* common.cc (Symbol_table::do_allocate_commons_list): For incremental
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class to big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 // Return whether this version is the default for this symbol name
125 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
126 // meaningful for versioned symbols.
127 bool
128 is_default() const
129 {
130 gold_assert(this->version_ != NULL);
131 return this->is_def_;
132 }
133
134 // Set that this version is the default for this symbol name.
135 void
136 set_is_default()
137 { this->is_def_ = true; }
138
139 // Return the symbol source.
140 Source
141 source() const
142 { return this->source_; }
143
144 // Return the object with which this symbol is associated.
145 Object*
146 object() const
147 {
148 gold_assert(this->source_ == FROM_OBJECT);
149 return this->u_.from_object.object;
150 }
151
152 // Return the index of the section in the input relocatable or
153 // dynamic object file.
154 unsigned int
155 shndx(bool* is_ordinary) const
156 {
157 gold_assert(this->source_ == FROM_OBJECT);
158 *is_ordinary = this->is_ordinary_shndx_;
159 return this->u_.from_object.shndx;
160 }
161
162 // Return the output data section with which this symbol is
163 // associated, if the symbol was specially defined with respect to
164 // an output data section.
165 Output_data*
166 output_data() const
167 {
168 gold_assert(this->source_ == IN_OUTPUT_DATA);
169 return this->u_.in_output_data.output_data;
170 }
171
172 // If this symbol was defined with respect to an output data
173 // section, return whether the value is an offset from end.
174 bool
175 offset_is_from_end() const
176 {
177 gold_assert(this->source_ == IN_OUTPUT_DATA);
178 return this->u_.in_output_data.offset_is_from_end;
179 }
180
181 // Return the output segment with which this symbol is associated,
182 // if the symbol was specially defined with respect to an output
183 // segment.
184 Output_segment*
185 output_segment() const
186 {
187 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
188 return this->u_.in_output_segment.output_segment;
189 }
190
191 // If this symbol was defined with respect to an output segment,
192 // return the offset base.
193 Segment_offset_base
194 offset_base() const
195 {
196 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
197 return this->u_.in_output_segment.offset_base;
198 }
199
200 // Return the symbol binding.
201 elfcpp::STB
202 binding() const
203 { return this->binding_; }
204
205 // Return the symbol type.
206 elfcpp::STT
207 type() const
208 { return this->type_; }
209
210 // Return true for function symbol.
211 bool
212 is_func() const
213 {
214 return (this->type_ == elfcpp::STT_FUNC
215 || this->type_ == elfcpp::STT_GNU_IFUNC);
216 }
217
218 // Return the symbol visibility.
219 elfcpp::STV
220 visibility() const
221 { return this->visibility_; }
222
223 // Set the visibility.
224 void
225 set_visibility(elfcpp::STV visibility)
226 { this->visibility_ = visibility; }
227
228 // Override symbol visibility.
229 void
230 override_visibility(elfcpp::STV);
231
232 // Set whether the symbol was originally a weak undef or a regular undef
233 // when resolved by a dynamic def.
234 inline void
235 set_undef_binding(elfcpp::STB bind)
236 {
237 if (!this->undef_binding_set_ || this->undef_binding_weak_)
238 {
239 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
240 this->undef_binding_set_ = true;
241 }
242 }
243
244 // Return TRUE if a weak undef was resolved by a dynamic def.
245 inline bool
246 is_undef_binding_weak() const
247 { return this->undef_binding_weak_; }
248
249 // Return the non-visibility part of the st_other field.
250 unsigned char
251 nonvis() const
252 { return this->nonvis_; }
253
254 // Return whether this symbol is a forwarder. This will never be
255 // true of a symbol found in the hash table, but may be true of
256 // symbol pointers attached to object files.
257 bool
258 is_forwarder() const
259 { return this->is_forwarder_; }
260
261 // Mark this symbol as a forwarder.
262 void
263 set_forwarder()
264 { this->is_forwarder_ = true; }
265
266 // Return whether this symbol has an alias in the weak aliases table
267 // in Symbol_table.
268 bool
269 has_alias() const
270 { return this->has_alias_; }
271
272 // Mark this symbol as having an alias.
273 void
274 set_has_alias()
275 { this->has_alias_ = true; }
276
277 // Return whether this symbol needs an entry in the dynamic symbol
278 // table.
279 bool
280 needs_dynsym_entry() const
281 {
282 return (this->needs_dynsym_entry_
283 || (this->in_reg()
284 && this->in_dyn()
285 && this->is_externally_visible()));
286 }
287
288 // Mark this symbol as needing an entry in the dynamic symbol table.
289 void
290 set_needs_dynsym_entry()
291 { this->needs_dynsym_entry_ = true; }
292
293 // Return whether this symbol should be added to the dynamic symbol
294 // table.
295 bool
296 should_add_dynsym_entry(Symbol_table*) const;
297
298 // Return whether this symbol has been seen in a regular object.
299 bool
300 in_reg() const
301 { return this->in_reg_; }
302
303 // Mark this symbol as having been seen in a regular object.
304 void
305 set_in_reg()
306 { this->in_reg_ = true; }
307
308 // Return whether this symbol has been seen in a dynamic object.
309 bool
310 in_dyn() const
311 { return this->in_dyn_; }
312
313 // Mark this symbol as having been seen in a dynamic object.
314 void
315 set_in_dyn()
316 { this->in_dyn_ = true; }
317
318 // Return whether this symbol has been seen in a real ELF object.
319 // (IN_REG will return TRUE if the symbol has been seen in either
320 // a real ELF object or an object claimed by a plugin.)
321 bool
322 in_real_elf() const
323 { return this->in_real_elf_; }
324
325 // Mark this symbol as having been seen in a real ELF object.
326 void
327 set_in_real_elf()
328 { this->in_real_elf_ = true; }
329
330 // Return whether this symbol was defined in a section that was
331 // discarded from the link. This is used to control some error
332 // reporting.
333 bool
334 is_defined_in_discarded_section() const
335 { return this->is_defined_in_discarded_section_; }
336
337 // Mark this symbol as having been defined in a discarded section.
338 void
339 set_is_defined_in_discarded_section()
340 { this->is_defined_in_discarded_section_ = true; }
341
342 // Return the index of this symbol in the output file symbol table.
343 // A value of -1U means that this symbol is not going into the
344 // output file. This starts out as zero, and is set to a non-zero
345 // value by Symbol_table::finalize. It is an error to ask for the
346 // symbol table index before it has been set.
347 unsigned int
348 symtab_index() const
349 {
350 gold_assert(this->symtab_index_ != 0);
351 return this->symtab_index_;
352 }
353
354 // Set the index of the symbol in the output file symbol table.
355 void
356 set_symtab_index(unsigned int index)
357 {
358 gold_assert(index != 0);
359 this->symtab_index_ = index;
360 }
361
362 // Return whether this symbol already has an index in the output
363 // file symbol table.
364 bool
365 has_symtab_index() const
366 { return this->symtab_index_ != 0; }
367
368 // Return the index of this symbol in the dynamic symbol table. A
369 // value of -1U means that this symbol is not going into the dynamic
370 // symbol table. This starts out as zero, and is set to a non-zero
371 // during Layout::finalize. It is an error to ask for the dynamic
372 // symbol table index before it has been set.
