PR 10450
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 class Versions;
52 class Version_script_info;
53 class Input_objects;
54 class Output_data;
55 class Output_section;
56 class Output_segment;
57 class Output_file;
58 class Output_symtab_xindex;
59 class Garbage_collection;
60 class Icf;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return true for function symbol.
209 bool
210 is_func() const
211 {
212 return (this->type_ == elfcpp::STT_FUNC
213 || this->type_ == elfcpp::STT_GNU_IFUNC);
214 }
215
216 // Return the symbol visibility.
217 elfcpp::STV
218 visibility() const
219 { return this->visibility_; }
220
221 // Set the visibility.
222 void
223 set_visibility(elfcpp::STV visibility)
224 { this->visibility_ = visibility; }
225
226 // Override symbol visibility.
227 void
228 override_visibility(elfcpp::STV);
229
230 // Return the non-visibility part of the st_other field.
231 unsigned char
232 nonvis() const
233 { return this->nonvis_; }
234
235 // Return whether this symbol is a forwarder. This will never be
236 // true of a symbol found in the hash table, but may be true of
237 // symbol pointers attached to object files.
238 bool
239 is_forwarder() const
240 { return this->is_forwarder_; }
241
242 // Mark this symbol as a forwarder.
243 void
244 set_forwarder()
245 { this->is_forwarder_ = true; }
246
247 // Return whether this symbol has an alias in the weak aliases table
248 // in Symbol_table.
249 bool
250 has_alias() const
251 { return this->has_alias_; }
252
253 // Mark this symbol as having an alias.
254 void
255 set_has_alias()
256 { this->has_alias_ = true; }
257
258 // Return whether this symbol needs an entry in the dynamic symbol
259 // table.
260 bool
261 needs_dynsym_entry() const
262 {
263 return (this->needs_dynsym_entry_
264 || (this->in_reg()
265 && this->in_dyn()
266 && this->is_externally_visible()));
267 }
268
269 // Mark this symbol as needing an entry in the dynamic symbol table.
270 void
271 set_needs_dynsym_entry()
272 { this->needs_dynsym_entry_ = true; }
273
274 // Return whether this symbol should be added to the dynamic symbol
275 // table.
276 bool
277 should_add_dynsym_entry() const;
278
279 // Return whether this symbol has been seen in a regular object.
280 bool
281 in_reg() const
282 { return this->in_reg_; }
283
284 // Mark this symbol as having been seen in a regular object.
285 void
286 set_in_reg()
287 { this->in_reg_ = true; }
288
289 // Return whether this symbol has been seen in a dynamic object.
290 bool
291 in_dyn() const
292 { return this->in_dyn_; }
293
294 // Mark this symbol as having been seen in a dynamic object.
295 void
296 set_in_dyn()
297 { this->in_dyn_ = true; }
298
299 // Return whether this symbol has been seen in a real ELF object.
300 // (IN_REG will return TRUE if the symbol has been seen in either
301 // a real ELF object or an object claimed by a plugin.)
302 bool
303 in_real_elf() const
304 { return this->in_real_elf_; }
305
306 // Mark this symbol as having been seen in a real ELF object.
307 void
308 set_in_real_elf()
309 { this->in_real_elf_ = true; }
310
311 // Return the index of this symbol in the output file symbol table.
312 // A value of -1U means that this symbol is not going into the
313 // output file. This starts out as zero, and is set to a non-zero
314 // value by Symbol_table::finalize. It is an error to ask for the
315 // symbol table index before it has been set.
316 unsigned int
317 symtab_index() const
318 {
319 gold_assert(this->symtab_index_ != 0);
320 return this->symtab_index_;
321 }
322
323 // Set the index of the symbol in the output file symbol table.
324 void
325 set_symtab_index(unsigned int index)
326 {
327 gold_assert(index != 0);
328 this->symtab_index_ = index;
329 }
330
331 // Return whether this symbol already has an index in the output
332 // file symbol table.
333 bool
334 has_symtab_index() const
335 { return this->symtab_index_ != 0; }
336
337 // Return the index of this symbol in the dynamic symbol table. A
338 // value of -1U means that this symbol is not going into the dynamic
339 // symbol table. This starts out as zero, and is set to a non-zero
340 // during Layout::finalize. It is an error to ask for the dynamic
341 // symbol table index before it has been set.
342 unsigned int
343 dynsym_index() const
344 {
345 gold_assert(this->dynsym_index_ != 0);
346 return this->dynsym_index_;
347 }
348
349 // Set the index of the symbol in the dynamic symbol table.
350 void
351 set_dynsym_index(unsigned int index)
352 {
353 gold_assert(index != 0);
354 this->dynsym_index_ = index;
355 }
356
357 // Return whether this symbol already has an index in the dynamic
358 // symbol table.
359 bool
360 has_dynsym_index() const
361 { return this->dynsym_index_ != 0; }
362
363 // Return whether this symbol has an entry in the GOT section.
364 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
365 bool
366 has_got_offset(unsigned int got_type) const
367 { return this->got_offsets_.get_offset(got_type) != -1U; }
368
369 // Return the offset into the GOT section of this symbol.
370 unsigned int
371 got_offset(unsigned int got_type) const
372 {
373 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
374 gold_assert(got_offset != -1U);
375 return got_offset;
376 }
377
378 // Set the GOT offset of this symbol.
379 void
380 set_got_offset(unsigned int got_type, unsigned int got_offset)
381 { this->got_offsets_.set_offset(got_type, got_offset); }
382
383 // Return whether this symbol has an entry in the PLT section.
384 bool
385 has_plt_offset() const
386 { return this->has_plt_offset_; }
387
388 // Return the offset into the PLT section of this symbol.
389 unsigned int
390 plt_offset() const
391 {
392 gold_assert(this->has_plt_offset());
393 return this->plt_offset_;
394 }
395
396 // Set the PLT offset of this symbol.
397 void
398 set_plt_offset(unsigned int plt_offset)
399 {
400 this->has_plt_offset_ = true;
401 this->plt_offset_ = plt_offset;
402 }
403
404 // Return whether this dynamic symbol needs a special value in the
405 // dynamic symbol table.
406 bool
407 needs_dynsym_value() const
408 { return this->needs_dynsym_value_; }
409
410 // Set that this dynamic symbol needs a special value in the dynamic
411 // symbol table.
412 void
413 set_needs_dynsym_value()
414 {
415 gold_assert(this->object()->is_dynamic());
416 this->needs_dynsym_value_ = true;
417 }
418
419 // Return true if the final value of this symbol is known at link
420 // time.
