Stringpool* dynpool,
2341 Versions* versions)
2342 {
2343 for (Symbol_table_type::iterator p = this->table_.begin();
2344 p != this->table_.end();
2345 ++p)
2346 {
2347 Symbol* sym = p->second;
2348
2349 // Note that SYM may already have a dynamic symbol index, since
2350 // some symbols appear more than once in the symbol table, with
2351 // and without a version.
2352
2353 if (!sym->should_add_dynsym_entry(this))
2354 sym->set_dynsym_index(-1U);
2355 else if (!sym->has_dynsym_index())
2356 {
2357 sym->set_dynsym_index(index);
2358 ++index;
2359 syms->push_back(sym);
2360 dynpool->add(sym->name(), false, NULL);
2361
2362 // Record any version information.
2363 if (sym->version() != NULL)
2364 versions->record_version(this, dynpool, sym);
2365
2366 // If the symbol is defined in a dynamic object and is
2367 // referenced in a regular object, then mark the dynamic
2368 // object as needed. This is used to implement --as-needed.
2369 if (sym->is_from_dynobj() && sym->in_reg())
2370 sym->object()->set_is_needed();
2371 }
2372 }
2373
2374 // Finish up the versions. In some cases this may add new dynamic
2375 // symbols.
2376 index = versions->finalize(this, index, syms);
2377
2378 return index;
2379 }
2380
2381 // Set the final values for all the symbols. The index of the first
2382 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
2383 // file offset OFF. Add their names to POOL. Return the new file
2384 // offset. Update *PLOCAL_SYMCOUNT if necessary.
2385
2386 off_t
2387 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2388 size_t dyncount, Stringpool* pool,
2389 unsigned int* plocal_symcount)
2390 {
2391 off_t ret;
2392
2393 gold_assert(*plocal_symcount != 0);
2394 this->first_global_index_ = *plocal_symcount;
2395
2396 this->dynamic_offset_ = dynoff;
2397 this->first_dynamic_global_index_ = dyn_global_index;
2398 this->dynamic_count_ = dyncount;
2399
2400 if (parameters->target().get_size() == 32)
2401 {
2402 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2403 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2404 #else
2405 gold_unreachable();
2406 #endif
2407 }
2408 else if (parameters->target().get_size() == 64)
2409 {
2410 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2411 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2412 #else
2413 gold_unreachable();
2414 #endif
2415 }
2416 else
2417 gold_unreachable();
2418
2419 // Now that we have the final symbol table, we can reliably note
2420 // which symbols should get warnings.
2421 this->warnings_.note_warnings(this);
2422
2423 return ret;
2424 }
2425
2426 // SYM is going into the symbol table at *PINDEX. Add the name to
2427 // POOL, update *PINDEX and *POFF.
2428
2429 template<int size>
2430 void
2431 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2432 unsigned int* pindex, off_t* poff)
2433 {
2434 sym->set_symtab_index(*pindex);
2435 if (sym->version() == NULL || !parameters->options().relocatable())
2436 pool->add(sym->name(), false, NULL);
2437 else
2438 pool->add(sym->versioned_name(), true, NULL);
2439 ++*pindex;
2440 *poff += elfcpp::Elf_sizes<size>::sym_size;
2441 }
2442
2443 // Set the final value for all the symbols. This is called after
2444 // Layout::finalize, so all the output sections have their final
2445 // address.
2446
2447 template<int size>
2448 off_t
2449 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2450 unsigned int* plocal_symcount)
2451 {
2452 off = align_address(off, size >> 3);
2453 this->offset_ = off;
2454
2455 unsigned int index = *plocal_symcount;
2456 const unsigned int orig_index = index;
2457
2458 // First do all the symbols which have been forced to be local, as
2459 // they must appear before all global symbols.
2460 for (Forced_locals::iterator p = this->forced_locals_.begin();
2461 p != this->forced_locals_.end();
2462 ++p)
2463 {
2464 Symbol* sym = *p;
2465 gold_assert(sym->is_forced_local());
2466 if (this->sized_finalize_symbol<size>(sym))
2467 {
2468 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2469 ++*plocal_symcount;
2470 }
2471 }
2472
2473 // Now do all the remaining symbols.
2474 for (Symbol_table_type::iterator p = this->table_.begin();
2475 p != this->table_.end();
2476 ++p)
2477 {
2478 Symbol* sym = p->second;
2479 if (this->sized_finalize_symbol<size>(sym))
2480 this->add_to_final_symtab<size>(sym, pool, &index, &off);
2481 }
2482
2483 this->output_count_ = index - orig_index;
2484
2485 return off;
2486 }
2487
2488 // Compute the final value of SYM and store status in location PSTATUS.
2489 // During relaxation, this may be called multiple times for a symbol to
2490 // compute its would-be final value in each relaxation pass.
