elfcpp/ChangeLog:
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 class Versions;
52 class Version_script_info;
53 class Input_objects;
54 class Output_data;
55 class Output_section;
56 class Output_segment;
57 class Output_file;
58 class Output_symtab_xindex;
59 class Garbage_collection;
60 class Icf;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return true for function symbol.
209 bool
210 is_func() const
211 {
212 return (this->type_ == elfcpp::STT_FUNC
213 || this->type_ == elfcpp::STT_GNU_IFUNC);
214 }
215
216 // Return the symbol visibility.
217 elfcpp::STV
218 visibility() const
219 { return this->visibility_; }
220
221 // Set the visibility.
222 void
223 set_visibility(elfcpp::STV visibility)
224 { this->visibility_ = visibility; }
225
226 // Override symbol visibility.
227 void
228 override_visibility(elfcpp::STV);
229
230 // Set whether the symbol was originally a weak undef or a regular undef
231 // when resolved by a dynamic def.
232 inline void
233 set_undef_binding(elfcpp::STB bind)
234 {
235 if (!this->undef_binding_set_ || this->undef_binding_weak_)
236 {
237 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
238 this->undef_binding_set_ = true;
239 }
240 }
241
242 // Return TRUE if a weak undef was resolved by a dynamic def.
243 inline bool
244 is_undef_binding_weak() const
245 { return this->undef_binding_weak_; }
246
247 // Return the non-visibility part of the st_other field.
248 unsigned char
249 nonvis() const
250 { return this->nonvis_; }
251
252 // Return whether this symbol is a forwarder. This will never be
253 // true of a symbol found in the hash table, but may be true of
254 // symbol pointers attached to object files.
255 bool
256 is_forwarder() const
257 { return this->is_forwarder_; }
258
259 // Mark this symbol as a forwarder.
260 void
261 set_forwarder()
262 { this->is_forwarder_ = true; }
263
264 // Return whether this symbol has an alias in the weak aliases table
265 // in Symbol_table.
266 bool
267 has_alias() const
268 { return this->has_alias_; }
269
270 // Mark this symbol as having an alias.
271 void
272 set_has_alias()
273 { this->has_alias_ = true; }
274
275 // Return whether this symbol needs an entry in the dynamic symbol
276 // table.
277 bool
278 needs_dynsym_entry() const
279 {
280 return (this->needs_dynsym_entry_
281 || (this->in_reg()
282 && this->in_dyn()
283 && this->is_externally_visible()));
284 }
285
286 // Mark this symbol as needing an entry in the dynamic symbol table.
287 void
288 set_needs_dynsym_entry()
289 { this->needs_dynsym_entry_ = true; }
290
291 // Return whether this symbol should be added to the dynamic symbol
292 // table.
293 bool
294 should_add_dynsym_entry(Symbol_table*) const;
295
296 // Return whether this symbol has been seen in a regular object.
297 bool
298 in_reg() const
299 { return this->in_reg_; }
300
301 // Mark this symbol as having been seen in a regular object.
302 void
303 set_in_reg()
304 { this->in_reg_ = true; }
305
306 // Return whether this symbol has been seen in a dynamic object.
307 bool
308 in_dyn() const
309 { return this->in_dyn_; }
310
311 // Mark this symbol as having been seen in a dynamic object.
312 void
313 set_in_dyn()
314 { this->in_dyn_ = true; }
315
316 // Return whether this symbol has been seen in a real ELF object.
317 // (IN_REG will return TRUE if the symbol has been seen in either
318 // a real ELF object or an object claimed by a plugin.)
319 bool
320 in_real_elf() const
321 { return this->in_real_elf_; }
322
323 // Mark this symbol as having been seen in a real ELF object.
324 void
325 set_in_real_elf()
326 { this->in_real_elf_ = true; }
327
328 // Return whether this symbol was defined in a section that was
329 // discarded from the link. This is used to control some error
330 // reporting.
331 bool
332 is_defined_in_discarded_section() const
333 { return this->is_defined_in_discarded_section_; }
334
335 // Mark this symbol as having been defined in a discarded section.
336 void
337 set_is_defined_in_discarded_section()
338 { this->is_defined_in_discarded_section_ = true; }
339
340 // Return the index of this symbol in the output file symbol table.
341 // A value of -1U means that this symbol is not going into the
342 // output file. This starts out as zero, and is set to a non-zero
343 // value by Symbol_table::finalize. It is an error to ask for the
344 // symbol table index before it has been set.
345 unsigned int
346 symtab_index() const
347 {
348 gold_assert(this->symtab_index_ != 0);
349 return this->symtab_index_;
350 }
351
352 // Set the index of the symbol in the output file symbol table.
353 void
354 set_symtab_index(unsigned int index)
355 {
356 gold_assert(index != 0);
357 this->symtab_index_ = index;
358 }
359
360 // Return whether this symbol already has an index in the output
361 // file symbol table.
362 bool
363 has_symtab_index() const
364 { return this->symtab_index_ != 0; }
365
366 // Return the index of this symbol in the dynamic symbol table. A
367 // value of -1U means that this symbol is not going into the dynamic
368 // symbol table. This starts out as zero, and is set to a non-zero
369 // during Layout::finalize. It is an error to ask for the dynamic
370 // symbol table index before it has been set.
371 unsigned int
372 dynsym_index() const
373 {
374 gold_assert(this->dynsym_index_ != 0);
375 return this->dynsym_index_;
376 }
377
378 // Set the index of the symbol in the dynamic symbol table.
379 void
380 set_dynsym_index(unsigned int index)
381 {
382 gold_assert(index != 0);
383 this->dynsym_index_ = index;
384 }
385
386 // Return whether this symbol already has an index in the dynamic
387 // symbol table.
388 bool
389 has_dynsym_index() const
390 { return this->dynsym_index_ != 0; }
391
392 // Return whether this symbol has an entry in the GOT section.
393 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
394 bool
395 has_got_offset(unsigned int got_type) const
396 { return this->got_offsets_.get_offset(got_type) != -1U; }
397
398 // Return the offset into the GOT section of this symbol.
399 unsigned int
400 got_offset(unsigned int got_type) const
401 {
402 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
403 gold_assert(got_offset != -1U);
404 return got_offset;
405 }
406
407 // Set the GOT offset of this symbol.
408 void
409 set_got_offset(unsigned int got_type, unsigned int got_offset)
410 { this->got_offsets_.set_offset(got_type, got_offset); }
411
412 // Return the GOT offset list.
413 const Got_offset_list*
414 got_offset_list() const
415 { return this->got_offsets_.get_list(); }
416
417 // Return whether this symbol has an entry in the PLT section.
418 bool
419 has_plt_offset() const
420 { return this->plt_offset_ != -1U; }
421
422 // Return the offset into the PLT section of this symbol.