373 unsigned int
374 dynsym_index() const
375 {
376 gold_assert(this->dynsym_index_ != 0);
377 return this->dynsym_index_;
378 }
379
380 // Set the index of the symbol in the dynamic symbol table.
381 void
382 set_dynsym_index(unsigned int index)
383 {
384 gold_assert(index != 0);
385 this->dynsym_index_ = index;
386 }
387
388 // Return whether this symbol already has an index in the dynamic
389 // symbol table.
390 bool
391 has_dynsym_index() const
392 { return this->dynsym_index_ != 0; }
393
394 // Return whether this symbol has an entry in the GOT section.
395 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
396 bool
397 has_got_offset(unsigned int got_type) const
398 { return this->got_offsets_.get_offset(got_type) != -1U; }
399
400 // Return the offset into the GOT section of this symbol.
401 unsigned int
402 got_offset(unsigned int got_type) const
403 {
404 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
405 gold_assert(got_offset != -1U);
406 return got_offset;
407 }
408
409 // Set the GOT offset of this symbol.
410 void
411 set_got_offset(unsigned int got_type, unsigned int got_offset)
412 { this->got_offsets_.set_offset(got_type, got_offset); }
413
414 // Return the GOT offset list.
415 const Got_offset_list*
416 got_offset_list() const
417 { return this->got_offsets_.get_list(); }
418
419 // Return whether this symbol has an entry in the PLT section.
420 bool
421 has_plt_offset() const
422 { return this->plt_offset_ != -1U; }
423
424 // Return the offset into the PLT section of this symbol.
425 unsigned int
426 plt_offset() const
427 {
428 gold_assert(this->has_plt_offset());
429 return this->plt_offset_;
430 }
431
432 // Set the PLT offset of this symbol.
433 void
434 set_plt_offset(unsigned int plt_offset)
435 {
436 gold_assert(plt_offset != -1U);
437 this->plt_offset_ = plt_offset;
438 }
439
440 // Return whether this dynamic symbol needs a special value in the
441 // dynamic symbol table.
442 bool
443 needs_dynsym_value() const
444 { return this->needs_dynsym_value_; }
445
446 // Set that this dynamic symbol needs a special value in the dynamic
447 // symbol table.
448 void
449 set_needs_dynsym_value()
450 {
451 gold_assert(this->object()->is_dynamic());
452 this->needs_dynsym_value_ = true;
453 }
454
455 // Return true if the final value of this symbol is known at link
456 // time.
457 bool
458 final_value_is_known() const;
459
460 // Return true if SHNDX represents a common symbol. This depends on
461 // the target.
462 static bool
463 is_common_shndx(unsigned int shndx);
464
465 // Return whether this is a defined symbol (not undefined or
466 // common).
467 bool
468 is_defined() const
469 {
470 bool is_ordinary;
471 if (this->source_ != FROM_OBJECT)
472 return this->source_ != IS_UNDEFINED;
473 unsigned int shndx = this->shndx(&is_ordinary);
474 return (is_ordinary
475 ? shndx != elfcpp::SHN_UNDEF
476 : !Symbol::is_common_shndx(shndx));
477 }
478
479 // Return true if this symbol is from a dynamic object.
480 bool
481 is_from_dynobj() const
482 {
483 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
484 }
485
486 // Return whether this is a placeholder symbol from a plugin object.
487 bool
488 is_placeholder() const
489 {
490 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
491 }
492
493 // Return whether this is an undefined symbol.
494 bool
495 is_undefined() const
496 {
497 bool is_ordinary;
498 return ((this->source_ == FROM_OBJECT
499 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
500 && is_ordinary)
501 || this->source_ == IS_UNDEFINED);
502 }
503
504 // Return whether this is a weak undefined symbol.
505 bool
506 is_weak_undefined() const
507 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
508
509 // Return whether this is an absolute symbol.
510 bool
511 is_absolute() const
512 {
513 bool is_ordinary;
514 return ((this->source_ == FROM_OBJECT
515 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
516 && !is_ordinary)
517 || this->source_ == IS_CONSTANT);
518 }
519
520 // Return whether this is a common symbol.
521 bool
522 is_common() const
523 {
524 if (this->source_ != FROM_OBJECT)
525 return false;
526 if (this->type_ == elfcpp::STT_COMMON)
527 return true;
528 bool is_ordinary;
529 unsigned int shndx = this->shndx(&is_ordinary);
530 return !is_ordinary && Symbol::is_common_shndx(shndx);
531 }
532
533 // Return whether this symbol can be seen outside this object.
534 bool
535 is_externally_visible() const
536 {
537 return (this->visibility_ == elfcpp::STV_DEFAULT
538 || this->visibility_ == elfcpp::STV_PROTECTED);
539 }
540
541 // Return true if this symbol can be preempted by a definition in
542 // another link unit.
543 bool
544 is_preemptible() const
545 {
546 // It doesn't make sense to ask whether a symbol defined in
547 // another object is preemptible.
548 gold_assert(!this->is_from_dynobj());
549
550 // It doesn't make sense to ask whether an undefined symbol
551 // is preemptible.
552 gold_assert(!this->is_undefined());
553
554 // If a symbol does not have default visibility, it can not be
555 // seen outside this link unit and therefore is not preemptible.
556 if (this->visibility_ != elfcpp::STV_DEFAULT)
557 return false;
558
559 // If this symbol has been forced to be a local symbol by a
560 // version script, then it is not visible outside this link unit
561 // and is not preemptible.
562 if (this->is_forced_local_)
563 return false;
564
565 // If we are not producing a shared library, then nothing is
566 // preemptible.
567 if (!parameters->options().shared())
568 return false;
569
570 // If the user used -Bsymbolic, then nothing is preemptible.
571 if (parameters->options().Bsymbolic())
572 return false;
573
574 // If the user used -Bsymbolic-functions, then functions are not
575 // preemptible. We explicitly check for not being STT_OBJECT,
576 // rather than for being STT_FUNC, because that is what the GNU
577 // linker does.
578 if (this->type() != elfcpp::STT_OBJECT
579 && parameters->options().Bsymbolic_functions())
580 return false;
581
582 // Otherwise the symbol is preemptible.
583 return true;
584 }
585
586 // Return true if this symbol is a function that needs a PLT entry.
587 bool
588 needs_plt_entry() const
589 {
590 // An undefined symbol from an executable does not need a PLT entry.
591 if (this->is_undefined() && !parameters->options().shared())
592 return false;
593
594 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
595 // doing a static link.
596 if (this->type() == elfcpp::STT_GNU_IFUNC)
597 return true;
598
599 // We only need a PLT entry for a function.
600 if (!this->is_func())
601 return false;
602
603 // If we're doing a static link or a -pie link, we don't create
604 // PLT entries.
605 if (parameters->doing_static_link()
606 || parameters->options().pie())
607 return false;
608
609 // We need a PLT entry if the function is defined in a dynamic
610 // object, or is undefined when building a shared object, or if it
611 // is subject to pre-emption.
612 return (this->is_from_dynobj()
613 || this->is_undefined()
614 || this->is_preemptible());
615 }
616
617 // When determining whether a reference to a symbol needs a dynamic
618 // relocation, we need to know several things about the reference.
