From Cary Coutant: fix handling of undefined symbols in shared
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #include <string>
27 #include <utility>
28 #include <vector>
29
30 #include "elfcpp.h"
31 #include "parameters.h"
32 #include "stringpool.h"
33 #include "object.h"
34
35 #ifndef GOLD_SYMTAB_H
36 #define GOLD_SYMTAB_H
37
38 namespace gold
39 {
40
41 class Object;
42 class Relobj;
43 template<int size, bool big_endian>
44 class Sized_relobj;
45 class Dynobj;
46 template<int size, bool big_endian>
47 class Sized_dynobj;
48 class Versions;
49 class Version_script_info;
50 class Input_objects;
51 class Output_data;
52 class Output_section;
53 class Output_segment;
54 class Output_file;
55
56 // The base class of an entry in the symbol table. The symbol table
57 // can have a lot of entries, so we don't want this class to big.
58 // Size dependent fields can be found in the template class
59 // Sized_symbol. Targets may support their own derived classes.
60
61 class Symbol
62 {
63 public:
64 // Because we want the class to be small, we don't use any virtual
65 // functions. But because symbols can be defined in different
66 // places, we need to classify them. This enum is the different
67 // sources of symbols we support.
68 enum Source
69 {
70 // Symbol defined in a relocatable or dynamic input file--this is
71 // the most common case.
72 FROM_OBJECT,
73 // Symbol defined in an Output_data, a special section created by
74 // the target.
75 IN_OUTPUT_DATA,
76 // Symbol defined in an Output_segment, with no associated
77 // section.
78 IN_OUTPUT_SEGMENT,
79 // Symbol value is constant.
80 CONSTANT
81 };
82
83 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
84 // the offset means.
85 enum Segment_offset_base
86 {
87 // From the start of the segment.
88 SEGMENT_START,
89 // From the end of the segment.
90 SEGMENT_END,
91 // From the filesz of the segment--i.e., after the loaded bytes
92 // but before the bytes which are allocated but zeroed.
93 SEGMENT_BSS
94 };
95
96 // Return the symbol name.
97 const char*
98 name() const
99 { return this->name_; }
100
101 // Return the (ANSI) demangled version of the name, if
102 // parameters.demangle() is true. Otherwise, return the name. This
103 // is intended to be used only for logging errors, so it's not
104 // super-efficient.
105 std::string
106 demangled_name() const;
107
108 // Return the symbol version. This will return NULL for an
109 // unversioned symbol.
110 const char*
111 version() const
112 { return this->version_; }
113
114 // Return whether this version is the default for this symbol name
115 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
116 // meaningful for versioned symbols.
117 bool
118 is_default() const
119 {
120 gold_assert(this->version_ != NULL);
121 return this->is_def_;
122 }
123
124 // Set whether this version is the default for this symbol name.
125 void
126 set_is_default(bool def)
127 { this->is_def_ = def; }
128
129 // Return the symbol source.
130 Source
131 source() const
132 { return this->source_; }
133
134 // Return the object with which this symbol is associated.
135 Object*
136 object() const
137 {
138 gold_assert(this->source_ == FROM_OBJECT);
139 return this->u_.from_object.object;
140 }
141
142 // Return the index of the section in the input relocatable or
143 // dynamic object file.
144 unsigned int
145 shndx() const
146 {
147 gold_assert(this->source_ == FROM_OBJECT);
148 return this->u_.from_object.shndx;
149 }
150
151 // Return the output data section with which this symbol is
152 // associated, if the symbol was specially defined with respect to
153 // an output data section.
154 Output_data*
155 output_data() const
156 {
157 gold_assert(this->source_ == IN_OUTPUT_DATA);
158 return this->u_.in_output_data.output_data;
159 }
160
161 // If this symbol was defined with respect to an output data
162 // section, return whether the value is an offset from end.
163 bool
164 offset_is_from_end() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.offset_is_from_end;
168 }
169
170 // Return the output segment with which this symbol is associated,
171 // if the symbol was specially defined with respect to an output
172 // segment.
173 Output_segment*
174 output_segment() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
177 return this->u_.in_output_segment.output_segment;
178 }
179
180 // If this symbol was defined with respect to an output segment,
181 // return the offset base.
182 Segment_offset_base
183 offset_base() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.offset_base;
187 }
188
189 // Return the symbol binding.
190 elfcpp::STB
191 binding() const
192 { return this->binding_; }
193
194 // Return the symbol type.
195 elfcpp::STT
196 type() const
197 { return this->type_; }
198
199 // Return the symbol visibility.
200 elfcpp::STV
201 visibility() const
202 { return this->visibility_; }
203
204 // Return the non-visibility part of the st_other field.
205 unsigned char
206 nonvis() const
207 { return this->nonvis_; }
208
209 // Return whether this symbol is a forwarder. This will never be
210 // true of a symbol found in the hash table, but may be true of
211 // symbol pointers attached to object files.
212 bool
213 is_forwarder() const
214 { return this->is_forwarder_; }
215
216 // Mark this symbol as a forwarder.
217 void
218 set_forwarder()
219 { this->is_forwarder_ = true; }
220
221 // Return whether this symbol has an alias in the weak aliases table
222 // in Symbol_table.
223 bool
224 has_alias() const
225 { return this->has_alias_; }
226
227 // Mark this symbol as having an alias.
228 void
229 set_has_alias()
230 { this->has_alias_ = true; }
231
232 // Return whether this symbol needs an entry in the dynamic symbol
233 // table.
234 bool
235 needs_dynsym_entry() const
236 {
237 return (this->needs_dynsym_entry_
238 || (this->in_reg() && this->in_dyn()));
239 }
240
241 // Mark this symbol as needing an entry in the dynamic symbol table.
242 void
243 set_needs_dynsym_entry()
244 { this->needs_dynsym_entry_ = true; }
245
246 // Return whether this symbol should be added to the dynamic symbol
247 // table.