2491
2492 template<int size>
2493 typename Sized_symbol<size>::Value_type
2494 Symbol_table::compute_final_value(
2495 const Sized_symbol<size>* sym,
2496 Compute_final_value_status* pstatus) const
2497 {
2498 typedef typename Sized_symbol<size>::Value_type Value_type;
2499 Value_type value;
2500
2501 switch (sym->source())
2502 {
2503 case Symbol::FROM_OBJECT:
2504 {
2505 bool is_ordinary;
2506 unsigned int shndx = sym->shndx(&is_ordinary);
2507
2508 if (!is_ordinary
2509 && shndx != elfcpp::SHN_ABS
2510 && !Symbol::is_common_shndx(shndx))
2511 {
2512 *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2513 return 0;
2514 }
2515
2516 Object* symobj = sym->object();
2517 if (symobj->is_dynamic())
2518 {
2519 value = 0;
2520 shndx = elfcpp::SHN_UNDEF;
2521 }
2522 else if (symobj->pluginobj() != NULL)
2523 {
2524 value = 0;
2525 shndx = elfcpp::SHN_UNDEF;
2526 }
2527 else if (shndx == elfcpp::SHN_UNDEF)
2528 value = 0;
2529 else if (!is_ordinary
2530 && (shndx == elfcpp::SHN_ABS
2531 || Symbol::is_common_shndx(shndx)))
2532 value = sym->value();
2533 else
2534 {
2535 Relobj* relobj = static_cast<Relobj*>(symobj);
2536 Output_section* os = relobj->output_section(shndx);
2537
2538 if (this->is_section_folded(relobj, shndx))
2539 {
2540 gold_assert(os == NULL);
2541 // Get the os of the section it is folded onto.
2542 Section_id folded = this->icf_->get_folded_section(relobj,
2543 shndx);
2544 gold_assert(folded.first != NULL);
2545 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2546 unsigned folded_shndx = folded.second;
2547
2548 os = folded_obj->output_section(folded_shndx);
2549 gold_assert(os != NULL);
2550
2551 // Replace (relobj, shndx) with canonical ICF input section.
2552 shndx = folded_shndx;
2553 relobj = folded_obj;
2554 }
2555
2556 uint64_t secoff64 = relobj->output_section_offset(shndx);
2557 if (os == NULL)
2558 {
2559 bool static_or_reloc = (parameters->doing_static_link() ||
2560 parameters->options().relocatable());
2561 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2562
2563 *pstatus = CFVS_NO_OUTPUT_SECTION;
2564 return 0;
2565 }
2566
2567 if (secoff64 == -1ULL)
2568 {
2569 // The section needs special handling (e.g., a merge section).
2570
2571 value = os->output_address(relobj, shndx, sym->value());
2572 }
2573 else
2574 {
2575 Value_type secoff =
2576 convert_types<Value_type, uint64_t>(secoff64);
2577 if (sym->type() == elfcpp::STT_TLS)
2578 value = sym->value() + os->tls_offset() + secoff;
2579 else
2580 value = sym->value() + os->address() + secoff;
2581 }
2582 }
2583 }
2584 break;
2585
2586 case Symbol::IN_OUTPUT_DATA:
2587 {
2588 Output_data* od = sym->output_data();
2589 value = sym->value();
2590 if (sym->type() != elfcpp::STT_TLS)
2591 value += od->address();
2592 else
2593 {
2594 Output_section* os = od->output_section();
2595 gold_assert(os != NULL);
2596 value += os->tls_offset() + (od->address() - os->address());
2597 }
2598 if (sym->offset_is_from_end())
2599 value += od->data_size();
2600 }
2601 break;
2602
2603 case Symbol::IN_OUTPUT_SEGMENT:
2604 {
2605 Output_segment* os = sym->output_segment();
2606 value = sym->value();
2607 if (sym->type() != elfcpp::STT_TLS)
2608 value += os->vaddr();
2609 switch (sym->offset_base())
2610 {
2611 case Symbol::SEGMENT_START:
2612 break;
2613 case Symbol::SEGMENT_END:
2614 value += os->memsz();
2615 break;
2616 case Symbol::SEGMENT_BSS:
2617 value += os->filesz();
2618 break;
2619 default:
2620 gold_unreachable();
2621 }
2622 }
2623 break;
2624
2625 case Symbol::IS_CONSTANT:
2626 value = sym->value();
2627 break;
2628
2629 case Symbol::IS_UNDEFINED:
2630 value = 0;
2631 break;
2632
2633 default:
2634 gold_unreachable();
2635 }
2636
2637 *pstatus = CFVS_OK;
2638 return value;
2639 }
2640
2641 // Finalize the symbol SYM. This returns true if the symbol should be
2642 // added to the symbol table, false otherwise.
2643
2644 template<int size>
2645 bool
2646 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2647 {
2648 typedef typename Sized_symbol<size>::Value_type Value_type;
2649
2650 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2651
2652 // The default version of a symbol may appear twice in the symbol
2653 // table. We only need to finalize it once.
2654 if (sym->has_symtab_index())
2655 return false;
2656
2657 if (!sym->in_reg())
2658 {
2659 gold_assert(!sym->has_symtab_index());
2660 sym->set_symtab_index(-1U);
2661 gold_assert(sym->dynsym_index() == -1U);
2662 return false;
2663 }
2664
2665 // If the symbol is only present on plugin files, the plugin decided we
2666 // don't need it.
2667 if (!sym->in_real_elf())
2668 {
2669 gold_assert(!sym->has_symtab_index());
2670 sym->set_symtab_index(-1U);
2671 return false;
2672 }
2673
2674 // Compute final symbol value.