421 bool
422 final_value_is_known() const;
423
424 // Return true if SHNDX represents a common symbol. This depends on
425 // the target.
426 static bool
427 is_common_shndx(unsigned int shndx);
428
429 // Return whether this is a defined symbol (not undefined or
430 // common).
431 bool
432 is_defined() const
433 {
434 bool is_ordinary;
435 if (this->source_ != FROM_OBJECT)
436 return this->source_ != IS_UNDEFINED;
437 unsigned int shndx = this->shndx(&is_ordinary);
438 return (is_ordinary
439 ? shndx != elfcpp::SHN_UNDEF
440 : !Symbol::is_common_shndx(shndx));
441 }
442
443 // Return true if this symbol is from a dynamic object.
444 bool
445 is_from_dynobj() const
446 {
447 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
448 }
449
450 // Return whether this is an undefined symbol.
451 bool
452 is_undefined() const
453 {
454 bool is_ordinary;
455 return ((this->source_ == FROM_OBJECT
456 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
457 && is_ordinary)
458 || this->source_ == IS_UNDEFINED);
459 }
460
461 // Return whether this is a weak undefined symbol.
462 bool
463 is_weak_undefined() const
464 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
465
466 // Return whether this is an absolute symbol.
467 bool
468 is_absolute() const
469 {
470 bool is_ordinary;
471 return ((this->source_ == FROM_OBJECT
472 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
473 && !is_ordinary)
474 || this->source_ == IS_CONSTANT);
475 }
476
477 // Return whether this is a common symbol.
478 bool
479 is_common() const
480 {
481 if (this->type_ == elfcpp::STT_COMMON)
482 return true;
483 if (this->source_ != FROM_OBJECT)
484 return false;
485 bool is_ordinary;
486 unsigned int shndx = this->shndx(&is_ordinary);
487 return !is_ordinary && Symbol::is_common_shndx(shndx);
488 }
489
490 // Return whether this symbol can be seen outside this object.
491 bool
492 is_externally_visible() const
493 {
494 return (this->visibility_ == elfcpp::STV_DEFAULT
495 || this->visibility_ == elfcpp::STV_PROTECTED);
496 }
497
498 // Return true if this symbol can be preempted by a definition in
499 // another link unit.
500 bool
501 is_preemptible() const
502 {
503 // It doesn't make sense to ask whether a symbol defined in
504 // another object is preemptible.
505 gold_assert(!this->is_from_dynobj());
506
507 // It doesn't make sense to ask whether an undefined symbol
508 // is preemptible.
509 gold_assert(!this->is_undefined());
510
511 // If a symbol does not have default visibility, it can not be
512 // seen outside this link unit and therefore is not preemptible.
513 if (this->visibility_ != elfcpp::STV_DEFAULT)
514 return false;
515
516 // If this symbol has been forced to be a local symbol by a
517 // version script, then it is not visible outside this link unit
518 // and is not preemptible.
519 if (this->is_forced_local_)
520 return false;
521
522 // If we are not producing a shared library, then nothing is
523 // preemptible.
524 if (!parameters->options().shared())
525 return false;
526
527 // If the user used -Bsymbolic, then nothing is preemptible.
528 if (parameters->options().Bsymbolic())
529 return false;
530
531 // If the user used -Bsymbolic-functions, then functions are not
532 // preemptible. We explicitly check for not being STT_OBJECT,
533 // rather than for being STT_FUNC, because that is what the GNU
534 // linker does.
535 if (this->type() != elfcpp::STT_OBJECT
536 && parameters->options().Bsymbolic_functions())
537 return false;
538
539 // Otherwise the symbol is preemptible.
540 return true;
541 }
542
543 // Return true if this symbol is a function that needs a PLT entry.
544 // If the symbol is defined in a dynamic object or if it is subject
545 // to pre-emption, we need to make a PLT entry. If we're doing a
546 // static link or a -pie link, we don't create PLT entries.
547 bool
548 needs_plt_entry() const
549 {
550 // An undefined symbol from an executable does not need a PLT entry.
551 if (this->is_undefined() && !parameters->options().shared())
552 return false;
553
554 return (!parameters->doing_static_link()
555 && !parameters->options().pie()
556 && this->is_func()
557 && (this->is_from_dynobj()
558 || this->is_undefined()
559 || this->is_preemptible()));
560 }
561
562 // When determining whether a reference to a symbol needs a dynamic
563 // relocation, we need to know several things about the reference.
564 // These flags may be or'ed together.
565 enum Reference_flags
566 {
567 // Reference to the symbol's absolute address.
568 ABSOLUTE_REF = 1,
569 // A non-PIC reference.
570 NON_PIC_REF = 2,
571 // A function call.
572 FUNCTION_CALL = 4
573 };
574
575 // Given a direct absolute or pc-relative static relocation against
576 // the global symbol, this function returns whether a dynamic relocation
577 // is needed.
578
579 bool
580 needs_dynamic_reloc(int flags) const
581 {
582 // No dynamic relocations in a static link!
583 if (parameters->doing_static_link())
584 return false;
585
586 // A reference to an undefined symbol from an executable should be
587 // statically resolved to 0, and does not need a dynamic relocation.
588 // This matches gnu ld behavior.
589 if (this->is_undefined() && !parameters->options().shared())
590 return false;
591
592 // A reference to an absolute symbol does not need a dynamic relocation.
593 if (this->is_absolute())
594 return false;
595
596 // An absolute reference within a position-independent output file
597 // will need a dynamic relocation.
598 if ((flags & ABSOLUTE_REF)
599 && parameters->options().output_is_position_independent())
600 return true;
601
602 // A function call that can branch to a local PLT entry does not need
603 // a dynamic relocation. A non-pic pc-relative function call in a
604 // shared library cannot use a PLT entry.
605 if ((flags & FUNCTION_CALL)
606 && this->has_plt_offset()
607 && !((flags & NON_PIC_REF) && parameters->options().shared()))
608 return false;
609
610 // A reference to any PLT entry in a non-position-independent executable
611 // does not need a dynamic relocation.
612 if (!parameters->options().output_is_position_independent()
613 && this->has_plt_offset())
614 return false;
615
616 // A reference to a symbol defined in a dynamic object or to a
617 // symbol that is preemptible will need a dynamic relocation.
618 if (this->is_from_dynobj()
619 || this->is_undefined()
620 || this->is_preemptible())
621 return true;
622
623 // For all other cases, return FALSE.
