* layout.cc (Layout::make_output_section): Call
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "gc.h"
31 #include "elfcpp.h"
32 #include "parameters.h"
33 #include "stringpool.h"
34 #include "object.h"
35
36 #ifndef GOLD_SYMTAB_H
37 #define GOLD_SYMTAB_H
38
39 namespace gold
40 {
41
42 class Mapfile;
43 class Object;
44 class Relobj;
45 template<int size, bool big_endian>
46 class Sized_relobj;
47 template<int size, bool big_endian>
48 class Sized_pluginobj;
49 class Dynobj;
50 template<int size, bool big_endian>
51 class Sized_dynobj;
52 class Versions;
53 class Version_script_info;
54 class Input_objects;
55 class Output_data;
56 class Output_section;
57 class Output_segment;
58 class Output_file;
59 class Output_symtab_xindex;
60 class Garbage_collection;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return the symbol visibility.
209 elfcpp::STV
210 visibility() const
211 { return this->visibility_; }
212
213 // Set the visibility.
214 void
215 set_visibility(elfcpp::STV visibility)
216 { this->visibility_ = visibility; }
217
218 // Override symbol visibility.
219 void
220 override_visibility(elfcpp::STV);
221
222 // Return the non-visibility part of the st_other field.
223 unsigned char
224 nonvis() const
225 { return this->nonvis_; }
226
227 // Return whether this symbol is a forwarder. This will never be
228 // true of a symbol found in the hash table, but may be true of
229 // symbol pointers attached to object files.
230 bool
231 is_forwarder() const
232 { return this->is_forwarder_; }
233
234 // Mark this symbol as a forwarder.
235 void
236 set_forwarder()
237 { this->is_forwarder_ = true; }
238
239 // Return whether this symbol has an alias in the weak aliases table
240 // in Symbol_table.
241 bool
242 has_alias() const
243 { return this->has_alias_; }
244
245 // Mark this symbol as having an alias.
246 void
247 set_has_alias()
248 { this->has_alias_ = true; }
249
250 // Return whether this symbol needs an entry in the dynamic symbol
251 // table.
252 bool
253 needs_dynsym_entry() const
254 {
255 return (this->needs_dynsym_entry_
256 || (this->in_reg() && this->in_dyn()));
257 }
258
259 // Mark this symbol as needing an entry in the dynamic symbol table.
260 void
261 set_needs_dynsym_entry()
262 { this->needs_dynsym_entry_ = true; }
263
264 // Return whether this symbol should be added to the dynamic symbol
265 // table.
266 bool
267 should_add_dynsym_entry() const;
268
269 // Return whether this symbol has been seen in a regular object.
270 bool
271 in_reg() const
272 { return this->in_reg_; }
273
274 // Mark this symbol as having been seen in a regular object.
275 void
276 set_in_reg()
277 { this->in_reg_ = true; }
278
279 // Return whether this symbol has been seen in a dynamic object.
280 bool
281 in_dyn() const
282 { return this->in_dyn_; }
283
284 // Mark this symbol as having been seen in a dynamic object.
285 void
286 set_in_dyn()
287 { this->in_dyn_ = true; }
288
289 // Return whether this symbol has been seen in a real ELF object.
290 // (IN_REG will return TRUE if the symbol has been seen in either
291 // a real ELF object or an object claimed by a plugin.)
292 bool
293 in_real_elf() const
294 { return this->in_real_elf_; }
295
296 // Mark this symbol as having been seen in a real ELF object.
297 void
298 set_in_real_elf()
299 { this->in_real_elf_ = true; }
300
301 // Return the index of this symbol in the output file symbol table.
302 // A value of -1U means that this symbol is not going into the
303 // output file. This starts out as zero, and is set to a non-zero
304 // value by Symbol_table::finalize. It is an error to ask for the
305 // symbol table index before it has been set.
306 unsigned int
307 symtab_index() const
308 {
309 gold_assert(this->symtab_index_ != 0);
310 return this->symtab_index_;
311 }
312
313 // Set the index of the symbol in the output file symbol table.
314 void
315 set_symtab_index(unsigned int index)
316 {
317 gold_assert(index != 0);
318 this->symtab_index_ = index;
319 }
320
321 // Return whether this symbol already has an index in the output
322 // file symbol table.
323 bool
324 has_symtab_index() const
325 { return this->symtab_index_ != 0; }
326
327 // Return the index of this symbol in the dynamic symbol table. A
328 // value of -1U means that this symbol is not going into the dynamic
329 // symbol table. This starts out as zero, and is set to a non-zero
330 // during Layout::finalize. It is an error to ask for the dynamic
331 // symbol table index before it has been set.
332 unsigned int
333 dynsym_index() const
334 {
335 gold_assert(this->dynsym_index_ != 0);
336 return this->dynsym_index_;
337 }
338
339 // Set the index of the symbol in the dynamic symbol table.
340 void
341 set_dynsym_index(unsigned int index)
342 {
343 gold_assert(index != 0);
344 this->dynsym_index_ = index;
345 }
346
347 // Return whether this symbol already has an index in the dynamic
348 // symbol table.
349 bool
350 has_dynsym_index() const
351 { return this->dynsym_index_ != 0; }
352
353 // Return whether this symbol has an entry in the GOT section.
354 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
355 bool
356 has_got_offset(unsigned int got_type) const
357 { return this->got_offsets_.get_offset(got_type) != -1U; }
358
359 // Return the offset into the GOT section of this symbol.
360 unsigned int
361 got_offset(unsigned int got_type) const
362 {
363 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
364 gold_assert(got_offset != -1U);
365 return got_offset;
366 }
367
368 // Set the GOT offset of this symbol.
369 void
370 set_got_offset(unsigned int got_type, unsigned int got_offset)
371 { this->got_offsets_.set_offset(got_type, got_offset); }
372
373 // Return whether this symbol has an entry in the PLT section.
374 bool
375 has_plt_offset() const
376 { return this->has_plt_offset_; }
377
378 // Return the offset into the PLT section of this symbol.
379 unsigned int
380 plt_offset() const
381 {
382 gold_assert(this->has_plt_offset());
383 return this->plt_offset_;
384 }
385
386 // Set the PLT offset of this symbol.