2675 Compute_final_value_status status;
2676 Value_type value = this->compute_final_value(sym, &status);
2677
2678 switch (status)
2679 {
2680 case CFVS_OK:
2681 break;
2682 case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2683 {
2684 bool is_ordinary;
2685 unsigned int shndx = sym->shndx(&is_ordinary);
2686 gold_error(_("%s: unsupported symbol section 0x%x"),
2687 sym->demangled_name().c_str(), shndx);
2688 }
2689 break;
2690 case CFVS_NO_OUTPUT_SECTION:
2691 sym->set_symtab_index(-1U);
2692 return false;
2693 default:
2694 gold_unreachable();
2695 }
2696
2697 sym->set_value(value);
2698
2699 if (parameters->options().strip_all()
2700 || !parameters->options().should_retain_symbol(sym->name()))
2701 {
2702 sym->set_symtab_index(-1U);
2703 return false;
2704 }
2705
2706 return true;
2707 }
2708
2709 // Write out the global symbols.
2710
2711 void
2712 Symbol_table::write_globals(const Stringpool* sympool,
2713 const Stringpool* dynpool,
2714 Output_symtab_xindex* symtab_xindex,
2715 Output_symtab_xindex* dynsym_xindex,
2716 Output_file* of) const
2717 {
2718 switch (parameters->size_and_endianness())
2719 {
2720 #ifdef HAVE_TARGET_32_LITTLE
2721 case Parameters::TARGET_32_LITTLE:
2722 this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2723 dynsym_xindex, of);
2724 break;
2725 #endif
2726 #ifdef HAVE_TARGET_32_BIG
2727 case Parameters::TARGET_32_BIG:
2728 this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2729 dynsym_xindex, of);
2730 break;
2731 #endif
2732 #ifdef HAVE_TARGET_64_LITTLE
2733 case Parameters::TARGET_64_LITTLE:
2734 this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2735 dynsym_xindex, of);
2736 break;
2737 #endif
2738 #ifdef HAVE_TARGET_64_BIG
2739 case Parameters::TARGET_64_BIG:
2740 this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2741 dynsym_xindex, of);
2742 break;
2743 #endif
2744 default:
2745 gold_unreachable();
2746 }
2747 }
2748
2749 // Write out the global symbols.
2750
2751 template<int size, bool big_endian>
2752 void
2753 Symbol_table::sized_write_globals(const Stringpool* sympool,
2754 const Stringpool* dynpool,
2755 Output_symtab_xindex* symtab_xindex,
2756 Output_symtab_xindex* dynsym_xindex,
2757 Output_file* of) const
2758 {
2759 const Target& target = parameters->target();
2760
2761 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2762
2763 const unsigned int output_count = this->output_count_;
2764 const section_size_type oview_size = output_count * sym_size;
2765 const unsigned int first_global_index = this->first_global_index_;
2766 unsigned char* psyms;
2767 if (this->offset_ == 0 || output_count == 0)
2768 psyms = NULL;
2769 else
2770 psyms = of->get_output_view(this->offset_, oview_size);
2771
2772 const unsigned int dynamic_count = this->dynamic_count_;
2773 const section_size_type dynamic_size = dynamic_count * sym_size;
2774 const unsigned int first_dynamic_global_index =
2775 this->first_dynamic_global_index_;
2776 unsigned char* dynamic_view;
2777 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2778 dynamic_view = NULL;
2779 else
2780 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2781
2782 for (Symbol_table_type::const_iterator p = this->table_.begin();
2783 p != this->table_.end();
2784 ++p)
2785 {
2786 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2787
2788 // Possibly warn about unresolved symbols in shared libraries.
2789 this->warn_about_undefined_dynobj_symbol(sym);
2790
2791 unsigned int sym_index = sym->symtab_index();
2792 unsigned int dynsym_index;
2793 if (dynamic_view == NULL)
2794 dynsym_index = -1U;
2795 else
2796 dynsym_index = sym->dynsym_index();
2797
2798 if (sym_index == -1U && dynsym_index == -1U)
2799 {
2800 // This symbol is not included in the output file.
2801 continue;
2802 }
2803
2804 unsigned int shndx;
2805 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2806 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2807 elfcpp::STB binding = sym->binding();
2808 switch (sym->source())
2809 {
2810 case Symbol::FROM_OBJECT:
2811 {
2812 bool is_ordinary;
2813 unsigned int in_shndx = sym->shndx(&is_ordinary);
2814
2815 if (!is_ordinary
2816 && in_shndx != elfcpp::SHN_ABS
2817 && !Symbol::is_common_shndx(in_shndx))
2818 {
2819 gold_error(_("%s: unsupported symbol section 0x%x"),
2820 sym->demangled_name().c_str(), in_shndx);
2821 shndx = in_shndx;
2822 }
2823 else
2824 {
2825 Object* symobj = sym->object();
2826 if (symobj->is_dynamic())
2827 {
2828 if (sym->needs_dynsym_value())
2829 dynsym_value = target.dynsym_value(sym);
2830 shndx = elfcpp::SHN_UNDEF;
2831 if (sym->is_undef_binding_weak())
2832 binding = elfcpp::STB_WEAK;
2833 else
2834 binding = elfcpp::STB_GLOBAL;
2835 }
2836 else if (symobj->pluginobj() != NULL)
2837 shndx = elfcpp::SHN_UNDEF;
2838 else if (in_shndx == elfcpp::SHN_UNDEF
2839 || (!is_ordinary
2840 && (in_shndx == elfcpp::SHN_ABS
2841 || Symbol::is_common_shndx(in_shndx))))
2842 shndx = in_shndx;
2843 else
2844 {
2845 Relobj* relobj = static_cast<Relobj*>(symobj);
2846 Output_section* os = relobj->output_section(in_shndx);
2847 if (this->is_section_folded(relobj, in_shndx))
2848 {
2849 // This global symbol must be written out even though
2850 // it is folded.
