[GOLD] PowerPC tls_get_addr_optimize
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Set that this version is not the default for this symbol name.
144 void
145 set_is_not_default()
146 { this->is_def_ = false; }
147
148 // Return the symbol's name as name@version (or name@@version).
149 std::string
150 versioned_name() const;
151
152 // Return the symbol source.
153 Source
154 source() const
155 { return this->source_; }
156
157 // Return the object with which this symbol is associated.
158 Object*
159 object() const
160 {
161 gold_assert(this->source_ == FROM_OBJECT);
162 return this->u1_.object;
163 }
164
165 // Return the index of the section in the input relocatable or
166 // dynamic object file.
167 unsigned int
168 shndx(bool* is_ordinary) const
169 {
170 gold_assert(this->source_ == FROM_OBJECT);
171 *is_ordinary = this->is_ordinary_shndx_;
172 return this->u2_.shndx;
173 }
174
175 // Return the output data section with which this symbol is
176 // associated, if the symbol was specially defined with respect to
177 // an output data section.
178 Output_data*
179 output_data() const
180 {
181 gold_assert(this->source_ == IN_OUTPUT_DATA);
182 return this->u1_.output_data;
183 }
184
185 // If this symbol was defined with respect to an output data
186 // section, return whether the value is an offset from end.
187 bool
188 offset_is_from_end() const
189 {
190 gold_assert(this->source_ == IN_OUTPUT_DATA);
191 return this->u2_.offset_is_from_end;
192 }
193
194 // Return the output segment with which this symbol is associated,
195 // if the symbol was specially defined with respect to an output
196 // segment.
197 Output_segment*
198 output_segment() const
199 {
200 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201 return this->u1_.output_segment;
202 }
203
204 // If this symbol was defined with respect to an output segment,
205 // return the offset base.
206 Segment_offset_base
207 offset_base() const
208 {
209 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210 return this->u2_.offset_base;
211 }
212
213 // Return the symbol binding.
214 elfcpp::STB
215 binding() const
216 { return this->binding_; }
217
218 // Return the symbol type.
219 elfcpp::STT
220 type() const
221 { return this->type_; }
222
223 // Set the symbol type.
224 void
225 set_type(elfcpp::STT type)
226 { this->type_ = type; }
227
228 // Return true for function symbol.
229 bool
230 is_func() const
231 {
232 return (this->type_ == elfcpp::STT_FUNC
233 || this->type_ == elfcpp::STT_GNU_IFUNC);
234 }
235
236 // Return the symbol visibility.
237 elfcpp::STV
238 visibility() const
239 { return this->visibility_; }
240
241 // Set the visibility.
242 void
243 set_visibility(elfcpp::STV visibility)
244 { this->visibility_ = visibility; }
245
246 // Override symbol visibility.
247 void
248 override_visibility(elfcpp::STV);
249
250 // Set whether the symbol was originally a weak undef or a regular undef
251 // when resolved by a dynamic def or by a special symbol.
252 inline void
253 set_undef_binding(elfcpp::STB bind)
254 {
255 if (!this->undef_binding_set_ || this->undef_binding_weak_)
256 {
257 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258 this->undef_binding_set_ = true;
259 }
260 }
261
262 // Return TRUE if a weak undef was resolved by a dynamic def or
263 // by a special symbol.
264 inline bool
265 is_undef_binding_weak() const
266 { return this->undef_binding_weak_; }
267
268 // Return the non-visibility part of the st_other field.
269 unsigned char
270 nonvis() const
271 { return this->nonvis_; }
272
273 // Set the non-visibility part of the st_other field.
274 void
275 set_nonvis(unsigned int nonvis)
276 { this->nonvis_ = nonvis; }
277
278 // Return whether this symbol is a forwarder. This will never be
279 // true of a symbol found in the hash table, but may be true of
280 // symbol pointers attached to object files.
281 bool
282 is_forwarder() const
283 { return this->is_forwarder_; }
284
285 // Mark this symbol as a forwarder.
286 void
287 set_forwarder()
288 { this->is_forwarder_ = true; }
289
290 // Return whether this symbol has an alias in the weak aliases table
291 // in Symbol_table.
292 bool
293 has_alias() const
294 { return this->has_alias_; }
295
296 // Mark this symbol as having an alias.
297 void
298 set_has_alias()
299 { this->has_alias_ = true; }
300
301 // Return whether this symbol needs an entry in the dynamic symbol
302 // table.
303 bool
304 needs_dynsym_entry() const
305 {
306 return (this->needs_dynsym_entry_
307 || (this->in_reg()
308 && this->in_dyn()
309 && this->is_externally_visible()));
310 }
311
312 // Mark this symbol as needing an entry in the dynamic symbol table.
313 void
314 set_needs_dynsym_entry()
315 { this->needs_dynsym_entry_ = true; }
316
317 // Return whether this symbol should be added to the dynamic symbol
318 // table.
319 bool
320 should_add_dynsym_entry(Symbol_table*) const;
321
322 // Return whether this symbol has been seen in a regular object.
323 bool
324 in_reg() const
325 { return this->in_reg_; }
326
327 // Mark this symbol as having been seen in a regular object.
328 void
329 set_in_reg()
330 { this->in_reg_ = true; }
331
332 // Forget this symbol was seen in a regular object.
333 void
334 clear_in_reg()
335 { this->in_reg_ = false; }
336
337 // Return whether this symbol has been seen in a dynamic object.
338 bool
339 in_dyn() const
340 { return this->in_dyn_; }
341
342 // Mark this symbol as having been seen in a dynamic object.
343 void
344 set_in_dyn()
345 { this->in_dyn_ = true; }
346
347 // Return whether this symbol has been seen in a real ELF object.
348 // (IN_REG will return TRUE if the symbol has been seen in either
349 // a real ELF object or an object claimed by a plugin.)
350 bool
351 in_real_elf() const
352 { return this->in_real_elf_; }
353
354 // Mark this symbol as having been seen in a real ELF object.
355 void
356 set_in_real_elf()
357 { this->in_real_elf_ = true; }
358
359 // Return whether this symbol was defined in a section that was
360 // discarded from the link. This is used to control some error
361 // reporting.
362 bool
363 is_defined_in_discarded_section() const
364 { return this->is_defined_in_discarded_section_; }
365
366 // Mark this symbol as having been defined in a discarded section.
367 void
368 set_is_defined_in_discarded_section()
369 { this->is_defined_in_discarded_section_ = true; }
370
371 // Return the index of this symbol in the output file symbol table.
372 // A value of -1U means that this symbol is not going into the
373 // output file. This starts out as zero, and is set to a non-zero
374 // value by Symbol_table::finalize. It is an error to ask for the
375 // symbol table index before it has been set.
376 unsigned int
377 symtab_index() const
378 {
379 gold_assert(this->symtab_index_ != 0);
380 return this->symtab_index_;
381 }
382
383 // Set the index of the symbol in the output file symbol table.
384 void
385 set_symtab_index(unsigned int index)
386 {
387 gold_assert(index != 0);
388 this->symtab_index_ = index;
389 }
390
391 // Return whether this symbol already has an index in the output
392 // file symbol table.
393 bool
394 has_symtab_index() const
395 { return this->symtab_index_ != 0; }
396
397 // Return the index of this symbol in the dynamic symbol table. A
398 // value of -1U means that this symbol is not going into the dynamic
399 // symbol table. This starts out as zero, and is set to a non-zero
400 // during Layout::finalize. It is an error to ask for the dynamic
401 // symbol table index before it has been set.
402 unsigned int
403 dynsym_index() const
404 {
405 gold_assert(this->dynsym_index_ != 0);
406 return this->dynsym_index_;
407 }
408
409 // Set the index of the symbol in the dynamic symbol table.
