PR 10860
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 class Versions;
52 class Version_script_info;
53 class Input_objects;
54 class Output_data;
55 class Output_section;
56 class Output_segment;
57 class Output_file;
58 class Output_symtab_xindex;
59 class Garbage_collection;
60 class Icf;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return the symbol visibility.
209 elfcpp::STV
210 visibility() const
211 { return this->visibility_; }
212
213 // Set the visibility.
214 void
215 set_visibility(elfcpp::STV visibility)
216 { this->visibility_ = visibility; }
217
218 // Override symbol visibility.
219 void
220 override_visibility(elfcpp::STV);
221
222 // Return the non-visibility part of the st_other field.
223 unsigned char
224 nonvis() const
225 { return this->nonvis_; }
226
227 // Return whether this symbol is a forwarder. This will never be
228 // true of a symbol found in the hash table, but may be true of
229 // symbol pointers attached to object files.
230 bool
231 is_forwarder() const
232 { return this->is_forwarder_; }
233
234 // Mark this symbol as a forwarder.
235 void
236 set_forwarder()
237 { this->is_forwarder_ = true; }
238
239 // Return whether this symbol has an alias in the weak aliases table
240 // in Symbol_table.
241 bool
242 has_alias() const
243 { return this->has_alias_; }
244
245 // Mark this symbol as having an alias.
246 void
247 set_has_alias()
248 { this->has_alias_ = true; }
249
250 // Return whether this symbol needs an entry in the dynamic symbol
251 // table.
252 bool
253 needs_dynsym_entry() const
254 {
255 return (this->needs_dynsym_entry_
256 || (this->in_reg() && this->in_dyn()));
257 }
258
259 // Mark this symbol as needing an entry in the dynamic symbol table.
260 void
261 set_needs_dynsym_entry()
262 { this->needs_dynsym_entry_ = true; }
263
264 // Return whether this symbol should be added to the dynamic symbol
265 // table.
266 bool
267 should_add_dynsym_entry() const;
268
269 // Return whether this symbol has been seen in a regular object.
270 bool
271 in_reg() const
272 { return this->in_reg_; }
273
274 // Mark this symbol as having been seen in a regular object.
275 void
276 set_in_reg()
277 { this->in_reg_ = true; }
278
279 // Return whether this symbol has been seen in a dynamic object.
280 bool
281 in_dyn() const
282 { return this->in_dyn_; }
283
284 // Mark this symbol as having been seen in a dynamic object.
285 void
286 set_in_dyn()
287 { this->in_dyn_ = true; }
288
289 // Return whether this symbol has been seen in a real ELF object.
290 // (IN_REG will return TRUE if the symbol has been seen in either
291 // a real ELF object or an object claimed by a plugin.)
292 bool
293 in_real_elf() const
294 { return this->in_real_elf_; }
295
296 // Mark this symbol as having been seen in a real ELF object.
297 void
298 set_in_real_elf()
299 { this->in_real_elf_ = true; }
300
301 // Return the index of this symbol in the output file symbol table.
302 // A value of -1U means that this symbol is not going into the
303 // output file. This starts out as zero, and is set to a non-zero
304 // value by Symbol_table::finalize. It is an error to ask for the
305 // symbol table index before it has been set.
306 unsigned int
307 symtab_index() const
308 {
309 gold_assert(this->symtab_index_ != 0);
310 return this->symtab_index_;
311 }
312
313 // Set the index of the symbol in the output file symbol table.
314 void
315 set_symtab_index(unsigned int index)
316 {
317 gold_assert(index != 0);
318 this->symtab_index_ = index;
319 }
320
321 // Return whether this symbol already has an index in the output
322 // file symbol table.
323 bool
324 has_symtab_index() const
325 { return this->symtab_index_ != 0; }
326
327 // Return the index of this symbol in the dynamic symbol table. A
328 // value of -1U means that this symbol is not going into the dynamic
329 // symbol table. This starts out as zero, and is set to a non-zero
330 // during Layout::finalize. It is an error to ask for the dynamic
331 // symbol table index before it has been set.
332 unsigned int
333 dynsym_index() const
334 {
335 gold_assert(this->dynsym_index_ != 0);
336 return this->dynsym_index_;
337 }
338
339 // Set the index of the symbol in the dynamic symbol table.
340 void
341 set_dynsym_index(unsigned int index)
342 {
343 gold_assert(index != 0);
344 this->dynsym_index_ = index;
345 }
346
347 // Return whether this symbol already has an index in the dynamic
348 // symbol table.
349 bool
350 has_dynsym_index() const
351 { return this->dynsym_index_ != 0; }
352
353 // Return whether this symbol has an entry in the GOT section.
354 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
355 bool
356 has_got_offset(unsigned int got_type) const
357 { return this->got_offsets_.get_offset(got_type) != -1U; }
358
359 // Return the offset into the GOT section of this symbol.
360 unsigned int
361 got_offset(unsigned int got_type) const
362 {
363 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
364 gold_assert(got_offset != -1U);
365 return got_offset;
366 }
367
368 // Set the GOT offset of this symbol.
369 void
370 set_got_offset(unsigned int got_type, unsigned int got_offset)
371 { this->got_offsets_.set_offset(got_type, got_offset); }
372
373 // Return whether this symbol has an entry in the PLT section.
374 bool
375 has_plt_offset() const
376 { return this->has_plt_offset_; }
377
378 // Return the offset into the PLT section of this symbol.
379 unsigned int
380 plt_offset() const
381 {
382 gold_assert(this->has_plt_offset());
383 return this->plt_offset_;
384 }
385
386 // Set the PLT offset of this symbol.
387 void
388 set_plt_offset(unsigned int plt_offset)
389 {
390 this->has_plt_offset_ = true;
391 this->plt_offset_ = plt_offset;
392 }
393
394 // Return whether this dynamic symbol needs a special value in the
395 // dynamic symbol table.
396 bool
397 needs_dynsym_value() const
398 { return this->needs_dynsym_value_; }
399
400 // Set that this dynamic symbol needs a special value in the dynamic
401 // symbol table.
402 void
403 set_needs_dynsym_value()
404 {
405 gold_assert(this->object()->is_dynamic());
406 this->needs_dynsym_value_ = true;
407 }
408
409 // Return true if the final value of this symbol is known at link
410 // time.
411 bool
412 final_value_is_known() const;
413
414 // Return true if SHNDX represents a common symbol. This depends on
415 // the target.
