* copy-relocs.cc (Copy_relocs::copy_reloc): Call make_copy_reloc
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class to big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 // Return whether this version is the default for this symbol name
125 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
126 // meaningful for versioned symbols.
127 bool
128 is_default() const
129 {
130 gold_assert(this->version_ != NULL);
131 return this->is_def_;
132 }
133
134 // Set that this version is the default for this symbol name.
135 void
136 set_is_default()
137 { this->is_def_ = true; }
138
139 // Return the symbol source.
140 Source
141 source() const
142 { return this->source_; }
143
144 // Return the object with which this symbol is associated.
145 Object*
146 object() const
147 {
148 gold_assert(this->source_ == FROM_OBJECT);
149 return this->u_.from_object.object;
150 }
151
152 // Return the index of the section in the input relocatable or
153 // dynamic object file.
154 unsigned int
155 shndx(bool* is_ordinary) const
156 {
157 gold_assert(this->source_ == FROM_OBJECT);
158 *is_ordinary = this->is_ordinary_shndx_;
159 return this->u_.from_object.shndx;
160 }
161
162 // Return the output data section with which this symbol is
163 // associated, if the symbol was specially defined with respect to
164 // an output data section.
165 Output_data*
166 output_data() const
167 {
168 gold_assert(this->source_ == IN_OUTPUT_DATA);
169 return this->u_.in_output_data.output_data;
170 }
171
172 // If this symbol was defined with respect to an output data
173 // section, return whether the value is an offset from end.
174 bool
175 offset_is_from_end() const
176 {
177 gold_assert(this->source_ == IN_OUTPUT_DATA);
178 return this->u_.in_output_data.offset_is_from_end;
179 }
180
181 // Return the output segment with which this symbol is associated,
182 // if the symbol was specially defined with respect to an output
183 // segment.
184 Output_segment*
185 output_segment() const
186 {
187 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
188 return this->u_.in_output_segment.output_segment;
189 }
190
191 // If this symbol was defined with respect to an output segment,
192 // return the offset base.
193 Segment_offset_base
194 offset_base() const
195 {
196 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
197 return this->u_.in_output_segment.offset_base;
198 }
199
200 // Return the symbol binding.
201 elfcpp::STB
202 binding() const
203 { return this->binding_; }
204
205 // Return the symbol type.
206 elfcpp::STT
207 type() const
208 { return this->type_; }
209
210 // Return true for function symbol.
211 bool
212 is_func() const
213 {
214 return (this->type_ == elfcpp::STT_FUNC
215 || this->type_ == elfcpp::STT_GNU_IFUNC);
216 }
217
218 // Return the symbol visibility.
219 elfcpp::STV
220 visibility() const
221 { return this->visibility_; }
222
223 // Set the visibility.
224 void
225 set_visibility(elfcpp::STV visibility)
226 { this->visibility_ = visibility; }
227
228 // Override symbol visibility.
229 void
230 override_visibility(elfcpp::STV);
231
232 // Set whether the symbol was originally a weak undef or a regular undef
233 // when resolved by a dynamic def.
234 inline void
235 set_undef_binding(elfcpp::STB bind)
236 {
237 if (!this->undef_binding_set_ || this->undef_binding_weak_)
238 {
239 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
240 this->undef_binding_set_ = true;
241 }
242 }
243
244 // Return TRUE if a weak undef was resolved by a dynamic def.
245 inline bool
246 is_undef_binding_weak() const
247 { return this->undef_binding_weak_; }
248
249 // Return the non-visibility part of the st_other field.
250 unsigned char
251 nonvis() const
252 { return this->nonvis_; }
253
254 // Return whether this symbol is a forwarder. This will never be
255 // true of a symbol found in the hash table, but may be true of
256 // symbol pointers attached to object files.
257 bool
258 is_forwarder() const
259 { return this->is_forwarder_; }
260
261 // Mark this symbol as a forwarder.
262 void
263 set_forwarder()
264 { this->is_forwarder_ = true; }
265
266 // Return whether this symbol has an alias in the weak aliases table
267 // in Symbol_table.
268 bool
269 has_alias() const
270 { return this->has_alias_; }
271
272 // Mark this symbol as having an alias.
273 void
274 set_has_alias()
275 { this->has_alias_ = true; }
276
277 // Return whether this symbol needs an entry in the dynamic symbol
278 // table.
279 bool
280 needs_dynsym_entry() const
281 {
282 return (this->needs_dynsym_entry_
283 || (this->in_reg()
284 && this->in_dyn()
285 && this->is_externally_visible()));
286 }
287
288 // Mark this symbol as needing an entry in the dynamic symbol table.
289 void
290 set_needs_dynsym_entry()
291 { this->needs_dynsym_entry_ = true; }
292
293 // Return whether this symbol should be added to the dynamic symbol
294 // table.
295 bool
296 should_add_dynsym_entry(Symbol_table*) const;
297
298 // Return whether this symbol has been seen in a regular object.
299 bool
300 in_reg() const
301 { return this->in_reg_; }
302
303 // Mark this symbol as having been seen in a regular object.
304 void
305 set_in_reg()
306 { this->in_reg_ = true; }
307
308 // Return whether this symbol has been seen in a dynamic object.
309 bool
310 in_dyn() const
311 { return this->in_dyn_; }
312
313 // Mark this symbol as having been seen in a dynamic object.
314 void
315 set_in_dyn()
316 { this->in_dyn_ = true; }
317
318 // Return whether this symbol has been seen in a real ELF object.
319 // (IN_REG will return TRUE if the symbol has been seen in either
320 // a real ELF object or an object claimed by a plugin.)
321 bool
322 in_real_elf() const
323 { return this->in_real_elf_; }
324
325 // Mark this symbol as having been seen in a real ELF object.
326 void
327 set_in_real_elf()
328 { this->in_real_elf_ = true; }
329
330 // Return whether this symbol was defined in a section that was
331 // discarded from the link. This is used to control some error
332 // reporting.
333 bool
334 is_defined_in_discarded_section() const
335 { return this->is_defined_in_discarded_section_; }
336
337 // Mark this symbol as having been defined in a discarded section.
338 void
339 set_is_defined_in_discarded_section()
340 { this->is_defined_in_discarded_section_ = true; }
341
342 // Return the index of this symbol in the output file symbol table.
343 // A value of -1U means that this symbol is not going into the
344 // output file. This starts out as zero, and is set to a non-zero
345 // value by Symbol_table::finalize. It is an error to ask for the
346 // symbol table index before it has been set.
347 unsigned int
348 symtab_index() const
349 {
350 gold_assert(this->symtab_index_ != 0);
351 return this->symtab_index_;
352 }
353
354 // Set the index of the symbol in the output file symbol table.
355 void
356 set_symtab_index(unsigned int index)
357 {
358 gold_assert(index != 0);
359 this->symtab_index_ = index;
360 }
361
362 // Return whether this symbol already has an index in the output
363 // file symbol table.
364 bool
365 has_symtab_index() const
366 { return this->symtab_index_ != 0; }
367
368 // Return the index of this symbol in the dynamic symbol table. A
369 // value of -1U means that this symbol is not going into the dynamic
370 // symbol table. This starts out as zero, and is set to a non-zero
371 // during Layout::finalize. It is an error to ask for the dynamic
372 // symbol table index before it has been set.