423 unsigned int
424 plt_offset() const
425 {
426 gold_assert(this->has_plt_offset());
427 return this->plt_offset_;
428 }
429
430 // Set the PLT offset of this symbol.
431 void
432 set_plt_offset(unsigned int plt_offset)
433 {
434 gold_assert(plt_offset != -1U);
435 this->plt_offset_ = plt_offset;
436 }
437
438 // Return whether this dynamic symbol needs a special value in the
439 // dynamic symbol table.
440 bool
441 needs_dynsym_value() const
442 { return this->needs_dynsym_value_; }
443
444 // Set that this dynamic symbol needs a special value in the dynamic
445 // symbol table.
446 void
447 set_needs_dynsym_value()
448 {
449 gold_assert(this->object()->is_dynamic());
450 this->needs_dynsym_value_ = true;
451 }
452
453 // Return true if the final value of this symbol is known at link
454 // time.
455 bool
456 final_value_is_known() const;
457
458 // Return true if SHNDX represents a common symbol. This depends on
459 // the target.
460 static bool
461 is_common_shndx(unsigned int shndx);
462
463 // Return whether this is a defined symbol (not undefined or
464 // common).
465 bool
466 is_defined() const
467 {
468 bool is_ordinary;
469 if (this->source_ != FROM_OBJECT)
470 return this->source_ != IS_UNDEFINED;
471 unsigned int shndx = this->shndx(&is_ordinary);
472 return (is_ordinary
473 ? shndx != elfcpp::SHN_UNDEF
474 : !Symbol::is_common_shndx(shndx));
475 }
476
477 // Return true if this symbol is from a dynamic object.
478 bool
479 is_from_dynobj() const
480 {
481 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
482 }
483
484 // Return whether this is a placeholder symbol from a plugin object.
485 bool
486 is_placeholder() const
487 {
488 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
489 }
490
491 // Return whether this is an undefined symbol.
492 bool
493 is_undefined() const
494 {
495 bool is_ordinary;
496 return ((this->source_ == FROM_OBJECT
497 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
498 && is_ordinary)
499 || this->source_ == IS_UNDEFINED);
500 }
501
502 // Return whether this is a weak undefined symbol.
503 bool
504 is_weak_undefined() const
505 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
506
507 // Return whether this is an absolute symbol.
508 bool
509 is_absolute() const
510 {
511 bool is_ordinary;
512 return ((this->source_ == FROM_OBJECT
513 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
514 && !is_ordinary)
515 || this->source_ == IS_CONSTANT);
516 }
517
518 // Return whether this is a common symbol.
519 bool
520 is_common() const
521 {
522 if (this->source_ != FROM_OBJECT)
523 return false;
524 if (this->type_ == elfcpp::STT_COMMON)
525 return true;
526 bool is_ordinary;
527 unsigned int shndx = this->shndx(&is_ordinary);
528 return !is_ordinary && Symbol::is_common_shndx(shndx);
529 }
530
531 // Return whether this symbol can be seen outside this object.
532 bool
533 is_externally_visible() const
534 {
535 return (this->visibility_ == elfcpp::STV_DEFAULT
536 || this->visibility_ == elfcpp::STV_PROTECTED);
537 }
538
539 // Return true if this symbol can be preempted by a definition in
540 // another link unit.
541 bool
542 is_preemptible() const
543 {
544 // It doesn't make sense to ask whether a symbol defined in
545 // another object is preemptible.
546 gold_assert(!this->is_from_dynobj());
547
548 // It doesn't make sense to ask whether an undefined symbol
549 // is preemptible.
550 gold_assert(!this->is_undefined());
551
552 // If a symbol does not have default visibility, it can not be
553 // seen outside this link unit and therefore is not preemptible.
554 if (this->visibility_ != elfcpp::STV_DEFAULT)
555 return false;
556
557 // If this symbol has been forced to be a local symbol by a
558 // version script, then it is not visible outside this link unit
559 // and is not preemptible.
560 if (this->is_forced_local_)
561 return false;
562
563 // If we are not producing a shared library, then nothing is
564 // preemptible.
565 if (!parameters->options().shared())
566 return false;
567
568 // If the user used -Bsymbolic, then nothing is preemptible.
569 if (parameters->options().Bsymbolic())
570 return false;
571
572 // If the user used -Bsymbolic-functions, then functions are not
573 // preemptible. We explicitly check for not being STT_OBJECT,
574 // rather than for being STT_FUNC, because that is what the GNU
575 // linker does.
576 if (this->type() != elfcpp::STT_OBJECT
577 && parameters->options().Bsymbolic_functions())
578 return false;
579
580 // Otherwise the symbol is preemptible.
581 return true;
582 }
583
584 // Return true if this symbol is a function that needs a PLT entry.
585 // If the symbol is defined in a dynamic object or if it is subject
586 // to pre-emption, we need to make a PLT entry. If we're doing a
587 // static link or a -pie link, we don't create PLT entries.
588 bool
589 needs_plt_entry() const
590 {
591 // An undefined symbol from an executable does not need a PLT entry.
592 if (this->is_undefined() && !parameters->options().shared())
593 return false;
594
595 return (!parameters->doing_static_link()
596 && !parameters->options().pie()
597 && this->is_func()
598 && (this->is_from_dynobj()
599 || this->is_undefined()
600 || this->is_preemptible()));
601 }
602
603 // When determining whether a reference to a symbol needs a dynamic
604 // relocation, we need to know several things about the reference.
605 // These flags may be or'ed together.
606 enum Reference_flags
607 {
608 // Reference to the symbol's absolute address.
609 ABSOLUTE_REF = 1,
610 // A non-PIC reference.
611 NON_PIC_REF = 2,
612 // A function call.
613 FUNCTION_CALL = 4
614 };
615
616 // Given a direct absolute or pc-relative static relocation against
617 // the global symbol, this function returns whether a dynamic relocation
618 // is needed.
619
620 bool
621 needs_dynamic_reloc(int flags) const
622 {
623 // No dynamic relocations in a static link!
624 if (parameters->doing_static_link())
625 return false;
626
627 // A reference to an undefined symbol from an executable should be
628 // statically resolved to 0, and does not need a dynamic relocation.
629 // This matches gnu ld behavior.
630 if (this->is_undefined() && !parameters->options().shared())
631 return false;
632
633 // A reference to an absolute symbol does not need a dynamic relocation.
634 if (this->is_absolute())
635 return false;
636
637 // An absolute reference within a position-independent output file
638 // will need a dynamic relocation.
639 if ((flags & ABSOLUTE_REF)
640 && parameters->options().output_is_position_independent())
641 return true;
642
643 // A function call that can branch to a local PLT entry does not need
644 // a dynamic relocation. A non-pic pc-relative function call in a
645 // shared library cannot use a PLT entry.