387 void
388 set_plt_offset(unsigned int plt_offset)
389 {
390 this->has_plt_offset_ = true;
391 this->plt_offset_ = plt_offset;
392 }
393
394 // Return whether this dynamic symbol needs a special value in the
395 // dynamic symbol table.
396 bool
397 needs_dynsym_value() const
398 { return this->needs_dynsym_value_; }
399
400 // Set that this dynamic symbol needs a special value in the dynamic
401 // symbol table.
402 void
403 set_needs_dynsym_value()
404 {
405 gold_assert(this->object()->is_dynamic());
406 this->needs_dynsym_value_ = true;
407 }
408
409 // Return true if the final value of this symbol is known at link
410 // time.
411 bool
412 final_value_is_known() const;
413
414 // Return true if SHNDX represents a common symbol. This depends on
415 // the target.
416 static bool
417 is_common_shndx(unsigned int shndx);
418
419 // Return whether this is a defined symbol (not undefined or
420 // common).
421 bool
422 is_defined() const
423 {
424 bool is_ordinary;
425 if (this->source_ != FROM_OBJECT)
426 return this->source_ != IS_UNDEFINED;
427 unsigned int shndx = this->shndx(&is_ordinary);
428 return (is_ordinary
429 ? shndx != elfcpp::SHN_UNDEF
430 : !Symbol::is_common_shndx(shndx));
431 }
432
433 // Return true if this symbol is from a dynamic object.
434 bool
435 is_from_dynobj() const
436 {
437 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
438 }
439
440 // Return whether this is an undefined symbol.
441 bool
442 is_undefined() const
443 {
444 bool is_ordinary;
445 return ((this->source_ == FROM_OBJECT
446 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
447 && is_ordinary)
448 || this->source_ == IS_UNDEFINED);
449 }
450
451 // Return whether this is a weak undefined symbol.
452 bool
453 is_weak_undefined() const
454 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
455
456 // Return whether this is an absolute symbol.
457 bool
458 is_absolute() const
459 {
460 bool is_ordinary;
461 return ((this->source_ == FROM_OBJECT
462 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
463 && !is_ordinary)
464 || this->source_ == IS_CONSTANT);
465 }
466
467 // Return whether this is a common symbol.
468 bool
469 is_common() const
470 {
471 if (this->type_ == elfcpp::STT_COMMON)
472 return true;
473 if (this->source_ != FROM_OBJECT)
474 return false;
475 bool is_ordinary;
476 unsigned int shndx = this->shndx(&is_ordinary);
477 return !is_ordinary && Symbol::is_common_shndx(shndx);
478 }
479
480 // Return whether this symbol can be seen outside this object.
481 bool
482 is_externally_visible() const
483 {
484 return (this->visibility_ == elfcpp::STV_DEFAULT
485 || this->visibility_ == elfcpp::STV_PROTECTED);
486 }
487
488 // Return true if this symbol can be preempted by a definition in
489 // another link unit.
490 bool
491 is_preemptible() const
492 {
493 // It doesn't make sense to ask whether a symbol defined in
494 // another object is preemptible.
495 gold_assert(!this->is_from_dynobj());
496
497 // It doesn't make sense to ask whether an undefined symbol
498 // is preemptible.
499 gold_assert(!this->is_undefined());
500
501 // If a symbol does not have default visibility, it can not be
502 // seen outside this link unit and therefore is not preemptible.
503 if (this->visibility_ != elfcpp::STV_DEFAULT)
504 return false;
505
506 // If this symbol has been forced to be a local symbol by a
507 // version script, then it is not visible outside this link unit
508 // and is not preemptible.
509 if (this->is_forced_local_)
510 return false;
511
512 // If we are not producing a shared library, then nothing is
513 // preemptible.
514 if (!parameters->options().shared())
515 return false;
516
517 // If the user used -Bsymbolic, then nothing is preemptible.
518 if (parameters->options().Bsymbolic())
519 return false;
520
521 // If the user used -Bsymbolic-functions, then functions are not
522 // preemptible. We explicitly check for not being STT_OBJECT,
523 // rather than for being STT_FUNC, because that is what the GNU
524 // linker does.
525 if (this->type() != elfcpp::STT_OBJECT
526 && parameters->options().Bsymbolic_functions())
527 return false;
528
529 // Otherwise the symbol is preemptible.
530 return true;
531 }
532
533 // Return true if this symbol is a function that needs a PLT entry.
534 // If the symbol is defined in a dynamic object or if it is subject
535 // to pre-emption, we need to make a PLT entry. If we're doing a
536 // static link, we don't create PLT entries.
537 bool
538 needs_plt_entry() const
539 {
540 // An undefined symbol from an executable does not need a PLT entry.
541 if (this->is_undefined() && !parameters->options().shared())
542 return false;
543
544 return (!parameters->doing_static_link()
545 && this->type() == elfcpp::STT_FUNC
546 && (this->is_from_dynobj()
547 || this->is_undefined()
548 || this->is_preemptible()));
549 }
550
551 // When determining whether a reference to a symbol needs a dynamic
552 // relocation, we need to know several things about the reference.
553 // These flags may be or'ed together.
554 enum Reference_flags
555 {
556 // Reference to the symbol's absolute address.
557 ABSOLUTE_REF = 1,
558 // A non-PIC reference.
559 NON_PIC_REF = 2,
560 // A function call.
561 FUNCTION_CALL = 4
562 };
563
564 // Given a direct absolute or pc-relative static relocation against
565 // the global symbol, this function returns whether a dynamic relocation
566 // is needed.
567
568 bool
569 needs_dynamic_reloc(int flags) const
570 {
571 // No dynamic relocations in a static link!
572 if (parameters->doing_static_link())
573 return false;
574
575 // A reference to an undefined symbol from an executable should be
576 // statically resolved to 0, and does not need a dynamic relocation.
577 // This matches gnu ld behavior.
578 if (this->is_undefined() && !parameters->options().shared())
579 return false;
580
581 // A reference to an absolute symbol does not need a dynamic relocation.
582 if (this->is_absolute())
583 return false;
584
585 // An absolute reference within a position-independent output file
586 // will need a dynamic relocation.
587 if ((flags & ABSOLUTE_REF)
588 && parameters->options().output_is_position_independent())
589 return true;
590
591 // A function call that can branch to a local PLT entry does not need
592 // a dynamic relocation. A non-pic pc-relative function call in a
593 // shared library cannot use a PLT entry.
