* symtab.h (class Symbol_table): Add enum Defined.
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 class Versions;
52 class Version_script_info;
53 class Input_objects;
54 class Output_data;
55 class Output_section;
56 class Output_segment;
57 class Output_file;
58 class Output_symtab_xindex;
59 class Garbage_collection;
60 class Icf;
61
62 // The base class of an entry in the symbol table. The symbol table
63 // can have a lot of entries, so we don't want this class to big.
64 // Size dependent fields can be found in the template class
65 // Sized_symbol. Targets may support their own derived classes.
66
67 class Symbol
68 {
69 public:
70 // Because we want the class to be small, we don't use any virtual
71 // functions. But because symbols can be defined in different
72 // places, we need to classify them. This enum is the different
73 // sources of symbols we support.
74 enum Source
75 {
76 // Symbol defined in a relocatable or dynamic input file--this is
77 // the most common case.
78 FROM_OBJECT,
79 // Symbol defined in an Output_data, a special section created by
80 // the target.
81 IN_OUTPUT_DATA,
82 // Symbol defined in an Output_segment, with no associated
83 // section.
84 IN_OUTPUT_SEGMENT,
85 // Symbol value is constant.
86 IS_CONSTANT,
87 // Symbol is undefined.
88 IS_UNDEFINED
89 };
90
91 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
92 // the offset means.
93 enum Segment_offset_base
94 {
95 // From the start of the segment.
96 SEGMENT_START,
97 // From the end of the segment.
98 SEGMENT_END,
99 // From the filesz of the segment--i.e., after the loaded bytes
100 // but before the bytes which are allocated but zeroed.
101 SEGMENT_BSS
102 };
103
104 // Return the symbol name.
105 const char*
106 name() const
107 { return this->name_; }
108
109 // Return the (ANSI) demangled version of the name, if
110 // parameters.demangle() is true. Otherwise, return the name. This
111 // is intended to be used only for logging errors, so it's not
112 // super-efficient.
113 std::string
114 demangled_name() const;
115
116 // Return the symbol version. This will return NULL for an
117 // unversioned symbol.
118 const char*
119 version() const
120 { return this->version_; }
121
122 // Return whether this version is the default for this symbol name
123 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
124 // meaningful for versioned symbols.
125 bool
126 is_default() const
127 {
128 gold_assert(this->version_ != NULL);
129 return this->is_def_;
130 }
131
132 // Set that this version is the default for this symbol name.
133 void
134 set_is_default()
135 { this->is_def_ = true; }
136
137 // Return the symbol source.
138 Source
139 source() const
140 { return this->source_; }
141
142 // Return the object with which this symbol is associated.
143 Object*
144 object() const
145 {
146 gold_assert(this->source_ == FROM_OBJECT);
147 return this->u_.from_object.object;
148 }
149
150 // Return the index of the section in the input relocatable or
151 // dynamic object file.
152 unsigned int
153 shndx(bool* is_ordinary) const
154 {
155 gold_assert(this->source_ == FROM_OBJECT);
156 *is_ordinary = this->is_ordinary_shndx_;
157 return this->u_.from_object.shndx;
158 }
159
160 // Return the output data section with which this symbol is
161 // associated, if the symbol was specially defined with respect to
162 // an output data section.
163 Output_data*
164 output_data() const
165 {
166 gold_assert(this->source_ == IN_OUTPUT_DATA);
167 return this->u_.in_output_data.output_data;
168 }
169
170 // If this symbol was defined with respect to an output data
171 // section, return whether the value is an offset from end.
172 bool
173 offset_is_from_end() const
174 {
175 gold_assert(this->source_ == IN_OUTPUT_DATA);
176 return this->u_.in_output_data.offset_is_from_end;
177 }
178
179 // Return the output segment with which this symbol is associated,
180 // if the symbol was specially defined with respect to an output
181 // segment.
182 Output_segment*
183 output_segment() const
184 {
185 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
186 return this->u_.in_output_segment.output_segment;
187 }
188
189 // If this symbol was defined with respect to an output segment,
190 // return the offset base.
191 Segment_offset_base
192 offset_base() const
193 {
194 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
195 return this->u_.in_output_segment.offset_base;
196 }
197
198 // Return the symbol binding.
199 elfcpp::STB
200 binding() const
201 { return this->binding_; }
202
203 // Return the symbol type.
204 elfcpp::STT
205 type() const
206 { return this->type_; }
207
208 // Return true for function symbol.
209 bool
210 is_func() const
211 {
212 return (this->type_ == elfcpp::STT_FUNC
213 || this->type_ == elfcpp::STT_GNU_IFUNC);
214 }
215
216 // Return the symbol visibility.
217 elfcpp::STV
218 visibility() const
219 { return this->visibility_; }
220
221 // Set the visibility.
222 void
223 set_visibility(elfcpp::STV visibility)
224 { this->visibility_ = visibility; }
225
226 // Override symbol visibility.
227 void
228 override_visibility(elfcpp::STV);
229
230 // Return the non-visibility part of the st_other field.
231 unsigned char
232 nonvis() const
233 { return this->nonvis_; }
234
235 // Return whether this symbol is a forwarder. This will never be
236 // true of a symbol found in the hash table, but may be true of
237 // symbol pointers attached to object files.
238 bool
239 is_forwarder() const
240 { return this->is_forwarder_; }
241
242 // Mark this symbol as a forwarder.
243 void
244 set_forwarder()
245 { this->is_forwarder_ = true; }
246
247 // Return whether this symbol has an alias in the weak aliases table
248 // in Symbol_table.
249 bool
250 has_alias() const
251 { return this->has_alias_; }
252
253 // Mark this symbol as having an alias.
254 void
255 set_has_alias()
256 { this->has_alias_ = true; }
257
258 // Return whether this symbol needs an entry in the dynamic symbol
259 // table.
260 bool
261 needs_dynsym_entry() const
262 {
263 return (this->needs_dynsym_entry_
264 || (this->in_reg() && this->in_dyn()));
265 }
266
267 // Mark this symbol as needing an entry in the dynamic symbol table.
268 void
269 set_needs_dynsym_entry()
270 { this->needs_dynsym_entry_ = true; }
271
272 // Return whether this symbol should be added to the dynamic symbol
273 // table.
274 bool
275 should_add_dynsym_entry() const;
276
277 // Return whether this symbol has been seen in a regular object.
278 bool
279 in_reg() const
280 { return this->in_reg_; }
281
282 // Mark this symbol as having been seen in a regular object.
283 void
284 set_in_reg()
285 { this->in_reg_ = true; }
286
287 // Return whether this symbol has been seen in a dynamic object.
288 bool
289 in_dyn() const
290 { return this->in_dyn_; }
291
292 // Mark this symbol as having been seen in a dynamic object.
293 void
294 set_in_dyn()
295 { this->in_dyn_ = true; }
296
297 // Return whether this symbol has been seen in a real ELF object.
298 // (IN_REG will return TRUE if the symbol has been seen in either
299 // a real ELF object or an object claimed by a plugin.)
