* symtab.h (needs_plt_entry): Check for unsatisfied reference from
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "gc.h"
31 #include "elfcpp.h"
32 #include "parameters.h"
33 #include "stringpool.h"
34 #include "object.h"
35
36 #ifndef GOLD_SYMTAB_H
37 #define GOLD_SYMTAB_H
38
39 namespace gold
40 {
41
42 class Mapfile;
43 class Object;
44 class Relobj;
45 template<int size, bool big_endian>
46 class Sized_relobj;
47 template<int size, bool big_endian>
48 class Sized_pluginobj;
49 class Dynobj;
50 template<int size, bool big_endian>
51 class Sized_dynobj;
52 class Versions;
53 class Version_script_info;
54 class Input_objects;
55 class Output_data;
56 class Output_section;
57 class Output_segment;
58 class Output_file;
59 class Output_symtab_xindex;
60 class Garbage_collection;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return the symbol visibility.
209 elfcpp::STV
210 visibility() const
211 { return this->visibility_; }
212
213 // Set the visibility.
214 void
215 set_visibility(elfcpp::STV visibility)
216 { this->visibility_ = visibility; }
217
218 // Override symbol visibility.
219 void
220 override_visibility(elfcpp::STV);
221
222 // Return the non-visibility part of the st_other field.
223 unsigned char
224 nonvis() const
225 { return this->nonvis_; }
226
227 // Return whether this symbol is a forwarder. This will never be
228 // true of a symbol found in the hash table, but may be true of
229 // symbol pointers attached to object files.
230 bool
231 is_forwarder() const
232 { return this->is_forwarder_; }
233
234 // Mark this symbol as a forwarder.
235 void
236 set_forwarder()
237 { this->is_forwarder_ = true; }
238
239 // Return whether this symbol has an alias in the weak aliases table
240 // in Symbol_table.
241 bool
242 has_alias() const
243 { return this->has_alias_; }
244
245 // Mark this symbol as having an alias.
246 void
247 set_has_alias()
248 { this->has_alias_ = true; }
249
250 // Return whether this symbol needs an entry in the dynamic symbol
251 // table.
252 bool
253 needs_dynsym_entry() const
254 {
255 return (this->needs_dynsym_entry_
256 || (this->in_reg() && this->in_dyn()));
257 }
258
259 // Mark this symbol as needing an entry in the dynamic symbol table.
260 void
261 set_needs_dynsym_entry()
262 { this->needs_dynsym_entry_ = true; }
263
264 // Return whether this symbol should be added to the dynamic symbol
265 // table.
266 bool
267 should_add_dynsym_entry() const;
268
269 // Return whether this symbol has been seen in a regular object.
270 bool
271 in_reg() const
272 { return this->in_reg_; }
273
274 // Mark this symbol as having been seen in a regular object.
275 void
276 set_in_reg()
277 { this->in_reg_ = true; }
278
279 // Return whether this symbol has been seen in a dynamic object.
280 bool
281 in_dyn() const
282 { return this->in_dyn_; }
283
284 // Mark this symbol as having been seen in a dynamic object.
285 void
286 set_in_dyn()
287 { this->in_dyn_ = true; }
288
289 // Return whether this symbol has been seen in a real ELF object.
290 // (IN_REG will return TRUE if the symbol has been seen in either
291 // a real ELF object or an object claimed by a plugin.)
292 bool
293 in_real_elf() const
294 { return this->in_real_elf_; }
295
296 // Mark this symbol as having been seen in a real ELF object.
297 void
298 set_in_real_elf()
299 { this->in_real_elf_ = true; }
300
301 // Return the index of this symbol in the output file symbol table.
302 // A value of -1U means that this symbol is not going into the
303 // output file. This starts out as zero, and is set to a non-zero
304 // value by Symbol_table::finalize. It is an error to ask for the
305 // symbol table index before it has been set.
306 unsigned int
307 symtab_index() const
308 {
309 gold_assert(this->symtab_index_ != 0);
310 return this->symtab_index_;
311 }
312
313 // Set the index of the symbol in the output file symbol table.
314 void
315 set_symtab_index(unsigned int index)
316 {
317 gold_assert(index != 0);
318 this->symtab_index_ = index;
319 }
320
321 // Return whether this symbol already has an index in the output
322 // file symbol table.
323 bool
324 has_symtab_index() const
325 { return this->symtab_index_ != 0; }
326
327 // Return the index of this symbol in the dynamic symbol table. A
328 // value of -1U means that this symbol is not going into the dynamic
329 // symbol table. This starts out as zero, and is set to a non-zero
330 // during Layout::finalize. It is an error to ask for the dynamic
331 // symbol table index before it has been set.
332 unsigned int
333 dynsym_index() const
334 {
335 gold_assert(this->dynsym_index_ != 0);
336 return this->dynsym_index_;
337 }
338
339 // Set the index of the symbol in the dynamic symbol table.
340 void
341 set_dynsym_index(unsigned int index)
342 {
343 gold_assert(index != 0);
344 this->dynsym_index_ = index;
345 }
346
347 // Return whether this symbol already has an index in the dynamic
348 // symbol table.
349 bool
350 has_dynsym_index() const
351 { return this->dynsym_index_ != 0; }
352
353 // Return whether this symbol has an entry in the GOT section.
354 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
355 bool
356 has_got_offset(unsigned int got_type) const
357 { return this->got_offsets_.get_offset(got_type) != -1U; }
358
359 // Return the offset into the GOT section of this symbol.
360 unsigned int
361 got_offset(unsigned int got_type) const
362 {
363 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
364 gold_assert(got_offset != -1U);
365 return got_offset;
366 }
367
368 // Set the GOT offset of this symbol.
369 void
370 set_got_offset(unsigned int got_type, unsigned int got_offset)
371 { this->got_offsets_.set_offset(got_type, got_offset); }
372
373 // Return whether this symbol has an entry in the PLT section.
374 bool
375 has_plt_offset() const
376 { return this->has_plt_offset_; }
377
378 // Return the offset into the PLT section of this symbol.
379 unsigned int
380 plt_offset() const
381 {
382 gold_assert(this->has_plt_offset());
383 return this->plt_offset_;
384 }
385
386 // Set the PLT offset of this symbol.