646 if ((flags & FUNCTION_CALL)
647 && this->has_plt_offset()
648 && !((flags & NON_PIC_REF) && parameters->options().shared()))
649 return false;
650
651 // A reference to any PLT entry in a non-position-independent executable
652 // does not need a dynamic relocation.
653 if (!parameters->options().output_is_position_independent()
654 && this->has_plt_offset())
655 return false;
656
657 // A reference to a symbol defined in a dynamic object or to a
658 // symbol that is preemptible will need a dynamic relocation.
659 if (this->is_from_dynobj()
660 || this->is_undefined()
661 || this->is_preemptible())
662 return true;
663
664 // For all other cases, return FALSE.
665 return false;
666 }
667
668 // Whether we should use the PLT offset associated with a symbol for
669 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
670 // reloc--the same set of relocs for which we would pass NON_PIC_REF
671 // to the needs_dynamic_reloc function.
672
673 bool
674 use_plt_offset(bool is_non_pic_reference) const
675 {
676 // If the symbol doesn't have a PLT offset, then naturally we
677 // don't want to use it.
678 if (!this->has_plt_offset())
679 return false;
680
681 // If we are going to generate a dynamic relocation, then we will
682 // wind up using that, so no need to use the PLT entry.
683 if (this->needs_dynamic_reloc(FUNCTION_CALL
684 | (is_non_pic_reference
685 ? NON_PIC_REF
686 : 0)))
687 return false;
688
689 // If the symbol is from a dynamic object, we need to use the PLT
690 // entry.
691 if (this->is_from_dynobj())
692 return true;
693
694 // If we are generating a shared object, and this symbol is
695 // undefined or preemptible, we need to use the PLT entry.
696 if (parameters->options().shared()
697 && (this->is_undefined() || this->is_preemptible()))
698 return true;
699
700 // If this is a weak undefined symbol, we need to use the PLT
701 // entry; the symbol may be defined by a library loaded at
702 // runtime.
703 if (this->is_weak_undefined())
704 return true;
705
706 // Otherwise we can use the regular definition.
707 return false;
708 }
709
710 // Given a direct absolute static relocation against
711 // the global symbol, where a dynamic relocation is needed, this
712 // function returns whether a relative dynamic relocation can be used.
713 // The caller must determine separately whether the static relocation
714 // is compatible with a relative relocation.
715
716 bool
717 can_use_relative_reloc(bool is_function_call) const
718 {
719 // A function call that can branch to a local PLT entry can
720 // use a RELATIVE relocation.
721 if (is_function_call && this->has_plt_offset())
722 return true;
723
724 // A reference to a symbol defined in a dynamic object or to a
725 // symbol that is preemptible can not use a RELATIVE relocaiton.
726 if (this->is_from_dynobj()
727 || this->is_undefined()
728 || this->is_preemptible())
729 return false;
730
731 // For all other cases, return TRUE.
732 return true;
733 }
734
735 // Return the output section where this symbol is defined. Return
736 // NULL if the symbol has an absolute value.
737 Output_section*
738 output_section() const;
739
740 // Set the symbol's output section. This is used for symbols
741 // defined in scripts. This should only be called after the symbol
742 // table has been finalized.
743 void
744 set_output_section(Output_section*);
745
746 // Return whether there should be a warning for references to this
747 // symbol.
748 bool
749 has_warning() const
750 { return this->has_warning_; }
751
752 // Mark this symbol as having a warning.
753 void
754 set_has_warning()
755 { this->has_warning_ = true; }
756
757 // Return whether this symbol is defined by a COPY reloc from a
758 // dynamic object.
759 bool
760 is_copied_from_dynobj() const
761 { return this->is_copied_from_dynobj_; }
762
763 // Mark this symbol as defined by a COPY reloc.
764 void
765 set_is_copied_from_dynobj()
766 { this->is_copied_from_dynobj_ = true; }
767
768 // Return whether this symbol is forced to visibility STB_LOCAL
769 // by a "local:" entry in a version script.
770 bool
771 is_forced_local() const
772 { return this->is_forced_local_; }
773
774 // Mark this symbol as forced to STB_LOCAL visibility.
775 void
776 set_is_forced_local()
777 { this->is_forced_local_ = true; }
778
779 // Return true if this may need a COPY relocation.
780 // References from an executable object to non-function symbols
781 // defined in a dynamic object may need a COPY relocation.
782 bool
783 may_need_copy_reloc() const
784 {
785 return (!parameters->options().shared()
786 && parameters->options().copyreloc()
787 && this->is_from_dynobj()
788 && !this->is_func());
789 }
790
791 protected:
792 // Instances of this class should always be created at a specific
793 // size.
794 Symbol()
795 { memset(this, 0, sizeof *this); }
796
797 // Initialize the general fields.
798 void
799 init_fields(const char* name, const char* version,
800 elfcpp::STT type, elfcpp::STB binding,
801 elfcpp::STV visibility, unsigned char nonvis);
802
803 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
804 // section index, IS_ORDINARY is whether it is a normal section
805 // index rather than a special code.
806 template<int size, bool big_endian>
807 void
808 init_base_object(const char *name, const char* version, Object* object,
809 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
810 bool is_ordinary);
811
812 // Initialize fields for an Output_data.
813 void
814 init_base_output_data(const char* name, const char* version, Output_data*,
815 elfcpp::STT, elfcpp::STB, elfcpp::STV,
816 unsigned char nonvis, bool offset_is_from_end);
817
818 // Initialize fields for an Output_segment.
819 void
820 init_base_output_segment(const char* name, const char* version,
821 Output_segment* os, elfcpp::STT type,
822 elfcpp::STB binding, elfcpp::STV visibility,
823 unsigned char nonvis,
824 Segment_offset_base offset_base);
825
826 // Initialize fields for a constant.
827 void
828 init_base_constant(const char* name, const char* version, elfcpp::STT type,
829 elfcpp::STB binding, elfcpp::STV visibility,
830 unsigned char nonvis);
831
832 // Initialize fields for an undefined symbol.
833 void
834 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
835 elfcpp::STB binding, elfcpp::STV visibility,
836 unsigned char nonvis);
837
838 // Override existing symbol.
839 template<int size, bool big_endian>
840 void
841 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
842 bool is_ordinary, Object* object, const char* version);
843
844 // Override existing symbol with a special symbol.
845 void
846 override_base_with_special(const Symbol* from);
847
848 // Override symbol version.
849 void
850 override_version(const char* version);
851
852 // Allocate a common symbol by giving it a location in the output
853 // file.
854 void
855 allocate_base_common(Output_data*);
856
857 private:
858 Symbol(const Symbol&);
859 Symbol& operator=(const Symbol&);
860
861 // Symbol name (expected to point into a Stringpool).
862 const char* name_;
863 // Symbol version (expected to point into a Stringpool). This may
864 // be NULL.