248 bool
249 should_add_dynsym_entry() const;
250
251 // Return whether this symbol has been seen in a regular object.
252 bool
253 in_reg() const
254 { return this->in_reg_; }
255
256 // Mark this symbol as having been seen in a regular object.
257 void
258 set_in_reg()
259 { this->in_reg_ = true; }
260
261 // Return whether this symbol has been seen in a dynamic object.
262 bool
263 in_dyn() const
264 { return this->in_dyn_; }
265
266 // Mark this symbol as having been seen in a dynamic object.
267 void
268 set_in_dyn()
269 { this->in_dyn_ = true; }
270
271 // Return the index of this symbol in the output file symbol table.
272 // A value of -1U means that this symbol is not going into the
273 // output file. This starts out as zero, and is set to a non-zero
274 // value by Symbol_table::finalize. It is an error to ask for the
275 // symbol table index before it has been set.
276 unsigned int
277 symtab_index() const
278 {
279 gold_assert(this->symtab_index_ != 0);
280 return this->symtab_index_;
281 }
282
283 // Set the index of the symbol in the output file symbol table.
284 void
285 set_symtab_index(unsigned int index)
286 {
287 gold_assert(index != 0);
288 this->symtab_index_ = index;
289 }
290
291 // Return whether this symbol already has an index in the output
292 // file symbol table.
293 bool
294 has_symtab_index() const
295 { return this->symtab_index_ != 0; }
296
297 // Return the index of this symbol in the dynamic symbol table. A
298 // value of -1U means that this symbol is not going into the dynamic
299 // symbol table. This starts out as zero, and is set to a non-zero
300 // during Layout::finalize. It is an error to ask for the dynamic
301 // symbol table index before it has been set.
302 unsigned int
303 dynsym_index() const
304 {
305 gold_assert(this->dynsym_index_ != 0);
306 return this->dynsym_index_;
307 }
308
309 // Set the index of the symbol in the dynamic symbol table.
310 void
311 set_dynsym_index(unsigned int index)
312 {
313 gold_assert(index != 0);
314 this->dynsym_index_ = index;
315 }
316
317 // Return whether this symbol already has an index in the dynamic
318 // symbol table.
319 bool
320 has_dynsym_index() const
321 { return this->dynsym_index_ != 0; }
322
323 // Return whether this symbol has an entry in the GOT section.
324 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
325 bool
326 has_got_offset() const
327 { return this->has_got_offset_; }
328
329 // Return the offset into the GOT section of this symbol.
330 unsigned int
331 got_offset() const
332 {
333 gold_assert(this->has_got_offset());
334 return this->got_offset_;
335 }
336
337 // Set the GOT offset of this symbol.
338 void
339 set_got_offset(unsigned int got_offset)
340 {
341 this->has_got_offset_ = true;
342 this->got_offset_ = got_offset;
343 }
344
345 // Return whether this TLS symbol has an entry in the GOT section for
346 // its module index or, if NEED_PAIR is true, has a pair of entries
347 // for its module index and dtv-relative offset.
348 bool
349 has_tls_got_offset(bool need_pair) const
350 {
351 return (this->has_tls_mod_got_offset_
352 && (!need_pair || this->has_tls_pair_got_offset_));
353 }
354
355 // Return the offset into the GOT section for this symbol's TLS module
356 // index or, if NEED_PAIR is true, for the pair of entries for the
357 // module index and dtv-relative offset.
358 unsigned int
359 tls_got_offset(bool need_pair) const
360 {
361 gold_assert(this->has_tls_got_offset(need_pair));
362 return this->tls_mod_got_offset_;
363 }
364
365 // Set the GOT offset of this symbol.
366 void
367 set_tls_got_offset(unsigned int got_offset, bool have_pair)
368 {
369 this->has_tls_mod_got_offset_ = true;
370 this->has_tls_pair_got_offset_ = have_pair;
371 this->tls_mod_got_offset_ = got_offset;
372 }
373
374 // Return whether this symbol has an entry in the PLT section.
375 bool
376 has_plt_offset() const
377 { return this->has_plt_offset_; }
378
379 // Return the offset into the PLT section of this symbol.
380 unsigned int
381 plt_offset() const
382 {
383 gold_assert(this->has_plt_offset());
384 return this->plt_offset_;
385 }
386
387 // Set the PLT offset of this symbol.
388 void
389 set_plt_offset(unsigned int plt_offset)
390 {
391 this->has_plt_offset_ = true;
392 this->plt_offset_ = plt_offset;
393 }
394
395 // Return whether this dynamic symbol needs a special value in the
396 // dynamic symbol table.
397 bool
398 needs_dynsym_value() const
399 { return this->needs_dynsym_value_; }
400
401 // Set that this dynamic symbol needs a special value in the dynamic
402 // symbol table.
403 void
404 set_needs_dynsym_value()
405 {
406 gold_assert(this->object()->is_dynamic());
407 this->needs_dynsym_value_ = true;
408 }
409
410 // Return true if the final value of this symbol is known at link
411 // time.
412 bool
413 final_value_is_known() const;
414
415 // Return whether this is a defined symbol (not undefined or
416 // common).
417 bool
418 is_defined() const
419 {
420 return (this->source_ != FROM_OBJECT
421 || (this->shndx() != elfcpp::SHN_UNDEF
422 && this->shndx() != elfcpp::SHN_COMMON));
423 }
424
425 // Return true if this symbol is from a dynamic object.
426 bool
427 is_from_dynobj() const
428 {
429 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
430 }
431
432 // Return whether this is an undefined symbol.
433 bool
434 is_undefined() const
435 {
436 return this->source_ == FROM_OBJECT && this->shndx() == elfcpp::SHN_UNDEF;
437 }
438
439 // Return whether this is a common symbol.
440 bool
441 is_common() const
442 {
443 return (this->source_ == FROM_OBJECT
444 && (this->shndx() == elfcpp::SHN_COMMON
445 || this->type_ == elfcpp::STT_COMMON));
446 }
447
448 // Return whether this symbol can be seen outside this object.