300 bool
301 in_real_elf() const
302 { return this->in_real_elf_; }
303
304 // Mark this symbol as having been seen in a real ELF object.
305 void
306 set_in_real_elf()
307 { this->in_real_elf_ = true; }
308
309 // Return the index of this symbol in the output file symbol table.
310 // A value of -1U means that this symbol is not going into the
311 // output file. This starts out as zero, and is set to a non-zero
312 // value by Symbol_table::finalize. It is an error to ask for the
313 // symbol table index before it has been set.
314 unsigned int
315 symtab_index() const
316 {
317 gold_assert(this->symtab_index_ != 0);
318 return this->symtab_index_;
319 }
320
321 // Set the index of the symbol in the output file symbol table.
322 void
323 set_symtab_index(unsigned int index)
324 {
325 gold_assert(index != 0);
326 this->symtab_index_ = index;
327 }
328
329 // Return whether this symbol already has an index in the output
330 // file symbol table.
331 bool
332 has_symtab_index() const
333 { return this->symtab_index_ != 0; }
334
335 // Return the index of this symbol in the dynamic symbol table. A
336 // value of -1U means that this symbol is not going into the dynamic
337 // symbol table. This starts out as zero, and is set to a non-zero
338 // during Layout::finalize. It is an error to ask for the dynamic
339 // symbol table index before it has been set.
340 unsigned int
341 dynsym_index() const
342 {
343 gold_assert(this->dynsym_index_ != 0);
344 return this->dynsym_index_;
345 }
346
347 // Set the index of the symbol in the dynamic symbol table.
348 void
349 set_dynsym_index(unsigned int index)
350 {
351 gold_assert(index != 0);
352 this->dynsym_index_ = index;
353 }
354
355 // Return whether this symbol already has an index in the dynamic
356 // symbol table.
357 bool
358 has_dynsym_index() const
359 { return this->dynsym_index_ != 0; }
360
361 // Return whether this symbol has an entry in the GOT section.
362 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
363 bool
364 has_got_offset(unsigned int got_type) const
365 { return this->got_offsets_.get_offset(got_type) != -1U; }
366
367 // Return the offset into the GOT section of this symbol.
368 unsigned int
369 got_offset(unsigned int got_type) const
370 {
371 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
372 gold_assert(got_offset != -1U);
373 return got_offset;
374 }
375
376 // Set the GOT offset of this symbol.
377 void
378 set_got_offset(unsigned int got_type, unsigned int got_offset)
379 { this->got_offsets_.set_offset(got_type, got_offset); }
380
381 // Return whether this symbol has an entry in the PLT section.
382 bool
383 has_plt_offset() const
384 { return this->has_plt_offset_; }
385
386 // Return the offset into the PLT section of this symbol.
387 unsigned int
388 plt_offset() const
389 {
390 gold_assert(this->has_plt_offset());
391 return this->plt_offset_;
392 }
393
394 // Set the PLT offset of this symbol.
395 void
396 set_plt_offset(unsigned int plt_offset)
397 {
398 this->has_plt_offset_ = true;
399 this->plt_offset_ = plt_offset;
400 }
401
402 // Return whether this dynamic symbol needs a special value in the
403 // dynamic symbol table.
404 bool
405 needs_dynsym_value() const
406 { return this->needs_dynsym_value_; }
407
408 // Set that this dynamic symbol needs a special value in the dynamic
409 // symbol table.
410 void
411 set_needs_dynsym_value()
412 {
413 gold_assert(this->object()->is_dynamic());
414 this->needs_dynsym_value_ = true;
415 }
416
417 // Return true if the final value of this symbol is known at link
418 // time.
419 bool
420 final_value_is_known() const;
421
422 // Return true if SHNDX represents a common symbol. This depends on
423 // the target.
424 static bool
425 is_common_shndx(unsigned int shndx);
426
427 // Return whether this is a defined symbol (not undefined or
428 // common).
429 bool
430 is_defined() const
431 {
432 bool is_ordinary;
433 if (this->source_ != FROM_OBJECT)
434 return this->source_ != IS_UNDEFINED;
435 unsigned int shndx = this->shndx(&is_ordinary);
436 return (is_ordinary
437 ? shndx != elfcpp::SHN_UNDEF
438 : !Symbol::is_common_shndx(shndx));
439 }
440
441 // Return true if this symbol is from a dynamic object.
442 bool
443 is_from_dynobj() const
444 {
445 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
446 }
447
448 // Return whether this is an undefined symbol.
449 bool
450 is_undefined() const
451 {
452 bool is_ordinary;
453 return ((this->source_ == FROM_OBJECT
454 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
455 && is_ordinary)
456 || this->source_ == IS_UNDEFINED);
457 }
458
459 // Return whether this is a weak undefined symbol.
460 bool
461 is_weak_undefined() const
462 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
463
464 // Return whether this is an absolute symbol.
465 bool
466 is_absolute() const
467 {
468 bool is_ordinary;
469 return ((this->source_ == FROM_OBJECT
470 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
471 && !is_ordinary)
472 || this->source_ == IS_CONSTANT);
473 }
474
475 // Return whether this is a common symbol.
476 bool
477 is_common() const
478 {
479 if (this->type_ == elfcpp::STT_COMMON)
480 return true;
481 if (this->source_ != FROM_OBJECT)
482 return false;
483 bool is_ordinary;
484 unsigned int shndx = this->shndx(&is_ordinary);
485 return !is_ordinary && Symbol::is_common_shndx(shndx);
486 }
487
488 // Return whether this symbol can be seen outside this object.
489 bool
490 is_externally_visible() const
491 {
492 return (this->visibility_ == elfcpp::STV_DEFAULT
493 || this->visibility_ == elfcpp::STV_PROTECTED);
494 }
495
496 // Return true if this symbol can be preempted by a definition in
497 // another link unit.
498 bool
499 is_preemptible() const
500 {
501 // It doesn't make sense to ask whether a symbol defined in
502 // another object is preemptible.
503 gold_assert(!this->is_from_dynobj());
504
505 // It doesn't make sense to ask whether an undefined symbol
506 // is preemptible.
507 gold_assert(!this->is_undefined());
508
509 // If a symbol does not have default visibility, it can not be
510 // seen outside this link unit and therefore is not preemptible.
511 if (this->visibility_ != elfcpp::STV_DEFAULT)
512 return false;
513
514 // If this symbol has been forced to be a local symbol by a
515 // version script, then it is not visible outside this link unit
516 // and is not preemptible.
517 if (this->is_forced_local_)
518 return false;
519
520 // If we are not producing a shared library, then nothing is
521 // preemptible.
522 if (!parameters->options().shared())
523 return false;
524
525 // If the user used -Bsymbolic, then nothing is preemptible.
526 if (parameters->options().Bsymbolic())
527 return false;
528
529 // If the user used -Bsymbolic-functions, then functions are not
530 // preemptible. We explicitly check for not being STT_OBJECT,
531 // rather than for being STT_FUNC, because that is what the GNU
532 // linker does.