619 // These flags may be or'ed together. 0 means that the symbol
620 // isn't referenced at all.
621 enum Reference_flags
622 {
623 // A reference to the symbol's absolute address. This includes
624 // references that cause an absolute address to be stored in the GOT.
625 ABSOLUTE_REF = 1,
626 // A reference that calculates the offset of the symbol from some
627 // anchor point, such as the PC or GOT.
628 RELATIVE_REF = 2,
629 // A TLS-related reference.
630 TLS_REF = 4,
631 // A reference that can always be treated as a function call.
632 FUNCTION_CALL = 8
633 };
634
635 // Given a direct absolute or pc-relative static relocation against
636 // the global symbol, this function returns whether a dynamic relocation
637 // is needed.
638
639 bool
640 needs_dynamic_reloc(int flags) const
641 {
642 // No dynamic relocations in a static link!
643 if (parameters->doing_static_link())
644 return false;
645
646 // A reference to an undefined symbol from an executable should be
647 // statically resolved to 0, and does not need a dynamic relocation.
648 // This matches gnu ld behavior.
649 if (this->is_undefined() && !parameters->options().shared())
650 return false;
651
652 // A reference to an absolute symbol does not need a dynamic relocation.
653 if (this->is_absolute())
654 return false;
655
656 // An absolute reference within a position-independent output file
657 // will need a dynamic relocation.
658 if ((flags & ABSOLUTE_REF)
659 && parameters->options().output_is_position_independent())
660 return true;
661
662 // A function call that can branch to a local PLT entry does not need
663 // a dynamic relocation.
664 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
665 return false;
666
667 // A reference to any PLT entry in a non-position-independent executable
668 // does not need a dynamic relocation.
669 if (!parameters->options().output_is_position_independent()
670 && this->has_plt_offset())
671 return false;
672
673 // A reference to a symbol defined in a dynamic object or to a
674 // symbol that is preemptible will need a dynamic relocation.
675 if (this->is_from_dynobj()
676 || this->is_undefined()
677 || this->is_preemptible())
678 return true;
679
680 // For all other cases, return FALSE.
681 return false;
682 }
683
684 // Whether we should use the PLT offset associated with a symbol for
685 // a relocation. FLAGS is a set of Reference_flags.
686
687 bool
688 use_plt_offset(int flags) const
689 {
690 // If the symbol doesn't have a PLT offset, then naturally we
691 // don't want to use it.
692 if (!this->has_plt_offset())
693 return false;
694
695 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
696 if (this->type() == elfcpp::STT_GNU_IFUNC)
697 return true;
698
699 // If we are going to generate a dynamic relocation, then we will
700 // wind up using that, so no need to use the PLT entry.
701 if (this->needs_dynamic_reloc(flags))
702 return false;
703
704 // If the symbol is from a dynamic object, we need to use the PLT
705 // entry.
706 if (this->is_from_dynobj())
707 return true;
708
709 // If we are generating a shared object, and this symbol is
710 // undefined or preemptible, we need to use the PLT entry.
711 if (parameters->options().shared()
712 && (this->is_undefined() || this->is_preemptible()))
713 return true;
714
715 // If this is a call to a weak undefined symbol, we need to use
716 // the PLT entry; the symbol may be defined by a library loaded
717 // at runtime.
718 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
719 return true;
720
721 // Otherwise we can use the regular definition.
722 return false;
723 }
724
725 // Given a direct absolute static relocation against
726 // the global symbol, where a dynamic relocation is needed, this
727 // function returns whether a relative dynamic relocation can be used.
728 // The caller must determine separately whether the static relocation
729 // is compatible with a relative relocation.
730
731 bool
732 can_use_relative_reloc(bool is_function_call) const
733 {
734 // A function call that can branch to a local PLT entry can
735 // use a RELATIVE relocation.
736 if (is_function_call && this->has_plt_offset())
737 return true;
738
739 // A reference to a symbol defined in a dynamic object or to a
740 // symbol that is preemptible can not use a RELATIVE relocation.
741 if (this->is_from_dynobj()
742 || this->is_undefined()
743 || this->is_preemptible())
744 return false;
745
746 // For all other cases, return TRUE.
747 return true;
748 }
749
750 // Return the output section where this symbol is defined. Return
751 // NULL if the symbol has an absolute value.
752 Output_section*
753 output_section() const;
754
755 // Set the symbol's output section. This is used for symbols
756 // defined in scripts. This should only be called after the symbol
757 // table has been finalized.
758 void
759 set_output_section(Output_section*);
760
761 // Return whether there should be a warning for references to this
762 // symbol.
763 bool
764 has_warning() const
765 { return this->has_warning_; }
766
767 // Mark this symbol as having a warning.
768 void
769 set_has_warning()
770 { this->has_warning_ = true; }
771
772 // Return whether this symbol is defined by a COPY reloc from a
773 // dynamic object.
774 bool
775 is_copied_from_dynobj() const
776 { return this->is_copied_from_dynobj_; }
777
778 // Mark this symbol as defined by a COPY reloc.
779 void
780 set_is_copied_from_dynobj()
781 { this->is_copied_from_dynobj_ = true; }
782
783 // Return whether this symbol is forced to visibility STB_LOCAL
784 // by a "local:" entry in a version script.
785 bool
786 is_forced_local() const
787 { return this->is_forced_local_; }
788
789 // Mark this symbol as forced to STB_LOCAL visibility.
790 void
791 set_is_forced_local()
792 { this->is_forced_local_ = true; }
793
794 // Return true if this may need a COPY relocation.
795 // References from an executable object to non-function symbols
796 // defined in a dynamic object may need a COPY relocation.
797 bool
798 may_need_copy_reloc() const
799 {
800 return (!parameters->options().output_is_position_independent()
801 && parameters->options().copyreloc()
802 && this->is_from_dynobj()
803 && !this->is_func());
804 }
805
806 // Return true if this symbol was predefined by the linker.
807 bool
808 is_predefined() const
809 { return this->is_predefined_; }
810
811 protected:
812 // Instances of this class should always be created at a specific
813 // size.
814 Symbol()
815 { memset(this, 0, sizeof *this); }
816
817 // Initialize the general fields.
818 void
819 init_fields(const char* name, const char* version,
820 elfcpp::STT type, elfcpp::STB binding,
821 elfcpp::STV visibility, unsigned char nonvis);
822
823 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
824 // section index, IS_ORDINARY is whether it is a normal section
825 // index rather than a special code.
826 template<int size, bool big_endian>
827 void
828 init_base_object(const char* name, const char* version, Object* object,
829 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
830 bool is_ordinary);
831
832 // Initialize fields for an Output_data.
833 void
834 init_base_output_data(const char* name, const char* version, Output_data*,
835 elfcpp::STT, elfcpp::STB, elfcpp::STV,
836 unsigned char nonvis, bool offset_is_from_end,
837 bool is_predefined);
838
839 // Initialize fields for an Output_segment.
840 void
841 init_base_output_segment(const char* name, const char* version,
842 Output_segment* os, elfcpp::STT type,
843 elfcpp::STB binding, elfcpp::STV visibility,
844 unsigned char nonvis,
845 Segment_offset_base offset_base,
846 bool is_predefined);
847
848 // Initialize fields for a constant.
