Update copyright years
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Return the symbol's name as name@version (or name@@version).
144 std::string
145 versioned_name() const;
146
147 // Return the symbol source.
148 Source
149 source() const
150 { return this->source_; }
151
152 // Return the object with which this symbol is associated.
153 Object*
154 object() const
155 {
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
158 }
159
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
162 unsigned int
163 shndx(bool* is_ordinary) const
164 {
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
168 }
169
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
173 Output_data*
174 output_data() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
178 }
179
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
182 bool
183 offset_is_from_end() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
187 }
188
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
191 // segment.
192 Output_segment*
193 output_segment() const
194 {
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
197 }
198
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
201 Segment_offset_base
202 offset_base() const
203 {
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
206 }
207
208 // Return the symbol binding.
209 elfcpp::STB
210 binding() const
211 { return this->binding_; }
212
213 // Return the symbol type.
214 elfcpp::STT
215 type() const
216 { return this->type_; }
217
218 // Return true for function symbol.
219 bool
220 is_func() const
221 {
222 return (this->type_ == elfcpp::STT_FUNC
223 || this->type_ == elfcpp::STT_GNU_IFUNC);
224 }
225
226 // Return the symbol visibility.
227 elfcpp::STV
228 visibility() const
229 { return this->visibility_; }
230
231 // Set the visibility.
232 void
233 set_visibility(elfcpp::STV visibility)
234 { this->visibility_ = visibility; }
235
236 // Override symbol visibility.
237 void
238 override_visibility(elfcpp::STV);
239
240 // Set whether the symbol was originally a weak undef or a regular undef
241 // when resolved by a dynamic def.
242 inline void
243 set_undef_binding(elfcpp::STB bind)
244 {
245 if (!this->undef_binding_set_ || this->undef_binding_weak_)
246 {
247 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
248 this->undef_binding_set_ = true;
249 }
250 }
251
252 // Return TRUE if a weak undef was resolved by a dynamic def.
253 inline bool
254 is_undef_binding_weak() const
255 { return this->undef_binding_weak_; }
256
257 // Return the non-visibility part of the st_other field.
258 unsigned char
259 nonvis() const
260 { return this->nonvis_; }
261
262 // Return whether this symbol is a forwarder. This will never be
263 // true of a symbol found in the hash table, but may be true of
264 // symbol pointers attached to object files.
265 bool
266 is_forwarder() const
267 { return this->is_forwarder_; }
268
269 // Mark this symbol as a forwarder.
270 void
271 set_forwarder()
272 { this->is_forwarder_ = true; }
273
274 // Return whether this symbol has an alias in the weak aliases table
275 // in Symbol_table.
276 bool
277 has_alias() const
278 { return this->has_alias_; }
279
280 // Mark this symbol as having an alias.
281 void
282 set_has_alias()
283 { this->has_alias_ = true; }
284
285 // Return whether this symbol needs an entry in the dynamic symbol
286 // table.
287 bool
288 needs_dynsym_entry() const
289 {
290 return (this->needs_dynsym_entry_
291 || (this->in_reg()
292 && this->in_dyn()
293 && this->is_externally_visible()));
294 }
295
296 // Mark this symbol as needing an entry in the dynamic symbol table.
297 void
298 set_needs_dynsym_entry()
299 { this->needs_dynsym_entry_ = true; }
300
301 // Return whether this symbol should be added to the dynamic symbol
302 // table.
303 bool
304 should_add_dynsym_entry(Symbol_table*) const;
305
306 // Return whether this symbol has been seen in a regular object.
307 bool
308 in_reg() const
309 { return this->in_reg_; }
310
311 // Mark this symbol as having been seen in a regular object.
312 void
313 set_in_reg()
314 { this->in_reg_ = true; }
315
316 // Return whether this symbol has been seen in a dynamic object.
317 bool
318 in_dyn() const
319 { return this->in_dyn_; }
320
321 // Mark this symbol as having been seen in a dynamic object.
322 void
323 set_in_dyn()
324 { this->in_dyn_ = true; }
325
326 // Return whether this symbol has been seen in a real ELF object.
327 // (IN_REG will return TRUE if the symbol has been seen in either
328 // a real ELF object or an object claimed by a plugin.)
329 bool
330 in_real_elf() const
331 { return this->in_real_elf_; }
332
333 // Mark this symbol as having been seen in a real ELF object.
334 void
335 set_in_real_elf()
336 { this->in_real_elf_ = true; }
337
338 // Return whether this symbol was defined in a section that was
339 // discarded from the link. This is used to control some error
340 // reporting.
341 bool
342 is_defined_in_discarded_section() const
343 { return this->is_defined_in_discarded_section_; }
344
345 // Mark this symbol as having been defined in a discarded section.
346 void
347 set_is_defined_in_discarded_section()
348 { this->is_defined_in_discarded_section_ = true; }
349
350 // Return the index of this symbol in the output file symbol table.
351 // A value of -1U means that this symbol is not going into the
352 // output file. This starts out as zero, and is set to a non-zero
353 // value by Symbol_table::finalize. It is an error to ask for the
354 // symbol table index before it has been set.
355 unsigned int
356 symtab_index() const
357 {
358 gold_assert(this->symtab_index_ != 0);
359 return this->symtab_index_;
360 }
361
362 // Set the index of the symbol in the output file symbol table.
363 void
364 set_symtab_index(unsigned int index)
365 {
366 gold_assert(index != 0);
367 this->symtab_index_ = index;
368 }
369
370 // Return whether this symbol already has an index in the output
371 // file symbol table.
372 bool
373 has_symtab_index() const
374 { return this->symtab_index_ != 0; }
375
376 // Return the index of this symbol in the dynamic symbol table. A
377 // value of -1U means that this symbol is not going into the dynamic
378 // symbol table. This starts out as zero, and is set to a non-zero
379 // during Layout::finalize. It is an error to ask for the dynamic
380 // symbol table index before it has been set.
381 unsigned int
382 dynsym_index() const
383 {
384 gold_assert(this->dynsym_index_ != 0);
385 return this->dynsym_index_;
386 }
387
388 // Set the index of the symbol in the dynamic symbol table.
389 void
390 set_dynsym_index(unsigned int index)
391 {
392 gold_assert(index != 0);
393 this->dynsym_index_ = index;
394 }
395
396 // Return whether this symbol already has an index in the dynamic
397 // symbol table.
398 bool
399 has_dynsym_index() const
400 { return this->dynsym_index_ != 0; }
401
402 // Return whether this symbol has an entry in the GOT section.
403 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
404 bool
405 has_got_offset(unsigned int got_type) const
406 { return this->got_offsets_.get_offset(got_type) != -1U; }
407
408 // Return the offset into the GOT section of this symbol.
409 unsigned int
410 got_offset(unsigned int got_type) const
411 {
412 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
413 gold_assert(got_offset != -1U);
414 return got_offset;
415 }
416
417 // Set the GOT offset of this symbol.
418 void
419 set_got_offset(unsigned int got_type, unsigned int got_offset)
420 { this->got_offsets_.set_offset(got_type, got_offset); }
421
422 // Return the GOT offset list.
423 const Got_offset_list*
424 got_offset_list() const
425 { return this->got_offsets_.get_list(); }
426
427 // Return whether this symbol has an entry in the PLT section.