624 return false;
625 }
626
627 // Whether we should use the PLT offset associated with a symbol for
628 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
629 // reloc--the same set of relocs for which we would pass NON_PIC_REF
630 // to the needs_dynamic_reloc function.
631
632 bool
633 use_plt_offset(bool is_non_pic_reference) const
634 {
635 // If the symbol doesn't have a PLT offset, then naturally we
636 // don't want to use it.
637 if (!this->has_plt_offset())
638 return false;
639
640 // If we are going to generate a dynamic relocation, then we will
641 // wind up using that, so no need to use the PLT entry.
642 if (this->needs_dynamic_reloc(FUNCTION_CALL
643 | (is_non_pic_reference
644 ? NON_PIC_REF
645 : 0)))
646 return false;
647
648 // If the symbol is from a dynamic object, we need to use the PLT
649 // entry.
650 if (this->is_from_dynobj())
651 return true;
652
653 // If we are generating a shared object, and this symbol is
654 // undefined or preemptible, we need to use the PLT entry.
655 if (parameters->options().shared()
656 && (this->is_undefined() || this->is_preemptible()))
657 return true;
658
659 // If this is a weak undefined symbol, we need to use the PLT
660 // entry; the symbol may be defined by a library loaded at
661 // runtime.
662 if (this->is_weak_undefined())
663 return true;
664
665 // Otherwise we can use the regular definition.
666 return false;
667 }
668
669 // Given a direct absolute static relocation against
670 // the global symbol, where a dynamic relocation is needed, this
671 // function returns whether a relative dynamic relocation can be used.
672 // The caller must determine separately whether the static relocation
673 // is compatible with a relative relocation.
674
675 bool
676 can_use_relative_reloc(bool is_function_call) const
677 {
678 // A function call that can branch to a local PLT entry can
679 // use a RELATIVE relocation.
680 if (is_function_call && this->has_plt_offset())
681 return true;
682
683 // A reference to a symbol defined in a dynamic object or to a
684 // symbol that is preemptible can not use a RELATIVE relocaiton.
685 if (this->is_from_dynobj()
686 || this->is_undefined()
687 || this->is_preemptible())
688 return false;
689
690 // For all other cases, return TRUE.
691 return true;
692 }
693
694 // Return the output section where this symbol is defined. Return
695 // NULL if the symbol has an absolute value.
696 Output_section*
697 output_section() const;
698
699 // Set the symbol's output section. This is used for symbols
700 // defined in scripts. This should only be called after the symbol
701 // table has been finalized.
702 void
703 set_output_section(Output_section*);
704
705 // Return whether there should be a warning for references to this
706 // symbol.
707 bool
708 has_warning() const
709 { return this->has_warning_; }
710
711 // Mark this symbol as having a warning.
712 void
713 set_has_warning()
714 { this->has_warning_ = true; }
715
716 // Return whether this symbol is defined by a COPY reloc from a
717 // dynamic object.
718 bool
719 is_copied_from_dynobj() const
720 { return this->is_copied_from_dynobj_; }
721
722 // Mark this symbol as defined by a COPY reloc.
723 void
724 set_is_copied_from_dynobj()
725 { this->is_copied_from_dynobj_ = true; }
726
727 // Return whether this symbol is forced to visibility STB_LOCAL
728 // by a "local:" entry in a version script.
729 bool
730 is_forced_local() const
731 { return this->is_forced_local_; }
732
733 // Mark this symbol as forced to STB_LOCAL visibility.
734 void
735 set_is_forced_local()
736 { this->is_forced_local_ = true; }
737
738 // Return true if this may need a COPY relocation.
739 // References from an executable object to non-function symbols
740 // defined in a dynamic object may need a COPY relocation.
741 bool
742 may_need_copy_reloc() const
743 {
744 return (!parameters->options().shared()
745 && parameters->options().copyreloc()
746 && this->is_from_dynobj()
747 && !this->is_func());
748 }
749
750 protected:
751 // Instances of this class should always be created at a specific
752 // size.
753 Symbol()
754 { memset(this, 0, sizeof *this); }
755
756 // Initialize the general fields.
757 void
758 init_fields(const char* name, const char* version,
759 elfcpp::STT type, elfcpp::STB binding,
760 elfcpp::STV visibility, unsigned char nonvis);
761
762 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
763 // section index, IS_ORDINARY is whether it is a normal section
764 // index rather than a special code.
765 template<int size, bool big_endian>
766 void
767 init_base_object(const char *name, const char* version, Object* object,
768 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
769 bool is_ordinary);
770
771 // Initialize fields for an Output_data.
772 void
773 init_base_output_data(const char* name, const char* version, Output_data*,
774 elfcpp::STT, elfcpp::STB, elfcpp::STV,
775 unsigned char nonvis, bool offset_is_from_end);
776
777 // Initialize fields for an Output_segment.
778 void
779 init_base_output_segment(const char* name, const char* version,
780 Output_segment* os, elfcpp::STT type,
781 elfcpp::STB binding, elfcpp::STV visibility,
782 unsigned char nonvis,
783 Segment_offset_base offset_base);
784
785 // Initialize fields for a constant.
786 void
787 init_base_constant(const char* name, const char* version, elfcpp::STT type,
788 elfcpp::STB binding, elfcpp::STV visibility,
789 unsigned char nonvis);
790
791 // Initialize fields for an undefined symbol.
792 void
793 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
794 elfcpp::STB binding, elfcpp::STV visibility,
795 unsigned char nonvis);
796
797 // Override existing symbol.
798 template<int size, bool big_endian>
799 void
800 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
801 bool is_ordinary, Object* object, const char* version);
802
803 // Override existing symbol with a special symbol.
804 void
805 override_base_with_special(const Symbol* from);
806
807 // Override symbol version.
808 void
809 override_version(const char* version);
810
811 // Allocate a common symbol by giving it a location in the output
812 // file.
813 void
814 allocate_base_common(Output_data*);
815
816 private:
817 Symbol(const Symbol&);
818 Symbol& operator=(const Symbol&);
819
820 // Symbol name (expected to point into a Stringpool).
821 const char* name_;
822 // Symbol version (expected to point into a Stringpool). This may
823 // be NULL.
824 const char* version_;
825
826 union
827 {
828 // This struct is used if SOURCE_ == FROM_OBJECT.
829 struct
830 {
831 // Object in which symbol is defined, or in which it was first
832 // seen.
833 Object* object;
834 // Section number in object_ in which symbol is defined.
835 unsigned int shndx;
836 } from_object;
837
838 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
839 struct
840 {
841 // Output_data in which symbol is defined. Before
842 // Layout::finalize the symbol's value is an offset within the
843 // Output_data.