416 static bool
417 is_common_shndx(unsigned int shndx);
418
419 // Return whether this is a defined symbol (not undefined or
420 // common).
421 bool
422 is_defined() const
423 {
424 bool is_ordinary;
425 if (this->source_ != FROM_OBJECT)
426 return this->source_ != IS_UNDEFINED;
427 unsigned int shndx = this->shndx(&is_ordinary);
428 return (is_ordinary
429 ? shndx != elfcpp::SHN_UNDEF
430 : !Symbol::is_common_shndx(shndx));
431 }
432
433 // Return true if this symbol is from a dynamic object.
434 bool
435 is_from_dynobj() const
436 {
437 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
438 }
439
440 // Return whether this is an undefined symbol.
441 bool
442 is_undefined() const
443 {
444 bool is_ordinary;
445 return ((this->source_ == FROM_OBJECT
446 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
447 && is_ordinary)
448 || this->source_ == IS_UNDEFINED);
449 }
450
451 // Return whether this is a weak undefined symbol.
452 bool
453 is_weak_undefined() const
454 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
455
456 // Return whether this is an absolute symbol.
457 bool
458 is_absolute() const
459 {
460 bool is_ordinary;
461 return ((this->source_ == FROM_OBJECT
462 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
463 && !is_ordinary)
464 || this->source_ == IS_CONSTANT);
465 }
466
467 // Return whether this is a common symbol.
468 bool
469 is_common() const
470 {
471 if (this->type_ == elfcpp::STT_COMMON)
472 return true;
473 if (this->source_ != FROM_OBJECT)
474 return false;
475 bool is_ordinary;
476 unsigned int shndx = this->shndx(&is_ordinary);
477 return !is_ordinary && Symbol::is_common_shndx(shndx);
478 }
479
480 // Return whether this symbol can be seen outside this object.
481 bool
482 is_externally_visible() const
483 {
484 return (this->visibility_ == elfcpp::STV_DEFAULT
485 || this->visibility_ == elfcpp::STV_PROTECTED);
486 }
487
488 // Return true if this symbol can be preempted by a definition in
489 // another link unit.
490 bool
491 is_preemptible() const
492 {
493 // It doesn't make sense to ask whether a symbol defined in
494 // another object is preemptible.
495 gold_assert(!this->is_from_dynobj());
496
497 // It doesn't make sense to ask whether an undefined symbol
498 // is preemptible.
499 gold_assert(!this->is_undefined());
500
501 // If a symbol does not have default visibility, it can not be
502 // seen outside this link unit and therefore is not preemptible.
503 if (this->visibility_ != elfcpp::STV_DEFAULT)
504 return false;
505
506 // If this symbol has been forced to be a local symbol by a
507 // version script, then it is not visible outside this link unit
508 // and is not preemptible.
509 if (this->is_forced_local_)
510 return false;
511
512 // If we are not producing a shared library, then nothing is
513 // preemptible.
514 if (!parameters->options().shared())
515 return false;
516
517 // If the user used -Bsymbolic, then nothing is preemptible.
518 if (parameters->options().Bsymbolic())
519 return false;
520
521 // If the user used -Bsymbolic-functions, then functions are not
522 // preemptible. We explicitly check for not being STT_OBJECT,
523 // rather than for being STT_FUNC, because that is what the GNU
524 // linker does.
525 if (this->type() != elfcpp::STT_OBJECT
526 && parameters->options().Bsymbolic_functions())
527 return false;
528
529 // Otherwise the symbol is preemptible.
530 return true;
531 }
532
533 // Return true if this symbol is a function that needs a PLT entry.
534 // If the symbol is defined in a dynamic object or if it is subject
535 // to pre-emption, we need to make a PLT entry. If we're doing a
536 // static link or a -pie link, we don't create PLT entries.
537 bool
538 needs_plt_entry() const
539 {
540 // An undefined symbol from an executable does not need a PLT entry.
541 if (this->is_undefined() && !parameters->options().shared())
542 return false;
543
544 return (!parameters->doing_static_link()
545 && !parameters->options().pie()
546 && this->type() == elfcpp::STT_FUNC
547 && (this->is_from_dynobj()
548 || this->is_undefined()
549 || this->is_preemptible()));
550 }
551
552 // When determining whether a reference to a symbol needs a dynamic
553 // relocation, we need to know several things about the reference.
554 // These flags may be or'ed together.
555 enum Reference_flags
556 {
557 // Reference to the symbol's absolute address.
558 ABSOLUTE_REF = 1,
559 // A non-PIC reference.
560 NON_PIC_REF = 2,
561 // A function call.
562 FUNCTION_CALL = 4
563 };
564
565 // Given a direct absolute or pc-relative static relocation against
566 // the global symbol, this function returns whether a dynamic relocation
567 // is needed.
568
569 bool
570 needs_dynamic_reloc(int flags) const
571 {
572 // No dynamic relocations in a static link!
573 if (parameters->doing_static_link())
574 return false;
575
576 // A reference to an undefined symbol from an executable should be
577 // statically resolved to 0, and does not need a dynamic relocation.
578 // This matches gnu ld behavior.
579 if (this->is_undefined() && !parameters->options().shared())
580 return false;
581
582 // A reference to an absolute symbol does not need a dynamic relocation.
583 if (this->is_absolute())
584 return false;
585
586 // An absolute reference within a position-independent output file
587 // will need a dynamic relocation.
588 if ((flags & ABSOLUTE_REF)
589 && parameters->options().output_is_position_independent())
590 return true;
591
592 // A function call that can branch to a local PLT entry does not need
593 // a dynamic relocation. A non-pic pc-relative function call in a
594 // shared library cannot use a PLT entry.
595 if ((flags & FUNCTION_CALL)
596 && this->has_plt_offset()
597 && !((flags & NON_PIC_REF) && parameters->options().shared()))
598 return false;
599
600 // A reference to any PLT entry in a non-position-independent executable
601 // does not need a dynamic relocation.
602 if (!parameters->options().output_is_position_independent()
603 && this->has_plt_offset())
604 return false;
605
606 // A reference to a symbol defined in a dynamic object or to a
607 // symbol that is preemptible will need a dynamic relocation.
608 if (this->is_from_dynobj()
609 || this->is_undefined()
610 || this->is_preemptible())
611 return true;
612
613 // For all other cases, return FALSE.