2851 // Get the os of the section it is folded onto.
2852 Section_id folded =
2853 this->icf_->get_folded_section(relobj, in_shndx);
2854 gold_assert(folded.first !=NULL);
2855 Relobj* folded_obj =
2856 reinterpret_cast<Relobj*>(folded.first);
2857 os = folded_obj->output_section(folded.second);
2858 gold_assert(os != NULL);
2859 }
2860 gold_assert(os != NULL);
2861 shndx = os->out_shndx();
2862
2863 if (shndx >= elfcpp::SHN_LORESERVE)
2864 {
2865 if (sym_index != -1U)
2866 symtab_xindex->add(sym_index, shndx);
2867 if (dynsym_index != -1U)
2868 dynsym_xindex->add(dynsym_index, shndx);
2869 shndx = elfcpp::SHN_XINDEX;
2870 }
2871
2872 // In object files symbol values are section
2873 // relative.
2874 if (parameters->options().relocatable())
2875 sym_value -= os->address();
2876 }
2877 }
2878 }
2879 break;
2880
2881 case Symbol::IN_OUTPUT_DATA:
2882 shndx = sym->output_data()->out_shndx();
2883 if (shndx >= elfcpp::SHN_LORESERVE)
2884 {
2885 if (sym_index != -1U)
2886 symtab_xindex->add(sym_index, shndx);
2887 if (dynsym_index != -1U)
2888 dynsym_xindex->add(dynsym_index, shndx);
2889 shndx = elfcpp::SHN_XINDEX;
2890 }
2891 break;
2892
2893 case Symbol::IN_OUTPUT_SEGMENT:
2894 shndx = elfcpp::SHN_ABS;
2895 break;
2896
2897 case Symbol::IS_CONSTANT:
2898 shndx = elfcpp::SHN_ABS;
2899 break;
2900
2901 case Symbol::IS_UNDEFINED:
2902 shndx = elfcpp::SHN_UNDEF;
2903 break;
2904
2905 default:
2906 gold_unreachable();
2907 }
2908
2909 if (sym_index != -1U)
2910 {
2911 sym_index -= first_global_index;
2912 gold_assert(sym_index < output_count);
2913 unsigned char* ps = psyms + (sym_index * sym_size);
2914 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2915 binding, sympool, ps);
2916 }
2917
2918 if (dynsym_index != -1U)
2919 {
2920 dynsym_index -= first_dynamic_global_index;
2921 gold_assert(dynsym_index < dynamic_count);
2922 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
2923 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2924 binding, dynpool, pd);
2925 }
2926 }
2927
2928 of->write_output_view(this->offset_, oview_size, psyms);
2929 if (dynamic_view != NULL)
2930 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2931 }
2932
2933 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
2934 // strtab holding the name.
2935
2936 template<int size, bool big_endian>
2937 void
2938 Symbol_table::sized_write_symbol(
2939 Sized_symbol<size>* sym,
2940 typename elfcpp::Elf_types<size>::Elf_Addr value,
2941 unsigned int shndx,
2942 elfcpp::STB binding,
2943 const Stringpool* pool,
2944 unsigned char* p) const
2945 {
2946 elfcpp::Sym_write<size, big_endian> osym(p);
2947 if (sym->version() == NULL || !parameters->options().relocatable())
2948 osym.put_st_name(pool->get_offset(sym->name()));
2949 else
2950 osym.put_st_name(pool->get_offset(sym->versioned_name()));
2951 osym.put_st_value(value);
2952 // Use a symbol size of zero for undefined symbols from shared libraries.
2953 if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
2954 osym.put_st_size(0);
2955 else
2956 osym.put_st_size(sym->symsize());
2957 elfcpp::STT type = sym->type();
2958 // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
2959 if (type == elfcpp::STT_GNU_IFUNC
2960 && sym->is_from_dynobj())
2961 type = elfcpp::STT_FUNC;
2962 // A version script may have overridden the default binding.
2963 if (sym->is_forced_local())
2964 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
2965 else
2966 osym.put_st_info(elfcpp::elf_st_info(binding, type));
2967 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2968 osym.put_st_shndx(shndx);
2969 }
2970
2971 // Check for unresolved symbols in shared libraries. This is
2972 // controlled by the --allow-shlib-undefined option.