849 void
850 init_base_constant(const char* name, const char* version, elfcpp::STT type,
851 elfcpp::STB binding, elfcpp::STV visibility,
852 unsigned char nonvis, bool is_predefined);
853
854 // Initialize fields for an undefined symbol.
855 void
856 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
857 elfcpp::STB binding, elfcpp::STV visibility,
858 unsigned char nonvis);
859
860 // Override existing symbol.
861 template<int size, bool big_endian>
862 void
863 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
864 bool is_ordinary, Object* object, const char* version);
865
866 // Override existing symbol with a special symbol.
867 void
868 override_base_with_special(const Symbol* from);
869
870 // Override symbol version.
871 void
872 override_version(const char* version);
873
874 // Allocate a common symbol by giving it a location in the output
875 // file.
876 void
877 allocate_base_common(Output_data*);
878
879 private:
880 Symbol(const Symbol&);
881 Symbol& operator=(const Symbol&);
882
883 // Symbol name (expected to point into a Stringpool).
884 const char* name_;
885 // Symbol version (expected to point into a Stringpool). This may
886 // be NULL.
887 const char* version_;
888
889 union
890 {
891 // This struct is used if SOURCE_ == FROM_OBJECT.
892 struct
893 {
894 // Object in which symbol is defined, or in which it was first
895 // seen.
896 Object* object;
897 // Section number in object_ in which symbol is defined.
898 unsigned int shndx;
899 } from_object;
900
901 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
902 struct
903 {
904 // Output_data in which symbol is defined. Before
905 // Layout::finalize the symbol's value is an offset within the
906 // Output_data.
907 Output_data* output_data;
908 // True if the offset is from the end, false if the offset is
909 // from the beginning.
910 bool offset_is_from_end;
911 } in_output_data;
912
913 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
914 struct
915 {
916 // Output_segment in which the symbol is defined. Before
917 // Layout::finalize the symbol's value is an offset.
918 Output_segment* output_segment;
919 // The base to use for the offset before Layout::finalize.
920 Segment_offset_base offset_base;
921 } in_output_segment;
922 } u_;
923
924 // The index of this symbol in the output file. If the symbol is
925 // not going into the output file, this value is -1U. This field
926 // starts as always holding zero. It is set to a non-zero value by
927 // Symbol_table::finalize.
928 unsigned int symtab_index_;
929
930 // The index of this symbol in the dynamic symbol table. If the
931 // symbol is not going into the dynamic symbol table, this value is
932 // -1U. This field starts as always holding zero. It is set to a
933 // non-zero value during Layout::finalize.
934 unsigned int dynsym_index_;
935
936 // The GOT section entries for this symbol. A symbol may have more
937 // than one GOT offset (e.g., when mixing modules compiled with two
938 // different TLS models), but will usually have at most one.
939 Got_offset_list got_offsets_;
940
941 // If this symbol has an entry in the PLT section, then this is the
942 // offset from the start of the PLT section. This is -1U if there
943 // is no PLT entry.
944 unsigned int plt_offset_;
945
946 // Symbol type (bits 0 to 3).
947 elfcpp::STT type_ : 4;
948 // Symbol binding (bits 4 to 7).
949 elfcpp::STB binding_ : 4;
950 // Symbol visibility (bits 8 to 9).
951 elfcpp::STV visibility_ : 2;
952 // Rest of symbol st_other field (bits 10 to 15).
953 unsigned int nonvis_ : 6;
954 // The type of symbol (bits 16 to 18).
955 Source source_ : 3;
956 // True if this is the default version of the symbol (bit 19).
957 bool is_def_ : 1;
958 // True if this symbol really forwards to another symbol. This is
959 // used when we discover after the fact that two different entries
960 // in the hash table really refer to the same symbol. This will
961 // never be set for a symbol found in the hash table, but may be set
962 // for a symbol found in the list of symbols attached to an Object.
963 // It forwards to the symbol found in the forwarders_ map of
964 // Symbol_table (bit 20).
965 bool is_forwarder_ : 1;
966 // True if the symbol has an alias in the weak_aliases table in
967 // Symbol_table (bit 21).
968 bool has_alias_ : 1;
969 // True if this symbol needs to be in the dynamic symbol table (bit
970 // 22).
971 bool needs_dynsym_entry_ : 1;
972 // True if we've seen this symbol in a regular object (bit 23).
973 bool in_reg_ : 1;
974 // True if we've seen this symbol in a dynamic object (bit 24).
975 bool in_dyn_ : 1;
976 // True if this is a dynamic symbol which needs a special value in
977 // the dynamic symbol table (bit 25).
978 bool needs_dynsym_value_ : 1;
979 // True if there is a warning for this symbol (bit 26).
980 bool has_warning_ : 1;
981 // True if we are using a COPY reloc for this symbol, so that the
982 // real definition lives in a dynamic object (bit 27).
983 bool is_copied_from_dynobj_ : 1;
984 // True if this symbol was forced to local visibility by a version
985 // script (bit 28).
986 bool is_forced_local_ : 1;
987 // True if the field u_.from_object.shndx is an ordinary section
988 // index, not one of the special codes from SHN_LORESERVE to
989 // SHN_HIRESERVE (bit 29).
990 bool is_ordinary_shndx_ : 1;
991 // True if we've seen this symbol in a real ELF object (bit 30).
992 bool in_real_elf_ : 1;
993 // True if this symbol is defined in a section which was discarded
994 // (bit 31).
995 bool is_defined_in_discarded_section_ : 1;
996 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
997 bool undef_binding_set_ : 1;
998 // True if this symbol was a weak undef resolved by a dynamic def
999 // (bit 33).
1000 bool undef_binding_weak_ : 1;
1001 // True if this symbol is a predefined linker symbol (bit 34).
1002 bool is_predefined_ : 1;
1003 };
1004
1005 // The parts of a symbol which are size specific. Using a template
1006 // derived class like this helps us use less space on a 32-bit system.
1007
1008 template<int size>
1009 class Sized_symbol : public Symbol
1010 {
1011 public:
1012 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1013 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1014
1015 Sized_symbol()
1016 { }
1017
1018 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1019 // section index, IS_ORDINARY is whether it is a normal section
1020 // index rather than a special code.
1021 template<bool big_endian>
1022 void
1023 init_object(const char* name, const char* version, Object* object,
1024 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1025 bool is_ordinary);
1026
1027 // Initialize fields for an Output_data.
1028 void
1029 init_output_data(const char* name, const char* version, Output_data*,
1030 Value_type value, Size_type symsize, elfcpp::STT,
1031 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1032 bool offset_is_from_end, bool is_predefined);
1033
1034 // Initialize fields for an Output_segment.
1035 void
1036 init_output_segment(const char* name, const char* version, Output_segment*,
1037 Value_type value, Size_type symsize, elfcpp::STT,
1038 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1039 Segment_offset_base offset_base, bool is_predefined);
1040
1041 // Initialize fields for a constant.
1042 void
1043 init_constant(const char* name, const char* version, Value_type value,
1044 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1045 unsigned char nonvis, bool is_predefined);
1046
1047 // Initialize fields for an undefined symbol.
1048 void
1049 init_undefined(const char* name, const char* version, elfcpp::STT,
1050 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1051
1052 // Override existing symbol.