387 void
388 set_plt_offset(unsigned int plt_offset)
389 {
390 this->has_plt_offset_ = true;
391 this->plt_offset_ = plt_offset;
392 }
393
394 // Return whether this dynamic symbol needs a special value in the
395 // dynamic symbol table.
396 bool
397 needs_dynsym_value() const
398 { return this->needs_dynsym_value_; }
399
400 // Set that this dynamic symbol needs a special value in the dynamic
401 // symbol table.
402 void
403 set_needs_dynsym_value()
404 {
405 gold_assert(this->object()->is_dynamic());
406 this->needs_dynsym_value_ = true;
407 }
408
409 // Return true if the final value of this symbol is known at link
410 // time.
411 bool
412 final_value_is_known() const;
413
414 // Return whether this is a defined symbol (not undefined or
415 // common).
416 bool
417 is_defined() const
418 {
419 bool is_ordinary;
420 if (this->source_ != FROM_OBJECT)
421 return this->source_ != IS_UNDEFINED;
422 unsigned int shndx = this->shndx(&is_ordinary);
423 return (is_ordinary
424 ? shndx != elfcpp::SHN_UNDEF
425 : shndx != elfcpp::SHN_COMMON);
426 }
427
428 // Return true if this symbol is from a dynamic object.
429 bool
430 is_from_dynobj() const
431 {
432 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
433 }
434
435 // Return whether this is an undefined symbol.
436 bool
437 is_undefined() const
438 {
439 bool is_ordinary;
440 return ((this->source_ == FROM_OBJECT
441 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
442 && is_ordinary)
443 || this->source_ == IS_UNDEFINED);
444 }
445
446 // Return whether this is a weak undefined symbol.
447 bool
448 is_weak_undefined() const
449 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
450
451 // Return whether this is an absolute symbol.
452 bool
453 is_absolute() const
454 {
455 bool is_ordinary;
456 return ((this->source_ == FROM_OBJECT
457 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
458 && !is_ordinary)
459 || this->source_ == IS_CONSTANT);
460 }
461
462 // Return whether this is a common symbol.
463 bool
464 is_common() const
465 {
466 bool is_ordinary;
467 return (this->source_ == FROM_OBJECT
468 && ((this->shndx(&is_ordinary) == elfcpp::SHN_COMMON
469 && !is_ordinary)
470 || this->type_ == elfcpp::STT_COMMON));
471 }
472
473 // Return whether this symbol can be seen outside this object.
474 bool
475 is_externally_visible() const
476 {
477 return (this->visibility_ == elfcpp::STV_DEFAULT
478 || this->visibility_ == elfcpp::STV_PROTECTED);
479 }
480
481 // Return true if this symbol can be preempted by a definition in
482 // another link unit.
483 bool
484 is_preemptible() const
485 {
486 // It doesn't make sense to ask whether a symbol defined in
487 // another object is preemptible.
488 gold_assert(!this->is_from_dynobj());
489
490 // It doesn't make sense to ask whether an undefined symbol
491 // is preemptible.
492 gold_assert(!this->is_undefined());
493
494 // If a symbol does not have default visibility, it can not be
495 // seen outside this link unit and therefore is not preemptible.
496 if (this->visibility_ != elfcpp::STV_DEFAULT)
497 return false;
498
499 // If this symbol has been forced to be a local symbol by a
500 // version script, then it is not visible outside this link unit
501 // and is not preemptible.
502 if (this->is_forced_local_)
503 return false;
504
505 // If we are not producing a shared library, then nothing is
506 // preemptible.
507 if (!parameters->options().shared())
508 return false;
509
510 // If the user used -Bsymbolic, then nothing is preemptible.
511 if (parameters->options().Bsymbolic())
512 return false;
513
514 // If the user used -Bsymbolic-functions, then functions are not
515 // preemptible. We explicitly check for not being STT_OBJECT,
516 // rather than for being STT_FUNC, because that is what the GNU
517 // linker does.
518 if (this->type() != elfcpp::STT_OBJECT
519 && parameters->options().Bsymbolic_functions())
520 return false;
521
522 // Otherwise the symbol is preemptible.
523 return true;
524 }
525
526 // Return true if this symbol is a function that needs a PLT entry.
527 // If the symbol is defined in a dynamic object or if it is subject
528 // to pre-emption, we need to make a PLT entry. If we're doing a
529 // static link, we don't create PLT entries.
530 bool
531 needs_plt_entry() const
532 {
533 // An undefined symbol from an executable does not need a PLT entry.
534 if (this->is_undefined() && !parameters->options().shared())
535 return false;
536
537 return (!parameters->doing_static_link()
538 && this->type() == elfcpp::STT_FUNC
539 && (this->is_from_dynobj()
540 || this->is_undefined()
541 || this->is_preemptible()));
542 }
543
544 // When determining whether a reference to a symbol needs a dynamic
545 // relocation, we need to know several things about the reference.
546 // These flags may be or'ed together.
547 enum Reference_flags
548 {
549 // Reference to the symbol's absolute address.
550 ABSOLUTE_REF = 1,
551 // A non-PIC reference.
552 NON_PIC_REF = 2,
553 // A function call.
554 FUNCTION_CALL = 4
555 };
556
557 // Given a direct absolute or pc-relative static relocation against
558 // the global symbol, this function returns whether a dynamic relocation
559 // is needed.
560
561 bool
562 needs_dynamic_reloc(int flags) const
563 {
564 // No dynamic relocations in a static link!
565 if (parameters->doing_static_link())
566 return false;
567
568 // A reference to an undefined symbol from an executable should be
569 // statically resolved to 0, and does not need a dynamic relocation.
570 // This matches gnu ld behavior.
571 if (this->is_undefined() && !parameters->options().shared())
572 return false;
573
574 // A reference to an absolute symbol does not need a dynamic relocation.
575 if (this->is_absolute())
576 return false;
577
578 // An absolute reference within a position-independent output file
579 // will need a dynamic relocation.
580 if ((flags & ABSOLUTE_REF)
581 && parameters->options().output_is_position_independent())
582 return true;
583
584 // A function call that can branch to a local PLT entry does not need
585 // a dynamic relocation. A non-pic pc-relative function call in a
586 // shared library cannot use a PLT entry.