865 const char* version_;
866
867 union
868 {
869 // This struct is used if SOURCE_ == FROM_OBJECT.
870 struct
871 {
872 // Object in which symbol is defined, or in which it was first
873 // seen.
874 Object* object;
875 // Section number in object_ in which symbol is defined.
876 unsigned int shndx;
877 } from_object;
878
879 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
880 struct
881 {
882 // Output_data in which symbol is defined. Before
883 // Layout::finalize the symbol's value is an offset within the
884 // Output_data.
885 Output_data* output_data;
886 // True if the offset is from the end, false if the offset is
887 // from the beginning.
888 bool offset_is_from_end;
889 } in_output_data;
890
891 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
892 struct
893 {
894 // Output_segment in which the symbol is defined. Before
895 // Layout::finalize the symbol's value is an offset.
896 Output_segment* output_segment;
897 // The base to use for the offset before Layout::finalize.
898 Segment_offset_base offset_base;
899 } in_output_segment;
900 } u_;
901
902 // The index of this symbol in the output file. If the symbol is
903 // not going into the output file, this value is -1U. This field
904 // starts as always holding zero. It is set to a non-zero value by
905 // Symbol_table::finalize.
906 unsigned int symtab_index_;
907
908 // The index of this symbol in the dynamic symbol table. If the
909 // symbol is not going into the dynamic symbol table, this value is
910 // -1U. This field starts as always holding zero. It is set to a
911 // non-zero value during Layout::finalize.
912 unsigned int dynsym_index_;
913
914 // The GOT section entries for this symbol. A symbol may have more
915 // than one GOT offset (e.g., when mixing modules compiled with two
916 // different TLS models), but will usually have at most one.
917 Got_offset_list got_offsets_;
918
919 // If this symbol has an entry in the PLT section, then this is the
920 // offset from the start of the PLT section. This is -1U if there
921 // is no PLT entry.
922 unsigned int plt_offset_;
923
924 // Symbol type (bits 0 to 3).
925 elfcpp::STT type_ : 4;
926 // Symbol binding (bits 4 to 7).
927 elfcpp::STB binding_ : 4;
928 // Symbol visibility (bits 8 to 9).
929 elfcpp::STV visibility_ : 2;
930 // Rest of symbol st_other field (bits 10 to 15).
931 unsigned int nonvis_ : 6;
932 // The type of symbol (bits 16 to 18).
933 Source source_ : 3;
934 // True if this is the default version of the symbol (bit 19).
935 bool is_def_ : 1;
936 // True if this symbol really forwards to another symbol. This is
937 // used when we discover after the fact that two different entries
938 // in the hash table really refer to the same symbol. This will
939 // never be set for a symbol found in the hash table, but may be set
940 // for a symbol found in the list of symbols attached to an Object.
941 // It forwards to the symbol found in the forwarders_ map of
942 // Symbol_table (bit 20).
943 bool is_forwarder_ : 1;
944 // True if the symbol has an alias in the weak_aliases table in
945 // Symbol_table (bit 21).
946 bool has_alias_ : 1;
947 // True if this symbol needs to be in the dynamic symbol table (bit
948 // 22).
949 bool needs_dynsym_entry_ : 1;
950 // True if we've seen this symbol in a regular object (bit 23).
951 bool in_reg_ : 1;
952 // True if we've seen this symbol in a dynamic object (bit 24).
953 bool in_dyn_ : 1;
954 // True if this is a dynamic symbol which needs a special value in
955 // the dynamic symbol table (bit 25).
956 bool needs_dynsym_value_ : 1;
957 // True if there is a warning for this symbol (bit 26).
958 bool has_warning_ : 1;
959 // True if we are using a COPY reloc for this symbol, so that the
960 // real definition lives in a dynamic object (bit 27).
961 bool is_copied_from_dynobj_ : 1;
962 // True if this symbol was forced to local visibility by a version
963 // script (bit 28).
964 bool is_forced_local_ : 1;
965 // True if the field u_.from_object.shndx is an ordinary section
966 // index, not one of the special codes from SHN_LORESERVE to
967 // SHN_HIRESERVE (bit 29).
968 bool is_ordinary_shndx_ : 1;
969 // True if we've seen this symbol in a real ELF object (bit 30).
970 bool in_real_elf_ : 1;
971 // True if this symbol is defined in a section which was discarded
972 // (bit 31).
973 bool is_defined_in_discarded_section_ : 1;
974 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
975 bool undef_binding_set_ : 1;
976 // True if this symbol was a weak undef resolved by a dynamic def
977 // (bit 33).
978 bool undef_binding_weak_ : 1;
979 };
980
981 // The parts of a symbol which are size specific. Using a template
982 // derived class like this helps us use less space on a 32-bit system.
983
984 template<int size>
985 class Sized_symbol : public Symbol
986 {
987 public:
988 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
989 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
990
991 Sized_symbol()
992 { }
993
994 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
995 // section index, IS_ORDINARY is whether it is a normal section
996 // index rather than a special code.
997 template<bool big_endian>
998 void
999 init_object(const char *name, const char* version, Object* object,
1000 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1001 bool is_ordinary);
1002
1003 // Initialize fields for an Output_data.
1004 void
1005 init_output_data(const char* name, const char* version, Output_data*,
1006 Value_type value, Size_type symsize, elfcpp::STT,
1007 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1008 bool offset_is_from_end);
1009
1010 // Initialize fields for an Output_segment.
1011 void
1012 init_output_segment(const char* name, const char* version, Output_segment*,
1013 Value_type value, Size_type symsize, elfcpp::STT,
1014 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1015 Segment_offset_base offset_base);
1016
1017 // Initialize fields for a constant.
1018 void
1019 init_constant(const char* name, const char* version, Value_type value,
1020 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1021 unsigned char nonvis);
1022
1023 // Initialize fields for an undefined symbol.
1024 void
1025 init_undefined(const char* name, const char* version, elfcpp::STT,
1026 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1027
1028 // Override existing symbol.
1029 template<bool big_endian>
1030 void
1031 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1032 bool is_ordinary, Object* object, const char* version);
1033
1034 // Override existing symbol with a special symbol.
1035 void
1036 override_with_special(const Sized_symbol<size>*);
1037
1038 // Return the symbol's value.
1039 Value_type
1040 value() const
1041 { return this->value_; }
1042
1043 // Return the symbol's size (we can't call this 'size' because that
1044 // is a template parameter).
1045 Size_type
1046 symsize() const
1047 { return this->symsize_; }
1048
1049 // Set the symbol size. This is used when resolving common symbols.
1050 void
1051 set_symsize(Size_type symsize)
1052 { this->symsize_ = symsize; }
1053
1054 // Set the symbol value. This is called when we store the final
1055 // values of the symbols into the symbol table.
1056 void
1057 set_value(Value_type value)
1058 { this->value_ = value; }
1059
1060 // Allocate a common symbol by giving it a location in the output
1061 // file.