1053 template<bool big_endian>
1054 void
1055 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1056 bool is_ordinary, Object* object, const char* version);
1057
1058 // Override existing symbol with a special symbol.
1059 void
1060 override_with_special(const Sized_symbol<size>*);
1061
1062 // Return the symbol's value.
1063 Value_type
1064 value() const
1065 { return this->value_; }
1066
1067 // Return the symbol's size (we can't call this 'size' because that
1068 // is a template parameter).
1069 Size_type
1070 symsize() const
1071 { return this->symsize_; }
1072
1073 // Set the symbol size. This is used when resolving common symbols.
1074 void
1075 set_symsize(Size_type symsize)
1076 { this->symsize_ = symsize; }
1077
1078 // Set the symbol value. This is called when we store the final
1079 // values of the symbols into the symbol table.
1080 void
1081 set_value(Value_type value)
1082 { this->value_ = value; }
1083
1084 // Allocate a common symbol by giving it a location in the output
1085 // file.
1086 void
1087 allocate_common(Output_data*, Value_type value);
1088
1089 private:
1090 Sized_symbol(const Sized_symbol&);
1091 Sized_symbol& operator=(const Sized_symbol&);
1092
1093 // Symbol value. Before Layout::finalize this is the offset in the
1094 // input section. This is set to the final value during
1095 // Layout::finalize.
1096 Value_type value_;
1097 // Symbol size.
1098 Size_type symsize_;
1099 };
1100
1101 // A struct describing a symbol defined by the linker, where the value
1102 // of the symbol is defined based on an output section. This is used
1103 // for symbols defined by the linker, like "_init_array_start".
1104
1105 struct Define_symbol_in_section
1106 {
1107 // The symbol name.
1108 const char* name;
1109 // The name of the output section with which this symbol should be
1110 // associated. If there is no output section with that name, the
1111 // symbol will be defined as zero.
1112 const char* output_section;
1113 // The offset of the symbol within the output section. This is an
1114 // offset from the start of the output section, unless start_at_end
1115 // is true, in which case this is an offset from the end of the
1116 // output section.
1117 uint64_t value;
1118 // The size of the symbol.
1119 uint64_t size;
1120 // The symbol type.
1121 elfcpp::STT type;
1122 // The symbol binding.
1123 elfcpp::STB binding;
1124 // The symbol visibility.
1125 elfcpp::STV visibility;
1126 // The rest of the st_other field.
1127 unsigned char nonvis;
1128 // If true, the value field is an offset from the end of the output
1129 // section.
1130 bool offset_is_from_end;
1131 // If true, this symbol is defined only if we see a reference to it.
1132 bool only_if_ref;
1133 };
1134
1135 // A struct describing a symbol defined by the linker, where the value
1136 // of the symbol is defined based on a segment. This is used for
1137 // symbols defined by the linker, like "_end". We describe the
1138 // segment with which the symbol should be associated by its
1139 // characteristics. If no segment meets these characteristics, the
1140 // symbol will be defined as zero. If there is more than one segment
1141 // which meets these characteristics, we will use the first one.
1142
1143 struct Define_symbol_in_segment
1144 {
1145 // The symbol name.
1146 const char* name;
1147 // The segment type where the symbol should be defined, typically
1148 // PT_LOAD.
1149 elfcpp::PT segment_type;
1150 // Bitmask of segment flags which must be set.
1151 elfcpp::PF segment_flags_set;
1152 // Bitmask of segment flags which must be clear.
1153 elfcpp::PF segment_flags_clear;
1154 // The offset of the symbol within the segment. The offset is
1155 // calculated from the position set by offset_base.
1156 uint64_t value;
1157 // The size of the symbol.
1158 uint64_t size;
1159 // The symbol type.
1160 elfcpp::STT type;
1161 // The symbol binding.
1162 elfcpp::STB binding;
1163 // The symbol visibility.
1164 elfcpp::STV visibility;
1165 // The rest of the st_other field.
1166 unsigned char nonvis;
1167 // The base from which we compute the offset.
1168 Symbol::Segment_offset_base offset_base;
1169 // If true, this symbol is defined only if we see a reference to it.
1170 bool only_if_ref;
1171 };
1172
1173 // This class manages warnings. Warnings are a GNU extension. When
1174 // we see a section named .gnu.warning.SYM in an object file, and if
1175 // we wind using the definition of SYM from that object file, then we
1176 // will issue a warning for any relocation against SYM from a
1177 // different object file. The text of the warning is the contents of
1178 // the section. This is not precisely the definition used by the old
1179 // GNU linker; the old GNU linker treated an occurrence of
1180 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1181 // would trigger a warning on any reference. However, it was
1182 // inconsistent in that a warning in a dynamic object only triggered
1183 // if there was no definition in a regular object. This linker is
1184 // different in that we only issue a warning if we use the symbol
1185 // definition from the same object file as the warning section.
1186
1187 class Warnings
1188 {
1189 public:
1190 Warnings()
1191 : warnings_()
1192 { }
1193
1194 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1195 // of the warning.
1196 void
1197 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1198 const std::string& warning);
1199
1200 // For each symbol for which we should give a warning, make a note
1201 // on the symbol.
1202 void
1203 note_warnings(Symbol_table* symtab);
1204
1205 // Issue a warning for a reference to SYM at RELINFO's location.
1206 template<int size, bool big_endian>
1207 void
1208 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1209 size_t relnum, off_t reloffset) const;
1210
1211 private:
1212 Warnings(const Warnings&);
1213 Warnings& operator=(const Warnings&);
1214
1215 // What we need to know to get the warning text.
1216 struct Warning_location
1217 {
1218 // The object the warning is in.
1219 Object* object;
1220 // The warning text.
1221 std::string text;
1222
1223 Warning_location()
1224 : object(NULL), text()
1225 { }
1226
1227 void
1228 set(Object* o, const std::string& t)
1229 {
1230 this->object = o;
1231 this->text = t;
1232 }
1233 };
1234
1235 // A mapping from warning symbol names (canonicalized in
1236 // Symbol_table's namepool_ field) to warning information.
1237 typedef Unordered_map<const char*, Warning_location> Warning_table;
1238
1239 Warning_table warnings_;
1240 };
1241
1242 // The main linker symbol table.
1243
1244 class Symbol_table
1245 {
1246 public:
1247 // The different places where a symbol definition can come from.
1248 enum Defined
1249 {
1250 // Defined in an object file--the normal case.
1251 OBJECT,
1252 // Defined for a COPY reloc.
1253 COPY,
1254 // Defined on the command line using --defsym.
1255 DEFSYM,
1256 // Defined (so to speak) on the command line using -u.
1257 UNDEFINED,
1258 // Defined in a linker script.
1259 SCRIPT,
1260 // Predefined by the linker.
1261 PREDEFINED,
1262 // Defined by the linker during an incremental base link, but not
1263 // a predefined symbol (e.g., common, defined in script).
1264 INCREMENTAL_BASE,
1265 };
1266
1267 // The order in which we sort common symbols.
1268 enum Sort_commons_order
1269 {
1270 SORT_COMMONS_BY_SIZE_DESCENDING,
1271 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1272 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1273 };
1274
1275 // COUNT is an estimate of how many symbols will be inserted in the
1276 // symbol table. It's ok to put 0 if you don't know; a correct
1277 // guess will just save some CPU by reducing hashtable resizes.
