gold/
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Return the symbol's name as name@version (or name@@version).
144 std::string
145 versioned_name() const;
146
147 // Return the symbol source.
148 Source
149 source() const
150 { return this->source_; }
151
152 // Return the object with which this symbol is associated.
153 Object*
154 object() const
155 {
156 gold_assert(this->source_ == FROM_OBJECT);
157 return this->u_.from_object.object;
158 }
159
160 // Return the index of the section in the input relocatable or
161 // dynamic object file.
162 unsigned int
163 shndx(bool* is_ordinary) const
164 {
165 gold_assert(this->source_ == FROM_OBJECT);
166 *is_ordinary = this->is_ordinary_shndx_;
167 return this->u_.from_object.shndx;
168 }
169
170 // Return the output data section with which this symbol is
171 // associated, if the symbol was specially defined with respect to
172 // an output data section.
173 Output_data*
174 output_data() const
175 {
176 gold_assert(this->source_ == IN_OUTPUT_DATA);
177 return this->u_.in_output_data.output_data;
178 }
179
180 // If this symbol was defined with respect to an output data
181 // section, return whether the value is an offset from end.
182 bool
183 offset_is_from_end() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_DATA);
186 return this->u_.in_output_data.offset_is_from_end;
187 }
188
189 // Return the output segment with which this symbol is associated,
190 // if the symbol was specially defined with respect to an output
191 // segment.
192 Output_segment*
193 output_segment() const
194 {
195 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
196 return this->u_.in_output_segment.output_segment;
197 }
198
199 // If this symbol was defined with respect to an output segment,
200 // return the offset base.
201 Segment_offset_base
202 offset_base() const
203 {
204 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
205 return this->u_.in_output_segment.offset_base;
206 }
207
208 // Return the symbol binding.
209 elfcpp::STB
210 binding() const
211 { return this->binding_; }
212
213 // Return the symbol type.
214 elfcpp::STT
215 type() const
216 { return this->type_; }
217
218 // Return true for function symbol.
219 bool
220 is_func() const
221 {
222 return (this->type_ == elfcpp::STT_FUNC
223 || this->type_ == elfcpp::STT_GNU_IFUNC);
224 }
225
226 // Return the symbol visibility.
227 elfcpp::STV
228 visibility() const
229 { return this->visibility_; }
230
231 // Set the visibility.
232 void
233 set_visibility(elfcpp::STV visibility)
234 { this->visibility_ = visibility; }
235
236 // Override symbol visibility.
237 void
238 override_visibility(elfcpp::STV);
239
240 // Set whether the symbol was originally a weak undef or a regular undef
241 // when resolved by a dynamic def.
242 inline void
243 set_undef_binding(elfcpp::STB bind)
244 {
245 if (!this->undef_binding_set_ || this->undef_binding_weak_)
246 {
247 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
248 this->undef_binding_set_ = true;
249 }
250 }
251
252 // Return TRUE if a weak undef was resolved by a dynamic def.
253 inline bool
254 is_undef_binding_weak() const
255 { return this->undef_binding_weak_; }
256
257 // Return the non-visibility part of the st_other field.
258 unsigned char
259 nonvis() const
260 { return this->nonvis_; }
261
262 // Return whether this symbol is a forwarder. This will never be
263 // true of a symbol found in the hash table, but may be true of
264 // symbol pointers attached to object files.
265 bool
266 is_forwarder() const
267 { return this->is_forwarder_; }
268
269 // Mark this symbol as a forwarder.
270 void
271 set_forwarder()
272 { this->is_forwarder_ = true; }
273
274 // Return whether this symbol has an alias in the weak aliases table
275 // in Symbol_table.
276 bool
277 has_alias() const
278 { return this->has_alias_; }
279
280 // Mark this symbol as having an alias.
281 void
282 set_has_alias()
283 { this->has_alias_ = true; }
284
285 // Return whether this symbol needs an entry in the dynamic symbol
286 // table.
287 bool
288 needs_dynsym_entry() const
289 {
290 return (this->needs_dynsym_entry_
291 || (this->in_reg()
292 && this->in_dyn()
293 && this->is_externally_visible()));
294 }
295
296 // Mark this symbol as needing an entry in the dynamic symbol table.
297 void
298 set_needs_dynsym_entry()
299 { this->needs_dynsym_entry_ = true; }
300
301 // Return whether this symbol should be added to the dynamic symbol
302 // table.
303 bool
304 should_add_dynsym_entry(Symbol_table*) const;
305
306 // Return whether this symbol has been seen in a regular object.
307 bool
308 in_reg() const
309 { return this->in_reg_; }
310
311 // Mark this symbol as having been seen in a regular object.
312 void
313 set_in_reg()
314 { this->in_reg_ = true; }
315
316 // Return whether this symbol has been seen in a dynamic object.
317 bool
318 in_dyn() const
319 { return this->in_dyn_; }
320
321 // Mark this symbol as having been seen in a dynamic object.
322 void
323 set_in_dyn()
324 { this->in_dyn_ = true; }
325
326 // Return whether this symbol has been seen in a real ELF object.
327 // (IN_REG will return TRUE if the symbol has been seen in either
328 // a real ELF object or an object claimed by a plugin.)
329 bool
330 in_real_elf() const
331 { return this->in_real_elf_; }
332
333 // Mark this symbol as having been seen in a real ELF object.
334 void
335 set_in_real_elf()
336 { this->in_real_elf_ = true; }
337
338 // Return whether this symbol was defined in a section that was
339 // discarded from the link. This is used to control some error
340 // reporting.
341 bool
342 is_defined_in_discarded_section() const
343 { return this->is_defined_in_discarded_section_; }
344
345 // Mark this symbol as having been defined in a discarded section.
346 void
347 set_is_defined_in_discarded_section()
348 { this->is_defined_in_discarded_section_ = true; }
349
350 // Return the index of this symbol in the output file symbol table.
351 // A value of -1U means that this symbol is not going into the
352 // output file. This starts out as zero, and is set to a non-zero
353 // value by Symbol_table::finalize. It is an error to ask for the
354 // symbol table index before it has been set.
355 unsigned int
356 symtab_index() const
357 {
358 gold_assert(this->symtab_index_ != 0);
359 return this->symtab_index_;
360 }
361
362 // Set the index of the symbol in the output file symbol table.
363 void
364 set_symtab_index(unsigned int index)
365 {
366 gold_assert(index != 0);
367 this->symtab_index_ = index;
368 }
369
370 // Return whether this symbol already has an index in the output
371 // file symbol table.
372 bool
373 has_symtab_index() const
374 { return this->symtab_index_ != 0; }
375
376 // Return the index of this symbol in the dynamic symbol table. A
377 // value of -1U means that this symbol is not going into the dynamic
378 // symbol table. This starts out as zero, and is set to a non-zero
379 // during Layout::finalize. It is an error to ask for the dynamic
380 // symbol table index before it has been set.
381 unsigned int
382 dynsym_index() const
383 {
384 gold_assert(this->dynsym_index_ != 0);
385 return this->dynsym_index_;
386 }
387
388 // Set the index of the symbol in the dynamic symbol table.
389 void
390 set_dynsym_index(unsigned int index)
391 {
392 gold_assert(index != 0);
393 this->dynsym_index_ = index;
394 }
395
396 // Return whether this symbol already has an index in the dynamic
397 // symbol table.