1062 void
1063 allocate_common(Output_data*, Value_type value);
1064
1065 private:
1066 Sized_symbol(const Sized_symbol&);
1067 Sized_symbol& operator=(const Sized_symbol&);
1068
1069 // Symbol value. Before Layout::finalize this is the offset in the
1070 // input section. This is set to the final value during
1071 // Layout::finalize.
1072 Value_type value_;
1073 // Symbol size.
1074 Size_type symsize_;
1075 };
1076
1077 // A struct describing a symbol defined by the linker, where the value
1078 // of the symbol is defined based on an output section. This is used
1079 // for symbols defined by the linker, like "_init_array_start".
1080
1081 struct Define_symbol_in_section
1082 {
1083 // The symbol name.
1084 const char* name;
1085 // The name of the output section with which this symbol should be
1086 // associated. If there is no output section with that name, the
1087 // symbol will be defined as zero.
1088 const char* output_section;
1089 // The offset of the symbol within the output section. This is an
1090 // offset from the start of the output section, unless start_at_end
1091 // is true, in which case this is an offset from the end of the
1092 // output section.
1093 uint64_t value;
1094 // The size of the symbol.
1095 uint64_t size;
1096 // The symbol type.
1097 elfcpp::STT type;
1098 // The symbol binding.
1099 elfcpp::STB binding;
1100 // The symbol visibility.
1101 elfcpp::STV visibility;
1102 // The rest of the st_other field.
1103 unsigned char nonvis;
1104 // If true, the value field is an offset from the end of the output
1105 // section.
1106 bool offset_is_from_end;
1107 // If true, this symbol is defined only if we see a reference to it.
1108 bool only_if_ref;
1109 };
1110
1111 // A struct describing a symbol defined by the linker, where the value
1112 // of the symbol is defined based on a segment. This is used for
1113 // symbols defined by the linker, like "_end". We describe the
1114 // segment with which the symbol should be associated by its
1115 // characteristics. If no segment meets these characteristics, the
1116 // symbol will be defined as zero. If there is more than one segment
1117 // which meets these characteristics, we will use the first one.
1118
1119 struct Define_symbol_in_segment
1120 {
1121 // The symbol name.
1122 const char* name;
1123 // The segment type where the symbol should be defined, typically
1124 // PT_LOAD.
1125 elfcpp::PT segment_type;
1126 // Bitmask of segment flags which must be set.
1127 elfcpp::PF segment_flags_set;
1128 // Bitmask of segment flags which must be clear.
1129 elfcpp::PF segment_flags_clear;
1130 // The offset of the symbol within the segment. The offset is
1131 // calculated from the position set by offset_base.
1132 uint64_t value;
1133 // The size of the symbol.
1134 uint64_t size;
1135 // The symbol type.
1136 elfcpp::STT type;
1137 // The symbol binding.
1138 elfcpp::STB binding;
1139 // The symbol visibility.
1140 elfcpp::STV visibility;
1141 // The rest of the st_other field.
1142 unsigned char nonvis;
1143 // The base from which we compute the offset.
1144 Symbol::Segment_offset_base offset_base;
1145 // If true, this symbol is defined only if we see a reference to it.
1146 bool only_if_ref;
1147 };
1148
1149 // This class manages warnings. Warnings are a GNU extension. When
1150 // we see a section named .gnu.warning.SYM in an object file, and if
1151 // we wind using the definition of SYM from that object file, then we
1152 // will issue a warning for any relocation against SYM from a
1153 // different object file. The text of the warning is the contents of
1154 // the section. This is not precisely the definition used by the old
1155 // GNU linker; the old GNU linker treated an occurrence of
1156 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1157 // would trigger a warning on any reference. However, it was
1158 // inconsistent in that a warning in a dynamic object only triggered
1159 // if there was no definition in a regular object. This linker is
1160 // different in that we only issue a warning if we use the symbol
1161 // definition from the same object file as the warning section.
1162
1163 class Warnings
1164 {
1165 public:
1166 Warnings()
1167 : warnings_()
1168 { }
1169
1170 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1171 // of the warning.
1172 void
1173 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1174 const std::string& warning);
1175
1176 // For each symbol for which we should give a warning, make a note
1177 // on the symbol.
1178 void
1179 note_warnings(Symbol_table* symtab);
1180
1181 // Issue a warning for a reference to SYM at RELINFO's location.
1182 template<int size, bool big_endian>
1183 void
1184 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1185 size_t relnum, off_t reloffset) const;
1186
1187 private:
1188 Warnings(const Warnings&);
1189 Warnings& operator=(const Warnings&);
1190
1191 // What we need to know to get the warning text.
1192 struct Warning_location
1193 {
1194 // The object the warning is in.
1195 Object* object;
1196 // The warning text.
1197 std::string text;
1198
1199 Warning_location()
1200 : object(NULL), text()
1201 { }
1202
1203 void
1204 set(Object* o, const std::string& t)
1205 {
1206 this->object = o;
1207 this->text = t;
1208 }
1209 };
1210
1211 // A mapping from warning symbol names (canonicalized in
1212 // Symbol_table's namepool_ field) to warning information.
1213 typedef Unordered_map<const char*, Warning_location> Warning_table;
1214
1215 Warning_table warnings_;
1216 };
1217
1218 // The main linker symbol table.
1219
1220 class Symbol_table
1221 {
1222 public:
1223 // The different places where a symbol definition can come from.
1224 enum Defined
1225 {
1226 // Defined in an object file--the normal case.
1227 OBJECT,
1228 // Defined for a COPY reloc.
1229 COPY,
1230 // Defined on the command line using --defsym.
1231 DEFSYM,
1232 // Defined (so to speak) on the command line using -u.
1233 UNDEFINED,
1234 // Defined in a linker script.
1235 SCRIPT,
1236 // Predefined by the linker.
1237 PREDEFINED,
1238 };
1239
1240 // The order in which we sort common symbols.
1241 enum Sort_commons_order
1242 {
1243 SORT_COMMONS_BY_SIZE_DESCENDING,
1244 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1245 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1246 };
1247
1248 // COUNT is an estimate of how many symbosl will be inserted in the
1249 // symbol table. It's ok to put 0 if you don't know; a correct
1250 // guess will just save some CPU by reducing hashtable resizes.
1251 Symbol_table(unsigned int count, const Version_script_info& version_script);
1252
1253 ~Symbol_table();
1254
1255 void
1256 set_icf(Icf* icf)
1257 { this->icf_ = icf;}
1258
1259 Icf*
1260 icf() const
1261 { return this->icf_; }
1262
1263 // Returns true if ICF determined that this is a duplicate section.