428 bool
429 has_plt_offset() const
430 { return this->plt_offset_ != -1U; }
431
432 // Return the offset into the PLT section of this symbol.
433 unsigned int
434 plt_offset() const
435 {
436 gold_assert(this->has_plt_offset());
437 return this->plt_offset_;
438 }
439
440 // Set the PLT offset of this symbol.
441 void
442 set_plt_offset(unsigned int plt_offset)
443 {
444 gold_assert(plt_offset != -1U);
445 this->plt_offset_ = plt_offset;
446 }
447
448 // Return whether this dynamic symbol needs a special value in the
449 // dynamic symbol table.
450 bool
451 needs_dynsym_value() const
452 { return this->needs_dynsym_value_; }
453
454 // Set that this dynamic symbol needs a special value in the dynamic
455 // symbol table.
456 void
457 set_needs_dynsym_value()
458 {
459 gold_assert(this->object()->is_dynamic());
460 this->needs_dynsym_value_ = true;
461 }
462
463 // Return true if the final value of this symbol is known at link
464 // time.
465 bool
466 final_value_is_known() const;
467
468 // Return true if SHNDX represents a common symbol. This depends on
469 // the target.
470 static bool
471 is_common_shndx(unsigned int shndx);
472
473 // Return whether this is a defined symbol (not undefined or
474 // common).
475 bool
476 is_defined() const
477 {
478 bool is_ordinary;
479 if (this->source_ != FROM_OBJECT)
480 return this->source_ != IS_UNDEFINED;
481 unsigned int shndx = this->shndx(&is_ordinary);
482 return (is_ordinary
483 ? shndx != elfcpp::SHN_UNDEF
484 : !Symbol::is_common_shndx(shndx));
485 }
486
487 // Return true if this symbol is from a dynamic object.
488 bool
489 is_from_dynobj() const
490 {
491 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
492 }
493
494 // Return whether this is a placeholder symbol from a plugin object.
495 bool
496 is_placeholder() const
497 {
498 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
499 }
500
501 // Return whether this is an undefined symbol.
502 bool
503 is_undefined() const
504 {
505 bool is_ordinary;
506 return ((this->source_ == FROM_OBJECT
507 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
508 && is_ordinary)
509 || this->source_ == IS_UNDEFINED);
510 }
511
512 // Return whether this is a weak undefined symbol.
513 bool
514 is_weak_undefined() const
515 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
516
517 // Return whether this is an absolute symbol.
518 bool
519 is_absolute() const
520 {
521 bool is_ordinary;
522 return ((this->source_ == FROM_OBJECT
523 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
524 && !is_ordinary)
525 || this->source_ == IS_CONSTANT);
526 }
527
528 // Return whether this is a common symbol.
529 bool
530 is_common() const
531 {
532 if (this->source_ != FROM_OBJECT)
533 return false;
534 if (this->type_ == elfcpp::STT_COMMON)
535 return true;
536 bool is_ordinary;
537 unsigned int shndx = this->shndx(&is_ordinary);
538 return !is_ordinary && Symbol::is_common_shndx(shndx);
539 }
540
541 // Return whether this symbol can be seen outside this object.
542 bool
543 is_externally_visible() const
544 {
545 return ((this->visibility_ == elfcpp::STV_DEFAULT
546 || this->visibility_ == elfcpp::STV_PROTECTED)
547 && !this->is_forced_local_);
548 }
549
550 // Return true if this symbol can be preempted by a definition in
551 // another link unit.
552 bool
553 is_preemptible() const
554 {
555 // It doesn't make sense to ask whether a symbol defined in
556 // another object is preemptible.
557 gold_assert(!this->is_from_dynobj());
558
559 // It doesn't make sense to ask whether an undefined symbol
560 // is preemptible.
561 gold_assert(!this->is_undefined());
562
563 // If a symbol does not have default visibility, it can not be
564 // seen outside this link unit and therefore is not preemptible.
565 if (this->visibility_ != elfcpp::STV_DEFAULT)
566 return false;
567
568 // If this symbol has been forced to be a local symbol by a
569 // version script, then it is not visible outside this link unit
570 // and is not preemptible.
571 if (this->is_forced_local_)
572 return false;
573
574 // If we are not producing a shared library, then nothing is
575 // preemptible.
576 if (!parameters->options().shared())
577 return false;
578
579 // If the symbol was named in a --dynamic-list script, it is preemptible.
580 if (parameters->options().in_dynamic_list(this->name()))
581 return true;
582
583 // If the user used -Bsymbolic or provided a --dynamic-list script,
584 // then nothing (else) is preemptible.
585 if (parameters->options().Bsymbolic()
586 || parameters->options().have_dynamic_list())
587 return false;
588
589 // If the user used -Bsymbolic-functions, then functions are not
590 // preemptible. We explicitly check for not being STT_OBJECT,
591 // rather than for being STT_FUNC, because that is what the GNU
592 // linker does.
593 if (this->type() != elfcpp::STT_OBJECT
594 && parameters->options().Bsymbolic_functions())
595 return false;
596
597 // Otherwise the symbol is preemptible.
598 return true;
599 }
600
601 // Return true if this symbol is a function that needs a PLT entry.
602 bool
603 needs_plt_entry() const
604 {
605 // An undefined symbol from an executable does not need a PLT entry.
606 if (this->is_undefined() && !parameters->options().shared())
607 return false;
608
609 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
610 // doing a static link.
611 if (this->type() == elfcpp::STT_GNU_IFUNC)
612 return true;
613
614 // We only need a PLT entry for a function.
615 if (!this->is_func())
616 return false;
617
618 // If we're doing a static link or a -pie link, we don't create
619 // PLT entries.
620 if (parameters->doing_static_link()
621 || parameters->options().pie())
622 return false;
623
624 // We need a PLT entry if the function is defined in a dynamic
625 // object, or is undefined when building a shared object, or if it
626 // is subject to pre-emption.
627 return (this->is_from_dynobj()
628 || this->is_undefined()
629 || this->is_preemptible());
630 }
631
632 // When determining whether a reference to a symbol needs a dynamic
633 // relocation, we need to know several things about the reference.
634 // These flags may be or'ed together. 0 means that the symbol
635 // isn't referenced at all.
636 enum Reference_flags
637 {
638 // A reference to the symbol's absolute address. This includes
639 // references that cause an absolute address to be stored in the GOT.
640 ABSOLUTE_REF = 1,
641 // A reference that calculates the offset of the symbol from some
642 // anchor point, such as the PC or GOT.
643 RELATIVE_REF = 2,
644 // A TLS-related reference.
645 TLS_REF = 4,
646 // A reference that can always be treated as a function call.
647 FUNCTION_CALL = 8,
648 // When set, says that dynamic relocations are needed even if a
649 // symbol has a plt entry.
650 FUNC_DESC_ABI = 16,
651 };
652
653 // Given a direct absolute or pc-relative static relocation against
654 // the global symbol, this function returns whether a dynamic relocation
655 // is needed.
656
657 bool
658 needs_dynamic_reloc(int flags) const
659 {
660 // No dynamic relocations in a static link!