533 if (this->type() != elfcpp::STT_OBJECT
534 && parameters->options().Bsymbolic_functions())
535 return false;
536
537 // Otherwise the symbol is preemptible.
538 return true;
539 }
540
541 // Return true if this symbol is a function that needs a PLT entry.
542 // If the symbol is defined in a dynamic object or if it is subject
543 // to pre-emption, we need to make a PLT entry. If we're doing a
544 // static link or a -pie link, we don't create PLT entries.
545 bool
546 needs_plt_entry() const
547 {
548 // An undefined symbol from an executable does not need a PLT entry.
549 if (this->is_undefined() && !parameters->options().shared())
550 return false;
551
552 return (!parameters->doing_static_link()
553 && !parameters->options().pie()
554 && this->is_func()
555 && (this->is_from_dynobj()
556 || this->is_undefined()
557 || this->is_preemptible()));
558 }
559
560 // When determining whether a reference to a symbol needs a dynamic
561 // relocation, we need to know several things about the reference.
562 // These flags may be or'ed together.
563 enum Reference_flags
564 {
565 // Reference to the symbol's absolute address.
566 ABSOLUTE_REF = 1,
567 // A non-PIC reference.
568 NON_PIC_REF = 2,
569 // A function call.
570 FUNCTION_CALL = 4
571 };
572
573 // Given a direct absolute or pc-relative static relocation against
574 // the global symbol, this function returns whether a dynamic relocation
575 // is needed.
576
577 bool
578 needs_dynamic_reloc(int flags) const
579 {
580 // No dynamic relocations in a static link!
581 if (parameters->doing_static_link())
582 return false;
583
584 // A reference to an undefined symbol from an executable should be
585 // statically resolved to 0, and does not need a dynamic relocation.
586 // This matches gnu ld behavior.
587 if (this->is_undefined() && !parameters->options().shared())
588 return false;
589
590 // A reference to an absolute symbol does not need a dynamic relocation.
591 if (this->is_absolute())
592 return false;
593
594 // An absolute reference within a position-independent output file
595 // will need a dynamic relocation.
596 if ((flags & ABSOLUTE_REF)
597 && parameters->options().output_is_position_independent())
598 return true;
599
600 // A function call that can branch to a local PLT entry does not need
601 // a dynamic relocation. A non-pic pc-relative function call in a
602 // shared library cannot use a PLT entry.
603 if ((flags & FUNCTION_CALL)
604 && this->has_plt_offset()
605 && !((flags & NON_PIC_REF) && parameters->options().shared()))
606 return false;
607
608 // A reference to any PLT entry in a non-position-independent executable
609 // does not need a dynamic relocation.
610 if (!parameters->options().output_is_position_independent()
611 && this->has_plt_offset())
612 return false;
613
614 // A reference to a symbol defined in a dynamic object or to a
615 // symbol that is preemptible will need a dynamic relocation.
616 if (this->is_from_dynobj()
617 || this->is_undefined()
618 || this->is_preemptible())
619 return true;
620
621 // For all other cases, return FALSE.
622 return false;
623 }
624
625 // Whether we should use the PLT offset associated with a symbol for
626 // a relocation. IS_NON_PIC_REFERENCE is true if this is a non-PIC
627 // reloc--the same set of relocs for which we would pass NON_PIC_REF
628 // to the needs_dynamic_reloc function.
629
630 bool
631 use_plt_offset(bool is_non_pic_reference) const
632 {
633 // If the symbol doesn't have a PLT offset, then naturally we
634 // don't want to use it.
635 if (!this->has_plt_offset())
636 return false;
637
638 // If we are going to generate a dynamic relocation, then we will
639 // wind up using that, so no need to use the PLT entry.
640 if (this->needs_dynamic_reloc(FUNCTION_CALL
641 | (is_non_pic_reference
642 ? NON_PIC_REF
643 : 0)))
644 return false;
645
646 // If the symbol is from a dynamic object, we need to use the PLT
647 // entry.
648 if (this->is_from_dynobj())
649 return true;
650
651 // If we are generating a shared object, and this symbol is
652 // undefined or preemptible, we need to use the PLT entry.
653 if (parameters->options().shared()
654 && (this->is_undefined() || this->is_preemptible()))
655 return true;
656
657 // If this is a weak undefined symbol, we need to use the PLT
658 // entry; the symbol may be defined by a library loaded at
659 // runtime.
660 if (this->is_weak_undefined())
661 return true;
662
663 // Otherwise we can use the regular definition.
664 return false;
665 }
666
667 // Given a direct absolute static relocation against
668 // the global symbol, where a dynamic relocation is needed, this
669 // function returns whether a relative dynamic relocation can be used.
670 // The caller must determine separately whether the static relocation
671 // is compatible with a relative relocation.
672
673 bool
674 can_use_relative_reloc(bool is_function_call) const
675 {
676 // A function call that can branch to a local PLT entry can
677 // use a RELATIVE relocation.
678 if (is_function_call && this->has_plt_offset())
679 return true;
680
681 // A reference to a symbol defined in a dynamic object or to a
682 // symbol that is preemptible can not use a RELATIVE relocaiton.
683 if (this->is_from_dynobj()
684 || this->is_undefined()
685 || this->is_preemptible())
686 return false;
687
688 // For all other cases, return TRUE.
689 return true;
690 }
691
692 // Return the output section where this symbol is defined. Return
693 // NULL if the symbol has an absolute value.
694 Output_section*
695 output_section() const;
696
697 // Set the symbol's output section. This is used for symbols
698 // defined in scripts. This should only be called after the symbol
699 // table has been finalized.
700 void
701 set_output_section(Output_section*);
702
703 // Return whether there should be a warning for references to this
704 // symbol.
705 bool
706 has_warning() const
707 { return this->has_warning_; }
708
709 // Mark this symbol as having a warning.
710 void
711 set_has_warning()
712 { this->has_warning_ = true; }
713
714 // Return whether this symbol is defined by a COPY reloc from a
715 // dynamic object.
716 bool
717 is_copied_from_dynobj() const
718 { return this->is_copied_from_dynobj_; }
719
720 // Mark this symbol as defined by a COPY reloc.
721 void
722 set_is_copied_from_dynobj()
723 { this->is_copied_from_dynobj_ = true; }
724
725 // Return whether this symbol is forced to visibility STB_LOCAL
726 // by a "local:" entry in a version script.
727 bool
728 is_forced_local() const
729 { return this->is_forced_local_; }
730
731 // Mark this symbol as forced to STB_LOCAL visibility.
732 void
733 set_is_forced_local()
734 { this->is_forced_local_ = true; }
735
736 // Return true if this may need a COPY relocation.
737 // References from an executable object to non-function symbols
738 // defined in a dynamic object may need a COPY relocation.
739 bool
740 may_need_copy_reloc() const
741 {
742 return (!parameters->options().shared()
743 && parameters->options().copyreloc()
744 && this->is_from_dynobj()
745 && !this->is_func());
746 }
747
748 protected:
749 // Instances of this class should always be created at a specific
750 // size.
751 Symbol()
752 { memset(this, 0, sizeof *this); }
753
754 // Initialize the general fields.