410 void
411 set_dynsym_index(unsigned int index)
412 {
413 gold_assert(index != 0);
414 this->dynsym_index_ = index;
415 }
416
417 // Return whether this symbol already has an index in the dynamic
418 // symbol table.
419 bool
420 has_dynsym_index() const
421 { return this->dynsym_index_ != 0; }
422
423 // Return whether this symbol has an entry in the GOT section.
424 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
425 bool
426 has_got_offset(unsigned int got_type) const
427 { return this->got_offsets_.get_offset(got_type) != -1U; }
428
429 // Return the offset into the GOT section of this symbol.
430 unsigned int
431 got_offset(unsigned int got_type) const
432 {
433 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
434 gold_assert(got_offset != -1U);
435 return got_offset;
436 }
437
438 // Set the GOT offset of this symbol.
439 void
440 set_got_offset(unsigned int got_type, unsigned int got_offset)
441 { this->got_offsets_.set_offset(got_type, got_offset); }
442
443 // Return the GOT offset list.
444 const Got_offset_list*
445 got_offset_list() const
446 { return this->got_offsets_.get_list(); }
447
448 // Return whether this symbol has an entry in the PLT section.
449 bool
450 has_plt_offset() const
451 { return this->plt_offset_ != -1U; }
452
453 // Return the offset into the PLT section of this symbol.
454 unsigned int
455 plt_offset() const
456 {
457 gold_assert(this->has_plt_offset());
458 return this->plt_offset_;
459 }
460
461 // Set the PLT offset of this symbol.
462 void
463 set_plt_offset(unsigned int plt_offset)
464 {
465 gold_assert(plt_offset != -1U);
466 this->plt_offset_ = plt_offset;
467 }
468
469 // Return whether this dynamic symbol needs a special value in the
470 // dynamic symbol table.
471 bool
472 needs_dynsym_value() const
473 { return this->needs_dynsym_value_; }
474
475 // Set that this dynamic symbol needs a special value in the dynamic
476 // symbol table.
477 void
478 set_needs_dynsym_value()
479 {
480 gold_assert(this->object()->is_dynamic());
481 this->needs_dynsym_value_ = true;
482 }
483
484 // Return true if the final value of this symbol is known at link
485 // time.
486 bool
487 final_value_is_known() const;
488
489 // Return true if SHNDX represents a common symbol. This depends on
490 // the target.
491 static bool
492 is_common_shndx(unsigned int shndx);
493
494 // Return whether this is a defined symbol (not undefined or
495 // common).
496 bool
497 is_defined() const
498 {
499 bool is_ordinary;
500 if (this->source_ != FROM_OBJECT)
501 return this->source_ != IS_UNDEFINED;
502 unsigned int shndx = this->shndx(&is_ordinary);
503 return (is_ordinary
504 ? shndx != elfcpp::SHN_UNDEF
505 : !Symbol::is_common_shndx(shndx));
506 }
507
508 // Return true if this symbol is from a dynamic object.
509 bool
510 is_from_dynobj() const
511 {
512 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
513 }
514
515 // Return whether this is a placeholder symbol from a plugin object.
516 bool
517 is_placeholder() const
518 {
519 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
520 }
521
522 // Return whether this is an undefined symbol.
523 bool
524 is_undefined() const
525 {
526 bool is_ordinary;
527 return ((this->source_ == FROM_OBJECT
528 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
529 && is_ordinary)
530 || this->source_ == IS_UNDEFINED);
531 }
532
533 // Return whether this is a weak undefined symbol.
534 bool
535 is_weak_undefined() const
536 {
537 return (this->is_undefined()
538 && (this->binding() == elfcpp::STB_WEAK
539 || this->is_undef_binding_weak()
540 || parameters->options().weak_unresolved_symbols()));
541 }
542
543 // Return whether this is a strong undefined symbol.
544 bool
545 is_strong_undefined() const
546 {
547 return (this->is_undefined()
548 && this->binding() != elfcpp::STB_WEAK
549 && !this->is_undef_binding_weak()
550 && !parameters->options().weak_unresolved_symbols());
551 }
552
553 // Return whether this is an absolute symbol.
554 bool
555 is_absolute() const
556 {
557 bool is_ordinary;
558 return ((this->source_ == FROM_OBJECT
559 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
560 && !is_ordinary)
561 || this->source_ == IS_CONSTANT);
562 }
563
564 // Return whether this is a common symbol.
565 bool
566 is_common() const
567 {
568 if (this->source_ != FROM_OBJECT)
569 return false;
570 bool is_ordinary;
571 unsigned int shndx = this->shndx(&is_ordinary);
572 return !is_ordinary && Symbol::is_common_shndx(shndx);
573 }
574
575 // Return whether this symbol can be seen outside this object.
576 bool
577 is_externally_visible() const
578 {
579 return ((this->visibility_ == elfcpp::STV_DEFAULT
580 || this->visibility_ == elfcpp::STV_PROTECTED)
581 && !this->is_forced_local_);
582 }
583
584 // Return true if this symbol can be preempted by a definition in
585 // another link unit.
586 bool
587 is_preemptible() const
588 {
589 // It doesn't make sense to ask whether a symbol defined in
590 // another object is preemptible.
591 gold_assert(!this->is_from_dynobj());
592
593 // It doesn't make sense to ask whether an undefined symbol
594 // is preemptible.
595 gold_assert(!this->is_undefined());
596
597 // If a symbol does not have default visibility, it can not be
598 // seen outside this link unit and therefore is not preemptible.
599 if (this->visibility_ != elfcpp::STV_DEFAULT)
600 return false;
601
602 // If this symbol has been forced to be a local symbol by a
603 // version script, then it is not visible outside this link unit
604 // and is not preemptible.
605 if (this->is_forced_local_)
606 return false;
607
608 // If we are not producing a shared library, then nothing is
609 // preemptible.
610 if (!parameters->options().shared())
611 return false;
612
613 // If the symbol was named in a --dynamic-list script, it is preemptible.
614 if (parameters->options().in_dynamic_list(this->name()))
615 return true;
616
617 // If the user used -Bsymbolic, then nothing (else) is preemptible.
618 if (parameters->options().Bsymbolic())
619 return false;
620
621 // If the user used -Bsymbolic-functions, then functions are not
622 // preemptible. We explicitly check for not being STT_OBJECT,
623 // rather than for being STT_FUNC, because that is what the GNU
624 // linker does.
625 if (this->type() != elfcpp::STT_OBJECT
626 && parameters->options().Bsymbolic_functions())
627 return false;
628
629 // Otherwise the symbol is preemptible.
630 return true;
631 }
632
633 // Return true if this symbol is a function that needs a PLT entry.
634 bool
635 needs_plt_entry() const
636 {
637 // An undefined symbol from an executable does not need a PLT entry.
638 if (this->is_undefined() && !parameters->options().shared())
639 return false;
640
641 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
642 // doing a static link.
643 if (this->type() == elfcpp::STT_GNU_IFUNC)
644 return true;
645
646 // We only need a PLT entry for a function.
647 if (!this->is_func())
648 return false;
649
650 // If we're doing a static link or a -pie link, we don't create
651 // PLT entries.
652 if (parameters->doing_static_link()
653 || parameters->options().pie())
654 return false;
655
656 // We need a PLT entry if the function is defined in a dynamic
657 // object, or is undefined when building a shared object, or if it
658 // is subject to pre-emption.
659 return (this->is_from_dynobj()
660 || this->is_undefined()
661 || this->is_preemptible());
662 }
663
664 // When determining whether a reference to a symbol needs a dynamic
665 // relocation, we need to know several things about the reference.
666 // These flags may be or'ed together. 0 means that the symbol
667 // isn't referenced at all.
668 enum Reference_flags
669 {
670 // A reference to the symbol's absolute address. This includes
671 // references that cause an absolute address to be stored in the GOT.
672 ABSOLUTE_REF = 1,
673 // A reference that calculates the offset of the symbol from some
674 // anchor point, such as the PC or GOT.
