* symtab.cc (Symbol_table::define_default_version): New function,
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "gc.h"
31 #include "elfcpp.h"
32 #include "parameters.h"
33 #include "stringpool.h"
34 #include "object.h"
35
36 #ifndef GOLD_SYMTAB_H
37 #define GOLD_SYMTAB_H
38
39 namespace gold
40 {
41
42 class Mapfile;
43 class Object;
44 class Relobj;
45 template<int size, bool big_endian>
46 class Sized_relobj;
47 template<int size, bool big_endian>
48 class Sized_pluginobj;
49 class Dynobj;
50 template<int size, bool big_endian>
51 class Sized_dynobj;
52 class Versions;
53 class Version_script_info;
54 class Input_objects;
55 class Output_data;
56 class Output_section;
57 class Output_segment;
58 class Output_file;
59 class Output_symtab_xindex;
60 class Garbage_collection;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return the symbol visibility.
209 elfcpp::STV
210 visibility() const
211 { return this->visibility_; }
212
213 // Set the visibility.
214 void
215 set_visibility(elfcpp::STV visibility)
216 { this->visibility_ = visibility; }
217
218 // Override symbol visibility.
219 void
220 override_visibility(elfcpp::STV);
221
222 // Return the non-visibility part of the st_other field.
223 unsigned char
224 nonvis() const
225 { return this->nonvis_; }
226
227 // Return whether this symbol is a forwarder. This will never be
228 // true of a symbol found in the hash table, but may be true of
229 // symbol pointers attached to object files.
230 bool
231 is_forwarder() const
232 { return this->is_forwarder_; }
233
234 // Mark this symbol as a forwarder.
235 void
236 set_forwarder()
237 { this->is_forwarder_ = true; }
238
239 // Return whether this symbol has an alias in the weak aliases table
240 // in Symbol_table.
241 bool
242 has_alias() const
243 { return this->has_alias_; }
244
245 // Mark this symbol as having an alias.
246 void
247 set_has_alias()
248 { this->has_alias_ = true; }
249
250 // Return whether this symbol needs an entry in the dynamic symbol
251 // table.
252 bool
253 needs_dynsym_entry() const
254 {
255 return (this->needs_dynsym_entry_
256 || (this->in_reg() && this->in_dyn()));
257 }
258
259 // Mark this symbol as needing an entry in the dynamic symbol table.
260 void
261 set_needs_dynsym_entry()
262 { this->needs_dynsym_entry_ = true; }
263
264 // Return whether this symbol should be added to the dynamic symbol
265 // table.
266 bool
267 should_add_dynsym_entry() const;
268
269 // Return whether this symbol has been seen in a regular object.
270 bool
271 in_reg() const
272 { return this->in_reg_; }
273
274 // Mark this symbol as having been seen in a regular object.
275 void
276 set_in_reg()
277 { this->in_reg_ = true; }
278
279 // Return whether this symbol has been seen in a dynamic object.
280 bool
281 in_dyn() const
282 { return this->in_dyn_; }
283
284 // Mark this symbol as having been seen in a dynamic object.
285 void
286 set_in_dyn()
287 { this->in_dyn_ = true; }
288
289 // Return whether this symbol has been seen in a real ELF object.
290 // (IN_REG will return TRUE if the symbol has been seen in either
291 // a real ELF object or an object claimed by a plugin.)
292 bool
293 in_real_elf() const
294 { return this->in_real_elf_; }
295
296 // Mark this symbol as having been seen in a real ELF object.
297 void
298 set_in_real_elf()
299 { this->in_real_elf_ = true; }
300
301 // Return the index of this symbol in the output file symbol table.
302 // A value of -1U means that this symbol is not going into the
303 // output file. This starts out as zero, and is set to a non-zero
304 // value by Symbol_table::finalize. It is an error to ask for the
305 // symbol table index before it has been set.
306 unsigned int
307 symtab_index() const
308 {
309 gold_assert(this->symtab_index_ != 0);
310 return this->symtab_index_;
311 }
312
313 // Set the index of the symbol in the output file symbol table.
314 void
315 set_symtab_index(unsigned int index)
316 {
317 gold_assert(index != 0);
318 this->symtab_index_ = index;
319 }
320
321 // Return whether this symbol already has an index in the output
322 // file symbol table.
323 bool
324 has_symtab_index() const
325 { return this->symtab_index_ != 0; }
326
327 // Return the index of this symbol in the dynamic symbol table. A
328 // value of -1U means that this symbol is not going into the dynamic
329 // symbol table. This starts out as zero, and is set to a non-zero
330 // during Layout::finalize. It is an error to ask for the dynamic
331 // symbol table index before it has been set.
332 unsigned int
333 dynsym_index() const
334 {
335 gold_assert(this->dynsym_index_ != 0);
336 return this->dynsym_index_;
337 }
338
339 // Set the index of the symbol in the dynamic symbol table.
340 void
341 set_dynsym_index(unsigned int index)
342 {
343 gold_assert(index != 0);
344 this->dynsym_index_ = index;
345 }
346
347 // Return whether this symbol already has an index in the dynamic
348 // symbol table.
349 bool
350 has_dynsym_index() const
351 { return this->dynsym_index_ != 0; }
352
353 // Return whether this symbol has an entry in the GOT section.
354 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
355 bool
356 has_got_offset(unsigned int got_type) const
357 { return this->got_offsets_.get_offset(got_type) != -1U; }
358
359 // Return the offset into the GOT section of this symbol.
360 unsigned int
361 got_offset(unsigned int got_type) const
362 {
363 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
364 gold_assert(got_offset != -1U);
365 return got_offset;
366 }
367
368 // Set the GOT offset of this symbol.
369 void
370 set_got_offset(unsigned int got_type, unsigned int got_offset)
371 { this->got_offsets_.set_offset(got_type, got_offset); }
372
373 // Return whether this symbol has an entry in the PLT section.
374 bool
375 has_plt_offset() const
376 { return this->has_plt_offset_; }
377
378 // Return the offset into the PLT section of this symbol.
379 unsigned int
380 plt_offset() const
381 {
382 gold_assert(this->has_plt_offset());
383 return this->plt_offset_;
384 }
385
386 // Set the PLT offset of this symbol.