614 return false;
615 }
616
617 // Whether we should use the PLT offset associated with a symbol for
618 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
619 // reloc--the same set of relocs for which we would pass NON_PIC_REF
620 // to the needs_dynamic_reloc function.
621
622 bool
623 use_plt_offset(bool is_non_pic_reference) const
624 {
625 // If the symbol doesn't have a PLT offset, then naturally we
626 // don't want to use it.
627 if (!this->has_plt_offset())
628 return false;
629
630 // If we are going to generate a dynamic relocation, then we will
631 // wind up using that, so no need to use the PLT entry.
632 if (this->needs_dynamic_reloc(FUNCTION_CALL
633 | (is_non_pic_reference
634 ? NON_PIC_REF
635 : 0)))
636 return false;
637
638 // If the symbol is from a dynamic object, we need to use the PLT
639 // entry.
640 if (this->is_from_dynobj())
641 return true;
642
643 // If we are generating a shared object, and this symbol is
644 // undefined or preemptible, we need to use the PLT entry.
645 if (parameters->options().shared()
646 && (this->is_undefined() || this->is_preemptible()))
647 return true;
648
649 // If this is a weak undefined symbol, we need to use the PLT
650 // entry; the symbol may be defined by a library loaded at
651 // runtime.
652 if (this->is_weak_undefined())
653 return true;
654
655 // Otherwise we can use the regular definition.
656 return false;
657 }
658
659 // Given a direct absolute static relocation against
660 // the global symbol, where a dynamic relocation is needed, this
661 // function returns whether a relative dynamic relocation can be used.
662 // The caller must determine separately whether the static relocation
663 // is compatible with a relative relocation.
664
665 bool
666 can_use_relative_reloc(bool is_function_call) const
667 {
668 // A function call that can branch to a local PLT entry can
669 // use a RELATIVE relocation.
670 if (is_function_call && this->has_plt_offset())
671 return true;
672
673 // A reference to a symbol defined in a dynamic object or to a
674 // symbol that is preemptible can not use a RELATIVE relocaiton.
675 if (this->is_from_dynobj()
676 || this->is_undefined()
677 || this->is_preemptible())
678 return false;
679
680 // For all other cases, return TRUE.
681 return true;
682 }
683
684 // Return the output section where this symbol is defined. Return
685 // NULL if the symbol has an absolute value.
686 Output_section*
687 output_section() const;
688
689 // Set the symbol's output section. This is used for symbols
690 // defined in scripts. This should only be called after the symbol
691 // table has been finalized.
692 void
693 set_output_section(Output_section*);
694
695 // Return whether there should be a warning for references to this
696 // symbol.
697 bool
698 has_warning() const
699 { return this->has_warning_; }
700
701 // Mark this symbol as having a warning.
702 void
703 set_has_warning()
704 { this->has_warning_ = true; }
705
706 // Return whether this symbol is defined by a COPY reloc from a
707 // dynamic object.
708 bool
709 is_copied_from_dynobj() const
710 { return this->is_copied_from_dynobj_; }
711
712 // Mark this symbol as defined by a COPY reloc.
713 void
714 set_is_copied_from_dynobj()
715 { this->is_copied_from_dynobj_ = true; }
716
717 // Return whether this symbol is forced to visibility STB_LOCAL
718 // by a "local:" entry in a version script.
719 bool
720 is_forced_local() const
721 { return this->is_forced_local_; }
722
723 // Mark this symbol as forced to STB_LOCAL visibility.
724 void
725 set_is_forced_local()
726 { this->is_forced_local_ = true; }
727
728 // Return true if this may need a COPY relocation.
729 // References from an executable object to non-function symbols
730 // defined in a dynamic object may need a COPY relocation.
731 bool
732 may_need_copy_reloc() const
733 {
734 return (!parameters->options().shared()
735 && parameters->options().copyreloc()
736 && this->is_from_dynobj()
737 && this->type() != elfcpp::STT_FUNC);
738 }
739
740 protected:
741 // Instances of this class should always be created at a specific
742 // size.
743 Symbol()
744 { memset(this, 0, sizeof *this); }
745
746 // Initialize the general fields.
747 void
748 init_fields(const char* name, const char* version,
749 elfcpp::STT type, elfcpp::STB binding,
750 elfcpp::STV visibility, unsigned char nonvis);
751
752 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
753 // section index, IS_ORDINARY is whether it is a normal section
754 // index rather than a special code.
755 template<int size, bool big_endian>
756 void
757 init_base_object(const char *name, const char* version, Object* object,
758 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
759 bool is_ordinary);
760
761 // Initialize fields for an Output_data.
762 void
763 init_base_output_data(const char* name, const char* version, Output_data*,
764 elfcpp::STT, elfcpp::STB, elfcpp::STV,
765 unsigned char nonvis, bool offset_is_from_end);
766
767 // Initialize fields for an Output_segment.
768 void
769 init_base_output_segment(const char* name, const char* version,
770 Output_segment* os, elfcpp::STT type,
771 elfcpp::STB binding, elfcpp::STV visibility,
772 unsigned char nonvis,
773 Segment_offset_base offset_base);
774
775 // Initialize fields for a constant.
776 void
777 init_base_constant(const char* name, const char* version, elfcpp::STT type,
778 elfcpp::STB binding, elfcpp::STV visibility,
779 unsigned char nonvis);
780
781 // Initialize fields for an undefined symbol.
782 void
783 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
784 elfcpp::STB binding, elfcpp::STV visibility,
785 unsigned char nonvis);
786
787 // Override existing symbol.
788 template<int size, bool big_endian>
789 void
790 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
791 bool is_ordinary, Object* object, const char* version);
792
793 // Override existing symbol with a special symbol.
794 void
795 override_base_with_special(const Symbol* from);
796
797 // Override symbol version.
798 void
799 override_version(const char* version);
800
801 // Allocate a common symbol by giving it a location in the output
802 // file.
803 void
804 allocate_base_common(Output_data*);
805
806 private:
807 Symbol(const Symbol&);
808 Symbol& operator=(const Symbol&);
809
810 // Symbol name (expected to point into a Stringpool).
811 const char* name_;
812 // Symbol version (expected to point into a Stringpool). This may
813 // be NULL.
814 const char* version_;
815
816 union
817 {
818 // This struct is used if SOURCE_ == FROM_OBJECT.
819 struct
820 {
821 // Object in which symbol is defined, or in which it was first
822 // seen.
823 Object* object;
824 // Section number in object_ in which symbol is defined.