661 if (parameters->doing_static_link())
662 return false;
663
664 // A reference to an undefined symbol from an executable should be
665 // statically resolved to 0, and does not need a dynamic relocation.
666 // This matches gnu ld behavior.
667 if (this->is_undefined() && !parameters->options().shared())
668 return false;
669
670 // A reference to an absolute symbol does not need a dynamic relocation.
671 if (this->is_absolute())
672 return false;
673
674 // An absolute reference within a position-independent output file
675 // will need a dynamic relocation.
676 if ((flags & ABSOLUTE_REF)
677 && parameters->options().output_is_position_independent())
678 return true;
679
680 // A function call that can branch to a local PLT entry does not need
681 // a dynamic relocation.
682 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
683 return false;
684
685 // A reference to any PLT entry in a non-position-independent executable
686 // does not need a dynamic relocation.
687 if (!(flags & FUNC_DESC_ABI)
688 && !parameters->options().output_is_position_independent()
689 && this->has_plt_offset())
690 return false;
691
692 // A reference to a symbol defined in a dynamic object or to a
693 // symbol that is preemptible will need a dynamic relocation.
694 if (this->is_from_dynobj()
695 || this->is_undefined()
696 || this->is_preemptible())
697 return true;
698
699 // For all other cases, return FALSE.
700 return false;
701 }
702
703 // Whether we should use the PLT offset associated with a symbol for
704 // a relocation. FLAGS is a set of Reference_flags.
705
706 bool
707 use_plt_offset(int flags) const
708 {
709 // If the symbol doesn't have a PLT offset, then naturally we
710 // don't want to use it.
711 if (!this->has_plt_offset())
712 return false;
713
714 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
715 if (this->type() == elfcpp::STT_GNU_IFUNC)
716 return true;
717
718 // If we are going to generate a dynamic relocation, then we will
719 // wind up using that, so no need to use the PLT entry.
720 if (this->needs_dynamic_reloc(flags))
721 return false;
722
723 // If the symbol is from a dynamic object, we need to use the PLT
724 // entry.
725 if (this->is_from_dynobj())
726 return true;
727
728 // If we are generating a shared object, and this symbol is
729 // undefined or preemptible, we need to use the PLT entry.
730 if (parameters->options().shared()
731 && (this->is_undefined() || this->is_preemptible()))
732 return true;
733
734 // If this is a call to a weak undefined symbol, we need to use
735 // the PLT entry; the symbol may be defined by a library loaded
736 // at runtime.
737 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
738 return true;
739
740 // Otherwise we can use the regular definition.
741 return false;
742 }
743
744 // Given a direct absolute static relocation against
745 // the global symbol, where a dynamic relocation is needed, this
746 // function returns whether a relative dynamic relocation can be used.
747 // The caller must determine separately whether the static relocation
748 // is compatible with a relative relocation.
749
750 bool
751 can_use_relative_reloc(bool is_function_call) const
752 {
753 // A function call that can branch to a local PLT entry can
754 // use a RELATIVE relocation.
755 if (is_function_call && this->has_plt_offset())
756 return true;
757
758 // A reference to a symbol defined in a dynamic object or to a
759 // symbol that is preemptible can not use a RELATIVE relocation.
760 if (this->is_from_dynobj()
761 || this->is_undefined()
762 || this->is_preemptible())
763 return false;
764
765 // For all other cases, return TRUE.
766 return true;
767 }
768
769 // Return the output section where this symbol is defined. Return
770 // NULL if the symbol has an absolute value.
771 Output_section*
772 output_section() const;
773
774 // Set the symbol's output section. This is used for symbols
775 // defined in scripts. This should only be called after the symbol
776 // table has been finalized.
777 void
778 set_output_section(Output_section*);
779
780 // Return whether there should be a warning for references to this
781 // symbol.
782 bool
783 has_warning() const
784 { return this->has_warning_; }
785
786 // Mark this symbol as having a warning.
787 void
788 set_has_warning()
789 { this->has_warning_ = true; }
790
791 // Return whether this symbol is defined by a COPY reloc from a
792 // dynamic object.
793 bool
794 is_copied_from_dynobj() const
795 { return this->is_copied_from_dynobj_; }
796
797 // Mark this symbol as defined by a COPY reloc.
798 void
799 set_is_copied_from_dynobj()
800 { this->is_copied_from_dynobj_ = true; }
801
802 // Return whether this symbol is forced to visibility STB_LOCAL
803 // by a "local:" entry in a version script.
804 bool
805 is_forced_local() const
806 { return this->is_forced_local_; }
807
808 // Mark this symbol as forced to STB_LOCAL visibility.
809 void
810 set_is_forced_local()
811 { this->is_forced_local_ = true; }
812
813 // Return true if this may need a COPY relocation.
814 // References from an executable object to non-function symbols
815 // defined in a dynamic object may need a COPY relocation.
816 bool
817 may_need_copy_reloc() const
818 {
819 return (!parameters->options().output_is_position_independent()
820 && parameters->options().copyreloc()
821 && this->is_from_dynobj()
822 && !this->is_func());
823 }
824
825 // Return true if this symbol was predefined by the linker.
826 bool
827 is_predefined() const
828 { return this->is_predefined_; }
829
830 // Return true if this is a C++ vtable symbol.
831 bool
832 is_cxx_vtable() const
833 { return is_prefix_of("_ZTV", this->name_); }
834
835 protected:
836 // Instances of this class should always be created at a specific
837 // size.
838 Symbol()
839 { memset(this, 0, sizeof *this); }
840
841 // Initialize the general fields.
842 void
843 init_fields(const char* name, const char* version,
844 elfcpp::STT type, elfcpp::STB binding,
845 elfcpp::STV visibility, unsigned char nonvis);
846
847 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
848 // section index, IS_ORDINARY is whether it is a normal section
849 // index rather than a special code.
850 template<int size, bool big_endian>
851 void
852 init_base_object(const char* name, const char* version, Object* object,
853 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
854 bool is_ordinary);
855
856 // Initialize fields for an Output_data.
857 void
858 init_base_output_data(const char* name, const char* version, Output_data*,
859 elfcpp::STT, elfcpp::STB, elfcpp::STV,
860 unsigned char nonvis, bool offset_is_from_end,
861 bool is_predefined);
862
863 // Initialize fields for an Output_segment.
864 void
865 init_base_output_segment(const char* name, const char* version,
866 Output_segment* os, elfcpp::STT type,
867 elfcpp::STB binding, elfcpp::STV visibility,
868 unsigned char nonvis,
869 Segment_offset_base offset_base,
870 bool is_predefined);
871
872 // Initialize fields for a constant.
873 void
874 init_base_constant(const char* name, const char* version, elfcpp::STT type,
875 elfcpp::STB binding, elfcpp::STV visibility,
876 unsigned char nonvis, bool is_predefined);
877
878 // Initialize fields for an undefined symbol.
879 void
880 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
881 elfcpp::STB binding, elfcpp::STV visibility,
882 unsigned char nonvis);
883
884 // Override existing symbol.
885 template<int size, bool big_endian>
886 void
887 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
888 bool is_ordinary, Object* object, const char* version);
889
890 // Override existing symbol with a special symbol.
891 void
892 override_base_with_special(const Symbol* from);
893
894 // Override symbol version.