675 RELATIVE_REF = 2,
676 // A TLS-related reference.
677 TLS_REF = 4,
678 // A reference that can always be treated as a function call.
679 FUNCTION_CALL = 8,
680 // When set, says that dynamic relocations are needed even if a
681 // symbol has a plt entry.
682 FUNC_DESC_ABI = 16,
683 };
684
685 // Given a direct absolute or pc-relative static relocation against
686 // the global symbol, this function returns whether a dynamic relocation
687 // is needed.
688
689 bool
690 needs_dynamic_reloc(int flags) const
691 {
692 // No dynamic relocations in a static link!
693 if (parameters->doing_static_link())
694 return false;
695
696 // A reference to an undefined symbol from an executable should be
697 // statically resolved to 0, and does not need a dynamic relocation.
698 // This matches gnu ld behavior.
699 if (this->is_undefined() && !parameters->options().shared())
700 return false;
701
702 // A reference to an absolute symbol does not need a dynamic relocation.
703 if (this->is_absolute())
704 return false;
705
706 // An absolute reference within a position-independent output file
707 // will need a dynamic relocation.
708 if ((flags & ABSOLUTE_REF)
709 && parameters->options().output_is_position_independent())
710 return true;
711
712 // A function call that can branch to a local PLT entry does not need
713 // a dynamic relocation.
714 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
715 return false;
716
717 // A reference to any PLT entry in a non-position-independent executable
718 // does not need a dynamic relocation.
719 if (!(flags & FUNC_DESC_ABI)
720 && !parameters->options().output_is_position_independent()
721 && this->has_plt_offset())
722 return false;
723
724 // A reference to a symbol defined in a dynamic object or to a
725 // symbol that is preemptible will need a dynamic relocation.
726 if (this->is_from_dynobj()
727 || this->is_undefined()
728 || this->is_preemptible())
729 return true;
730
731 // For all other cases, return FALSE.
732 return false;
733 }
734
735 // Whether we should use the PLT offset associated with a symbol for
736 // a relocation. FLAGS is a set of Reference_flags.
737
738 bool
739 use_plt_offset(int flags) const
740 {
741 // If the symbol doesn't have a PLT offset, then naturally we
742 // don't want to use it.
743 if (!this->has_plt_offset())
744 return false;
745
746 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
747 if (this->type() == elfcpp::STT_GNU_IFUNC)
748 return true;
749
750 // If we are going to generate a dynamic relocation, then we will
751 // wind up using that, so no need to use the PLT entry.
752 if (this->needs_dynamic_reloc(flags))
753 return false;
754
755 // If the symbol is from a dynamic object, we need to use the PLT
756 // entry.
757 if (this->is_from_dynobj())
758 return true;
759
760 // If we are generating a shared object, and this symbol is
761 // undefined or preemptible, we need to use the PLT entry.
762 if (parameters->options().shared()
763 && (this->is_undefined() || this->is_preemptible()))
764 return true;
765
766 // If this is a call to a weak undefined symbol, we need to use
767 // the PLT entry; the symbol may be defined by a library loaded
768 // at runtime.
769 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
770 return true;
771
772 // Otherwise we can use the regular definition.
773 return false;
774 }
775
776 // Given a direct absolute static relocation against
777 // the global symbol, where a dynamic relocation is needed, this
778 // function returns whether a relative dynamic relocation can be used.
779 // The caller must determine separately whether the static relocation
780 // is compatible with a relative relocation.
781
782 bool
783 can_use_relative_reloc(bool is_function_call) const
784 {
785 // A function call that can branch to a local PLT entry can
786 // use a RELATIVE relocation.
787 if (is_function_call && this->has_plt_offset())
788 return true;
789
790 // A reference to a symbol defined in a dynamic object or to a
791 // symbol that is preemptible can not use a RELATIVE relocation.
792 if (this->is_from_dynobj()
793 || this->is_undefined()
794 || this->is_preemptible())
795 return false;
796
797 // For all other cases, return TRUE.
798 return true;
799 }
800
801 // Return the output section where this symbol is defined. Return
802 // NULL if the symbol has an absolute value.
803 Output_section*
804 output_section() const;
805
806 // Set the symbol's output section. This is used for symbols
807 // defined in scripts. This should only be called after the symbol
808 // table has been finalized.
809 void
810 set_output_section(Output_section*);
811
812 // Set the symbol's output segment. This is used for pre-defined
813 // symbols whose segments aren't known until after layout is done
814 // (e.g., __ehdr_start).
815 void
816 set_output_segment(Output_segment*, Segment_offset_base);
817
818 // Set the symbol to undefined. This is used for pre-defined
819 // symbols whose segments aren't known until after layout is done
820 // (e.g., __ehdr_start).
821 void
822 set_undefined();
823
824 // Return whether there should be a warning for references to this
825 // symbol.
826 bool
827 has_warning() const
828 { return this->has_warning_; }
829
830 // Mark this symbol as having a warning.
831 void
832 set_has_warning()
833 { this->has_warning_ = true; }
834
835 // Return whether this symbol is defined by a COPY reloc from a
836 // dynamic object.
837 bool
838 is_copied_from_dynobj() const
839 { return this->is_copied_from_dynobj_; }
840
841 // Mark this symbol as defined by a COPY reloc.
842 void
843 set_is_copied_from_dynobj()
844 { this->is_copied_from_dynobj_ = true; }
845
846 // Return whether this symbol is forced to visibility STB_LOCAL
847 // by a "local:" entry in a version script.
848 bool
849 is_forced_local() const
850 { return this->is_forced_local_; }
851
852 // Mark this symbol as forced to STB_LOCAL visibility.
853 void
854 set_is_forced_local()
855 { this->is_forced_local_ = true; }
856
857 // Return true if this may need a COPY relocation.
858 // References from an executable object to non-function symbols
859 // defined in a dynamic object may need a COPY relocation.
860 bool
861 may_need_copy_reloc() const
862 {
863 return (parameters->options().copyreloc()
864 && this->is_from_dynobj()
865 && !this->is_func());
866 }
867
868 // Return true if this symbol was predefined by the linker.
869 bool
870 is_predefined() const
871 { return this->is_predefined_; }
872
873 // Return true if this is a C++ vtable symbol.
874 bool
875 is_cxx_vtable() const
876 { return is_prefix_of("_ZTV", this->name_); }
877
878 // Return true if this symbol is protected in a shared object.
879 // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
880 // because the visibility_ field reflects the symbol's visibility from
881 // outside the shared object.
882 bool
883 is_protected() const
884 { return this->is_protected_; }
885
886 // Mark this symbol as protected in a shared object.
887 void
888 set_is_protected()
889 { this->is_protected_ = true; }
890
891 // Return state of PowerPC64 ELFv2 specific flag.
892 bool
893 non_zero_localentry() const
894 { return this->non_zero_localentry_; }
895
896 // Set PowerPC64 ELFv2 specific flag.
897 void
898 set_non_zero_localentry()
899 { this->non_zero_localentry_ = true; }
900
901 // Completely override existing symbol. Everything bar name_,
902 // version_, and is_forced_local_ flag are copied. version_ is
903 // cleared if from->version_ is clear. Returns true if this symbol
904 // should be forced local.
905 bool
906 clone(const Symbol* from);
907
908 protected:
909 // Instances of this class should always be created at a specific
910 // size.
911 Symbol()
912 { memset(this, 0, sizeof *this); }
913
914 // Initialize the general fields.
915 void
916 init_fields(const char* name, const char* version,
917 elfcpp::STT type, elfcpp::STB binding,
918 elfcpp::STV visibility, unsigned char nonvis);
919
920 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
921 // section index, IS_ORDINARY is whether it is a normal section
922 // index rather than a special code.