387 void
388 set_plt_offset(unsigned int plt_offset)
389 {
390 this->has_plt_offset_ = true;
391 this->plt_offset_ = plt_offset;
392 }
393
394 // Return whether this dynamic symbol needs a special value in the
395 // dynamic symbol table.
396 bool
397 needs_dynsym_value() const
398 { return this->needs_dynsym_value_; }
399
400 // Set that this dynamic symbol needs a special value in the dynamic
401 // symbol table.
402 void
403 set_needs_dynsym_value()
404 {
405 gold_assert(this->object()->is_dynamic());
406 this->needs_dynsym_value_ = true;
407 }
408
409 // Return true if the final value of this symbol is known at link
410 // time.
411 bool
412 final_value_is_known() const;
413
414 // Return whether this is a defined symbol (not undefined or
415 // common).
416 bool
417 is_defined() const
418 {
419 bool is_ordinary;
420 if (this->source_ != FROM_OBJECT)
421 return this->source_ != IS_UNDEFINED;
422 unsigned int shndx = this->shndx(&is_ordinary);
423 return (is_ordinary
424 ? shndx != elfcpp::SHN_UNDEF
425 : shndx != elfcpp::SHN_COMMON);
426 }
427
428 // Return true if this symbol is from a dynamic object.
429 bool
430 is_from_dynobj() const
431 {
432 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
433 }
434
435 // Return whether this is an undefined symbol.
436 bool
437 is_undefined() const
438 {
439 bool is_ordinary;
440 return ((this->source_ == FROM_OBJECT
441 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
442 && is_ordinary)
443 || this->source_ == IS_UNDEFINED);
444 }
445
446 // Return whether this is a weak undefined symbol.
447 bool
448 is_weak_undefined() const
449 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
450
451 // Return whether this is an absolute symbol.
452 bool
453 is_absolute() const
454 {
455 bool is_ordinary;
456 return ((this->source_ == FROM_OBJECT
457 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
458 && !is_ordinary)
459 || this->source_ == IS_CONSTANT);
460 }
461
462 // Return whether this is a common symbol.
463 bool
464 is_common() const
465 {
466 bool is_ordinary;
467 return (this->source_ == FROM_OBJECT
468 && ((this->shndx(&is_ordinary) == elfcpp::SHN_COMMON
469 && !is_ordinary)
470 || this->type_ == elfcpp::STT_COMMON));
471 }
472
473 // Return whether this symbol can be seen outside this object.
474 bool
475 is_externally_visible() const
476 {
477 return (this->visibility_ == elfcpp::STV_DEFAULT
478 || this->visibility_ == elfcpp::STV_PROTECTED);
479 }
480
481 // Return true if this symbol can be preempted by a definition in
482 // another link unit.
483 bool
484 is_preemptible() const
485 {
486 // It doesn't make sense to ask whether a symbol defined in
487 // another object is preemptible.
488 gold_assert(!this->is_from_dynobj());
489
490 // It doesn't make sense to ask whether an undefined symbol
491 // is preemptible.
492 gold_assert(!this->is_undefined());
493
494 // If a symbol does not have default visibility, it can not be
495 // seen outside this link unit and therefore is not preemptible.
496 if (this->visibility_ != elfcpp::STV_DEFAULT)
497 return false;
498
499 // If this symbol has been forced to be a local symbol by a
500 // version script, then it is not visible outside this link unit
501 // and is not preemptible.
502 if (this->is_forced_local_)
503 return false;
504
505 // If we are not producing a shared library, then nothing is
506 // preemptible.
507 if (!parameters->options().shared())
508 return false;
509
510 // If the user used -Bsymbolic, then nothing is preemptible.
511 if (parameters->options().Bsymbolic())
512 return false;
513
514 // If the user used -Bsymbolic-functions, then functions are not
515 // preemptible. We explicitly check for not being STT_OBJECT,
516 // rather than for being STT_FUNC, because that is what the GNU
517 // linker does.
518 if (this->type() != elfcpp::STT_OBJECT
519 && parameters->options().Bsymbolic_functions())
520 return false;
521
522 // Otherwise the symbol is preemptible.
523 return true;
524 }
525
526 // Return true if this symbol is a function that needs a PLT entry.
527 // If the symbol is defined in a dynamic object or if it is subject
528 // to pre-emption, we need to make a PLT entry. If we're doing a
529 // static link, we don't create PLT entries.
530 bool
531 needs_plt_entry() const
532 {
533 return (!parameters->doing_static_link()
534 && this->type() == elfcpp::STT_FUNC
535 && (this->is_from_dynobj()
536 || this->is_undefined()
537 || this->is_preemptible()));
538 }
539
540 // When determining whether a reference to a symbol needs a dynamic
541 // relocation, we need to know several things about the reference.
542 // These flags may be or'ed together.
543 enum Reference_flags
544 {
545 // Reference to the symbol's absolute address.
546 ABSOLUTE_REF = 1,
547 // A non-PIC reference.
548 NON_PIC_REF = 2,
549 // A function call.
550 FUNCTION_CALL = 4
551 };
552
553 // Given a direct absolute or pc-relative static relocation against
554 // the global symbol, this function returns whether a dynamic relocation
555 // is needed.
556
557 bool
558 needs_dynamic_reloc(int flags) const
559 {
560 // No dynamic relocations in a static link!
561 if (parameters->doing_static_link())
562 return false;
563
564 // A reference to a weak undefined symbol from an executable should be
565 // statically resolved to 0, and does not need a dynamic relocation.
566 // This matches gnu ld behavior.
567 if (this->is_weak_undefined() && !parameters->options().shared())
568 return false;
569
570 // A reference to an absolute symbol does not need a dynamic relocation.
571 if (this->is_absolute())
572 return false;
573
574 // An absolute reference within a position-independent output file
575 // will need a dynamic relocation.
576 if ((flags & ABSOLUTE_REF)
577 && parameters->options().output_is_position_independent())
578 return true;
579
580 // A function call that can branch to a local PLT entry does not need
581 // a dynamic relocation. A non-pic pc-relative function call in a
582 // shared library cannot use a PLT entry.