895 void
896 override_version(const char* version);
897
898 // Allocate a common symbol by giving it a location in the output
899 // file.
900 void
901 allocate_base_common(Output_data*);
902
903 private:
904 Symbol(const Symbol&);
905 Symbol& operator=(const Symbol&);
906
907 // Symbol name (expected to point into a Stringpool).
908 const char* name_;
909 // Symbol version (expected to point into a Stringpool). This may
910 // be NULL.
911 const char* version_;
912
913 union
914 {
915 // This struct is used if SOURCE_ == FROM_OBJECT.
916 struct
917 {
918 // Object in which symbol is defined, or in which it was first
919 // seen.
920 Object* object;
921 // Section number in object_ in which symbol is defined.
922 unsigned int shndx;
923 } from_object;
924
925 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
926 struct
927 {
928 // Output_data in which symbol is defined. Before
929 // Layout::finalize the symbol's value is an offset within the
930 // Output_data.
931 Output_data* output_data;
932 // True if the offset is from the end, false if the offset is
933 // from the beginning.
934 bool offset_is_from_end;
935 } in_output_data;
936
937 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
938 struct
939 {
940 // Output_segment in which the symbol is defined. Before
941 // Layout::finalize the symbol's value is an offset.
942 Output_segment* output_segment;
943 // The base to use for the offset before Layout::finalize.
944 Segment_offset_base offset_base;
945 } in_output_segment;
946 } u_;
947
948 // The index of this symbol in the output file. If the symbol is
949 // not going into the output file, this value is -1U. This field
950 // starts as always holding zero. It is set to a non-zero value by
951 // Symbol_table::finalize.
952 unsigned int symtab_index_;
953
954 // The index of this symbol in the dynamic symbol table. If the
955 // symbol is not going into the dynamic symbol table, this value is
956 // -1U. This field starts as always holding zero. It is set to a
957 // non-zero value during Layout::finalize.
958 unsigned int dynsym_index_;
959
960 // The GOT section entries for this symbol. A symbol may have more
961 // than one GOT offset (e.g., when mixing modules compiled with two
962 // different TLS models), but will usually have at most one.
963 Got_offset_list got_offsets_;
964
965 // If this symbol has an entry in the PLT section, then this is the
966 // offset from the start of the PLT section. This is -1U if there
967 // is no PLT entry.
968 unsigned int plt_offset_;
969
970 // Symbol type (bits 0 to 3).
971 elfcpp::STT type_ : 4;
972 // Symbol binding (bits 4 to 7).
973 elfcpp::STB binding_ : 4;
974 // Symbol visibility (bits 8 to 9).
975 elfcpp::STV visibility_ : 2;
976 // Rest of symbol st_other field (bits 10 to 15).
977 unsigned int nonvis_ : 6;
978 // The type of symbol (bits 16 to 18).
979 Source source_ : 3;
980 // True if this is the default version of the symbol (bit 19).
981 bool is_def_ : 1;
982 // True if this symbol really forwards to another symbol. This is
983 // used when we discover after the fact that two different entries
984 // in the hash table really refer to the same symbol. This will
985 // never be set for a symbol found in the hash table, but may be set
986 // for a symbol found in the list of symbols attached to an Object.
987 // It forwards to the symbol found in the forwarders_ map of
988 // Symbol_table (bit 20).
989 bool is_forwarder_ : 1;
990 // True if the symbol has an alias in the weak_aliases table in
991 // Symbol_table (bit 21).
992 bool has_alias_ : 1;
993 // True if this symbol needs to be in the dynamic symbol table (bit
994 // 22).
995 bool needs_dynsym_entry_ : 1;
996 // True if we've seen this symbol in a regular object (bit 23).
997 bool in_reg_ : 1;
998 // True if we've seen this symbol in a dynamic object (bit 24).
999 bool in_dyn_ : 1;
1000 // True if this is a dynamic symbol which needs a special value in
1001 // the dynamic symbol table (bit 25).
1002 bool needs_dynsym_value_ : 1;
1003 // True if there is a warning for this symbol (bit 26).
1004 bool has_warning_ : 1;
1005 // True if we are using a COPY reloc for this symbol, so that the
1006 // real definition lives in a dynamic object (bit 27).
1007 bool is_copied_from_dynobj_ : 1;
1008 // True if this symbol was forced to local visibility by a version
1009 // script (bit 28).
1010 bool is_forced_local_ : 1;
1011 // True if the field u_.from_object.shndx is an ordinary section
1012 // index, not one of the special codes from SHN_LORESERVE to
1013 // SHN_HIRESERVE (bit 29).
1014 bool is_ordinary_shndx_ : 1;
1015 // True if we've seen this symbol in a "real" ELF object (bit 30).
1016 // If the symbol has been seen in a relocatable, non-IR, object file,
1017 // it's known to be referenced from outside the IR. A reference from
1018 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1019 // mark the symbol as "visible" from outside the IR. The compiler
1020 // can use this distinction to guide its handling of COMDAT symbols.
1021 bool in_real_elf_ : 1;
1022 // True if this symbol is defined in a section which was discarded
1023 // (bit 31).
1024 bool is_defined_in_discarded_section_ : 1;
1025 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1026 bool undef_binding_set_ : 1;
1027 // True if this symbol was a weak undef resolved by a dynamic def
1028 // (bit 33).
1029 bool undef_binding_weak_ : 1;
1030 // True if this symbol is a predefined linker symbol (bit 34).
1031 bool is_predefined_ : 1;
1032 };
1033
1034 // The parts of a symbol which are size specific. Using a template
1035 // derived class like this helps us use less space on a 32-bit system.
1036
1037 template<int size>
1038 class Sized_symbol : public Symbol
1039 {
1040 public:
1041 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1042 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1043
1044 Sized_symbol()
1045 { }
1046
1047 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1048 // section index, IS_ORDINARY is whether it is a normal section
1049 // index rather than a special code.
1050 template<bool big_endian>
1051 void
1052 init_object(const char* name, const char* version, Object* object,
1053 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1054 bool is_ordinary);
1055
1056 // Initialize fields for an Output_data.
1057 void
1058 init_output_data(const char* name, const char* version, Output_data*,
1059 Value_type value, Size_type symsize, elfcpp::STT,
1060 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1061 bool offset_is_from_end, bool is_predefined);
1062
1063 // Initialize fields for an Output_segment.
1064 void
1065 init_output_segment(const char* name, const char* version, Output_segment*,
1066 Value_type value, Size_type symsize, elfcpp::STT,
1067 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1068 Segment_offset_base offset_base, bool is_predefined);
1069
1070 // Initialize fields for a constant.
1071 void
1072 init_constant(const char* name, const char* version, Value_type value,
1073 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1074 unsigned char nonvis, bool is_predefined);
1075
1076 // Initialize fields for an undefined symbol.
1077 void
1078 init_undefined(const char* name, const char* version, elfcpp::STT,
1079 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1080
1081 // Override existing symbol.
1082 template<bool big_endian>
1083 void
1084 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1085 bool is_ordinary, Object* object, const char* version);
1086
1087 // Override existing symbol with a special symbol.
1088 void
1089 override_with_special(const Sized_symbol<size>*);
1090
1091 // Return the symbol's value.