398 bool
399 has_dynsym_index() const
400 { return this->dynsym_index_ != 0; }
401
402 // Return whether this symbol has an entry in the GOT section.
403 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
404 bool
405 has_got_offset(unsigned int got_type) const
406 { return this->got_offsets_.get_offset(got_type) != -1U; }
407
408 // Return the offset into the GOT section of this symbol.
409 unsigned int
410 got_offset(unsigned int got_type) const
411 {
412 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
413 gold_assert(got_offset != -1U);
414 return got_offset;
415 }
416
417 // Set the GOT offset of this symbol.
418 void
419 set_got_offset(unsigned int got_type, unsigned int got_offset)
420 { this->got_offsets_.set_offset(got_type, got_offset); }
421
422 // Return the GOT offset list.
423 const Got_offset_list*
424 got_offset_list() const
425 { return this->got_offsets_.get_list(); }
426
427 // Return whether this symbol has an entry in the PLT section.
428 bool
429 has_plt_offset() const
430 { return this->plt_offset_ != -1U; }
431
432 // Return the offset into the PLT section of this symbol.
433 unsigned int
434 plt_offset() const
435 {
436 gold_assert(this->has_plt_offset());
437 return this->plt_offset_;
438 }
439
440 // Set the PLT offset of this symbol.
441 void
442 set_plt_offset(unsigned int plt_offset)
443 {
444 gold_assert(plt_offset != -1U);
445 this->plt_offset_ = plt_offset;
446 }
447
448 // Return whether this dynamic symbol needs a special value in the
449 // dynamic symbol table.
450 bool
451 needs_dynsym_value() const
452 { return this->needs_dynsym_value_; }
453
454 // Set that this dynamic symbol needs a special value in the dynamic
455 // symbol table.
456 void
457 set_needs_dynsym_value()
458 {
459 gold_assert(this->object()->is_dynamic());
460 this->needs_dynsym_value_ = true;
461 }
462
463 // Return true if the final value of this symbol is known at link
464 // time.
465 bool
466 final_value_is_known() const;
467
468 // Return true if SHNDX represents a common symbol. This depends on
469 // the target.
470 static bool
471 is_common_shndx(unsigned int shndx);
472
473 // Return whether this is a defined symbol (not undefined or
474 // common).
475 bool
476 is_defined() const
477 {
478 bool is_ordinary;
479 if (this->source_ != FROM_OBJECT)
480 return this->source_ != IS_UNDEFINED;
481 unsigned int shndx = this->shndx(&is_ordinary);
482 return (is_ordinary
483 ? shndx != elfcpp::SHN_UNDEF
484 : !Symbol::is_common_shndx(shndx));
485 }
486
487 // Return true if this symbol is from a dynamic object.
488 bool
489 is_from_dynobj() const
490 {
491 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
492 }
493
494 // Return whether this is a placeholder symbol from a plugin object.
495 bool
496 is_placeholder() const
497 {
498 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
499 }
500
501 // Return whether this is an undefined symbol.
502 bool
503 is_undefined() const
504 {
505 bool is_ordinary;
506 return ((this->source_ == FROM_OBJECT
507 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
508 && is_ordinary)
509 || this->source_ == IS_UNDEFINED);
510 }
511
512 // Return whether this is a weak undefined symbol.
513 bool
514 is_weak_undefined() const
515 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
516
517 // Return whether this is an absolute symbol.
518 bool
519 is_absolute() const
520 {
521 bool is_ordinary;
522 return ((this->source_ == FROM_OBJECT
523 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
524 && !is_ordinary)
525 || this->source_ == IS_CONSTANT);
526 }
527
528 // Return whether this is a common symbol.
529 bool
530 is_common() const
531 {
532 if (this->source_ != FROM_OBJECT)
533 return false;
534 if (this->type_ == elfcpp::STT_COMMON)
535 return true;
536 bool is_ordinary;
537 unsigned int shndx = this->shndx(&is_ordinary);
538 return !is_ordinary && Symbol::is_common_shndx(shndx);
539 }
540
541 // Return whether this symbol can be seen outside this object.
542 bool
543 is_externally_visible() const
544 {
545 return ((this->visibility_ == elfcpp::STV_DEFAULT
546 || this->visibility_ == elfcpp::STV_PROTECTED)
547 && !this->is_forced_local_);
548 }
549
550 // Return true if this symbol can be preempted by a definition in
551 // another link unit.
552 bool
553 is_preemptible() const
554 {
555 // It doesn't make sense to ask whether a symbol defined in
556 // another object is preemptible.
557 gold_assert(!this->is_from_dynobj());
558
559 // It doesn't make sense to ask whether an undefined symbol
560 // is preemptible.
561 gold_assert(!this->is_undefined());
562
563 // If a symbol does not have default visibility, it can not be
564 // seen outside this link unit and therefore is not preemptible.
565 if (this->visibility_ != elfcpp::STV_DEFAULT)
566 return false;
567
568 // If this symbol has been forced to be a local symbol by a
569 // version script, then it is not visible outside this link unit
570 // and is not preemptible.
571 if (this->is_forced_local_)
572 return false;
573
574 // If we are not producing a shared library, then nothing is
575 // preemptible.
576 if (!parameters->options().shared())
577 return false;
578
579 // If the user used -Bsymbolic, then nothing is preemptible.
580 if (parameters->options().Bsymbolic())
581 return false;
582
583 // If the user used -Bsymbolic-functions, then functions are not
584 // preemptible. We explicitly check for not being STT_OBJECT,
585 // rather than for being STT_FUNC, because that is what the GNU
586 // linker does.
587 if (this->type() != elfcpp::STT_OBJECT
588 && parameters->options().Bsymbolic_functions())
589 return false;
590
591 // Otherwise the symbol is preemptible.
592 return true;
593 }
594
595 // Return true if this symbol is a function that needs a PLT entry.
596 bool
597 needs_plt_entry() const
598 {
599 // An undefined symbol from an executable does not need a PLT entry.
600 if (this->is_undefined() && !parameters->options().shared())
601 return false;
602
603 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
604 // doing a static link.
605 if (this->type() == elfcpp::STT_GNU_IFUNC)
606 return true;
607
608 // We only need a PLT entry for a function.
609 if (!this->is_func())
610 return false;
611
612 // If we're doing a static link or a -pie link, we don't create
613 // PLT entries.
614 if (parameters->doing_static_link()
615 || parameters->options().pie())
616 return false;
617
618 // We need a PLT entry if the function is defined in a dynamic
619 // object, or is undefined when building a shared object, or if it
620 // is subject to pre-emption.
621 return (this->is_from_dynobj()
622 || this->is_undefined()
623 || this->is_preemptible());
624 }
625
626 // When determining whether a reference to a symbol needs a dynamic
627 // relocation, we need to know several things about the reference.
628 // These flags may be or'ed together. 0 means that the symbol
629 // isn't referenced at all.
630 enum Reference_flags
631 {
632 // A reference to the symbol's absolute address. This includes
633 // references that cause an absolute address to be stored in the GOT.
634 ABSOLUTE_REF = 1,
635 // A reference that calculates the offset of the symbol from some
636 // anchor point, such as the PC or GOT.
637 RELATIVE_REF = 2,
638 // A TLS-related reference.