587 if ((flags & FUNCTION_CALL)
588 && this->has_plt_offset()
589 && !((flags & NON_PIC_REF) && parameters->options().shared()))
590 return false;
591
592 // A reference to any PLT entry in a non-position-independent executable
593 // does not need a dynamic relocation.
594 if (!parameters->options().output_is_position_independent()
595 && this->has_plt_offset())
596 return false;
597
598 // A reference to a symbol defined in a dynamic object or to a
599 // symbol that is preemptible will need a dynamic relocation.
600 if (this->is_from_dynobj()
601 || this->is_undefined()
602 || this->is_preemptible())
603 return true;
604
605 // For all other cases, return FALSE.
606 return false;
607 }
608
609 // Whether we should use the PLT offset associated with a symbol for
610 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
611 // reloc--the same set of relocs for which we would pass NON_PIC_REF
612 // to the needs_dynamic_reloc function.
613
614 bool
615 use_plt_offset(bool is_non_pic_reference) const
616 {
617 // If the symbol doesn't have a PLT offset, then naturally we
618 // don't want to use it.
619 if (!this->has_plt_offset())
620 return false;
621
622 // If we are going to generate a dynamic relocation, then we will
623 // wind up using that, so no need to use the PLT entry.
624 if (this->needs_dynamic_reloc(FUNCTION_CALL
625 | (is_non_pic_reference
626 ? NON_PIC_REF
627 : 0)))
628 return false;
629
630 // If the symbol is from a dynamic object, we need to use the PLT
631 // entry.
632 if (this->is_from_dynobj())
633 return true;
634
635 // If we are generating a shared object, and this symbol is
636 // undefined or preemptible, we need to use the PLT entry.
637 if (parameters->options().shared()
638 && (this->is_undefined() || this->is_preemptible()))
639 return true;
640
641 // If this is a weak undefined symbol, we need to use the PLT
642 // entry; the symbol may be defined by a library loaded at
643 // runtime.
644 if (this->is_weak_undefined())
645 return true;
646
647 // Otherwise we can use the regular definition.
648 return false;
649 }
650
651 // Given a direct absolute static relocation against
652 // the global symbol, where a dynamic relocation is needed, this
653 // function returns whether a relative dynamic relocation can be used.
654 // The caller must determine separately whether the static relocation
655 // is compatible with a relative relocation.
656
657 bool
658 can_use_relative_reloc(bool is_function_call) const
659 {
660 // A function call that can branch to a local PLT entry can
661 // use a RELATIVE relocation.
662 if (is_function_call && this->has_plt_offset())
663 return true;
664
665 // A reference to a symbol defined in a dynamic object or to a
666 // symbol that is preemptible can not use a RELATIVE relocaiton.
667 if (this->is_from_dynobj()
668 || this->is_undefined()
669 || this->is_preemptible())
670 return false;
671
672 // For all other cases, return TRUE.
673 return true;
674 }
675
676 // Return the output section where this symbol is defined. Return
677 // NULL if the symbol has an absolute value.
678 Output_section*
679 output_section() const;
680
681 // Set the symbol's output section. This is used for symbols
682 // defined in scripts. This should only be called after the symbol
683 // table has been finalized.
684 void
685 set_output_section(Output_section*);
686
687 // Return whether there should be a warning for references to this
688 // symbol.
689 bool
690 has_warning() const
691 { return this->has_warning_; }
692
693 // Mark this symbol as having a warning.
694 void
695 set_has_warning()
696 { this->has_warning_ = true; }
697
698 // Return whether this symbol is defined by a COPY reloc from a
699 // dynamic object.
700 bool
701 is_copied_from_dynobj() const
702 { return this->is_copied_from_dynobj_; }
703
704 // Mark this symbol as defined by a COPY reloc.
705 void
706 set_is_copied_from_dynobj()
707 { this->is_copied_from_dynobj_ = true; }
708
709 // Return whether this symbol is forced to visibility STB_LOCAL
710 // by a "local:" entry in a version script.
711 bool
712 is_forced_local() const
713 { return this->is_forced_local_; }
714
715 // Mark this symbol as forced to STB_LOCAL visibility.
716 void
717 set_is_forced_local()
718 { this->is_forced_local_ = true; }
719
720 protected:
721 // Instances of this class should always be created at a specific
722 // size.
723 Symbol()
724 { memset(this, 0, sizeof *this); }
725
726 // Initialize the general fields.
727 void
728 init_fields(const char* name, const char* version,
729 elfcpp::STT type, elfcpp::STB binding,
730 elfcpp::STV visibility, unsigned char nonvis);
731
732 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
733 // section index, IS_ORDINARY is whether it is a normal section
734 // index rather than a special code.
735 template<int size, bool big_endian>
736 void
737 init_base_object(const char *name, const char* version, Object* object,
738 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
739 bool is_ordinary);
740
741 // Initialize fields for an Output_data.
742 void
743 init_base_output_data(const char* name, const char* version, Output_data*,
744 elfcpp::STT, elfcpp::STB, elfcpp::STV,
745 unsigned char nonvis, bool offset_is_from_end);
746
747 // Initialize fields for an Output_segment.
748 void
749 init_base_output_segment(const char* name, const char* version,
750 Output_segment* os, elfcpp::STT type,
751 elfcpp::STB binding, elfcpp::STV visibility,
752 unsigned char nonvis,
753 Segment_offset_base offset_base);
754
755 // Initialize fields for a constant.
756 void
757 init_base_constant(const char* name, const char* version, elfcpp::STT type,
758 elfcpp::STB binding, elfcpp::STV visibility,
759 unsigned char nonvis);
760
761 // Initialize fields for an undefined symbol.
762 void
763 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
764 elfcpp::STB binding, elfcpp::STV visibility,
765 unsigned char nonvis);
766
767 // Override existing symbol.
768 template<int size, bool big_endian>
769 void
770 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
771 bool is_ordinary, Object* object, const char* version);
772
773 // Override existing symbol with a special symbol.
774 void
775 override_base_with_special(const Symbol* from);
776
777 // Override symbol version.
778 void
779 override_version(const char* version);
780
781 // Allocate a common symbol by giving it a location in the output
782 // file.