373 unsigned int
374 dynsym_index() const
375 {
376 gold_assert(this->dynsym_index_ != 0);
377 return this->dynsym_index_;
378 }
379
380 // Set the index of the symbol in the dynamic symbol table.
381 void
382 set_dynsym_index(unsigned int index)
383 {
384 gold_assert(index != 0);
385 this->dynsym_index_ = index;
386 }
387
388 // Return whether this symbol already has an index in the dynamic
389 // symbol table.
390 bool
391 has_dynsym_index() const
392 { return this->dynsym_index_ != 0; }
393
394 // Return whether this symbol has an entry in the GOT section.
395 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
396 bool
397 has_got_offset(unsigned int got_type) const
398 { return this->got_offsets_.get_offset(got_type) != -1U; }
399
400 // Return the offset into the GOT section of this symbol.
401 unsigned int
402 got_offset(unsigned int got_type) const
403 {
404 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
405 gold_assert(got_offset != -1U);
406 return got_offset;
407 }
408
409 // Set the GOT offset of this symbol.
410 void
411 set_got_offset(unsigned int got_type, unsigned int got_offset)
412 { this->got_offsets_.set_offset(got_type, got_offset); }
413
414 // Return the GOT offset list.
415 const Got_offset_list*
416 got_offset_list() const
417 { return this->got_offsets_.get_list(); }
418
419 // Return whether this symbol has an entry in the PLT section.
420 bool
421 has_plt_offset() const
422 { return this->plt_offset_ != -1U; }
423
424 // Return the offset into the PLT section of this symbol.
425 unsigned int
426 plt_offset() const
427 {
428 gold_assert(this->has_plt_offset());
429 return this->plt_offset_;
430 }
431
432 // Set the PLT offset of this symbol.
433 void
434 set_plt_offset(unsigned int plt_offset)
435 {
436 gold_assert(plt_offset != -1U);
437 this->plt_offset_ = plt_offset;
438 }
439
440 // Return whether this dynamic symbol needs a special value in the
441 // dynamic symbol table.
442 bool
443 needs_dynsym_value() const
444 { return this->needs_dynsym_value_; }
445
446 // Set that this dynamic symbol needs a special value in the dynamic
447 // symbol table.
448 void
449 set_needs_dynsym_value()
450 {
451 gold_assert(this->object()->is_dynamic());
452 this->needs_dynsym_value_ = true;
453 }
454
455 // Return true if the final value of this symbol is known at link
456 // time.
457 bool
458 final_value_is_known() const;
459
460 // Return true if SHNDX represents a common symbol. This depends on
461 // the target.
462 static bool
463 is_common_shndx(unsigned int shndx);
464
465 // Return whether this is a defined symbol (not undefined or
466 // common).
467 bool
468 is_defined() const
469 {
470 bool is_ordinary;
471 if (this->source_ != FROM_OBJECT)
472 return this->source_ != IS_UNDEFINED;
473 unsigned int shndx = this->shndx(&is_ordinary);
474 return (is_ordinary
475 ? shndx != elfcpp::SHN_UNDEF
476 : !Symbol::is_common_shndx(shndx));
477 }
478
479 // Return true if this symbol is from a dynamic object.
480 bool
481 is_from_dynobj() const
482 {
483 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
484 }
485
486 // Return whether this is a placeholder symbol from a plugin object.
487 bool
488 is_placeholder() const
489 {
490 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
491 }
492
493 // Return whether this is an undefined symbol.
494 bool
495 is_undefined() const
496 {
497 bool is_ordinary;
498 return ((this->source_ == FROM_OBJECT
499 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
500 && is_ordinary)
501 || this->source_ == IS_UNDEFINED);
502 }
503
504 // Return whether this is a weak undefined symbol.
505 bool
506 is_weak_undefined() const
507 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
508
509 // Return whether this is an absolute symbol.
510 bool
511 is_absolute() const
512 {
513 bool is_ordinary;
514 return ((this->source_ == FROM_OBJECT
515 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
516 && !is_ordinary)
517 || this->source_ == IS_CONSTANT);
518 }
519
520 // Return whether this is a common symbol.
521 bool
522 is_common() const
523 {
524 if (this->source_ != FROM_OBJECT)
525 return false;
526 if (this->type_ == elfcpp::STT_COMMON)
527 return true;
528 bool is_ordinary;
529 unsigned int shndx = this->shndx(&is_ordinary);
530 return !is_ordinary && Symbol::is_common_shndx(shndx);
531 }
532
533 // Return whether this symbol can be seen outside this object.
534 bool
535 is_externally_visible() const
536 {
537 return (this->visibility_ == elfcpp::STV_DEFAULT
538 || this->visibility_ == elfcpp::STV_PROTECTED);
539 }
540
541 // Return true if this symbol can be preempted by a definition in
542 // another link unit.
543 bool
544 is_preemptible() const
545 {
546 // It doesn't make sense to ask whether a symbol defined in
547 // another object is preemptible.
548 gold_assert(!this->is_from_dynobj());
549
550 // It doesn't make sense to ask whether an undefined symbol
551 // is preemptible.
552 gold_assert(!this->is_undefined());
553
554 // If a symbol does not have default visibility, it can not be
555 // seen outside this link unit and therefore is not preemptible.
556 if (this->visibility_ != elfcpp::STV_DEFAULT)
557 return false;
558
559 // If this symbol has been forced to be a local symbol by a
560 // version script, then it is not visible outside this link unit
561 // and is not preemptible.
562 if (this->is_forced_local_)
563 return false;
564
565 // If we are not producing a shared library, then nothing is
566 // preemptible.
567 if (!parameters->options().shared())
568 return false;
569
570 // If the user used -Bsymbolic, then nothing is preemptible.
571 if (parameters->options().Bsymbolic())
572 return false;
573
574 // If the user used -Bsymbolic-functions, then functions are not
575 // preemptible. We explicitly check for not being STT_OBJECT,
576 // rather than for being STT_FUNC, because that is what the GNU
577 // linker does.
578 if (this->type() != elfcpp::STT_OBJECT
579 && parameters->options().Bsymbolic_functions())
580 return false;
581
582 // Otherwise the symbol is preemptible.
583 return true;
584 }
585
586 // Return true if this symbol is a function that needs a PLT entry.
587 bool
588 needs_plt_entry() const
589 {
590 // An undefined symbol from an executable does not need a PLT entry.
591 if (this->is_undefined() && !parameters->options().shared())
592 return false;
593
594 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
595 // doing a static link.
596 if (this->type() == elfcpp::STT_GNU_IFUNC)
597 return true;
598
599 // We only need a PLT entry for a function.
600 if (!this->is_func())
601 return false;
602
603 // If we're doing a static link or a -pie link, we don't create
604 // PLT entries.
605 if (parameters->doing_static_link()
606 || parameters->options().pie())
607 return false;
608
609 // We need a PLT entry if the function is defined in a dynamic
610 // object, or is undefined when building a shared object, or if it
611 // is subject to pre-emption.