923 template<int size, bool big_endian>
924 void
925 init_base_object(const char* name, const char* version, Object* object,
926 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
927 bool is_ordinary);
928
929 // Initialize fields for an Output_data.
930 void
931 init_base_output_data(const char* name, const char* version, Output_data*,
932 elfcpp::STT, elfcpp::STB, elfcpp::STV,
933 unsigned char nonvis, bool offset_is_from_end,
934 bool is_predefined);
935
936 // Initialize fields for an Output_segment.
937 void
938 init_base_output_segment(const char* name, const char* version,
939 Output_segment* os, elfcpp::STT type,
940 elfcpp::STB binding, elfcpp::STV visibility,
941 unsigned char nonvis,
942 Segment_offset_base offset_base,
943 bool is_predefined);
944
945 // Initialize fields for a constant.
946 void
947 init_base_constant(const char* name, const char* version, elfcpp::STT type,
948 elfcpp::STB binding, elfcpp::STV visibility,
949 unsigned char nonvis, bool is_predefined);
950
951 // Initialize fields for an undefined symbol.
952 void
953 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
954 elfcpp::STB binding, elfcpp::STV visibility,
955 unsigned char nonvis);
956
957 // Override existing symbol.
958 template<int size, bool big_endian>
959 void
960 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
961 bool is_ordinary, Object* object, const char* version);
962
963 // Override existing symbol with a special symbol.
964 void
965 override_base_with_special(const Symbol* from);
966
967 // Override symbol version.
968 void
969 override_version(const char* version);
970
971 // Allocate a common symbol by giving it a location in the output
972 // file.
973 void
974 allocate_base_common(Output_data*);
975
976 private:
977 Symbol(const Symbol&);
978 Symbol& operator=(const Symbol&);
979
980 // Symbol name (expected to point into a Stringpool).
981 const char* name_;
982 // Symbol version (expected to point into a Stringpool). This may
983 // be NULL.
984 const char* version_;
985
986 union
987 {
988 // This is used if SOURCE_ == FROM_OBJECT.
989 // Object in which symbol is defined, or in which it was first
990 // seen.
991 Object* object;
992
993 // This is used if SOURCE_ == IN_OUTPUT_DATA.
994 // Output_data in which symbol is defined. Before
995 // Layout::finalize the symbol's value is an offset within the
996 // Output_data.
997 Output_data* output_data;
998
999 // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1000 // Output_segment in which the symbol is defined. Before
1001 // Layout::finalize the symbol's value is an offset.
1002 Output_segment* output_segment;
1003 } u1_;
1004
1005 union
1006 {
1007 // This is used if SOURCE_ == FROM_OBJECT.
1008 // Section number in object in which symbol is defined.
1009 unsigned int shndx;
1010
1011 // This is used if SOURCE_ == IN_OUTPUT_DATA.
1012 // True if the offset is from the end, false if the offset is
1013 // from the beginning.
1014 bool offset_is_from_end;
1015
1016 // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1017 // The base to use for the offset before Layout::finalize.
1018 Segment_offset_base offset_base;
1019 } u2_;
1020
1021 // The index of this symbol in the output file. If the symbol is
1022 // not going into the output file, this value is -1U. This field
1023 // starts as always holding zero. It is set to a non-zero value by
1024 // Symbol_table::finalize.
1025 unsigned int symtab_index_;
1026
1027 // The index of this symbol in the dynamic symbol table. If the
1028 // symbol is not going into the dynamic symbol table, this value is
1029 // -1U. This field starts as always holding zero. It is set to a
1030 // non-zero value during Layout::finalize.
1031 unsigned int dynsym_index_;
1032
1033 // If this symbol has an entry in the PLT section, then this is the
1034 // offset from the start of the PLT section. This is -1U if there
1035 // is no PLT entry.
1036 unsigned int plt_offset_;
1037
1038 // The GOT section entries for this symbol. A symbol may have more
1039 // than one GOT offset (e.g., when mixing modules compiled with two
1040 // different TLS models), but will usually have at most one.
1041 Got_offset_list got_offsets_;
1042
1043 // Symbol type (bits 0 to 3).
1044 elfcpp::STT type_ : 4;
1045 // Symbol binding (bits 4 to 7).
1046 elfcpp::STB binding_ : 4;
1047 // Symbol visibility (bits 8 to 9).
1048 elfcpp::STV visibility_ : 2;
1049 // Rest of symbol st_other field (bits 10 to 15).
1050 unsigned int nonvis_ : 6;
1051 // The type of symbol (bits 16 to 18).
1052 Source source_ : 3;
1053 // True if this is the default version of the symbol (bit 19).
1054 bool is_def_ : 1;
1055 // True if this symbol really forwards to another symbol. This is
1056 // used when we discover after the fact that two different entries
1057 // in the hash table really refer to the same symbol. This will
1058 // never be set for a symbol found in the hash table, but may be set
1059 // for a symbol found in the list of symbols attached to an Object.
1060 // It forwards to the symbol found in the forwarders_ map of
1061 // Symbol_table (bit 20).
1062 bool is_forwarder_ : 1;
1063 // True if the symbol has an alias in the weak_aliases table in
1064 // Symbol_table (bit 21).
1065 bool has_alias_ : 1;
1066 // True if this symbol needs to be in the dynamic symbol table (bit
1067 // 22).
1068 bool needs_dynsym_entry_ : 1;
1069 // True if we've seen this symbol in a regular object (bit 23).
1070 bool in_reg_ : 1;
1071 // True if we've seen this symbol in a dynamic object (bit 24).
1072 bool in_dyn_ : 1;
1073 // True if this is a dynamic symbol which needs a special value in
1074 // the dynamic symbol table (bit 25).
1075 bool needs_dynsym_value_ : 1;
1076 // True if there is a warning for this symbol (bit 26).
1077 bool has_warning_ : 1;
1078 // True if we are using a COPY reloc for this symbol, so that the
1079 // real definition lives in a dynamic object (bit 27).
1080 bool is_copied_from_dynobj_ : 1;
1081 // True if this symbol was forced to local visibility by a version
1082 // script (bit 28).
1083 bool is_forced_local_ : 1;
1084 // True if the field u2_.shndx is an ordinary section
1085 // index, not one of the special codes from SHN_LORESERVE to
1086 // SHN_HIRESERVE (bit 29).
1087 bool is_ordinary_shndx_ : 1;
1088 // True if we've seen this symbol in a "real" ELF object (bit 30).
1089 // If the symbol has been seen in a relocatable, non-IR, object file,
1090 // it's known to be referenced from outside the IR. A reference from
1091 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1092 // mark the symbol as "visible" from outside the IR. The compiler
1093 // can use this distinction to guide its handling of COMDAT symbols.
1094 bool in_real_elf_ : 1;
1095 // True if this symbol is defined in a section which was discarded
1096 // (bit 31).
1097 bool is_defined_in_discarded_section_ : 1;
1098 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1099 bool undef_binding_set_ : 1;
1100 // True if this symbol was a weak undef resolved by a dynamic def
1101 // or by a special symbol (bit 33).
1102 bool undef_binding_weak_ : 1;
1103 // True if this symbol is a predefined linker symbol (bit 34).
1104 bool is_predefined_ : 1;
1105 // True if this symbol has protected visibility in a shared object (bit 35).
1106 // The visibility_ field will be STV_DEFAULT in this case because we
1107 // must treat it as such from outside the shared object.
1108 bool is_protected_ : 1;
1109 // Used by PowerPC64 ELFv2 to track st_other localentry (bit 36).
1110 bool non_zero_localentry_ : 1;
1111 };
1112
1113 // The parts of a symbol which are size specific. Using a template
1114 // derived class like this helps us use less space on a 32-bit system.
1115
1116 template<int size>
1117 class Sized_symbol : public Symbol
1118 {
1119 public:
1120 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1121 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1122
1123 Sized_symbol()
1124 { }
1125
1126 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1127 // section index, IS_ORDINARY is whether it is a normal section
1128 // index rather than a special code.