639 TLS_REF = 4,
640 // A reference that can always be treated as a function call.
641 FUNCTION_CALL = 8
642 };
643
644 // Given a direct absolute or pc-relative static relocation against
645 // the global symbol, this function returns whether a dynamic relocation
646 // is needed.
647
648 bool
649 needs_dynamic_reloc(int flags) const
650 {
651 // No dynamic relocations in a static link!
652 if (parameters->doing_static_link())
653 return false;
654
655 // A reference to an undefined symbol from an executable should be
656 // statically resolved to 0, and does not need a dynamic relocation.
657 // This matches gnu ld behavior.
658 if (this->is_undefined() && !parameters->options().shared())
659 return false;
660
661 // A reference to an absolute symbol does not need a dynamic relocation.
662 if (this->is_absolute())
663 return false;
664
665 // An absolute reference within a position-independent output file
666 // will need a dynamic relocation.
667 if ((flags & ABSOLUTE_REF)
668 && parameters->options().output_is_position_independent())
669 return true;
670
671 // A function call that can branch to a local PLT entry does not need
672 // a dynamic relocation.
673 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
674 return false;
675
676 // A reference to any PLT entry in a non-position-independent executable
677 // does not need a dynamic relocation.
678 if (!parameters->options().output_is_position_independent()
679 && this->has_plt_offset())
680 return false;
681
682 // A reference to a symbol defined in a dynamic object or to a
683 // symbol that is preemptible will need a dynamic relocation.
684 if (this->is_from_dynobj()
685 || this->is_undefined()
686 || this->is_preemptible())
687 return true;
688
689 // For all other cases, return FALSE.
690 return false;
691 }
692
693 // Whether we should use the PLT offset associated with a symbol for
694 // a relocation. FLAGS is a set of Reference_flags.
695
696 bool
697 use_plt_offset(int flags) const
698 {
699 // If the symbol doesn't have a PLT offset, then naturally we
700 // don't want to use it.
701 if (!this->has_plt_offset())
702 return false;
703
704 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
705 if (this->type() == elfcpp::STT_GNU_IFUNC)
706 return true;
707
708 // If we are going to generate a dynamic relocation, then we will
709 // wind up using that, so no need to use the PLT entry.
710 if (this->needs_dynamic_reloc(flags))
711 return false;
712
713 // If the symbol is from a dynamic object, we need to use the PLT
714 // entry.
715 if (this->is_from_dynobj())
716 return true;
717
718 // If we are generating a shared object, and this symbol is
719 // undefined or preemptible, we need to use the PLT entry.
720 if (parameters->options().shared()
721 && (this->is_undefined() || this->is_preemptible()))
722 return true;
723
724 // If this is a call to a weak undefined symbol, we need to use
725 // the PLT entry; the symbol may be defined by a library loaded
726 // at runtime.
727 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
728 return true;
729
730 // Otherwise we can use the regular definition.
731 return false;
732 }
733
734 // Given a direct absolute static relocation against
735 // the global symbol, where a dynamic relocation is needed, this
736 // function returns whether a relative dynamic relocation can be used.
737 // The caller must determine separately whether the static relocation
738 // is compatible with a relative relocation.
739
740 bool
741 can_use_relative_reloc(bool is_function_call) const
742 {
743 // A function call that can branch to a local PLT entry can
744 // use a RELATIVE relocation.
745 if (is_function_call && this->has_plt_offset())
746 return true;
747
748 // A reference to a symbol defined in a dynamic object or to a
749 // symbol that is preemptible can not use a RELATIVE relocation.
750 if (this->is_from_dynobj()
751 || this->is_undefined()
752 || this->is_preemptible())
753 return false;
754
755 // For all other cases, return TRUE.
756 return true;
757 }
758
759 // Return the output section where this symbol is defined. Return
760 // NULL if the symbol has an absolute value.
761 Output_section*
762 output_section() const;
763
764 // Set the symbol's output section. This is used for symbols
765 // defined in scripts. This should only be called after the symbol
766 // table has been finalized.
767 void
768 set_output_section(Output_section*);
769
770 // Return whether there should be a warning for references to this
771 // symbol.
772 bool
773 has_warning() const
774 { return this->has_warning_; }
775
776 // Mark this symbol as having a warning.
777 void
778 set_has_warning()
779 { this->has_warning_ = true; }
780
781 // Return whether this symbol is defined by a COPY reloc from a
782 // dynamic object.
783 bool
784 is_copied_from_dynobj() const
785 { return this->is_copied_from_dynobj_; }
786
787 // Mark this symbol as defined by a COPY reloc.
788 void
789 set_is_copied_from_dynobj()
790 { this->is_copied_from_dynobj_ = true; }
791
792 // Return whether this symbol is forced to visibility STB_LOCAL
793 // by a "local:" entry in a version script.
794 bool
795 is_forced_local() const
796 { return this->is_forced_local_; }
797
798 // Mark this symbol as forced to STB_LOCAL visibility.
799 void
800 set_is_forced_local()
801 { this->is_forced_local_ = true; }
802
803 // Return true if this may need a COPY relocation.
804 // References from an executable object to non-function symbols
805 // defined in a dynamic object may need a COPY relocation.
806 bool
807 may_need_copy_reloc() const
808 {
809 return (!parameters->options().output_is_position_independent()
810 && parameters->options().copyreloc()
811 && this->is_from_dynobj()
812 && !this->is_func());
813 }
814
815 // Return true if this symbol was predefined by the linker.
816 bool
817 is_predefined() const
818 { return this->is_predefined_; }
819
820 // Return true if this is a C++ vtable symbol.
821 bool
822 is_cxx_vtable() const
823 { return is_prefix_of("_ZTV", this->name_); }
824
825 protected:
826 // Instances of this class should always be created at a specific
827 // size.
828 Symbol()
829 { memset(this, 0, sizeof *this); }
830
831 // Initialize the general fields.
832 void
833 init_fields(const char* name, const char* version,
834 elfcpp::STT type, elfcpp::STB binding,
835 elfcpp::STV visibility, unsigned char nonvis);
836
837 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
838 // section index, IS_ORDINARY is whether it is a normal section
839 // index rather than a special code.
840 template<int size, bool big_endian>
841 void
842 init_base_object(const char* name, const char* version, Object* object,
843 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
844 bool is_ordinary);
845
846 // Initialize fields for an Output_data.
847 void
848 init_base_output_data(const char* name, const char* version, Output_data*,
849 elfcpp::STT, elfcpp::STB, elfcpp::STV,
850 unsigned char nonvis, bool offset_is_from_end,
851 bool is_predefined);
852
853 // Initialize fields for an Output_segment.
854 void
855 init_base_output_segment(const char* name, const char* version,
856 Output_segment* os, elfcpp::STT type,
857 elfcpp::STB binding, elfcpp::STV visibility,
858 unsigned char nonvis,
859 Segment_offset_base offset_base,
860 bool is_predefined);
861
862 // Initialize fields for a constant.
863 void
864 init_base_constant(const char* name, const char* version, elfcpp::STT type,
865 elfcpp::STB binding, elfcpp::STV visibility,
866 unsigned char nonvis, bool is_predefined);
867
868 // Initialize fields for an undefined symbol.