783 void
784 allocate_base_common(Output_data*);
785
786 private:
787 Symbol(const Symbol&);
788 Symbol& operator=(const Symbol&);
789
790 // Symbol name (expected to point into a Stringpool).
791 const char* name_;
792 // Symbol version (expected to point into a Stringpool). This may
793 // be NULL.
794 const char* version_;
795
796 union
797 {
798 // This struct is used if SOURCE_ == FROM_OBJECT.
799 struct
800 {
801 // Object in which symbol is defined, or in which it was first
802 // seen.
803 Object* object;
804 // Section number in object_ in which symbol is defined.
805 unsigned int shndx;
806 } from_object;
807
808 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
809 struct
810 {
811 // Output_data in which symbol is defined. Before
812 // Layout::finalize the symbol's value is an offset within the
813 // Output_data.
814 Output_data* output_data;
815 // True if the offset is from the end, false if the offset is
816 // from the beginning.
817 bool offset_is_from_end;
818 } in_output_data;
819
820 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
821 struct
822 {
823 // Output_segment in which the symbol is defined. Before
824 // Layout::finalize the symbol's value is an offset.
825 Output_segment* output_segment;
826 // The base to use for the offset before Layout::finalize.
827 Segment_offset_base offset_base;
828 } in_output_segment;
829 } u_;
830
831 // The index of this symbol in the output file. If the symbol is
832 // not going into the output file, this value is -1U. This field
833 // starts as always holding zero. It is set to a non-zero value by
834 // Symbol_table::finalize.
835 unsigned int symtab_index_;
836
837 // The index of this symbol in the dynamic symbol table. If the
838 // symbol is not going into the dynamic symbol table, this value is
839 // -1U. This field starts as always holding zero. It is set to a
840 // non-zero value during Layout::finalize.
841 unsigned int dynsym_index_;
842
843 // If this symbol has an entry in the GOT section (has_got_offset_
844 // is true), this holds the offset from the start of the GOT section.
845 // A symbol may have more than one GOT offset (e.g., when mixing
846 // modules compiled with two different TLS models), but will usually
847 // have at most one.
848 Got_offset_list got_offsets_;
849
850 // If this symbol has an entry in the PLT section (has_plt_offset_
851 // is true), then this is the offset from the start of the PLT
852 // section.
853 unsigned int plt_offset_;
854
855 // Symbol type (bits 0 to 3).
856 elfcpp::STT type_ : 4;
857 // Symbol binding (bits 4 to 7).
858 elfcpp::STB binding_ : 4;
859 // Symbol visibility (bits 8 to 9).
860 elfcpp::STV visibility_ : 2;
861 // Rest of symbol st_other field (bits 10 to 15).
862 unsigned int nonvis_ : 6;
863 // The type of symbol (bits 16 to 18).
864 Source source_ : 3;
865 // True if this symbol always requires special target-specific
866 // handling (bit 19).
867 bool is_target_special_ : 1;
868 // True if this is the default version of the symbol (bit 20).
869 bool is_def_ : 1;
870 // True if this symbol really forwards to another symbol. This is
871 // used when we discover after the fact that two different entries
872 // in the hash table really refer to the same symbol. This will
873 // never be set for a symbol found in the hash table, but may be set
874 // for a symbol found in the list of symbols attached to an Object.
875 // It forwards to the symbol found in the forwarders_ map of
876 // Symbol_table (bit 21).
877 bool is_forwarder_ : 1;
878 // True if the symbol has an alias in the weak_aliases table in
879 // Symbol_table (bit 22).
880 bool has_alias_ : 1;
881 // True if this symbol needs to be in the dynamic symbol table (bit
882 // 23).
883 bool needs_dynsym_entry_ : 1;
884 // True if we've seen this symbol in a regular object (bit 24).
885 bool in_reg_ : 1;
886 // True if we've seen this symbol in a dynamic object (bit 25).
887 bool in_dyn_ : 1;
888 // True if the symbol has an entry in the PLT section (bit 26).
889 bool has_plt_offset_ : 1;
890 // True if this is a dynamic symbol which needs a special value in
891 // the dynamic symbol table (bit 27).
892 bool needs_dynsym_value_ : 1;
893 // True if there is a warning for this symbol (bit 28).
894 bool has_warning_ : 1;
895 // True if we are using a COPY reloc for this symbol, so that the
896 // real definition lives in a dynamic object (bit 29).
897 bool is_copied_from_dynobj_ : 1;
898 // True if this symbol was forced to local visibility by a version
899 // script (bit 30).
900 bool is_forced_local_ : 1;
901 // True if the field u_.from_object.shndx is an ordinary section
902 // index, not one of the special codes from SHN_LORESERVE to
903 // SHN_HIRESERVE (bit 31).
904 bool is_ordinary_shndx_ : 1;
905 // True if we've seen this symbol in a real ELF object.
906 bool in_real_elf_ : 1;
907 };
908
909 // The parts of a symbol which are size specific. Using a template
910 // derived class like this helps us use less space on a 32-bit system.
911
912 template<int size>
913 class Sized_symbol : public Symbol
914 {
915 public:
916 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
917 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
918
919 Sized_symbol()
920 { }
921
922 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
923 // section index, IS_ORDINARY is whether it is a normal section
924 // index rather than a special code.
925 template<bool big_endian>
926 void
927 init_object(const char *name, const char* version, Object* object,
928 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
929 bool is_ordinary);
930
931 // Initialize fields for an Output_data.
932 void
933 init_output_data(const char* name, const char* version, Output_data*,
934 Value_type value, Size_type symsize, elfcpp::STT,
935 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
936 bool offset_is_from_end);
937
938 // Initialize fields for an Output_segment.
939 void
940 init_output_segment(const char* name, const char* version, Output_segment*,
941 Value_type value, Size_type symsize, elfcpp::STT,
942 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
943 Segment_offset_base offset_base);
944
945 // Initialize fields for a constant.
946 void
947 init_constant(const char* name, const char* version, Value_type value,
948 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
949 unsigned char nonvis);
950
951 // Initialize fields for an undefined symbol.
952 void
953 init_undefined(const char* name, const char* version, elfcpp::STT,
954 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
955
956 // Override existing symbol.
957 template<bool big_endian>
958 void
959 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
960 bool is_ordinary, Object* object, const char* version);
961
962 // Override existing symbol with a special symbol.