594 if ((flags & FUNCTION_CALL)
595 && this->has_plt_offset()
596 && !((flags & NON_PIC_REF) && parameters->options().shared()))
597 return false;
598
599 // A reference to any PLT entry in a non-position-independent executable
600 // does not need a dynamic relocation.
601 if (!parameters->options().output_is_position_independent()
602 && this->has_plt_offset())
603 return false;
604
605 // A reference to a symbol defined in a dynamic object or to a
606 // symbol that is preemptible will need a dynamic relocation.
607 if (this->is_from_dynobj()
608 || this->is_undefined()
609 || this->is_preemptible())
610 return true;
611
612 // For all other cases, return FALSE.
613 return false;
614 }
615
616 // Whether we should use the PLT offset associated with a symbol for
617 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
618 // reloc--the same set of relocs for which we would pass NON_PIC_REF
619 // to the needs_dynamic_reloc function.
620
621 bool
622 use_plt_offset(bool is_non_pic_reference) const
623 {
624 // If the symbol doesn't have a PLT offset, then naturally we
625 // don't want to use it.
626 if (!this->has_plt_offset())
627 return false;
628
629 // If we are going to generate a dynamic relocation, then we will
630 // wind up using that, so no need to use the PLT entry.
631 if (this->needs_dynamic_reloc(FUNCTION_CALL
632 | (is_non_pic_reference
633 ? NON_PIC_REF
634 : 0)))
635 return false;
636
637 // If the symbol is from a dynamic object, we need to use the PLT
638 // entry.
639 if (this->is_from_dynobj())
640 return true;
641
642 // If we are generating a shared object, and this symbol is
643 // undefined or preemptible, we need to use the PLT entry.
644 if (parameters->options().shared()
645 && (this->is_undefined() || this->is_preemptible()))
646 return true;
647
648 // If this is a weak undefined symbol, we need to use the PLT
649 // entry; the symbol may be defined by a library loaded at
650 // runtime.
651 if (this->is_weak_undefined())
652 return true;
653
654 // Otherwise we can use the regular definition.
655 return false;
656 }
657
658 // Given a direct absolute static relocation against
659 // the global symbol, where a dynamic relocation is needed, this
660 // function returns whether a relative dynamic relocation can be used.
661 // The caller must determine separately whether the static relocation
662 // is compatible with a relative relocation.
663
664 bool
665 can_use_relative_reloc(bool is_function_call) const
666 {
667 // A function call that can branch to a local PLT entry can
668 // use a RELATIVE relocation.
669 if (is_function_call && this->has_plt_offset())
670 return true;
671
672 // A reference to a symbol defined in a dynamic object or to a
673 // symbol that is preemptible can not use a RELATIVE relocaiton.
674 if (this->is_from_dynobj()
675 || this->is_undefined()
676 || this->is_preemptible())
677 return false;
678
679 // For all other cases, return TRUE.
680 return true;
681 }
682
683 // Return the output section where this symbol is defined. Return
684 // NULL if the symbol has an absolute value.
685 Output_section*
686 output_section() const;
687
688 // Set the symbol's output section. This is used for symbols
689 // defined in scripts. This should only be called after the symbol
690 // table has been finalized.
691 void
692 set_output_section(Output_section*);
693
694 // Return whether there should be a warning for references to this
695 // symbol.
696 bool
697 has_warning() const
698 { return this->has_warning_; }
699
700 // Mark this symbol as having a warning.
701 void
702 set_has_warning()
703 { this->has_warning_ = true; }
704
705 // Return whether this symbol is defined by a COPY reloc from a
706 // dynamic object.
707 bool
708 is_copied_from_dynobj() const
709 { return this->is_copied_from_dynobj_; }
710
711 // Mark this symbol as defined by a COPY reloc.
712 void
713 set_is_copied_from_dynobj()
714 { this->is_copied_from_dynobj_ = true; }
715
716 // Return whether this symbol is forced to visibility STB_LOCAL
717 // by a "local:" entry in a version script.
718 bool
719 is_forced_local() const
720 { return this->is_forced_local_; }
721
722 // Mark this symbol as forced to STB_LOCAL visibility.
723 void
724 set_is_forced_local()
725 { this->is_forced_local_ = true; }
726
727 protected:
728 // Instances of this class should always be created at a specific
729 // size.
730 Symbol()
731 { memset(this, 0, sizeof *this); }
732
733 // Initialize the general fields.
734 void
735 init_fields(const char* name, const char* version,
736 elfcpp::STT type, elfcpp::STB binding,
737 elfcpp::STV visibility, unsigned char nonvis);
738
739 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
740 // section index, IS_ORDINARY is whether it is a normal section
741 // index rather than a special code.
742 template<int size, bool big_endian>
743 void
744 init_base_object(const char *name, const char* version, Object* object,
745 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
746 bool is_ordinary);
747
748 // Initialize fields for an Output_data.
749 void
750 init_base_output_data(const char* name, const char* version, Output_data*,
751 elfcpp::STT, elfcpp::STB, elfcpp::STV,
752 unsigned char nonvis, bool offset_is_from_end);
753
754 // Initialize fields for an Output_segment.
755 void
756 init_base_output_segment(const char* name, const char* version,
757 Output_segment* os, elfcpp::STT type,
758 elfcpp::STB binding, elfcpp::STV visibility,
759 unsigned char nonvis,
760 Segment_offset_base offset_base);
761
762 // Initialize fields for a constant.
763 void
764 init_base_constant(const char* name, const char* version, elfcpp::STT type,
765 elfcpp::STB binding, elfcpp::STV visibility,
766 unsigned char nonvis);
767
768 // Initialize fields for an undefined symbol.
769 void
770 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
771 elfcpp::STB binding, elfcpp::STV visibility,
772 unsigned char nonvis);
773
774 // Override existing symbol.
775 template<int size, bool big_endian>
776 void
777 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
778 bool is_ordinary, Object* object, const char* version);
779
780 // Override existing symbol with a special symbol.
781 void
782 override_base_with_special(const Symbol* from);
783
784 // Override symbol version.
785 void
786 override_version(const char* version);
787
788 // Allocate a common symbol by giving it a location in the output
789 // file.