869 void
870 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
871 elfcpp::STB binding, elfcpp::STV visibility,
872 unsigned char nonvis);
873
874 // Override existing symbol.
875 template<int size, bool big_endian>
876 void
877 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
878 bool is_ordinary, Object* object, const char* version);
879
880 // Override existing symbol with a special symbol.
881 void
882 override_base_with_special(const Symbol* from);
883
884 // Override symbol version.
885 void
886 override_version(const char* version);
887
888 // Allocate a common symbol by giving it a location in the output
889 // file.
890 void
891 allocate_base_common(Output_data*);
892
893 private:
894 Symbol(const Symbol&);
895 Symbol& operator=(const Symbol&);
896
897 // Symbol name (expected to point into a Stringpool).
898 const char* name_;
899 // Symbol version (expected to point into a Stringpool). This may
900 // be NULL.
901 const char* version_;
902
903 union
904 {
905 // This struct is used if SOURCE_ == FROM_OBJECT.
906 struct
907 {
908 // Object in which symbol is defined, or in which it was first
909 // seen.
910 Object* object;
911 // Section number in object_ in which symbol is defined.
912 unsigned int shndx;
913 } from_object;
914
915 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
916 struct
917 {
918 // Output_data in which symbol is defined. Before
919 // Layout::finalize the symbol's value is an offset within the
920 // Output_data.
921 Output_data* output_data;
922 // True if the offset is from the end, false if the offset is
923 // from the beginning.
924 bool offset_is_from_end;
925 } in_output_data;
926
927 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
928 struct
929 {
930 // Output_segment in which the symbol is defined. Before
931 // Layout::finalize the symbol's value is an offset.
932 Output_segment* output_segment;
933 // The base to use for the offset before Layout::finalize.
934 Segment_offset_base offset_base;
935 } in_output_segment;
936 } u_;
937
938 // The index of this symbol in the output file. If the symbol is
939 // not going into the output file, this value is -1U. This field
940 // starts as always holding zero. It is set to a non-zero value by
941 // Symbol_table::finalize.
942 unsigned int symtab_index_;
943
944 // The index of this symbol in the dynamic symbol table. If the
945 // symbol is not going into the dynamic symbol table, this value is
946 // -1U. This field starts as always holding zero. It is set to a
947 // non-zero value during Layout::finalize.
948 unsigned int dynsym_index_;
949
950 // The GOT section entries for this symbol. A symbol may have more
951 // than one GOT offset (e.g., when mixing modules compiled with two
952 // different TLS models), but will usually have at most one.
953 Got_offset_list got_offsets_;
954
955 // If this symbol has an entry in the PLT section, then this is the
956 // offset from the start of the PLT section. This is -1U if there
957 // is no PLT entry.
958 unsigned int plt_offset_;
959
960 // Symbol type (bits 0 to 3).
961 elfcpp::STT type_ : 4;
962 // Symbol binding (bits 4 to 7).
963 elfcpp::STB binding_ : 4;
964 // Symbol visibility (bits 8 to 9).
965 elfcpp::STV visibility_ : 2;
966 // Rest of symbol st_other field (bits 10 to 15).
967 unsigned int nonvis_ : 6;
968 // The type of symbol (bits 16 to 18).
969 Source source_ : 3;
970 // True if this is the default version of the symbol (bit 19).
971 bool is_def_ : 1;
972 // True if this symbol really forwards to another symbol. This is
973 // used when we discover after the fact that two different entries
974 // in the hash table really refer to the same symbol. This will
975 // never be set for a symbol found in the hash table, but may be set
976 // for a symbol found in the list of symbols attached to an Object.
977 // It forwards to the symbol found in the forwarders_ map of
978 // Symbol_table (bit 20).
979 bool is_forwarder_ : 1;
980 // True if the symbol has an alias in the weak_aliases table in
981 // Symbol_table (bit 21).
982 bool has_alias_ : 1;
983 // True if this symbol needs to be in the dynamic symbol table (bit
984 // 22).
985 bool needs_dynsym_entry_ : 1;
986 // True if we've seen this symbol in a regular object (bit 23).
987 bool in_reg_ : 1;
988 // True if we've seen this symbol in a dynamic object (bit 24).
989 bool in_dyn_ : 1;
990 // True if this is a dynamic symbol which needs a special value in
991 // the dynamic symbol table (bit 25).
992 bool needs_dynsym_value_ : 1;
993 // True if there is a warning for this symbol (bit 26).
994 bool has_warning_ : 1;
995 // True if we are using a COPY reloc for this symbol, so that the
996 // real definition lives in a dynamic object (bit 27).
997 bool is_copied_from_dynobj_ : 1;
998 // True if this symbol was forced to local visibility by a version
999 // script (bit 28).
1000 bool is_forced_local_ : 1;
1001 // True if the field u_.from_object.shndx is an ordinary section
1002 // index, not one of the special codes from SHN_LORESERVE to
1003 // SHN_HIRESERVE (bit 29).
1004 bool is_ordinary_shndx_ : 1;
1005 // True if we've seen this symbol in a "real" ELF object (bit 30).
1006 // If the symbol has been seen in a relocatable, non-IR, object file,
1007 // it's known to be referenced from outside the IR. A reference from
1008 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1009 // mark the symbol as "visible" from outside the IR. The compiler
1010 // can use this distinction to guide its handling of COMDAT symbols.
1011 bool in_real_elf_ : 1;
1012 // True if this symbol is defined in a section which was discarded
1013 // (bit 31).
1014 bool is_defined_in_discarded_section_ : 1;
1015 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1016 bool undef_binding_set_ : 1;
1017 // True if this symbol was a weak undef resolved by a dynamic def
1018 // (bit 33).
1019 bool undef_binding_weak_ : 1;
1020 // True if this symbol is a predefined linker symbol (bit 34).
1021 bool is_predefined_ : 1;
1022 };
1023
1024 // The parts of a symbol which are size specific. Using a template
1025 // derived class like this helps us use less space on a 32-bit system.
1026
1027 template<int size>
1028 class Sized_symbol : public Symbol
1029 {
1030 public:
1031 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1032 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1033
1034 Sized_symbol()
1035 { }
1036
1037 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1038 // section index, IS_ORDINARY is whether it is a normal section
1039 // index rather than a special code.
1040 template<bool big_endian>
1041 void
1042 init_object(const char* name, const char* version, Object* object,
1043 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1044 bool is_ordinary);
1045
1046 // Initialize fields for an Output_data.
1047 void
1048 init_output_data(const char* name, const char* version, Output_data*,
1049 Value_type value, Size_type symsize, elfcpp::STT,
1050 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1051 bool offset_is_from_end, bool is_predefined);
1052
1053 // Initialize fields for an Output_segment.
1054 void
1055 init_output_segment(const char* name, const char* version, Output_segment*,
1056 Value_type value, Size_type symsize, elfcpp::STT,
1057 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1058 Segment_offset_base offset_base, bool is_predefined);
1059
1060 // Initialize fields for a constant.
1061 void
1062 init_constant(const char* name, const char* version, Value_type value,
1063 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1064 unsigned char nonvis, bool is_predefined);
1065
1066 // Initialize fields for an undefined symbol.
1067 void
1068 init_undefined(const char* name, const char* version, elfcpp::STT,
1069 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1070
1071 // Override existing symbol.