2973
2974 // We only warn about libraries for which we have seen all the
2975 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2976 // which were not seen in this link. If we didn't see a DT_NEEDED
2977 // entry, we aren't going to be able to reliably report whether the
2978 // symbol is undefined.
2979
2980 // We also don't warn about libraries found in a system library
2981 // directory (e.g., /lib or /usr/lib); we assume that those libraries
2982 // are OK. This heuristic avoids problems on GNU/Linux, in which -ldl
2983 // can have undefined references satisfied by ld-linux.so.
2984
2985 inline void
2986 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
2987 {
2988 bool dummy;
2989 if (sym->source() == Symbol::FROM_OBJECT
2990 && sym->object()->is_dynamic()
2991 && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
2992 && sym->binding() != elfcpp::STB_WEAK
2993 && !parameters->options().allow_shlib_undefined()
2994 && !parameters->target().is_defined_by_abi(sym)
2995 && !sym->object()->is_in_system_directory())
2996 {
2997 // A very ugly cast.
2998 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2999 if (!dynobj->has_unknown_needed_entries())
3000 gold_undefined_symbol(sym);
3001 }
3002 }
3003
3004 // Write out a section symbol. Return the update offset.
3005
3006 void
3007 Symbol_table::write_section_symbol(const Output_section* os,
3008 Output_symtab_xindex* symtab_xindex,
3009 Output_file* of,
3010 off_t offset) const
3011 {
3012 switch (parameters->size_and_endianness())
3013 {
3014 #ifdef HAVE_TARGET_32_LITTLE
3015 case Parameters::TARGET_32_LITTLE:
3016 this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3017 offset);
3018 break;
3019 #endif
3020 #ifdef HAVE_TARGET_32_BIG
3021 case Parameters::TARGET_32_BIG:
3022 this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3023 offset);
3024 break;
3025 #endif
3026 #ifdef HAVE_TARGET_64_LITTLE
3027 case Parameters::TARGET_64_LITTLE:
3028 this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3029 offset);
3030 break;
3031 #endif
3032 #ifdef HAVE_TARGET_64_BIG
3033 case Parameters::TARGET_64_BIG:
3034 this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3035 offset);
3036 break;
3037 #endif
3038 default:
3039 gold_unreachable();
3040 }
3041 }
3042
3043 // Write out a section symbol, specialized for size and endianness.
3044
3045 template<int size, bool big_endian>
3046 void
3047 Symbol_table::sized_write_section_symbol(const Output_section* os,
3048 Output_symtab_xindex* symtab_xindex,
3049 Output_file* of,
3050 off_t offset) const
3051 {
3052 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3053
3054 unsigned char* pov = of->get_output_view(offset, sym_size);
3055
3056 elfcpp::Sym_write<size, big_endian> osym(pov);
3057 osym.put_st_name(0);
3058 if (parameters->options().relocatable())
3059 osym.put_st_value(0);
3060 else
3061 osym.put_st_value(os->address());
3062 osym.put_st_size(0);
3063 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3064 elfcpp::STT_SECTION));
3065 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3066
3067 unsigned int shndx = os->out_shndx();
3068 if (shndx >= elfcpp::SHN_LORESERVE)
3069 {
3070 symtab_xindex->add(os->symtab_index(), shndx);
3071 shndx = elfcpp::SHN_XINDEX;
3072 }
3073 osym.put_st_shndx(shndx);
3074
3075 of->write_output_view(offset, sym_size, pov);
3076 }
3077
3078 // Print statistical information to stderr. This is used for --stats.
3079
3080 void
3081 Symbol_table::print_stats() const
3082 {
3083 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3084 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3085 program_name, this->table_.size(), this->table_.bucket_count());
3086 #else
3087 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3088 program_name, this->table_.size());
3089 #endif
3090 this->namepool_.print_stats("symbol table stringpool");
3091 }
3092
3093 // We check for ODR violations by looking for symbols with the same
3094 // name for which the debugging information reports that they were
3095 // defined in disjoint source locations. When comparing the source
3096 // location, we consider instances with the same base filename to be
3097 // the same. This is because different object files/shared libraries
3098 // can include the same header file using different paths, and
3099 // different optimization settings can make the line number appear to
3100 // be a couple lines off, and we don't want to report an ODR violation
3101 // in those cases.
3102
3103 // This struct is used to compare line information, as returned by
3104 // Dwarf_line_info::one_addr2line. It implements a < comparison
3105 // operator used with std::sort.
3106
3107 struct Odr_violation_compare
3108 {
3109 bool
3110 operator()(const std::string& s1, const std::string& s2) const
3111 {
3112 // Inputs should be of the form "dirname/filename:linenum" where
3113 // "dirname/" is optional. We want to compare just the filename:linenum.
3114
3115 // Find the last '/' in each string.
3116 std::string::size_type s1begin = s1.rfind('/');
3117 std::string::size_type s2begin = s2.rfind('/');
3118 // If there was no '/' in a string, start at the beginning.
3119 if (s1begin == std::string::npos)
3120 s1begin = 0;
3121 if (s2begin == std::string::npos)
3122 s2begin = 0;
3123 return s1.compare(s1begin, std::string::npos,
3124 s2, s2begin, std::string::npos) < 0;
3125 }
3126 };
3127
3128 // Returns all of the lines attached to LOC, not just the one the
3129 // instruction actually came from.