790 void
791 allocate_base_common(Output_data*);
792
793 private:
794 Symbol(const Symbol&);
795 Symbol& operator=(const Symbol&);
796
797 // Symbol name (expected to point into a Stringpool).
798 const char* name_;
799 // Symbol version (expected to point into a Stringpool). This may
800 // be NULL.
801 const char* version_;
802
803 union
804 {
805 // This struct is used if SOURCE_ == FROM_OBJECT.
806 struct
807 {
808 // Object in which symbol is defined, or in which it was first
809 // seen.
810 Object* object;
811 // Section number in object_ in which symbol is defined.
812 unsigned int shndx;
813 } from_object;
814
815 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
816 struct
817 {
818 // Output_data in which symbol is defined. Before
819 // Layout::finalize the symbol's value is an offset within the
820 // Output_data.
821 Output_data* output_data;
822 // True if the offset is from the end, false if the offset is
823 // from the beginning.
824 bool offset_is_from_end;
825 } in_output_data;
826
827 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
828 struct
829 {
830 // Output_segment in which the symbol is defined. Before
831 // Layout::finalize the symbol's value is an offset.
832 Output_segment* output_segment;
833 // The base to use for the offset before Layout::finalize.
834 Segment_offset_base offset_base;
835 } in_output_segment;
836 } u_;
837
838 // The index of this symbol in the output file. If the symbol is
839 // not going into the output file, this value is -1U. This field
840 // starts as always holding zero. It is set to a non-zero value by
841 // Symbol_table::finalize.
842 unsigned int symtab_index_;
843
844 // The index of this symbol in the dynamic symbol table. If the
845 // symbol is not going into the dynamic symbol table, this value is
846 // -1U. This field starts as always holding zero. It is set to a
847 // non-zero value during Layout::finalize.
848 unsigned int dynsym_index_;
849
850 // If this symbol has an entry in the GOT section (has_got_offset_
851 // is true), this holds the offset from the start of the GOT section.
852 // A symbol may have more than one GOT offset (e.g., when mixing
853 // modules compiled with two different TLS models), but will usually
854 // have at most one.
855 Got_offset_list got_offsets_;
856
857 // If this symbol has an entry in the PLT section (has_plt_offset_
858 // is true), then this is the offset from the start of the PLT
859 // section.
860 unsigned int plt_offset_;
861
862 // Symbol type (bits 0 to 3).
863 elfcpp::STT type_ : 4;
864 // Symbol binding (bits 4 to 7).
865 elfcpp::STB binding_ : 4;
866 // Symbol visibility (bits 8 to 9).
867 elfcpp::STV visibility_ : 2;
868 // Rest of symbol st_other field (bits 10 to 15).
869 unsigned int nonvis_ : 6;
870 // The type of symbol (bits 16 to 18).
871 Source source_ : 3;
872 // True if this symbol always requires special target-specific
873 // handling (bit 19).
874 bool is_target_special_ : 1;
875 // True if this is the default version of the symbol (bit 20).
876 bool is_def_ : 1;
877 // True if this symbol really forwards to another symbol. This is
878 // used when we discover after the fact that two different entries
879 // in the hash table really refer to the same symbol. This will
880 // never be set for a symbol found in the hash table, but may be set
881 // for a symbol found in the list of symbols attached to an Object.
882 // It forwards to the symbol found in the forwarders_ map of
883 // Symbol_table (bit 21).
884 bool is_forwarder_ : 1;
885 // True if the symbol has an alias in the weak_aliases table in
886 // Symbol_table (bit 22).
887 bool has_alias_ : 1;
888 // True if this symbol needs to be in the dynamic symbol table (bit
889 // 23).
890 bool needs_dynsym_entry_ : 1;
891 // True if we've seen this symbol in a regular object (bit 24).
892 bool in_reg_ : 1;
893 // True if we've seen this symbol in a dynamic object (bit 25).
894 bool in_dyn_ : 1;
895 // True if the symbol has an entry in the PLT section (bit 26).
896 bool has_plt_offset_ : 1;
897 // True if this is a dynamic symbol which needs a special value in
898 // the dynamic symbol table (bit 27).
899 bool needs_dynsym_value_ : 1;
900 // True if there is a warning for this symbol (bit 28).
901 bool has_warning_ : 1;
902 // True if we are using a COPY reloc for this symbol, so that the
903 // real definition lives in a dynamic object (bit 29).
904 bool is_copied_from_dynobj_ : 1;
905 // True if this symbol was forced to local visibility by a version
906 // script (bit 30).
907 bool is_forced_local_ : 1;
908 // True if the field u_.from_object.shndx is an ordinary section
909 // index, not one of the special codes from SHN_LORESERVE to
910 // SHN_HIRESERVE (bit 31).
911 bool is_ordinary_shndx_ : 1;
912 // True if we've seen this symbol in a real ELF object.
913 bool in_real_elf_ : 1;
914 };
915
916 // The parts of a symbol which are size specific. Using a template
917 // derived class like this helps us use less space on a 32-bit system.
918
919 template<int size>
920 class Sized_symbol : public Symbol
921 {
922 public:
923 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
924 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
925
926 Sized_symbol()
927 { }
928
929 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
930 // section index, IS_ORDINARY is whether it is a normal section
931 // index rather than a special code.
932 template<bool big_endian>
933 void
934 init_object(const char *name, const char* version, Object* object,
935 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
936 bool is_ordinary);
937
938 // Initialize fields for an Output_data.
939 void
940 init_output_data(const char* name, const char* version, Output_data*,
941 Value_type value, Size_type symsize, elfcpp::STT,
942 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
943 bool offset_is_from_end);
944
945 // Initialize fields for an Output_segment.
946 void
947 init_output_segment(const char* name, const char* version, Output_segment*,
948 Value_type value, Size_type symsize, elfcpp::STT,
949 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
950 Segment_offset_base offset_base);
951
952 // Initialize fields for a constant.
953 void
954 init_constant(const char* name, const char* version, Value_type value,
955 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
956 unsigned char nonvis);
957
958 // Initialize fields for an undefined symbol.
959 void
960 init_undefined(const char* name, const char* version, elfcpp::STT,
961 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
962
963 // Override existing symbol.
964 template<bool big_endian>
965 void
966 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
967 bool is_ordinary, Object* object, const char* version);
968
969 // Override existing symbol with a special symbol.