844 Output_data* output_data;
845 // True if the offset is from the end, false if the offset is
846 // from the beginning.
847 bool offset_is_from_end;
848 } in_output_data;
849
850 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
851 struct
852 {
853 // Output_segment in which the symbol is defined. Before
854 // Layout::finalize the symbol's value is an offset.
855 Output_segment* output_segment;
856 // The base to use for the offset before Layout::finalize.
857 Segment_offset_base offset_base;
858 } in_output_segment;
859 } u_;
860
861 // The index of this symbol in the output file. If the symbol is
862 // not going into the output file, this value is -1U. This field
863 // starts as always holding zero. It is set to a non-zero value by
864 // Symbol_table::finalize.
865 unsigned int symtab_index_;
866
867 // The index of this symbol in the dynamic symbol table. If the
868 // symbol is not going into the dynamic symbol table, this value is
869 // -1U. This field starts as always holding zero. It is set to a
870 // non-zero value during Layout::finalize.
871 unsigned int dynsym_index_;
872
873 // If this symbol has an entry in the GOT section (has_got_offset_
874 // is true), this holds the offset from the start of the GOT section.
875 // A symbol may have more than one GOT offset (e.g., when mixing
876 // modules compiled with two different TLS models), but will usually
877 // have at most one.
878 Got_offset_list got_offsets_;
879
880 // If this symbol has an entry in the PLT section (has_plt_offset_
881 // is true), then this is the offset from the start of the PLT
882 // section.
883 unsigned int plt_offset_;
884
885 // Symbol type (bits 0 to 3).
886 elfcpp::STT type_ : 4;
887 // Symbol binding (bits 4 to 7).
888 elfcpp::STB binding_ : 4;
889 // Symbol visibility (bits 8 to 9).
890 elfcpp::STV visibility_ : 2;
891 // Rest of symbol st_other field (bits 10 to 15).
892 unsigned int nonvis_ : 6;
893 // The type of symbol (bits 16 to 18).
894 Source source_ : 3;
895 // True if this symbol always requires special target-specific
896 // handling (bit 19).
897 bool is_target_special_ : 1;
898 // True if this is the default version of the symbol (bit 20).
899 bool is_def_ : 1;
900 // True if this symbol really forwards to another symbol. This is
901 // used when we discover after the fact that two different entries
902 // in the hash table really refer to the same symbol. This will
903 // never be set for a symbol found in the hash table, but may be set
904 // for a symbol found in the list of symbols attached to an Object.
905 // It forwards to the symbol found in the forwarders_ map of
906 // Symbol_table (bit 21).
907 bool is_forwarder_ : 1;
908 // True if the symbol has an alias in the weak_aliases table in
909 // Symbol_table (bit 22).
910 bool has_alias_ : 1;
911 // True if this symbol needs to be in the dynamic symbol table (bit
912 // 23).
913 bool needs_dynsym_entry_ : 1;
914 // True if we've seen this symbol in a regular object (bit 24).
915 bool in_reg_ : 1;
916 // True if we've seen this symbol in a dynamic object (bit 25).
917 bool in_dyn_ : 1;
918 // True if the symbol has an entry in the PLT section (bit 26).
919 bool has_plt_offset_ : 1;
920 // True if this is a dynamic symbol which needs a special value in
921 // the dynamic symbol table (bit 27).
922 bool needs_dynsym_value_ : 1;
923 // True if there is a warning for this symbol (bit 28).
924 bool has_warning_ : 1;
925 // True if we are using a COPY reloc for this symbol, so that the
926 // real definition lives in a dynamic object (bit 29).
927 bool is_copied_from_dynobj_ : 1;
928 // True if this symbol was forced to local visibility by a version
929 // script (bit 30).
930 bool is_forced_local_ : 1;
931 // True if the field u_.from_object.shndx is an ordinary section
932 // index, not one of the special codes from SHN_LORESERVE to
933 // SHN_HIRESERVE (bit 31).
934 bool is_ordinary_shndx_ : 1;
935 // True if we've seen this symbol in a real ELF object.
936 bool in_real_elf_ : 1;
937 };
938
939 // The parts of a symbol which are size specific. Using a template
940 // derived class like this helps us use less space on a 32-bit system.
941
942 template<int size>
943 class Sized_symbol : public Symbol
944 {
945 public:
946 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
947 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
948
949 Sized_symbol()
950 { }
951
952 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
953 // section index, IS_ORDINARY is whether it is a normal section
954 // index rather than a special code.
955 template<bool big_endian>
956 void
957 init_object(const char *name, const char* version, Object* object,
958 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
959 bool is_ordinary);
960
961 // Initialize fields for an Output_data.
962 void
963 init_output_data(const char* name, const char* version, Output_data*,
964 Value_type value, Size_type symsize, elfcpp::STT,
965 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
966 bool offset_is_from_end);
967
968 // Initialize fields for an Output_segment.
969 void
970 init_output_segment(const char* name, const char* version, Output_segment*,
971 Value_type value, Size_type symsize, elfcpp::STT,
972 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
973 Segment_offset_base offset_base);
974
975 // Initialize fields for a constant.
976 void
977 init_constant(const char* name, const char* version, Value_type value,
978 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
979 unsigned char nonvis);
980
981 // Initialize fields for an undefined symbol.
982 void
983 init_undefined(const char* name, const char* version, elfcpp::STT,
984 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
985
986 // Override existing symbol.
987 template<bool big_endian>
988 void
989 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
990 bool is_ordinary, Object* object, const char* version);
991
992 // Override existing symbol with a special symbol.
993 void
994 override_with_special(const Sized_symbol<size>*);
995
996 // Return the symbol's value.
997 Value_type
998 value() const
999 { return this->value_; }
1000
1001 // Return the symbol's size (we can't call this 'size' because that
1002 // is a template parameter).
1003 Size_type
1004 symsize() const
1005 { return this->symsize_; }
1006
1007 // Set the symbol size. This is used when resolving common symbols.
1008 void
1009 set_symsize(Size_type symsize)
1010 { this->symsize_ = symsize; }
1011
1012 // Set the symbol value. This is called when we store the final
1013 // values of the symbols into the symbol table.
1014 void
1015 set_value(Value_type value)
1016 { this->value_ = value; }
1017
1018 // Allocate a common symbol by giving it a location in the output
1019 // file.