1072 template<bool big_endian>
1073 void
1074 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1075 bool is_ordinary, Object* object, const char* version);
1076
1077 // Override existing symbol with a special symbol.
1078 void
1079 override_with_special(const Sized_symbol<size>*);
1080
1081 // Return the symbol's value.
1082 Value_type
1083 value() const
1084 { return this->value_; }
1085
1086 // Return the symbol's size (we can't call this 'size' because that
1087 // is a template parameter).
1088 Size_type
1089 symsize() const
1090 { return this->symsize_; }
1091
1092 // Set the symbol size. This is used when resolving common symbols.
1093 void
1094 set_symsize(Size_type symsize)
1095 { this->symsize_ = symsize; }
1096
1097 // Set the symbol value. This is called when we store the final
1098 // values of the symbols into the symbol table.
1099 void
1100 set_value(Value_type value)
1101 { this->value_ = value; }
1102
1103 // Allocate a common symbol by giving it a location in the output
1104 // file.
1105 void
1106 allocate_common(Output_data*, Value_type value);
1107
1108 private:
1109 Sized_symbol(const Sized_symbol&);
1110 Sized_symbol& operator=(const Sized_symbol&);
1111
1112 // Symbol value. Before Layout::finalize this is the offset in the
1113 // input section. This is set to the final value during
1114 // Layout::finalize.
1115 Value_type value_;
1116 // Symbol size.
1117 Size_type symsize_;
1118 };
1119
1120 // A struct describing a symbol defined by the linker, where the value
1121 // of the symbol is defined based on an output section. This is used
1122 // for symbols defined by the linker, like "_init_array_start".
1123
1124 struct Define_symbol_in_section
1125 {
1126 // The symbol name.
1127 const char* name;
1128 // The name of the output section with which this symbol should be
1129 // associated. If there is no output section with that name, the
1130 // symbol will be defined as zero.
1131 const char* output_section;
1132 // The offset of the symbol within the output section. This is an
1133 // offset from the start of the output section, unless start_at_end
1134 // is true, in which case this is an offset from the end of the
1135 // output section.
1136 uint64_t value;
1137 // The size of the symbol.
1138 uint64_t size;
1139 // The symbol type.
1140 elfcpp::STT type;
1141 // The symbol binding.
1142 elfcpp::STB binding;
1143 // The symbol visibility.
1144 elfcpp::STV visibility;
1145 // The rest of the st_other field.
1146 unsigned char nonvis;
1147 // If true, the value field is an offset from the end of the output
1148 // section.
1149 bool offset_is_from_end;
1150 // If true, this symbol is defined only if we see a reference to it.
1151 bool only_if_ref;
1152 };
1153
1154 // A struct describing a symbol defined by the linker, where the value
1155 // of the symbol is defined based on a segment. This is used for
1156 // symbols defined by the linker, like "_end". We describe the
1157 // segment with which the symbol should be associated by its
1158 // characteristics. If no segment meets these characteristics, the
1159 // symbol will be defined as zero. If there is more than one segment
1160 // which meets these characteristics, we will use the first one.
1161
1162 struct Define_symbol_in_segment
1163 {
1164 // The symbol name.
1165 const char* name;
1166 // The segment type where the symbol should be defined, typically
1167 // PT_LOAD.
1168 elfcpp::PT segment_type;
1169 // Bitmask of segment flags which must be set.
1170 elfcpp::PF segment_flags_set;
1171 // Bitmask of segment flags which must be clear.
1172 elfcpp::PF segment_flags_clear;
1173 // The offset of the symbol within the segment. The offset is
1174 // calculated from the position set by offset_base.
1175 uint64_t value;
1176 // The size of the symbol.
1177 uint64_t size;
1178 // The symbol type.
1179 elfcpp::STT type;
1180 // The symbol binding.
1181 elfcpp::STB binding;
1182 // The symbol visibility.
1183 elfcpp::STV visibility;
1184 // The rest of the st_other field.
1185 unsigned char nonvis;
1186 // The base from which we compute the offset.
1187 Symbol::Segment_offset_base offset_base;
1188 // If true, this symbol is defined only if we see a reference to it.
1189 bool only_if_ref;
1190 };
1191
1192 // Specify an object/section/offset location. Used by ODR code.
1193
1194 struct Symbol_location
1195 {
1196 // Object where the symbol is defined.
1197 Object* object;
1198 // Section-in-object where the symbol is defined.
1199 unsigned int shndx;
1200 // For relocatable objects, offset-in-section where the symbol is defined.
1201 // For dynamic objects, address where the symbol is defined.
1202 off_t offset;
1203 bool operator==(const Symbol_location& that) const
1204 {
1205 return (this->object == that.object
1206 && this->shndx == that.shndx
1207 && this->offset == that.offset);
1208 }
1209 };
1210
1211 // This class manages warnings. Warnings are a GNU extension. When
1212 // we see a section named .gnu.warning.SYM in an object file, and if
1213 // we wind using the definition of SYM from that object file, then we
1214 // will issue a warning for any relocation against SYM from a
1215 // different object file. The text of the warning is the contents of
1216 // the section. This is not precisely the definition used by the old
1217 // GNU linker; the old GNU linker treated an occurrence of
1218 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1219 // would trigger a warning on any reference. However, it was
1220 // inconsistent in that a warning in a dynamic object only triggered
1221 // if there was no definition in a regular object. This linker is
1222 // different in that we only issue a warning if we use the symbol
1223 // definition from the same object file as the warning section.
1224
1225 class Warnings
1226 {
1227 public:
1228 Warnings()
1229 : warnings_()
1230 { }
1231
1232 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1233 // of the warning.
1234 void
1235 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1236 const std::string& warning);
1237
1238 // For each symbol for which we should give a warning, make a note
1239 // on the symbol.
1240 void
1241 note_warnings(Symbol_table* symtab);
1242
1243 // Issue a warning for a reference to SYM at RELINFO's location.
1244 template<int size, bool big_endian>
1245 void
1246 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1247 size_t relnum, off_t reloffset) const;
1248
1249 private:
1250 Warnings(const Warnings&);
1251 Warnings& operator=(const Warnings&);
1252
1253 // What we need to know to get the warning text.
1254 struct Warning_location
1255 {
1256 // The object the warning is in.
1257 Object* object;
1258 // The warning text.
1259 std::string text;
1260
1261 Warning_location()
1262 : object(NULL), text()
1263 { }
1264
1265 void
1266 set(Object* o, const std::string& t)
1267 {
1268 this->object = o;
1269 this->text = t;
1270 }
1271 };
1272
1273 // A mapping from warning symbol names (canonicalized in
1274 // Symbol_table's namepool_ field) to warning information.
1275 typedef Unordered_map<const char*, Warning_location> Warning_table;
1276
1277 Warning_table warnings_;
1278 };
1279
1280 // The main linker symbol table.
1281
1282 class Symbol_table
1283 {
1284 public:
1285 // The different places where a symbol definition can come from.
1286 enum Defined
1287 {
1288 // Defined in an object file--the normal case.
1289 OBJECT,
1290 // Defined for a COPY reloc.
1291 COPY,
1292 // Defined on the command line using --defsym.
1293 DEFSYM,
1294 // Defined (so to speak) on the command line using -u.
1295 UNDEFINED,
1296 // Defined in a linker script.