612 return (this->is_from_dynobj()
613 || this->is_undefined()
614 || this->is_preemptible());
615 }
616
617 // When determining whether a reference to a symbol needs a dynamic
618 // relocation, we need to know several things about the reference.
619 // These flags may be or'ed together. 0 means that the symbol
620 // isn't referenced at all.
621 enum Reference_flags
622 {
623 // A reference to the symbol's absolute address. This includes
624 // references that cause an absolute address to be stored in the GOT.
625 ABSOLUTE_REF = 1,
626 // A reference that calculates the offset of the symbol from some
627 // anchor point, such as the PC or GOT.
628 RELATIVE_REF = 2,
629 // A TLS-related reference.
630 TLS_REF = 4,
631 // A reference that can always be treated as a function call.
632 FUNCTION_CALL = 8
633 };
634
635 // Given a direct absolute or pc-relative static relocation against
636 // the global symbol, this function returns whether a dynamic relocation
637 // is needed.
638
639 bool
640 needs_dynamic_reloc(int flags) const
641 {
642 // No dynamic relocations in a static link!
643 if (parameters->doing_static_link())
644 return false;
645
646 // A reference to an undefined symbol from an executable should be
647 // statically resolved to 0, and does not need a dynamic relocation.
648 // This matches gnu ld behavior.
649 if (this->is_undefined() && !parameters->options().shared())
650 return false;
651
652 // A reference to an absolute symbol does not need a dynamic relocation.
653 if (this->is_absolute())
654 return false;
655
656 // An absolute reference within a position-independent output file
657 // will need a dynamic relocation.
658 if ((flags & ABSOLUTE_REF)
659 && parameters->options().output_is_position_independent())
660 return true;
661
662 // A function call that can branch to a local PLT entry does not need
663 // a dynamic relocation.
664 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
665 return false;
666
667 // A reference to any PLT entry in a non-position-independent executable
668 // does not need a dynamic relocation.
669 if (!parameters->options().output_is_position_independent()
670 && this->has_plt_offset())
671 return false;
672
673 // A reference to a symbol defined in a dynamic object or to a
674 // symbol that is preemptible will need a dynamic relocation.
675 if (this->is_from_dynobj()
676 || this->is_undefined()
677 || this->is_preemptible())
678 return true;
679
680 // For all other cases, return FALSE.
681 return false;
682 }
683
684 // Whether we should use the PLT offset associated with a symbol for
685 // a relocation. FLAGS is a set of Reference_flags.
686
687 bool
688 use_plt_offset(int flags) const
689 {
690 // If the symbol doesn't have a PLT offset, then naturally we
691 // don't want to use it.
692 if (!this->has_plt_offset())
693 return false;
694
695 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
696 if (this->type() == elfcpp::STT_GNU_IFUNC)
697 return true;
698
699 // If we are going to generate a dynamic relocation, then we will
700 // wind up using that, so no need to use the PLT entry.
701 if (this->needs_dynamic_reloc(flags))
702 return false;
703
704 // If the symbol is from a dynamic object, we need to use the PLT
705 // entry.
706 if (this->is_from_dynobj())
707 return true;
708
709 // If we are generating a shared object, and this symbol is
710 // undefined or preemptible, we need to use the PLT entry.
711 if (parameters->options().shared()
712 && (this->is_undefined() || this->is_preemptible()))
713 return true;
714
715 // If this is a call to a weak undefined symbol, we need to use
716 // the PLT entry; the symbol may be defined by a library loaded
717 // at runtime.
718 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
719 return true;
720
721 // Otherwise we can use the regular definition.
722 return false;
723 }
724
725 // Given a direct absolute static relocation against
726 // the global symbol, where a dynamic relocation is needed, this
727 // function returns whether a relative dynamic relocation can be used.
728 // The caller must determine separately whether the static relocation
729 // is compatible with a relative relocation.
730
731 bool
732 can_use_relative_reloc(bool is_function_call) const
733 {
734 // A function call that can branch to a local PLT entry can
735 // use a RELATIVE relocation.
736 if (is_function_call && this->has_plt_offset())
737 return true;
738
739 // A reference to a symbol defined in a dynamic object or to a
740 // symbol that is preemptible can not use a RELATIVE relocation.
741 if (this->is_from_dynobj()
742 || this->is_undefined()
743 || this->is_preemptible())
744 return false;
745
746 // For all other cases, return TRUE.
747 return true;
748 }
749
750 // Return the output section where this symbol is defined. Return
751 // NULL if the symbol has an absolute value.
752 Output_section*
753 output_section() const;
754
755 // Set the symbol's output section. This is used for symbols
756 // defined in scripts. This should only be called after the symbol
757 // table has been finalized.
758 void
759 set_output_section(Output_section*);
760
761 // Return whether there should be a warning for references to this
762 // symbol.
763 bool
764 has_warning() const
765 { return this->has_warning_; }
766
767 // Mark this symbol as having a warning.
768 void
769 set_has_warning()
770 { this->has_warning_ = true; }
771
772 // Return whether this symbol is defined by a COPY reloc from a
773 // dynamic object.
774 bool
775 is_copied_from_dynobj() const
776 { return this->is_copied_from_dynobj_; }
777
778 // Mark this symbol as defined by a COPY reloc.
779 void
780 set_is_copied_from_dynobj()
781 { this->is_copied_from_dynobj_ = true; }
782
783 // Return whether this symbol is forced to visibility STB_LOCAL
784 // by a "local:" entry in a version script.
785 bool
786 is_forced_local() const
787 { return this->is_forced_local_; }
788
789 // Mark this symbol as forced to STB_LOCAL visibility.
790 void
791 set_is_forced_local()
792 { this->is_forced_local_ = true; }
793
794 // Return true if this may need a COPY relocation.
795 // References from an executable object to non-function symbols
796 // defined in a dynamic object may need a COPY relocation.
797 bool
798 may_need_copy_reloc() const
799 {
800 return (!parameters->options().output_is_position_independent()
801 && parameters->options().copyreloc()
802 && this->is_from_dynobj()
803 && !this->is_func());
804 }
805
806 protected:
807 // Instances of this class should always be created at a specific
808 // size.
809 Symbol()
810 { memset(this, 0, sizeof *this); }
811
812 // Initialize the general fields.
813 void
814 init_fields(const char* name, const char* version,
815 elfcpp::STT type, elfcpp::STB binding,
816 elfcpp::STV visibility, unsigned char nonvis);
817
818 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
819 // section index, IS_ORDINARY is whether it is a normal section
820 // index rather than a special code.
821 template<int size, bool big_endian>
822 void
823 init_base_object(const char* name, const char* version, Object* object,
824 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
825 bool is_ordinary);
826
827 // Initialize fields for an Output_data.
828 void
829 init_base_output_data(const char* name, const char* version, Output_data*,
830 elfcpp::STT, elfcpp::STB, elfcpp::STV,
831 unsigned char nonvis, bool offset_is_from_end);
832
833 // Initialize fields for an Output_segment.
834 void
835 init_base_output_segment(const char* name, const char* version,
836 Output_segment* os, elfcpp::STT type,
837 elfcpp::STB binding, elfcpp::STV visibility,
838 unsigned char nonvis,
839 Segment_offset_base offset_base);
840
841 // Initialize fields for a constant.