1092 Value_type
1093 value() const
1094 { return this->value_; }
1095
1096 // Return the symbol's size (we can't call this 'size' because that
1097 // is a template parameter).
1098 Size_type
1099 symsize() const
1100 { return this->symsize_; }
1101
1102 // Set the symbol size. This is used when resolving common symbols.
1103 void
1104 set_symsize(Size_type symsize)
1105 { this->symsize_ = symsize; }
1106
1107 // Set the symbol value. This is called when we store the final
1108 // values of the symbols into the symbol table.
1109 void
1110 set_value(Value_type value)
1111 { this->value_ = value; }
1112
1113 // Allocate a common symbol by giving it a location in the output
1114 // file.
1115 void
1116 allocate_common(Output_data*, Value_type value);
1117
1118 private:
1119 Sized_symbol(const Sized_symbol&);
1120 Sized_symbol& operator=(const Sized_symbol&);
1121
1122 // Symbol value. Before Layout::finalize this is the offset in the
1123 // input section. This is set to the final value during
1124 // Layout::finalize.
1125 Value_type value_;
1126 // Symbol size.
1127 Size_type symsize_;
1128 };
1129
1130 // A struct describing a symbol defined by the linker, where the value
1131 // of the symbol is defined based on an output section. This is used
1132 // for symbols defined by the linker, like "_init_array_start".
1133
1134 struct Define_symbol_in_section
1135 {
1136 // The symbol name.
1137 const char* name;
1138 // The name of the output section with which this symbol should be
1139 // associated. If there is no output section with that name, the
1140 // symbol will be defined as zero.
1141 const char* output_section;
1142 // The offset of the symbol within the output section. This is an
1143 // offset from the start of the output section, unless start_at_end
1144 // is true, in which case this is an offset from the end of the
1145 // output section.
1146 uint64_t value;
1147 // The size of the symbol.
1148 uint64_t size;
1149 // The symbol type.
1150 elfcpp::STT type;
1151 // The symbol binding.
1152 elfcpp::STB binding;
1153 // The symbol visibility.
1154 elfcpp::STV visibility;
1155 // The rest of the st_other field.
1156 unsigned char nonvis;
1157 // If true, the value field is an offset from the end of the output
1158 // section.
1159 bool offset_is_from_end;
1160 // If true, this symbol is defined only if we see a reference to it.
1161 bool only_if_ref;
1162 };
1163
1164 // A struct describing a symbol defined by the linker, where the value
1165 // of the symbol is defined based on a segment. This is used for
1166 // symbols defined by the linker, like "_end". We describe the
1167 // segment with which the symbol should be associated by its
1168 // characteristics. If no segment meets these characteristics, the
1169 // symbol will be defined as zero. If there is more than one segment
1170 // which meets these characteristics, we will use the first one.
1171
1172 struct Define_symbol_in_segment
1173 {
1174 // The symbol name.
1175 const char* name;
1176 // The segment type where the symbol should be defined, typically
1177 // PT_LOAD.
1178 elfcpp::PT segment_type;
1179 // Bitmask of segment flags which must be set.
1180 elfcpp::PF segment_flags_set;
1181 // Bitmask of segment flags which must be clear.
1182 elfcpp::PF segment_flags_clear;
1183 // The offset of the symbol within the segment. The offset is
1184 // calculated from the position set by offset_base.
1185 uint64_t value;
1186 // The size of the symbol.
1187 uint64_t size;
1188 // The symbol type.
1189 elfcpp::STT type;
1190 // The symbol binding.
1191 elfcpp::STB binding;
1192 // The symbol visibility.
1193 elfcpp::STV visibility;
1194 // The rest of the st_other field.
1195 unsigned char nonvis;
1196 // The base from which we compute the offset.
1197 Symbol::Segment_offset_base offset_base;
1198 // If true, this symbol is defined only if we see a reference to it.
1199 bool only_if_ref;
1200 };
1201
1202 // Specify an object/section/offset location. Used by ODR code.
1203
1204 struct Symbol_location
1205 {
1206 // Object where the symbol is defined.
1207 Object* object;
1208 // Section-in-object where the symbol is defined.
1209 unsigned int shndx;
1210 // For relocatable objects, offset-in-section where the symbol is defined.
1211 // For dynamic objects, address where the symbol is defined.
1212 off_t offset;
1213 bool operator==(const Symbol_location& that) const
1214 {
1215 return (this->object == that.object
1216 && this->shndx == that.shndx
1217 && this->offset == that.offset);
1218 }
1219 };
1220
1221 // This class manages warnings. Warnings are a GNU extension. When
1222 // we see a section named .gnu.warning.SYM in an object file, and if
1223 // we wind using the definition of SYM from that object file, then we
1224 // will issue a warning for any relocation against SYM from a
1225 // different object file. The text of the warning is the contents of
1226 // the section. This is not precisely the definition used by the old
1227 // GNU linker; the old GNU linker treated an occurrence of
1228 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1229 // would trigger a warning on any reference. However, it was
1230 // inconsistent in that a warning in a dynamic object only triggered
1231 // if there was no definition in a regular object. This linker is
1232 // different in that we only issue a warning if we use the symbol
1233 // definition from the same object file as the warning section.
1234
1235 class Warnings
1236 {
1237 public:
1238 Warnings()
1239 : warnings_()
1240 { }
1241
1242 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1243 // of the warning.
1244 void
1245 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1246 const std::string& warning);
1247
1248 // For each symbol for which we should give a warning, make a note
1249 // on the symbol.
1250 void
1251 note_warnings(Symbol_table* symtab);
1252
1253 // Issue a warning for a reference to SYM at RELINFO's location.
1254 template<int size, bool big_endian>
1255 void
1256 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1257 size_t relnum, off_t reloffset) const;
1258
1259 private:
1260 Warnings(const Warnings&);
1261 Warnings& operator=(const Warnings&);
1262
1263 // What we need to know to get the warning text.
1264 struct Warning_location
1265 {
1266 // The object the warning is in.
1267 Object* object;
1268 // The warning text.
1269 std::string text;
1270
1271 Warning_location()
1272 : object(NULL), text()
1273 { }
1274
1275 void
1276 set(Object* o, const std::string& t)
1277 {
1278 this->object = o;
1279 this->text = t;
1280 }
1281 };
1282
1283 // A mapping from warning symbol names (canonicalized in
1284 // Symbol_table's namepool_ field) to warning information.
1285 typedef Unordered_map<const char*, Warning_location> Warning_table;
1286
1287 Warning_table warnings_;
1288 };
1289
1290 // The main linker symbol table.
1291
1292 class Symbol_table
1293 {
1294 public:
1295 // The different places where a symbol definition can come from.
1296 enum Defined
1297 {
1298 // Defined in an object file--the normal case.
1299 OBJECT,
1300 // Defined for a COPY reloc.
1301 COPY,
1302 // Defined on the command line using --defsym.
1303 DEFSYM,
1304 // Defined (so to speak) on the command line using -u.
1305 UNDEFINED,
1306 // Defined in a linker script.
1307 SCRIPT,
1308 // Predefined by the linker.
1309 PREDEFINED,
1310 // Defined by the linker during an incremental base link, but not
1311 // a predefined symbol (e.g., common, defined in script).