1297 SCRIPT,
1298 // Predefined by the linker.
1299 PREDEFINED,
1300 // Defined by the linker during an incremental base link, but not
1301 // a predefined symbol (e.g., common, defined in script).
1302 INCREMENTAL_BASE,
1303 };
1304
1305 // The order in which we sort common symbols.
1306 enum Sort_commons_order
1307 {
1308 SORT_COMMONS_BY_SIZE_DESCENDING,
1309 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1310 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1311 };
1312
1313 // COUNT is an estimate of how many symbols will be inserted in the
1314 // symbol table. It's ok to put 0 if you don't know; a correct
1315 // guess will just save some CPU by reducing hashtable resizes.
1316 Symbol_table(unsigned int count, const Version_script_info& version_script);
1317
1318 ~Symbol_table();
1319
1320 void
1321 set_icf(Icf* icf)
1322 { this->icf_ = icf;}
1323
1324 Icf*
1325 icf() const
1326 { return this->icf_; }
1327
1328 // Returns true if ICF determined that this is a duplicate section.
1329 bool
1330 is_section_folded(Object* obj, unsigned int shndx) const;
1331
1332 void
1333 set_gc(Garbage_collection* gc)
1334 { this->gc_ = gc; }
1335
1336 Garbage_collection*
1337 gc() const
1338 { return this->gc_; }
1339
1340 // During garbage collection, this keeps undefined symbols.
1341 void
1342 gc_mark_undef_symbols(Layout*);
1343
1344 // This tells garbage collection that this symbol is referenced.
1345 void
1346 gc_mark_symbol(Symbol* sym);
1347
1348 // During garbage collection, this keeps sections that correspond to
1349 // symbols seen in dynamic objects.
1350 inline void
1351 gc_mark_dyn_syms(Symbol* sym);
1352
1353 // Add COUNT external symbols from the relocatable object RELOBJ to
1354 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1355 // offset in the symbol table of the first symbol, SYM_NAMES is
1356 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1357 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1358 // *DEFINED to the number of defined symbols.
1359 template<int size, bool big_endian>
1360 void
1361 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1362 const unsigned char* syms, size_t count,
1363 size_t symndx_offset, const char* sym_names,
1364 size_t sym_name_size,
1365 typename Sized_relobj_file<size, big_endian>::Symbols*,
1366 size_t* defined);
1367
1368 // Add one external symbol from the plugin object OBJ to the symbol table.
1369 // Returns a pointer to the resolved symbol in the symbol table.
1370 template<int size, bool big_endian>
1371 Symbol*
1372 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1373 const char* name, const char* ver,
1374 elfcpp::Sym<size, big_endian>* sym);
1375
1376 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1377 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1378 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1379 // symbol version data.
1380 template<int size, bool big_endian>
1381 void
1382 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1383 const unsigned char* syms, size_t count,
1384 const char* sym_names, size_t sym_name_size,
1385 const unsigned char* versym, size_t versym_size,
1386 const std::vector<const char*>*,
1387 typename Sized_relobj_file<size, big_endian>::Symbols*,
1388 size_t* defined);
1389
1390 // Add one external symbol from the incremental object OBJ to the symbol
1391 // table. Returns a pointer to the resolved symbol in the symbol table.
1392 template<int size, bool big_endian>
1393 Sized_symbol<size>*
1394 add_from_incrobj(Object* obj, const char* name,
1395 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1396
1397 // Define a special symbol based on an Output_data. It is a
1398 // multiple definition error if this symbol is already defined.
1399 Symbol*
1400 define_in_output_data(const char* name, const char* version, Defined,
1401 Output_data*, uint64_t value, uint64_t symsize,
1402 elfcpp::STT type, elfcpp::STB binding,
1403 elfcpp::STV visibility, unsigned char nonvis,
1404 bool offset_is_from_end, bool only_if_ref);
1405
1406 // Define a special symbol based on an Output_segment. It is a
1407 // multiple definition error if this symbol is already defined.
1408 Symbol*
1409 define_in_output_segment(const char* name, const char* version, Defined,
1410 Output_segment*, uint64_t value, uint64_t symsize,
1411 elfcpp::STT type, elfcpp::STB binding,
1412 elfcpp::STV visibility, unsigned char nonvis,
1413 Symbol::Segment_offset_base, bool only_if_ref);
1414
1415 // Define a special symbol with a constant value. It is a multiple
1416 // definition error if this symbol is already defined.
1417 Symbol*
1418 define_as_constant(const char* name, const char* version, Defined,
1419 uint64_t value, uint64_t symsize, elfcpp::STT type,
1420 elfcpp::STB binding, elfcpp::STV visibility,
1421 unsigned char nonvis, bool only_if_ref,
1422 bool force_override);
1423
1424 // Define a set of symbols in output sections. If ONLY_IF_REF is
1425 // true, only define them if they are referenced.
1426 void
1427 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1428 bool only_if_ref);
1429
1430 // Define a set of symbols in output segments. If ONLY_IF_REF is
1431 // true, only defined them if they are referenced.
1432 void
1433 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1434 bool only_if_ref);
1435
1436 // Define SYM using a COPY reloc. POSD is the Output_data where the
1437 // symbol should be defined--typically a .dyn.bss section. VALUE is
1438 // the offset within POSD.
1439 template<int size>
1440 void
1441 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1442 typename elfcpp::Elf_types<size>::Elf_Addr);
1443
1444 // Look up a symbol.
1445 Symbol*
1446 lookup(const char*, const char* version = NULL) const;
1447
1448 // Return the real symbol associated with the forwarder symbol FROM.
1449 Symbol*
1450 resolve_forwards(const Symbol* from) const;
1451
1452 // Return the sized version of a symbol in this table.
1453 template<int size>
1454 Sized_symbol<size>*
1455 get_sized_symbol(Symbol*) const;
1456
1457 template<int size>
1458 const Sized_symbol<size>*
1459 get_sized_symbol(const Symbol*) const;
1460
1461 // Return the count of undefined symbols seen.
1462 size_t
1463 saw_undefined() const
1464 { return this->saw_undefined_; }
1465
1466 // Allocate the common symbols
1467 void
1468 allocate_commons(Layout*, Mapfile*);
1469
1470 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1471 // of the warning.
1472 void
1473 add_warning(const char* name, Object* obj, const std::string& warning)
1474 { this->warnings_.add_warning(this, name, obj, warning); }
1475
1476 // Canonicalize a symbol name for use in the hash table.
1477 const char*
1478 canonicalize_name(const char* name)
1479 { return this->namepool_.add(name, true, NULL); }
1480
1481 // Possibly issue a warning for a reference to SYM at LOCATION which
1482 // is in OBJ.
1483 template<int size, bool big_endian>
1484 void
1485 issue_warning(const Symbol* sym,
1486 const Relocate_info<size, big_endian>* relinfo,
1487 size_t relnum, off_t reloffset) const
1488 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1489
1490 // Check candidate_odr_violations_ to find symbols with the same name
1491 // but apparently different definitions (different source-file/line-no).
1492 void
1493 detect_odr_violations(const Task*, const char* output_file_name) const;
1494
1495 // Add any undefined symbols named on the command line to the symbol
1496 // table.