842 void
843 init_base_constant(const char* name, const char* version, elfcpp::STT type,
844 elfcpp::STB binding, elfcpp::STV visibility,
845 unsigned char nonvis);
846
847 // Initialize fields for an undefined symbol.
848 void
849 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
850 elfcpp::STB binding, elfcpp::STV visibility,
851 unsigned char nonvis);
852
853 // Override existing symbol.
854 template<int size, bool big_endian>
855 void
856 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
857 bool is_ordinary, Object* object, const char* version);
858
859 // Override existing symbol with a special symbol.
860 void
861 override_base_with_special(const Symbol* from);
862
863 // Override symbol version.
864 void
865 override_version(const char* version);
866
867 // Allocate a common symbol by giving it a location in the output
868 // file.
869 void
870 allocate_base_common(Output_data*);
871
872 private:
873 Symbol(const Symbol&);
874 Symbol& operator=(const Symbol&);
875
876 // Symbol name (expected to point into a Stringpool).
877 const char* name_;
878 // Symbol version (expected to point into a Stringpool). This may
879 // be NULL.
880 const char* version_;
881
882 union
883 {
884 // This struct is used if SOURCE_ == FROM_OBJECT.
885 struct
886 {
887 // Object in which symbol is defined, or in which it was first
888 // seen.
889 Object* object;
890 // Section number in object_ in which symbol is defined.
891 unsigned int shndx;
892 } from_object;
893
894 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
895 struct
896 {
897 // Output_data in which symbol is defined. Before
898 // Layout::finalize the symbol's value is an offset within the
899 // Output_data.
900 Output_data* output_data;
901 // True if the offset is from the end, false if the offset is
902 // from the beginning.
903 bool offset_is_from_end;
904 } in_output_data;
905
906 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
907 struct
908 {
909 // Output_segment in which the symbol is defined. Before
910 // Layout::finalize the symbol's value is an offset.
911 Output_segment* output_segment;
912 // The base to use for the offset before Layout::finalize.
913 Segment_offset_base offset_base;
914 } in_output_segment;
915 } u_;
916
917 // The index of this symbol in the output file. If the symbol is
918 // not going into the output file, this value is -1U. This field
919 // starts as always holding zero. It is set to a non-zero value by
920 // Symbol_table::finalize.
921 unsigned int symtab_index_;
922
923 // The index of this symbol in the dynamic symbol table. If the
924 // symbol is not going into the dynamic symbol table, this value is
925 // -1U. This field starts as always holding zero. It is set to a
926 // non-zero value during Layout::finalize.
927 unsigned int dynsym_index_;
928
929 // The GOT section entries for this symbol. A symbol may have more
930 // than one GOT offset (e.g., when mixing modules compiled with two
931 // different TLS models), but will usually have at most one.
932 Got_offset_list got_offsets_;
933
934 // If this symbol has an entry in the PLT section, then this is the
935 // offset from the start of the PLT section. This is -1U if there
936 // is no PLT entry.
937 unsigned int plt_offset_;
938
939 // Symbol type (bits 0 to 3).
940 elfcpp::STT type_ : 4;
941 // Symbol binding (bits 4 to 7).
942 elfcpp::STB binding_ : 4;
943 // Symbol visibility (bits 8 to 9).
944 elfcpp::STV visibility_ : 2;
945 // Rest of symbol st_other field (bits 10 to 15).
946 unsigned int nonvis_ : 6;
947 // The type of symbol (bits 16 to 18).
948 Source source_ : 3;
949 // True if this is the default version of the symbol (bit 19).
950 bool is_def_ : 1;
951 // True if this symbol really forwards to another symbol. This is
952 // used when we discover after the fact that two different entries
953 // in the hash table really refer to the same symbol. This will
954 // never be set for a symbol found in the hash table, but may be set
955 // for a symbol found in the list of symbols attached to an Object.
956 // It forwards to the symbol found in the forwarders_ map of
957 // Symbol_table (bit 20).
958 bool is_forwarder_ : 1;
959 // True if the symbol has an alias in the weak_aliases table in
960 // Symbol_table (bit 21).
961 bool has_alias_ : 1;
962 // True if this symbol needs to be in the dynamic symbol table (bit
963 // 22).
964 bool needs_dynsym_entry_ : 1;
965 // True if we've seen this symbol in a regular object (bit 23).
966 bool in_reg_ : 1;
967 // True if we've seen this symbol in a dynamic object (bit 24).
968 bool in_dyn_ : 1;
969 // True if this is a dynamic symbol which needs a special value in
970 // the dynamic symbol table (bit 25).
971 bool needs_dynsym_value_ : 1;
972 // True if there is a warning for this symbol (bit 26).
973 bool has_warning_ : 1;
974 // True if we are using a COPY reloc for this symbol, so that the
975 // real definition lives in a dynamic object (bit 27).
976 bool is_copied_from_dynobj_ : 1;
977 // True if this symbol was forced to local visibility by a version
978 // script (bit 28).
979 bool is_forced_local_ : 1;
980 // True if the field u_.from_object.shndx is an ordinary section
981 // index, not one of the special codes from SHN_LORESERVE to
982 // SHN_HIRESERVE (bit 29).
983 bool is_ordinary_shndx_ : 1;
984 // True if we've seen this symbol in a real ELF object (bit 30).
985 bool in_real_elf_ : 1;
986 // True if this symbol is defined in a section which was discarded
987 // (bit 31).
988 bool is_defined_in_discarded_section_ : 1;
989 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
990 bool undef_binding_set_ : 1;
991 // True if this symbol was a weak undef resolved by a dynamic def
992 // (bit 33).
993 bool undef_binding_weak_ : 1;
994 };
995
996 // The parts of a symbol which are size specific. Using a template
997 // derived class like this helps us use less space on a 32-bit system.
998
999 template<int size>
1000 class Sized_symbol : public Symbol
1001 {
1002 public:
1003 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1004 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1005
1006 Sized_symbol()
1007 { }
1008
1009 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1010 // section index, IS_ORDINARY is whether it is a normal section
1011 // index rather than a special code.
1012 template<bool big_endian>
1013 void
1014 init_object(const char* name, const char* version, Object* object,
1015 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1016 bool is_ordinary);
1017
1018 // Initialize fields for an Output_data.
1019 void
1020 init_output_data(const char* name, const char* version, Output_data*,
1021 Value_type value, Size_type symsize, elfcpp::STT,
1022 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1023 bool offset_is_from_end);
1024
1025 // Initialize fields for an Output_segment.
1026 void
1027 init_output_segment(const char* name, const char* version, Output_segment*,
1028 Value_type value, Size_type symsize, elfcpp::STT,
1029 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1030 Segment_offset_base offset_base);
1031
1032 // Initialize fields for a constant.
1033 void
1034 init_constant(const char* name, const char* version, Value_type value,
1035 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1036 unsigned char nonvis);
1037
1038 // Initialize fields for an undefined symbol.
1039 void
1040 init_undefined(const char* name, const char* version, elfcpp::STT,
1041 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1042
1043 // Override existing symbol.
1044 template<bool big_endian>
1045 void
1046 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1047 bool is_ordinary, Object* object, const char* version);
1048
1049 // Override existing symbol with a special symbol.