1264 bool
1265 is_section_folded(Object* obj, unsigned int shndx) const;
1266
1267 void
1268 set_gc(Garbage_collection* gc)
1269 { this->gc_ = gc; }
1270
1271 Garbage_collection*
1272 gc() const
1273 { return this->gc_; }
1274
1275 // During garbage collection, this keeps undefined symbols.
1276 void
1277 gc_mark_undef_symbols(Layout*);
1278
1279 // During garbage collection, this ensures externally visible symbols
1280 // are not treated as garbage while building shared objects.
1281 void
1282 gc_mark_symbol_for_shlib(Symbol* sym);
1283
1284 // During garbage collection, this keeps sections that correspond to
1285 // symbols seen in dynamic objects.
1286 inline void
1287 gc_mark_dyn_syms(Symbol* sym);
1288
1289 // Add COUNT external symbols from the relocatable object RELOBJ to
1290 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1291 // offset in the symbol table of the first symbol, SYM_NAMES is
1292 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1293 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1294 // *DEFINED to the number of defined symbols.
1295 template<int size, bool big_endian>
1296 void
1297 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1298 const unsigned char* syms, size_t count,
1299 size_t symndx_offset, const char* sym_names,
1300 size_t sym_name_size,
1301 typename Sized_relobj<size, big_endian>::Symbols*,
1302 size_t* defined);
1303
1304 // Add one external symbol from the plugin object OBJ to the symbol table.
1305 // Returns a pointer to the resolved symbol in the symbol table.
1306 template<int size, bool big_endian>
1307 Symbol*
1308 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1309 const char* name, const char* ver,
1310 elfcpp::Sym<size, big_endian>* sym);
1311
1312 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1313 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1314 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1315 // symbol version data.
1316 template<int size, bool big_endian>
1317 void
1318 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1319 const unsigned char* syms, size_t count,
1320 const char* sym_names, size_t sym_name_size,
1321 const unsigned char* versym, size_t versym_size,
1322 const std::vector<const char*>*,
1323 typename Sized_relobj<size, big_endian>::Symbols*,
1324 size_t* defined);
1325
1326 // Define a special symbol based on an Output_data. It is a
1327 // multiple definition error if this symbol is already defined.
1328 Symbol*
1329 define_in_output_data(const char* name, const char* version, Defined,
1330 Output_data*, uint64_t value, uint64_t symsize,
1331 elfcpp::STT type, elfcpp::STB binding,
1332 elfcpp::STV visibility, unsigned char nonvis,
1333 bool offset_is_from_end, bool only_if_ref);
1334
1335 // Define a special symbol based on an Output_segment. It is a
1336 // multiple definition error if this symbol is already defined.
1337 Symbol*
1338 define_in_output_segment(const char* name, const char* version, Defined,
1339 Output_segment*, uint64_t value, uint64_t symsize,
1340 elfcpp::STT type, elfcpp::STB binding,
1341 elfcpp::STV visibility, unsigned char nonvis,
1342 Symbol::Segment_offset_base, bool only_if_ref);
1343
1344 // Define a special symbol with a constant value. It is a multiple
1345 // definition error if this symbol is already defined.
1346 Symbol*
1347 define_as_constant(const char* name, const char* version, Defined,
1348 uint64_t value, uint64_t symsize, elfcpp::STT type,
1349 elfcpp::STB binding, elfcpp::STV visibility,
1350 unsigned char nonvis, bool only_if_ref,
1351 bool force_override);
1352
1353 // Define a set of symbols in output sections. If ONLY_IF_REF is
1354 // true, only define them if they are referenced.
1355 void
1356 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1357 bool only_if_ref);
1358
1359 // Define a set of symbols in output segments. If ONLY_IF_REF is
1360 // true, only defined them if they are referenced.
1361 void
1362 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1363 bool only_if_ref);
1364
1365 // Define SYM using a COPY reloc. POSD is the Output_data where the
1366 // symbol should be defined--typically a .dyn.bss section. VALUE is
1367 // the offset within POSD.
1368 template<int size>
1369 void
1370 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1371 typename elfcpp::Elf_types<size>::Elf_Addr);
1372
1373 // Look up a symbol.
1374 Symbol*
1375 lookup(const char*, const char* version = NULL) const;
1376
1377 // Return the real symbol associated with the forwarder symbol FROM.
1378 Symbol*
1379 resolve_forwards(const Symbol* from) const;
1380
1381 // Return the sized version of a symbol in this table.
1382 template<int size>
1383 Sized_symbol<size>*
1384 get_sized_symbol(Symbol*) const;
1385
1386 template<int size>
1387 const Sized_symbol<size>*
1388 get_sized_symbol(const Symbol*) const;
1389
1390 // Return the count of undefined symbols seen.
1391 size_t
1392 saw_undefined() const
1393 { return this->saw_undefined_; }
1394
1395 // Allocate the common symbols
1396 void
1397 allocate_commons(Layout*, Mapfile*);
1398
1399 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1400 // of the warning.
1401 void
1402 add_warning(const char* name, Object* obj, const std::string& warning)
1403 { this->warnings_.add_warning(this, name, obj, warning); }
1404
1405 // Canonicalize a symbol name for use in the hash table.
1406 const char*
1407 canonicalize_name(const char* name)
1408 { return this->namepool_.add(name, true, NULL); }
1409
1410 // Possibly issue a warning for a reference to SYM at LOCATION which
1411 // is in OBJ.
1412 template<int size, bool big_endian>
1413 void
1414 issue_warning(const Symbol* sym,
1415 const Relocate_info<size, big_endian>* relinfo,
1416 size_t relnum, off_t reloffset) const
1417 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1418
1419 // Check candidate_odr_violations_ to find symbols with the same name
1420 // but apparently different definitions (different source-file/line-no).
1421 void
1422 detect_odr_violations(const Task*, const char* output_file_name) const;
1423
1424 // Add any undefined symbols named on the command line to the symbol
1425 // table.
1426 void
1427 add_undefined_symbols_from_command_line(Layout*);
1428
1429 // SYM is defined using a COPY reloc. Return the dynamic object
1430 // where the original definition was found.
1431 Dynobj*
1432 get_copy_source(const Symbol* sym) const;
1433
1434 // Set the dynamic symbol indexes. INDEX is the index of the first
1435 // global dynamic symbol. Pointers to the symbols are stored into
1436 // the vector. The names are stored into the Stringpool. This
1437 // returns an updated dynamic symbol index.
1438 unsigned int
1439 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1440 Stringpool*, Versions*);
1441
1442 // Finalize the symbol table after we have set the final addresses
1443 // of all the input sections. This sets the final symbol indexes,
1444 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1445 // index of the first global symbol. OFF is the file offset of the
1446 // global symbol table, DYNOFF is the offset of the globals in the
1447 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1448 // global dynamic symbol, and DYNCOUNT is the number of global
1449 // dynamic symbols. This records the parameters, and returns the
1450 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1451 // local symbols.