825 unsigned int shndx;
826 } from_object;
827
828 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
829 struct
830 {
831 // Output_data in which symbol is defined. Before
832 // Layout::finalize the symbol's value is an offset within the
833 // Output_data.
834 Output_data* output_data;
835 // True if the offset is from the end, false if the offset is
836 // from the beginning.
837 bool offset_is_from_end;
838 } in_output_data;
839
840 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
841 struct
842 {
843 // Output_segment in which the symbol is defined. Before
844 // Layout::finalize the symbol's value is an offset.
845 Output_segment* output_segment;
846 // The base to use for the offset before Layout::finalize.
847 Segment_offset_base offset_base;
848 } in_output_segment;
849 } u_;
850
851 // The index of this symbol in the output file. If the symbol is
852 // not going into the output file, this value is -1U. This field
853 // starts as always holding zero. It is set to a non-zero value by
854 // Symbol_table::finalize.
855 unsigned int symtab_index_;
856
857 // The index of this symbol in the dynamic symbol table. If the
858 // symbol is not going into the dynamic symbol table, this value is
859 // -1U. This field starts as always holding zero. It is set to a
860 // non-zero value during Layout::finalize.
861 unsigned int dynsym_index_;
862
863 // If this symbol has an entry in the GOT section (has_got_offset_
864 // is true), this holds the offset from the start of the GOT section.
865 // A symbol may have more than one GOT offset (e.g., when mixing
866 // modules compiled with two different TLS models), but will usually
867 // have at most one.
868 Got_offset_list got_offsets_;
869
870 // If this symbol has an entry in the PLT section (has_plt_offset_
871 // is true), then this is the offset from the start of the PLT
872 // section.
873 unsigned int plt_offset_;
874
875 // Symbol type (bits 0 to 3).
876 elfcpp::STT type_ : 4;
877 // Symbol binding (bits 4 to 7).
878 elfcpp::STB binding_ : 4;
879 // Symbol visibility (bits 8 to 9).
880 elfcpp::STV visibility_ : 2;
881 // Rest of symbol st_other field (bits 10 to 15).
882 unsigned int nonvis_ : 6;
883 // The type of symbol (bits 16 to 18).
884 Source source_ : 3;
885 // True if this symbol always requires special target-specific
886 // handling (bit 19).
887 bool is_target_special_ : 1;
888 // True if this is the default version of the symbol (bit 20).
889 bool is_def_ : 1;
890 // True if this symbol really forwards to another symbol. This is
891 // used when we discover after the fact that two different entries
892 // in the hash table really refer to the same symbol. This will
893 // never be set for a symbol found in the hash table, but may be set
894 // for a symbol found in the list of symbols attached to an Object.
895 // It forwards to the symbol found in the forwarders_ map of
896 // Symbol_table (bit 21).
897 bool is_forwarder_ : 1;
898 // True if the symbol has an alias in the weak_aliases table in
899 // Symbol_table (bit 22).
900 bool has_alias_ : 1;
901 // True if this symbol needs to be in the dynamic symbol table (bit
902 // 23).
903 bool needs_dynsym_entry_ : 1;
904 // True if we've seen this symbol in a regular object (bit 24).
905 bool in_reg_ : 1;
906 // True if we've seen this symbol in a dynamic object (bit 25).
907 bool in_dyn_ : 1;
908 // True if the symbol has an entry in the PLT section (bit 26).
909 bool has_plt_offset_ : 1;
910 // True if this is a dynamic symbol which needs a special value in
911 // the dynamic symbol table (bit 27).
912 bool needs_dynsym_value_ : 1;
913 // True if there is a warning for this symbol (bit 28).
914 bool has_warning_ : 1;
915 // True if we are using a COPY reloc for this symbol, so that the
916 // real definition lives in a dynamic object (bit 29).
917 bool is_copied_from_dynobj_ : 1;
918 // True if this symbol was forced to local visibility by a version
919 // script (bit 30).
920 bool is_forced_local_ : 1;
921 // True if the field u_.from_object.shndx is an ordinary section
922 // index, not one of the special codes from SHN_LORESERVE to
923 // SHN_HIRESERVE (bit 31).
924 bool is_ordinary_shndx_ : 1;
925 // True if we've seen this symbol in a real ELF object.
926 bool in_real_elf_ : 1;
927 };
928
929 // The parts of a symbol which are size specific. Using a template
930 // derived class like this helps us use less space on a 32-bit system.
931
932 template<int size>
933 class Sized_symbol : public Symbol
934 {
935 public:
936 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
937 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
938
939 Sized_symbol()
940 { }
941
942 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
943 // section index, IS_ORDINARY is whether it is a normal section
944 // index rather than a special code.
945 template<bool big_endian>
946 void
947 init_object(const char *name, const char* version, Object* object,
948 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
949 bool is_ordinary);
950
951 // Initialize fields for an Output_data.
952 void
953 init_output_data(const char* name, const char* version, Output_data*,
954 Value_type value, Size_type symsize, elfcpp::STT,
955 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
956 bool offset_is_from_end);
957
958 // Initialize fields for an Output_segment.
959 void
960 init_output_segment(const char* name, const char* version, Output_segment*,
961 Value_type value, Size_type symsize, elfcpp::STT,
962 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
963 Segment_offset_base offset_base);
964
965 // Initialize fields for a constant.
966 void
967 init_constant(const char* name, const char* version, Value_type value,
968 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
969 unsigned char nonvis);
970
971 // Initialize fields for an undefined symbol.
972 void
973 init_undefined(const char* name, const char* version, elfcpp::STT,
974 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
975
976 // Override existing symbol.
977 template<bool big_endian>
978 void
979 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
980 bool is_ordinary, Object* object, const char* version);
981
982 // Override existing symbol with a special symbol.
983 void
984 override_with_special(const Sized_symbol<size>*);
985
986 // Return the symbol's value.
987 Value_type
988 value() const
989 { return this->value_; }
990
991 // Return the symbol's size (we can't call this 'size' because that
992 // is a template parameter).
993 Size_type
994 symsize() const
995 { return this->symsize_; }
996
997 // Set the symbol size. This is used when resolving common symbols.
998 void
999 set_symsize(Size_type symsize)
1000 { this->symsize_ = symsize; }
1001
1002 // Set the symbol value. This is called when we store the final
1003 // values of the symbols into the symbol table.
1004 void
1005 set_value(Value_type value)
1006 { this->value_ = value; }
1007
1008 // Allocate a common symbol by giving it a location in the output
1009 // file.