1129 template<bool big_endian>
1130 void
1131 init_object(const char* name, const char* version, Object* object,
1132 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1133 bool is_ordinary);
1134
1135 // Initialize fields for an Output_data.
1136 void
1137 init_output_data(const char* name, const char* version, Output_data*,
1138 Value_type value, Size_type symsize, elfcpp::STT,
1139 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1140 bool offset_is_from_end, bool is_predefined);
1141
1142 // Initialize fields for an Output_segment.
1143 void
1144 init_output_segment(const char* name, const char* version, Output_segment*,
1145 Value_type value, Size_type symsize, elfcpp::STT,
1146 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1147 Segment_offset_base offset_base, bool is_predefined);
1148
1149 // Initialize fields for a constant.
1150 void
1151 init_constant(const char* name, const char* version, Value_type value,
1152 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1153 unsigned char nonvis, bool is_predefined);
1154
1155 // Initialize fields for an undefined symbol.
1156 void
1157 init_undefined(const char* name, const char* version, Value_type value,
1158 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1159
1160 // Override existing symbol.
1161 template<bool big_endian>
1162 void
1163 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1164 bool is_ordinary, Object* object, const char* version);
1165
1166 // Override existing symbol with a special symbol.
1167 void
1168 override_with_special(const Sized_symbol<size>*);
1169
1170 // Return the symbol's value.
1171 Value_type
1172 value() const
1173 { return this->value_; }
1174
1175 // Return the symbol's size (we can't call this 'size' because that
1176 // is a template parameter).
1177 Size_type
1178 symsize() const
1179 { return this->symsize_; }
1180
1181 // Set the symbol size. This is used when resolving common symbols.
1182 void
1183 set_symsize(Size_type symsize)
1184 { this->symsize_ = symsize; }
1185
1186 // Set the symbol value. This is called when we store the final
1187 // values of the symbols into the symbol table.
1188 void
1189 set_value(Value_type value)
1190 { this->value_ = value; }
1191
1192 // Allocate a common symbol by giving it a location in the output
1193 // file.
1194 void
1195 allocate_common(Output_data*, Value_type value);
1196
1197 // Completely override existing symbol. Everything bar name_,
1198 // version_, and is_forced_local_ flag are copied. version_ is
1199 // cleared if from->version_ is clear. Returns true if this symbol
1200 // should be forced local.
1201 bool
1202 clone(const Sized_symbol<size>* from);
1203
1204 private:
1205 Sized_symbol(const Sized_symbol&);
1206 Sized_symbol& operator=(const Sized_symbol&);
1207
1208 // Symbol value. Before Layout::finalize this is the offset in the
1209 // input section. This is set to the final value during
1210 // Layout::finalize.
1211 Value_type value_;
1212 // Symbol size.
1213 Size_type symsize_;
1214 };
1215
1216 // A struct describing a symbol defined by the linker, where the value
1217 // of the symbol is defined based on an output section. This is used
1218 // for symbols defined by the linker, like "_init_array_start".
1219
1220 struct Define_symbol_in_section
1221 {
1222 // The symbol name.
1223 const char* name;
1224 // The name of the output section with which this symbol should be
1225 // associated. If there is no output section with that name, the
1226 // symbol will be defined as zero.
1227 const char* output_section;
1228 // The offset of the symbol within the output section. This is an
1229 // offset from the start of the output section, unless start_at_end
1230 // is true, in which case this is an offset from the end of the
1231 // output section.
1232 uint64_t value;
1233 // The size of the symbol.
1234 uint64_t size;
1235 // The symbol type.
1236 elfcpp::STT type;
1237 // The symbol binding.
1238 elfcpp::STB binding;
1239 // The symbol visibility.
1240 elfcpp::STV visibility;
1241 // The rest of the st_other field.
1242 unsigned char nonvis;
1243 // If true, the value field is an offset from the end of the output
1244 // section.
1245 bool offset_is_from_end;
1246 // If true, this symbol is defined only if we see a reference to it.
1247 bool only_if_ref;
1248 };
1249
1250 // A struct describing a symbol defined by the linker, where the value
1251 // of the symbol is defined based on a segment. This is used for
1252 // symbols defined by the linker, like "_end". We describe the
1253 // segment with which the symbol should be associated by its
1254 // characteristics. If no segment meets these characteristics, the
1255 // symbol will be defined as zero. If there is more than one segment
1256 // which meets these characteristics, we will use the first one.
1257
1258 struct Define_symbol_in_segment
1259 {
1260 // The symbol name.
1261 const char* name;
1262 // The segment type where the symbol should be defined, typically
1263 // PT_LOAD.
1264 elfcpp::PT segment_type;
1265 // Bitmask of segment flags which must be set.
1266 elfcpp::PF segment_flags_set;
1267 // Bitmask of segment flags which must be clear.
1268 elfcpp::PF segment_flags_clear;
1269 // The offset of the symbol within the segment. The offset is
1270 // calculated from the position set by offset_base.
1271 uint64_t value;
1272 // The size of the symbol.
1273 uint64_t size;
1274 // The symbol type.
1275 elfcpp::STT type;
1276 // The symbol binding.
1277 elfcpp::STB binding;
1278 // The symbol visibility.
1279 elfcpp::STV visibility;
1280 // The rest of the st_other field.
1281 unsigned char nonvis;
1282 // The base from which we compute the offset.
1283 Symbol::Segment_offset_base offset_base;
1284 // If true, this symbol is defined only if we see a reference to it.
1285 bool only_if_ref;
1286 };
1287
1288 // Specify an object/section/offset location. Used by ODR code.
1289
1290 struct Symbol_location
1291 {
1292 // Object where the symbol is defined.
1293 Object* object;
1294 // Section-in-object where the symbol is defined.
1295 unsigned int shndx;
1296 // For relocatable objects, offset-in-section where the symbol is defined.
1297 // For dynamic objects, address where the symbol is defined.
1298 off_t offset;
1299 bool operator==(const Symbol_location& that) const
1300 {
1301 return (this->object == that.object
1302 && this->shndx == that.shndx
1303 && this->offset == that.offset);
1304 }
1305 };
1306
1307 // A map from symbol name (as a pointer into the namepool) to all
1308 // the locations the symbols is (weakly) defined (and certain other
1309 // conditions are met). This map will be used later to detect
1310 // possible One Definition Rule (ODR) violations.
1311 struct Symbol_location_hash
1312 {
1313 size_t operator()(const Symbol_location& loc) const
1314 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1315 };
1316
1317 // This class manages warnings. Warnings are a GNU extension. When
1318 // we see a section named .gnu.warning.SYM in an object file, and if
1319 // we wind using the definition of SYM from that object file, then we
1320 // will issue a warning for any relocation against SYM from a
1321 // different object file. The text of the warning is the contents of
1322 // the section. This is not precisely the definition used by the old
1323 // GNU linker; the old GNU linker treated an occurrence of
1324 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1325 // would trigger a warning on any reference. However, it was
1326 // inconsistent in that a warning in a dynamic object only triggered
1327 // if there was no definition in a regular object. This linker is
1328 // different in that we only issue a warning if we use the symbol
1329 // definition from the same object file as the warning section.
1330
1331 class Warnings
1332 {
1333 public:
1334 Warnings()
1335 : warnings_()
1336 { }
1337
1338 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1339 // of the warning.
1340 void
1341 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1342 const std::string& warning);
1343
1344 // For each symbol for which we should give a warning, make a note
1345 // on the symbol.
1346 void
1347 note_warnings(Symbol_table* symtab);
1348
1349 // Issue a warning for a reference to SYM at RELINFO's location.
1350 template<int size, bool big_endian>
1351 void
1352 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1353 size_t relnum, off_t reloffset) const;
1354
1355 private:
1356 Warnings(const Warnings&);
1357 Warnings& operator=(const Warnings&);
1358
1359 // What we need to know to get the warning text.