963 void
964 override_with_special(const Sized_symbol<size>*);
965
966 // Return the symbol's value.
967 Value_type
968 value() const
969 { return this->value_; }
970
971 // Return the symbol's size (we can't call this 'size' because that
972 // is a template parameter).
973 Size_type
974 symsize() const
975 { return this->symsize_; }
976
977 // Set the symbol size. This is used when resolving common symbols.
978 void
979 set_symsize(Size_type symsize)
980 { this->symsize_ = symsize; }
981
982 // Set the symbol value. This is called when we store the final
983 // values of the symbols into the symbol table.
984 void
985 set_value(Value_type value)
986 { this->value_ = value; }
987
988 // Allocate a common symbol by giving it a location in the output
989 // file.
990 void
991 allocate_common(Output_data*, Value_type value);
992
993 private:
994 Sized_symbol(const Sized_symbol&);
995 Sized_symbol& operator=(const Sized_symbol&);
996
997 // Symbol value. Before Layout::finalize this is the offset in the
998 // input section. This is set to the final value during
999 // Layout::finalize.
1000 Value_type value_;
1001 // Symbol size.
1002 Size_type symsize_;
1003 };
1004
1005 // A struct describing a symbol defined by the linker, where the value
1006 // of the symbol is defined based on an output section. This is used
1007 // for symbols defined by the linker, like "_init_array_start".
1008
1009 struct Define_symbol_in_section
1010 {
1011 // The symbol name.
1012 const char* name;
1013 // The name of the output section with which this symbol should be
1014 // associated. If there is no output section with that name, the
1015 // symbol will be defined as zero.
1016 const char* output_section;
1017 // The offset of the symbol within the output section. This is an
1018 // offset from the start of the output section, unless start_at_end
1019 // is true, in which case this is an offset from the end of the
1020 // output section.
1021 uint64_t value;
1022 // The size of the symbol.
1023 uint64_t size;
1024 // The symbol type.
1025 elfcpp::STT type;
1026 // The symbol binding.
1027 elfcpp::STB binding;
1028 // The symbol visibility.
1029 elfcpp::STV visibility;
1030 // The rest of the st_other field.
1031 unsigned char nonvis;
1032 // If true, the value field is an offset from the end of the output
1033 // section.
1034 bool offset_is_from_end;
1035 // If true, this symbol is defined only if we see a reference to it.
1036 bool only_if_ref;
1037 };
1038
1039 // A struct describing a symbol defined by the linker, where the value
1040 // of the symbol is defined based on a segment. This is used for
1041 // symbols defined by the linker, like "_end". We describe the
1042 // segment with which the symbol should be associated by its
1043 // characteristics. If no segment meets these characteristics, the
1044 // symbol will be defined as zero. If there is more than one segment
1045 // which meets these characteristics, we will use the first one.
1046
1047 struct Define_symbol_in_segment
1048 {
1049 // The symbol name.
1050 const char* name;
1051 // The segment type where the symbol should be defined, typically
1052 // PT_LOAD.
1053 elfcpp::PT segment_type;
1054 // Bitmask of segment flags which must be set.
1055 elfcpp::PF segment_flags_set;
1056 // Bitmask of segment flags which must be clear.
1057 elfcpp::PF segment_flags_clear;
1058 // The offset of the symbol within the segment. The offset is
1059 // calculated from the position set by offset_base.
1060 uint64_t value;
1061 // The size of the symbol.
1062 uint64_t size;
1063 // The symbol type.
1064 elfcpp::STT type;
1065 // The symbol binding.
1066 elfcpp::STB binding;
1067 // The symbol visibility.
1068 elfcpp::STV visibility;
1069 // The rest of the st_other field.
1070 unsigned char nonvis;
1071 // The base from which we compute the offset.
1072 Symbol::Segment_offset_base offset_base;
1073 // If true, this symbol is defined only if we see a reference to it.
1074 bool only_if_ref;
1075 };
1076
1077 // This class manages warnings. Warnings are a GNU extension. When
1078 // we see a section named .gnu.warning.SYM in an object file, and if
1079 // we wind using the definition of SYM from that object file, then we
1080 // will issue a warning for any relocation against SYM from a
1081 // different object file. The text of the warning is the contents of
1082 // the section. This is not precisely the definition used by the old
1083 // GNU linker; the old GNU linker treated an occurrence of
1084 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1085 // would trigger a warning on any reference. However, it was
1086 // inconsistent in that a warning in a dynamic object only triggered
1087 // if there was no definition in a regular object. This linker is
1088 // different in that we only issue a warning if we use the symbol
1089 // definition from the same object file as the warning section.
1090
1091 class Warnings
1092 {
1093 public:
1094 Warnings()
1095 : warnings_()
1096 { }
1097
1098 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1099 // of the warning.
1100 void
1101 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1102 const std::string& warning);
1103
1104 // For each symbol for which we should give a warning, make a note
1105 // on the symbol.
1106 void
1107 note_warnings(Symbol_table* symtab);
1108
1109 // Issue a warning for a reference to SYM at RELINFO's location.
1110 template<int size, bool big_endian>
1111 void
1112 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1113 size_t relnum, off_t reloffset) const;
1114
1115 private:
1116 Warnings(const Warnings&);
1117 Warnings& operator=(const Warnings&);
1118
1119 // What we need to know to get the warning text.
1120 struct Warning_location
1121 {
1122 // The object the warning is in.
1123 Object* object;
1124 // The warning text.
1125 std::string text;
1126
1127 Warning_location()
1128 : object(NULL), text()
1129 { }
1130
1131 void
1132 set(Object* o, const std::string& t)
1133 {
1134 this->object = o;
1135 this->text = t;
1136 }
1137 };
1138
1139 // A mapping from warning symbol names (canonicalized in
1140 // Symbol_table's namepool_ field) to warning information.
1141 typedef Unordered_map<const char*, Warning_location> Warning_table;
1142
1143 Warning_table warnings_;
1144 };
1145
1146 // The main linker symbol table.
1147
1148 class Symbol_table
1149 {
1150 public:
1151 // COUNT is an estimate of how many symbosl will be inserted in the
1152 // symbol table. It's ok to put 0 if you don't know; a correct
1153 // guess will just save some CPU by reducing hashtable resizes.