1050 void
1051 override_with_special(const Sized_symbol<size>*);
1052
1053 // Return the symbol's value.
1054 Value_type
1055 value() const
1056 { return this->value_; }
1057
1058 // Return the symbol's size (we can't call this 'size' because that
1059 // is a template parameter).
1060 Size_type
1061 symsize() const
1062 { return this->symsize_; }
1063
1064 // Set the symbol size. This is used when resolving common symbols.
1065 void
1066 set_symsize(Size_type symsize)
1067 { this->symsize_ = symsize; }
1068
1069 // Set the symbol value. This is called when we store the final
1070 // values of the symbols into the symbol table.
1071 void
1072 set_value(Value_type value)
1073 { this->value_ = value; }
1074
1075 // Allocate a common symbol by giving it a location in the output
1076 // file.
1077 void
1078 allocate_common(Output_data*, Value_type value);
1079
1080 private:
1081 Sized_symbol(const Sized_symbol&);
1082 Sized_symbol& operator=(const Sized_symbol&);
1083
1084 // Symbol value. Before Layout::finalize this is the offset in the
1085 // input section. This is set to the final value during
1086 // Layout::finalize.
1087 Value_type value_;
1088 // Symbol size.
1089 Size_type symsize_;
1090 };
1091
1092 // A struct describing a symbol defined by the linker, where the value
1093 // of the symbol is defined based on an output section. This is used
1094 // for symbols defined by the linker, like "_init_array_start".
1095
1096 struct Define_symbol_in_section
1097 {
1098 // The symbol name.
1099 const char* name;
1100 // The name of the output section with which this symbol should be
1101 // associated. If there is no output section with that name, the
1102 // symbol will be defined as zero.
1103 const char* output_section;
1104 // The offset of the symbol within the output section. This is an
1105 // offset from the start of the output section, unless start_at_end
1106 // is true, in which case this is an offset from the end of the
1107 // output section.
1108 uint64_t value;
1109 // The size of the symbol.
1110 uint64_t size;
1111 // The symbol type.
1112 elfcpp::STT type;
1113 // The symbol binding.
1114 elfcpp::STB binding;
1115 // The symbol visibility.
1116 elfcpp::STV visibility;
1117 // The rest of the st_other field.
1118 unsigned char nonvis;
1119 // If true, the value field is an offset from the end of the output
1120 // section.
1121 bool offset_is_from_end;
1122 // If true, this symbol is defined only if we see a reference to it.
1123 bool only_if_ref;
1124 };
1125
1126 // A struct describing a symbol defined by the linker, where the value
1127 // of the symbol is defined based on a segment. This is used for
1128 // symbols defined by the linker, like "_end". We describe the
1129 // segment with which the symbol should be associated by its
1130 // characteristics. If no segment meets these characteristics, the
1131 // symbol will be defined as zero. If there is more than one segment
1132 // which meets these characteristics, we will use the first one.
1133
1134 struct Define_symbol_in_segment
1135 {
1136 // The symbol name.
1137 const char* name;
1138 // The segment type where the symbol should be defined, typically
1139 // PT_LOAD.
1140 elfcpp::PT segment_type;
1141 // Bitmask of segment flags which must be set.
1142 elfcpp::PF segment_flags_set;
1143 // Bitmask of segment flags which must be clear.
1144 elfcpp::PF segment_flags_clear;
1145 // The offset of the symbol within the segment. The offset is
1146 // calculated from the position set by offset_base.
1147 uint64_t value;
1148 // The size of the symbol.
1149 uint64_t size;
1150 // The symbol type.
1151 elfcpp::STT type;
1152 // The symbol binding.
1153 elfcpp::STB binding;
1154 // The symbol visibility.
1155 elfcpp::STV visibility;
1156 // The rest of the st_other field.
1157 unsigned char nonvis;
1158 // The base from which we compute the offset.
1159 Symbol::Segment_offset_base offset_base;
1160 // If true, this symbol is defined only if we see a reference to it.
1161 bool only_if_ref;
1162 };
1163
1164 // This class manages warnings. Warnings are a GNU extension. When
1165 // we see a section named .gnu.warning.SYM in an object file, and if
1166 // we wind using the definition of SYM from that object file, then we
1167 // will issue a warning for any relocation against SYM from a
1168 // different object file. The text of the warning is the contents of
1169 // the section. This is not precisely the definition used by the old
1170 // GNU linker; the old GNU linker treated an occurrence of
1171 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1172 // would trigger a warning on any reference. However, it was
1173 // inconsistent in that a warning in a dynamic object only triggered
1174 // if there was no definition in a regular object. This linker is
1175 // different in that we only issue a warning if we use the symbol
1176 // definition from the same object file as the warning section.
1177
1178 class Warnings
1179 {
1180 public:
1181 Warnings()
1182 : warnings_()
1183 { }
1184
1185 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1186 // of the warning.
1187 void
1188 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1189 const std::string& warning);
1190
1191 // For each symbol for which we should give a warning, make a note
1192 // on the symbol.
1193 void
1194 note_warnings(Symbol_table* symtab);
1195
1196 // Issue a warning for a reference to SYM at RELINFO's location.
1197 template<int size, bool big_endian>
1198 void
1199 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1200 size_t relnum, off_t reloffset) const;
1201
1202 private:
1203 Warnings(const Warnings&);
1204 Warnings& operator=(const Warnings&);
1205
1206 // What we need to know to get the warning text.
1207 struct Warning_location
1208 {
1209 // The object the warning is in.
1210 Object* object;
1211 // The warning text.
1212 std::string text;
1213
1214 Warning_location()
1215 : object(NULL), text()
1216 { }
1217
1218 void
1219 set(Object* o, const std::string& t)
1220 {
1221 this->object = o;
1222 this->text = t;
1223 }
1224 };
1225
1226 // A mapping from warning symbol names (canonicalized in
1227 // Symbol_table's namepool_ field) to warning information.
1228 typedef Unordered_map<const char*, Warning_location> Warning_table;
1229
1230 Warning_table warnings_;
1231 };
1232
1233 // The main linker symbol table.
1234
1235 class Symbol_table
1236 {
1237 public:
1238 // The different places where a symbol definition can come from.
1239 enum Defined
1240 {
1241 // Defined in an object file--the normal case.
1242 OBJECT,
1243 // Defined for a COPY reloc.
1244 COPY,
1245 // Defined on the command line using --defsym.
1246 DEFSYM,
1247 // Defined (so to speak) on the command line using -u.
1248 UNDEFINED,
1249 // Defined in a linker script.
1250 SCRIPT,
1251 // Predefined by the linker.
1252 PREDEFINED,
1253 };
1254
1255 // The order in which we sort common symbols.
1256 enum Sort_commons_order
1257 {
1258 SORT_COMMONS_BY_SIZE_DESCENDING,
1259 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1260 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1261 };
1262
1263 // COUNT is an estimate of how many symbols will be inserted in the
1264 // symbol table. It's ok to put 0 if you don't know; a correct
1265 // guess will just save some CPU by reducing hashtable resizes.