583 if ((flags & FUNCTION_CALL)
584 && this->has_plt_offset()
585 && !((flags & NON_PIC_REF) && parameters->options().shared()))
586 return false;
587
588 // A reference to any PLT entry in a non-position-independent executable
589 // does not need a dynamic relocation.
590 if (!parameters->options().output_is_position_independent()
591 && this->has_plt_offset())
592 return false;
593
594 // A reference to a symbol defined in a dynamic object or to a
595 // symbol that is preemptible will need a dynamic relocation.
596 if (this->is_from_dynobj()
597 || this->is_undefined()
598 || this->is_preemptible())
599 return true;
600
601 // For all other cases, return FALSE.
602 return false;
603 }
604
605 // Whether we should use the PLT offset associated with a symbol for
606 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
607 // reloc--the same set of relocs for which we would pass NON_PIC_REF
608 // to the needs_dynamic_reloc function.
609
610 bool
611 use_plt_offset(bool is_non_pic_reference) const
612 {
613 // If the symbol doesn't have a PLT offset, then naturally we
614 // don't want to use it.
615 if (!this->has_plt_offset())
616 return false;
617
618 // If we are going to generate a dynamic relocation, then we will
619 // wind up using that, so no need to use the PLT entry.
620 if (this->needs_dynamic_reloc(FUNCTION_CALL
621 | (is_non_pic_reference
622 ? NON_PIC_REF
623 : 0)))
624 return false;
625
626 // If the symbol is from a dynamic object, we need to use the PLT
627 // entry.
628 if (this->is_from_dynobj())
629 return true;
630
631 // If we are generating a shared object, and this symbol is
632 // undefined or preemptible, we need to use the PLT entry.
633 if (parameters->options().shared()
634 && (this->is_undefined() || this->is_preemptible()))
635 return true;
636
637 // If this is a weak undefined symbol, we need to use the PLT
638 // entry; the symbol may be defined by a library loaded at
639 // runtime.
640 if (this->is_weak_undefined())
641 return true;
642
643 // Otherwise we can use the regular definition.
644 return false;
645 }
646
647 // Given a direct absolute static relocation against
648 // the global symbol, where a dynamic relocation is needed, this
649 // function returns whether a relative dynamic relocation can be used.
650 // The caller must determine separately whether the static relocation
651 // is compatible with a relative relocation.
652
653 bool
654 can_use_relative_reloc(bool is_function_call) const
655 {
656 // A function call that can branch to a local PLT entry can
657 // use a RELATIVE relocation.
658 if (is_function_call && this->has_plt_offset())
659 return true;
660
661 // A reference to a symbol defined in a dynamic object or to a
662 // symbol that is preemptible can not use a RELATIVE relocaiton.
663 if (this->is_from_dynobj()
664 || this->is_undefined()
665 || this->is_preemptible())
666 return false;
667
668 // For all other cases, return TRUE.
669 return true;
670 }
671
672 // Return the output section where this symbol is defined. Return
673 // NULL if the symbol has an absolute value.
674 Output_section*
675 output_section() const;
676
677 // Set the symbol's output section. This is used for symbols
678 // defined in scripts. This should only be called after the symbol
679 // table has been finalized.
680 void
681 set_output_section(Output_section*);
682
683 // Return whether there should be a warning for references to this
684 // symbol.
685 bool
686 has_warning() const
687 { return this->has_warning_; }
688
689 // Mark this symbol as having a warning.
690 void
691 set_has_warning()
692 { this->has_warning_ = true; }
693
694 // Return whether this symbol is defined by a COPY reloc from a
695 // dynamic object.
696 bool
697 is_copied_from_dynobj() const
698 { return this->is_copied_from_dynobj_; }
699
700 // Mark this symbol as defined by a COPY reloc.
701 void
702 set_is_copied_from_dynobj()
703 { this->is_copied_from_dynobj_ = true; }
704
705 // Return whether this symbol is forced to visibility STB_LOCAL
706 // by a "local:" entry in a version script.
707 bool
708 is_forced_local() const
709 { return this->is_forced_local_; }
710
711 // Mark this symbol as forced to STB_LOCAL visibility.
712 void
713 set_is_forced_local()
714 { this->is_forced_local_ = true; }
715
716 protected:
717 // Instances of this class should always be created at a specific
718 // size.
719 Symbol()
720 { memset(this, 0, sizeof *this); }
721
722 // Initialize the general fields.
723 void
724 init_fields(const char* name, const char* version,
725 elfcpp::STT type, elfcpp::STB binding,
726 elfcpp::STV visibility, unsigned char nonvis);
727
728 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
729 // section index, IS_ORDINARY is whether it is a normal section
730 // index rather than a special code.
731 template<int size, bool big_endian>
732 void
733 init_base_object(const char *name, const char* version, Object* object,
734 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
735 bool is_ordinary);
736
737 // Initialize fields for an Output_data.
738 void
739 init_base_output_data(const char* name, const char* version, Output_data*,
740 elfcpp::STT, elfcpp::STB, elfcpp::STV,
741 unsigned char nonvis, bool offset_is_from_end);
742
743 // Initialize fields for an Output_segment.
744 void
745 init_base_output_segment(const char* name, const char* version,
746 Output_segment* os, elfcpp::STT type,
747 elfcpp::STB binding, elfcpp::STV visibility,
748 unsigned char nonvis,
749 Segment_offset_base offset_base);
750
751 // Initialize fields for a constant.
752 void
753 init_base_constant(const char* name, const char* version, elfcpp::STT type,
754 elfcpp::STB binding, elfcpp::STV visibility,
755 unsigned char nonvis);
756
757 // Initialize fields for an undefined symbol.
758 void
759 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
760 elfcpp::STB binding, elfcpp::STV visibility,
761 unsigned char nonvis);
762
763 // Override existing symbol.
764 template<int size, bool big_endian>
765 void
766 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
767 bool is_ordinary, Object* object, const char* version);
768
769 // Override existing symbol with a special symbol.
770 void
771 override_base_with_special(const Symbol* from);
772
773 // Override symbol version.
774 void
775 override_version(const char* version);
776
777 // Allocate a common symbol by giving it a location in the output
778 // file.
779 void
780 allocate_base_common(Output_data*);
781
782 private:
783 Symbol(const Symbol&);
784 Symbol& operator=(const Symbol&);
785
786 // Symbol name (expected to point into a Stringpool).