1154 Symbol_table(unsigned int count, const Version_script_info& version_script);
1155
1156 ~Symbol_table();
1157
1158 void
1159 set_gc(Garbage_collection* gc)
1160 { this->gc_ = gc; }
1161
1162 Garbage_collection*
1163 gc()
1164 { return this->gc_; }
1165
1166 // During garbage collection, this keeps undefined symbols.
1167 void
1168 gc_mark_undef_symbols();
1169
1170 // During garbage collection, this ensures externally visible symbols
1171 // are not treated as garbage while building shared objects.
1172 void
1173 gc_mark_symbol_for_shlib(Symbol* sym);
1174
1175 // During garbage collection, this keeps sections that correspond to
1176 // symbols seen in dynamic objects.
1177 inline void
1178 gc_mark_dyn_syms(Symbol* sym);
1179
1180 // Add COUNT external symbols from the relocatable object RELOBJ to
1181 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1182 // offset in the symbol table of the first symbol, SYM_NAMES is
1183 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1184 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1185 // *DEFINED to the number of defined symbols.
1186 template<int size, bool big_endian>
1187 void
1188 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1189 const unsigned char* syms, size_t count,
1190 size_t symndx_offset, const char* sym_names,
1191 size_t sym_name_size,
1192 typename Sized_relobj<size, big_endian>::Symbols*,
1193 size_t* defined);
1194
1195 // Add one external symbol from the plugin object OBJ to the symbol table.
1196 // Returns a pointer to the resolved symbol in the symbol table.
1197 template<int size, bool big_endian>
1198 Symbol*
1199 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1200 const char* name, const char* ver,
1201 elfcpp::Sym<size, big_endian>* sym);
1202
1203 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1204 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1205 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1206 // symbol version data.
1207 template<int size, bool big_endian>
1208 void
1209 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1210 const unsigned char* syms, size_t count,
1211 const char* sym_names, size_t sym_name_size,
1212 const unsigned char* versym, size_t versym_size,
1213 const std::vector<const char*>*,
1214 typename Sized_relobj<size, big_endian>::Symbols*,
1215 size_t* defined);
1216
1217 // Define a special symbol based on an Output_data. It is a
1218 // multiple definition error if this symbol is already defined.
1219 Symbol*
1220 define_in_output_data(const char* name, const char* version,
1221 Output_data*, uint64_t value, uint64_t symsize,
1222 elfcpp::STT type, elfcpp::STB binding,
1223 elfcpp::STV visibility, unsigned char nonvis,
1224 bool offset_is_from_end, bool only_if_ref);
1225
1226 // Define a special symbol based on an Output_segment. It is a
1227 // multiple definition error if this symbol is already defined.
1228 Symbol*
1229 define_in_output_segment(const char* name, const char* version,
1230 Output_segment*, uint64_t value, uint64_t symsize,
1231 elfcpp::STT type, elfcpp::STB binding,
1232 elfcpp::STV visibility, unsigned char nonvis,
1233 Symbol::Segment_offset_base, bool only_if_ref);
1234
1235 // Define a special symbol with a constant value. It is a multiple
1236 // definition error if this symbol is already defined.
1237 Symbol*
1238 define_as_constant(const char* name, const char* version,
1239 uint64_t value, uint64_t symsize, elfcpp::STT type,
1240 elfcpp::STB binding, elfcpp::STV visibility,
1241 unsigned char nonvis, bool only_if_ref,
1242 bool force_override);
1243
1244 // Define a set of symbols in output sections. If ONLY_IF_REF is
1245 // true, only define them if they are referenced.
1246 void
1247 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1248 bool only_if_ref);
1249
1250 // Define a set of symbols in output segments. If ONLY_IF_REF is
1251 // true, only defined them if they are referenced.
1252 void
1253 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1254 bool only_if_ref);
1255
1256 // Define SYM using a COPY reloc. POSD is the Output_data where the
1257 // symbol should be defined--typically a .dyn.bss section. VALUE is
1258 // the offset within POSD.
1259 template<int size>
1260 void
1261 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1262 typename elfcpp::Elf_types<size>::Elf_Addr);
1263
1264 // Look up a symbol.
1265 Symbol*
1266 lookup(const char*, const char* version = NULL) const;
1267
1268 // Return the real symbol associated with the forwarder symbol FROM.
1269 Symbol*
1270 resolve_forwards(const Symbol* from) const;
1271
1272 // Return the sized version of a symbol in this table.
1273 template<int size>
1274 Sized_symbol<size>*
1275 get_sized_symbol(Symbol*) const;
1276
1277 template<int size>
1278 const Sized_symbol<size>*
1279 get_sized_symbol(const Symbol*) const;
1280
1281 // Return the count of undefined symbols seen.
1282 int
1283 saw_undefined() const
1284 { return this->saw_undefined_; }
1285
1286 // Allocate the common symbols
1287 void
1288 allocate_commons(Layout*, Mapfile*);
1289
1290 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1291 // of the warning.
1292 void
1293 add_warning(const char* name, Object* obj, const std::string& warning)
1294 { this->warnings_.add_warning(this, name, obj, warning); }
1295
1296 // Canonicalize a symbol name for use in the hash table.
1297 const char*
1298 canonicalize_name(const char* name)
1299 { return this->namepool_.add(name, true, NULL); }
1300
1301 // Possibly issue a warning for a reference to SYM at LOCATION which
1302 // is in OBJ.
1303 template<int size, bool big_endian>
1304 void
1305 issue_warning(const Symbol* sym,
1306 const Relocate_info<size, big_endian>* relinfo,
1307 size_t relnum, off_t reloffset) const
1308 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1309
1310 // Check candidate_odr_violations_ to find symbols with the same name
1311 // but apparently different definitions (different source-file/line-no).
1312 void
1313 detect_odr_violations(const Task*, const char* output_file_name) const;
1314
1315 // Add any undefined symbols named on the command line to the symbol
1316 // table.
1317 void
1318 add_undefined_symbols_from_command_line();
1319
1320 // SYM is defined using a COPY reloc. Return the dynamic object
1321 // where the original definition was found.