1010 void
1011 allocate_common(Output_data*, Value_type value);
1012
1013 private:
1014 Sized_symbol(const Sized_symbol&);
1015 Sized_symbol& operator=(const Sized_symbol&);
1016
1017 // Symbol value. Before Layout::finalize this is the offset in the
1018 // input section. This is set to the final value during
1019 // Layout::finalize.
1020 Value_type value_;
1021 // Symbol size.
1022 Size_type symsize_;
1023 };
1024
1025 // A struct describing a symbol defined by the linker, where the value
1026 // of the symbol is defined based on an output section. This is used
1027 // for symbols defined by the linker, like "_init_array_start".
1028
1029 struct Define_symbol_in_section
1030 {
1031 // The symbol name.
1032 const char* name;
1033 // The name of the output section with which this symbol should be
1034 // associated. If there is no output section with that name, the
1035 // symbol will be defined as zero.
1036 const char* output_section;
1037 // The offset of the symbol within the output section. This is an
1038 // offset from the start of the output section, unless start_at_end
1039 // is true, in which case this is an offset from the end of the
1040 // output section.
1041 uint64_t value;
1042 // The size of the symbol.
1043 uint64_t size;
1044 // The symbol type.
1045 elfcpp::STT type;
1046 // The symbol binding.
1047 elfcpp::STB binding;
1048 // The symbol visibility.
1049 elfcpp::STV visibility;
1050 // The rest of the st_other field.
1051 unsigned char nonvis;
1052 // If true, the value field is an offset from the end of the output
1053 // section.
1054 bool offset_is_from_end;
1055 // If true, this symbol is defined only if we see a reference to it.
1056 bool only_if_ref;
1057 };
1058
1059 // A struct describing a symbol defined by the linker, where the value
1060 // of the symbol is defined based on a segment. This is used for
1061 // symbols defined by the linker, like "_end". We describe the
1062 // segment with which the symbol should be associated by its
1063 // characteristics. If no segment meets these characteristics, the
1064 // symbol will be defined as zero. If there is more than one segment
1065 // which meets these characteristics, we will use the first one.
1066
1067 struct Define_symbol_in_segment
1068 {
1069 // The symbol name.
1070 const char* name;
1071 // The segment type where the symbol should be defined, typically
1072 // PT_LOAD.
1073 elfcpp::PT segment_type;
1074 // Bitmask of segment flags which must be set.
1075 elfcpp::PF segment_flags_set;
1076 // Bitmask of segment flags which must be clear.
1077 elfcpp::PF segment_flags_clear;
1078 // The offset of the symbol within the segment. The offset is
1079 // calculated from the position set by offset_base.
1080 uint64_t value;
1081 // The size of the symbol.
1082 uint64_t size;
1083 // The symbol type.
1084 elfcpp::STT type;
1085 // The symbol binding.
1086 elfcpp::STB binding;
1087 // The symbol visibility.
1088 elfcpp::STV visibility;
1089 // The rest of the st_other field.
1090 unsigned char nonvis;
1091 // The base from which we compute the offset.
1092 Symbol::Segment_offset_base offset_base;
1093 // If true, this symbol is defined only if we see a reference to it.
1094 bool only_if_ref;
1095 };
1096
1097 // This class manages warnings. Warnings are a GNU extension. When
1098 // we see a section named .gnu.warning.SYM in an object file, and if
1099 // we wind using the definition of SYM from that object file, then we
1100 // will issue a warning for any relocation against SYM from a
1101 // different object file. The text of the warning is the contents of
1102 // the section. This is not precisely the definition used by the old
1103 // GNU linker; the old GNU linker treated an occurrence of
1104 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1105 // would trigger a warning on any reference. However, it was
1106 // inconsistent in that a warning in a dynamic object only triggered
1107 // if there was no definition in a regular object. This linker is
1108 // different in that we only issue a warning if we use the symbol
1109 // definition from the same object file as the warning section.
1110
1111 class Warnings
1112 {
1113 public:
1114 Warnings()
1115 : warnings_()
1116 { }
1117
1118 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1119 // of the warning.
1120 void
1121 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1122 const std::string& warning);
1123
1124 // For each symbol for which we should give a warning, make a note
1125 // on the symbol.
1126 void
1127 note_warnings(Symbol_table* symtab);
1128
1129 // Issue a warning for a reference to SYM at RELINFO's location.
1130 template<int size, bool big_endian>
1131 void
1132 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1133 size_t relnum, off_t reloffset) const;
1134
1135 private:
1136 Warnings(const Warnings&);
1137 Warnings& operator=(const Warnings&);
1138
1139 // What we need to know to get the warning text.
1140 struct Warning_location
1141 {
1142 // The object the warning is in.
1143 Object* object;
1144 // The warning text.
1145 std::string text;
1146
1147 Warning_location()
1148 : object(NULL), text()
1149 { }
1150
1151 void
1152 set(Object* o, const std::string& t)
1153 {
1154 this->object = o;
1155 this->text = t;
1156 }
1157 };
1158
1159 // A mapping from warning symbol names (canonicalized in
1160 // Symbol_table's namepool_ field) to warning information.
1161 typedef Unordered_map<const char*, Warning_location> Warning_table;
1162
1163 Warning_table warnings_;
1164 };
1165
1166 // The main linker symbol table.
1167
1168 class Symbol_table
1169 {
1170 public:
1171 // COUNT is an estimate of how many symbosl will be inserted in the
1172 // symbol table. It's ok to put 0 if you don't know; a correct
1173 // guess will just save some CPU by reducing hashtable resizes.
1174 Symbol_table(unsigned int count, const Version_script_info& version_script);
1175
1176 ~Symbol_table();
1177
1178 void
1179 set_icf(Icf* icf)
1180 { this->icf_ = icf;}
1181
1182 Icf*
1183 icf() const
1184 { return this->icf_; }
1185
1186 // Returns true if ICF determined that this is a duplicate section.
1187 bool
1188 is_section_folded(Object* obj, unsigned int shndx) const;
1189
1190 void
1191 set_gc(Garbage_collection* gc)
1192 { this->gc_ = gc; }
1193
1194 Garbage_collection*
1195 gc() const
1196 { return this->gc_; }
1197
1198 // During garbage collection, this keeps undefined symbols.
1199 void
1200 gc_mark_undef_symbols();
1201
1202 // During garbage collection, this ensures externally visible symbols
1203 // are not treated as garbage while building shared objects.