1312 INCREMENTAL_BASE,
1313 };
1314
1315 // The order in which we sort common symbols.
1316 enum Sort_commons_order
1317 {
1318 SORT_COMMONS_BY_SIZE_DESCENDING,
1319 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1320 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1321 };
1322
1323 // COUNT is an estimate of how many symbols will be inserted in the
1324 // symbol table. It's ok to put 0 if you don't know; a correct
1325 // guess will just save some CPU by reducing hashtable resizes.
1326 Symbol_table(unsigned int count, const Version_script_info& version_script);
1327
1328 ~Symbol_table();
1329
1330 void
1331 set_icf(Icf* icf)
1332 { this->icf_ = icf;}
1333
1334 Icf*
1335 icf() const
1336 { return this->icf_; }
1337
1338 // Returns true if ICF determined that this is a duplicate section.
1339 bool
1340 is_section_folded(Object* obj, unsigned int shndx) const;
1341
1342 void
1343 set_gc(Garbage_collection* gc)
1344 { this->gc_ = gc; }
1345
1346 Garbage_collection*
1347 gc() const
1348 { return this->gc_; }
1349
1350 // During garbage collection, this keeps undefined symbols.
1351 void
1352 gc_mark_undef_symbols(Layout*);
1353
1354 // This tells garbage collection that this symbol is referenced.
1355 void
1356 gc_mark_symbol(Symbol* sym);
1357
1358 // During garbage collection, this keeps sections that correspond to
1359 // symbols seen in dynamic objects.
1360 inline void
1361 gc_mark_dyn_syms(Symbol* sym);
1362
1363 // Add COUNT external symbols from the relocatable object RELOBJ to
1364 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1365 // offset in the symbol table of the first symbol, SYM_NAMES is
1366 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1367 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1368 // *DEFINED to the number of defined symbols.
1369 template<int size, bool big_endian>
1370 void
1371 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1372 const unsigned char* syms, size_t count,
1373 size_t symndx_offset, const char* sym_names,
1374 size_t sym_name_size,
1375 typename Sized_relobj_file<size, big_endian>::Symbols*,
1376 size_t* defined);
1377
1378 // Add one external symbol from the plugin object OBJ to the symbol table.
1379 // Returns a pointer to the resolved symbol in the symbol table.
1380 template<int size, bool big_endian>
1381 Symbol*
1382 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1383 const char* name, const char* ver,
1384 elfcpp::Sym<size, big_endian>* sym);
1385
1386 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1387 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1388 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1389 // symbol version data.
1390 template<int size, bool big_endian>
1391 void
1392 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1393 const unsigned char* syms, size_t count,
1394 const char* sym_names, size_t sym_name_size,
1395 const unsigned char* versym, size_t versym_size,
1396 const std::vector<const char*>*,
1397 typename Sized_relobj_file<size, big_endian>::Symbols*,
1398 size_t* defined);
1399
1400 // Add one external symbol from the incremental object OBJ to the symbol
1401 // table. Returns a pointer to the resolved symbol in the symbol table.
1402 template<int size, bool big_endian>
1403 Sized_symbol<size>*
1404 add_from_incrobj(Object* obj, const char* name,
1405 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1406
1407 // Define a special symbol based on an Output_data. It is a
1408 // multiple definition error if this symbol is already defined.
1409 Symbol*
1410 define_in_output_data(const char* name, const char* version, Defined,
1411 Output_data*, uint64_t value, uint64_t symsize,
1412 elfcpp::STT type, elfcpp::STB binding,
1413 elfcpp::STV visibility, unsigned char nonvis,
1414 bool offset_is_from_end, bool only_if_ref);
1415
1416 // Define a special symbol based on an Output_segment. It is a
1417 // multiple definition error if this symbol is already defined.
1418 Symbol*
1419 define_in_output_segment(const char* name, const char* version, Defined,
1420 Output_segment*, uint64_t value, uint64_t symsize,
1421 elfcpp::STT type, elfcpp::STB binding,
1422 elfcpp::STV visibility, unsigned char nonvis,
1423 Symbol::Segment_offset_base, bool only_if_ref);
1424
1425 // Define a special symbol with a constant value. It is a multiple
1426 // definition error if this symbol is already defined.
1427 Symbol*
1428 define_as_constant(const char* name, const char* version, Defined,
1429 uint64_t value, uint64_t symsize, elfcpp::STT type,
1430 elfcpp::STB binding, elfcpp::STV visibility,
1431 unsigned char nonvis, bool only_if_ref,
1432 bool force_override);
1433
1434 // Define a set of symbols in output sections. If ONLY_IF_REF is
1435 // true, only define them if they are referenced.
1436 void
1437 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1438 bool only_if_ref);
1439
1440 // Define a set of symbols in output segments. If ONLY_IF_REF is
1441 // true, only defined them if they are referenced.
1442 void
1443 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1444 bool only_if_ref);
1445
1446 // Define SYM using a COPY reloc. POSD is the Output_data where the
1447 // symbol should be defined--typically a .dyn.bss section. VALUE is
1448 // the offset within POSD.
1449 template<int size>
1450 void
1451 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1452 typename elfcpp::Elf_types<size>::Elf_Addr);
1453
1454 // Look up a symbol.
1455 Symbol*
1456 lookup(const char*, const char* version = NULL) const;
1457
1458 // Return the real symbol associated with the forwarder symbol FROM.
1459 Symbol*
1460 resolve_forwards(const Symbol* from) const;
1461
1462 // Return the sized version of a symbol in this table.
1463 template<int size>
1464 Sized_symbol<size>*
1465 get_sized_symbol(Symbol*) const;
1466
1467 template<int size>
1468 const Sized_symbol<size>*
1469 get_sized_symbol(const Symbol*) const;
1470
1471 // Return the count of undefined symbols seen.
1472 size_t
1473 saw_undefined() const
1474 { return this->saw_undefined_; }
1475
1476 // Allocate the common symbols
1477 void
1478 allocate_commons(Layout*, Mapfile*);
1479
1480 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1481 // of the warning.
1482 void
1483 add_warning(const char* name, Object* obj, const std::string& warning)
1484 { this->warnings_.add_warning(this, name, obj, warning); }
1485
1486 // Canonicalize a symbol name for use in the hash table.
1487 const char*
1488 canonicalize_name(const char* name)
1489 { return this->namepool_.add(name, true, NULL); }
1490
1491 // Possibly issue a warning for a reference to SYM at LOCATION which
1492 // is in OBJ.
1493 template<int size, bool big_endian>
1494 void
1495 issue_warning(const Symbol* sym,
1496 const Relocate_info<size, big_endian>* relinfo,
1497 size_t relnum, off_t reloffset) const
1498 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1499
1500 // Check candidate_odr_violations_ to find symbols with the same name
1501 // but apparently different definitions (different source-file/line-no).
1502 void
1503 detect_odr_violations(const Task*, const char* output_file_name) const;
1504
1505 // Add any undefined symbols named on the command line to the symbol
1506 // table.
1507 void
1508 add_undefined_symbols_from_command_line(Layout*);
1509
1510 // SYM is defined using a COPY reloc. Return the dynamic object
1511 // where the original definition was found.