755 void
756 init_fields(const char* name, const char* version,
757 elfcpp::STT type, elfcpp::STB binding,
758 elfcpp::STV visibility, unsigned char nonvis);
759
760 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
761 // section index, IS_ORDINARY is whether it is a normal section
762 // index rather than a special code.
763 template<int size, bool big_endian>
764 void
765 init_base_object(const char *name, const char* version, Object* object,
766 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
767 bool is_ordinary);
768
769 // Initialize fields for an Output_data.
770 void
771 init_base_output_data(const char* name, const char* version, Output_data*,
772 elfcpp::STT, elfcpp::STB, elfcpp::STV,
773 unsigned char nonvis, bool offset_is_from_end);
774
775 // Initialize fields for an Output_segment.
776 void
777 init_base_output_segment(const char* name, const char* version,
778 Output_segment* os, elfcpp::STT type,
779 elfcpp::STB binding, elfcpp::STV visibility,
780 unsigned char nonvis,
781 Segment_offset_base offset_base);
782
783 // Initialize fields for a constant.
784 void
785 init_base_constant(const char* name, const char* version, elfcpp::STT type,
786 elfcpp::STB binding, elfcpp::STV visibility,
787 unsigned char nonvis);
788
789 // Initialize fields for an undefined symbol.
790 void
791 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
792 elfcpp::STB binding, elfcpp::STV visibility,
793 unsigned char nonvis);
794
795 // Override existing symbol.
796 template<int size, bool big_endian>
797 void
798 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
799 bool is_ordinary, Object* object, const char* version);
800
801 // Override existing symbol with a special symbol.
802 void
803 override_base_with_special(const Symbol* from);
804
805 // Override symbol version.
806 void
807 override_version(const char* version);
808
809 // Allocate a common symbol by giving it a location in the output
810 // file.
811 void
812 allocate_base_common(Output_data*);
813
814 private:
815 Symbol(const Symbol&);
816 Symbol& operator=(const Symbol&);
817
818 // Symbol name (expected to point into a Stringpool).
819 const char* name_;
820 // Symbol version (expected to point into a Stringpool). This may
821 // be NULL.
822 const char* version_;
823
824 union
825 {
826 // This struct is used if SOURCE_ == FROM_OBJECT.
827 struct
828 {
829 // Object in which symbol is defined, or in which it was first
830 // seen.
831 Object* object;
832 // Section number in object_ in which symbol is defined.
833 unsigned int shndx;
834 } from_object;
835
836 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
837 struct
838 {
839 // Output_data in which symbol is defined. Before
840 // Layout::finalize the symbol's value is an offset within the
841 // Output_data.
842 Output_data* output_data;
843 // True if the offset is from the end, false if the offset is
844 // from the beginning.
845 bool offset_is_from_end;
846 } in_output_data;
847
848 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
849 struct
850 {
851 // Output_segment in which the symbol is defined. Before
852 // Layout::finalize the symbol's value is an offset.
853 Output_segment* output_segment;
854 // The base to use for the offset before Layout::finalize.
855 Segment_offset_base offset_base;
856 } in_output_segment;
857 } u_;
858
859 // The index of this symbol in the output file. If the symbol is
860 // not going into the output file, this value is -1U. This field
861 // starts as always holding zero. It is set to a non-zero value by
862 // Symbol_table::finalize.
863 unsigned int symtab_index_;
864
865 // The index of this symbol in the dynamic symbol table. If the
866 // symbol is not going into the dynamic symbol table, this value is
867 // -1U. This field starts as always holding zero. It is set to a
868 // non-zero value during Layout::finalize.
869 unsigned int dynsym_index_;
870
871 // If this symbol has an entry in the GOT section (has_got_offset_
872 // is true), this holds the offset from the start of the GOT section.
873 // A symbol may have more than one GOT offset (e.g., when mixing
874 // modules compiled with two different TLS models), but will usually
875 // have at most one.
876 Got_offset_list got_offsets_;
877
878 // If this symbol has an entry in the PLT section (has_plt_offset_
879 // is true), then this is the offset from the start of the PLT
880 // section.
881 unsigned int plt_offset_;
882
883 // Symbol type (bits 0 to 3).
884 elfcpp::STT type_ : 4;
885 // Symbol binding (bits 4 to 7).
886 elfcpp::STB binding_ : 4;
887 // Symbol visibility (bits 8 to 9).
888 elfcpp::STV visibility_ : 2;
889 // Rest of symbol st_other field (bits 10 to 15).
890 unsigned int nonvis_ : 6;
891 // The type of symbol (bits 16 to 18).
892 Source source_ : 3;
893 // True if this symbol always requires special target-specific
894 // handling (bit 19).
895 bool is_target_special_ : 1;
896 // True if this is the default version of the symbol (bit 20).
897 bool is_def_ : 1;
898 // True if this symbol really forwards to another symbol. This is
899 // used when we discover after the fact that two different entries
900 // in the hash table really refer to the same symbol. This will
901 // never be set for a symbol found in the hash table, but may be set
902 // for a symbol found in the list of symbols attached to an Object.
903 // It forwards to the symbol found in the forwarders_ map of
904 // Symbol_table (bit 21).
905 bool is_forwarder_ : 1;
906 // True if the symbol has an alias in the weak_aliases table in
907 // Symbol_table (bit 22).
908 bool has_alias_ : 1;
909 // True if this symbol needs to be in the dynamic symbol table (bit
910 // 23).
911 bool needs_dynsym_entry_ : 1;
912 // True if we've seen this symbol in a regular object (bit 24).
913 bool in_reg_ : 1;
914 // True if we've seen this symbol in a dynamic object (bit 25).
915 bool in_dyn_ : 1;
916 // True if the symbol has an entry in the PLT section (bit 26).
917 bool has_plt_offset_ : 1;
918 // True if this is a dynamic symbol which needs a special value in
919 // the dynamic symbol table (bit 27).
920 bool needs_dynsym_value_ : 1;
921 // True if there is a warning for this symbol (bit 28).
922 bool has_warning_ : 1;
923 // True if we are using a COPY reloc for this symbol, so that the
924 // real definition lives in a dynamic object (bit 29).
925 bool is_copied_from_dynobj_ : 1;
926 // True if this symbol was forced to local visibility by a version
927 // script (bit 30).
928 bool is_forced_local_ : 1;
929 // True if the field u_.from_object.shndx is an ordinary section
930 // index, not one of the special codes from SHN_LORESERVE to
931 // SHN_HIRESERVE (bit 31).
932 bool is_ordinary_shndx_ : 1;
933 // True if we've seen this symbol in a real ELF object.
934 bool in_real_elf_ : 1;
935 };
936
937 // The parts of a symbol which are size specific. Using a template
938 // derived class like this helps us use less space on a 32-bit system.
939
940 template<int size>
941 class Sized_symbol : public Symbol
942 {
943 public:
944 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
945 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
946
947 Sized_symbol()
948 { }
949
950 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
951 // section index, IS_ORDINARY is whether it is a normal section
952 // index rather than a special code.