449 bool
450 is_externally_visible() const
451 {
452 return (this->visibility_ == elfcpp::STV_DEFAULT
453 || this->visibility_ == elfcpp::STV_PROTECTED);
454 }
455
456 // Return true if this symbol can be preempted by a definition in
457 // another link unit.
458 bool
459 is_preemptible() const
460 {
461 // It doesn't make sense to ask whether a symbol defined in
462 // another object is preemptible.
463 gold_assert(!this->is_from_dynobj());
464
465 // It doesn't make sense to ask whether an undefined symbol
466 // is preemptible.
467 gold_assert(!this->is_undefined());
468
469 return (this->visibility_ != elfcpp::STV_INTERNAL
470 && this->visibility_ != elfcpp::STV_HIDDEN
471 && this->visibility_ != elfcpp::STV_PROTECTED
472 && !this->is_forced_local_
473 && parameters->output_is_shared()
474 && !parameters->symbolic());
475 }
476
477 // Return true if this symbol is a function that needs a PLT entry.
478 // If the symbol is defined in a dynamic object or if it is subject
479 // to pre-emption, we need to make a PLT entry. If we're doing a
480 // static link, we don't create PLT entries.
481 bool
482 needs_plt_entry() const
483 {
484 return (!parameters->doing_static_link()
485 && this->type() == elfcpp::STT_FUNC
486 && (this->is_from_dynobj()
487 || this->is_undefined()
488 || this->is_preemptible()));
489 }
490
491 // When determining whether a reference to a symbol needs a dynamic
492 // relocation, we need to know several things about the reference.
493 // These flags may be or'ed together.
494 enum Reference_flags
495 {
496 // Reference to the symbol's absolute address.
497 ABSOLUTE_REF = 1,
498 // A non-PIC reference.
499 NON_PIC_REF = 2,
500 // A function call.
501 FUNCTION_CALL = 4
502 };
503
504 // Given a direct absolute or pc-relative static relocation against
505 // the global symbol, this function returns whether a dynamic relocation
506 // is needed.
507
508 bool
509 needs_dynamic_reloc(int flags) const
510 {
511 // No dynamic relocations in a static link!
512 if (parameters->doing_static_link())
513 return false;
514
515 // An absolute reference within a position-independent output file
516 // will need a dynamic relocation.
517 if ((flags & ABSOLUTE_REF)
518 && parameters->output_is_position_independent())
519 return true;
520
521 // A function call that can branch to a local PLT entry does not need
522 // a dynamic relocation. A non-pic pc-relative function call in a
523 // shared library cannot use a PLT entry.
524 if ((flags & FUNCTION_CALL)
525 && this->has_plt_offset()
526 && !((flags & NON_PIC_REF) && parameters->output_is_shared()))
527 return false;
528
529 // A reference to any PLT entry in a non-position-independent executable
530 // does not need a dynamic relocation.
531 if (!parameters->output_is_position_independent()
532 && this->has_plt_offset())
533 return false;
534
535 // A reference to a symbol defined in a dynamic object or to a
536 // symbol that is preemptible will need a dynamic relocation.
537 if (this->is_from_dynobj()
538 || this->is_undefined()
539 || this->is_preemptible())
540 return true;
541
542 // For all other cases, return FALSE.
543 return false;
544 }
545
546 // Given a direct absolute static relocation against
547 // the global symbol, where a dynamic relocation is needed, this
548 // function returns whether a relative dynamic relocation can be used.
549 // The caller must determine separately whether the static relocation
550 // is compatible with a relative relocation.
551
552 bool
553 can_use_relative_reloc(bool is_function_call) const
554 {
555 // A function call that can branch to a local PLT entry can
556 // use a RELATIVE relocation.
557 if (is_function_call && this->has_plt_offset())
558 return true;
559
560 // A reference to a symbol defined in a dynamic object or to a
561 // symbol that is preemptible can not use a RELATIVE relocaiton.
562 if (this->is_from_dynobj()
563 || this->is_undefined()
564 || this->is_preemptible())
565 return false;
566
567 // For all other cases, return TRUE.
568 return true;
569 }
570
571 // Return whether this symbol currently has an absolute value.
572 bool
573 value_is_absolute() const;
574
575 // Return whether there should be a warning for references to this
576 // symbol.
577 bool
578 has_warning() const
579 { return this->has_warning_; }
580
581 // Mark this symbol as having a warning.
582 void
583 set_has_warning()
584 { this->has_warning_ = true; }
585
586 // Return whether this symbol is defined by a COPY reloc from a
587 // dynamic object.
588 bool
589 is_copied_from_dynobj() const
590 { return this->is_copied_from_dynobj_; }
591
592 // Mark this symbol as defined by a COPY reloc.
593 void
594 set_is_copied_from_dynobj()
595 { this->is_copied_from_dynobj_ = true; }
596
597 // Return whether this symbol is forced to visibility STB_LOCAL
598 // by a "local:" entry in a version script.
599 bool
600 is_forced_local() const
601 { return this->is_forced_local_; }
602
603 // Mark this symbol as forced to STB_LOCAL visibility.
604 void
605 set_is_forced_local()
606 { this->is_forced_local_ = true; }
607
608 protected:
609 // Instances of this class should always be created at a specific
610 // size.
611 Symbol()
612 { memset(this, 0, sizeof *this); }
613
614 // Initialize the general fields.
615 void
616 init_fields(const char* name, const char* version,
617 elfcpp::STT type, elfcpp::STB binding,
618 elfcpp::STV visibility, unsigned char nonvis);
619
620 // Initialize fields from an ELF symbol in OBJECT.
621 template<int size, bool big_endian>
622 void
623 init_base(const char *name, const char* version, Object* object,
624 const elfcpp::Sym<size, big_endian>&);
625
626 // Initialize fields for an Output_data.