1360 struct Warning_location
1361 {
1362 // The object the warning is in.
1363 Object* object;
1364 // The warning text.
1365 std::string text;
1366
1367 Warning_location()
1368 : object(NULL), text()
1369 { }
1370
1371 void
1372 set(Object* o, const std::string& t)
1373 {
1374 this->object = o;
1375 this->text = t;
1376 }
1377 };
1378
1379 // A mapping from warning symbol names (canonicalized in
1380 // Symbol_table's namepool_ field) to warning information.
1381 typedef Unordered_map<const char*, Warning_location> Warning_table;
1382
1383 Warning_table warnings_;
1384 };
1385
1386 // The main linker symbol table.
1387
1388 class Symbol_table
1389 {
1390 public:
1391 // The different places where a symbol definition can come from.
1392 enum Defined
1393 {
1394 // Defined in an object file--the normal case.
1395 OBJECT,
1396 // Defined for a COPY reloc.
1397 COPY,
1398 // Defined on the command line using --defsym.
1399 DEFSYM,
1400 // Defined (so to speak) on the command line using -u.
1401 UNDEFINED,
1402 // Defined in a linker script.
1403 SCRIPT,
1404 // Predefined by the linker.
1405 PREDEFINED,
1406 // Defined by the linker during an incremental base link, but not
1407 // a predefined symbol (e.g., common, defined in script).
1408 INCREMENTAL_BASE,
1409 };
1410
1411 // The order in which we sort common symbols.
1412 enum Sort_commons_order
1413 {
1414 SORT_COMMONS_BY_SIZE_DESCENDING,
1415 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1416 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1417 };
1418
1419 // COUNT is an estimate of how many symbols will be inserted in the
1420 // symbol table. It's ok to put 0 if you don't know; a correct
1421 // guess will just save some CPU by reducing hashtable resizes.
1422 Symbol_table(unsigned int count, const Version_script_info& version_script);
1423
1424 ~Symbol_table();
1425
1426 void
1427 set_icf(Icf* icf)
1428 { this->icf_ = icf;}
1429
1430 Icf*
1431 icf() const
1432 { return this->icf_; }
1433
1434 // Returns true if ICF determined that this is a duplicate section.
1435 bool
1436 is_section_folded(Relobj* obj, unsigned int shndx) const;
1437
1438 void
1439 set_gc(Garbage_collection* gc)
1440 { this->gc_ = gc; }
1441
1442 Garbage_collection*
1443 gc() const
1444 { return this->gc_; }
1445
1446 // During garbage collection, this keeps undefined symbols.
1447 void
1448 gc_mark_undef_symbols(Layout*);
1449
1450 // This tells garbage collection that this symbol is referenced.
1451 void
1452 gc_mark_symbol(Symbol* sym);
1453
1454 // During garbage collection, this keeps sections that correspond to
1455 // symbols seen in dynamic objects.
1456 inline void
1457 gc_mark_dyn_syms(Symbol* sym);
1458
1459 // Add COUNT external symbols from the relocatable object RELOBJ to
1460 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1461 // offset in the symbol table of the first symbol, SYM_NAMES is
1462 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1463 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1464 // *DEFINED to the number of defined symbols.
1465 template<int size, bool big_endian>
1466 void
1467 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1468 const unsigned char* syms, size_t count,
1469 size_t symndx_offset, const char* sym_names,
1470 size_t sym_name_size,
1471 typename Sized_relobj_file<size, big_endian>::Symbols*,
1472 size_t* defined);
1473
1474 // Add one external symbol from the plugin object OBJ to the symbol table.
1475 // Returns a pointer to the resolved symbol in the symbol table.
1476 template<int size, bool big_endian>
1477 Symbol*
1478 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1479 const char* name, const char* ver,
1480 elfcpp::Sym<size, big_endian>* sym);
1481
1482 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1483 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1484 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1485 // symbol version data.
1486 template<int size, bool big_endian>
1487 void
1488 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1489 const unsigned char* syms, size_t count,
1490 const char* sym_names, size_t sym_name_size,
1491 const unsigned char* versym, size_t versym_size,
1492 const std::vector<const char*>*,
1493 typename Sized_relobj_file<size, big_endian>::Symbols*,
1494 size_t* defined);
1495
1496 // Add one external symbol from the incremental object OBJ to the symbol
1497 // table. Returns a pointer to the resolved symbol in the symbol table.
1498 template<int size, bool big_endian>
1499 Sized_symbol<size>*
1500 add_from_incrobj(Object* obj, const char* name,
1501 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1502
1503 // Define a special symbol based on an Output_data. It is a
1504 // multiple definition error if this symbol is already defined.
1505 Symbol*
1506 define_in_output_data(const char* name, const char* version, Defined,
1507 Output_data*, uint64_t value, uint64_t symsize,
1508 elfcpp::STT type, elfcpp::STB binding,
1509 elfcpp::STV visibility, unsigned char nonvis,
1510 bool offset_is_from_end, bool only_if_ref);
1511
1512 // Define a special symbol based on an Output_segment. It is a
1513 // multiple definition error if this symbol is already defined.
1514 Symbol*
1515 define_in_output_segment(const char* name, const char* version, Defined,
1516 Output_segment*, uint64_t value, uint64_t symsize,
1517 elfcpp::STT type, elfcpp::STB binding,
1518 elfcpp::STV visibility, unsigned char nonvis,
1519 Symbol::Segment_offset_base, bool only_if_ref);
1520
1521 // Define a special symbol with a constant value. It is a multiple
1522 // definition error if this symbol is already defined.
1523 Symbol*
1524 define_as_constant(const char* name, const char* version, Defined,
1525 uint64_t value, uint64_t symsize, elfcpp::STT type,
1526 elfcpp::STB binding, elfcpp::STV visibility,
1527 unsigned char nonvis, bool only_if_ref,
1528 bool force_override);
1529
1530 // Define a set of symbols in output sections. If ONLY_IF_REF is
1531 // true, only define them if they are referenced.
1532 void
1533 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1534 bool only_if_ref);
1535
1536 // Define a set of symbols in output segments. If ONLY_IF_REF is
1537 // true, only defined them if they are referenced.
1538 void
1539 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1540 bool only_if_ref);
1541
1542 // Add a target-specific global symbol.
1543 // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1544 void
1545 add_target_global_symbol(Symbol* sym)
1546 { this->target_symbols_.push_back(sym); }
1547
1548 // Define SYM using a COPY reloc. POSD is the Output_data where the
1549 // symbol should be defined--typically a .dyn.bss section. VALUE is
1550 // the offset within POSD.
1551 template<int size>
1552 void
1553 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1554 typename elfcpp::Elf_types<size>::Elf_Addr);
1555
1556 // Look up a symbol.
1557 Symbol*
1558 lookup(const char*, const char* version = NULL) const;
1559
1560 // Return the real symbol associated with the forwarder symbol FROM.
1561 Symbol*
1562 resolve_forwards(const Symbol* from) const;
1563
1564 // Return the sized version of a symbol in this table.
1565 template<int size>
1566 Sized_symbol<size>*
1567 get_sized_symbol(Symbol*) const;
1568
1569 template<int size>
1570 const Sized_symbol<size>*
1571 get_sized_symbol(const Symbol*) const;
1572
1573 // Return the count of undefined symbols seen.
1574 size_t
1575 saw_undefined() const
1576 { return this->saw_undefined_; }
1577
1578 // Allocate the common symbols
1579 void
1580 allocate_commons(Layout*, Mapfile*);
1581
1582 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1583 // of the warning.
1584 void
1585 add_warning(const char* name, Object* obj, const std::string& warning)
1586 { this->warnings_.add_warning(this, name, obj, warning); }
1587
1588 // Canonicalize a symbol name for use in the hash table.