953 template<bool big_endian>
954 void
955 init_object(const char *name, const char* version, Object* object,
956 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
957 bool is_ordinary);
958
959 // Initialize fields for an Output_data.
960 void
961 init_output_data(const char* name, const char* version, Output_data*,
962 Value_type value, Size_type symsize, elfcpp::STT,
963 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
964 bool offset_is_from_end);
965
966 // Initialize fields for an Output_segment.
967 void
968 init_output_segment(const char* name, const char* version, Output_segment*,
969 Value_type value, Size_type symsize, elfcpp::STT,
970 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
971 Segment_offset_base offset_base);
972
973 // Initialize fields for a constant.
974 void
975 init_constant(const char* name, const char* version, Value_type value,
976 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
977 unsigned char nonvis);
978
979 // Initialize fields for an undefined symbol.
980 void
981 init_undefined(const char* name, const char* version, elfcpp::STT,
982 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
983
984 // Override existing symbol.
985 template<bool big_endian>
986 void
987 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
988 bool is_ordinary, Object* object, const char* version);
989
990 // Override existing symbol with a special symbol.
991 void
992 override_with_special(const Sized_symbol<size>*);
993
994 // Return the symbol's value.
995 Value_type
996 value() const
997 { return this->value_; }
998
999 // Return the symbol's size (we can't call this 'size' because that
1000 // is a template parameter).
1001 Size_type
1002 symsize() const
1003 { return this->symsize_; }
1004
1005 // Set the symbol size. This is used when resolving common symbols.
1006 void
1007 set_symsize(Size_type symsize)
1008 { this->symsize_ = symsize; }
1009
1010 // Set the symbol value. This is called when we store the final
1011 // values of the symbols into the symbol table.
1012 void
1013 set_value(Value_type value)
1014 { this->value_ = value; }
1015
1016 // Allocate a common symbol by giving it a location in the output
1017 // file.
1018 void
1019 allocate_common(Output_data*, Value_type value);
1020
1021 private:
1022 Sized_symbol(const Sized_symbol&);
1023 Sized_symbol& operator=(const Sized_symbol&);
1024
1025 // Symbol value. Before Layout::finalize this is the offset in the
1026 // input section. This is set to the final value during
1027 // Layout::finalize.
1028 Value_type value_;
1029 // Symbol size.
1030 Size_type symsize_;
1031 };
1032
1033 // A struct describing a symbol defined by the linker, where the value
1034 // of the symbol is defined based on an output section. This is used
1035 // for symbols defined by the linker, like "_init_array_start".
1036
1037 struct Define_symbol_in_section
1038 {
1039 // The symbol name.
1040 const char* name;
1041 // The name of the output section with which this symbol should be
1042 // associated. If there is no output section with that name, the
1043 // symbol will be defined as zero.
1044 const char* output_section;
1045 // The offset of the symbol within the output section. This is an
1046 // offset from the start of the output section, unless start_at_end
1047 // is true, in which case this is an offset from the end of the
1048 // output section.
1049 uint64_t value;
1050 // The size of the symbol.
1051 uint64_t size;
1052 // The symbol type.
1053 elfcpp::STT type;
1054 // The symbol binding.
1055 elfcpp::STB binding;
1056 // The symbol visibility.
1057 elfcpp::STV visibility;
1058 // The rest of the st_other field.
1059 unsigned char nonvis;
1060 // If true, the value field is an offset from the end of the output
1061 // section.
1062 bool offset_is_from_end;
1063 // If true, this symbol is defined only if we see a reference to it.
1064 bool only_if_ref;
1065 };
1066
1067 // A struct describing a symbol defined by the linker, where the value
1068 // of the symbol is defined based on a segment. This is used for
1069 // symbols defined by the linker, like "_end". We describe the
1070 // segment with which the symbol should be associated by its
1071 // characteristics. If no segment meets these characteristics, the
1072 // symbol will be defined as zero. If there is more than one segment
1073 // which meets these characteristics, we will use the first one.
1074
1075 struct Define_symbol_in_segment
1076 {
1077 // The symbol name.
1078 const char* name;
1079 // The segment type where the symbol should be defined, typically
1080 // PT_LOAD.
1081 elfcpp::PT segment_type;
1082 // Bitmask of segment flags which must be set.
1083 elfcpp::PF segment_flags_set;
1084 // Bitmask of segment flags which must be clear.
1085 elfcpp::PF segment_flags_clear;
1086 // The offset of the symbol within the segment. The offset is
1087 // calculated from the position set by offset_base.
1088 uint64_t value;
1089 // The size of the symbol.
1090 uint64_t size;
1091 // The symbol type.
1092 elfcpp::STT type;
1093 // The symbol binding.
1094 elfcpp::STB binding;
1095 // The symbol visibility.
1096 elfcpp::STV visibility;
1097 // The rest of the st_other field.
1098 unsigned char nonvis;
1099 // The base from which we compute the offset.
1100 Symbol::Segment_offset_base offset_base;
1101 // If true, this symbol is defined only if we see a reference to it.
1102 bool only_if_ref;
1103 };
1104
1105 // This class manages warnings. Warnings are a GNU extension. When
1106 // we see a section named .gnu.warning.SYM in an object file, and if
1107 // we wind using the definition of SYM from that object file, then we
1108 // will issue a warning for any relocation against SYM from a
1109 // different object file. The text of the warning is the contents of
1110 // the section. This is not precisely the definition used by the old
1111 // GNU linker; the old GNU linker treated an occurrence of
1112 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1113 // would trigger a warning on any reference. However, it was
1114 // inconsistent in that a warning in a dynamic object only triggered
1115 // if there was no definition in a regular object. This linker is
1116 // different in that we only issue a warning if we use the symbol
1117 // definition from the same object file as the warning section.
1118
1119 class Warnings
1120 {
1121 public:
1122 Warnings()
1123 : warnings_()
1124 { }
1125
1126 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1127 // of the warning.
1128 void
1129 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1130 const std::string& warning);
1131
1132 // For each symbol for which we should give a warning, make a note
1133 // on the symbol.
1134 void
1135 note_warnings(Symbol_table* symtab);
1136
1137 // Issue a warning for a reference to SYM at RELINFO's location.
1138 template<int size, bool big_endian>
1139 void
1140 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1141 size_t relnum, off_t reloffset) const;
1142
1143 private:
1144 Warnings(const Warnings&);
1145 Warnings& operator=(const Warnings&);
1146
1147 // What we need to know to get the warning text.
1148 struct Warning_location
1149 {
1150 // The object the warning is in.
1151 Object* object;
1152 // The warning text.
1153 std::string text;
1154
1155 Warning_location()
1156 : object(NULL), text()
1157 { }
1158
1159 void
1160 set(Object* o, const std::string& t)
1161 {
1162 this->object = o;
1163 this->text = t;
1164 }
1165 };
1166
1167 // A mapping from warning symbol names (canonicalized in
1168 // Symbol_table's namepool_ field) to warning information.