1278 Symbol_table(unsigned int count, const Version_script_info& version_script);
1279
1280 ~Symbol_table();
1281
1282 void
1283 set_icf(Icf* icf)
1284 { this->icf_ = icf;}
1285
1286 Icf*
1287 icf() const
1288 { return this->icf_; }
1289
1290 // Returns true if ICF determined that this is a duplicate section.
1291 bool
1292 is_section_folded(Object* obj, unsigned int shndx) const;
1293
1294 void
1295 set_gc(Garbage_collection* gc)
1296 { this->gc_ = gc; }
1297
1298 Garbage_collection*
1299 gc() const
1300 { return this->gc_; }
1301
1302 // During garbage collection, this keeps undefined symbols.
1303 void
1304 gc_mark_undef_symbols(Layout*);
1305
1306 // During garbage collection, this ensures externally visible symbols
1307 // are not treated as garbage while building shared objects.
1308 void
1309 gc_mark_symbol_for_shlib(Symbol* sym);
1310
1311 // During garbage collection, this keeps sections that correspond to
1312 // symbols seen in dynamic objects.
1313 inline void
1314 gc_mark_dyn_syms(Symbol* sym);
1315
1316 // Add COUNT external symbols from the relocatable object RELOBJ to
1317 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1318 // offset in the symbol table of the first symbol, SYM_NAMES is
1319 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1320 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1321 // *DEFINED to the number of defined symbols.
1322 template<int size, bool big_endian>
1323 void
1324 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1325 const unsigned char* syms, size_t count,
1326 size_t symndx_offset, const char* sym_names,
1327 size_t sym_name_size,
1328 typename Sized_relobj_file<size, big_endian>::Symbols*,
1329 size_t* defined);
1330
1331 // Add one external symbol from the plugin object OBJ to the symbol table.
1332 // Returns a pointer to the resolved symbol in the symbol table.
1333 template<int size, bool big_endian>
1334 Symbol*
1335 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1336 const char* name, const char* ver,
1337 elfcpp::Sym<size, big_endian>* sym);
1338
1339 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1340 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1341 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1342 // symbol version data.
1343 template<int size, bool big_endian>
1344 void
1345 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1346 const unsigned char* syms, size_t count,
1347 const char* sym_names, size_t sym_name_size,
1348 const unsigned char* versym, size_t versym_size,
1349 const std::vector<const char*>*,
1350 typename Sized_relobj_file<size, big_endian>::Symbols*,
1351 size_t* defined);
1352
1353 // Add one external symbol from the incremental object OBJ to the symbol
1354 // table. Returns a pointer to the resolved symbol in the symbol table.
1355 template<int size, bool big_endian>
1356 Sized_symbol<size>*
1357 add_from_incrobj(Object* obj, const char* name,
1358 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1359
1360 // Define a special symbol based on an Output_data. It is a
1361 // multiple definition error if this symbol is already defined.
1362 Symbol*
1363 define_in_output_data(const char* name, const char* version, Defined,
1364 Output_data*, uint64_t value, uint64_t symsize,
1365 elfcpp::STT type, elfcpp::STB binding,
1366 elfcpp::STV visibility, unsigned char nonvis,
1367 bool offset_is_from_end, bool only_if_ref);
1368
1369 // Define a special symbol based on an Output_segment. It is a
1370 // multiple definition error if this symbol is already defined.
1371 Symbol*
1372 define_in_output_segment(const char* name, const char* version, Defined,
1373 Output_segment*, uint64_t value, uint64_t symsize,
1374 elfcpp::STT type, elfcpp::STB binding,
1375 elfcpp::STV visibility, unsigned char nonvis,
1376 Symbol::Segment_offset_base, bool only_if_ref);
1377
1378 // Define a special symbol with a constant value. It is a multiple
1379 // definition error if this symbol is already defined.
1380 Symbol*
1381 define_as_constant(const char* name, const char* version, Defined,
1382 uint64_t value, uint64_t symsize, elfcpp::STT type,
1383 elfcpp::STB binding, elfcpp::STV visibility,
1384 unsigned char nonvis, bool only_if_ref,
1385 bool force_override);
1386
1387 // Define a set of symbols in output sections. If ONLY_IF_REF is
1388 // true, only define them if they are referenced.
1389 void
1390 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1391 bool only_if_ref);
1392
1393 // Define a set of symbols in output segments. If ONLY_IF_REF is
1394 // true, only defined them if they are referenced.
1395 void
1396 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1397 bool only_if_ref);
1398
1399 // Define SYM using a COPY reloc. POSD is the Output_data where the
1400 // symbol should be defined--typically a .dyn.bss section. VALUE is
1401 // the offset within POSD.
1402 template<int size>
1403 void
1404 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1405 typename elfcpp::Elf_types<size>::Elf_Addr);
1406
1407 // Look up a symbol.
1408 Symbol*
1409 lookup(const char*, const char* version = NULL) const;
1410
1411 // Return the real symbol associated with the forwarder symbol FROM.
1412 Symbol*
1413 resolve_forwards(const Symbol* from) const;
1414
1415 // Return the sized version of a symbol in this table.
1416 template<int size>
1417 Sized_symbol<size>*
1418 get_sized_symbol(Symbol*) const;
1419
1420 template<int size>
1421 const Sized_symbol<size>*
1422 get_sized_symbol(const Symbol*) const;
1423
1424 // Return the count of undefined symbols seen.
1425 size_t
1426 saw_undefined() const
1427 { return this->saw_undefined_; }
1428
1429 // Allocate the common symbols
1430 void
1431 allocate_commons(Layout*, Mapfile*);
1432
1433 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1434 // of the warning.
1435 void
1436 add_warning(const char* name, Object* obj, const std::string& warning)
1437 { this->warnings_.add_warning(this, name, obj, warning); }
1438
1439 // Canonicalize a symbol name for use in the hash table.
1440 const char*
1441 canonicalize_name(const char* name)
1442 { return this->namepool_.add(name, true, NULL); }
1443
1444 // Possibly issue a warning for a reference to SYM at LOCATION which
1445 // is in OBJ.
1446 template<int size, bool big_endian>
1447 void
1448 issue_warning(const Symbol* sym,
1449 const Relocate_info<size, big_endian>* relinfo,
1450 size_t relnum, off_t reloffset) const
1451 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1452
1453 // Check candidate_odr_violations_ to find symbols with the same name
1454 // but apparently different definitions (different source-file/line-no).
1455 void
1456 detect_odr_violations(const Task*, const char* output_file_name) const;
1457
1458 // Add any undefined symbols named on the command line to the symbol
1459 // table.
1460 void
1461 add_undefined_symbols_from_command_line(Layout*);
1462
1463 // SYM is defined using a COPY reloc. Return the dynamic object
1464 // where the original definition was found.
1465 Dynobj*
1466 get_copy_source(const Symbol* sym) const;
1467
1468 // Set the dynamic symbol indexes. INDEX is the index of the first
1469 // global dynamic symbol. Pointers to the symbols are stored into
1470 // the vector. The names are stored into the Stringpool. This
1471 // returns an updated dynamic symbol index.