627 void
628 init_base(const char* name, Output_data*, elfcpp::STT, elfcpp::STB,
629 elfcpp::STV, unsigned char nonvis, bool offset_is_from_end);
630
631 // Initialize fields for an Output_segment.
632 void
633 init_base(const char* name, Output_segment* os, elfcpp::STT type,
634 elfcpp::STB binding, elfcpp::STV visibility,
635 unsigned char nonvis, Segment_offset_base offset_base);
636
637 // Initialize fields for a constant.
638 void
639 init_base(const char* name, elfcpp::STT type, elfcpp::STB binding,
640 elfcpp::STV visibility, unsigned char nonvis);
641
642 // Override existing symbol.
643 template<int size, bool big_endian>
644 void
645 override_base(const elfcpp::Sym<size, big_endian>&, Object* object,
646 const char* version);
647
648 // Override existing symbol with a special symbol.
649 void
650 override_base_with_special(const Symbol* from);
651
652 // Allocate a common symbol by giving it a location in the output
653 // file.
654 void
655 allocate_base_common(Output_data*);
656
657 private:
658 Symbol(const Symbol&);
659 Symbol& operator=(const Symbol&);
660
661 // Symbol name (expected to point into a Stringpool).
662 const char* name_;
663 // Symbol version (expected to point into a Stringpool). This may
664 // be NULL.
665 const char* version_;
666
667 union
668 {
669 // This struct is used if SOURCE_ == FROM_OBJECT.
670 struct
671 {
672 // Object in which symbol is defined, or in which it was first
673 // seen.
674 Object* object;
675 // Section number in object_ in which symbol is defined.
676 unsigned int shndx;
677 } from_object;
678
679 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
680 struct
681 {
682 // Output_data in which symbol is defined. Before
683 // Layout::finalize the symbol's value is an offset within the
684 // Output_data.
685 Output_data* output_data;
686 // True if the offset is from the end, false if the offset is
687 // from the beginning.
688 bool offset_is_from_end;
689 } in_output_data;
690
691 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
692 struct
693 {
694 // Output_segment in which the symbol is defined. Before
695 // Layout::finalize the symbol's value is an offset.
696 Output_segment* output_segment;
697 // The base to use for the offset before Layout::finalize.
698 Segment_offset_base offset_base;
699 } in_output_segment;
700 } u_;
701
702 // The index of this symbol in the output file. If the symbol is
703 // not going into the output file, this value is -1U. This field
704 // starts as always holding zero. It is set to a non-zero value by
705 // Symbol_table::finalize.
706 unsigned int symtab_index_;
707
708 // The index of this symbol in the dynamic symbol table. If the
709 // symbol is not going into the dynamic symbol table, this value is
710 // -1U. This field starts as always holding zero. It is set to a
711 // non-zero value during Layout::finalize.
712 unsigned int dynsym_index_;
713
714 // If this symbol has an entry in the GOT section (has_got_offset_
715 // is true), this is the offset from the start of the GOT section.
716 // For a TLS symbol, if has_tls_tpoff_got_offset_ is true, this
717 // serves as the GOT offset for the GOT entry that holds its
718 // TP-relative offset.
719 unsigned int got_offset_;
720
721 // If this is a TLS symbol and has an entry in the GOT section
722 // for a module index or a pair of entries (module index,
723 // dtv-relative offset), these are the offsets from the start
724 // of the GOT section.
725 unsigned int tls_mod_got_offset_;
726 unsigned int tls_pair_got_offset_;
727
728 // If this symbol has an entry in the PLT section (has_plt_offset_
729 // is true), then this is the offset from the start of the PLT
730 // section.
731 unsigned int plt_offset_;
732
733 // Symbol type.
734 elfcpp::STT type_ : 4;
735 // Symbol binding.
736 elfcpp::STB binding_ : 4;
737 // Symbol visibility.
738 elfcpp::STV visibility_ : 2;
739 // Rest of symbol st_other field.
740 unsigned int nonvis_ : 6;
741 // The type of symbol.
742 Source source_ : 3;
743 // True if this symbol always requires special target-specific
744 // handling.
745 bool is_target_special_ : 1;
746 // True if this is the default version of the symbol.
747 bool is_def_ : 1;
748 // True if this symbol really forwards to another symbol. This is
749 // used when we discover after the fact that two different entries
750 // in the hash table really refer to the same symbol. This will
751 // never be set for a symbol found in the hash table, but may be set
752 // for a symbol found in the list of symbols attached to an Object.
753 // It forwards to the symbol found in the forwarders_ map of
754 // Symbol_table.
755 bool is_forwarder_ : 1;
756 // True if the symbol has an alias in the weak_aliases table in
757 // Symbol_table.
758 bool has_alias_ : 1;
759 // True if this symbol needs to be in the dynamic symbol table.
760 bool needs_dynsym_entry_ : 1;
761 // True if we've seen this symbol in a regular object.
762 bool in_reg_ : 1;
763 // True if we've seen this symbol in a dynamic object.
764 bool in_dyn_ : 1;
765 // True if the symbol has an entry in the GOT section.
766 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
767 bool has_got_offset_ : 1;
768 // True if the symbol has an entry in the GOT section for its
769 // module index.
770 bool has_tls_mod_got_offset_ : 1;
771 // True if the symbol has a pair of entries in the GOT section for its
772 // module index and dtv-relative offset.
773 bool has_tls_pair_got_offset_ : 1;
774 // True if the symbol has an entry in the PLT section.
775 bool has_plt_offset_ : 1;
776 // True if this is a dynamic symbol which needs a special value in
777 // the dynamic symbol table.
778 bool needs_dynsym_value_ : 1;
779 // True if there is a warning for this symbol.
780 bool has_warning_ : 1;
781 // True if we are using a COPY reloc for this symbol, so that the
782 // real definition lives in a dynamic object.
783 bool is_copied_from_dynobj_ : 1;
784 // True if this symbol was forced to local visibility by a version
785 // script.