1169 typedef Unordered_map<const char*, Warning_location> Warning_table;
1170
1171 Warning_table warnings_;
1172 };
1173
1174 // The main linker symbol table.
1175
1176 class Symbol_table
1177 {
1178 public:
1179 // The different places where a symbol definition can come from.
1180 enum Defined
1181 {
1182 // Defined in an object file--the normal case.
1183 OBJECT,
1184 // Defined for a COPY reloc.
1185 COPY,
1186 // Defined on the command line using --defsym.
1187 DEFSYM,
1188 // Defined (so to speak) on the command line using -u.
1189 UNDEFINED,
1190 // Defined in a linker script.
1191 SCRIPT,
1192 // Predefined by the linker.
1193 PREDEFINED,
1194 };
1195
1196 // COUNT is an estimate of how many symbosl will be inserted in the
1197 // symbol table. It's ok to put 0 if you don't know; a correct
1198 // guess will just save some CPU by reducing hashtable resizes.
1199 Symbol_table(unsigned int count, const Version_script_info& version_script);
1200
1201 ~Symbol_table();
1202
1203 void
1204 set_icf(Icf* icf)
1205 { this->icf_ = icf;}
1206
1207 Icf*
1208 icf() const
1209 { return this->icf_; }
1210
1211 // Returns true if ICF determined that this is a duplicate section.
1212 bool
1213 is_section_folded(Object* obj, unsigned int shndx) const;
1214
1215 void
1216 set_gc(Garbage_collection* gc)
1217 { this->gc_ = gc; }
1218
1219 Garbage_collection*
1220 gc() const
1221 { return this->gc_; }
1222
1223 // During garbage collection, this keeps undefined symbols.
1224 void
1225 gc_mark_undef_symbols();
1226
1227 // During garbage collection, this ensures externally visible symbols
1228 // are not treated as garbage while building shared objects.
1229 void
1230 gc_mark_symbol_for_shlib(Symbol* sym);
1231
1232 // During garbage collection, this keeps sections that correspond to
1233 // symbols seen in dynamic objects.
1234 inline void
1235 gc_mark_dyn_syms(Symbol* sym);
1236
1237 // Add COUNT external symbols from the relocatable object RELOBJ to
1238 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1239 // offset in the symbol table of the first symbol, SYM_NAMES is
1240 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1241 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1242 // *DEFINED to the number of defined symbols.
1243 template<int size, bool big_endian>
1244 void
1245 add_from_relobj(Sized_relobj<size, big_endian>* relobj,
1246 const unsigned char* syms, size_t count,
1247 size_t symndx_offset, const char* sym_names,
1248 size_t sym_name_size,
1249 typename Sized_relobj<size, big_endian>::Symbols*,
1250 size_t* defined);
1251
1252 // Add one external symbol from the plugin object OBJ to the symbol table.
1253 // Returns a pointer to the resolved symbol in the symbol table.
1254 template<int size, bool big_endian>
1255 Symbol*
1256 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1257 const char* name, const char* ver,
1258 elfcpp::Sym<size, big_endian>* sym);
1259
1260 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1261 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1262 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1263 // symbol version data.
1264 template<int size, bool big_endian>
1265 void
1266 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1267 const unsigned char* syms, size_t count,
1268 const char* sym_names, size_t sym_name_size,
1269 const unsigned char* versym, size_t versym_size,
1270 const std::vector<const char*>*,
1271 typename Sized_relobj<size, big_endian>::Symbols*,
1272 size_t* defined);
1273
1274 // Define a special symbol based on an Output_data. It is a
1275 // multiple definition error if this symbol is already defined.
1276 Symbol*
1277 define_in_output_data(const char* name, const char* version, Defined,
1278 Output_data*, uint64_t value, uint64_t symsize,
1279 elfcpp::STT type, elfcpp::STB binding,
1280 elfcpp::STV visibility, unsigned char nonvis,
1281 bool offset_is_from_end, bool only_if_ref);
1282
1283 // Define a special symbol based on an Output_segment. It is a
1284 // multiple definition error if this symbol is already defined.
1285 Symbol*
1286 define_in_output_segment(const char* name, const char* version, Defined,
1287 Output_segment*, uint64_t value, uint64_t symsize,
1288 elfcpp::STT type, elfcpp::STB binding,
1289 elfcpp::STV visibility, unsigned char nonvis,
1290 Symbol::Segment_offset_base, bool only_if_ref);
1291
1292 // Define a special symbol with a constant value. It is a multiple
1293 // definition error if this symbol is already defined.
1294 Symbol*
1295 define_as_constant(const char* name, const char* version, Defined,
1296 uint64_t value, uint64_t symsize, elfcpp::STT type,
1297 elfcpp::STB binding, elfcpp::STV visibility,
1298 unsigned char nonvis, bool only_if_ref,
1299 bool force_override);
1300
1301 // Define a set of symbols in output sections. If ONLY_IF_REF is
1302 // true, only define them if they are referenced.
1303 void
1304 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1305 bool only_if_ref);
1306
1307 // Define a set of symbols in output segments. If ONLY_IF_REF is
1308 // true, only defined them if they are referenced.
1309 void
1310 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1311 bool only_if_ref);
1312
1313 // Define SYM using a COPY reloc. POSD is the Output_data where the
1314 // symbol should be defined--typically a .dyn.bss section. VALUE is
1315 // the offset within POSD.
1316 template<int size>
1317 void
1318 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1319 typename elfcpp::Elf_types<size>::Elf_Addr);
1320
1321 // Look up a symbol.
1322 Symbol*
1323 lookup(const char*, const char* version = NULL) const;
1324
1325 // Return the real symbol associated with the forwarder symbol FROM.
1326 Symbol*
1327 resolve_forwards(const Symbol* from) const;
1328
1329 // Return the sized version of a symbol in this table.
1330 template<int size>
1331 Sized_symbol<size>*
1332 get_sized_symbol(Symbol*) const;
1333
1334 template<int size>
1335 const Sized_symbol<size>*
1336 get_sized_symbol(const Symbol*) const;
1337
1338 // Return the count of undefined symbols seen.
1339 int
1340 saw_undefined() const
1341 { return this->saw_undefined_; }
1342
1343 // Allocate the common symbols
1344 void
1345 allocate_commons(Layout*, Mapfile*);
1346
1347 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1348 // of the warning.
1349 void
1350 add_warning(const char* name, Object* obj, const std::string& warning)
1351 { this->warnings_.add_warning(this, name, obj, warning); }
1352
1353 // Canonicalize a symbol name for use in the hash table.
1354 const char*
1355 canonicalize_name(const char* name)
1356 { return this->namepool_.add(name, true, NULL); }
1357
1358 // Possibly issue a warning for a reference to SYM at LOCATION which
1359 // is in OBJ.
1360 template<int size, bool big_endian>
1361 void
1362 issue_warning(const Symbol* sym,
1363 const Relocate_info<size, big_endian>* relinfo,
1364 size_t relnum, off_t reloffset) const
1365 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1366
1367 // Check candidate_odr_violations_ to find symbols with the same name
1368 // but apparently different definitions (different source-file/line-no).