1472 unsigned int
1473 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1474 Stringpool*, Versions*);
1475
1476 // Finalize the symbol table after we have set the final addresses
1477 // of all the input sections. This sets the final symbol indexes,
1478 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1479 // index of the first global symbol. OFF is the file offset of the
1480 // global symbol table, DYNOFF is the offset of the globals in the
1481 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1482 // global dynamic symbol, and DYNCOUNT is the number of global
1483 // dynamic symbols. This records the parameters, and returns the
1484 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1485 // local symbols.
1486 off_t
1487 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1488 Stringpool* pool, unsigned int* plocal_symcount);
1489
1490 // Set the final file offset of the symbol table.
1491 void
1492 set_file_offset(off_t off)
1493 { this->offset_ = off; }
1494
1495 // Status code of Symbol_table::compute_final_value.
1496 enum Compute_final_value_status
1497 {
1498 // No error.
1499 CFVS_OK,
1500 // Unsupported symbol section.
1501 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1502 // No output section.
1503 CFVS_NO_OUTPUT_SECTION
1504 };
1505
1506 // Compute the final value of SYM and store status in location PSTATUS.
1507 // During relaxation, this may be called multiple times for a symbol to
1508 // compute its would-be final value in each relaxation pass.
1509
1510 template<int size>
1511 typename Sized_symbol<size>::Value_type
1512 compute_final_value(const Sized_symbol<size>* sym,
1513 Compute_final_value_status* pstatus) const;
1514
1515 // Return the index of the first global symbol.
1516 unsigned int
1517 first_global_index() const
1518 { return this->first_global_index_; }
1519
1520 // Return the total number of symbols in the symbol table.
1521 unsigned int
1522 output_count() const
1523 { return this->output_count_; }
1524
1525 // Write out the global symbols.
1526 void
1527 write_globals(const Stringpool*, const Stringpool*,
1528 Output_symtab_xindex*, Output_symtab_xindex*,
1529 Output_file*) const;
1530
1531 // Write out a section symbol. Return the updated offset.
1532 void
1533 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1534 Output_file*, off_t) const;
1535
1536 // Loop over all symbols, applying the function F to each.
1537 template<int size, typename F>
1538 void
1539 for_all_symbols(F f) const
1540 {
1541 for (Symbol_table_type::const_iterator p = this->table_.begin();
1542 p != this->table_.end();
1543 ++p)
1544 {
1545 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1546 f(sym);
1547 }
1548 }
1549
1550 // Dump statistical information to stderr.
1551 void
1552 print_stats() const;
1553
1554 // Return the version script information.
1555 const Version_script_info&
1556 version_script() const
1557 { return version_script_; }
1558
1559 private:
1560 Symbol_table(const Symbol_table&);
1561 Symbol_table& operator=(const Symbol_table&);
1562
1563 // The type of the list of common symbols.
1564 typedef std::vector<Symbol*> Commons_type;
1565
1566 // The type of the symbol hash table.
1567
1568 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1569
1570 // The hash function. The key values are Stringpool keys.
1571 struct Symbol_table_hash
1572 {
1573 inline size_t
1574 operator()(const Symbol_table_key& key) const
1575 {
1576 return key.first ^ key.second;
1577 }
1578 };
1579
1580 struct Symbol_table_eq
1581 {
1582 bool
1583 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1584 };
1585
1586 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1587 Symbol_table_eq> Symbol_table_type;
1588
1589 // A map from symbol name (as a pointer into the namepool) to all
1590 // the locations the symbols is (weakly) defined (and certain other
1591 // conditions are met). This map will be used later to detect
1592 // possible One Definition Rule (ODR) violations.
1593 struct Symbol_location
1594 {
1595 Object* object; // Object where the symbol is defined.
1596 unsigned int shndx; // Section-in-object where the symbol is defined.
1597 off_t offset; // Offset-in-section where the symbol is defined.
1598 bool operator==(const Symbol_location& that) const
1599 {
1600 return (this->object == that.object
1601 && this->shndx == that.shndx
1602 && this->offset == that.offset);
1603 }
1604 };
1605
1606 struct Symbol_location_hash
1607 {
1608 size_t operator()(const Symbol_location& loc) const
1609 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1610 };
1611
1612 typedef Unordered_map<const char*,
1613 Unordered_set<Symbol_location, Symbol_location_hash> >
1614 Odr_map;
1615
1616 // Make FROM a forwarder symbol to TO.
1617 void
1618 make_forwarder(Symbol* from, Symbol* to);
1619
1620 // Add a symbol.
1621 template<int size, bool big_endian>
1622 Sized_symbol<size>*
1623 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1624 const char* version, Stringpool::Key version_key,
1625 bool def, const elfcpp::Sym<size, big_endian>& sym,
1626 unsigned int st_shndx, bool is_ordinary,
1627 unsigned int orig_st_shndx);
1628
1629 // Define a default symbol.
1630 template<int size, bool big_endian>
1631 void
1632 define_default_version(Sized_symbol<size>*, bool,
1633 Symbol_table_type::iterator);
1634
1635 // Resolve symbols.
1636 template<int size, bool big_endian>
1637 void
1638 resolve(Sized_symbol<size>* to,
1639 const elfcpp::Sym<size, big_endian>& sym,
1640 unsigned int st_shndx, bool is_ordinary,
1641 unsigned int orig_st_shndx,
1642 Object*, const char* version);
1643
1644 template<int size, bool big_endian>
1645 void
1646 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1647
1648 // Record that a symbol is forced to be local by a version script or
1649 // by visibility.
1650 void
1651 force_local(Symbol*);
1652
1653 // Adjust NAME and *NAME_KEY for wrapping.
1654 const char*
1655 wrap_symbol(const char* name, Stringpool::Key* name_key);
1656
1657 // Whether we should override a symbol, based on flags in
1658 // resolve.cc.
1659 static bool
1660 should_override(const Symbol*, unsigned int, Defined, Object*, bool*, bool*);
1661
1662 // Report a problem in symbol resolution.
1663 static void
1664 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1665 Defined, Object* object);
1666
1667 // Override a symbol.
1668 template<int size, bool big_endian>
1669 void
1670 override(Sized_symbol<size>* tosym,
1671 const elfcpp::Sym<size, big_endian>& fromsym,
1672 unsigned int st_shndx, bool is_ordinary,
1673 Object* object, const char* version);
1674
1675 // Whether we should override a symbol with a special symbol which
1676 // is automatically defined by the linker.
1677 static bool
1678 should_override_with_special(const Symbol*, Defined);
1679
1680 // Override a symbol with a special symbol.
1681 template<int size>
1682 void
1683 override_with_special(Sized_symbol<size>* tosym,
1684 const Sized_symbol<size>* fromsym);
1685
1686 // Record all weak alias sets for a dynamic object.
1687 template<int size>
1688 void
1689 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1690
1691 // Define a special symbol.
1692 template<int size, bool big_endian>
1693 Sized_symbol<size>*
1694 define_special_symbol(const char** pname, const char** pversion,
1695 bool only_if_ref, Sized_symbol<size>** poldsym,
1696 bool* resolve_oldsym);
1697
1698 // Define a symbol in an Output_data, sized version.