786 bool is_forced_local_ : 1;
787 };
788
789 // The parts of a symbol which are size specific. Using a template
790 // derived class like this helps us use less space on a 32-bit system.
791
792 template<int size>
793 class Sized_symbol : public Symbol
794 {
795 public:
796 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
797 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
798
799 Sized_symbol()
800 { }
801
802 // Initialize fields from an ELF symbol in OBJECT.
803 template<bool big_endian>
804 void
805 init(const char *name, const char* version, Object* object,
806 const elfcpp::Sym<size, big_endian>&);
807
808 // Initialize fields for an Output_data.
809 void
810 init(const char* name, Output_data*, Value_type value, Size_type symsize,
811 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
812 bool offset_is_from_end);
813
814 // Initialize fields for an Output_segment.
815 void
816 init(const char* name, Output_segment*, Value_type value, Size_type symsize,
817 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis,
818 Segment_offset_base offset_base);
819
820 // Initialize fields for a constant.
821 void
822 init(const char* name, Value_type value, Size_type symsize,
823 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
824
825 // Override existing symbol.
826 template<bool big_endian>
827 void
828 override(const elfcpp::Sym<size, big_endian>&, Object* object,
829 const char* version);
830
831 // Override existing symbol with a special symbol.
832 void
833 override_with_special(const Sized_symbol<size>*);
834
835 // Return the symbol's value.
836 Value_type
837 value() const
838 { return this->value_; }
839
840 // Return the symbol's size (we can't call this 'size' because that
841 // is a template parameter).
842 Size_type
843 symsize() const
844 { return this->symsize_; }
845
846 // Set the symbol size. This is used when resolving common symbols.
847 void
848 set_symsize(Size_type symsize)
849 { this->symsize_ = symsize; }
850
851 // Set the symbol value. This is called when we store the final
852 // values of the symbols into the symbol table.
853 void
854 set_value(Value_type value)
855 { this->value_ = value; }
856
857 // Allocate a common symbol by giving it a location in the output
858 // file.
859 void
860 allocate_common(Output_data*, Value_type value);
861
862 private:
863 Sized_symbol(const Sized_symbol&);
864 Sized_symbol& operator=(const Sized_symbol&);
865
866 // Symbol value. Before Layout::finalize this is the offset in the
867 // input section. This is set to the final value during
868 // Layout::finalize.
869 Value_type value_;
870 // Symbol size.
871 Size_type symsize_;
872 };
873
874 // A struct describing a symbol defined by the linker, where the value
875 // of the symbol is defined based on an output section. This is used
876 // for symbols defined by the linker, like "_init_array_start".
877
878 struct Define_symbol_in_section
879 {
880 // The symbol name.
881 const char* name;
882 // The name of the output section with which this symbol should be
883 // associated. If there is no output section with that name, the
884 // symbol will be defined as zero.
885 const char* output_section;
886 // The offset of the symbol within the output section. This is an
887 // offset from the start of the output section, unless start_at_end
888 // is true, in which case this is an offset from the end of the
889 // output section.
890 uint64_t value;
891 // The size of the symbol.
892 uint64_t size;
893 // The symbol type.
894 elfcpp::STT type;
895 // The symbol binding.
896 elfcpp::STB binding;
897 // The symbol visibility.
898 elfcpp::STV visibility;
899 // The rest of the st_other field.
900 unsigned char nonvis;
901 // If true, the value field is an offset from the end of the output
902 // section.
903 bool offset_is_from_end;
904 // If true, this symbol is defined only if we see a reference to it.
905 bool only_if_ref;
906 };
907
908 // A struct describing a symbol defined by the linker, where the value
909 // of the symbol is defined based on a segment. This is used for
910 // symbols defined by the linker, like "_end". We describe the
911 // segment with which the symbol should be associated by its
912 // characteristics. If no segment meets these characteristics, the
913 // symbol will be defined as zero. If there is more than one segment
914 // which meets these characteristics, we will use the first one.
915
916 struct Define_symbol_in_segment
917 {
918 // The symbol name.
919 const char* name;
920 // The segment type where the symbol should be defined, typically
921 // PT_LOAD.
922 elfcpp::PT segment_type;
923 // Bitmask of segment flags which must be set.
924 elfcpp::PF segment_flags_set;
925 // Bitmask of segment flags which must be clear.
926 elfcpp::PF segment_flags_clear;
927 // The offset of the symbol within the segment. The offset is
928 // calculated from the position set by offset_base.
929 uint64_t value;
930 // The size of the symbol.
931 uint64_t size;
932 // The symbol type.
933 elfcpp::STT type;
934 // The symbol binding.
935 elfcpp::STB binding;
936 // The symbol visibility.
937 elfcpp::STV visibility;
938 // The rest of the st_other field.
939 unsigned char nonvis;
940 // The base from which we compute the offset.
941 Symbol::Segment_offset_base offset_base;
942 // If true, this symbol is defined only if we see a reference to it.
943 bool only_if_ref;
944 };
945
946 // This class manages warnings. Warnings are a GNU extension. When
947 // we see a section named .gnu.warning.SYM in an object file, and if
948 // we wind using the definition of SYM from that object file, then we
949 // will issue a warning for any relocation against SYM from a
950 // different object file. The text of the warning is the contents of
951 // the section. This is not precisely the definition used by the old
952 // GNU linker; the old GNU linker treated an occurrence of
953 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
954 // would trigger a warning on any reference. However, it was
955 // inconsistent in that a warning in a dynamic object only triggered
956 // if there was no definition in a regular object. This linker is
957 // different in that we only issue a warning if we use the symbol
958 // definition from the same object file as the warning section.
959
960 class Warnings
961 {
962 public:
963 Warnings()
964 : warnings_()
965 { }
966
967 // Add a warning for symbol NAME in object OBJ. WARNING is the text
968 // of the warning.
969 void
970 add_warning(Symbol_table* symtab, const char* name, Object* obj,
971 const std::string& warning);
972
973 // For each symbol for which we should give a warning, make a note
974 // on the symbol.