1369 void
1370 detect_odr_violations(const Task*, const char* output_file_name) const;
1371
1372 // Add any undefined symbols named on the command line to the symbol
1373 // table.
1374 void
1375 add_undefined_symbols_from_command_line();
1376
1377 // SYM is defined using a COPY reloc. Return the dynamic object
1378 // where the original definition was found.
1379 Dynobj*
1380 get_copy_source(const Symbol* sym) const;
1381
1382 // Set the dynamic symbol indexes. INDEX is the index of the first
1383 // global dynamic symbol. Pointers to the symbols are stored into
1384 // the vector. The names are stored into the Stringpool. This
1385 // returns an updated dynamic symbol index.
1386 unsigned int
1387 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1388 Stringpool*, Versions*);
1389
1390 // Finalize the symbol table after we have set the final addresses
1391 // of all the input sections. This sets the final symbol indexes,
1392 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1393 // index of the first global symbol. OFF is the file offset of the
1394 // global symbol table, DYNOFF is the offset of the globals in the
1395 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1396 // global dynamic symbol, and DYNCOUNT is the number of global
1397 // dynamic symbols. This records the parameters, and returns the
1398 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1399 // local symbols.
1400 off_t
1401 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1402 Stringpool* pool, unsigned int *plocal_symcount);
1403
1404 // Status code of Symbol_table::compute_final_value.
1405 enum Compute_final_value_status
1406 {
1407 // No error.
1408 CFVS_OK,
1409 // Unspported symbol section.
1410 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1411 // No output section.
1412 CFVS_NO_OUTPUT_SECTION
1413 };
1414
1415 // Compute the final value of SYM and store status in location PSTATUS.
1416 // During relaxation, this may be called multiple times for a symbol to
1417 // compute its would-be final value in each relaxation pass.
1418
1419 template<int size>
1420 typename Sized_symbol<size>::Value_type
1421 compute_final_value(const Sized_symbol<size>* sym,
1422 Compute_final_value_status* pstatus) const;
1423
1424 // Write out the global symbols.
1425 void
1426 write_globals(const Stringpool*, const Stringpool*,
1427 Output_symtab_xindex*, Output_symtab_xindex*,
1428 Output_file*) const;
1429
1430 // Write out a section symbol. Return the updated offset.
1431 void
1432 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1433 Output_file*, off_t) const;
1434
1435 // Dump statistical information to stderr.
1436 void
1437 print_stats() const;
1438
1439 // Return the version script information.
1440 const Version_script_info&
1441 version_script() const
1442 { return version_script_; }
1443
1444 private:
1445 Symbol_table(const Symbol_table&);
1446 Symbol_table& operator=(const Symbol_table&);
1447
1448 // The type of the list of common symbols.
1449 typedef std::vector<Symbol*> Commons_type;
1450
1451 // The type of the symbol hash table.
1452
1453 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1454
1455 struct Symbol_table_hash
1456 {
1457 size_t
1458 operator()(const Symbol_table_key&) const;
1459 };
1460
1461 struct Symbol_table_eq
1462 {
1463 bool
1464 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1465 };
1466
1467 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1468 Symbol_table_eq> Symbol_table_type;
1469
1470 // Make FROM a forwarder symbol to TO.
1471 void
1472 make_forwarder(Symbol* from, Symbol* to);
1473
1474 // Add a symbol.
1475 template<int size, bool big_endian>
1476 Sized_symbol<size>*
1477 add_from_object(Object*, const char *name, Stringpool::Key name_key,
1478 const char *version, Stringpool::Key version_key,
1479 bool def, const elfcpp::Sym<size, big_endian>& sym,
1480 unsigned int st_shndx, bool is_ordinary,
1481 unsigned int orig_st_shndx);
1482
1483 // Define a default symbol.
1484 template<int size, bool big_endian>
1485 void
1486 define_default_version(Sized_symbol<size>*, bool,
1487 Symbol_table_type::iterator);
1488
1489 // Resolve symbols.
1490 template<int size, bool big_endian>
1491 void
1492 resolve(Sized_symbol<size>* to,
1493 const elfcpp::Sym<size, big_endian>& sym,
1494 unsigned int st_shndx, bool is_ordinary,
1495 unsigned int orig_st_shndx,
1496 Object*, const char* version);
1497
1498 template<int size, bool big_endian>
1499 void
1500 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1501
1502 // Record that a symbol is forced to be local by a version script or
1503 // by visibility.
1504 void
1505 force_local(Symbol*);
1506
1507 // Adjust NAME and *NAME_KEY for wrapping.
1508 const char*
1509 wrap_symbol(const char* name, Stringpool::Key* name_key);
1510
1511 // Whether we should override a symbol, based on flags in
1512 // resolve.cc.
1513 static bool
1514 should_override(const Symbol*, unsigned int, Defined, Object*, bool*);
1515
1516 // Report a problem in symbol resolution.
1517 static void
1518 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1519 Defined, Object* object);
1520
1521 // Override a symbol.
1522 template<int size, bool big_endian>
1523 void
1524 override(Sized_symbol<size>* tosym,
1525 const elfcpp::Sym<size, big_endian>& fromsym,
1526 unsigned int st_shndx, bool is_ordinary,
1527 Object* object, const char* version);
1528
1529 // Whether we should override a symbol with a special symbol which
1530 // is automatically defined by the linker.
1531 static bool
1532 should_override_with_special(const Symbol*, Defined);
1533
1534 // Override a symbol with a special symbol.
1535 template<int size>
1536 void
1537 override_with_special(Sized_symbol<size>* tosym,
1538 const Sized_symbol<size>* fromsym);
1539
1540 // Record all weak alias sets for a dynamic object.
1541 template<int size>
1542 void
1543 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1544
1545 // Define a special symbol.
1546 template<int size, bool big_endian>
1547 Sized_symbol<size>*
1548 define_special_symbol(const char** pname, const char** pversion,
1549 bool only_if_ref, Sized_symbol<size>** poldsym,
1550 bool* resolve_oldsym);
1551
1552 // Define a symbol in an Output_data, sized version.
1553 template<int size>
1554 Sized_symbol<size>*
1555 do_define_in_output_data(const char* name, const char* version, Defined,
1556 Output_data*,
1557 typename elfcpp::Elf_types<size>::Elf_Addr value,
1558 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1559 elfcpp::STT type, elfcpp::STB binding,
1560 elfcpp::STV visibility, unsigned char nonvis,
1561 bool offset_is_from_end, bool only_if_ref);
1562
1563 // Define a symbol in an Output_segment, sized version.
1564 template<int size>
1565 Sized_symbol<size>*
1566 do_define_in_output_segment(
1567 const char* name, const char* version, Defined, Output_segment* os,
1568 typename elfcpp::Elf_types<size>::Elf_Addr value,
1569 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1570 elfcpp::STT type, elfcpp::STB binding,
1571 elfcpp::STV visibility, unsigned char nonvis,
1572 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1573
1574 // Define a symbol as a constant, sized version.