787 const char* name_;
788 // Symbol version (expected to point into a Stringpool). This may
789 // be NULL.
790 const char* version_;
791
792 union
793 {
794 // This struct is used if SOURCE_ == FROM_OBJECT.
795 struct
796 {
797 // Object in which symbol is defined, or in which it was first
798 // seen.
799 Object* object;
800 // Section number in object_ in which symbol is defined.
801 unsigned int shndx;
802 } from_object;
803
804 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
805 struct
806 {
807 // Output_data in which symbol is defined. Before
808 // Layout::finalize the symbol's value is an offset within the
809 // Output_data.
810 Output_data* output_data;
811 // True if the offset is from the end, false if the offset is
812 // from the beginning.
813 bool offset_is_from_end;
814 } in_output_data;
815
816 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
817 struct
818 {
819 // Output_segment in which the symbol is defined. Before
820 // Layout::finalize the symbol's value is an offset.
821 Output_segment* output_segment;
822 // The base to use for the offset before Layout::finalize.
823 Segment_offset_base offset_base;
824 } in_output_segment;
825 } u_;
826
827 // The index of this symbol in the output file. If the symbol is
828 // not going into the output file, this value is -1U. This field
829 // starts as always holding zero. It is set to a non-zero value by
830 // Symbol_table::finalize.
831 unsigned int symtab_index_;
832
833 // The index of this symbol in the dynamic symbol table. If the
834 // symbol is not going into the dynamic symbol table, this value is
835 // -1U. This field starts as always holding zero. It is set to a
836 // non-zero value during Layout::finalize.
837 unsigned int dynsym_index_;
838
839 // If this symbol has an entry in the GOT section (has_got_offset_
840 // is true), this holds the offset from the start of the GOT section.
841 // A symbol may have more than one GOT offset (e.g., when mixing
842 // modules compiled with two different TLS models), but will usually
843 // have at most one.
844 Got_offset_list got_offsets_;
845
846 // If this symbol has an entry in the PLT section (has_plt_offset_
847 // is true), then this is the offset from the start of the PLT
848 // section.
849 unsigned int plt_offset_;
850
851 // Symbol type (bits 0 to 3).
852 elfcpp::STT type_ : 4;
853 // Symbol binding (bits 4 to 7).
854 elfcpp::STB binding_ : 4;
855 // Symbol visibility (bits 8 to 9).
856 elfcpp::STV visibility_ : 2;
857 // Rest of symbol st_other field (bits 10 to 15).
858 unsigned int nonvis_ : 6;
859 // The type of symbol (bits 16 to 18).
860 Source source_ : 3;
861 // True if this symbol always requires special target-specific
862 // handling (bit 19).
863 bool is_target_special_ : 1;
864 // True if this is the default version of the symbol (bit 20).
865 bool is_def_ : 1;
866 // True if this symbol really forwards to another symbol. This is
867 // used when we discover after the fact that two different entries
868 // in the hash table really refer to the same symbol. This will
869 // never be set for a symbol found in the hash table, but may be set
870 // for a symbol found in the list of symbols attached to an Object.
871 // It forwards to the symbol found in the forwarders_ map of
872 // Symbol_table (bit 21).
873 bool is_forwarder_ : 1;
874 // True if the symbol has an alias in the weak_aliases table in
875 // Symbol_table (bit 22).
876 bool has_alias_ : 1;
877 // True if this symbol needs to be in the dynamic symbol table (bit
878 // 23).
879 bool needs_dynsym_entry_ : 1;
880 // True if we've seen this symbol in a regular object (bit 24).
881 bool in_reg_ : 1;
882 // True if we've seen this symbol in a dynamic object (bit 25).
883 bool in_dyn_ : 1;
884 // True if the symbol has an entry in the PLT section (bit 26).
885 bool has_plt_offset_ : 1;
886 // True if this is a dynamic symbol which needs a special value in
887 // the dynamic symbol table (bit 27).
888 bool needs_dynsym_value_ : 1;
889 // True if there is a warning for this symbol (bit 28).
890 bool has_warning_ : 1;
891 // True if we are using a COPY reloc for this symbol, so that the
892 // real definition lives in a dynamic object (bit 29).
893 bool is_copied_from_dynobj_ : 1;
894 // True if this symbol was forced to local visibility by a version
895 // script (bit 30).
896 bool is_forced_local_ : 1;
897 // True if the field u_.from_object.shndx is an ordinary section
898 // index, not one of the special codes from SHN_LORESERVE to
899 // SHN_HIRESERVE (bit 31).
900 bool is_ordinary_shndx_ : 1;
901 // True if we've seen this symbol in a real ELF object.
902 bool in_real_elf_ : 1;
903 };
904
905 // The parts of a symbol which are size specific. Using a template
906 // derived class like this helps us use less space on a 32-bit system.
907
908 template<int size>
909 class Sized_symbol : public Symbol
910 {
911 public:
912 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
913 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
914
915 Sized_symbol()
916 { }
917
918 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
919 // section index, IS_ORDINARY is whether it is a normal section
920 // index rather than a special code.
921 template<bool big_endian>
922 void
923 init_object(const char *name, const char* version, Object* object,
924 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
925 bool is_ordinary);
926
927 // Initialize fields for an Output_data.
928 void
929 init_output_data(const char* name, const char* version, Output_data*,
930 Value_type value, Size_type symsize, elfcpp::STT,
931 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
932 bool offset_is_from_end);
933
934 // Initialize fields for an Output_segment.
935 void
936 init_output_segment(const char* name, const char* version, Output_segment*,
937 Value_type value, Size_type symsize, elfcpp::STT,
938 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
939 Segment_offset_base offset_base);
940
941 // Initialize fields for a constant.
942 void
943 init_constant(const char* name, const char* version, Value_type value,
944 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
945 unsigned char nonvis);
946
947 // Initialize fields for an undefined symbol.
948 void
949 init_undefined(const char* name, const char* version, elfcpp::STT,
950 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
951
952 // Override existing symbol.
953 template<bool big_endian>
954 void
955 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
956 bool is_ordinary, Object* object, const char* version);
957
958 // Override existing symbol with a special symbol.