1204 void
1205 gc_mark_symbol_for_shlib(Symbol* sym);
1206
1207 // During garbage collection, this keeps sections that correspond to
1208 // symbols seen in dynamic objects.
1209 inline void
1210 gc_mark_dyn_syms(Symbol* sym);
1211
1212 // Add COUNT external symbols from the relocatable object RELOBJ to
1213 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1214 // offset in the symbol table of the first symbol, SYM_NAMES is
1215 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1216 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1217 // *DEFINED to the number of defined symbols.
1218 template<int size, bool big_endian>
1219 void
1220 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1221 const unsigned char* syms, size_t count,
1222 size_t symndx_offset, const char* sym_names,
1223 size_t sym_name_size,
1224 typename Sized_relobj<size, big_endian>::Symbols*,
1225 size_t* defined);
1226
1227 // Add one external symbol from the plugin object OBJ to the symbol table.
1228 // Returns a pointer to the resolved symbol in the symbol table.
1229 template<int size, bool big_endian>
1230 Symbol*
1231 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1232 const char* name, const char* ver,
1233 elfcpp::Sym<size, big_endian>* sym);
1234
1235 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1236 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1237 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1238 // symbol version data.
1239 template<int size, bool big_endian>
1240 void
1241 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1242 const unsigned char* syms, size_t count,
1243 const char* sym_names, size_t sym_name_size,
1244 const unsigned char* versym, size_t versym_size,
1245 const std::vector<const char*>*,
1246 typename Sized_relobj<size, big_endian>::Symbols*,
1247 size_t* defined);
1248
1249 // Define a special symbol based on an Output_data. It is a
1250 // multiple definition error if this symbol is already defined.
1251 Symbol*
1252 define_in_output_data(const char* name, const char* version,
1253 Output_data*, uint64_t value, uint64_t symsize,
1254 elfcpp::STT type, elfcpp::STB binding,
1255 elfcpp::STV visibility, unsigned char nonvis,
1256 bool offset_is_from_end, bool only_if_ref);
1257
1258 // Define a special symbol based on an Output_segment. It is a
1259 // multiple definition error if this symbol is already defined.
1260 Symbol*
1261 define_in_output_segment(const char* name, const char* version,
1262 Output_segment*, uint64_t value, uint64_t symsize,
1263 elfcpp::STT type, elfcpp::STB binding,
1264 elfcpp::STV visibility, unsigned char nonvis,
1265 Symbol::Segment_offset_base, bool only_if_ref);
1266
1267 // Define a special symbol with a constant value. It is a multiple
1268 // definition error if this symbol is already defined.
1269 Symbol*
1270 define_as_constant(const char* name, const char* version,
1271 uint64_t value, uint64_t symsize, elfcpp::STT type,
1272 elfcpp::STB binding, elfcpp::STV visibility,
1273 unsigned char nonvis, bool only_if_ref,
1274 bool force_override);
1275
1276 // Define a set of symbols in output sections. If ONLY_IF_REF is
1277 // true, only define them if they are referenced.
1278 void
1279 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1280 bool only_if_ref);
1281
1282 // Define a set of symbols in output segments. If ONLY_IF_REF is
1283 // true, only defined them if they are referenced.
1284 void
1285 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1286 bool only_if_ref);
1287
1288 // Define SYM using a COPY reloc. POSD is the Output_data where the
1289 // symbol should be defined--typically a .dyn.bss section. VALUE is
1290 // the offset within POSD.
1291 template<int size>
1292 void
1293 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1294 typename elfcpp::Elf_types<size>::Elf_Addr);
1295
1296 // Look up a symbol.
1297 Symbol*
1298 lookup(const char*, const char* version = NULL) const;
1299
1300 // Return the real symbol associated with the forwarder symbol FROM.
1301 Symbol*
1302 resolve_forwards(const Symbol* from) const;
1303
1304 // Return the sized version of a symbol in this table.
1305 template<int size>
1306 Sized_symbol<size>*
1307 get_sized_symbol(Symbol*) const;
1308
1309 template<int size>
1310 const Sized_symbol<size>*
1311 get_sized_symbol(const Symbol*) const;
1312
1313 // Return the count of undefined symbols seen.
1314 int
1315 saw_undefined() const
1316 { return this->saw_undefined_; }
1317
1318 // Allocate the common symbols
1319 void
1320 allocate_commons(Layout*, Mapfile*);
1321
1322 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1323 // of the warning.
1324 void
1325 add_warning(const char* name, Object* obj, const std::string& warning)
1326 { this->warnings_.add_warning(this, name, obj, warning); }
1327
1328 // Canonicalize a symbol name for use in the hash table.
1329 const char*
1330 canonicalize_name(const char* name)
1331 { return this->namepool_.add(name, true, NULL); }
1332
1333 // Possibly issue a warning for a reference to SYM at LOCATION which
1334 // is in OBJ.
1335 template<int size, bool big_endian>
1336 void
1337 issue_warning(const Symbol* sym,
1338 const Relocate_info<size, big_endian>* relinfo,
1339 size_t relnum, off_t reloffset) const
1340 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1341
1342 // Check candidate_odr_violations_ to find symbols with the same name
1343 // but apparently different definitions (different source-file/line-no).
1344 void
1345 detect_odr_violations(const Task*, const char* output_file_name) const;
1346
1347 // Add any undefined symbols named on the command line to the symbol
1348 // table.
1349 void
1350 add_undefined_symbols_from_command_line();
1351
1352 // SYM is defined using a COPY reloc. Return the dynamic object
1353 // where the original definition was found.
1354 Dynobj*
1355 get_copy_source(const Symbol* sym) const;
1356
1357 // Set the dynamic symbol indexes. INDEX is the index of the first
1358 // global dynamic symbol. Pointers to the symbols are stored into
1359 // the vector. The names are stored into the Stringpool. This
1360 // returns an updated dynamic symbol index.
1361 unsigned int
1362 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1363 Stringpool*, Versions*);
1364
1365 // Finalize the symbol table after we have set the final addresses
1366 // of all the input sections. This sets the final symbol indexes,
1367 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1368 // index of the first global symbol. OFF is the file offset of the
1369 // global symbol table, DYNOFF is the offset of the globals in the
1370 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1371 // global dynamic symbol, and DYNCOUNT is the number of global
1372 // dynamic symbols. This records the parameters, and returns the
1373 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1374 // local symbols.