975 void
976 note_warnings(Symbol_table* symtab);
977
978 // Issue a warning for a reference to SYM at RELINFO's location.
979 template<int size, bool big_endian>
980 void
981 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
982 size_t relnum, off_t reloffset) const;
983
984 private:
985 Warnings(const Warnings&);
986 Warnings& operator=(const Warnings&);
987
988 // What we need to know to get the warning text.
989 struct Warning_location
990 {
991 // The object the warning is in.
992 Object* object;
993 // The warning text.
994 std::string text;
995
996 Warning_location()
997 : object(NULL), text()
998 { }
999
1000 void
1001 set(Object* o, const std::string& t)
1002 {
1003 this->object = o;
1004 this->text = t;
1005 }
1006 };
1007
1008 // A mapping from warning symbol names (canonicalized in
1009 // Symbol_table's namepool_ field) to warning information.
1010 typedef Unordered_map<const char*, Warning_location> Warning_table;
1011
1012 Warning_table warnings_;
1013 };
1014
1015 // The main linker symbol table.
1016
1017 class Symbol_table
1018 {
1019 public:
1020 // COUNT is an estimate of how many symbosl will be inserted in the
1021 // symbol table. It's ok to put 0 if you don't know; a correct
1022 // guess will just save some CPU by reducing hashtable resizes.
1023 Symbol_table(unsigned int count, const Version_script_info& version_script);
1024
1025 ~Symbol_table();
1026
1027 // Add COUNT external symbols from the relocatable object RELOBJ to
1028 // the symbol table. SYMS is the symbols, SYM_NAMES is their names,
1029 // SYM_NAME_SIZE is the size of SYM_NAMES. This sets SYMPOINTERS to
1030 // point to the symbols in the symbol table.
1031 template<int size, bool big_endian>
1032 void
1033 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1034 const unsigned char* syms, size_t count,
1035 const char* sym_names, size_t sym_name_size,
1036 typename Sized_relobj<size, big_endian>::Symbols*);
1037
1038 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1039 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1040 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1041 // symbol version data.
1042 template<int size, bool big_endian>
1043 void
1044 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1045 const unsigned char* syms, size_t count,
1046 const char* sym_names, size_t sym_name_size,
1047 const unsigned char* versym, size_t versym_size,
1048 const std::vector<const char*>*);
1049
1050 // Define a special symbol based on an Output_data. It is a
1051 // multiple definition error if this symbol is already defined.
1052 Symbol*
1053 define_in_output_data(const char* name, const char* version,
1054 Output_data*, uint64_t value, uint64_t symsize,
1055 elfcpp::STT type, elfcpp::STB binding,
1056 elfcpp::STV visibility, unsigned char nonvis,
1057 bool offset_is_from_end, bool only_if_ref);
1058
1059 // Define a special symbol based on an Output_segment. It is a
1060 // multiple definition error if this symbol is already defined.
1061 Symbol*
1062 define_in_output_segment(const char* name, const char* version,
1063 Output_segment*, uint64_t value, uint64_t symsize,
1064 elfcpp::STT type, elfcpp::STB binding,
1065 elfcpp::STV visibility, unsigned char nonvis,
1066 Symbol::Segment_offset_base, bool only_if_ref);
1067
1068 // Define a special symbol with a constant value. It is a multiple
1069 // definition error if this symbol is already defined.
1070 Symbol*
1071 define_as_constant(const char* name, const char* version,
1072 uint64_t value, uint64_t symsize, elfcpp::STT type,
1073 elfcpp::STB binding, elfcpp::STV visibility,
1074 unsigned char nonvis, bool only_if_ref);
1075
1076 // Define a set of symbols in output sections. If ONLY_IF_REF is
1077 // true, only define them if they are referenced.
1078 void
1079 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1080 bool only_if_ref);
1081
1082 // Define a set of symbols in output segments. If ONLY_IF_REF is
1083 // true, only defined them if they are referenced.
1084 void
1085 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1086 bool only_if_ref);
1087
1088 // Define SYM using a COPY reloc. POSD is the Output_data where the
1089 // symbol should be defined--typically a .dyn.bss section. VALUE is
1090 // the offset within POSD.
1091 template<int size>
1092 void
1093 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1094 typename elfcpp::Elf_types<size>::Elf_Addr);
1095
1096 // Look up a symbol.
1097 Symbol*
1098 lookup(const char*, const char* version = NULL) const;
1099
1100 // Return the real symbol associated with the forwarder symbol FROM.
1101 Symbol*
1102 resolve_forwards(const Symbol* from) const;
1103
1104 // Return the sized version of a symbol in this table.
1105 template<int size>
1106 Sized_symbol<size>*
1107 get_sized_symbol(Symbol* ACCEPT_SIZE) const;
1108
1109 template<int size>
1110 const Sized_symbol<size>*
1111 get_sized_symbol(const Symbol* ACCEPT_SIZE) const;
1112
1113 // Return the count of undefined symbols seen.
1114 int
1115 saw_undefined() const
1116 { return this->saw_undefined_; }
1117
1118 // Allocate the common symbols
1119 void
1120 allocate_commons(const General_options&, Layout*);
1121
1122 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1123 // of the warning.
1124 void
1125 add_warning(const char* name, Object* obj, const std::string& warning)
1126 { this->warnings_.add_warning(this, name, obj, warning); }
1127
1128 // Canonicalize a symbol name for use in the hash table.
1129 const char*
1130 canonicalize_name(const char* name)
1131 { return this->namepool_.add(name, true, NULL); }
1132
1133 // Possibly issue a warning for a reference to SYM at LOCATION which
1134 // is in OBJ.
1135 template<int size, bool big_endian>
1136 void
1137 issue_warning(const Symbol* sym,
1138 const Relocate_info<size, big_endian>* relinfo,
1139 size_t relnum, off_t reloffset) const
1140 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1141
1142 // Check candidate_odr_violations_ to find symbols with the same name
1143 // but apparently different definitions (different source-file/line-no).