959 void
960 override_with_special(const Sized_symbol<size>*);
961
962 // Return the symbol's value.
963 Value_type
964 value() const
965 { return this->value_; }
966
967 // Return the symbol's size (we can't call this 'size' because that
968 // is a template parameter).
969 Size_type
970 symsize() const
971 { return this->symsize_; }
972
973 // Set the symbol size. This is used when resolving common symbols.
974 void
975 set_symsize(Size_type symsize)
976 { this->symsize_ = symsize; }
977
978 // Set the symbol value. This is called when we store the final
979 // values of the symbols into the symbol table.
980 void
981 set_value(Value_type value)
982 { this->value_ = value; }
983
984 // Allocate a common symbol by giving it a location in the output
985 // file.
986 void
987 allocate_common(Output_data*, Value_type value);
988
989 private:
990 Sized_symbol(const Sized_symbol&);
991 Sized_symbol& operator=(const Sized_symbol&);
992
993 // Symbol value. Before Layout::finalize this is the offset in the
994 // input section. This is set to the final value during
995 // Layout::finalize.
996 Value_type value_;
997 // Symbol size.
998 Size_type symsize_;
999 };
1000
1001 // A struct describing a symbol defined by the linker, where the value
1002 // of the symbol is defined based on an output section. This is used
1003 // for symbols defined by the linker, like "_init_array_start".
1004
1005 struct Define_symbol_in_section
1006 {
1007 // The symbol name.
1008 const char* name;
1009 // The name of the output section with which this symbol should be
1010 // associated. If there is no output section with that name, the
1011 // symbol will be defined as zero.
1012 const char* output_section;
1013 // The offset of the symbol within the output section. This is an
1014 // offset from the start of the output section, unless start_at_end
1015 // is true, in which case this is an offset from the end of the
1016 // output section.
1017 uint64_t value;
1018 // The size of the symbol.
1019 uint64_t size;
1020 // The symbol type.
1021 elfcpp::STT type;
1022 // The symbol binding.
1023 elfcpp::STB binding;
1024 // The symbol visibility.
1025 elfcpp::STV visibility;
1026 // The rest of the st_other field.
1027 unsigned char nonvis;
1028 // If true, the value field is an offset from the end of the output
1029 // section.
1030 bool offset_is_from_end;
1031 // If true, this symbol is defined only if we see a reference to it.
1032 bool only_if_ref;
1033 };
1034
1035 // A struct describing a symbol defined by the linker, where the value
1036 // of the symbol is defined based on a segment. This is used for
1037 // symbols defined by the linker, like "_end". We describe the
1038 // segment with which the symbol should be associated by its
1039 // characteristics. If no segment meets these characteristics, the
1040 // symbol will be defined as zero. If there is more than one segment
1041 // which meets these characteristics, we will use the first one.
1042
1043 struct Define_symbol_in_segment
1044 {
1045 // The symbol name.
1046 const char* name;
1047 // The segment type where the symbol should be defined, typically
1048 // PT_LOAD.
1049 elfcpp::PT segment_type;
1050 // Bitmask of segment flags which must be set.
1051 elfcpp::PF segment_flags_set;
1052 // Bitmask of segment flags which must be clear.
1053 elfcpp::PF segment_flags_clear;
1054 // The offset of the symbol within the segment. The offset is
1055 // calculated from the position set by offset_base.
1056 uint64_t value;
1057 // The size of the symbol.
1058 uint64_t size;
1059 // The symbol type.
1060 elfcpp::STT type;
1061 // The symbol binding.
1062 elfcpp::STB binding;
1063 // The symbol visibility.
1064 elfcpp::STV visibility;
1065 // The rest of the st_other field.
1066 unsigned char nonvis;
1067 // The base from which we compute the offset.
1068 Symbol::Segment_offset_base offset_base;
1069 // If true, this symbol is defined only if we see a reference to it.
1070 bool only_if_ref;
1071 };
1072
1073 // This class manages warnings. Warnings are a GNU extension. When
1074 // we see a section named .gnu.warning.SYM in an object file, and if
1075 // we wind using the definition of SYM from that object file, then we
1076 // will issue a warning for any relocation against SYM from a
1077 // different object file. The text of the warning is the contents of
1078 // the section. This is not precisely the definition used by the old
1079 // GNU linker; the old GNU linker treated an occurrence of
1080 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1081 // would trigger a warning on any reference. However, it was
1082 // inconsistent in that a warning in a dynamic object only triggered
1083 // if there was no definition in a regular object. This linker is
1084 // different in that we only issue a warning if we use the symbol
1085 // definition from the same object file as the warning section.
1086
1087 class Warnings
1088 {
1089 public:
1090 Warnings()
1091 : warnings_()
1092 { }
1093
1094 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1095 // of the warning.
1096 void
1097 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1098 const std::string& warning);
1099
1100 // For each symbol for which we should give a warning, make a note
1101 // on the symbol.
1102 void
1103 note_warnings(Symbol_table* symtab);
1104
1105 // Issue a warning for a reference to SYM at RELINFO's location.
1106 template<int size, bool big_endian>
1107 void
1108 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1109 size_t relnum, off_t reloffset) const;
1110
1111 private:
1112 Warnings(const Warnings&);
1113 Warnings& operator=(const Warnings&);
1114
1115 // What we need to know to get the warning text.
1116 struct Warning_location
1117 {
1118 // The object the warning is in.
1119 Object* object;
1120 // The warning text.
1121 std::string text;
1122
1123 Warning_location()
1124 : object(NULL), text()
1125 { }
1126
1127 void
1128 set(Object* o, const std::string& t)
1129 {
1130 this->object = o;
1131 this->text = t;
1132 }
1133 };
1134
1135 // A mapping from warning symbol names (canonicalized in
1136 // Symbol_table's namepool_ field) to warning information.
1137 typedef Unordered_map<const char*, Warning_location> Warning_table;
1138
1139 Warning_table warnings_;
1140 };
1141
1142 // The main linker symbol table.
1143
1144 class Symbol_table
1145 {
1146 public:
1147 // COUNT is an estimate of how many symbosl will be inserted in the
1148 // symbol table. It's ok to put 0 if you don't know; a correct
1149 // guess will just save some CPU by reducing hashtable resizes.