1699 template<int size>
1700 Sized_symbol<size>*
1701 do_define_in_output_data(const char* name, const char* version, Defined,
1702 Output_data*,
1703 typename elfcpp::Elf_types<size>::Elf_Addr value,
1704 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1705 elfcpp::STT type, elfcpp::STB binding,
1706 elfcpp::STV visibility, unsigned char nonvis,
1707 bool offset_is_from_end, bool only_if_ref);
1708
1709 // Define a symbol in an Output_segment, sized version.
1710 template<int size>
1711 Sized_symbol<size>*
1712 do_define_in_output_segment(
1713 const char* name, const char* version, Defined, Output_segment* os,
1714 typename elfcpp::Elf_types<size>::Elf_Addr value,
1715 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1716 elfcpp::STT type, elfcpp::STB binding,
1717 elfcpp::STV visibility, unsigned char nonvis,
1718 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1719
1720 // Define a symbol as a constant, sized version.
1721 template<int size>
1722 Sized_symbol<size>*
1723 do_define_as_constant(
1724 const char* name, const char* version, Defined,
1725 typename elfcpp::Elf_types<size>::Elf_Addr value,
1726 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1727 elfcpp::STT type, elfcpp::STB binding,
1728 elfcpp::STV visibility, unsigned char nonvis,
1729 bool only_if_ref, bool force_override);
1730
1731 // Add any undefined symbols named on the command line to the symbol
1732 // table, sized version.
1733 template<int size>
1734 void
1735 do_add_undefined_symbols_from_command_line(Layout*);
1736
1737 // Add one undefined symbol.
1738 template<int size>
1739 void
1740 add_undefined_symbol_from_command_line(const char* name);
1741
1742 // Types of common symbols.
1743
1744 enum Commons_section_type
1745 {
1746 COMMONS_NORMAL,
1747 COMMONS_TLS,
1748 COMMONS_SMALL,
1749 COMMONS_LARGE
1750 };
1751
1752 // Allocate the common symbols, sized version.
1753 template<int size>
1754 void
1755 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1756
1757 // Allocate the common symbols from one list.
1758 template<int size>
1759 void
1760 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1761 Mapfile*, Sort_commons_order);
1762
1763 // Returns all of the lines attached to LOC, not just the one the
1764 // instruction actually came from. This helps the ODR checker avoid
1765 // false positives.
1766 static std::vector<std::string>
1767 linenos_from_loc(const Task* task, const Symbol_location& loc);
1768
1769 // Implement detect_odr_violations.
1770 template<int size, bool big_endian>
1771 void
1772 sized_detect_odr_violations() const;
1773
1774 // Finalize symbols specialized for size.
1775 template<int size>
1776 off_t
1777 sized_finalize(off_t, Stringpool*, unsigned int*);
1778
1779 // Finalize a symbol. Return whether it should be added to the
1780 // symbol table.
1781 template<int size>
1782 bool
1783 sized_finalize_symbol(Symbol*);
1784
1785 // Add a symbol the final symtab by setting its index.
1786 template<int size>
1787 void
1788 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1789
1790 // Write globals specialized for size and endianness.
1791 template<int size, bool big_endian>
1792 void
1793 sized_write_globals(const Stringpool*, const Stringpool*,
1794 Output_symtab_xindex*, Output_symtab_xindex*,
1795 Output_file*) const;
1796
1797 // Write out a symbol to P.
1798 template<int size, bool big_endian>
1799 void
1800 sized_write_symbol(Sized_symbol<size>*,
1801 typename elfcpp::Elf_types<size>::Elf_Addr value,
1802 unsigned int shndx, elfcpp::STB,
1803 const Stringpool*, unsigned char* p) const;
1804
1805 // Possibly warn about an undefined symbol from a dynamic object.
1806 void
1807 warn_about_undefined_dynobj_symbol(Symbol*) const;
1808
1809 // Write out a section symbol, specialized for size and endianness.
1810 template<int size, bool big_endian>
1811 void
1812 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1813 Output_file*, off_t) const;
1814
1815 // The type of the list of symbols which have been forced local.
1816 typedef std::vector<Symbol*> Forced_locals;
1817
1818 // A map from symbols with COPY relocs to the dynamic objects where
1819 // they are defined.
1820 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1821
1822 // We increment this every time we see a new undefined symbol, for
1823 // use in archive groups.
1824 size_t saw_undefined_;
1825 // The index of the first global symbol in the output file.
1826 unsigned int first_global_index_;
1827 // The file offset within the output symtab section where we should
1828 // write the table.
1829 off_t offset_;
1830 // The number of global symbols we want to write out.
1831 unsigned int output_count_;
1832 // The file offset of the global dynamic symbols, or 0 if none.
1833 off_t dynamic_offset_;
1834 // The index of the first global dynamic symbol.
1835 unsigned int first_dynamic_global_index_;
1836 // The number of global dynamic symbols, or 0 if none.
1837 unsigned int dynamic_count_;
1838 // The symbol hash table.
1839 Symbol_table_type table_;
1840 // A pool of symbol names. This is used for all global symbols.
1841 // Entries in the hash table point into this pool.
1842 Stringpool namepool_;
1843 // Forwarding symbols.
1844 Unordered_map<const Symbol*, Symbol*> forwarders_;
1845 // Weak aliases. A symbol in this list points to the next alias.
1846 // The aliases point to each other in a circular list.
1847 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1848 // We don't expect there to be very many common symbols, so we keep
1849 // a list of them. When we find a common symbol we add it to this
1850 // list. It is possible that by the time we process the list the
1851 // symbol is no longer a common symbol. It may also have become a
1852 // forwarder.
1853 Commons_type commons_;
1854 // This is like the commons_ field, except that it holds TLS common
1855 // symbols.
1856 Commons_type tls_commons_;
1857 // This is for small common symbols.
1858 Commons_type small_commons_;
1859 // This is for large common symbols.
1860 Commons_type large_commons_;
1861 // A list of symbols which have been forced to be local. We don't
1862 // expect there to be very many of them, so we keep a list of them
1863 // rather than walking the whole table to find them.
1864 Forced_locals forced_locals_;
1865 // Manage symbol warnings.
1866 Warnings warnings_;
1867 // Manage potential One Definition Rule (ODR) violations.
1868 Odr_map candidate_odr_violations_;
1869
1870 // When we emit a COPY reloc for a symbol, we define it in an
1871 // Output_data. When it's time to emit version information for it,
1872 // we need to know the dynamic object in which we found the original
1873 // definition. This maps symbols with COPY relocs to the dynamic
1874 // object where they were defined.
1875 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1876 // Information parsed from the version script, if any.
1877 const Version_script_info& version_script_;
1878 Garbage_collection* gc_;
1879 Icf* icf_;
1880 };
1881
1882 // We inline get_sized_symbol for efficiency.
1883
1884 template<int size>
1885 Sized_symbol<size>*
1886 Symbol_table::get_sized_symbol(Symbol* sym) const
1887 {
1888 gold_assert(size == parameters->target().get_size());
1889 return static_cast<Sized_symbol<size>*>(sym);
1890 }
1891
1892 template<int size>
1893 const Sized_symbol<size>*
1894 Symbol_table::get_sized_symbol(const Symbol* sym) const
1895 {
1896 gold_assert(size == parameters->target().get_size());
1897 return static_cast<const Sized_symbol<size>*>(sym);
1898 }
1899
1900 } // End namespace gold.
1901
1902 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.065271 seconds and 5 git commands to generate.