1144 void
1145 detect_odr_violations(const Task*, const char* output_file_name) const;
1146
1147 // SYM is defined using a COPY reloc. Return the dynamic object
1148 // where the original definition was found.
1149 Dynobj*
1150 get_copy_source(const Symbol* sym) const;
1151
1152 // Set the dynamic symbol indexes. INDEX is the index of the first
1153 // global dynamic symbol. Pointers to the symbols are stored into
1154 // the vector. The names are stored into the Stringpool. This
1155 // returns an updated dynamic symbol index.
1156 unsigned int
1157 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1158 Stringpool*, Versions*);
1159
1160 // Finalize the symbol table after we have set the final addresses
1161 // of all the input sections. This sets the final symbol indexes,
1162 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1163 // index of the first global symbol. OFF is the file offset of the
1164 // global symbol table, DYNOFF is the offset of the globals in the
1165 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1166 // global dynamic symbol, and DYNCOUNT is the number of global
1167 // dynamic symbols. This records the parameters, and returns the
1168 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1169 // local symbols.
1170 off_t
1171 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1172 Stringpool* pool, unsigned int *plocal_symcount);
1173
1174 // Write out the global symbols.
1175 void
1176 write_globals(const Input_objects*, const Stringpool*, const Stringpool*,
1177 Output_file*) const;
1178
1179 // Write out a section symbol. Return the updated offset.
1180 void
1181 write_section_symbol(const Output_section*, Output_file*, off_t) const;
1182
1183 // Dump statistical information to stderr.
1184 void
1185 print_stats() const;
1186
1187 // Return the version script information.
1188 const Version_script_info&
1189 version_script() const
1190 { return version_script_; }
1191
1192 private:
1193 Symbol_table(const Symbol_table&);
1194 Symbol_table& operator=(const Symbol_table&);
1195
1196 // Make FROM a forwarder symbol to TO.
1197 void
1198 make_forwarder(Symbol* from, Symbol* to);
1199
1200 // Add a symbol.
1201 template<int size, bool big_endian>
1202 Sized_symbol<size>*
1203 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1204 const char *version, Stringpool::Key version_key,
1205 bool def, const elfcpp::Sym<size, big_endian>& sym,
1206 const elfcpp::Sym<size, big_endian>& orig_sym);
1207
1208 // Resolve symbols.
1209 template<int size, bool big_endian>
1210 void
1211 resolve(Sized_symbol<size>* to,
1212 const elfcpp::Sym<size, big_endian>& sym,
1213 const elfcpp::Sym<size, big_endian>& orig_sym,
1214 Object*, const char* version);
1215
1216 template<int size, bool big_endian>
1217 void
1218 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
1219 const char* version ACCEPT_SIZE_ENDIAN);
1220
1221 // Record that a symbol is forced to be local by a version script.
1222 void
1223 force_local(Symbol*);
1224
1225 // Whether we should override a symbol, based on flags in
1226 // resolve.cc.
1227 static bool
1228 should_override(const Symbol*, unsigned int, Object*, bool*);
1229
1230 // Override a symbol.
1231 template<int size, bool big_endian>
1232 void
1233 override(Sized_symbol<size>* tosym,
1234 const elfcpp::Sym<size, big_endian>& fromsym,
1235 Object* object, const char* version);
1236
1237 // Whether we should override a symbol with a special symbol which
1238 // is automatically defined by the linker.
1239 static bool
1240 should_override_with_special(const Symbol*);
1241
1242 // Override a symbol with a special symbol.
1243 template<int size>
1244 void
1245 override_with_special(Sized_symbol<size>* tosym,
1246 const Sized_symbol<size>* fromsym);
1247
1248 // Record all weak alias sets for a dynamic object.
1249 template<int size>
1250 void
1251 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1252
1253 // Define a special symbol.
1254 template<int size, bool big_endian>
1255 Sized_symbol<size>*
1256 define_special_symbol(const char** pname, const char** pversion,
1257 bool only_if_ref, Sized_symbol<size>** poldsym
1258 ACCEPT_SIZE_ENDIAN);
1259
1260 // Define a symbol in an Output_data, sized version.
1261 template<int size>
1262 Sized_symbol<size>*
1263 do_define_in_output_data(const char* name, const char* version, Output_data*,
1264 typename elfcpp::Elf_types<size>::Elf_Addr value,
1265 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1266 elfcpp::STT type, elfcpp::STB binding,
1267 elfcpp::STV visibility, unsigned char nonvis,
1268 bool offset_is_from_end, bool only_if_ref);
1269
1270 // Define a symbol in an Output_segment, sized version.
1271 template<int size>
1272 Sized_symbol<size>*
1273 do_define_in_output_segment(
1274 const char* name, const char* version, Output_segment* os,
1275 typename elfcpp::Elf_types<size>::Elf_Addr value,
1276 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1277 elfcpp::STT type, elfcpp::STB binding,
1278 elfcpp::STV visibility, unsigned char nonvis,
1279 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1280
1281 // Define a symbol as a constant, sized version.
1282 template<int size>
1283 Sized_symbol<size>*
1284 do_define_as_constant(
1285 const char* name, const char* version,
1286 typename elfcpp::Elf_types<size>::Elf_Addr value,
1287 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1288 elfcpp::STT type, elfcpp::STB binding,
1289 elfcpp::STV visibility, unsigned char nonvis,
1290 bool only_if_ref);
1291
1292 // Allocate the common symbols, sized version.
1293 template<int size>
1294 void
1295 do_allocate_commons(const General_options&, Layout*);
1296
1297 // Implement detect_odr_violations.
1298 template<int size, bool big_endian>
1299 void
1300 sized_detect_odr_violations() const;
1301
1302 // Finalize symbols specialized for size.
1303 template<int size>
1304 off_t
1305 sized_finalize(off_t, Stringpool*, unsigned int*);
1306
1307 // Finalize a symbol. Return whether it should be added to the
1308 // symbol table.