1575 template<int size>
1576 Sized_symbol<size>*
1577 do_define_as_constant(
1578 const char* name, const char* version, Defined,
1579 typename elfcpp::Elf_types<size>::Elf_Addr value,
1580 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1581 elfcpp::STT type, elfcpp::STB binding,
1582 elfcpp::STV visibility, unsigned char nonvis,
1583 bool only_if_ref, bool force_override);
1584
1585 // Add any undefined symbols named on the command line to the symbol
1586 // table, sized version.
1587 template<int size>
1588 void
1589 do_add_undefined_symbols_from_command_line();
1590
1591 // Types of common symbols.
1592
1593 enum Commons_section_type
1594 {
1595 COMMONS_NORMAL,
1596 COMMONS_TLS,
1597 COMMONS_SMALL,
1598 COMMONS_LARGE
1599 };
1600
1601 // Allocate the common symbols, sized version.
1602 template<int size>
1603 void
1604 do_allocate_commons(Layout*, Mapfile*);
1605
1606 // Allocate the common symbols from one list.
1607 template<int size>
1608 void
1609 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1610 Mapfile*);
1611
1612 // Implement detect_odr_violations.
1613 template<int size, bool big_endian>
1614 void
1615 sized_detect_odr_violations() const;
1616
1617 // Finalize symbols specialized for size.
1618 template<int size>
1619 off_t
1620 sized_finalize(off_t, Stringpool*, unsigned int*);
1621
1622 // Finalize a symbol. Return whether it should be added to the
1623 // symbol table.
1624 template<int size>
1625 bool
1626 sized_finalize_symbol(Symbol*);
1627
1628 // Add a symbol the final symtab by setting its index.
1629 template<int size>
1630 void
1631 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1632
1633 // Write globals specialized for size and endianness.
1634 template<int size, bool big_endian>
1635 void
1636 sized_write_globals(const Stringpool*, const Stringpool*,
1637 Output_symtab_xindex*, Output_symtab_xindex*,
1638 Output_file*) const;
1639
1640 // Write out a symbol to P.
1641 template<int size, bool big_endian>
1642 void
1643 sized_write_symbol(Sized_symbol<size>*,
1644 typename elfcpp::Elf_types<size>::Elf_Addr value,
1645 unsigned int shndx,
1646 const Stringpool*, unsigned char* p) const;
1647
1648 // Possibly warn about an undefined symbol from a dynamic object.
1649 void
1650 warn_about_undefined_dynobj_symbol(Symbol*) const;
1651
1652 // Write out a section symbol, specialized for size and endianness.
1653 template<int size, bool big_endian>
1654 void
1655 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1656 Output_file*, off_t) const;
1657
1658 // The type of the list of symbols which have been forced local.
1659 typedef std::vector<Symbol*> Forced_locals;
1660
1661 // A map from symbols with COPY relocs to the dynamic objects where
1662 // they are defined.
1663 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1664
1665 // A map from symbol name (as a pointer into the namepool) to all
1666 // the locations the symbols is (weakly) defined (and certain other
1667 // conditions are met). This map will be used later to detect
1668 // possible One Definition Rule (ODR) violations.
1669 struct Symbol_location
1670 {
1671 Object* object; // Object where the symbol is defined.
1672 unsigned int shndx; // Section-in-object where the symbol is defined.
1673 off_t offset; // Offset-in-section where the symbol is defined.
1674 bool operator==(const Symbol_location& that) const
1675 {
1676 return (this->object == that.object
1677 && this->shndx == that.shndx
1678 && this->offset == that.offset);
1679 }
1680 };
1681
1682 struct Symbol_location_hash
1683 {
1684 size_t operator()(const Symbol_location& loc) const
1685 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1686 };
1687
1688 typedef Unordered_map<const char*,
1689 Unordered_set<Symbol_location, Symbol_location_hash> >
1690 Odr_map;
1691
1692 // We increment this every time we see a new undefined symbol, for
1693 // use in archive groups.
1694 int saw_undefined_;
1695 // The index of the first global symbol in the output file.
1696 unsigned int first_global_index_;
1697 // The file offset within the output symtab section where we should
1698 // write the table.
1699 off_t offset_;
1700 // The number of global symbols we want to write out.
1701 unsigned int output_count_;
1702 // The file offset of the global dynamic symbols, or 0 if none.
1703 off_t dynamic_offset_;
1704 // The index of the first global dynamic symbol.
1705 unsigned int first_dynamic_global_index_;
1706 // The number of global dynamic symbols, or 0 if none.
1707 unsigned int dynamic_count_;
1708 // The symbol hash table.
1709 Symbol_table_type table_;
1710 // A pool of symbol names. This is used for all global symbols.
1711 // Entries in the hash table point into this pool.
1712 Stringpool namepool_;
1713 // Forwarding symbols.
1714 Unordered_map<const Symbol*, Symbol*> forwarders_;
1715 // Weak aliases. A symbol in this list points to the next alias.
1716 // The aliases point to each other in a circular list.
1717 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1718 // We don't expect there to be very many common symbols, so we keep
1719 // a list of them. When we find a common symbol we add it to this
1720 // list. It is possible that by the time we process the list the
1721 // symbol is no longer a common symbol. It may also have become a
1722 // forwarder.
1723 Commons_type commons_;
1724 // This is like the commons_ field, except that it holds TLS common
1725 // symbols.
1726 Commons_type tls_commons_;
1727 // This is for small common symbols.
1728 Commons_type small_commons_;
1729 // This is for large common symbols.
1730 Commons_type large_commons_;
1731 // A list of symbols which have been forced to be local. We don't
1732 // expect there to be very many of them, so we keep a list of them
1733 // rather than walking the whole table to find them.
1734 Forced_locals forced_locals_;
1735 // Manage symbol warnings.
1736 Warnings warnings_;
1737 // Manage potential One Definition Rule (ODR) violations.
1738 Odr_map candidate_odr_violations_;
1739
1740 // When we emit a COPY reloc for a symbol, we define it in an
1741 // Output_data. When it's time to emit version information for it,
1742 // we need to know the dynamic object in which we found the original
1743 // definition. This maps symbols with COPY relocs to the dynamic
1744 // object where they were defined.
1745 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1746 // Information parsed from the version script, if any.
1747 const Version_script_info& version_script_;
1748 Garbage_collection* gc_;
1749 Icf* icf_;
1750 };
1751
1752 // We inline get_sized_symbol for efficiency.
1753
1754 template<int size>
1755 Sized_symbol<size>*
1756 Symbol_table::get_sized_symbol(Symbol* sym) const
1757 {
1758 gold_assert(size == parameters->target().get_size());
1759 return static_cast<Sized_symbol<size>*>(sym);
1760 }
1761
1762 template<int size>
1763 const Sized_symbol<size>*
1764 Symbol_table::get_sized_symbol(const Symbol* sym) const
1765 {
1766 gold_assert(size == parameters->target().get_size());
1767 return static_cast<const Sized_symbol<size>*>(sym);
1768 }
1769
1770 } // End namespace gold.
1771
1772 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.062999 seconds and 5 git commands to generate.