1266 Symbol_table(unsigned int count, const Version_script_info& version_script);
1267
1268 ~Symbol_table();
1269
1270 void
1271 set_icf(Icf* icf)
1272 { this->icf_ = icf;}
1273
1274 Icf*
1275 icf() const
1276 { return this->icf_; }
1277
1278 // Returns true if ICF determined that this is a duplicate section.
1279 bool
1280 is_section_folded(Object* obj, unsigned int shndx) const;
1281
1282 void
1283 set_gc(Garbage_collection* gc)
1284 { this->gc_ = gc; }
1285
1286 Garbage_collection*
1287 gc() const
1288 { return this->gc_; }
1289
1290 // During garbage collection, this keeps undefined symbols.
1291 void
1292 gc_mark_undef_symbols(Layout*);
1293
1294 // During garbage collection, this ensures externally visible symbols
1295 // are not treated as garbage while building shared objects.
1296 void
1297 gc_mark_symbol_for_shlib(Symbol* sym);
1298
1299 // During garbage collection, this keeps sections that correspond to
1300 // symbols seen in dynamic objects.
1301 inline void
1302 gc_mark_dyn_syms(Symbol* sym);
1303
1304 // Add COUNT external symbols from the relocatable object RELOBJ to
1305 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1306 // offset in the symbol table of the first symbol, SYM_NAMES is
1307 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1308 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1309 // *DEFINED to the number of defined symbols.
1310 template<int size, bool big_endian>
1311 void
1312 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1313 const unsigned char* syms, size_t count,
1314 size_t symndx_offset, const char* sym_names,
1315 size_t sym_name_size,
1316 typename Sized_relobj_file<size, big_endian>::Symbols*,
1317 size_t* defined);
1318
1319 // Add one external symbol from the plugin object OBJ to the symbol table.
1320 // Returns a pointer to the resolved symbol in the symbol table.
1321 template<int size, bool big_endian>
1322 Symbol*
1323 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1324 const char* name, const char* ver,
1325 elfcpp::Sym<size, big_endian>* sym);
1326
1327 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1328 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1329 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1330 // symbol version data.
1331 template<int size, bool big_endian>
1332 void
1333 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1334 const unsigned char* syms, size_t count,
1335 const char* sym_names, size_t sym_name_size,
1336 const unsigned char* versym, size_t versym_size,
1337 const std::vector<const char*>*,
1338 typename Sized_relobj_file<size, big_endian>::Symbols*,
1339 size_t* defined);
1340
1341 // Add one external symbol from the incremental object OBJ to the symbol
1342 // table. Returns a pointer to the resolved symbol in the symbol table.
1343 template<int size, bool big_endian>
1344 Sized_symbol<size>*
1345 add_from_incrobj(Object* obj, const char* name,
1346 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1347
1348 // Define a special symbol based on an Output_data. It is a
1349 // multiple definition error if this symbol is already defined.
1350 Symbol*
1351 define_in_output_data(const char* name, const char* version, Defined,
1352 Output_data*, uint64_t value, uint64_t symsize,
1353 elfcpp::STT type, elfcpp::STB binding,
1354 elfcpp::STV visibility, unsigned char nonvis,
1355 bool offset_is_from_end, bool only_if_ref);
1356
1357 // Define a special symbol based on an Output_segment. It is a
1358 // multiple definition error if this symbol is already defined.
1359 Symbol*
1360 define_in_output_segment(const char* name, const char* version, Defined,
1361 Output_segment*, uint64_t value, uint64_t symsize,
1362 elfcpp::STT type, elfcpp::STB binding,
1363 elfcpp::STV visibility, unsigned char nonvis,
1364 Symbol::Segment_offset_base, bool only_if_ref);
1365
1366 // Define a special symbol with a constant value. It is a multiple
1367 // definition error if this symbol is already defined.
1368 Symbol*
1369 define_as_constant(const char* name, const char* version, Defined,
1370 uint64_t value, uint64_t symsize, elfcpp::STT type,
1371 elfcpp::STB binding, elfcpp::STV visibility,
1372 unsigned char nonvis, bool only_if_ref,
1373 bool force_override);
1374
1375 // Define a set of symbols in output sections. If ONLY_IF_REF is
1376 // true, only define them if they are referenced.
1377 void
1378 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1379 bool only_if_ref);
1380
1381 // Define a set of symbols in output segments. If ONLY_IF_REF is
1382 // true, only defined them if they are referenced.
1383 void
1384 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1385 bool only_if_ref);
1386
1387 // Define SYM using a COPY reloc. POSD is the Output_data where the
1388 // symbol should be defined--typically a .dyn.bss section. VALUE is
1389 // the offset within POSD.
1390 template<int size>
1391 void
1392 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1393 typename elfcpp::Elf_types<size>::Elf_Addr);
1394
1395 // Look up a symbol.
1396 Symbol*
1397 lookup(const char*, const char* version = NULL) const;
1398
1399 // Return the real symbol associated with the forwarder symbol FROM.
1400 Symbol*
1401 resolve_forwards(const Symbol* from) const;
1402
1403 // Return the sized version of a symbol in this table.
1404 template<int size>
1405 Sized_symbol<size>*
1406 get_sized_symbol(Symbol*) const;
1407
1408 template<int size>
1409 const Sized_symbol<size>*
1410 get_sized_symbol(const Symbol*) const;
1411
1412 // Return the count of undefined symbols seen.
1413 size_t
1414 saw_undefined() const
1415 { return this->saw_undefined_; }
1416
1417 // Allocate the common symbols
1418 void
1419 allocate_commons(Layout*, Mapfile*);
1420
1421 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1422 // of the warning.
1423 void
1424 add_warning(const char* name, Object* obj, const std::string& warning)
1425 { this->warnings_.add_warning(this, name, obj, warning); }
1426
1427 // Canonicalize a symbol name for use in the hash table.
1428 const char*
1429 canonicalize_name(const char* name)
1430 { return this->namepool_.add(name, true, NULL); }
1431
1432 // Possibly issue a warning for a reference to SYM at LOCATION which
1433 // is in OBJ.
1434 template<int size, bool big_endian>
1435 void
1436 issue_warning(const Symbol* sym,
1437 const Relocate_info<size, big_endian>* relinfo,
1438 size_t relnum, off_t reloffset) const
1439 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1440
1441 // Check candidate_odr_violations_ to find symbols with the same name
1442 // but apparently different definitions (different source-file/line-no).
1443 void
1444 detect_odr_violations(const Task*, const char* output_file_name) const;
1445
1446 // Add any undefined symbols named on the command line to the symbol
1447 // table.
1448 void
1449 add_undefined_symbols_from_command_line(Layout*);
1450
1451 // SYM is defined using a COPY reloc. Return the dynamic object
1452 // where the original definition was found.
1453 Dynobj*
1454 get_copy_source(const Symbol* sym) const;
1455
1456 // Set the dynamic symbol indexes. INDEX is the index of the first
1457 // global dynamic symbol. Pointers to the symbols are stored into
1458 // the vector. The names are stored into the Stringpool. This
1459 // returns an updated dynamic symbol index.
1460 unsigned int
1461 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1462 Stringpool*, Versions*);
1463
1464 // Finalize the symbol table after we have set the final addresses
1465 // of all the input sections. This sets the final symbol indexes,
1466 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1467 // index of the first global symbol. OFF is the file offset of the
1468 // global symbol table, DYNOFF is the offset of the globals in the
1469 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1470 // global dynamic symbol, and DYNCOUNT is the number of global
1471 // dynamic symbols. This records the parameters, and returns the
1472 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1473 // local symbols.