1322 Dynobj*
1323 get_copy_source(const Symbol* sym) const;
1324
1325 // Set the dynamic symbol indexes. INDEX is the index of the first
1326 // global dynamic symbol. Pointers to the symbols are stored into
1327 // the vector. The names are stored into the Stringpool. This
1328 // returns an updated dynamic symbol index.
1329 unsigned int
1330 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1331 Stringpool*, Versions*);
1332
1333 // Finalize the symbol table after we have set the final addresses
1334 // of all the input sections. This sets the final symbol indexes,
1335 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1336 // index of the first global symbol. OFF is the file offset of the
1337 // global symbol table, DYNOFF is the offset of the globals in the
1338 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1339 // global dynamic symbol, and DYNCOUNT is the number of global
1340 // dynamic symbols. This records the parameters, and returns the
1341 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1342 // local symbols.
1343 off_t
1344 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1345 Stringpool* pool, unsigned int *plocal_symcount);
1346
1347 // Write out the global symbols.
1348 void
1349 write_globals(const Stringpool*, const Stringpool*,
1350 Output_symtab_xindex*, Output_symtab_xindex*,
1351 Output_file*) const;
1352
1353 // Write out a section symbol. Return the updated offset.
1354 void
1355 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1356 Output_file*, off_t) const;
1357
1358 // Dump statistical information to stderr.
1359 void
1360 print_stats() const;
1361
1362 // Return the version script information.
1363 const Version_script_info&
1364 version_script() const
1365 { return version_script_; }
1366
1367 private:
1368 Symbol_table(const Symbol_table&);
1369 Symbol_table& operator=(const Symbol_table&);
1370
1371 // The type of the list of common symbols.
1372 typedef std::vector<Symbol*> Commons_type;
1373
1374 // The type of the symbol hash table.
1375
1376 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1377
1378 struct Symbol_table_hash
1379 {
1380 size_t
1381 operator()(const Symbol_table_key&) const;
1382 };
1383
1384 struct Symbol_table_eq
1385 {
1386 bool
1387 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1388 };
1389
1390 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1391 Symbol_table_eq> Symbol_table_type;
1392
1393 // Make FROM a forwarder symbol to TO.
1394 void
1395 make_forwarder(Symbol* from, Symbol* to);
1396
1397 // Add a symbol.
1398 template<int size, bool big_endian>
1399 Sized_symbol<size>*
1400 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1401 const char *version, Stringpool::Key version_key,
1402 bool def, const elfcpp::Sym<size, big_endian>& sym,
1403 unsigned int st_shndx, bool is_ordinary,
1404 unsigned int orig_st_shndx);
1405
1406 // Define a default symbol.
1407 template<int size, bool big_endian>
1408 void
1409 define_default_version(Sized_symbol<size>*, bool,
1410 Symbol_table_type::iterator);
1411
1412 // Resolve symbols.
1413 template<int size, bool big_endian>
1414 void
1415 resolve(Sized_symbol<size>* to,
1416 const elfcpp::Sym<size, big_endian>& sym,
1417 unsigned int st_shndx, bool is_ordinary,
1418 unsigned int orig_st_shndx,
1419 Object*, const char* version);
1420
1421 template<int size, bool big_endian>
1422 void
1423 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1424
1425 // Record that a symbol is forced to be local by a version script or
1426 // by visibility.
1427 void
1428 force_local(Symbol*);
1429
1430 // Adjust NAME and *NAME_KEY for wrapping.
1431 const char*
1432 wrap_symbol(Object* object, const char*, Stringpool::Key* name_key);
1433
1434 // Whether we should override a symbol, based on flags in
1435 // resolve.cc.
1436 static bool
1437 should_override(const Symbol*, unsigned int, Object*, bool*);
1438
1439 // Override a symbol.
1440 template<int size, bool big_endian>
1441 void
1442 override(Sized_symbol<size>* tosym,
1443 const elfcpp::Sym<size, big_endian>& fromsym,
1444 unsigned int st_shndx, bool is_ordinary,
1445 Object* object, const char* version);
1446
1447 // Whether we should override a symbol with a special symbol which
1448 // is automatically defined by the linker.
1449 static bool
1450 should_override_with_special(const Symbol*);
1451
1452 // Override a symbol with a special symbol.
1453 template<int size>
1454 void
1455 override_with_special(Sized_symbol<size>* tosym,
1456 const Sized_symbol<size>* fromsym);
1457
1458 // Record all weak alias sets for a dynamic object.
1459 template<int size>
1460 void
1461 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1462
1463 // Define a special symbol.
1464 template<int size, bool big_endian>
1465 Sized_symbol<size>*
1466 define_special_symbol(const char** pname, const char** pversion,
1467 bool only_if_ref, Sized_symbol<size>** poldsym,
1468 bool* resolve_oldsym);
1469
1470 // Define a symbol in an Output_data, sized version.
1471 template<int size>
1472 Sized_symbol<size>*
1473 do_define_in_output_data(const char* name, const char* version, Output_data*,
1474 typename elfcpp::Elf_types<size>::Elf_Addr value,
1475 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1476 elfcpp::STT type, elfcpp::STB binding,
1477 elfcpp::STV visibility, unsigned char nonvis,
1478 bool offset_is_from_end, bool only_if_ref);
1479
1480 // Define a symbol in an Output_segment, sized version.
1481 template<int size>
1482 Sized_symbol<size>*
1483 do_define_in_output_segment(
1484 const char* name, const char* version, Output_segment* os,
1485 typename elfcpp::Elf_types<size>::Elf_Addr value,
1486 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1487 elfcpp::STT type, elfcpp::STB binding,
1488 elfcpp::STV visibility, unsigned char nonvis,
1489 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1490
1491 // Define a symbol as a constant, sized version.
1492 template<int size>
1493 Sized_symbol<size>*
1494 do_define_as_constant(
1495 const char* name, const char* version,
1496 typename elfcpp::Elf_types<size>::Elf_Addr value,
1497 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1498 elfcpp::STT type, elfcpp::STB binding,
1499 elfcpp::STV visibility, unsigned char nonvis,
1500 bool only_if_ref, bool force_override);
1501
1502 // Add any undefined symbols named on the command line to the symbol
1503 // table, sized version.