1150 Symbol_table(unsigned int count, const Version_script_info& version_script);
1151
1152 ~Symbol_table();
1153
1154 void
1155 set_gc(Garbage_collection* gc)
1156 { this->gc_ = gc; }
1157
1158 Garbage_collection*
1159 gc()
1160 { return this->gc_; }
1161
1162 // During garbage collection, this keeps undefined symbols.
1163 void
1164 gc_mark_undef_symbols();
1165
1166 // During garbage collection, this ensures externally visible symbols
1167 // are not treated as garbage while building shared objects.
1168 void
1169 gc_mark_symbol_for_shlib(Symbol* sym);
1170
1171 // During garbage collection, this keeps sections that correspond to
1172 // symbols seen in dynamic objects.
1173 inline void
1174 gc_mark_dyn_syms(Symbol* sym);
1175
1176 // Add COUNT external symbols from the relocatable object RELOBJ to
1177 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1178 // offset in the symbol table of the first symbol, SYM_NAMES is
1179 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1180 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1181 // *DEFINED to the number of defined symbols.
1182 template<int size, bool big_endian>
1183 void
1184 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1185 const unsigned char* syms, size_t count,
1186 size_t symndx_offset, const char* sym_names,
1187 size_t sym_name_size,
1188 typename Sized_relobj<size, big_endian>::Symbols*,
1189 size_t* defined);
1190
1191 // Add one external symbol from the plugin object OBJ to the symbol table.
1192 // Returns a pointer to the resolved symbol in the symbol table.
1193 template<int size, bool big_endian>
1194 Symbol*
1195 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1196 const char* name, const char* ver,
1197 elfcpp::Sym<size, big_endian>* sym);
1198
1199 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1200 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1201 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1202 // symbol version data.
1203 template<int size, bool big_endian>
1204 void
1205 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1206 const unsigned char* syms, size_t count,
1207 const char* sym_names, size_t sym_name_size,
1208 const unsigned char* versym, size_t versym_size,
1209 const std::vector<const char*>*,
1210 typename Sized_relobj<size, big_endian>::Symbols*,
1211 size_t* defined);
1212
1213 // Define a special symbol based on an Output_data. It is a
1214 // multiple definition error if this symbol is already defined.
1215 Symbol*
1216 define_in_output_data(const char* name, const char* version,
1217 Output_data*, uint64_t value, uint64_t symsize,
1218 elfcpp::STT type, elfcpp::STB binding,
1219 elfcpp::STV visibility, unsigned char nonvis,
1220 bool offset_is_from_end, bool only_if_ref);
1221
1222 // Define a special symbol based on an Output_segment. It is a
1223 // multiple definition error if this symbol is already defined.
1224 Symbol*
1225 define_in_output_segment(const char* name, const char* version,
1226 Output_segment*, uint64_t value, uint64_t symsize,
1227 elfcpp::STT type, elfcpp::STB binding,
1228 elfcpp::STV visibility, unsigned char nonvis,
1229 Symbol::Segment_offset_base, bool only_if_ref);
1230
1231 // Define a special symbol with a constant value. It is a multiple
1232 // definition error if this symbol is already defined.
1233 Symbol*
1234 define_as_constant(const char* name, const char* version,
1235 uint64_t value, uint64_t symsize, elfcpp::STT type,
1236 elfcpp::STB binding, elfcpp::STV visibility,
1237 unsigned char nonvis, bool only_if_ref,
1238 bool force_override);
1239
1240 // Define a set of symbols in output sections. If ONLY_IF_REF is
1241 // true, only define them if they are referenced.
1242 void
1243 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1244 bool only_if_ref);
1245
1246 // Define a set of symbols in output segments. If ONLY_IF_REF is
1247 // true, only defined them if they are referenced.
1248 void
1249 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1250 bool only_if_ref);
1251
1252 // Define SYM using a COPY reloc. POSD is the Output_data where the
1253 // symbol should be defined--typically a .dyn.bss section. VALUE is
1254 // the offset within POSD.
1255 template<int size>
1256 void
1257 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1258 typename elfcpp::Elf_types<size>::Elf_Addr);
1259
1260 // Look up a symbol.
1261 Symbol*
1262 lookup(const char*, const char* version = NULL) const;
1263
1264 // Return the real symbol associated with the forwarder symbol FROM.
1265 Symbol*
1266 resolve_forwards(const Symbol* from) const;
1267
1268 // Return the sized version of a symbol in this table.
1269 template<int size>
1270 Sized_symbol<size>*
1271 get_sized_symbol(Symbol*) const;
1272
1273 template<int size>
1274 const Sized_symbol<size>*
1275 get_sized_symbol(const Symbol*) const;
1276
1277 // Return the count of undefined symbols seen.
1278 int
1279 saw_undefined() const
1280 { return this->saw_undefined_; }
1281
1282 // Allocate the common symbols
1283 void
1284 allocate_commons(Layout*, Mapfile*);
1285
1286 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1287 // of the warning.
1288 void
1289 add_warning(const char* name, Object* obj, const std::string& warning)
1290 { this->warnings_.add_warning(this, name, obj, warning); }
1291
1292 // Canonicalize a symbol name for use in the hash table.
1293 const char*
1294 canonicalize_name(const char* name)
1295 { return this->namepool_.add(name, true, NULL); }
1296
1297 // Possibly issue a warning for a reference to SYM at LOCATION which
1298 // is in OBJ.
1299 template<int size, bool big_endian>
1300 void
1301 issue_warning(const Symbol* sym,
1302 const Relocate_info<size, big_endian>* relinfo,
1303 size_t relnum, off_t reloffset) const
1304 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1305
1306 // Check candidate_odr_violations_ to find symbols with the same name
1307 // but apparently different definitions (different source-file/line-no).
1308 void
1309 detect_odr_violations(const Task*, const char* output_file_name) const;
1310
1311 // Add any undefined symbols named on the command line to the symbol
1312 // table.
1313 void
1314 add_undefined_symbols_from_command_line();
1315
1316 // SYM is defined using a COPY reloc. Return the dynamic object
1317 // where the original definition was found.