1020 void
1021 allocate_common(Output_data*, Value_type value);
1022
1023 private:
1024 Sized_symbol(const Sized_symbol&);
1025 Sized_symbol& operator=(const Sized_symbol&);
1026
1027 // Symbol value. Before Layout::finalize this is the offset in the
1028 // input section. This is set to the final value during
1029 // Layout::finalize.
1030 Value_type value_;
1031 // Symbol size.
1032 Size_type symsize_;
1033 };
1034
1035 // A struct describing a symbol defined by the linker, where the value
1036 // of the symbol is defined based on an output section. This is used
1037 // for symbols defined by the linker, like "_init_array_start".
1038
1039 struct Define_symbol_in_section
1040 {
1041 // The symbol name.
1042 const char* name;
1043 // The name of the output section with which this symbol should be
1044 // associated. If there is no output section with that name, the
1045 // symbol will be defined as zero.
1046 const char* output_section;
1047 // The offset of the symbol within the output section. This is an
1048 // offset from the start of the output section, unless start_at_end
1049 // is true, in which case this is an offset from the end of the
1050 // output section.
1051 uint64_t value;
1052 // The size of the symbol.
1053 uint64_t size;
1054 // The symbol type.
1055 elfcpp::STT type;
1056 // The symbol binding.
1057 elfcpp::STB binding;
1058 // The symbol visibility.
1059 elfcpp::STV visibility;
1060 // The rest of the st_other field.
1061 unsigned char nonvis;
1062 // If true, the value field is an offset from the end of the output
1063 // section.
1064 bool offset_is_from_end;
1065 // If true, this symbol is defined only if we see a reference to it.
1066 bool only_if_ref;
1067 };
1068
1069 // A struct describing a symbol defined by the linker, where the value
1070 // of the symbol is defined based on a segment. This is used for
1071 // symbols defined by the linker, like "_end". We describe the
1072 // segment with which the symbol should be associated by its
1073 // characteristics. If no segment meets these characteristics, the
1074 // symbol will be defined as zero. If there is more than one segment
1075 // which meets these characteristics, we will use the first one.
1076
1077 struct Define_symbol_in_segment
1078 {
1079 // The symbol name.
1080 const char* name;
1081 // The segment type where the symbol should be defined, typically
1082 // PT_LOAD.
1083 elfcpp::PT segment_type;
1084 // Bitmask of segment flags which must be set.
1085 elfcpp::PF segment_flags_set;
1086 // Bitmask of segment flags which must be clear.
1087 elfcpp::PF segment_flags_clear;
1088 // The offset of the symbol within the segment. The offset is
1089 // calculated from the position set by offset_base.
1090 uint64_t value;
1091 // The size of the symbol.
1092 uint64_t size;
1093 // The symbol type.
1094 elfcpp::STT type;
1095 // The symbol binding.
1096 elfcpp::STB binding;
1097 // The symbol visibility.
1098 elfcpp::STV visibility;
1099 // The rest of the st_other field.
1100 unsigned char nonvis;
1101 // The base from which we compute the offset.
1102 Symbol::Segment_offset_base offset_base;
1103 // If true, this symbol is defined only if we see a reference to it.
1104 bool only_if_ref;
1105 };
1106
1107 // This class manages warnings. Warnings are a GNU extension. When
1108 // we see a section named .gnu.warning.SYM in an object file, and if
1109 // we wind using the definition of SYM from that object file, then we
1110 // will issue a warning for any relocation against SYM from a
1111 // different object file. The text of the warning is the contents of
1112 // the section. This is not precisely the definition used by the old
1113 // GNU linker; the old GNU linker treated an occurrence of
1114 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1115 // would trigger a warning on any reference. However, it was
1116 // inconsistent in that a warning in a dynamic object only triggered
1117 // if there was no definition in a regular object. This linker is
1118 // different in that we only issue a warning if we use the symbol
1119 // definition from the same object file as the warning section.
1120
1121 class Warnings
1122 {
1123 public:
1124 Warnings()
1125 : warnings_()
1126 { }
1127
1128 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1129 // of the warning.
1130 void
1131 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1132 const std::string& warning);
1133
1134 // For each symbol for which we should give a warning, make a note
1135 // on the symbol.
1136 void
1137 note_warnings(Symbol_table* symtab);
1138
1139 // Issue a warning for a reference to SYM at RELINFO's location.
1140 template<int size, bool big_endian>
1141 void
1142 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1143 size_t relnum, off_t reloffset) const;
1144
1145 private:
1146 Warnings(const Warnings&);
1147 Warnings& operator=(const Warnings&);
1148
1149 // What we need to know to get the warning text.
1150 struct Warning_location
1151 {
1152 // The object the warning is in.
1153 Object* object;
1154 // The warning text.
1155 std::string text;
1156
1157 Warning_location()
1158 : object(NULL), text()
1159 { }
1160
1161 void
1162 set(Object* o, const std::string& t)
1163 {
1164 this->object = o;
1165 this->text = t;
1166 }
1167 };
1168
1169 // A mapping from warning symbol names (canonicalized in
1170 // Symbol_table's namepool_ field) to warning information.
1171 typedef Unordered_map<const char*, Warning_location> Warning_table;
1172
1173 Warning_table warnings_;
1174 };
1175
1176 // The main linker symbol table.
1177
1178 class Symbol_table
1179 {
1180 public:
1181 // The different places where a symbol definition can come from.
1182 enum Defined
1183 {
1184 // Defined in an object file--the normal case.
1185 OBJECT,
1186 // Defined for a COPY reloc.
1187 COPY,
1188 // Defined on the command line using --defsym.
1189 DEFSYM,
1190 // Defined (so to speak) on the command line using -u.
1191 UNDEFINED,
1192 // Defined in a linker script.
1193 SCRIPT,
1194 // Predefined by the linker.
1195 PREDEFINED,
1196 };
1197
1198 // COUNT is an estimate of how many symbosl will be inserted in the
1199 // symbol table. It's ok to put 0 if you don't know; a correct
1200 // guess will just save some CPU by reducing hashtable resizes.
1201 Symbol_table(unsigned int count, const Version_script_info& version_script);
1202
1203 ~Symbol_table();
1204
1205 void
1206 set_icf(Icf* icf)
1207 { this->icf_ = icf;}
1208
1209 Icf*
1210 icf() const
1211 { return this->icf_; }
1212
1213 // Returns true if ICF determined that this is a duplicate section.
1214 bool
1215 is_section_folded(Object* obj, unsigned int shndx) const;
1216
1217 void
1218 set_gc(Garbage_collection* gc)
1219 { this->gc_ = gc; }
1220
1221 Garbage_collection*
1222 gc() const
1223 { return this->gc_; }
1224
1225 // During garbage collection, this keeps undefined symbols.