1504 template<int size>
1505 void
1506 do_add_undefined_symbols_from_command_line();
1507
1508 // Allocate the common symbols, sized version.
1509 template<int size>
1510 void
1511 do_allocate_commons(Layout*, Mapfile*);
1512
1513 // Allocate the common symbols from one list.
1514 template<int size>
1515 void
1516 do_allocate_commons_list(Layout*, bool is_tls, Commons_type*, Mapfile*);
1517
1518 // Implement detect_odr_violations.
1519 template<int size, bool big_endian>
1520 void
1521 sized_detect_odr_violations() const;
1522
1523 // Finalize symbols specialized for size.
1524 template<int size>
1525 off_t
1526 sized_finalize(off_t, Stringpool*, unsigned int*);
1527
1528 // Finalize a symbol. Return whether it should be added to the
1529 // symbol table.
1530 template<int size>
1531 bool
1532 sized_finalize_symbol(Symbol*);
1533
1534 // Add a symbol the final symtab by setting its index.
1535 template<int size>
1536 void
1537 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1538
1539 // Write globals specialized for size and endianness.
1540 template<int size, bool big_endian>
1541 void
1542 sized_write_globals(const Stringpool*, const Stringpool*,
1543 Output_symtab_xindex*, Output_symtab_xindex*,
1544 Output_file*) const;
1545
1546 // Write out a symbol to P.
1547 template<int size, bool big_endian>
1548 void
1549 sized_write_symbol(Sized_symbol<size>*,
1550 typename elfcpp::Elf_types<size>::Elf_Addr value,
1551 unsigned int shndx,
1552 const Stringpool*, unsigned char* p) const;
1553
1554 // Possibly warn about an undefined symbol from a dynamic object.
1555 void
1556 warn_about_undefined_dynobj_symbol(Symbol*) const;
1557
1558 // Write out a section symbol, specialized for size and endianness.
1559 template<int size, bool big_endian>
1560 void
1561 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1562 Output_file*, off_t) const;
1563
1564 // The type of the list of symbols which have been forced local.
1565 typedef std::vector<Symbol*> Forced_locals;
1566
1567 // A map from symbols with COPY relocs to the dynamic objects where
1568 // they are defined.
1569 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1570
1571 // A map from symbol name (as a pointer into the namepool) to all
1572 // the locations the symbols is (weakly) defined (and certain other
1573 // conditions are met). This map will be used later to detect
1574 // possible One Definition Rule (ODR) violations.
1575 struct Symbol_location
1576 {
1577 Object* object; // Object where the symbol is defined.
1578 unsigned int shndx; // Section-in-object where the symbol is defined.
1579 off_t offset; // Offset-in-section where the symbol is defined.
1580 bool operator==(const Symbol_location& that) const
1581 {
1582 return (this->object == that.object
1583 && this->shndx == that.shndx
1584 && this->offset == that.offset);
1585 }
1586 };
1587
1588 struct Symbol_location_hash
1589 {
1590 size_t operator()(const Symbol_location& loc) const
1591 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1592 };
1593
1594 typedef Unordered_map<const char*,
1595 Unordered_set<Symbol_location, Symbol_location_hash> >
1596 Odr_map;
1597
1598 // We increment this every time we see a new undefined symbol, for
1599 // use in archive groups.
1600 int saw_undefined_;
1601 // The index of the first global symbol in the output file.
1602 unsigned int first_global_index_;
1603 // The file offset within the output symtab section where we should
1604 // write the table.
1605 off_t offset_;
1606 // The number of global symbols we want to write out.
1607 unsigned int output_count_;
1608 // The file offset of the global dynamic symbols, or 0 if none.
1609 off_t dynamic_offset_;
1610 // The index of the first global dynamic symbol.
1611 unsigned int first_dynamic_global_index_;
1612 // The number of global dynamic symbols, or 0 if none.
1613 unsigned int dynamic_count_;
1614 // The symbol hash table.
1615 Symbol_table_type table_;
1616 // A pool of symbol names. This is used for all global symbols.
1617 // Entries in the hash table point into this pool.
1618 Stringpool namepool_;
1619 // Forwarding symbols.
1620 Unordered_map<const Symbol*, Symbol*> forwarders_;
1621 // Weak aliases. A symbol in this list points to the next alias.
1622 // The aliases point to each other in a circular list.
1623 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1624 // We don't expect there to be very many common symbols, so we keep
1625 // a list of them. When we find a common symbol we add it to this
1626 // list. It is possible that by the time we process the list the
1627 // symbol is no longer a common symbol. It may also have become a
1628 // forwarder.
1629 Commons_type commons_;
1630 // This is like the commons_ field, except that it holds TLS common
1631 // symbols.
1632 Commons_type tls_commons_;
1633 // A list of symbols which have been forced to be local. We don't
1634 // expect there to be very many of them, so we keep a list of them
1635 // rather than walking the whole table to find them.
1636 Forced_locals forced_locals_;
1637 // Manage symbol warnings.
1638 Warnings warnings_;
1639 // Manage potential One Definition Rule (ODR) violations.
1640 Odr_map candidate_odr_violations_;
1641
1642 // When we emit a COPY reloc for a symbol, we define it in an
1643 // Output_data. When it's time to emit version information for it,
1644 // we need to know the dynamic object in which we found the original
1645 // definition. This maps symbols with COPY relocs to the dynamic
1646 // object where they were defined.
1647 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1648 // Information parsed from the version script, if any.
1649 const Version_script_info& version_script_;
1650 Garbage_collection* gc_;
1651 };
1652
1653 // We inline get_sized_symbol for efficiency.
1654
1655 template<int size>
1656 Sized_symbol<size>*
1657 Symbol_table::get_sized_symbol(Symbol* sym) const
1658 {
1659 gold_assert(size == parameters->target().get_size());
1660 return static_cast<Sized_symbol<size>*>(sym);
1661 }
1662
1663 template<int size>
1664 const Sized_symbol<size>*
1665 Symbol_table::get_sized_symbol(const Symbol* sym) const
1666 {
1667 gold_assert(size == parameters->target().get_size());
1668 return static_cast<const Sized_symbol<size>*>(sym);
1669 }
1670
1671 } // End namespace gold.
1672
1673 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.237692 seconds and 5 git commands to generate.