1497 void
1498 add_undefined_symbols_from_command_line(Layout*);
1499
1500 // SYM is defined using a COPY reloc. Return the dynamic object
1501 // where the original definition was found.
1502 Dynobj*
1503 get_copy_source(const Symbol* sym) const;
1504
1505 // Set the dynamic symbol indexes. INDEX is the index of the first
1506 // global dynamic symbol. Pointers to the symbols are stored into
1507 // the vector. The names are stored into the Stringpool. This
1508 // returns an updated dynamic symbol index.
1509 unsigned int
1510 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1511 Stringpool*, Versions*);
1512
1513 // Finalize the symbol table after we have set the final addresses
1514 // of all the input sections. This sets the final symbol indexes,
1515 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1516 // index of the first global symbol. OFF is the file offset of the
1517 // global symbol table, DYNOFF is the offset of the globals in the
1518 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1519 // global dynamic symbol, and DYNCOUNT is the number of global
1520 // dynamic symbols. This records the parameters, and returns the
1521 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1522 // local symbols.
1523 off_t
1524 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1525 Stringpool* pool, unsigned int* plocal_symcount);
1526
1527 // Set the final file offset of the symbol table.
1528 void
1529 set_file_offset(off_t off)
1530 { this->offset_ = off; }
1531
1532 // Status code of Symbol_table::compute_final_value.
1533 enum Compute_final_value_status
1534 {
1535 // No error.
1536 CFVS_OK,
1537 // Unsupported symbol section.
1538 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1539 // No output section.
1540 CFVS_NO_OUTPUT_SECTION
1541 };
1542
1543 // Compute the final value of SYM and store status in location PSTATUS.
1544 // During relaxation, this may be called multiple times for a symbol to
1545 // compute its would-be final value in each relaxation pass.
1546
1547 template<int size>
1548 typename Sized_symbol<size>::Value_type
1549 compute_final_value(const Sized_symbol<size>* sym,
1550 Compute_final_value_status* pstatus) const;
1551
1552 // Return the index of the first global symbol.
1553 unsigned int
1554 first_global_index() const
1555 { return this->first_global_index_; }
1556
1557 // Return the total number of symbols in the symbol table.
1558 unsigned int
1559 output_count() const
1560 { return this->output_count_; }
1561
1562 // Write out the global symbols.
1563 void
1564 write_globals(const Stringpool*, const Stringpool*,
1565 Output_symtab_xindex*, Output_symtab_xindex*,
1566 Output_file*) const;
1567
1568 // Write out a section symbol. Return the updated offset.
1569 void
1570 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1571 Output_file*, off_t) const;
1572
1573 // Loop over all symbols, applying the function F to each.
1574 template<int size, typename F>
1575 void
1576 for_all_symbols(F f) const
1577 {
1578 for (Symbol_table_type::const_iterator p = this->table_.begin();
1579 p != this->table_.end();
1580 ++p)
1581 {
1582 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1583 f(sym);
1584 }
1585 }
1586
1587 // Dump statistical information to stderr.
1588 void
1589 print_stats() const;
1590
1591 // Return the version script information.
1592 const Version_script_info&
1593 version_script() const
1594 { return version_script_; }
1595
1596 private:
1597 Symbol_table(const Symbol_table&);
1598 Symbol_table& operator=(const Symbol_table&);
1599
1600 // The type of the list of common symbols.
1601 typedef std::vector<Symbol*> Commons_type;
1602
1603 // The type of the symbol hash table.
1604
1605 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1606
1607 // The hash function. The key values are Stringpool keys.
1608 struct Symbol_table_hash
1609 {
1610 inline size_t
1611 operator()(const Symbol_table_key& key) const
1612 {
1613 return key.first ^ key.second;
1614 }
1615 };
1616
1617 struct Symbol_table_eq
1618 {
1619 bool
1620 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1621 };
1622
1623 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1624 Symbol_table_eq> Symbol_table_type;
1625
1626 // A map from symbol name (as a pointer into the namepool) to all
1627 // the locations the symbols is (weakly) defined (and certain other
1628 // conditions are met). This map will be used later to detect
1629 // possible One Definition Rule (ODR) violations.
1630 struct Symbol_location_hash
1631 {
1632 size_t operator()(const Symbol_location& loc) const
1633 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1634 };
1635
1636 typedef Unordered_map<const char*,
1637 Unordered_set<Symbol_location, Symbol_location_hash> >
1638 Odr_map;
1639
1640 // Make FROM a forwarder symbol to TO.
1641 void
1642 make_forwarder(Symbol* from, Symbol* to);
1643
1644 // Add a symbol.
1645 template<int size, bool big_endian>
1646 Sized_symbol<size>*
1647 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1648 const char* version, Stringpool::Key version_key,
1649 bool def, const elfcpp::Sym<size, big_endian>& sym,
1650 unsigned int st_shndx, bool is_ordinary,
1651 unsigned int orig_st_shndx);
1652
1653 // Define a default symbol.
1654 template<int size, bool big_endian>
1655 void
1656 define_default_version(Sized_symbol<size>*, bool,
1657 Symbol_table_type::iterator);
1658
1659 // Resolve symbols.
1660 template<int size, bool big_endian>
1661 void
1662 resolve(Sized_symbol<size>* to,
1663 const elfcpp::Sym<size, big_endian>& sym,
1664 unsigned int st_shndx, bool is_ordinary,
1665 unsigned int orig_st_shndx,
1666 Object*, const char* version);
1667
1668 template<int size, bool big_endian>
1669 void
1670 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1671
1672 // Record that a symbol is forced to be local by a version script or
1673 // by visibility.
1674 void
1675 force_local(Symbol*);
1676
1677 // Adjust NAME and *NAME_KEY for wrapping.
1678 const char*
1679 wrap_symbol(const char* name, Stringpool::Key* name_key);
1680
1681 // Whether we should override a symbol, based on flags in
1682 // resolve.cc.
1683 static bool
1684 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1685 Object*, bool*, bool*);
1686
1687 // Report a problem in symbol resolution.
1688 static void
1689 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1690 Defined, Object* object);
1691
1692 // Override a symbol.
1693 template<int size, bool big_endian>
1694 void
1695 override(Sized_symbol<size>* tosym,
1696 const elfcpp::Sym<size, big_endian>& fromsym,
1697 unsigned int st_shndx, bool is_ordinary,
1698 Object* object, const char* version);
1699
1700 // Whether we should override a symbol with a special symbol which
1701 // is automatically defined by the linker.
1702 static bool
1703 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1704
1705 // Override a symbol with a special symbol.
1706 template<int size>
1707 void
1708 override_with_special(Sized_symbol<size>* tosym,
1709 const Sized_symbol<size>* fromsym);
1710
1711 // Record all weak alias sets for a dynamic object.
1712 template<int size>
1713 void
1714 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1715
1716 // Define a special symbol.
1717 template<int size, bool big_endian>
1718 Sized_symbol<size>*
1719 define_special_symbol(const char** pname, const char** pversion,
1720 bool only_if_ref, Sized_symbol<size>** poldsym,
1721 bool* resolve_oldsym);
1722
1723 // Define a symbol in an Output_data, sized version.