970 void
971 override_with_special(const Sized_symbol<size>*);
972
973 // Return the symbol's value.
974 Value_type
975 value() const
976 { return this->value_; }
977
978 // Return the symbol's size (we can't call this 'size' because that
979 // is a template parameter).
980 Size_type
981 symsize() const
982 { return this->symsize_; }
983
984 // Set the symbol size. This is used when resolving common symbols.
985 void
986 set_symsize(Size_type symsize)
987 { this->symsize_ = symsize; }
988
989 // Set the symbol value. This is called when we store the final
990 // values of the symbols into the symbol table.
991 void
992 set_value(Value_type value)
993 { this->value_ = value; }
994
995 // Allocate a common symbol by giving it a location in the output
996 // file.
997 void
998 allocate_common(Output_data*, Value_type value);
999
1000 private:
1001 Sized_symbol(const Sized_symbol&);
1002 Sized_symbol& operator=(const Sized_symbol&);
1003
1004 // Symbol value. Before Layout::finalize this is the offset in the
1005 // input section. This is set to the final value during
1006 // Layout::finalize.
1007 Value_type value_;
1008 // Symbol size.
1009 Size_type symsize_;
1010 };
1011
1012 // A struct describing a symbol defined by the linker, where the value
1013 // of the symbol is defined based on an output section. This is used
1014 // for symbols defined by the linker, like "_init_array_start".
1015
1016 struct Define_symbol_in_section
1017 {
1018 // The symbol name.
1019 const char* name;
1020 // The name of the output section with which this symbol should be
1021 // associated. If there is no output section with that name, the
1022 // symbol will be defined as zero.
1023 const char* output_section;
1024 // The offset of the symbol within the output section. This is an
1025 // offset from the start of the output section, unless start_at_end
1026 // is true, in which case this is an offset from the end of the
1027 // output section.
1028 uint64_t value;
1029 // The size of the symbol.
1030 uint64_t size;
1031 // The symbol type.
1032 elfcpp::STT type;
1033 // The symbol binding.
1034 elfcpp::STB binding;
1035 // The symbol visibility.
1036 elfcpp::STV visibility;
1037 // The rest of the st_other field.
1038 unsigned char nonvis;
1039 // If true, the value field is an offset from the end of the output
1040 // section.
1041 bool offset_is_from_end;
1042 // If true, this symbol is defined only if we see a reference to it.
1043 bool only_if_ref;
1044 };
1045
1046 // A struct describing a symbol defined by the linker, where the value
1047 // of the symbol is defined based on a segment. This is used for
1048 // symbols defined by the linker, like "_end". We describe the
1049 // segment with which the symbol should be associated by its
1050 // characteristics. If no segment meets these characteristics, the
1051 // symbol will be defined as zero. If there is more than one segment
1052 // which meets these characteristics, we will use the first one.
1053
1054 struct Define_symbol_in_segment
1055 {
1056 // The symbol name.
1057 const char* name;
1058 // The segment type where the symbol should be defined, typically
1059 // PT_LOAD.
1060 elfcpp::PT segment_type;
1061 // Bitmask of segment flags which must be set.
1062 elfcpp::PF segment_flags_set;
1063 // Bitmask of segment flags which must be clear.
1064 elfcpp::PF segment_flags_clear;
1065 // The offset of the symbol within the segment. The offset is
1066 // calculated from the position set by offset_base.
1067 uint64_t value;
1068 // The size of the symbol.
1069 uint64_t size;
1070 // The symbol type.
1071 elfcpp::STT type;
1072 // The symbol binding.
1073 elfcpp::STB binding;
1074 // The symbol visibility.
1075 elfcpp::STV visibility;
1076 // The rest of the st_other field.
1077 unsigned char nonvis;
1078 // The base from which we compute the offset.
1079 Symbol::Segment_offset_base offset_base;
1080 // If true, this symbol is defined only if we see a reference to it.
1081 bool only_if_ref;
1082 };
1083
1084 // This class manages warnings. Warnings are a GNU extension. When
1085 // we see a section named .gnu.warning.SYM in an object file, and if
1086 // we wind using the definition of SYM from that object file, then we
1087 // will issue a warning for any relocation against SYM from a
1088 // different object file. The text of the warning is the contents of
1089 // the section. This is not precisely the definition used by the old
1090 // GNU linker; the old GNU linker treated an occurrence of
1091 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1092 // would trigger a warning on any reference. However, it was
1093 // inconsistent in that a warning in a dynamic object only triggered
1094 // if there was no definition in a regular object. This linker is
1095 // different in that we only issue a warning if we use the symbol
1096 // definition from the same object file as the warning section.
1097
1098 class Warnings
1099 {
1100 public:
1101 Warnings()
1102 : warnings_()
1103 { }
1104
1105 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1106 // of the warning.
1107 void
1108 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1109 const std::string& warning);
1110
1111 // For each symbol for which we should give a warning, make a note
1112 // on the symbol.
1113 void
1114 note_warnings(Symbol_table* symtab);
1115
1116 // Issue a warning for a reference to SYM at RELINFO's location.
1117 template<int size, bool big_endian>
1118 void
1119 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1120 size_t relnum, off_t reloffset) const;
1121
1122 private:
1123 Warnings(const Warnings&);
1124 Warnings& operator=(const Warnings&);
1125
1126 // What we need to know to get the warning text.
1127 struct Warning_location
1128 {
1129 // The object the warning is in.
1130 Object* object;
1131 // The warning text.
1132 std::string text;
1133
1134 Warning_location()
1135 : object(NULL), text()
1136 { }
1137
1138 void
1139 set(Object* o, const std::string& t)
1140 {
1141 this->object = o;
1142 this->text = t;
1143 }
1144 };
1145
1146 // A mapping from warning symbol names (canonicalized in
1147 // Symbol_table's namepool_ field) to warning information.
1148 typedef Unordered_map<const char*, Warning_location> Warning_table;
1149
1150 Warning_table warnings_;
1151 };
1152
1153 // The main linker symbol table.
1154
1155 class Symbol_table
1156 {
1157 public:
1158 // COUNT is an estimate of how many symbosl will be inserted in the
1159 // symbol table. It's ok to put 0 if you don't know; a correct
1160 // guess will just save some CPU by reducing hashtable resizes.