1512 Dynobj*
1513 get_copy_source(const Symbol* sym) const;
1514
1515 // Set the dynamic symbol indexes. INDEX is the index of the first
1516 // global dynamic symbol. Pointers to the symbols are stored into
1517 // the vector. The names are stored into the Stringpool. This
1518 // returns an updated dynamic symbol index.
1519 unsigned int
1520 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1521 Stringpool*, Versions*);
1522
1523 // Finalize the symbol table after we have set the final addresses
1524 // of all the input sections. This sets the final symbol indexes,
1525 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1526 // index of the first global symbol. OFF is the file offset of the
1527 // global symbol table, DYNOFF is the offset of the globals in the
1528 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1529 // global dynamic symbol, and DYNCOUNT is the number of global
1530 // dynamic symbols. This records the parameters, and returns the
1531 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1532 // local symbols.
1533 off_t
1534 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1535 Stringpool* pool, unsigned int* plocal_symcount);
1536
1537 // Set the final file offset of the symbol table.
1538 void
1539 set_file_offset(off_t off)
1540 { this->offset_ = off; }
1541
1542 // Status code of Symbol_table::compute_final_value.
1543 enum Compute_final_value_status
1544 {
1545 // No error.
1546 CFVS_OK,
1547 // Unsupported symbol section.
1548 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1549 // No output section.
1550 CFVS_NO_OUTPUT_SECTION
1551 };
1552
1553 // Compute the final value of SYM and store status in location PSTATUS.
1554 // During relaxation, this may be called multiple times for a symbol to
1555 // compute its would-be final value in each relaxation pass.
1556
1557 template<int size>
1558 typename Sized_symbol<size>::Value_type
1559 compute_final_value(const Sized_symbol<size>* sym,
1560 Compute_final_value_status* pstatus) const;
1561
1562 // Return the index of the first global symbol.
1563 unsigned int
1564 first_global_index() const
1565 { return this->first_global_index_; }
1566
1567 // Return the total number of symbols in the symbol table.
1568 unsigned int
1569 output_count() const
1570 { return this->output_count_; }
1571
1572 // Write out the global symbols.
1573 void
1574 write_globals(const Stringpool*, const Stringpool*,
1575 Output_symtab_xindex*, Output_symtab_xindex*,
1576 Output_file*) const;
1577
1578 // Write out a section symbol. Return the updated offset.
1579 void
1580 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1581 Output_file*, off_t) const;
1582
1583 // Loop over all symbols, applying the function F to each.
1584 template<int size, typename F>
1585 void
1586 for_all_symbols(F f) const
1587 {
1588 for (Symbol_table_type::const_iterator p = this->table_.begin();
1589 p != this->table_.end();
1590 ++p)
1591 {
1592 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1593 f(sym);
1594 }
1595 }
1596
1597 // Dump statistical information to stderr.
1598 void
1599 print_stats() const;
1600
1601 // Return the version script information.
1602 const Version_script_info&
1603 version_script() const
1604 { return version_script_; }
1605
1606 private:
1607 Symbol_table(const Symbol_table&);
1608 Symbol_table& operator=(const Symbol_table&);
1609
1610 // The type of the list of common symbols.
1611 typedef std::vector<Symbol*> Commons_type;
1612
1613 // The type of the symbol hash table.
1614
1615 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1616
1617 // The hash function. The key values are Stringpool keys.
1618 struct Symbol_table_hash
1619 {
1620 inline size_t
1621 operator()(const Symbol_table_key& key) const
1622 {
1623 return key.first ^ key.second;
1624 }
1625 };
1626
1627 struct Symbol_table_eq
1628 {
1629 bool
1630 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1631 };
1632
1633 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1634 Symbol_table_eq> Symbol_table_type;
1635
1636 // A map from symbol name (as a pointer into the namepool) to all
1637 // the locations the symbols is (weakly) defined (and certain other
1638 // conditions are met). This map will be used later to detect
1639 // possible One Definition Rule (ODR) violations.
1640 struct Symbol_location_hash
1641 {
1642 size_t operator()(const Symbol_location& loc) const
1643 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1644 };
1645
1646 typedef Unordered_map<const char*,
1647 Unordered_set<Symbol_location, Symbol_location_hash> >
1648 Odr_map;
1649
1650 // Make FROM a forwarder symbol to TO.
1651 void
1652 make_forwarder(Symbol* from, Symbol* to);
1653
1654 // Add a symbol.
1655 template<int size, bool big_endian>
1656 Sized_symbol<size>*
1657 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1658 const char* version, Stringpool::Key version_key,
1659 bool def, const elfcpp::Sym<size, big_endian>& sym,
1660 unsigned int st_shndx, bool is_ordinary,
1661 unsigned int orig_st_shndx);
1662
1663 // Define a default symbol.
1664 template<int size, bool big_endian>
1665 void
1666 define_default_version(Sized_symbol<size>*, bool,
1667 Symbol_table_type::iterator);
1668
1669 // Resolve symbols.
1670 template<int size, bool big_endian>
1671 void
1672 resolve(Sized_symbol<size>* to,
1673 const elfcpp::Sym<size, big_endian>& sym,
1674 unsigned int st_shndx, bool is_ordinary,
1675 unsigned int orig_st_shndx,
1676 Object*, const char* version);
1677
1678 template<int size, bool big_endian>
1679 void
1680 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1681
1682 // Record that a symbol is forced to be local by a version script or
1683 // by visibility.
1684 void
1685 force_local(Symbol*);
1686
1687 // Adjust NAME and *NAME_KEY for wrapping.
1688 const char*
1689 wrap_symbol(const char* name, Stringpool::Key* name_key);
1690
1691 // Whether we should override a symbol, based on flags in
1692 // resolve.cc.
1693 static bool
1694 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1695 Object*, bool*, bool*);
1696
1697 // Report a problem in symbol resolution.
1698 static void
1699 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1700 Defined, Object* object);
1701
1702 // Override a symbol.
1703 template<int size, bool big_endian>
1704 void
1705 override(Sized_symbol<size>* tosym,
1706 const elfcpp::Sym<size, big_endian>& fromsym,
1707 unsigned int st_shndx, bool is_ordinary,
1708 Object* object, const char* version);
1709
1710 // Whether we should override a symbol with a special symbol which
1711 // is automatically defined by the linker.
1712 static bool
1713 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1714
1715 // Override a symbol with a special symbol.
1716 template<int size>
1717 void
1718 override_with_special(Sized_symbol<size>* tosym,
1719 const Sized_symbol<size>* fromsym);
1720
1721 // Record all weak alias sets for a dynamic object.
1722 template<int size>
1723 void
1724 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1725
1726 // Define a special symbol.
1727 template<int size, bool big_endian>
1728 Sized_symbol<size>*
1729 define_special_symbol(const char** pname, const char** pversion,
1730 bool only_if_ref, Sized_symbol<size>** poldsym,
1731 bool* resolve_oldsym);
1732
1733 // Define a symbol in an Output_data, sized version.
1734 template<int size>
1735 Sized_symbol<size>*
1736 do_define_in_output_data(const char* name, const char* version, Defined,
1737 Output_data*,
1738 typename elfcpp::Elf_types<size>::Elf_Addr value,
1739 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1740 elfcpp::STT type, elfcpp::STB binding,
1741 elfcpp::STV visibility, unsigned char nonvis,
1742 bool offset_is_from_end, bool only_if_ref);
1743
1744 // Define a symbol in an Output_segment, sized version.