1589 const char*
1590 canonicalize_name(const char* name)
1591 { return this->namepool_.add(name, true, NULL); }
1592
1593 // Possibly issue a warning for a reference to SYM at LOCATION which
1594 // is in OBJ.
1595 template<int size, bool big_endian>
1596 void
1597 issue_warning(const Symbol* sym,
1598 const Relocate_info<size, big_endian>* relinfo,
1599 size_t relnum, off_t reloffset) const
1600 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1601
1602 // Check candidate_odr_violations_ to find symbols with the same name
1603 // but apparently different definitions (different source-file/line-no).
1604 void
1605 detect_odr_violations(const Task*, const char* output_file_name) const;
1606
1607 // Add any undefined symbols named on the command line to the symbol
1608 // table.
1609 void
1610 add_undefined_symbols_from_command_line(Layout*);
1611
1612 // SYM is defined using a COPY reloc. Return the dynamic object
1613 // where the original definition was found.
1614 Dynobj*
1615 get_copy_source(const Symbol* sym) const;
1616
1617 // Set the dynamic symbol indexes. INDEX is the index of the first
1618 // global dynamic symbol. Return the count of forced-local symbols in
1619 // *PFORCED_LOCAL_COUNT. Pointers to the symbols are stored into
1620 // the vector. The names are stored into the Stringpool. This
1621 // returns an updated dynamic symbol index.
1622 unsigned int
1623 set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1624 std::vector<Symbol*>*, Stringpool*, Versions*);
1625
1626 // Finalize the symbol table after we have set the final addresses
1627 // of all the input sections. This sets the final symbol indexes,
1628 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1629 // index of the first global symbol. OFF is the file offset of the
1630 // global symbol table, DYNOFF is the offset of the globals in the
1631 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1632 // global dynamic symbol, and DYNCOUNT is the number of global
1633 // dynamic symbols. This records the parameters, and returns the
1634 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1635 // local symbols.
1636 off_t
1637 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1638 Stringpool* pool, unsigned int* plocal_symcount);
1639
1640 // Set the final file offset of the symbol table.
1641 void
1642 set_file_offset(off_t off)
1643 { this->offset_ = off; }
1644
1645 // Status code of Symbol_table::compute_final_value.
1646 enum Compute_final_value_status
1647 {
1648 // No error.
1649 CFVS_OK,
1650 // Unsupported symbol section.
1651 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1652 // No output section.
1653 CFVS_NO_OUTPUT_SECTION
1654 };
1655
1656 // Compute the final value of SYM and store status in location PSTATUS.
1657 // During relaxation, this may be called multiple times for a symbol to
1658 // compute its would-be final value in each relaxation pass.
1659
1660 template<int size>
1661 typename Sized_symbol<size>::Value_type
1662 compute_final_value(const Sized_symbol<size>* sym,
1663 Compute_final_value_status* pstatus) const;
1664
1665 // Return the index of the first global symbol.
1666 unsigned int
1667 first_global_index() const
1668 { return this->first_global_index_; }
1669
1670 // Return the total number of symbols in the symbol table.
1671 unsigned int
1672 output_count() const
1673 { return this->output_count_; }
1674
1675 // Write out the global symbols.
1676 void
1677 write_globals(const Stringpool*, const Stringpool*,
1678 Output_symtab_xindex*, Output_symtab_xindex*,
1679 Output_file*) const;
1680
1681 // Write out a section symbol. Return the updated offset.
1682 void
1683 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1684 Output_file*, off_t) const;
1685
1686 // Loop over all symbols, applying the function F to each.
1687 template<int size, typename F>
1688 void
1689 for_all_symbols(F f) const
1690 {
1691 for (Symbol_table_type::const_iterator p = this->table_.begin();
1692 p != this->table_.end();
1693 ++p)
1694 {
1695 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1696 f(sym);
1697 }
1698 }
1699
1700 // Dump statistical information to stderr.
1701 void
1702 print_stats() const;
1703
1704 // Return the version script information.
1705 const Version_script_info&
1706 version_script() const
1707 { return version_script_; }
1708
1709 // Completely override existing symbol.
1710 template<int size>
1711 void
1712 clone(Sized_symbol<size>* to, const Sized_symbol<size>* from)
1713 {
1714 if (to->clone(from))
1715 this->force_local(to);
1716 }
1717
1718 private:
1719 Symbol_table(const Symbol_table&);
1720 Symbol_table& operator=(const Symbol_table&);
1721
1722 // The type of the list of common symbols.
1723 typedef std::vector<Symbol*> Commons_type;
1724
1725 // The type of the symbol hash table.
1726
1727 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1728
1729 // The hash function. The key values are Stringpool keys.
1730 struct Symbol_table_hash
1731 {
1732 inline size_t
1733 operator()(const Symbol_table_key& key) const
1734 {
1735 return key.first ^ key.second;
1736 }
1737 };
1738
1739 struct Symbol_table_eq
1740 {
1741 bool
1742 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1743 };
1744
1745 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1746 Symbol_table_eq> Symbol_table_type;
1747
1748 typedef Unordered_map<const char*,
1749 Unordered_set<Symbol_location, Symbol_location_hash> >
1750 Odr_map;
1751
1752 // Make FROM a forwarder symbol to TO.
1753 void
1754 make_forwarder(Symbol* from, Symbol* to);
1755
1756 // Add a symbol.
1757 template<int size, bool big_endian>
1758 Sized_symbol<size>*
1759 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1760 const char* version, Stringpool::Key version_key,
1761 bool def, const elfcpp::Sym<size, big_endian>& sym,
1762 unsigned int st_shndx, bool is_ordinary,
1763 unsigned int orig_st_shndx);
1764
1765 // Define a default symbol.
1766 template<int size, bool big_endian>
1767 void
1768 define_default_version(Sized_symbol<size>*, bool,
1769 Symbol_table_type::iterator);
1770
1771 // Resolve symbols.
1772 template<int size, bool big_endian>
1773 void
1774 resolve(Sized_symbol<size>* to,
1775 const elfcpp::Sym<size, big_endian>& sym,
1776 unsigned int st_shndx, bool is_ordinary,
1777 unsigned int orig_st_shndx,
1778 Object*, const char* version,
1779 bool is_default_version);
1780
1781 template<int size, bool big_endian>
1782 void
1783 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1784
1785 // Record that a symbol is forced to be local by a version script or
1786 // by visibility.
1787 void
1788 force_local(Symbol*);
1789
1790 // Adjust NAME and *NAME_KEY for wrapping.
1791 const char*
1792 wrap_symbol(const char* name, Stringpool::Key* name_key);
1793
1794 // Whether we should override a symbol, based on flags in
1795 // resolve.cc.
1796 static bool
1797 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1798 Object*, bool*, bool*, bool);
1799
1800 // Report a problem in symbol resolution.
1801 static void
1802 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1803 Defined, Object* object);
1804
1805 // Override a symbol.
1806 template<int size, bool big_endian>
1807 void
1808 override(Sized_symbol<size>* tosym,
1809 const elfcpp::Sym<size, big_endian>& fromsym,
1810 unsigned int st_shndx, bool is_ordinary,
1811 Object* object, const char* version);
1812
1813 // Whether we should override a symbol with a special symbol which
1814 // is automatically defined by the linker.
1815 static bool
1816 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1817
1818 // Override a symbol with a special symbol.
1819 template<int size>
1820 void
1821 override_with_special(Sized_symbol<size>* tosym,
1822 const Sized_symbol<size>* fromsym);
1823
1824 // Record all weak alias sets for a dynamic object.
1825 template<int size>
1826 void
1827 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1828
1829 // Define a special symbol.
1830 template<int size, bool big_endian>
1831 Sized_symbol<size>*
1832 define_special_symbol(const char** pname, const char** pversion,
1833 bool only_if_ref, Sized_symbol<size>** poldsym,
1834 bool* resolve_oldsym, bool is_forced_local);
1835
1836 // Define a symbol in an Output_data, sized version.