1474 off_t
1475 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1476 Stringpool* pool, unsigned int* plocal_symcount);
1477
1478 // Set the final file offset of the symbol table.
1479 void
1480 set_file_offset(off_t off)
1481 { this->offset_ = off; }
1482
1483 // Status code of Symbol_table::compute_final_value.
1484 enum Compute_final_value_status
1485 {
1486 // No error.
1487 CFVS_OK,
1488 // Unsupported symbol section.
1489 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1490 // No output section.
1491 CFVS_NO_OUTPUT_SECTION
1492 };
1493
1494 // Compute the final value of SYM and store status in location PSTATUS.
1495 // During relaxation, this may be called multiple times for a symbol to
1496 // compute its would-be final value in each relaxation pass.
1497
1498 template<int size>
1499 typename Sized_symbol<size>::Value_type
1500 compute_final_value(const Sized_symbol<size>* sym,
1501 Compute_final_value_status* pstatus) const;
1502
1503 // Return the index of the first global symbol.
1504 unsigned int
1505 first_global_index() const
1506 { return this->first_global_index_; }
1507
1508 // Return the total number of symbols in the symbol table.
1509 unsigned int
1510 output_count() const
1511 { return this->output_count_; }
1512
1513 // Write out the global symbols.
1514 void
1515 write_globals(const Stringpool*, const Stringpool*,
1516 Output_symtab_xindex*, Output_symtab_xindex*,
1517 Output_file*) const;
1518
1519 // Write out a section symbol. Return the updated offset.
1520 void
1521 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1522 Output_file*, off_t) const;
1523
1524 // Loop over all symbols, applying the function F to each.
1525 template<int size, typename F>
1526 void
1527 for_all_symbols(F f) const
1528 {
1529 for (Symbol_table_type::const_iterator p = this->table_.begin();
1530 p != this->table_.end();
1531 ++p)
1532 {
1533 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1534 f(sym);
1535 }
1536 }
1537
1538 // Dump statistical information to stderr.
1539 void
1540 print_stats() const;
1541
1542 // Return the version script information.
1543 const Version_script_info&
1544 version_script() const
1545 { return version_script_; }
1546
1547 private:
1548 Symbol_table(const Symbol_table&);
1549 Symbol_table& operator=(const Symbol_table&);
1550
1551 // The type of the list of common symbols.
1552 typedef std::vector<Symbol*> Commons_type;
1553
1554 // The type of the symbol hash table.
1555
1556 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1557
1558 // The hash function. The key values are Stringpool keys.
1559 struct Symbol_table_hash
1560 {
1561 inline size_t
1562 operator()(const Symbol_table_key& key) const
1563 {
1564 return key.first ^ key.second;
1565 }
1566 };
1567
1568 struct Symbol_table_eq
1569 {
1570 bool
1571 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1572 };
1573
1574 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1575 Symbol_table_eq> Symbol_table_type;
1576
1577 // A map from symbol name (as a pointer into the namepool) to all
1578 // the locations the symbols is (weakly) defined (and certain other
1579 // conditions are met). This map will be used later to detect
1580 // possible One Definition Rule (ODR) violations.
1581 struct Symbol_location
1582 {
1583 Object* object; // Object where the symbol is defined.
1584 unsigned int shndx; // Section-in-object where the symbol is defined.
1585 off_t offset; // Offset-in-section where the symbol is defined.
1586 bool operator==(const Symbol_location& that) const
1587 {
1588 return (this->object == that.object
1589 && this->shndx == that.shndx
1590 && this->offset == that.offset);
1591 }
1592 };
1593
1594 struct Symbol_location_hash
1595 {
1596 size_t operator()(const Symbol_location& loc) const
1597 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1598 };
1599
1600 typedef Unordered_map<const char*,
1601 Unordered_set<Symbol_location, Symbol_location_hash> >
1602 Odr_map;
1603
1604 // Make FROM a forwarder symbol to TO.
1605 void
1606 make_forwarder(Symbol* from, Symbol* to);
1607
1608 // Add a symbol.
1609 template<int size, bool big_endian>
1610 Sized_symbol<size>*
1611 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1612 const char* version, Stringpool::Key version_key,
1613 bool def, const elfcpp::Sym<size, big_endian>& sym,
1614 unsigned int st_shndx, bool is_ordinary,
1615 unsigned int orig_st_shndx);
1616
1617 // Define a default symbol.
1618 template<int size, bool big_endian>
1619 void
1620 define_default_version(Sized_symbol<size>*, bool,
1621 Symbol_table_type::iterator);
1622
1623 // Resolve symbols.
1624 template<int size, bool big_endian>
1625 void
1626 resolve(Sized_symbol<size>* to,
1627 const elfcpp::Sym<size, big_endian>& sym,
1628 unsigned int st_shndx, bool is_ordinary,
1629 unsigned int orig_st_shndx,
1630 Object*, const char* version);
1631
1632 template<int size, bool big_endian>
1633 void
1634 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1635
1636 // Record that a symbol is forced to be local by a version script or
1637 // by visibility.
1638 void
1639 force_local(Symbol*);
1640
1641 // Adjust NAME and *NAME_KEY for wrapping.
1642 const char*
1643 wrap_symbol(const char* name, Stringpool::Key* name_key);
1644
1645 // Whether we should override a symbol, based on flags in
1646 // resolve.cc.
1647 static bool
1648 should_override(const Symbol*, unsigned int, Defined, Object*, bool*, bool*);
1649
1650 // Report a problem in symbol resolution.
1651 static void
1652 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1653 Defined, Object* object);
1654
1655 // Override a symbol.
1656 template<int size, bool big_endian>
1657 void
1658 override(Sized_symbol<size>* tosym,
1659 const elfcpp::Sym<size, big_endian>& fromsym,
1660 unsigned int st_shndx, bool is_ordinary,
1661 Object* object, const char* version);
1662
1663 // Whether we should override a symbol with a special symbol which
1664 // is automatically defined by the linker.
1665 static bool
1666 should_override_with_special(const Symbol*, Defined);
1667
1668 // Override a symbol with a special symbol.
1669 template<int size>
1670 void
1671 override_with_special(Sized_symbol<size>* tosym,
1672 const Sized_symbol<size>* fromsym);
1673
1674 // Record all weak alias sets for a dynamic object.
1675 template<int size>
1676 void
1677 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1678
1679 // Define a special symbol.
1680 template<int size, bool big_endian>
1681 Sized_symbol<size>*
1682 define_special_symbol(const char** pname, const char** pversion,
1683 bool only_if_ref, Sized_symbol<size>** poldsym,
1684 bool* resolve_oldsym);
1685
1686 // Define a symbol in an Output_data, sized version.
1687 template<int size>
1688 Sized_symbol<size>*
1689 do_define_in_output_data(const char* name, const char* version, Defined,
1690 Output_data*,
1691 typename elfcpp::Elf_types<size>::Elf_Addr value,
1692 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1693 elfcpp::STT type, elfcpp::STB binding,
1694 elfcpp::STV visibility, unsigned char nonvis,
1695 bool offset_is_from_end, bool only_if_ref);
1696
1697 // Define a symbol in an Output_segment, sized version.