1375 off_t
1376 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1377 Stringpool* pool, unsigned int *plocal_symcount);
1378
1379 // Status code of Symbol_table::compute_final_value.
1380 enum Compute_final_value_status
1381 {
1382 // No error.
1383 CFVS_OK,
1384 // Unspported symbol section.
1385 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1386 // No output section.
1387 CFVS_NO_OUTPUT_SECTION
1388 };
1389
1390 // Compute the final value of SYM and store status in location PSTATUS.
1391 // During relaxation, this may be called multiple times for a symbol to
1392 // compute its would-be final value in each relaxation pass.
1393
1394 template<int size>
1395 typename Sized_symbol<size>::Value_type
1396 compute_final_value(const Sized_symbol<size>* sym,
1397 Compute_final_value_status* pstatus) const;
1398
1399 // Write out the global symbols.
1400 void
1401 write_globals(const Stringpool*, const Stringpool*,
1402 Output_symtab_xindex*, Output_symtab_xindex*,
1403 Output_file*) const;
1404
1405 // Write out a section symbol. Return the updated offset.
1406 void
1407 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1408 Output_file*, off_t) const;
1409
1410 // Dump statistical information to stderr.
1411 void
1412 print_stats() const;
1413
1414 // Return the version script information.
1415 const Version_script_info&
1416 version_script() const
1417 { return version_script_; }
1418
1419 private:
1420 Symbol_table(const Symbol_table&);
1421 Symbol_table& operator=(const Symbol_table&);
1422
1423 // The type of the list of common symbols.
1424 typedef std::vector<Symbol*> Commons_type;
1425
1426 // The type of the symbol hash table.
1427
1428 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1429
1430 struct Symbol_table_hash
1431 {
1432 size_t
1433 operator()(const Symbol_table_key&) const;
1434 };
1435
1436 struct Symbol_table_eq
1437 {
1438 bool
1439 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1440 };
1441
1442 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1443 Symbol_table_eq> Symbol_table_type;
1444
1445 // Make FROM a forwarder symbol to TO.
1446 void
1447 make_forwarder(Symbol* from, Symbol* to);
1448
1449 // Add a symbol.
1450 template<int size, bool big_endian>
1451 Sized_symbol<size>*
1452 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1453 const char *version, Stringpool::Key version_key,
1454 bool def, const elfcpp::Sym<size, big_endian>& sym,
1455 unsigned int st_shndx, bool is_ordinary,
1456 unsigned int orig_st_shndx);
1457
1458 // Define a default symbol.
1459 template<int size, bool big_endian>
1460 void
1461 define_default_version(Sized_symbol<size>*, bool,
1462 Symbol_table_type::iterator);
1463
1464 // Resolve symbols.
1465 template<int size, bool big_endian>
1466 void
1467 resolve(Sized_symbol<size>* to,
1468 const elfcpp::Sym<size, big_endian>& sym,
1469 unsigned int st_shndx, bool is_ordinary,
1470 unsigned int orig_st_shndx,
1471 Object*, const char* version);
1472
1473 template<int size, bool big_endian>
1474 void
1475 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1476
1477 // Record that a symbol is forced to be local by a version script or
1478 // by visibility.
1479 void
1480 force_local(Symbol*);
1481
1482 // Adjust NAME and *NAME_KEY for wrapping.
1483 const char*
1484 wrap_symbol(const char* name, Stringpool::Key* name_key);
1485
1486 // Whether we should override a symbol, based on flags in
1487 // resolve.cc.
1488 static bool
1489 should_override(const Symbol*, unsigned int, Object*, bool*);
1490
1491 // Report a problem in symbol resolution.
1492 static void
1493 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1494 Object* object);
1495
1496 // Override a symbol.
1497 template<int size, bool big_endian>
1498 void
1499 override(Sized_symbol<size>* tosym,
1500 const elfcpp::Sym<size, big_endian>& fromsym,
1501 unsigned int st_shndx, bool is_ordinary,
1502 Object* object, const char* version);
1503
1504 // Whether we should override a symbol with a special symbol which
1505 // is automatically defined by the linker.
1506 static bool
1507 should_override_with_special(const Symbol*);
1508
1509 // Override a symbol with a special symbol.
1510 template<int size>
1511 void
1512 override_with_special(Sized_symbol<size>* tosym,
1513 const Sized_symbol<size>* fromsym);
1514
1515 // Record all weak alias sets for a dynamic object.
1516 template<int size>
1517 void
1518 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1519
1520 // Define a special symbol.
1521 template<int size, bool big_endian>
1522 Sized_symbol<size>*
1523 define_special_symbol(const char** pname, const char** pversion,
1524 bool only_if_ref, Sized_symbol<size>** poldsym,
1525 bool* resolve_oldsym);
1526
1527 // Define a symbol in an Output_data, sized version.
1528 template<int size>
1529 Sized_symbol<size>*
1530 do_define_in_output_data(const char* name, const char* version, Output_data*,
1531 typename elfcpp::Elf_types<size>::Elf_Addr value,
1532 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1533 elfcpp::STT type, elfcpp::STB binding,
1534 elfcpp::STV visibility, unsigned char nonvis,
1535 bool offset_is_from_end, bool only_if_ref);
1536
1537 // Define a symbol in an Output_segment, sized version.
1538 template<int size>
1539 Sized_symbol<size>*
1540 do_define_in_output_segment(
1541 const char* name, const char* version, Output_segment* os,
1542 typename elfcpp::Elf_types<size>::Elf_Addr value,
1543 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1544 elfcpp::STT type, elfcpp::STB binding,
1545 elfcpp::STV visibility, unsigned char nonvis,
1546 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1547
1548 // Define a symbol as a constant, sized version.
1549 template<int size>
1550 Sized_symbol<size>*
1551 do_define_as_constant(
1552 const char* name, const char* version,
1553 typename elfcpp::Elf_types<size>::Elf_Addr value,
1554 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1555 elfcpp::STT type, elfcpp::STB binding,
1556 elfcpp::STV visibility, unsigned char nonvis,
1557 bool only_if_ref, bool force_override);
1558
1559 // Add any undefined symbols named on the command line to the symbol
1560 // table, sized version.
1561 template<int size>
1562 void
1563 do_add_undefined_symbols_from_command_line();
1564
1565 // Types of common symbols.