1226 void
1227 gc_mark_undef_symbols();
1228
1229 // During garbage collection, this ensures externally visible symbols
1230 // are not treated as garbage while building shared objects.
1231 void
1232 gc_mark_symbol_for_shlib(Symbol* sym);
1233
1234 // During garbage collection, this keeps sections that correspond to
1235 // symbols seen in dynamic objects.
1236 inline void
1237 gc_mark_dyn_syms(Symbol* sym);
1238
1239 // Add COUNT external symbols from the relocatable object RELOBJ to
1240 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1241 // offset in the symbol table of the first symbol, SYM_NAMES is
1242 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1243 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1244 // *DEFINED to the number of defined symbols.
1245 template<int size, bool big_endian>
1246 void
1247 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1248 const unsigned char* syms, size_t count,
1249 size_t symndx_offset, const char* sym_names,
1250 size_t sym_name_size,
1251 typename Sized_relobj<size, big_endian>::Symbols*,
1252 size_t* defined);
1253
1254 // Add one external symbol from the plugin object OBJ to the symbol table.
1255 // Returns a pointer to the resolved symbol in the symbol table.
1256 template<int size, bool big_endian>
1257 Symbol*
1258 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1259 const char* name, const char* ver,
1260 elfcpp::Sym<size, big_endian>* sym);
1261
1262 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1263 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1264 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1265 // symbol version data.
1266 template<int size, bool big_endian>
1267 void
1268 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1269 const unsigned char* syms, size_t count,
1270 const char* sym_names, size_t sym_name_size,
1271 const unsigned char* versym, size_t versym_size,
1272 const std::vector<const char*>*,
1273 typename Sized_relobj<size, big_endian>::Symbols*,
1274 size_t* defined);
1275
1276 // Define a special symbol based on an Output_data. It is a
1277 // multiple definition error if this symbol is already defined.
1278 Symbol*
1279 define_in_output_data(const char* name, const char* version, Defined,
1280 Output_data*, uint64_t value, uint64_t symsize,
1281 elfcpp::STT type, elfcpp::STB binding,
1282 elfcpp::STV visibility, unsigned char nonvis,
1283 bool offset_is_from_end, bool only_if_ref);
1284
1285 // Define a special symbol based on an Output_segment. It is a
1286 // multiple definition error if this symbol is already defined.
1287 Symbol*
1288 define_in_output_segment(const char* name, const char* version, Defined,
1289 Output_segment*, uint64_t value, uint64_t symsize,
1290 elfcpp::STT type, elfcpp::STB binding,
1291 elfcpp::STV visibility, unsigned char nonvis,
1292 Symbol::Segment_offset_base, bool only_if_ref);
1293
1294 // Define a special symbol with a constant value. It is a multiple
1295 // definition error if this symbol is already defined.
1296 Symbol*
1297 define_as_constant(const char* name, const char* version, Defined,
1298 uint64_t value, uint64_t symsize, elfcpp::STT type,
1299 elfcpp::STB binding, elfcpp::STV visibility,
1300 unsigned char nonvis, bool only_if_ref,
1301 bool force_override);
1302
1303 // Define a set of symbols in output sections. If ONLY_IF_REF is
1304 // true, only define them if they are referenced.
1305 void
1306 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1307 bool only_if_ref);
1308
1309 // Define a set of symbols in output segments. If ONLY_IF_REF is
1310 // true, only defined them if they are referenced.
1311 void
1312 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1313 bool only_if_ref);
1314
1315 // Define SYM using a COPY reloc. POSD is the Output_data where the
1316 // symbol should be defined--typically a .dyn.bss section. VALUE is
1317 // the offset within POSD.
1318 template<int size>
1319 void
1320 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1321 typename elfcpp::Elf_types<size>::Elf_Addr);
1322
1323 // Look up a symbol.
1324 Symbol*
1325 lookup(const char*, const char* version = NULL) const;
1326
1327 // Return the real symbol associated with the forwarder symbol FROM.
1328 Symbol*
1329 resolve_forwards(const Symbol* from) const;
1330
1331 // Return the sized version of a symbol in this table.
1332 template<int size>
1333 Sized_symbol<size>*
1334 get_sized_symbol(Symbol*) const;
1335
1336 template<int size>
1337 const Sized_symbol<size>*
1338 get_sized_symbol(const Symbol*) const;
1339
1340 // Return the count of undefined symbols seen.
1341 int
1342 saw_undefined() const
1343 { return this->saw_undefined_; }
1344
1345 // Allocate the common symbols
1346 void
1347 allocate_commons(Layout*, Mapfile*);
1348
1349 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1350 // of the warning.
1351 void
1352 add_warning(const char* name, Object* obj, const std::string& warning)
1353 { this->warnings_.add_warning(this, name, obj, warning); }
1354
1355 // Canonicalize a symbol name for use in the hash table.
1356 const char*
1357 canonicalize_name(const char* name)
1358 { return this->namepool_.add(name, true, NULL); }
1359
1360 // Possibly issue a warning for a reference to SYM at LOCATION which
1361 // is in OBJ.
1362 template<int size, bool big_endian>
1363 void
1364 issue_warning(const Symbol* sym,
1365 const Relocate_info<size, big_endian>* relinfo,
1366 size_t relnum, off_t reloffset) const
1367 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1368
1369 // Check candidate_odr_violations_ to find symbols with the same name
1370 // but apparently different definitions (different source-file/line-no).
1371 void
1372 detect_odr_violations(const Task*, const char* output_file_name) const;
1373
1374 // Add any undefined symbols named on the command line to the symbol
1375 // table.
1376 void
1377 add_undefined_symbols_from_command_line();
1378
1379 // SYM is defined using a COPY reloc. Return the dynamic object
1380 // where the original definition was found.
1381 Dynobj*
1382 get_copy_source(const Symbol* sym) const;
1383
1384 // Set the dynamic symbol indexes. INDEX is the index of the first
1385 // global dynamic symbol. Pointers to the symbols are stored into
1386 // the vector. The names are stored into the Stringpool. This
1387 // returns an updated dynamic symbol index.
1388 unsigned int
1389 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1390 Stringpool*, Versions*);
1391
1392 // Finalize the symbol table after we have set the final addresses
1393 // of all the input sections. This sets the final symbol indexes,
1394 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1395 // index of the first global symbol. OFF is the file offset of the
1396 // global symbol table, DYNOFF is the offset of the globals in the
1397 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1398 // global dynamic symbol, and DYNCOUNT is the number of global
1399 // dynamic symbols. This records the parameters, and returns the
1400 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1401 // local symbols.