1698 template<int size>
1699 Sized_symbol<size>*
1700 do_define_in_output_segment(
1701 const char* name, const char* version, Defined, Output_segment* os,
1702 typename elfcpp::Elf_types<size>::Elf_Addr value,
1703 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1704 elfcpp::STT type, elfcpp::STB binding,
1705 elfcpp::STV visibility, unsigned char nonvis,
1706 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1707
1708 // Define a symbol as a constant, sized version.
1709 template<int size>
1710 Sized_symbol<size>*
1711 do_define_as_constant(
1712 const char* name, const char* version, Defined,
1713 typename elfcpp::Elf_types<size>::Elf_Addr value,
1714 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1715 elfcpp::STT type, elfcpp::STB binding,
1716 elfcpp::STV visibility, unsigned char nonvis,
1717 bool only_if_ref, bool force_override);
1718
1719 // Add any undefined symbols named on the command line to the symbol
1720 // table, sized version.
1721 template<int size>
1722 void
1723 do_add_undefined_symbols_from_command_line(Layout*);
1724
1725 // Add one undefined symbol.
1726 template<int size>
1727 void
1728 add_undefined_symbol_from_command_line(const char* name);
1729
1730 // Types of common symbols.
1731
1732 enum Commons_section_type
1733 {
1734 COMMONS_NORMAL,
1735 COMMONS_TLS,
1736 COMMONS_SMALL,
1737 COMMONS_LARGE
1738 };
1739
1740 // Allocate the common symbols, sized version.
1741 template<int size>
1742 void
1743 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1744
1745 // Allocate the common symbols from one list.
1746 template<int size>
1747 void
1748 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1749 Mapfile*, Sort_commons_order);
1750
1751 // Returns all of the lines attached to LOC, not just the one the
1752 // instruction actually came from. This helps the ODR checker avoid
1753 // false positives.
1754 static std::vector<std::string>
1755 linenos_from_loc(const Task* task, const Symbol_location& loc);
1756
1757 // Implement detect_odr_violations.
1758 template<int size, bool big_endian>
1759 void
1760 sized_detect_odr_violations() const;
1761
1762 // Finalize symbols specialized for size.
1763 template<int size>
1764 off_t
1765 sized_finalize(off_t, Stringpool*, unsigned int*);
1766
1767 // Finalize a symbol. Return whether it should be added to the
1768 // symbol table.
1769 template<int size>
1770 bool
1771 sized_finalize_symbol(Symbol*);
1772
1773 // Add a symbol the final symtab by setting its index.
1774 template<int size>
1775 void
1776 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1777
1778 // Write globals specialized for size and endianness.
1779 template<int size, bool big_endian>
1780 void
1781 sized_write_globals(const Stringpool*, const Stringpool*,
1782 Output_symtab_xindex*, Output_symtab_xindex*,
1783 Output_file*) const;
1784
1785 // Write out a symbol to P.
1786 template<int size, bool big_endian>
1787 void
1788 sized_write_symbol(Sized_symbol<size>*,
1789 typename elfcpp::Elf_types<size>::Elf_Addr value,
1790 unsigned int shndx, elfcpp::STB,
1791 const Stringpool*, unsigned char* p) const;
1792
1793 // Possibly warn about an undefined symbol from a dynamic object.
1794 void
1795 warn_about_undefined_dynobj_symbol(Symbol*) const;
1796
1797 // Write out a section symbol, specialized for size and endianness.
1798 template<int size, bool big_endian>
1799 void
1800 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1801 Output_file*, off_t) const;
1802
1803 // The type of the list of symbols which have been forced local.
1804 typedef std::vector<Symbol*> Forced_locals;
1805
1806 // A map from symbols with COPY relocs to the dynamic objects where
1807 // they are defined.
1808 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1809
1810 // We increment this every time we see a new undefined symbol, for
1811 // use in archive groups.
1812 size_t saw_undefined_;
1813 // The index of the first global symbol in the output file.
1814 unsigned int first_global_index_;
1815 // The file offset within the output symtab section where we should
1816 // write the table.
1817 off_t offset_;
1818 // The number of global symbols we want to write out.
1819 unsigned int output_count_;
1820 // The file offset of the global dynamic symbols, or 0 if none.
1821 off_t dynamic_offset_;
1822 // The index of the first global dynamic symbol.
1823 unsigned int first_dynamic_global_index_;
1824 // The number of global dynamic symbols, or 0 if none.
1825 unsigned int dynamic_count_;
1826 // The symbol hash table.
1827 Symbol_table_type table_;
1828 // A pool of symbol names. This is used for all global symbols.
1829 // Entries in the hash table point into this pool.
1830 Stringpool namepool_;
1831 // Forwarding symbols.
1832 Unordered_map<const Symbol*, Symbol*> forwarders_;
1833 // Weak aliases. A symbol in this list points to the next alias.
1834 // The aliases point to each other in a circular list.
1835 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1836 // We don't expect there to be very many common symbols, so we keep
1837 // a list of them. When we find a common symbol we add it to this
1838 // list. It is possible that by the time we process the list the
1839 // symbol is no longer a common symbol. It may also have become a
1840 // forwarder.
1841 Commons_type commons_;
1842 // This is like the commons_ field, except that it holds TLS common
1843 // symbols.
1844 Commons_type tls_commons_;
1845 // This is for small common symbols.
1846 Commons_type small_commons_;
1847 // This is for large common symbols.
1848 Commons_type large_commons_;
1849 // A list of symbols which have been forced to be local. We don't
1850 // expect there to be very many of them, so we keep a list of them
1851 // rather than walking the whole table to find them.
1852 Forced_locals forced_locals_;
1853 // Manage symbol warnings.
1854 Warnings warnings_;
1855 // Manage potential One Definition Rule (ODR) violations.
1856 Odr_map candidate_odr_violations_;
1857
1858 // When we emit a COPY reloc for a symbol, we define it in an
1859 // Output_data. When it's time to emit version information for it,
1860 // we need to know the dynamic object in which we found the original
1861 // definition. This maps symbols with COPY relocs to the dynamic
1862 // object where they were defined.
1863 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1864 // Information parsed from the version script, if any.
1865 const Version_script_info& version_script_;
1866 Garbage_collection* gc_;
1867 Icf* icf_;
1868 };
1869
1870 // We inline get_sized_symbol for efficiency.
1871
1872 template<int size>
1873 Sized_symbol<size>*
1874 Symbol_table::get_sized_symbol(Symbol* sym) const
1875 {
1876 gold_assert(size == parameters->target().get_size());
1877 return static_cast<Sized_symbol<size>*>(sym);
1878 }
1879
1880 template<int size>
1881 const Sized_symbol<size>*
1882 Symbol_table::get_sized_symbol(const Symbol* sym) const
1883 {
1884 gold_assert(size == parameters->target().get_size());
1885 return static_cast<const Sized_symbol<size>*>(sym);
1886 }
1887
1888 } // End namespace gold.
1889
1890 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.065793 seconds and 5 git commands to generate.