1161 Symbol_table(unsigned int count, const Version_script_info& version_script);
1162
1163 ~Symbol_table();
1164
1165 void
1166 set_gc(Garbage_collection* gc)
1167 { this->gc_ = gc; }
1168
1169 Garbage_collection*
1170 gc()
1171 { return this->gc_; }
1172
1173 // During garbage collection, this keeps undefined symbols.
1174 void
1175 gc_mark_undef_symbols();
1176
1177 // During garbage collection, this ensures externally visible symbols
1178 // are not treated as garbage while building shared objects.
1179 void
1180 gc_mark_symbol_for_shlib(Symbol* sym);
1181
1182 // During garbage collection, this keeps sections that correspond to
1183 // symbols seen in dynamic objects.
1184 inline void
1185 gc_mark_dyn_syms(Symbol* sym);
1186
1187 // Add COUNT external symbols from the relocatable object RELOBJ to
1188 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1189 // offset in the symbol table of the first symbol, SYM_NAMES is
1190 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1191 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1192 // *DEFINED to the number of defined symbols.
1193 template<int size, bool big_endian>
1194 void
1195 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1196 const unsigned char* syms, size_t count,
1197 size_t symndx_offset, const char* sym_names,
1198 size_t sym_name_size,
1199 typename Sized_relobj<size, big_endian>::Symbols*,
1200 size_t* defined);
1201
1202 // Add one external symbol from the plugin object OBJ to the symbol table.
1203 // Returns a pointer to the resolved symbol in the symbol table.
1204 template<int size, bool big_endian>
1205 Symbol*
1206 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1207 const char* name, const char* ver,
1208 elfcpp::Sym<size, big_endian>* sym);
1209
1210 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1211 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1212 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1213 // symbol version data.
1214 template<int size, bool big_endian>
1215 void
1216 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1217 const unsigned char* syms, size_t count,
1218 const char* sym_names, size_t sym_name_size,
1219 const unsigned char* versym, size_t versym_size,
1220 const std::vector<const char*>*,
1221 typename Sized_relobj<size, big_endian>::Symbols*,
1222 size_t* defined);
1223
1224 // Define a special symbol based on an Output_data. It is a
1225 // multiple definition error if this symbol is already defined.
1226 Symbol*
1227 define_in_output_data(const char* name, const char* version,
1228 Output_data*, uint64_t value, uint64_t symsize,
1229 elfcpp::STT type, elfcpp::STB binding,
1230 elfcpp::STV visibility, unsigned char nonvis,
1231 bool offset_is_from_end, bool only_if_ref);
1232
1233 // Define a special symbol based on an Output_segment. It is a
1234 // multiple definition error if this symbol is already defined.
1235 Symbol*
1236 define_in_output_segment(const char* name, const char* version,
1237 Output_segment*, uint64_t value, uint64_t symsize,
1238 elfcpp::STT type, elfcpp::STB binding,
1239 elfcpp::STV visibility, unsigned char nonvis,
1240 Symbol::Segment_offset_base, bool only_if_ref);
1241
1242 // Define a special symbol with a constant value. It is a multiple
1243 // definition error if this symbol is already defined.
1244 Symbol*
1245 define_as_constant(const char* name, const char* version,
1246 uint64_t value, uint64_t symsize, elfcpp::STT type,
1247 elfcpp::STB binding, elfcpp::STV visibility,
1248 unsigned char nonvis, bool only_if_ref,
1249 bool force_override);
1250
1251 // Define a set of symbols in output sections. If ONLY_IF_REF is
1252 // true, only define them if they are referenced.
1253 void
1254 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1255 bool only_if_ref);
1256
1257 // Define a set of symbols in output segments. If ONLY_IF_REF is
1258 // true, only defined them if they are referenced.
1259 void
1260 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1261 bool only_if_ref);
1262
1263 // Define SYM using a COPY reloc. POSD is the Output_data where the
1264 // symbol should be defined--typically a .dyn.bss section. VALUE is
1265 // the offset within POSD.
1266 template<int size>
1267 void
1268 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1269 typename elfcpp::Elf_types<size>::Elf_Addr);
1270
1271 // Look up a symbol.
1272 Symbol*
1273 lookup(const char*, const char* version = NULL) const;
1274
1275 // Return the real symbol associated with the forwarder symbol FROM.
1276 Symbol*
1277 resolve_forwards(const Symbol* from) const;
1278
1279 // Return the sized version of a symbol in this table.
1280 template<int size>
1281 Sized_symbol<size>*
1282 get_sized_symbol(Symbol*) const;
1283
1284 template<int size>
1285 const Sized_symbol<size>*
1286 get_sized_symbol(const Symbol*) const;
1287
1288 // Return the count of undefined symbols seen.
1289 int
1290 saw_undefined() const
1291 { return this->saw_undefined_; }
1292
1293 // Allocate the common symbols
1294 void
1295 allocate_commons(Layout*, Mapfile*);
1296
1297 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1298 // of the warning.
1299 void
1300 add_warning(const char* name, Object* obj, const std::string& warning)
1301 { this->warnings_.add_warning(this, name, obj, warning); }
1302
1303 // Canonicalize a symbol name for use in the hash table.
1304 const char*
1305 canonicalize_name(const char* name)
1306 { return this->namepool_.add(name, true, NULL); }
1307
1308 // Possibly issue a warning for a reference to SYM at LOCATION which
1309 // is in OBJ.
1310 template<int size, bool big_endian>
1311 void
1312 issue_warning(const Symbol* sym,
1313 const Relocate_info<size, big_endian>* relinfo,
1314 size_t relnum, off_t reloffset) const
1315 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1316
1317 // Check candidate_odr_violations_ to find symbols with the same name
1318 // but apparently different definitions (different source-file/line-no).
1319 void
1320 detect_odr_violations(const Task*, const char* output_file_name) const;
1321
1322 // Add any undefined symbols named on the command line to the symbol
1323 // table.
1324 void
1325 add_undefined_symbols_from_command_line();
1326
1327 // SYM is defined using a COPY reloc. Return the dynamic object
1328 // where the original definition was found.
1329 Dynobj*
1330 get_copy_source(const Symbol* sym) const;
1331
1332 // Set the dynamic symbol indexes. INDEX is the index of the first
1333 // global dynamic symbol. Pointers to the symbols are stored into
1334 // the vector. The names are stored into the Stringpool. This
1335 // returns an updated dynamic symbol index.