1724 template<int size>
1725 Sized_symbol<size>*
1726 do_define_in_output_data(const char* name, const char* version, Defined,
1727 Output_data*,
1728 typename elfcpp::Elf_types<size>::Elf_Addr value,
1729 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1730 elfcpp::STT type, elfcpp::STB binding,
1731 elfcpp::STV visibility, unsigned char nonvis,
1732 bool offset_is_from_end, bool only_if_ref);
1733
1734 // Define a symbol in an Output_segment, sized version.
1735 template<int size>
1736 Sized_symbol<size>*
1737 do_define_in_output_segment(
1738 const char* name, const char* version, Defined, Output_segment* os,
1739 typename elfcpp::Elf_types<size>::Elf_Addr value,
1740 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1741 elfcpp::STT type, elfcpp::STB binding,
1742 elfcpp::STV visibility, unsigned char nonvis,
1743 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1744
1745 // Define a symbol as a constant, sized version.
1746 template<int size>
1747 Sized_symbol<size>*
1748 do_define_as_constant(
1749 const char* name, const char* version, Defined,
1750 typename elfcpp::Elf_types<size>::Elf_Addr value,
1751 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1752 elfcpp::STT type, elfcpp::STB binding,
1753 elfcpp::STV visibility, unsigned char nonvis,
1754 bool only_if_ref, bool force_override);
1755
1756 // Add any undefined symbols named on the command line to the symbol
1757 // table, sized version.
1758 template<int size>
1759 void
1760 do_add_undefined_symbols_from_command_line(Layout*);
1761
1762 // Add one undefined symbol.
1763 template<int size>
1764 void
1765 add_undefined_symbol_from_command_line(const char* name);
1766
1767 // Types of common symbols.
1768
1769 enum Commons_section_type
1770 {
1771 COMMONS_NORMAL,
1772 COMMONS_TLS,
1773 COMMONS_SMALL,
1774 COMMONS_LARGE
1775 };
1776
1777 // Allocate the common symbols, sized version.
1778 template<int size>
1779 void
1780 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1781
1782 // Allocate the common symbols from one list.
1783 template<int size>
1784 void
1785 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1786 Mapfile*, Sort_commons_order);
1787
1788 // Returns all of the lines attached to LOC, not just the one the
1789 // instruction actually came from. This helps the ODR checker avoid
1790 // false positives.
1791 static std::vector<std::string>
1792 linenos_from_loc(const Task* task, const Symbol_location& loc);
1793
1794 // Implement detect_odr_violations.
1795 template<int size, bool big_endian>
1796 void
1797 sized_detect_odr_violations() const;
1798
1799 // Finalize symbols specialized for size.
1800 template<int size>
1801 off_t
1802 sized_finalize(off_t, Stringpool*, unsigned int*);
1803
1804 // Finalize a symbol. Return whether it should be added to the
1805 // symbol table.
1806 template<int size>
1807 bool
1808 sized_finalize_symbol(Symbol*);
1809
1810 // Add a symbol the final symtab by setting its index.
1811 template<int size>
1812 void
1813 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1814
1815 // Write globals specialized for size and endianness.
1816 template<int size, bool big_endian>
1817 void
1818 sized_write_globals(const Stringpool*, const Stringpool*,
1819 Output_symtab_xindex*, Output_symtab_xindex*,
1820 Output_file*) const;
1821
1822 // Write out a symbol to P.
1823 template<int size, bool big_endian>
1824 void
1825 sized_write_symbol(Sized_symbol<size>*,
1826 typename elfcpp::Elf_types<size>::Elf_Addr value,
1827 unsigned int shndx, elfcpp::STB,
1828 const Stringpool*, unsigned char* p) const;
1829
1830 // Possibly warn about an undefined symbol from a dynamic object.
1831 void
1832 warn_about_undefined_dynobj_symbol(Symbol*) const;
1833
1834 // Write out a section symbol, specialized for size and endianness.
1835 template<int size, bool big_endian>
1836 void
1837 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1838 Output_file*, off_t) const;
1839
1840 // The type of the list of symbols which have been forced local.
1841 typedef std::vector<Symbol*> Forced_locals;
1842
1843 // A map from symbols with COPY relocs to the dynamic objects where
1844 // they are defined.
1845 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1846
1847 // We increment this every time we see a new undefined symbol, for
1848 // use in archive groups.
1849 size_t saw_undefined_;
1850 // The index of the first global symbol in the output file.
1851 unsigned int first_global_index_;
1852 // The file offset within the output symtab section where we should
1853 // write the table.
1854 off_t offset_;
1855 // The number of global symbols we want to write out.
1856 unsigned int output_count_;
1857 // The file offset of the global dynamic symbols, or 0 if none.
1858 off_t dynamic_offset_;
1859 // The index of the first global dynamic symbol.
1860 unsigned int first_dynamic_global_index_;
1861 // The number of global dynamic symbols, or 0 if none.
1862 unsigned int dynamic_count_;
1863 // The symbol hash table.
1864 Symbol_table_type table_;
1865 // A pool of symbol names. This is used for all global symbols.
1866 // Entries in the hash table point into this pool.
1867 Stringpool namepool_;
1868 // Forwarding symbols.
1869 Unordered_map<const Symbol*, Symbol*> forwarders_;
1870 // Weak aliases. A symbol in this list points to the next alias.
1871 // The aliases point to each other in a circular list.
1872 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1873 // We don't expect there to be very many common symbols, so we keep
1874 // a list of them. When we find a common symbol we add it to this
1875 // list. It is possible that by the time we process the list the
1876 // symbol is no longer a common symbol. It may also have become a
1877 // forwarder.
1878 Commons_type commons_;
1879 // This is like the commons_ field, except that it holds TLS common
1880 // symbols.
1881 Commons_type tls_commons_;
1882 // This is for small common symbols.
1883 Commons_type small_commons_;
1884 // This is for large common symbols.
1885 Commons_type large_commons_;
1886 // A list of symbols which have been forced to be local. We don't
1887 // expect there to be very many of them, so we keep a list of them
1888 // rather than walking the whole table to find them.
1889 Forced_locals forced_locals_;
1890 // Manage symbol warnings.
1891 Warnings warnings_;
1892 // Manage potential One Definition Rule (ODR) violations.
1893 Odr_map candidate_odr_violations_;
1894
1895 // When we emit a COPY reloc for a symbol, we define it in an
1896 // Output_data. When it's time to emit version information for it,
1897 // we need to know the dynamic object in which we found the original
1898 // definition. This maps symbols with COPY relocs to the dynamic
1899 // object where they were defined.
1900 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1901 // Information parsed from the version script, if any.
1902 const Version_script_info& version_script_;
1903 Garbage_collection* gc_;
1904 Icf* icf_;
1905 };
1906
1907 // We inline get_sized_symbol for efficiency.
1908
1909 template<int size>
1910 Sized_symbol<size>*
1911 Symbol_table::get_sized_symbol(Symbol* sym) const
1912 {
1913 gold_assert(size == parameters->target().get_size());
1914 return static_cast<Sized_symbol<size>*>(sym);
1915 }
1916
1917 template<int size>
1918 const Sized_symbol<size>*
1919 Symbol_table::get_sized_symbol(const Symbol* sym) const
1920 {
1921 gold_assert(size == parameters->target().get_size());
1922 return static_cast<const Sized_symbol<size>*>(sym);
1923 }
1924
1925 } // End namespace gold.
1926
1927 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.0676290000000001 seconds and 5 git commands to generate.