1566
1567 enum Commons_section_type
1568 {
1569 COMMONS_NORMAL,
1570 COMMONS_TLS,
1571 COMMONS_SMALL,
1572 COMMONS_LARGE
1573 };
1574
1575 // Allocate the common symbols, sized version.
1576 template<int size>
1577 void
1578 do_allocate_commons(Layout*, Mapfile*);
1579
1580 // Allocate the common symbols from one list.
1581 template<int size>
1582 void
1583 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1584 Mapfile*);
1585
1586 // Implement detect_odr_violations.
1587 template<int size, bool big_endian>
1588 void
1589 sized_detect_odr_violations() const;
1590
1591 // Finalize symbols specialized for size.
1592 template<int size>
1593 off_t
1594 sized_finalize(off_t, Stringpool*, unsigned int*);
1595
1596 // Finalize a symbol. Return whether it should be added to the
1597 // symbol table.
1598 template<int size>
1599 bool
1600 sized_finalize_symbol(Symbol*);
1601
1602 // Add a symbol the final symtab by setting its index.
1603 template<int size>
1604 void
1605 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1606
1607 // Write globals specialized for size and endianness.
1608 template<int size, bool big_endian>
1609 void
1610 sized_write_globals(const Stringpool*, const Stringpool*,
1611 Output_symtab_xindex*, Output_symtab_xindex*,
1612 Output_file*) const;
1613
1614 // Write out a symbol to P.
1615 template<int size, bool big_endian>
1616 void
1617 sized_write_symbol(Sized_symbol<size>*,
1618 typename elfcpp::Elf_types<size>::Elf_Addr value,
1619 unsigned int shndx,
1620 const Stringpool*, unsigned char* p) const;
1621
1622 // Possibly warn about an undefined symbol from a dynamic object.
1623 void
1624 warn_about_undefined_dynobj_symbol(Symbol*) const;
1625
1626 // Write out a section symbol, specialized for size and endianness.
1627 template<int size, bool big_endian>
1628 void
1629 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1630 Output_file*, off_t) const;
1631
1632 // The type of the list of symbols which have been forced local.
1633 typedef std::vector<Symbol*> Forced_locals;
1634
1635 // A map from symbols with COPY relocs to the dynamic objects where
1636 // they are defined.
1637 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1638
1639 // A map from symbol name (as a pointer into the namepool) to all
1640 // the locations the symbols is (weakly) defined (and certain other
1641 // conditions are met). This map will be used later to detect
1642 // possible One Definition Rule (ODR) violations.
1643 struct Symbol_location
1644 {
1645 Object* object; // Object where the symbol is defined.
1646 unsigned int shndx; // Section-in-object where the symbol is defined.
1647 off_t offset; // Offset-in-section where the symbol is defined.
1648 bool operator==(const Symbol_location& that) const
1649 {
1650 return (this->object == that.object
1651 && this->shndx == that.shndx
1652 && this->offset == that.offset);
1653 }
1654 };
1655
1656 struct Symbol_location_hash
1657 {
1658 size_t operator()(const Symbol_location& loc) const
1659 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1660 };
1661
1662 typedef Unordered_map<const char*,
1663 Unordered_set<Symbol_location, Symbol_location_hash> >
1664 Odr_map;
1665
1666 // We increment this every time we see a new undefined symbol, for
1667 // use in archive groups.
1668 int saw_undefined_;
1669 // The index of the first global symbol in the output file.
1670 unsigned int first_global_index_;
1671 // The file offset within the output symtab section where we should
1672 // write the table.
1673 off_t offset_;
1674 // The number of global symbols we want to write out.
1675 unsigned int output_count_;
1676 // The file offset of the global dynamic symbols, or 0 if none.
1677 off_t dynamic_offset_;
1678 // The index of the first global dynamic symbol.
1679 unsigned int first_dynamic_global_index_;
1680 // The number of global dynamic symbols, or 0 if none.
1681 unsigned int dynamic_count_;
1682 // The symbol hash table.
1683 Symbol_table_type table_;
1684 // A pool of symbol names. This is used for all global symbols.
1685 // Entries in the hash table point into this pool.
1686 Stringpool namepool_;
1687 // Forwarding symbols.
1688 Unordered_map<const Symbol*, Symbol*> forwarders_;
1689 // Weak aliases. A symbol in this list points to the next alias.
1690 // The aliases point to each other in a circular list.
1691 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1692 // We don't expect there to be very many common symbols, so we keep
1693 // a list of them. When we find a common symbol we add it to this
1694 // list. It is possible that by the time we process the list the
1695 // symbol is no longer a common symbol. It may also have become a
1696 // forwarder.
1697 Commons_type commons_;
1698 // This is like the commons_ field, except that it holds TLS common
1699 // symbols.
1700 Commons_type tls_commons_;
1701 // This is for small common symbols.
1702 Commons_type small_commons_;
1703 // This is for large common symbols.
1704 Commons_type large_commons_;
1705 // A list of symbols which have been forced to be local. We don't
1706 // expect there to be very many of them, so we keep a list of them
1707 // rather than walking the whole table to find them.
1708 Forced_locals forced_locals_;
1709 // Manage symbol warnings.
1710 Warnings warnings_;
1711 // Manage potential One Definition Rule (ODR) violations.
1712 Odr_map candidate_odr_violations_;
1713
1714 // When we emit a COPY reloc for a symbol, we define it in an
1715 // Output_data. When it's time to emit version information for it,
1716 // we need to know the dynamic object in which we found the original
1717 // definition. This maps symbols with COPY relocs to the dynamic
1718 // object where they were defined.
1719 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1720 // Information parsed from the version script, if any.
1721 const Version_script_info& version_script_;
1722 Garbage_collection* gc_;
1723 Icf* icf_;
1724 };
1725
1726 // We inline get_sized_symbol for efficiency.
1727
1728 template<int size>
1729 Sized_symbol<size>*
1730 Symbol_table::get_sized_symbol(Symbol* sym) const
1731 {
1732 gold_assert(size == parameters->target().get_size());
1733 return static_cast<Sized_symbol<size>*>(sym);
1734 }
1735
1736 template<int size>
1737 const Sized_symbol<size>*
1738 Symbol_table::get_sized_symbol(const Symbol* sym) const
1739 {
1740 gold_assert(size == parameters->target().get_size());
1741 return static_cast<const Sized_symbol<size>*>(sym);
1742 }
1743
1744 } // End namespace gold.
1745
1746 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.101842 seconds and 5 git commands to generate.