1336 unsigned int
1337 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1338 Stringpool*, Versions*);
1339
1340 // Finalize the symbol table after we have set the final addresses
1341 // of all the input sections. This sets the final symbol indexes,
1342 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1343 // index of the first global symbol. OFF is the file offset of the
1344 // global symbol table, DYNOFF is the offset of the globals in the
1345 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1346 // global dynamic symbol, and DYNCOUNT is the number of global
1347 // dynamic symbols. This records the parameters, and returns the
1348 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1349 // local symbols.
1350 off_t
1351 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1352 Stringpool* pool, unsigned int *plocal_symcount);
1353
1354 // Write out the global symbols.
1355 void
1356 write_globals(const Stringpool*, const Stringpool*,
1357 Output_symtab_xindex*, Output_symtab_xindex*,
1358 Output_file*) const;
1359
1360 // Write out a section symbol. Return the updated offset.
1361 void
1362 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1363 Output_file*, off_t) const;
1364
1365 // Dump statistical information to stderr.
1366 void
1367 print_stats() const;
1368
1369 // Return the version script information.
1370 const Version_script_info&
1371 version_script() const
1372 { return version_script_; }
1373
1374 private:
1375 Symbol_table(const Symbol_table&);
1376 Symbol_table& operator=(const Symbol_table&);
1377
1378 // The type of the list of common symbols.
1379 typedef std::vector<Symbol*> Commons_type;
1380
1381 // The type of the symbol hash table.
1382
1383 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1384
1385 struct Symbol_table_hash
1386 {
1387 size_t
1388 operator()(const Symbol_table_key&) const;
1389 };
1390
1391 struct Symbol_table_eq
1392 {
1393 bool
1394 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1395 };
1396
1397 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1398 Symbol_table_eq> Symbol_table_type;
1399
1400 // Make FROM a forwarder symbol to TO.
1401 void
1402 make_forwarder(Symbol* from, Symbol* to);
1403
1404 // Add a symbol.
1405 template<int size, bool big_endian>
1406 Sized_symbol<size>*
1407 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1408 const char *version, Stringpool::Key version_key,
1409 bool def, const elfcpp::Sym<size, big_endian>& sym,
1410 unsigned int st_shndx, bool is_ordinary,
1411 unsigned int orig_st_shndx);
1412
1413 // Define a default symbol.
1414 template<int size, bool big_endian>
1415 void
1416 define_default_version(Sized_symbol<size>*, bool,
1417 Symbol_table_type::iterator);
1418
1419 // Resolve symbols.
1420 template<int size, bool big_endian>
1421 void
1422 resolve(Sized_symbol<size>* to,
1423 const elfcpp::Sym<size, big_endian>& sym,
1424 unsigned int st_shndx, bool is_ordinary,
1425 unsigned int orig_st_shndx,
1426 Object*, const char* version);
1427
1428 template<int size, bool big_endian>
1429 void
1430 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1431
1432 // Record that a symbol is forced to be local by a version script or
1433 // by visibility.
1434 void
1435 force_local(Symbol*);
1436
1437 // Adjust NAME and *NAME_KEY for wrapping.
1438 const char*
1439 wrap_symbol(Object* object, const char*, Stringpool::Key* name_key);
1440
1441 // Whether we should override a symbol, based on flags in
1442 // resolve.cc.
1443 static bool
1444 should_override(const Symbol*, unsigned int, Object*, bool*);
1445
1446 // Override a symbol.
1447 template<int size, bool big_endian>
1448 void
1449 override(Sized_symbol<size>* tosym,
1450 const elfcpp::Sym<size, big_endian>& fromsym,
1451 unsigned int st_shndx, bool is_ordinary,
1452 Object* object, const char* version);
1453
1454 // Whether we should override a symbol with a special symbol which
1455 // is automatically defined by the linker.
1456 static bool
1457 should_override_with_special(const Symbol*);
1458
1459 // Override a symbol with a special symbol.
1460 template<int size>
1461 void
1462 override_with_special(Sized_symbol<size>* tosym,
1463 const Sized_symbol<size>* fromsym);
1464
1465 // Record all weak alias sets for a dynamic object.
1466 template<int size>
1467 void
1468 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1469
1470 // Define a special symbol.
1471 template<int size, bool big_endian>
1472 Sized_symbol<size>*
1473 define_special_symbol(const char** pname, const char** pversion,
1474 bool only_if_ref, Sized_symbol<size>** poldsym,
1475 bool* resolve_oldsym);
1476
1477 // Define a symbol in an Output_data, sized version.
1478 template<int size>
1479 Sized_symbol<size>*
1480 do_define_in_output_data(const char* name, const char* version, Output_data*,
1481 typename elfcpp::Elf_types<size>::Elf_Addr value,
1482 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1483 elfcpp::STT type, elfcpp::STB binding,
1484 elfcpp::STV visibility, unsigned char nonvis,
1485 bool offset_is_from_end, bool only_if_ref);
1486
1487 // Define a symbol in an Output_segment, sized version.
1488 template<int size>
1489 Sized_symbol<size>*
1490 do_define_in_output_segment(
1491 const char* name, const char* version, Output_segment* os,
1492 typename elfcpp::Elf_types<size>::Elf_Addr value,
1493 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1494 elfcpp::STT type, elfcpp::STB binding,
1495 elfcpp::STV visibility, unsigned char nonvis,
1496 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1497
1498 // Define a symbol as a constant, sized version.
1499 template<int size>
1500 Sized_symbol<size>*
1501 do_define_as_constant(
1502 const char* name, const char* version,
1503 typename elfcpp::Elf_types<size>::Elf_Addr value,
1504 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1505 elfcpp::STT type, elfcpp::STB binding,
1506 elfcpp::STV visibility, unsigned char nonvis,
1507 bool only_if_ref, bool force_override);
1508
1509 // Add any undefined symbols named on the command line to the symbol
1510 // table, sized version.
1511 template<int size>
1512 void
1513 do_add_undefined_symbols_from_command_line();
1514
1515 // Types of common symbols.
1516
1517 enum Commons_section_type
1518 {
1519 COMMONS_NORMAL,
1520 COMMONS_TLS,
1521 COMMONS_SMALL,
1522 COMMONS_LARGE
1523 };
1524
1525 // Allocate the common symbols, sized version.