1402 off_t
1403 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1404 Stringpool* pool, unsigned int *plocal_symcount);
1405
1406 // Status code of Symbol_table::compute_final_value.
1407 enum Compute_final_value_status
1408 {
1409 // No error.
1410 CFVS_OK,
1411 // Unspported symbol section.
1412 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1413 // No output section.
1414 CFVS_NO_OUTPUT_SECTION
1415 };
1416
1417 // Compute the final value of SYM and store status in location PSTATUS.
1418 // During relaxation, this may be called multiple times for a symbol to
1419 // compute its would-be final value in each relaxation pass.
1420
1421 template<int size>
1422 typename Sized_symbol<size>::Value_type
1423 compute_final_value(const Sized_symbol<size>* sym,
1424 Compute_final_value_status* pstatus) const;
1425
1426 // Write out the global symbols.
1427 void
1428 write_globals(const Stringpool*, const Stringpool*,
1429 Output_symtab_xindex*, Output_symtab_xindex*,
1430 Output_file*) const;
1431
1432 // Write out a section symbol. Return the updated offset.
1433 void
1434 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1435 Output_file*, off_t) const;
1436
1437 // Dump statistical information to stderr.
1438 void
1439 print_stats() const;
1440
1441 // Return the version script information.
1442 const Version_script_info&
1443 version_script() const
1444 { return version_script_; }
1445
1446 private:
1447 Symbol_table(const Symbol_table&);
1448 Symbol_table& operator=(const Symbol_table&);
1449
1450 // The type of the list of common symbols.
1451 typedef std::vector<Symbol*> Commons_type;
1452
1453 // The type of the symbol hash table.
1454
1455 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1456
1457 struct Symbol_table_hash
1458 {
1459 size_t
1460 operator()(const Symbol_table_key&) const;
1461 };
1462
1463 struct Symbol_table_eq
1464 {
1465 bool
1466 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1467 };
1468
1469 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1470 Symbol_table_eq> Symbol_table_type;
1471
1472 // Make FROM a forwarder symbol to TO.
1473 void
1474 make_forwarder(Symbol* from, Symbol* to);
1475
1476 // Add a symbol.
1477 template<int size, bool big_endian>
1478 Sized_symbol<size>*
1479 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1480 const char *version, Stringpool::Key version_key,
1481 bool def, const elfcpp::Sym<size, big_endian>& sym,
1482 unsigned int st_shndx, bool is_ordinary,
1483 unsigned int orig_st_shndx);
1484
1485 // Define a default symbol.
1486 template<int size, bool big_endian>
1487 void
1488 define_default_version(Sized_symbol<size>*, bool,
1489 Symbol_table_type::iterator);
1490
1491 // Resolve symbols.
1492 template<int size, bool big_endian>
1493 void
1494 resolve(Sized_symbol<size>* to,
1495 const elfcpp::Sym<size, big_endian>& sym,
1496 unsigned int st_shndx, bool is_ordinary,
1497 unsigned int orig_st_shndx,
1498 Object*, const char* version);
1499
1500 template<int size, bool big_endian>
1501 void
1502 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1503
1504 // Record that a symbol is forced to be local by a version script or
1505 // by visibility.
1506 void
1507 force_local(Symbol*);
1508
1509 // Adjust NAME and *NAME_KEY for wrapping.
1510 const char*
1511 wrap_symbol(const char* name, Stringpool::Key* name_key);
1512
1513 // Whether we should override a symbol, based on flags in
1514 // resolve.cc.
1515 static bool
1516 should_override(const Symbol*, unsigned int, Defined, Object*, bool*);
1517
1518 // Report a problem in symbol resolution.
1519 static void
1520 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1521 Defined, Object* object);
1522
1523 // Override a symbol.
1524 template<int size, bool big_endian>
1525 void
1526 override(Sized_symbol<size>* tosym,
1527 const elfcpp::Sym<size, big_endian>& fromsym,
1528 unsigned int st_shndx, bool is_ordinary,
1529 Object* object, const char* version);
1530
1531 // Whether we should override a symbol with a special symbol which
1532 // is automatically defined by the linker.
1533 static bool
1534 should_override_with_special(const Symbol*, Defined);
1535
1536 // Override a symbol with a special symbol.
1537 template<int size>
1538 void
1539 override_with_special(Sized_symbol<size>* tosym,
1540 const Sized_symbol<size>* fromsym);
1541
1542 // Record all weak alias sets for a dynamic object.
1543 template<int size>
1544 void
1545 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1546
1547 // Define a special symbol.
1548 template<int size, bool big_endian>
1549 Sized_symbol<size>*
1550 define_special_symbol(const char** pname, const char** pversion,
1551 bool only_if_ref, Sized_symbol<size>** poldsym,
1552 bool* resolve_oldsym);
1553
1554 // Define a symbol in an Output_data, sized version.
1555 template<int size>
1556 Sized_symbol<size>*
1557 do_define_in_output_data(const char* name, const char* version, Defined,
1558 Output_data*,
1559 typename elfcpp::Elf_types<size>::Elf_Addr value,
1560 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1561 elfcpp::STT type, elfcpp::STB binding,
1562 elfcpp::STV visibility, unsigned char nonvis,
1563 bool offset_is_from_end, bool only_if_ref);
1564
1565 // Define a symbol in an Output_segment, sized version.
1566 template<int size>
1567 Sized_symbol<size>*
1568 do_define_in_output_segment(
1569 const char* name, const char* version, Defined, Output_segment* os,
1570 typename elfcpp::Elf_types<size>::Elf_Addr value,
1571 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1572 elfcpp::STT type, elfcpp::STB binding,
1573 elfcpp::STV visibility, unsigned char nonvis,
1574 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1575
1576 // Define a symbol as a constant, sized version.
1577 template<int size>
1578 Sized_symbol<size>*
1579 do_define_as_constant(
1580 const char* name, const char* version, Defined,
1581 typename elfcpp::Elf_types<size>::Elf_Addr value,
1582 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1583 elfcpp::STT type, elfcpp::STB binding,
1584 elfcpp::STV visibility, unsigned char nonvis,
1585 bool only_if_ref, bool force_override);
1586
1587 // Add any undefined symbols named on the command line to the symbol
1588 // table, sized version.
1589 template<int size>
1590 void
1591 do_add_undefined_symbols_from_command_line();
1592
1593 // Types of common symbols.