1452 off_t
1453 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1454 Stringpool* pool, unsigned int *plocal_symcount);
1455
1456 // Status code of Symbol_table::compute_final_value.
1457 enum Compute_final_value_status
1458 {
1459 // No error.
1460 CFVS_OK,
1461 // Unspported symbol section.
1462 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1463 // No output section.
1464 CFVS_NO_OUTPUT_SECTION
1465 };
1466
1467 // Compute the final value of SYM and store status in location PSTATUS.
1468 // During relaxation, this may be called multiple times for a symbol to
1469 // compute its would-be final value in each relaxation pass.
1470
1471 template<int size>
1472 typename Sized_symbol<size>::Value_type
1473 compute_final_value(const Sized_symbol<size>* sym,
1474 Compute_final_value_status* pstatus) const;
1475
1476 // Return the index of the first global symbol.
1477 unsigned int
1478 first_global_index() const
1479 { return this->first_global_index_; }
1480
1481 // Return the total number of symbols in the symbol table.
1482 unsigned int
1483 output_count() const
1484 { return this->output_count_; }
1485
1486 // Write out the global symbols.
1487 void
1488 write_globals(const Stringpool*, const Stringpool*,
1489 Output_symtab_xindex*, Output_symtab_xindex*,
1490 Output_file*) const;
1491
1492 // Write out a section symbol. Return the updated offset.
1493 void
1494 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1495 Output_file*, off_t) const;
1496
1497 // Loop over all symbols, applying the function F to each.
1498 template<int size, typename F>
1499 void
1500 for_all_symbols(F f) const
1501 {
1502 for (Symbol_table_type::const_iterator p = this->table_.begin();
1503 p != this->table_.end();
1504 ++p)
1505 {
1506 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1507 f(sym);
1508 }
1509 }
1510
1511 // Dump statistical information to stderr.
1512 void
1513 print_stats() const;
1514
1515 // Return the version script information.
1516 const Version_script_info&
1517 version_script() const
1518 { return version_script_; }
1519
1520 private:
1521 Symbol_table(const Symbol_table&);
1522 Symbol_table& operator=(const Symbol_table&);
1523
1524 // The type of the list of common symbols.
1525 typedef std::vector<Symbol*> Commons_type;
1526
1527 // The type of the symbol hash table.
1528
1529 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1530
1531 struct Symbol_table_hash
1532 {
1533 size_t
1534 operator()(const Symbol_table_key&) const;
1535 };
1536
1537 struct Symbol_table_eq
1538 {
1539 bool
1540 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1541 };
1542
1543 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1544 Symbol_table_eq> Symbol_table_type;
1545
1546 // Make FROM a forwarder symbol to TO.
1547 void
1548 make_forwarder(Symbol* from, Symbol* to);
1549
1550 // Add a symbol.
1551 template<int size, bool big_endian>
1552 Sized_symbol<size>*
1553 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1554 const char *version, Stringpool::Key version_key,
1555 bool def, const elfcpp::Sym<size, big_endian>& sym,
1556 unsigned int st_shndx, bool is_ordinary,
1557 unsigned int orig_st_shndx);
1558
1559 // Define a default symbol.
1560 template<int size, bool big_endian>
1561 void
1562 define_default_version(Sized_symbol<size>*, bool,
1563 Symbol_table_type::iterator);
1564
1565 // Resolve symbols.
1566 template<int size, bool big_endian>
1567 void
1568 resolve(Sized_symbol<size>* to,
1569 const elfcpp::Sym<size, big_endian>& sym,
1570 unsigned int st_shndx, bool is_ordinary,
1571 unsigned int orig_st_shndx,
1572 Object*, const char* version);
1573
1574 template<int size, bool big_endian>
1575 void
1576 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1577
1578 // Record that a symbol is forced to be local by a version script or
1579 // by visibility.
1580 void
1581 force_local(Symbol*);
1582
1583 // Adjust NAME and *NAME_KEY for wrapping.
1584 const char*
1585 wrap_symbol(const char* name, Stringpool::Key* name_key);
1586
1587 // Whether we should override a symbol, based on flags in
1588 // resolve.cc.
1589 static bool
1590 should_override(const Symbol*, unsigned int, Defined, Object*, bool*, bool*);
1591
1592 // Report a problem in symbol resolution.
1593 static void
1594 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1595 Defined, Object* object);
1596
1597 // Override a symbol.
1598 template<int size, bool big_endian>
1599 void
1600 override(Sized_symbol<size>* tosym,
1601 const elfcpp::Sym<size, big_endian>& fromsym,
1602 unsigned int st_shndx, bool is_ordinary,
1603 Object* object, const char* version);
1604
1605 // Whether we should override a symbol with a special symbol which
1606 // is automatically defined by the linker.
1607 static bool
1608 should_override_with_special(const Symbol*, Defined);
1609
1610 // Override a symbol with a special symbol.
1611 template<int size>
1612 void
1613 override_with_special(Sized_symbol<size>* tosym,
1614 const Sized_symbol<size>* fromsym);
1615
1616 // Record all weak alias sets for a dynamic object.
1617 template<int size>
1618 void
1619 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1620
1621 // Define a special symbol.
1622 template<int size, bool big_endian>
1623 Sized_symbol<size>*
1624 define_special_symbol(const char** pname, const char** pversion,
1625 bool only_if_ref, Sized_symbol<size>** poldsym,
1626 bool* resolve_oldsym);
1627
1628 // Define a symbol in an Output_data, sized version.
1629 template<int size>
1630 Sized_symbol<size>*
1631 do_define_in_output_data(const char* name, const char* version, Defined,
1632 Output_data*,
1633 typename elfcpp::Elf_types<size>::Elf_Addr value,
1634 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1635 elfcpp::STT type, elfcpp::STB binding,
1636 elfcpp::STV visibility, unsigned char nonvis,
1637 bool offset_is_from_end, bool only_if_ref);
1638
1639 // Define a symbol in an Output_segment, sized version.
1640 template<int size>
1641 Sized_symbol<size>*
1642 do_define_in_output_segment(
1643 const char* name, const char* version, Defined, Output_segment* os,
1644 typename elfcpp::Elf_types<size>::Elf_Addr value,
1645 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1646 elfcpp::STT type, elfcpp::STB binding,
1647 elfcpp::STV visibility, unsigned char nonvis,
1648 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1649
1650 // Define a symbol as a constant, sized version.
1651 template<int size>
1652 Sized_symbol<size>*
1653 do_define_as_constant(
1654 const char* name, const char* version, Defined,
1655 typename elfcpp::Elf_types<size>::Elf_Addr value,
1656 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1657 elfcpp::STT type, elfcpp::STB binding,
1658 elfcpp::STV visibility, unsigned char nonvis,
1659 bool only_if_ref, bool force_override);
1660
1661 // Add any undefined symbols named on the command line to the symbol
1662 // table, sized version.