1837 template<int size>
1838 Sized_symbol<size>*
1839 do_define_in_output_data(const char* name, const char* version, Defined,
1840 Output_data*,
1841 typename elfcpp::Elf_types<size>::Elf_Addr value,
1842 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1843 elfcpp::STT type, elfcpp::STB binding,
1844 elfcpp::STV visibility, unsigned char nonvis,
1845 bool offset_is_from_end, bool only_if_ref);
1846
1847 // Define a symbol in an Output_segment, sized version.
1848 template<int size>
1849 Sized_symbol<size>*
1850 do_define_in_output_segment(
1851 const char* name, const char* version, Defined, Output_segment* os,
1852 typename elfcpp::Elf_types<size>::Elf_Addr value,
1853 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1854 elfcpp::STT type, elfcpp::STB binding,
1855 elfcpp::STV visibility, unsigned char nonvis,
1856 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1857
1858 // Define a symbol as a constant, sized version.
1859 template<int size>
1860 Sized_symbol<size>*
1861 do_define_as_constant(
1862 const char* name, const char* version, Defined,
1863 typename elfcpp::Elf_types<size>::Elf_Addr value,
1864 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1865 elfcpp::STT type, elfcpp::STB binding,
1866 elfcpp::STV visibility, unsigned char nonvis,
1867 bool only_if_ref, bool force_override);
1868
1869 // Add any undefined symbols named on the command line to the symbol
1870 // table, sized version.
1871 template<int size>
1872 void
1873 do_add_undefined_symbols_from_command_line(Layout*);
1874
1875 // Add one undefined symbol.
1876 template<int size>
1877 void
1878 add_undefined_symbol_from_command_line(const char* name);
1879
1880 // Types of common symbols.
1881
1882 enum Commons_section_type
1883 {
1884 COMMONS_NORMAL,
1885 COMMONS_TLS,
1886 COMMONS_SMALL,
1887 COMMONS_LARGE
1888 };
1889
1890 // Allocate the common symbols, sized version.
1891 template<int size>
1892 void
1893 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1894
1895 // Allocate the common symbols from one list.
1896 template<int size>
1897 void
1898 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1899 Mapfile*, Sort_commons_order);
1900
1901 // Returns all of the lines attached to LOC, not just the one the
1902 // instruction actually came from. This helps the ODR checker avoid
1903 // false positives.
1904 static std::vector<std::string>
1905 linenos_from_loc(const Task* task, const Symbol_location& loc);
1906
1907 // Implement detect_odr_violations.
1908 template<int size, bool big_endian>
1909 void
1910 sized_detect_odr_violations() const;
1911
1912 // Finalize symbols specialized for size.
1913 template<int size>
1914 off_t
1915 sized_finalize(off_t, Stringpool*, unsigned int*);
1916
1917 // Finalize a symbol. Return whether it should be added to the
1918 // symbol table.
1919 template<int size>
1920 bool
1921 sized_finalize_symbol(Symbol*);
1922
1923 // Add a symbol the final symtab by setting its index.
1924 template<int size>
1925 void
1926 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1927
1928 // Write globals specialized for size and endianness.
1929 template<int size, bool big_endian>
1930 void
1931 sized_write_globals(const Stringpool*, const Stringpool*,
1932 Output_symtab_xindex*, Output_symtab_xindex*,
1933 Output_file*) const;
1934
1935 // Write out a symbol to P.
1936 template<int size, bool big_endian>
1937 void
1938 sized_write_symbol(Sized_symbol<size>*,
1939 typename elfcpp::Elf_types<size>::Elf_Addr value,
1940 unsigned int shndx, elfcpp::STB,
1941 const Stringpool*, unsigned char* p) const;
1942
1943 // Possibly warn about an undefined symbol from a dynamic object.
1944 void
1945 warn_about_undefined_dynobj_symbol(Symbol*) const;
1946
1947 // Write out a section symbol, specialized for size and endianness.
1948 template<int size, bool big_endian>
1949 void
1950 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1951 Output_file*, off_t) const;
1952
1953 // The type of the list of symbols which have been forced local.
1954 typedef std::vector<Symbol*> Forced_locals;
1955
1956 // A map from symbols with COPY relocs to the dynamic objects where
1957 // they are defined.
1958 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1959
1960 // We increment this every time we see a new undefined symbol, for
1961 // use in archive groups.
1962 size_t saw_undefined_;
1963 // The index of the first global symbol in the output file.
1964 unsigned int first_global_index_;
1965 // The file offset within the output symtab section where we should
1966 // write the table.
1967 off_t offset_;
1968 // The number of global symbols we want to write out.
1969 unsigned int output_count_;
1970 // The file offset of the global dynamic symbols, or 0 if none.
1971 off_t dynamic_offset_;
1972 // The index of the first global dynamic symbol (including
1973 // forced-local symbols).
1974 unsigned int first_dynamic_global_index_;
1975 // The number of global dynamic symbols (including forced-local symbols),
1976 // or 0 if none.
1977 unsigned int dynamic_count_;
1978 // The symbol hash table.
1979 Symbol_table_type table_;
1980 // A pool of symbol names. This is used for all global symbols.
1981 // Entries in the hash table point into this pool.
1982 Stringpool namepool_;
1983 // Forwarding symbols.
1984 Unordered_map<const Symbol*, Symbol*> forwarders_;
1985 // Weak aliases. A symbol in this list points to the next alias.
1986 // The aliases point to each other in a circular list.
1987 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1988 // We don't expect there to be very many common symbols, so we keep
1989 // a list of them. When we find a common symbol we add it to this
1990 // list. It is possible that by the time we process the list the
1991 // symbol is no longer a common symbol. It may also have become a
1992 // forwarder.
1993 Commons_type commons_;
1994 // This is like the commons_ field, except that it holds TLS common
1995 // symbols.
1996 Commons_type tls_commons_;
1997 // This is for small common symbols.
1998 Commons_type small_commons_;
1999 // This is for large common symbols.
2000 Commons_type large_commons_;
2001 // A list of symbols which have been forced to be local. We don't
2002 // expect there to be very many of them, so we keep a list of them
2003 // rather than walking the whole table to find them.
2004 Forced_locals forced_locals_;
2005 // Manage symbol warnings.
2006 Warnings warnings_;
2007 // Manage potential One Definition Rule (ODR) violations.
2008 Odr_map candidate_odr_violations_;
2009
2010 // When we emit a COPY reloc for a symbol, we define it in an
2011 // Output_data. When it's time to emit version information for it,
2012 // we need to know the dynamic object in which we found the original
2013 // definition. This maps symbols with COPY relocs to the dynamic
2014 // object where they were defined.
2015 Copied_symbol_dynobjs copied_symbol_dynobjs_;
2016 // Information parsed from the version script, if any.
2017 const Version_script_info& version_script_;
2018 Garbage_collection* gc_;
2019 Icf* icf_;
2020 // Target-specific symbols, if any.
2021 std::vector<Symbol*> target_symbols_;
2022 };
2023
2024 // We inline get_sized_symbol for efficiency.
2025
2026 template<int size>
2027 Sized_symbol<size>*
2028 Symbol_table::get_sized_symbol(Symbol* sym) const
2029 {
2030 gold_assert(size == parameters->target().get_size());
2031 return static_cast<Sized_symbol<size>*>(sym);
2032 }
2033
2034 template<int size>
2035 const Sized_symbol<size>*
2036 Symbol_table::get_sized_symbol(const Symbol* sym) const
2037 {
2038 gold_assert(size == parameters->target().get_size());
2039 return static_cast<const Sized_symbol<size>*>(sym);
2040 }
2041
2042 } // End namespace gold.
2043
2044 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.068423 seconds and 5 git commands to generate.