3130 std::vector<std::string>
3131 Symbol_table::linenos_from_loc(const Task* task,
3132 const Symbol_location& loc)
3133 {
3134 // We need to lock the object in order to read it. This
3135 // means that we have to run in a singleton Task. If we
3136 // want to run this in a general Task for better
3137 // performance, we will need one Task for object, plus
3138 // appropriate locking to ensure that we don't conflict with
3139 // other uses of the object. Also note, one_addr2line is not
3140 // currently thread-safe.
3141 Task_lock_obj<Object> tl(task, loc.object);
3142
3143 std::vector<std::string> result;
3144 // 16 is the size of the object-cache that one_addr2line should use.
3145 std::string canonical_result = Dwarf_line_info::one_addr2line(
3146 loc.object, loc.shndx, loc.offset, 16, &result);
3147 if (!canonical_result.empty())
3148 result.push_back(canonical_result);
3149 return result;
3150 }
3151
3152 // OutputIterator that records if it was ever assigned to. This
3153 // allows it to be used with std::set_intersection() to check for
3154 // intersection rather than computing the intersection.
3155 struct Check_intersection
3156 {
3157 Check_intersection()
3158 : value_(false)
3159 {}
3160
3161 bool had_intersection() const
3162 { return this->value_; }
3163
3164 Check_intersection& operator++()
3165 { return *this; }
3166
3167 Check_intersection& operator*()
3168 { return *this; }
3169
3170 template<typename T>
3171 Check_intersection& operator=(const T&)
3172 {
3173 this->value_ = true;
3174 return *this;
3175 }
3176
3177 private:
3178 bool value_;
3179 };
3180
3181 // Check candidate_odr_violations_ to find symbols with the same name
3182 // but apparently different definitions (different source-file/line-no
3183 // for each line assigned to the first instruction).
3184
3185 void
3186 Symbol_table::detect_odr_violations(const Task* task,
3187 const char* output_file_name) const
3188 {
3189 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3190 it != candidate_odr_violations_.end();
3191 ++it)
3192 {
3193 const char* const symbol_name = it->first;
3194
3195 std::string first_object_name;
3196 std::vector<std::string> first_object_linenos;
3197
3198 Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3199 locs = it->second.begin();
3200 const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3201 locs_end = it->second.end();
3202 for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3203 {
3204 // Save the line numbers from the first definition to
3205 // compare to the other definitions. Ideally, we'd compare
3206 // every definition to every other, but we don't want to
3207 // take O(N^2) time to do this. This shortcut may cause
3208 // false negatives that appear or disappear depending on the
3209 // link order, but it won't cause false positives.
3210 first_object_name = locs->object->name();
3211 first_object_linenos = this->linenos_from_loc(task, *locs);
3212 }
3213
3214 // Sort by Odr_violation_compare to make std::set_intersection work.
3215 std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3216 Odr_violation_compare());
3217
3218 for (; locs != locs_end; ++locs)
3219 {
3220 std::vector<std::string> linenos =
3221 this->linenos_from_loc(task, *locs);
3222 // linenos will be empty if we couldn't parse the debug info.
3223 if (linenos.empty())
3224 continue;
3225 // Sort by Odr_violation_compare to make std::set_intersection work.
3226 std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3227
3228 Check_intersection intersection_result =
3229 std::set_intersection(first_object_linenos.begin(),
3230 first_object_linenos.end(),
3231 linenos.begin(),
3232 linenos.end(),
3233 Check_intersection(),
3234 Odr_violation_compare());
3235 if (!intersection_result.had_intersection())
3236 {
3237 gold_warning(_("while linking %s: symbol '%s' defined in "
3238 "multiple places (possible ODR violation):"),
3239 output_file_name, demangle(symbol_name).c_str());
3240 // This only prints one location from each definition,
3241 // which may not be the location we expect to intersect
3242 // with another definition. We could print the whole
3243 // set of locations, but that seems too verbose.
3244 gold_assert(!first_object_linenos.empty());
3245 gold_assert(!linenos.empty());
3246 fprintf(stderr, _(" %s from %s\n"),
3247 first_object_linenos[0].c_str(),
3248 first_object_name.c_str());
3249 fprintf(stderr, _(" %s from %s\n"),
3250 linenos[0].c_str(),
3251 locs->object->name().c_str());
3252 // Only print one broken pair, to avoid needing to
3253 // compare against a list of the disjoint definition
3254 // locations we've found so far. (If we kept comparing
3255 // against just the first one, we'd get a lot of
3256 // redundant complaints about the second definition
3257 // location.)
3258 break;
3259 }
3260 }
3261 }
3262 // We only call one_addr2line() in this function, so we can clear its cache.
3263 Dwarf_line_info::clear_addr2line_cache();
3264 }
3265
3266 // Warnings functions.
3267
3268 // Add a new warning.
3269
3270 void
3271 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3272 const std::string& warning)
3273 {
3274 name = symtab->canonicalize_name(name);
3275 this->warnings_[name].set(obj, warning);
3276 }
3277
3278 // Look through the warnings and mark the symbols for which we should
3279 // warn. This is called during Layout::finalize when we know the
3280 // sources for all the symbols.