1594
1595 enum Commons_section_type
1596 {
1597 COMMONS_NORMAL,
1598 COMMONS_TLS,
1599 COMMONS_SMALL,
1600 COMMONS_LARGE
1601 };
1602
1603 // Allocate the common symbols, sized version.
1604 template<int size>
1605 void
1606 do_allocate_commons(Layout*, Mapfile*);
1607
1608 // Allocate the common symbols from one list.
1609 template<int size>
1610 void
1611 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1612 Mapfile*);
1613
1614 // Implement detect_odr_violations.
1615 template<int size, bool big_endian>
1616 void
1617 sized_detect_odr_violations() const;
1618
1619 // Finalize symbols specialized for size.
1620 template<int size>
1621 off_t
1622 sized_finalize(off_t, Stringpool*, unsigned int*);
1623
1624 // Finalize a symbol. Return whether it should be added to the
1625 // symbol table.
1626 template<int size>
1627 bool
1628 sized_finalize_symbol(Symbol*);
1629
1630 // Add a symbol the final symtab by setting its index.
1631 template<int size>
1632 void
1633 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1634
1635 // Write globals specialized for size and endianness.
1636 template<int size, bool big_endian>
1637 void
1638 sized_write_globals(const Stringpool*, const Stringpool*,
1639 Output_symtab_xindex*, Output_symtab_xindex*,
1640 Output_file*) const;
1641
1642 // Write out a symbol to P.
1643 template<int size, bool big_endian>
1644 void
1645 sized_write_symbol(Sized_symbol<size>*,
1646 typename elfcpp::Elf_types<size>::Elf_Addr value,
1647 unsigned int shndx,
1648 const Stringpool*, unsigned char* p) const;
1649
1650 // Possibly warn about an undefined symbol from a dynamic object.
1651 void
1652 warn_about_undefined_dynobj_symbol(Symbol*) const;
1653
1654 // Write out a section symbol, specialized for size and endianness.
1655 template<int size, bool big_endian>
1656 void
1657 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1658 Output_file*, off_t) const;
1659
1660 // The type of the list of symbols which have been forced local.
1661 typedef std::vector<Symbol*> Forced_locals;
1662
1663 // A map from symbols with COPY relocs to the dynamic objects where
1664 // they are defined.
1665 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1666
1667 // A map from symbol name (as a pointer into the namepool) to all
1668 // the locations the symbols is (weakly) defined (and certain other
1669 // conditions are met). This map will be used later to detect
1670 // possible One Definition Rule (ODR) violations.
1671 struct Symbol_location
1672 {
1673 Object* object; // Object where the symbol is defined.
1674 unsigned int shndx; // Section-in-object where the symbol is defined.
1675 off_t offset; // Offset-in-section where the symbol is defined.
1676 bool operator==(const Symbol_location& that) const
1677 {
1678 return (this->object == that.object
1679 && this->shndx == that.shndx
1680 && this->offset == that.offset);
1681 }
1682 };
1683
1684 struct Symbol_location_hash
1685 {
1686 size_t operator()(const Symbol_location& loc) const
1687 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1688 };
1689
1690 typedef Unordered_map<const char*,
1691 Unordered_set<Symbol_location, Symbol_location_hash> >
1692 Odr_map;
1693
1694 // We increment this every time we see a new undefined symbol, for
1695 // use in archive groups.
1696 int saw_undefined_;
1697 // The index of the first global symbol in the output file.
1698 unsigned int first_global_index_;
1699 // The file offset within the output symtab section where we should
1700 // write the table.
1701 off_t offset_;
1702 // The number of global symbols we want to write out.
1703 unsigned int output_count_;
1704 // The file offset of the global dynamic symbols, or 0 if none.
1705 off_t dynamic_offset_;
1706 // The index of the first global dynamic symbol.
1707 unsigned int first_dynamic_global_index_;
1708 // The number of global dynamic symbols, or 0 if none.
1709 unsigned int dynamic_count_;
1710 // The symbol hash table.
1711 Symbol_table_type table_;
1712 // A pool of symbol names. This is used for all global symbols.
1713 // Entries in the hash table point into this pool.
1714 Stringpool namepool_;
1715 // Forwarding symbols.
1716 Unordered_map<const Symbol*, Symbol*> forwarders_;
1717 // Weak aliases. A symbol in this list points to the next alias.
1718 // The aliases point to each other in a circular list.
1719 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1720 // We don't expect there to be very many common symbols, so we keep
1721 // a list of them. When we find a common symbol we add it to this
1722 // list. It is possible that by the time we process the list the
1723 // symbol is no longer a common symbol. It may also have become a
1724 // forwarder.
1725 Commons_type commons_;
1726 // This is like the commons_ field, except that it holds TLS common
1727 // symbols.
1728 Commons_type tls_commons_;
1729 // This is for small common symbols.
1730 Commons_type small_commons_;
1731 // This is for large common symbols.
1732 Commons_type large_commons_;
1733 // A list of symbols which have been forced to be local. We don't
1734 // expect there to be very many of them, so we keep a list of them
1735 // rather than walking the whole table to find them.
1736 Forced_locals forced_locals_;
1737 // Manage symbol warnings.
1738 Warnings warnings_;
1739 // Manage potential One Definition Rule (ODR) violations.
1740 Odr_map candidate_odr_violations_;
1741
1742 // When we emit a COPY reloc for a symbol, we define it in an
1743 // Output_data. When it's time to emit version information for it,
1744 // we need to know the dynamic object in which we found the original
1745 // definition. This maps symbols with COPY relocs to the dynamic
1746 // object where they were defined.
1747 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1748 // Information parsed from the version script, if any.
1749 const Version_script_info& version_script_;
1750 Garbage_collection* gc_;
1751 Icf* icf_;
1752 };
1753
1754 // We inline get_sized_symbol for efficiency.
1755
1756 template<int size>
1757 Sized_symbol<size>*
1758 Symbol_table::get_sized_symbol(Symbol* sym) const
1759 {
1760 gold_assert(size == parameters->target().get_size());
1761 return static_cast<Sized_symbol<size>*>(sym);
1762 }
1763
1764 template<int size>
1765 const Sized_symbol<size>*
1766 Symbol_table::get_sized_symbol(const Symbol* sym) const
1767 {
1768 gold_assert(size == parameters->target().get_size());
1769 return static_cast<const Sized_symbol<size>*>(sym);
1770 }
1771
1772 } // End namespace gold.
1773
1774 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.067067 seconds and 5 git commands to generate.