1745 template<int size>
1746 Sized_symbol<size>*
1747 do_define_in_output_segment(
1748 const char* name, const char* version, Defined, Output_segment* os,
1749 typename elfcpp::Elf_types<size>::Elf_Addr value,
1750 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1751 elfcpp::STT type, elfcpp::STB binding,
1752 elfcpp::STV visibility, unsigned char nonvis,
1753 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1754
1755 // Define a symbol as a constant, sized version.
1756 template<int size>
1757 Sized_symbol<size>*
1758 do_define_as_constant(
1759 const char* name, const char* version, Defined,
1760 typename elfcpp::Elf_types<size>::Elf_Addr value,
1761 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1762 elfcpp::STT type, elfcpp::STB binding,
1763 elfcpp::STV visibility, unsigned char nonvis,
1764 bool only_if_ref, bool force_override);
1765
1766 // Add any undefined symbols named on the command line to the symbol
1767 // table, sized version.
1768 template<int size>
1769 void
1770 do_add_undefined_symbols_from_command_line(Layout*);
1771
1772 // Add one undefined symbol.
1773 template<int size>
1774 void
1775 add_undefined_symbol_from_command_line(const char* name);
1776
1777 // Types of common symbols.
1778
1779 enum Commons_section_type
1780 {
1781 COMMONS_NORMAL,
1782 COMMONS_TLS,
1783 COMMONS_SMALL,
1784 COMMONS_LARGE
1785 };
1786
1787 // Allocate the common symbols, sized version.
1788 template<int size>
1789 void
1790 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1791
1792 // Allocate the common symbols from one list.
1793 template<int size>
1794 void
1795 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1796 Mapfile*, Sort_commons_order);
1797
1798 // Returns all of the lines attached to LOC, not just the one the
1799 // instruction actually came from. This helps the ODR checker avoid
1800 // false positives.
1801 static std::vector<std::string>
1802 linenos_from_loc(const Task* task, const Symbol_location& loc);
1803
1804 // Implement detect_odr_violations.
1805 template<int size, bool big_endian>
1806 void
1807 sized_detect_odr_violations() const;
1808
1809 // Finalize symbols specialized for size.
1810 template<int size>
1811 off_t
1812 sized_finalize(off_t, Stringpool*, unsigned int*);
1813
1814 // Finalize a symbol. Return whether it should be added to the
1815 // symbol table.
1816 template<int size>
1817 bool
1818 sized_finalize_symbol(Symbol*);
1819
1820 // Add a symbol the final symtab by setting its index.
1821 template<int size>
1822 void
1823 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1824
1825 // Write globals specialized for size and endianness.
1826 template<int size, bool big_endian>
1827 void
1828 sized_write_globals(const Stringpool*, const Stringpool*,
1829 Output_symtab_xindex*, Output_symtab_xindex*,
1830 Output_file*) const;
1831
1832 // Write out a symbol to P.
1833 template<int size, bool big_endian>
1834 void
1835 sized_write_symbol(Sized_symbol<size>*,
1836 typename elfcpp::Elf_types<size>::Elf_Addr value,
1837 unsigned int shndx, elfcpp::STB,
1838 const Stringpool*, unsigned char* p) const;
1839
1840 // Possibly warn about an undefined symbol from a dynamic object.
1841 void
1842 warn_about_undefined_dynobj_symbol(Symbol*) const;
1843
1844 // Write out a section symbol, specialized for size and endianness.
1845 template<int size, bool big_endian>
1846 void
1847 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1848 Output_file*, off_t) const;
1849
1850 // The type of the list of symbols which have been forced local.
1851 typedef std::vector<Symbol*> Forced_locals;
1852
1853 // A map from symbols with COPY relocs to the dynamic objects where
1854 // they are defined.
1855 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1856
1857 // We increment this every time we see a new undefined symbol, for
1858 // use in archive groups.
1859 size_t saw_undefined_;
1860 // The index of the first global symbol in the output file.
1861 unsigned int first_global_index_;
1862 // The file offset within the output symtab section where we should
1863 // write the table.
1864 off_t offset_;
1865 // The number of global symbols we want to write out.
1866 unsigned int output_count_;
1867 // The file offset of the global dynamic symbols, or 0 if none.
1868 off_t dynamic_offset_;
1869 // The index of the first global dynamic symbol.
1870 unsigned int first_dynamic_global_index_;
1871 // The number of global dynamic symbols, or 0 if none.
1872 unsigned int dynamic_count_;
1873 // The symbol hash table.
1874 Symbol_table_type table_;
1875 // A pool of symbol names. This is used for all global symbols.
1876 // Entries in the hash table point into this pool.
1877 Stringpool namepool_;
1878 // Forwarding symbols.
1879 Unordered_map<const Symbol*, Symbol*> forwarders_;
1880 // Weak aliases. A symbol in this list points to the next alias.
1881 // The aliases point to each other in a circular list.
1882 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1883 // We don't expect there to be very many common symbols, so we keep
1884 // a list of them. When we find a common symbol we add it to this
1885 // list. It is possible that by the time we process the list the
1886 // symbol is no longer a common symbol. It may also have become a
1887 // forwarder.
1888 Commons_type commons_;
1889 // This is like the commons_ field, except that it holds TLS common
1890 // symbols.
1891 Commons_type tls_commons_;
1892 // This is for small common symbols.
1893 Commons_type small_commons_;
1894 // This is for large common symbols.
1895 Commons_type large_commons_;
1896 // A list of symbols which have been forced to be local. We don't
1897 // expect there to be very many of them, so we keep a list of them
1898 // rather than walking the whole table to find them.
1899 Forced_locals forced_locals_;
1900 // Manage symbol warnings.
1901 Warnings warnings_;
1902 // Manage potential One Definition Rule (ODR) violations.
1903 Odr_map candidate_odr_violations_;
1904
1905 // When we emit a COPY reloc for a symbol, we define it in an
1906 // Output_data. When it's time to emit version information for it,
1907 // we need to know the dynamic object in which we found the original
1908 // definition. This maps symbols with COPY relocs to the dynamic
1909 // object where they were defined.
1910 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1911 // Information parsed from the version script, if any.
1912 const Version_script_info& version_script_;
1913 Garbage_collection* gc_;
1914 Icf* icf_;
1915 };
1916
1917 // We inline get_sized_symbol for efficiency.
1918
1919 template<int size>
1920 Sized_symbol<size>*
1921 Symbol_table::get_sized_symbol(Symbol* sym) const
1922 {
1923 gold_assert(size == parameters->target().get_size());
1924 return static_cast<Sized_symbol<size>*>(sym);
1925 }
1926
1927 template<int size>
1928 const Sized_symbol<size>*
1929 Symbol_table::get_sized_symbol(const Symbol* sym) const
1930 {
1931 gold_assert(size == parameters->target().get_size());
1932 return static_cast<const Sized_symbol<size>*>(sym);
1933 }
1934
1935 } // End namespace gold.
1936
1937 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.110919 seconds and 5 git commands to generate.