3281
3282 void
3283 Warnings::note_warnings(Symbol_table* symtab)
3284 {
3285 for (Warning_table::iterator p = this->warnings_.begin();
3286 p != this->warnings_.end();
3287 ++p)
3288 {
3289 Symbol* sym = symtab->lookup(p->first, NULL);
3290 if (sym != NULL
3291 && sym->source() == Symbol::FROM_OBJECT
3292 && sym->object() == p->second.object)
3293 sym->set_has_warning();
3294 }
3295 }
3296
3297 // Issue a warning. This is called when we see a relocation against a
3298 // symbol for which has a warning.
3299
3300 template<int size, bool big_endian>
3301 void
3302 Warnings::issue_warning(const Symbol* sym,
3303 const Relocate_info<size, big_endian>* relinfo,
3304 size_t relnum, off_t reloffset) const
3305 {
3306 gold_assert(sym->has_warning());
3307
3308 // We don't want to issue a warning for a relocation against the
3309 // symbol in the same object file in which the symbol is defined.
3310 if (sym->object() == relinfo->object)
3311 return;
3312
3313 Warning_table::const_iterator p = this->warnings_.find(sym->name());
3314 gold_assert(p != this->warnings_.end());
3315 gold_warning_at_location(relinfo, relnum, reloffset,
3316 "%s", p->second.text.c_str());
3317 }
3318
3319 // Instantiate the templates we need. We could use the configure
3320 // script to restrict this to only the ones needed for implemented
3321 // targets.
3322
3323 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3324 template
3325 void
3326 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3327 #endif
3328
3329 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3330 template
3331 void
3332 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3333 #endif
3334
3335 #ifdef HAVE_TARGET_32_LITTLE
3336 template
3337 void
3338 Symbol_table::add_from_relobj<32, false>(
3339 Sized_relobj_file<32, false>* relobj,
3340 const unsigned char* syms,
3341 size_t count,
3342 size_t symndx_offset,
3343 const char* sym_names,
3344 size_t sym_name_size,
3345 Sized_relobj_file<32, false>::Symbols* sympointers,
3346 size_t* defined);
3347 #endif
3348
3349 #ifdef HAVE_TARGET_32_BIG
3350 template
3351 void
3352 Symbol_table::add_from_relobj<32, true>(
3353 Sized_relobj_file<32, true>* relobj,
3354 const unsigned char* syms,
3355 size_t count,
3356 size_t symndx_offset,
3357 const char* sym_names,
3358 size_t sym_name_size,
3359 Sized_relobj_file<32, true>::Symbols* sympointers,
3360 size_t* defined);
3361 #endif
3362
3363 #ifdef HAVE_TARGET_64_LITTLE
3364 template
3365 void
3366 Symbol_table::add_from_relobj<64, false>(
3367 Sized_relobj_file<64, false>* relobj,
3368 const unsigned char* syms,
3369 size_t count,
3370 size_t symndx_offset,
3371 const char* sym_names,
3372 size_t sym_name_size,
3373 Sized_relobj_file<64, false>::Symbols* sympointers,
3374 size_t* defined);
3375 #endif
3376
3377 #ifdef HAVE_TARGET_64_BIG
3378 template
3379 void
3380 Symbol_table::add_from_relobj<64, true>(
3381 Sized_relobj_file<64, true>* relobj,
3382 const unsigned char* syms,
3383 size_t count,
3384 size_t symndx_offset,
3385 const char* sym_names,
3386 size_t sym_name_size,
3387 Sized_relobj_file<64, true>::Symbols* sympointers,
3388 size_t* defined);
3389 #endif
3390
3391 #ifdef HAVE_TARGET_32_LITTLE
3392 template
3393 Symbol*
3394 Symbol_table::add_from_pluginobj<32, false>(
3395 Sized_pluginobj<32, false>* obj,
3396 const char* name,
3397 const char* ver,
3398 elfcpp::Sym<32, false>* sym);
3399 #endif
3400
3401 #ifdef HAVE_TARGET_32_BIG
3402 template
3403 Symbol*
3404 Symbol_table::add_from_pluginobj<32, true>(
3405 Sized_pluginobj<32, true>* obj,
3406 const char* name,
3407 const char* ver,
3408 elfcpp::Sym<32, true>* sym);
3409 #endif
3410
3411 #ifdef HAVE_TARGET_64_LITTLE
3412 template
3413 Symbol*
3414 Symbol_table::add_from_pluginobj<64, false>(
3415 Sized_pluginobj<64, false>* obj,
3416 const char* name,
3417 const char* ver,
3418 elfcpp::Sym<64, false>* sym);
3419 #endif
3420
3421 #ifdef HAVE_TARGET_64_BIG
3422 template
3423 Symbol*
3424 Symbol_table::add_from_pluginobj<64, true>(
3425 Sized_pluginobj<64, true>* obj,
3426 const char* name,
3427 const char* ver,
3428 elfcpp::Sym<64, true>* sym);
3429 #endif
3430