1663 template<int size>
1664 void
1665 do_add_undefined_symbols_from_command_line(Layout*);
1666
1667 // Add one undefined symbol.
1668 template<int size>
1669 void
1670 add_undefined_symbol_from_command_line(const char* name);
1671
1672 // Types of common symbols.
1673
1674 enum Commons_section_type
1675 {
1676 COMMONS_NORMAL,
1677 COMMONS_TLS,
1678 COMMONS_SMALL,
1679 COMMONS_LARGE
1680 };
1681
1682 // Allocate the common symbols, sized version.
1683 template<int size>
1684 void
1685 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1686
1687 // Allocate the common symbols from one list.
1688 template<int size>
1689 void
1690 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1691 Mapfile*, Sort_commons_order);
1692
1693 // Implement detect_odr_violations.
1694 template<int size, bool big_endian>
1695 void
1696 sized_detect_odr_violations() const;
1697
1698 // Finalize symbols specialized for size.
1699 template<int size>
1700 off_t
1701 sized_finalize(off_t, Stringpool*, unsigned int*);
1702
1703 // Finalize a symbol. Return whether it should be added to the
1704 // symbol table.
1705 template<int size>
1706 bool
1707 sized_finalize_symbol(Symbol*);
1708
1709 // Add a symbol the final symtab by setting its index.
1710 template<int size>
1711 void
1712 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1713
1714 // Write globals specialized for size and endianness.
1715 template<int size, bool big_endian>
1716 void
1717 sized_write_globals(const Stringpool*, const Stringpool*,
1718 Output_symtab_xindex*, Output_symtab_xindex*,
1719 Output_file*) const;
1720
1721 // Write out a symbol to P.
1722 template<int size, bool big_endian>
1723 void
1724 sized_write_symbol(Sized_symbol<size>*,
1725 typename elfcpp::Elf_types<size>::Elf_Addr value,
1726 unsigned int shndx, elfcpp::STB,
1727 const Stringpool*, unsigned char* p) const;
1728
1729 // Possibly warn about an undefined symbol from a dynamic object.
1730 void
1731 warn_about_undefined_dynobj_symbol(Symbol*) const;
1732
1733 // Write out a section symbol, specialized for size and endianness.
1734 template<int size, bool big_endian>
1735 void
1736 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1737 Output_file*, off_t) const;
1738
1739 // The type of the list of symbols which have been forced local.
1740 typedef std::vector<Symbol*> Forced_locals;
1741
1742 // A map from symbols with COPY relocs to the dynamic objects where
1743 // they are defined.
1744 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1745
1746 // A map from symbol name (as a pointer into the namepool) to all
1747 // the locations the symbols is (weakly) defined (and certain other
1748 // conditions are met). This map will be used later to detect
1749 // possible One Definition Rule (ODR) violations.
1750 struct Symbol_location
1751 {
1752 Object* object; // Object where the symbol is defined.
1753 unsigned int shndx; // Section-in-object where the symbol is defined.
1754 off_t offset; // Offset-in-section where the symbol is defined.
1755 bool operator==(const Symbol_location& that) const
1756 {
1757 return (this->object == that.object
1758 && this->shndx == that.shndx
1759 && this->offset == that.offset);
1760 }
1761 };
1762
1763 struct Symbol_location_hash
1764 {
1765 size_t operator()(const Symbol_location& loc) const
1766 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1767 };
1768
1769 typedef Unordered_map<const char*,
1770 Unordered_set<Symbol_location, Symbol_location_hash> >
1771 Odr_map;
1772
1773 // We increment this every time we see a new undefined symbol, for
1774 // use in archive groups.
1775 size_t saw_undefined_;
1776 // The index of the first global symbol in the output file.
1777 unsigned int first_global_index_;
1778 // The file offset within the output symtab section where we should
1779 // write the table.
1780 off_t offset_;
1781 // The number of global symbols we want to write out.
1782 unsigned int output_count_;
1783 // The file offset of the global dynamic symbols, or 0 if none.
1784 off_t dynamic_offset_;
1785 // The index of the first global dynamic symbol.
1786 unsigned int first_dynamic_global_index_;
1787 // The number of global dynamic symbols, or 0 if none.
1788 unsigned int dynamic_count_;
1789 // The symbol hash table.
1790 Symbol_table_type table_;
1791 // A pool of symbol names. This is used for all global symbols.
1792 // Entries in the hash table point into this pool.
1793 Stringpool namepool_;
1794 // Forwarding symbols.
1795 Unordered_map<const Symbol*, Symbol*> forwarders_;
1796 // Weak aliases. A symbol in this list points to the next alias.
1797 // The aliases point to each other in a circular list.
1798 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1799 // We don't expect there to be very many common symbols, so we keep
1800 // a list of them. When we find a common symbol we add it to this
1801 // list. It is possible that by the time we process the list the
1802 // symbol is no longer a common symbol. It may also have become a
1803 // forwarder.
1804 Commons_type commons_;
1805 // This is like the commons_ field, except that it holds TLS common
1806 // symbols.
1807 Commons_type tls_commons_;
1808 // This is for small common symbols.
1809 Commons_type small_commons_;
1810 // This is for large common symbols.
1811 Commons_type large_commons_;
1812 // A list of symbols which have been forced to be local. We don't
1813 // expect there to be very many of them, so we keep a list of them
1814 // rather than walking the whole table to find them.
1815 Forced_locals forced_locals_;
1816 // Manage symbol warnings.
1817 Warnings warnings_;
1818 // Manage potential One Definition Rule (ODR) violations.
1819 Odr_map candidate_odr_violations_;
1820
1821 // When we emit a COPY reloc for a symbol, we define it in an
1822 // Output_data. When it's time to emit version information for it,
1823 // we need to know the dynamic object in which we found the original
1824 // definition. This maps symbols with COPY relocs to the dynamic
1825 // object where they were defined.
1826 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1827 // Information parsed from the version script, if any.
1828 const Version_script_info& version_script_;
1829 Garbage_collection* gc_;
1830 Icf* icf_;
1831 };
1832
1833 // We inline get_sized_symbol for efficiency.
1834
1835 template<int size>
1836 Sized_symbol<size>*
1837 Symbol_table::get_sized_symbol(Symbol* sym) const
1838 {
1839 gold_assert(size == parameters->target().get_size());
1840 return static_cast<Sized_symbol<size>*>(sym);
1841 }
1842
1843 template<int size>
1844 const Sized_symbol<size>*
1845 Symbol_table::get_sized_symbol(const Symbol* sym) const
1846 {
1847 gold_assert(size == parameters->target().get_size());
1848 return static_cast<const Sized_symbol<size>*>(sym);
1849 }
1850
1851 } // End namespace gold.
1852
1853 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.071807 seconds and 5 git commands to generate.