1526 template<int size>
1527 void
1528 do_allocate_commons(Layout*, Mapfile*);
1529
1530 // Allocate the common symbols from one list.
1531 template<int size>
1532 void
1533 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1534 Mapfile*);
1535
1536 // Implement detect_odr_violations.
1537 template<int size, bool big_endian>
1538 void
1539 sized_detect_odr_violations() const;
1540
1541 // Finalize symbols specialized for size.
1542 template<int size>
1543 off_t
1544 sized_finalize(off_t, Stringpool*, unsigned int*);
1545
1546 // Finalize a symbol. Return whether it should be added to the
1547 // symbol table.
1548 template<int size>
1549 bool
1550 sized_finalize_symbol(Symbol*);
1551
1552 // Add a symbol the final symtab by setting its index.
1553 template<int size>
1554 void
1555 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1556
1557 // Write globals specialized for size and endianness.
1558 template<int size, bool big_endian>
1559 void
1560 sized_write_globals(const Stringpool*, const Stringpool*,
1561 Output_symtab_xindex*, Output_symtab_xindex*,
1562 Output_file*) const;
1563
1564 // Write out a symbol to P.
1565 template<int size, bool big_endian>
1566 void
1567 sized_write_symbol(Sized_symbol<size>*,
1568 typename elfcpp::Elf_types<size>::Elf_Addr value,
1569 unsigned int shndx,
1570 const Stringpool*, unsigned char* p) const;
1571
1572 // Possibly warn about an undefined symbol from a dynamic object.
1573 void
1574 warn_about_undefined_dynobj_symbol(Symbol*) const;
1575
1576 // Write out a section symbol, specialized for size and endianness.
1577 template<int size, bool big_endian>
1578 void
1579 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1580 Output_file*, off_t) const;
1581
1582 // The type of the list of symbols which have been forced local.
1583 typedef std::vector<Symbol*> Forced_locals;
1584
1585 // A map from symbols with COPY relocs to the dynamic objects where
1586 // they are defined.
1587 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1588
1589 // A map from symbol name (as a pointer into the namepool) to all
1590 // the locations the symbols is (weakly) defined (and certain other
1591 // conditions are met). This map will be used later to detect
1592 // possible One Definition Rule (ODR) violations.
1593 struct Symbol_location
1594 {
1595 Object* object; // Object where the symbol is defined.
1596 unsigned int shndx; // Section-in-object where the symbol is defined.
1597 off_t offset; // Offset-in-section where the symbol is defined.
1598 bool operator==(const Symbol_location& that) const
1599 {
1600 return (this->object == that.object
1601 && this->shndx == that.shndx
1602 && this->offset == that.offset);
1603 }
1604 };
1605
1606 struct Symbol_location_hash
1607 {
1608 size_t operator()(const Symbol_location& loc) const
1609 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1610 };
1611
1612 typedef Unordered_map<const char*,
1613 Unordered_set<Symbol_location, Symbol_location_hash> >
1614 Odr_map;
1615
1616 // We increment this every time we see a new undefined symbol, for
1617 // use in archive groups.
1618 int saw_undefined_;
1619 // The index of the first global symbol in the output file.
1620 unsigned int first_global_index_;
1621 // The file offset within the output symtab section where we should
1622 // write the table.
1623 off_t offset_;
1624 // The number of global symbols we want to write out.
1625 unsigned int output_count_;
1626 // The file offset of the global dynamic symbols, or 0 if none.
1627 off_t dynamic_offset_;
1628 // The index of the first global dynamic symbol.
1629 unsigned int first_dynamic_global_index_;
1630 // The number of global dynamic symbols, or 0 if none.
1631 unsigned int dynamic_count_;
1632 // The symbol hash table.
1633 Symbol_table_type table_;
1634 // A pool of symbol names. This is used for all global symbols.
1635 // Entries in the hash table point into this pool.
1636 Stringpool namepool_;
1637 // Forwarding symbols.
1638 Unordered_map<const Symbol*, Symbol*> forwarders_;
1639 // Weak aliases. A symbol in this list points to the next alias.
1640 // The aliases point to each other in a circular list.
1641 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1642 // We don't expect there to be very many common symbols, so we keep
1643 // a list of them. When we find a common symbol we add it to this
1644 // list. It is possible that by the time we process the list the
1645 // symbol is no longer a common symbol. It may also have become a
1646 // forwarder.
1647 Commons_type commons_;
1648 // This is like the commons_ field, except that it holds TLS common
1649 // symbols.
1650 Commons_type tls_commons_;
1651 // This is for small common symbols.
1652 Commons_type small_commons_;
1653 // This is for large common symbols.
1654 Commons_type large_commons_;
1655 // A list of symbols which have been forced to be local. We don't
1656 // expect there to be very many of them, so we keep a list of them
1657 // rather than walking the whole table to find them.
1658 Forced_locals forced_locals_;
1659 // Manage symbol warnings.
1660 Warnings warnings_;
1661 // Manage potential One Definition Rule (ODR) violations.
1662 Odr_map candidate_odr_violations_;
1663
1664 // When we emit a COPY reloc for a symbol, we define it in an
1665 // Output_data. When it's time to emit version information for it,
1666 // we need to know the dynamic object in which we found the original
1667 // definition. This maps symbols with COPY relocs to the dynamic
1668 // object where they were defined.
1669 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1670 // Information parsed from the version script, if any.
1671 const Version_script_info& version_script_;
1672 Garbage_collection* gc_;
1673 };
1674
1675 // We inline get_sized_symbol for efficiency.
1676
1677 template<int size>
1678 Sized_symbol<size>*
1679 Symbol_table::get_sized_symbol(Symbol* sym) const
1680 {
1681 gold_assert(size == parameters->target().get_size());
1682 return static_cast<Sized_symbol<size>*>(sym);
1683 }
1684
1685 template<int size>
1686 const Sized_symbol<size>*
1687 Symbol_table::get_sized_symbol(const Symbol* sym) const
1688 {
1689 gold_assert(size == parameters->target().get_size());
1690 return static_cast<const Sized_symbol<size>*>(sym);
1691 }
1692
1693 } // End namespace gold.
1694
1695 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.061502 seconds and 5 git commands to generate.