1309 template<int size>
1310 bool
1311 sized_finalize_symbol(Symbol*);
1312
1313 // Add a symbol the final symtab by setting its index.
1314 template<int size>
1315 void
1316 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1317
1318 // Write globals specialized for size and endianness.
1319 template<int size, bool big_endian>
1320 void
1321 sized_write_globals(const Input_objects*, const Stringpool*,
1322 const Stringpool*, Output_file*) const;
1323
1324 // Write out a symbol to P.
1325 template<int size, bool big_endian>
1326 void
1327 sized_write_symbol(Sized_symbol<size>*,
1328 typename elfcpp::Elf_types<size>::Elf_Addr value,
1329 unsigned int shndx,
1330 const Stringpool*, unsigned char* p
1331 ACCEPT_SIZE_ENDIAN) const;
1332
1333 // Possibly warn about an undefined symbol from a dynamic object.
1334 void
1335 warn_about_undefined_dynobj_symbol(const Input_objects*, Symbol*) const;
1336
1337 // Write out a section symbol, specialized for size and endianness.
1338 template<int size, bool big_endian>
1339 void
1340 sized_write_section_symbol(const Output_section*, Output_file*, off_t) const;
1341
1342 // The type of the symbol hash table.
1343
1344 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1345
1346 struct Symbol_table_hash
1347 {
1348 size_t
1349 operator()(const Symbol_table_key&) const;
1350 };
1351
1352 struct Symbol_table_eq
1353 {
1354 bool
1355 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1356 };
1357
1358 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1359 Symbol_table_eq> Symbol_table_type;
1360
1361 // The type of the list of common symbols.
1362 typedef std::vector<Symbol*> Commons_type;
1363
1364 // The type of the list of symbols which have been forced local.
1365 typedef std::vector<Symbol*> Forced_locals;
1366
1367 // A map from symbols with COPY relocs to the dynamic objects where
1368 // they are defined.
1369 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1370
1371 // A map from symbol name (as a pointer into the namepool) to all
1372 // the locations the symbols is (weakly) defined (and certain other
1373 // conditions are met). This map will be used later to detect
1374 // possible One Definition Rule (ODR) violations.
1375 struct Symbol_location
1376 {
1377 Object* object; // Object where the symbol is defined.
1378 unsigned int shndx; // Section-in-object where the symbol is defined.
1379 off_t offset; // Offset-in-section where the symbol is defined.
1380 bool operator==(const Symbol_location& that) const
1381 {
1382 return (this->object == that.object
1383 && this->shndx == that.shndx
1384 && this->offset == that.offset);
1385 }
1386 };
1387
1388 struct Symbol_location_hash
1389 {
1390 size_t operator()(const Symbol_location& loc) const
1391 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1392 };
1393
1394 typedef Unordered_map<const char*,
1395 Unordered_set<Symbol_location, Symbol_location_hash> >
1396 Odr_map;
1397
1398 // We increment this every time we see a new undefined symbol, for
1399 // use in archive groups.
1400 int saw_undefined_;
1401 // The index of the first global symbol in the output file.
1402 unsigned int first_global_index_;
1403 // The file offset within the output symtab section where we should
1404 // write the table.
1405 off_t offset_;
1406 // The number of global symbols we want to write out.
1407 unsigned int output_count_;
1408 // The file offset of the global dynamic symbols, or 0 if none.
1409 off_t dynamic_offset_;
1410 // The index of the first global dynamic symbol.
1411 unsigned int first_dynamic_global_index_;
1412 // The number of global dynamic symbols, or 0 if none.
1413 unsigned int dynamic_count_;
1414 // The symbol hash table.
1415 Symbol_table_type table_;
1416 // A pool of symbol names. This is used for all global symbols.
1417 // Entries in the hash table point into this pool.
1418 Stringpool namepool_;
1419 // Forwarding symbols.
1420 Unordered_map<const Symbol*, Symbol*> forwarders_;
1421 // Weak aliases. A symbol in this list points to the next alias.
1422 // The aliases point to each other in a circular list.
1423 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1424 // We don't expect there to be very many common symbols, so we keep
1425 // a list of them. When we find a common symbol we add it to this
1426 // list. It is possible that by the time we process the list the
1427 // symbol is no longer a common symbol. It may also have become a
1428 // forwarder.
1429 Commons_type commons_;
1430 // A list of symbols which have been forced to be local. We don't
1431 // expect there to be very many of them, so we keep a list of them
1432 // rather than walking the whole table to find them.
1433 Forced_locals forced_locals_;
1434 // Manage symbol warnings.
1435 Warnings warnings_;
1436 // Manage potential One Definition Rule (ODR) violations.
1437 Odr_map candidate_odr_violations_;
1438
1439 // When we emit a COPY reloc for a symbol, we define it in an
1440 // Output_data. When it's time to emit version information for it,
1441 // we need to know the dynamic object in which we found the original
1442 // definition. This maps symbols with COPY relocs to the dynamic
1443 // object where they were defined.
1444 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1445 // Information parsed from the version script, if any.
1446 const Version_script_info& version_script_;
1447 };
1448
1449 // We inline get_sized_symbol for efficiency.
1450
1451 template<int size>
1452 Sized_symbol<size>*
1453 Symbol_table::get_sized_symbol(Symbol* sym ACCEPT_SIZE) const
1454 {
1455 gold_assert(size == parameters->get_size());
1456 return static_cast<Sized_symbol<size>*>(sym);
1457 }
1458
1459 template<int size>
1460 const Sized_symbol<size>*
1461 Symbol_table::get_sized_symbol(const Symbol* sym ACCEPT_SIZE) const
1462 {
1463 gold_assert(size == parameters->get_size());
1464 return static_cast<const Sized_symbol<size>*>(sym);
1465 }
1466
1467 } // End namespace gold.
1468
1469 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.05864 seconds and 5 git commands to generate.