1318 Dynobj*
1319 get_copy_source(const Symbol* sym) const;
1320
1321 // Set the dynamic symbol indexes. INDEX is the index of the first
1322 // global dynamic symbol. Pointers to the symbols are stored into
1323 // the vector. The names are stored into the Stringpool. This
1324 // returns an updated dynamic symbol index.
1325 unsigned int
1326 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1327 Stringpool*, Versions*);
1328
1329 // Finalize the symbol table after we have set the final addresses
1330 // of all the input sections. This sets the final symbol indexes,
1331 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1332 // index of the first global symbol. OFF is the file offset of the
1333 // global symbol table, DYNOFF is the offset of the globals in the
1334 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1335 // global dynamic symbol, and DYNCOUNT is the number of global
1336 // dynamic symbols. This records the parameters, and returns the
1337 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1338 // local symbols.
1339 off_t
1340 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1341 Stringpool* pool, unsigned int *plocal_symcount);
1342
1343 // Write out the global symbols.
1344 void
1345 write_globals(const Stringpool*, const Stringpool*,
1346 Output_symtab_xindex*, Output_symtab_xindex*,
1347 Output_file*) const;
1348
1349 // Write out a section symbol. Return the updated offset.
1350 void
1351 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1352 Output_file*, off_t) const;
1353
1354 // Dump statistical information to stderr.
1355 void
1356 print_stats() const;
1357
1358 // Return the version script information.
1359 const Version_script_info&
1360 version_script() const
1361 { return version_script_; }
1362
1363 private:
1364 Symbol_table(const Symbol_table&);
1365 Symbol_table& operator=(const Symbol_table&);
1366
1367 // The type of the list of common symbols.
1368 typedef std::vector<Symbol*> Commons_type;
1369
1370 // The type of the symbol hash table.
1371
1372 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1373
1374 struct Symbol_table_hash
1375 {
1376 size_t
1377 operator()(const Symbol_table_key&) const;
1378 };
1379
1380 struct Symbol_table_eq
1381 {
1382 bool
1383 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1384 };
1385
1386 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1387 Symbol_table_eq> Symbol_table_type;
1388
1389 // Make FROM a forwarder symbol to TO.
1390 void
1391 make_forwarder(Symbol* from, Symbol* to);
1392
1393 // Add a symbol.
1394 template<int size, bool big_endian>
1395 Sized_symbol<size>*
1396 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1397 const char *version, Stringpool::Key version_key,
1398 bool def, const elfcpp::Sym<size, big_endian>& sym,
1399 unsigned int st_shndx, bool is_ordinary,
1400 unsigned int orig_st_shndx);
1401
1402 // Define a default symbol.
1403 template<int size, bool big_endian>
1404 void
1405 define_default_version(Sized_symbol<size>*, bool,
1406 Symbol_table_type::iterator);
1407
1408 // Resolve symbols.
1409 template<int size, bool big_endian>
1410 void
1411 resolve(Sized_symbol<size>* to,
1412 const elfcpp::Sym<size, big_endian>& sym,
1413 unsigned int st_shndx, bool is_ordinary,
1414 unsigned int orig_st_shndx,
1415 Object*, const char* version);
1416
1417 template<int size, bool big_endian>
1418 void
1419 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1420
1421 // Record that a symbol is forced to be local by a version script or
1422 // by visibility.
1423 void
1424 force_local(Symbol*);
1425
1426 // Adjust NAME and *NAME_KEY for wrapping.
1427 const char*
1428 wrap_symbol(Object* object, const char*, Stringpool::Key* name_key);
1429
1430 // Whether we should override a symbol, based on flags in
1431 // resolve.cc.
1432 static bool
1433 should_override(const Symbol*, unsigned int, Object*, bool*);
1434
1435 // Override a symbol.
1436 template<int size, bool big_endian>
1437 void
1438 override(Sized_symbol<size>* tosym,
1439 const elfcpp::Sym<size, big_endian>& fromsym,
1440 unsigned int st_shndx, bool is_ordinary,
1441 Object* object, const char* version);
1442
1443 // Whether we should override a symbol with a special symbol which
1444 // is automatically defined by the linker.
1445 static bool
1446 should_override_with_special(const Symbol*);
1447
1448 // Override a symbol with a special symbol.
1449 template<int size>
1450 void
1451 override_with_special(Sized_symbol<size>* tosym,
1452 const Sized_symbol<size>* fromsym);
1453
1454 // Record all weak alias sets for a dynamic object.
1455 template<int size>
1456 void
1457 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1458
1459 // Define a special symbol.
1460 template<int size, bool big_endian>
1461 Sized_symbol<size>*
1462 define_special_symbol(const char** pname, const char** pversion,
1463 bool only_if_ref, Sized_symbol<size>** poldsym,
1464 bool* resolve_oldsym);
1465
1466 // Define a symbol in an Output_data, sized version.
1467 template<int size>
1468 Sized_symbol<size>*
1469 do_define_in_output_data(const char* name, const char* version, Output_data*,
1470 typename elfcpp::Elf_types<size>::Elf_Addr value,
1471 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1472 elfcpp::STT type, elfcpp::STB binding,
1473 elfcpp::STV visibility, unsigned char nonvis,
1474 bool offset_is_from_end, bool only_if_ref);
1475
1476 // Define a symbol in an Output_segment, sized version.
1477 template<int size>
1478 Sized_symbol<size>*
1479 do_define_in_output_segment(
1480 const char* name, const char* version, Output_segment* os,
1481 typename elfcpp::Elf_types<size>::Elf_Addr value,
1482 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1483 elfcpp::STT type, elfcpp::STB binding,
1484 elfcpp::STV visibility, unsigned char nonvis,
1485 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1486
1487 // Define a symbol as a constant, sized version.
1488 template<int size>
1489 Sized_symbol<size>*
1490 do_define_as_constant(
1491 const char* name, const char* version,
1492 typename elfcpp::Elf_types<size>::Elf_Addr value,
1493 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1494 elfcpp::STT type, elfcpp::STB binding,
1495 elfcpp::STV visibility, unsigned char nonvis,
1496 bool only_if_ref, bool force_override);
1497
1498 // Add any undefined symbols named on the command line to the symbol
1499 // table, sized version.