3431 #ifdef HAVE_TARGET_32_LITTLE
3432 template
3433 void
3434 Symbol_table::add_from_dynobj<32, false>(
3435 Sized_dynobj<32, false>* dynobj,
3436 const unsigned char* syms,
3437 size_t count,
3438 const char* sym_names,
3439 size_t sym_name_size,
3440 const unsigned char* versym,
3441 size_t versym_size,
3442 const std::vector<const char*>* version_map,
3443 Sized_relobj_file<32, false>::Symbols* sympointers,
3444 size_t* defined);
3445 #endif
3446
3447 #ifdef HAVE_TARGET_32_BIG
3448 template
3449 void
3450 Symbol_table::add_from_dynobj<32, true>(
3451 Sized_dynobj<32, true>* dynobj,
3452 const unsigned char* syms,
3453 size_t count,
3454 const char* sym_names,
3455 size_t sym_name_size,
3456 const unsigned char* versym,
3457 size_t versym_size,
3458 const std::vector<const char*>* version_map,
3459 Sized_relobj_file<32, true>::Symbols* sympointers,
3460 size_t* defined);
3461 #endif
3462
3463 #ifdef HAVE_TARGET_64_LITTLE
3464 template
3465 void
3466 Symbol_table::add_from_dynobj<64, false>(
3467 Sized_dynobj<64, false>* dynobj,
3468 const unsigned char* syms,
3469 size_t count,
3470 const char* sym_names,
3471 size_t sym_name_size,
3472 const unsigned char* versym,
3473 size_t versym_size,
3474 const std::vector<const char*>* version_map,
3475 Sized_relobj_file<64, false>::Symbols* sympointers,
3476 size_t* defined);
3477 #endif
3478
3479 #ifdef HAVE_TARGET_64_BIG
3480 template
3481 void
3482 Symbol_table::add_from_dynobj<64, true>(
3483 Sized_dynobj<64, true>* dynobj,
3484 const unsigned char* syms,
3485 size_t count,
3486 const char* sym_names,
3487 size_t sym_name_size,
3488 const unsigned char* versym,
3489 size_t versym_size,
3490 const std::vector<const char*>* version_map,
3491 Sized_relobj_file<64, true>::Symbols* sympointers,
3492 size_t* defined);
3493 #endif
3494
3495 #ifdef HAVE_TARGET_32_LITTLE
3496 template
3497 Sized_symbol<32>*
3498 Symbol_table::add_from_incrobj(
3499 Object* obj,
3500 const char* name,
3501 const char* ver,
3502 elfcpp::Sym<32, false>* sym);
3503 #endif
3504
3505 #ifdef HAVE_TARGET_32_BIG
3506 template
3507 Sized_symbol<32>*
3508 Symbol_table::add_from_incrobj(
3509 Object* obj,
3510 const char* name,
3511 const char* ver,
3512 elfcpp::Sym<32, true>* sym);
3513 #endif
3514
3515 #ifdef HAVE_TARGET_64_LITTLE
3516 template
3517 Sized_symbol<64>*
3518 Symbol_table::add_from_incrobj(
3519 Object* obj,
3520 const char* name,
3521 const char* ver,
3522 elfcpp::Sym<64, false>* sym);
3523 #endif
3524
3525 #ifdef HAVE_TARGET_64_BIG
3526 template
3527 Sized_symbol<64>*
3528 Symbol_table::add_from_incrobj(
3529 Object* obj,
3530 const char* name,
3531 const char* ver,
3532 elfcpp::Sym<64, true>* sym);
3533 #endif
3534
3535 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3536 template
3537 void
3538 Symbol_table::define_with_copy_reloc<32>(
3539 Sized_symbol<32>* sym,
3540 Output_data* posd,
3541 elfcpp::Elf_types<32>::Elf_Addr value);
3542 #endif
3543
3544 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3545 template
3546 void
3547 Symbol_table::define_with_copy_reloc<64>(
3548 Sized_symbol<64>* sym,
3549 Output_data* posd,
3550 elfcpp::Elf_types<64>::Elf_Addr value);
3551 #endif
3552
3553 #ifdef HAVE_TARGET_32_LITTLE
3554 template
3555 void
3556 Warnings::issue_warning<32, false>(const Symbol* sym,
3557 const Relocate_info<32, false>* relinfo,
3558 size_t relnum, off_t reloffset) const;
3559 #endif
3560
3561 #ifdef HAVE_TARGET_32_BIG
3562 template
3563 void
3564 Warnings::issue_warning<32, true>(const Symbol* sym,
3565 const Relocate_info<32, true>* relinfo,
3566 size_t relnum, off_t reloffset) const;
3567 #endif
3568
3569 #ifdef HAVE_TARGET_64_LITTLE
3570 template
3571 void
3572 Warnings::issue_warning<64, false>(const Symbol* sym,
3573 const Relocate_info<64, false>* relinfo,
3574 size_t relnum, off_t reloffset) const;
3575 #endif
3576
3577 #ifdef HAVE_TARGET_64_BIG
3578 template
3579 void
3580 Warnings::issue_warning<64, true>(const Symbol* sym,
3581 const Relocate_info<64, true>* relinfo,
3582 size_t relnum, off_t reloffset) const;
3583 #endif
3584
3585 } // End namespace gold.
This page took 0.099755 seconds and 5 git commands to generate.