1500 template<int size>
1501 void
1502 do_add_undefined_symbols_from_command_line();
1503
1504 // Allocate the common symbols, sized version.
1505 template<int size>
1506 void
1507 do_allocate_commons(Layout*, Mapfile*);
1508
1509 // Allocate the common symbols from one list.
1510 template<int size>
1511 void
1512 do_allocate_commons_list(Layout*, bool is_tls, Commons_type*, Mapfile*);
1513
1514 // Implement detect_odr_violations.
1515 template<int size, bool big_endian>
1516 void
1517 sized_detect_odr_violations() const;
1518
1519 // Finalize symbols specialized for size.
1520 template<int size>
1521 off_t
1522 sized_finalize(off_t, Stringpool*, unsigned int*);
1523
1524 // Finalize a symbol. Return whether it should be added to the
1525 // symbol table.
1526 template<int size>
1527 bool
1528 sized_finalize_symbol(Symbol*);
1529
1530 // Add a symbol the final symtab by setting its index.
1531 template<int size>
1532 void
1533 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1534
1535 // Write globals specialized for size and endianness.
1536 template<int size, bool big_endian>
1537 void
1538 sized_write_globals(const Stringpool*, const Stringpool*,
1539 Output_symtab_xindex*, Output_symtab_xindex*,
1540 Output_file*) const;
1541
1542 // Write out a symbol to P.
1543 template<int size, bool big_endian>
1544 void
1545 sized_write_symbol(Sized_symbol<size>*,
1546 typename elfcpp::Elf_types<size>::Elf_Addr value,
1547 unsigned int shndx,
1548 const Stringpool*, unsigned char* p) const;
1549
1550 // Possibly warn about an undefined symbol from a dynamic object.
1551 void
1552 warn_about_undefined_dynobj_symbol(Symbol*) const;
1553
1554 // Write out a section symbol, specialized for size and endianness.
1555 template<int size, bool big_endian>
1556 void
1557 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1558 Output_file*, off_t) const;
1559
1560 // The type of the list of symbols which have been forced local.
1561 typedef std::vector<Symbol*> Forced_locals;
1562
1563 // A map from symbols with COPY relocs to the dynamic objects where
1564 // they are defined.
1565 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1566
1567 // A map from symbol name (as a pointer into the namepool) to all
1568 // the locations the symbols is (weakly) defined (and certain other
1569 // conditions are met). This map will be used later to detect
1570 // possible One Definition Rule (ODR) violations.
1571 struct Symbol_location
1572 {
1573 Object* object; // Object where the symbol is defined.
1574 unsigned int shndx; // Section-in-object where the symbol is defined.
1575 off_t offset; // Offset-in-section where the symbol is defined.
1576 bool operator==(const Symbol_location& that) const
1577 {
1578 return (this->object == that.object
1579 && this->shndx == that.shndx
1580 && this->offset == that.offset);
1581 }
1582 };
1583
1584 struct Symbol_location_hash
1585 {
1586 size_t operator()(const Symbol_location& loc) const
1587 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1588 };
1589
1590 typedef Unordered_map<const char*,
1591 Unordered_set<Symbol_location, Symbol_location_hash> >
1592 Odr_map;
1593
1594 // We increment this every time we see a new undefined symbol, for
1595 // use in archive groups.
1596 int saw_undefined_;
1597 // The index of the first global symbol in the output file.
1598 unsigned int first_global_index_;
1599 // The file offset within the output symtab section where we should
1600 // write the table.
1601 off_t offset_;
1602 // The number of global symbols we want to write out.
1603 unsigned int output_count_;
1604 // The file offset of the global dynamic symbols, or 0 if none.
1605 off_t dynamic_offset_;
1606 // The index of the first global dynamic symbol.
1607 unsigned int first_dynamic_global_index_;
1608 // The number of global dynamic symbols, or 0 if none.
1609 unsigned int dynamic_count_;
1610 // The symbol hash table.
1611 Symbol_table_type table_;
1612 // A pool of symbol names. This is used for all global symbols.
1613 // Entries in the hash table point into this pool.
1614 Stringpool namepool_;
1615 // Forwarding symbols.
1616 Unordered_map<const Symbol*, Symbol*> forwarders_;
1617 // Weak aliases. A symbol in this list points to the next alias.
1618 // The aliases point to each other in a circular list.
1619 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1620 // We don't expect there to be very many common symbols, so we keep
1621 // a list of them. When we find a common symbol we add it to this
1622 // list. It is possible that by the time we process the list the
1623 // symbol is no longer a common symbol. It may also have become a
1624 // forwarder.
1625 Commons_type commons_;
1626 // This is like the commons_ field, except that it holds TLS common
1627 // symbols.
1628 Commons_type tls_commons_;
1629 // A list of symbols which have been forced to be local. We don't
1630 // expect there to be very many of them, so we keep a list of them
1631 // rather than walking the whole table to find them.
1632 Forced_locals forced_locals_;
1633 // Manage symbol warnings.
1634 Warnings warnings_;
1635 // Manage potential One Definition Rule (ODR) violations.
1636 Odr_map candidate_odr_violations_;
1637
1638 // When we emit a COPY reloc for a symbol, we define it in an
1639 // Output_data. When it's time to emit version information for it,
1640 // we need to know the dynamic object in which we found the original
1641 // definition. This maps symbols with COPY relocs to the dynamic
1642 // object where they were defined.
1643 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1644 // Information parsed from the version script, if any.
1645 const Version_script_info& version_script_;
1646 Garbage_collection* gc_;
1647 };
1648
1649 // We inline get_sized_symbol for efficiency.
1650
1651 template<int size>
1652 Sized_symbol<size>*
1653 Symbol_table::get_sized_symbol(Symbol* sym) const
1654 {
1655 gold_assert(size == parameters->target().get_size());
1656 return static_cast<Sized_symbol<size>*>(sym);
1657 }
1658
1659 template<int size>
1660 const Sized_symbol<size>*
1661 Symbol_table::get_sized_symbol(const Symbol* sym) const
1662 {
1663 gold_assert(size == parameters->target().get_size());
1664 return static_cast<const Sized_symbol<size>*>(sym);
1665 }
1666
1667 } // End namespace gold.
1668
1669 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.062897 seconds and 5 git commands to generate.